WO2009148317A1 - Systeme automatique de positionnement de catheter - Google Patents

Systeme automatique de positionnement de catheter Download PDF

Info

Publication number
WO2009148317A1
WO2009148317A1 PCT/NL2009/050314 NL2009050314W WO2009148317A1 WO 2009148317 A1 WO2009148317 A1 WO 2009148317A1 NL 2009050314 W NL2009050314 W NL 2009050314W WO 2009148317 A1 WO2009148317 A1 WO 2009148317A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
balloon
location
distal end
stent
Prior art date
Application number
PCT/NL2009/050314
Other languages
English (en)
Inventor
Borut Gersak
Mauro Sette
Hugo Furtado
Nele Famaey
Thomas P. Stüdeli
Eigil Samset
Original Assignee
Technische Universiteit Delft
Universitetet I Oslo
Katholieke Universiteit Leuven
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universiteit Delft, Universitetet I Oslo, Katholieke Universiteit Leuven filed Critical Technische Universiteit Delft
Publication of WO2009148317A1 publication Critical patent/WO2009148317A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0113Mechanical advancing means, e.g. catheter dispensers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • A61B17/12118Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm for positioning in conjunction with a stent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12136Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M2025/0166Sensors, electrodes or the like for guiding the catheter to a target zone, e.g. image guided or magnetically guided

Definitions

  • the present invention relates generally to medical de ⁇ vices, and more particularly to medical devices for Minimal In ⁇ vasive Cardiac Surgery (MICS) , and common interventional cardiac surgery, and more particularly to a system to visualize the position of a catheter to perform aortic clamping or administer substances for medical treatment or place a medical treatment device, and to control the position of such a catheter.
  • MICS Minimal In ⁇ vasive Cardiac Surgery
  • CPB Cardio Pulmonary Bypass
  • the coronary arteries will be perfused with Cardioplegia, a solution which protects the myocardium. Because of this, the aorta has to be sectioned isolating the heart from the rest of the aorta. This sectioning guarantees that blood is flowing through the aorta, to the brachiocephalic branch and also through the descending aorta towards the lower part of the body but it is not entering the coronary arteries.
  • the balloon catheter represents a good possibility of performing the surgery with the smallest incisions possible, but it has some drawbacks. These are mostly related with difficulties in placement and monitoring during the surgery.
  • the balloon should section the aorta between the aortic valve and the brachiocephalic artery. Serious complications could arise should the balloon be placed or move towards the heart or in the opposite direction. It is extremely important then, to guarantee its correct placement at all times. If the balloon is placed or moves towards the heart it might occlude the coronary arteries blocking the delivery of cardiople- gia to the myocardium thus impairing its protection while being stopped. If the balloon is placed or moves towards the other side, it might occlude the brachiocephalic artery stopping the flow of oxygenated blood to the brain through that artery. The consequences could range from none (because there is redundancy on the blood supply chain to the brain) to death (because there is no guarantee that the redundancy is not malfunctioning also) .
  • the balloon is in the correct location and by some event (pushing by the surgeon, too big difference in pressure, etc.) it migrates away from it.
  • the first situation is at the initial balloon placement.
  • the surgeon inserts the catheter through the femoral artery and pushes it forward until it reaches its intended position in the ascending aorta.
  • inflation is started and the drugs to stop the heart administered.
  • the patient is already under CPB so the machine is pumping oxy- genated blood into the descending aorta to all the body.
  • the heart is stopping, there is a drop of pressure upstream of the balloon because the heart is not pumping anymore.
  • the balloon is inflating and the CPB machine is pumping blood downstream, there is a lot of instability due to the irregular blood flow paths. This instability causes the balloon to move irregularly, especially to be dragged with inconstant forces towards the aortic valve.
  • This motion has to be compensated by the surgeon who has to pull the catheter with the correct force with the objective of leaving it in the correct location as soon as the instability stops (which will be the moment in which the balloon is sealing the ascending aorta) .
  • This is a hard task and many times, when sealing starts, the balloon rests in the incorrect location.
  • the surgeon has to rely solely on haptic feedback for control of applied forces, pushing too hard has a risk of rupturing the aorta.
  • the second situation is balloon migration. During the surgery, the balloon catheter is in a stable situation most of the time.
  • cardioplegia solution has to be administered to the coronary arteries in order to maintain myocardium protection.
  • the force created by this delivery can break the equilibrium and push the balloon downstream leading to a possi- ble occlusion of the brachiocephalic artery.
  • the surgeon might unintentionally touch and push the balloon.
  • Balloon Valvuloplasty also called percutaneous balloon valvuloplasty, is a surgical procedure used to open a narrowed heart valve. The procedure is sometimes referred to as balloon enlargement of a narrowed heart valve.
  • Balloon valvuloplasty is performed on patients who have a narrowed heart valve, a condition called stenosis.
  • the goal of the procedure is to improve valve function and blood flow by enlarging the valve opening. It is sometimes used to avoid or delay open heart surgery and valve replacement.
  • a balloon valvuloplasty procedure consists of placing one or two special catheters across a narrowed heart valve.
  • the narrowing usually occurs when parts of the valve, which are called leaflets, fuse (stick together) .
  • the first part of a balloon valvuloplasty or angioplasty is identical to a standard heart catheterization. Blood pressure readings are taken within the heart to determine the degree of narrowing or tightness across the valve or vessel. A deflated balloon catheter then is placed across the narrowed area. The balloon is inflated, and as it expands, it stretches open the narrowed area. The balloon then is rapidly deflated and blood pressure readings again are measured to determine the results. If necessary, the balloon procedure can be repeated to further decrease the tightness across the valve or vessel. During the procedure aortic root angiography is performed and displayed to facilitate subsequent positioning of the balloon.
  • any heart catheterization complications can result such as infection, bleeding, perforation through a blood vessel or heart wall, blood clots (which could result in a stroke), disturbances of the heart rhythm and even death.
  • the risk of these complications occurring is greater during balloon valvuloplasty than during a standard heart catheterization and are mainly due to incorrect positioning or driving of the cathe- ter.
  • valve replacement is performed through sternotomy or minimally invasive access.
  • a stent mounted valve that can be implanted by means of a catheter procedure.
  • the deployment device is a balloon catheter on which is crimped the stent valve.
  • the occlusive fabric skirt must be mounted distally on the balloon catheter .
  • a deflectable guiding catheter is used to facilitate passage of the prosthesis through the arterial system and aortic valve. Active deflection is accomplished by rotation of an external handle.
  • the prosthesis, balloon, and deflection catheter are introduced into the femoral sheath as a unit through a haemostatic loader catheter.
  • aortic root angiography is performed and displayed to facilitate subsequent positioning of the prosthesis.
  • Balloon valvuloplasty is performed in a standard manner with a balloon slightly smaller than the diameter of the planned prosthesis.
  • the femoral access site is sequentially dilated to allow introduction of the large sheath to a position beyond the iliac arteries into the aorta.
  • a steerable deflection catheter is used to actively direct the prosthesis through the tortuous aorta.
  • the prosthesis is positioned such that it is coaxial within the calcified native valve leaflets.
  • rapid right ventricular pacing as well as delivery of medicament e.g. cardioplegia are used to minimize pulsatile transaortic flow which would otherwise act to eject the inflated device-deployment balloon.
  • the crimped valve When the catheter is in the correct position, the crimped valve is expanded and stabilized against the aortic wall. Then the balloon is deflated. Only when the balloon is fully deflated and the pacing is terminated the catheter system is withdrawn.
  • the prosthesis is positioned such that its midpoint is adjacent to fluoroscopically visible native leaflet calcification.
  • Aortography that used hand injections through a pigtail catheter placed immediately above the valve is often helpful.
  • the posteroanterior view is used most commonly; however, at times, other angulations are useful to visualize the valve plane.
  • Transesophageal echocardiography is used but sometimes is limited in its ability to clearly distinguish the prosthesis while mounted on the balloon catheter. Echocardiographic visualization of the native valve leaflets is of particular value when valve calcification is mild and fluoroscopic positioning difficult .
  • An unsuccessfully deployed prosthetic valve can result in embolization.
  • Potential contributors to embolization include native annulus/prosthesis mismatch, aggressive predilation of the native valve, and excessively high positioning.
  • Optimal positioning of the prosthetic valve is critical and embolization, paravalvular insufficiency, and coronary ob- struction are to be avoided.
  • Dependence on fluoroscopic visualization of the native valve is problematic owing to variability in the amount and location of calcification. Aortography and transesophageal echocardiographic assessment may yet be helpful.
  • a stent graft is a tubular device, which is composed of special fabric supported by a rigid structure, usually metal.
  • the rigid structure is called a stent.
  • An average stent on its own has no covering, and therefore is usually just a metal mesh. Although there are many types of stents, these stents are used mainly for vascular intervention.
  • Stent grafts are used to support weak points in arteries, com ⁇ monly known as an aneurysm. Stent grafts are most commonly used in the repair of an abdominal aortic aneurysm, in a procedure called an EVAR. The theory behind the procedure is that once in place inside the aorta, the stent graft acts as a false lumen for blood travel through, instead of into the aneurysm sack.
  • the deployment device is a balloon catheter on which is crimped the stent graft.
  • the catheter is inserted into the groin and push up into the aorta until it reaches the aneurism.
  • the balloon is inflated causing the expansion of the stent.
  • Embodiments of the system will preferably provide visualisation of the catheter position at all times and automatic position control in the vascular system.
  • embodiments of the system preferably provide a method for visualisation of the catheters position at all times. Also, embodiments of the proposed system preferably automatically control the initial placement of the catheter. Additionally, embodiments preferably to provide an automatic keep-in-place mechanism that will warn the team of any displacement of the catheter and will try to compensate for it automatically.
  • For the visualization of the catheter's position we propose to use the data collected in real time from a position sensor placed at the distal end of the catheter and to represent it in a 3D visualization environment, superimposed on the body structures which will be rendered from pre-operative 3D scans of the patient's thorax.
  • the position sensor can be magnetic but other sensors can be used.
  • a method for deformable registration can be used to represent the catheter, or at least its distal end embedded in the body structures. If the registration is correct, the catheter's position can be represented in real-time and the representation will correspond to the location of the catheter's distal part inside the patient. Like this, the team will have a visual feedback on the catheter' s position and can determine easily - when the catheter has a balloon - whether this balloon is stable or if it has moved and lodged in a different location. This system can also be used to see the catheter's progression through the vascular system during the initial placement. Said approach will increase the control of applied forces and reduce the risk of (aortic) ruptures.
  • a sensor should preferably also be placed in the guide wire so that it can also be visualized in the display.
  • a feedback control loop based on the catheter's position, can be used.
  • the catheter' s position can also be acquired in real time when the position sensor is inside the balloon.
  • Such a balloon can be inflated either manually or by a mechanical pump.
  • a mechanical actuator can pull or push the catheter according to the signal generated by the feedback control loop, thus controlling its po- sition.
  • the control principle can be the same as for the initial placement.
  • a feedback control loop based on the position of the catheter's distal part can be used, also when the catheter is provided with a bal- loon that is inflated. Additionally, if this position needs to be changed, the system also allows for the pressure within the balloon to be reduced, manually or automatically, so that the balloon at least partially deflates, which facilitates movement of the catheter.
  • Figure 1 shows the location of the prefered aorta physical sectioning.
  • Figure 2 shows a catheter inserted with the balloon deflated 2 and with the balloon inflated 3.
  • Figure 3 shows the balloon occluding coronary arteries 4 and occluding brachiocephalic artery 5.
  • Figure 4 shows the balloon well placed and deflated.
  • the CPB machine is pumping and heart is pumping also. We can see an indication of the flow of blood via the arrows.
  • Figure 5 shows the balloon in the same position as figure 4 but it is now a bit inflated. Also the aproximate flow 6 is shown in a situation where the heart is not pumping anymore .
  • Figure 6 represents the delivery of cardioplegia from one of the lumens of the balloon 1.
  • Figure 7 shows a close view of the balloon 1 with one possibility for the position sensor 7.
  • Figure 8 shows in possible user interface for the visualization of the balloon. We can see two 2D views 8 and 9 and a 3D view 10. Also there are controls to select the target 11 and to start and stop the controller, 12.
  • Figure 9 shows a possible realization of an actuator for pushing and pulling.
  • Figure 10 is a conceptual schematic of a negative feedback control loop.
  • Figure 11 shows a schematic representing the information flow in the whole system.
  • Figure 12 shows one possible physical realization of the system.
  • Figure 13 shows the position of the balloon and of the catheter when it is used in the procedure of balloon valvuloplasty .
  • Figure 14 shows the position of the catheter, balloon and stent-graft when it is used in the procedure of placing a stent graft.
  • Figure 15 shows the position of the catheter, balloon and stent valve when it is used in the procedure of placing a percutaneous stent valve.
  • Figure 16 shows a possible realization of an actuator for pushing, pulling and rotating a catheter.
  • MIPAS Minimally Invasive Port Access Surgery
  • the position of the balloon is preferably known at all times inside the patient.
  • the surgery is preferably performed like a conventional Minimally Invasive Port Access TM Surgery with some minor exceptions .
  • the heart-lung machine is functioning normally but the oxygenated blood input into the aorta is done by a catheter in the femoral artery and not in the aortic arch.
  • the clamping of the Aorta is done preferably using a known device, such as the Endoaortic Port AccessTM Catheter. This device has a balloon at its tip, that will be referred herein simply as the balloon.
  • the system as seen in figure 12 preferably comprises the referred catheter 1, a position sensor 2 added to it, a piece of software 14 responsible for the managing of the tracking data and the visualization of the same data, a mechanical actuator 13 that can be controlled by software, a mechanical pump to inflate and deflate the balloon that can be controlled by software 14 and a piece of software 15 that implements the control algorithm.
  • the piece of software 14, which we will call manager software, is itself a system used to manage and visualise the position data and used also to interact with the user.
  • the software is capable of receiving a data stream with data regarding the position of a sensor in 3D space that will be simply referred as tracking data.
  • the software is also able to read 3D datasets of a patient's anatomy and display them in a 3D view or only slices of the datasets in a 2D view.
  • the software is able, to represent a virtual object which position is locked to the position indicated by the tracking data and, to superimpose this object in the patient's dataset with the correct alignment, given that a certain mathe- matical transformation is defined.
  • the user can define a target point in space where he desires the balloon (see for instance Figs. 4, 5, 13) and/or eventually a stent or stent-valve (see Figs. 14, 15) to be placed.
  • the software is then able to calculate the distance between the measured position of the distal end of the catheter and this target point. This distance we call position error.
  • control software implements a given control algorithm which is responsible for generating the numerical signals that will bring the balloon (with or without a stent) to the target.
  • Both the manager software and the control software can communicate through a certain protocol to share data regarding the error in position of the balloon at the distal end of the catheter.
  • One possible though not exclusive communication protocol is TCP/IP.
  • TCP/IP Transmission Control Protocol/IP
  • the proximal end of the catheter that is outside the patient can either be controlled by hand during one stage of the procedure or attached to the actuator so it can be driven by it, in a latter phase of the procedure.
  • the catheter can be inserted as usual under monitoring the position of the catheter on the user interface (if wanted) .
  • the insertion for instance is done until a position in the aor- tic arch similar to the one shown in figure 2.
  • the surgeon can inform the system via the user interface of figure 8 that everything is ready to be taken over automatically.
  • a target point where the balloon (and/or the stent) is required to be is preferably defined via the user interface 11. From the point in time where the user tells the system to take over, the actuator will preferably always try to have the distal end of the catheter in the defined position.
  • the inflation (or deflation) of the balloon can either be done by hand as usual or can be done with a pump which is also controlled by the system.
  • a pump which is also controlled by the system.
  • the system controls the inflation by means of a mechanical pump and a pressure sensor.
  • the pressure sensor measures the pressure in- side the balloon.
  • An electrical signal generated by a pressure feedback loop is used to control the pump. It is possible to provide the system also with maximum, minimum and optimum (target) values for the pressure.
  • Inflation or deflation of the balloon in case of plac- ing a percutaneous valve stent-graft (Fig. 14) or stent-valve (Fig. 15) can either be done by hand as usual or can be done with a mechanical pump controlled by the system. The user can choose if he wants to deliver the stent or expand the valve manually or let the system do it. If so, he can control the ac- tion via real-time imaging of the working area and interrupt or slow down the automatic placement or take it over and finish the placement manually in case it is needed.
  • the delivery of the stent-graft or stent-valve can be performed using a deflectable guiding catheter either with ac- tive degrees of freedom or classic catheter.
  • the user can choose to control the degrees of freedom manually or let the system do it.
  • One preferred option for position measuring is the use of magnetic tracking.
  • a coil 7 is inserted in the catheter to sit in the middle point of the balloon 1.
  • the magnetic tracking system provides 6 degrees of freedom, that is, 3 values for position and 3 values for orientation, position information.
  • Other tracking systems may be used to im- plement the invention.
  • a 3D dataset of the patient's thorax should be available.
  • This dataset can be obtained by Computerized Tomography of Magnetic Resonance, for instance.
  • the position in space measured by the magnetic tracking should preferably be matched numerically to the coordinates of the patient's dataset in a process known as registration.
  • Registration can, but doesn't necessarily have to, be done rigidly by placing the catheter with the sensor at known reference locations in the patient, and marking these locations in the dataset. The details of this process are not relevant to the invention and other methods of registration might also be used .
  • the system has the option to manually register or re-register different kinds of 2D or 3D images (most likely real-time images such as echography, an- giography) to the pre-operatively acquired 3D dataset of the pa ⁇ tient .
  • 2D or 3D images most likely real-time images such as echography, an- giography
  • the position reported corresponds to the position in real space, within the measuring volume of the magnetic tracking system.
  • the distal end of the catheter can be represented embedded in the 3D dataset and also a virtual view of the balloon position can thus be created. This is what can be seen in the user interface of a preferred embodiment according with the present invention as seen in figure 8.
  • the correct information about the location in space of the catheter's distal end is also used to control its position.
  • the difference between the position and the intended position is the position error. This difference is calculated in the piece of software that manages the data.
  • the two software programs communicate and the error is passed on to the program that implements the feedback control loop.
  • the control loop tries to minimize the error thus bringing the balloon closer to the in- tended position.
  • the control loop gener ⁇ ates electrical signals to the actuator that will push or pull the catheter .
  • the program that implements the control loop also preferably includes software for automatically reduc- ing the pressure within the balloon when a balloon is applied and is intended to being moved. Reducing the pressure within the balloon deflates the balloon, at least partially, which enables the balloon to be moved more easily and safer. After the balloon is located in the desired position, the pressure is increased to hold the balloon at the desired position. Such pressure increases and decreases are preferably performed automatically, and are controlled by the software. However, manually increasing and decreasing of the pressure is also contemplated.
  • the pressure line of the Endoclamp Catheter TM can be used and the pressure measured using a Strain Gauge Pressure Sensor, but also other kind of sensors can be used.
  • Figure 9 shows in a preferred embodiment the device used to physically control the movements of the catheter.
  • the object is used to push or pull catheters or guidewires.
  • the catheter driver is constituted by 6 or more rollers and a cen- tral pulley.
  • the central pulley and the rollers can be with flat profile or with grooves.
  • the central wheel and/or the rollers can be actuated manually or by motors.
  • the catheter is placed between the rollers and the central pulley.
  • the relative rota- tion of the central pulley respect to the rollers creates the motion of the catheter or guidewire.
  • the control of the catheter driver is done via position or force feedback.
  • FIG. 16 An example of another preferred embodiment is shown in Fig. 16.
  • Figure 16 shows in a preferred embodiment an actuator which can be used to physically control the movements of the catheter (push, pull and rotate) . It has a spindle 15 connected to an engine 16 with a moving part 17. The catheter is attached to the moving part via a grip 18 to perform pushing, pulling and rotating movements.
  • This design for the actuator is not exclu- sive and it should be noted that any way to automatically push, pull and rotate the catheter could be used in the scope of the invention to perform this action.
  • FIG 11 we see how the information is flowing in this realization of the system.
  • the catheter with the sensor is inside the patient, out of direct view.
  • the magnetic tracking measures the position of the sensor in space and the 3D visualisation software acquires this data.
  • the same software represents the catheter's distal end position (possibly with the balloon) on the screen by superimposing it with the pre- operative 3D images.
  • the 3D visualisation software calculates the error between the catheter' s position and its desired position and passes on this error to the control loop that in turn will generate the appropriate signal to push or pull the catheter in order to minimize the error, as well as the appropriate control.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Reproductive Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Neurosurgery (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

L’invention concerne un système servant à positionner l’extrémité distale d’un cathéter (1) à un emplacement prédéterminé à l’intérieur d’un passage et à maintenir cette extrémité à l’endroit prédéterminé. Ce système comprend : un capteur de position (2) situé au niveau ou à proximité de l’extrémité distale; un moyen d’évaluation d’emplacement servant à déterminer l’emplacement courant de l’extrémité distale du cathéter à l’intérieur du passage, en fonction du capteur de position; un moyen d’évaluation de différence servant à déterminer une différence entre l’emplacement courant déterminé de l’extrémité distale du cathéter et l’emplacement prédéterminé; un actionneur (13) fixé sur le cathéter pour le déplacer à l’intérieur du passage; et un moyen de commande destiné à commander l’actionneur. Lorsque le moyen d’évaluation de différence détermine une différence entre l’emplacement courant déterminé du cathéter et l’emplacement prédéterminé, le moyen de commande exerce une commande sur l’actionneur pour qu’il déplace le cathéter jusqu’à l’emplacement prédéterminé.
PCT/NL2009/050314 2008-06-05 2009-06-05 Systeme automatique de positionnement de catheter WO2009148317A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5914908P 2008-06-05 2008-06-05
US61/059,149 2008-06-05

Publications (1)

Publication Number Publication Date
WO2009148317A1 true WO2009148317A1 (fr) 2009-12-10

Family

ID=41077619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2009/050314 WO2009148317A1 (fr) 2008-06-05 2009-06-05 Systeme automatique de positionnement de catheter

Country Status (1)

Country Link
WO (1) WO2009148317A1 (fr)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147028A1 (fr) * 2011-04-28 2012-11-01 Koninklijke Philips Electronics N.V. Pose guidée d'une valvule prothétique
EP2861293A4 (fr) * 2012-06-19 2016-08-31 Subramaniam Chitoor Krishnan Appareil et méthode de traitement des saignements provenant de l'appendice auriculaire gauche
WO2017167759A1 (fr) * 2016-03-31 2017-10-05 Koninklijke Philips N.V. Guidage par imagerie d'un introducteur orientable pour interventions mini-invasives
WO2018094041A1 (fr) * 2016-11-16 2018-05-24 Avinger, Inc. Procédés, systèmes et appareils pour afficher une position de cathéter en temps réel
US10052168B2 (en) 2012-06-19 2018-08-21 Subramaniam Chitoor Krishnan Methods and systems for preventing bleeding from the left atrial appendage
US10052125B2 (en) 2009-07-01 2018-08-21 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10244934B2 (en) 2012-05-14 2019-04-02 Avinger, Inc. Atherectomy catheter drive assemblies
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US10342491B2 (en) 2009-05-28 2019-07-09 Avinger, Inc. Optical coherence tomography for biological imaging
US10349974B2 (en) 2010-07-01 2019-07-16 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US10363062B2 (en) 2011-10-17 2019-07-30 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US10470795B2 (en) 2014-02-06 2019-11-12 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
US10568655B2 (en) 2014-02-06 2020-02-25 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US10722121B2 (en) 2013-03-15 2020-07-28 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US10729326B2 (en) 2009-07-01 2020-08-04 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US10932670B2 (en) 2013-03-15 2021-03-02 Avinger, Inc. Optical pressure sensor assembly
US10952615B2 (en) 2012-05-14 2021-03-23 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US10952763B2 (en) 2011-03-28 2021-03-23 Avinger, Inc. Occlusion-crossing devices
US11076773B2 (en) 2009-04-28 2021-08-03 Avinger, Inc. Guidewire positioning catheter
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US11135019B2 (en) 2011-11-11 2021-10-05 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US11134849B2 (en) 2011-03-28 2021-10-05 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
US11278248B2 (en) 2016-01-25 2022-03-22 Avinger, Inc. OCT imaging catheter with lag correction
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US11344327B2 (en) 2016-06-03 2022-05-31 Avinger, Inc. Catheter device with detachable distal end
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US11399863B2 (en) 2016-04-01 2022-08-02 Avinger, Inc. Atherectomy catheter with serrated cutter
US11403759B2 (en) 2015-09-18 2022-08-02 Auris Health, Inc. Navigation of tubular networks
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US11529129B2 (en) 2017-05-12 2022-12-20 Auris Health, Inc. Biopsy apparatus and system
US11534247B2 (en) 2017-06-28 2022-12-27 Auris Health, Inc. Instrument insertion compensation
US11684758B2 (en) 2011-10-14 2023-06-27 Intuitive Surgical Operations, Inc. Catheter with removable vision probe
US11712173B2 (en) 2018-03-28 2023-08-01 Auris Health, Inc. Systems and methods for displaying estimated location of instrument
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices
US11817201B2 (en) 2020-09-08 2023-11-14 Medtronic, Inc. Imaging discovery utility for augmenting clinical image management
US11918340B2 (en) 2011-10-14 2024-03-05 Intuitive Surgical Opeartions, Inc. Electromagnetic sensor with probe and guide sensing elements
US11992183B2 (en) 2017-03-28 2024-05-28 Auris Health, Inc. Shaft actuating handle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044089A1 (fr) * 1996-05-17 1997-11-27 Biosense Inc. Catheter a autoalignement
EP1078644A1 (fr) * 1999-08-24 2001-02-28 Biosense, Inc. Appareil d'administration et de transplantation intracardiaque des cellules
US20070173919A1 (en) * 2006-01-20 2007-07-26 Siemens Aktiengesellschaft Device for performing a cutting-balloon intervention

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044089A1 (fr) * 1996-05-17 1997-11-27 Biosense Inc. Catheter a autoalignement
EP1078644A1 (fr) * 1999-08-24 2001-02-28 Biosense, Inc. Appareil d'administration et de transplantation intracardiaque des cellules
US20070173919A1 (en) * 2006-01-20 2007-07-26 Siemens Aktiengesellschaft Device for performing a cutting-balloon intervention

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11076773B2 (en) 2009-04-28 2021-08-03 Avinger, Inc. Guidewire positioning catheter
US11998311B2 (en) 2009-04-28 2024-06-04 Avinger, Inc. Guidewire positioning catheter
US11284839B2 (en) 2009-05-28 2022-03-29 Avinger, Inc. Optical coherence tomography for biological imaging
US11839493B2 (en) 2009-05-28 2023-12-12 Avinger, Inc. Optical coherence tomography for biological imaging
US10342491B2 (en) 2009-05-28 2019-07-09 Avinger, Inc. Optical coherence tomography for biological imaging
US10729326B2 (en) 2009-07-01 2020-08-04 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US10052125B2 (en) 2009-07-01 2018-08-21 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US11717314B2 (en) 2009-07-01 2023-08-08 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
US10349974B2 (en) 2010-07-01 2019-07-16 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US11903677B2 (en) 2011-03-28 2024-02-20 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US11134849B2 (en) 2011-03-28 2021-10-05 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US10952763B2 (en) 2011-03-28 2021-03-23 Avinger, Inc. Occlusion-crossing devices
WO2012147028A1 (fr) * 2011-04-28 2012-11-01 Koninklijke Philips Electronics N.V. Pose guidée d'une valvule prothétique
US10537428B2 (en) 2011-04-28 2020-01-21 Koninklijke Philips N.V. Guided delivery of prosthetic valve
JP2014524753A (ja) * 2011-04-28 2014-09-25 コーニンクレッカ フィリップス エヌ ヴェ 人工弁の誘導送達
CN103501721A (zh) * 2011-04-28 2014-01-08 皇家飞利浦有限公司 人工瓣膜的引导递送
US11684758B2 (en) 2011-10-14 2023-06-27 Intuitive Surgical Operations, Inc. Catheter with removable vision probe
US11918340B2 (en) 2011-10-14 2024-03-05 Intuitive Surgical Opeartions, Inc. Electromagnetic sensor with probe and guide sensing elements
US10363062B2 (en) 2011-10-17 2019-07-30 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US11135019B2 (en) 2011-11-11 2021-10-05 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US11206975B2 (en) 2012-05-14 2021-12-28 Avinger, Inc. Atherectomy catheter drive assemblies
US11647905B2 (en) 2012-05-14 2023-05-16 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US10952615B2 (en) 2012-05-14 2021-03-23 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US10244934B2 (en) 2012-05-14 2019-04-02 Avinger, Inc. Atherectomy catheter drive assemblies
US10052168B2 (en) 2012-06-19 2018-08-21 Subramaniam Chitoor Krishnan Methods and systems for preventing bleeding from the left atrial appendage
US10952736B2 (en) 2012-06-19 2021-03-23 Subramaniam Chitoor Krishnan Methods and systems for preventing bleeding from the left atrial appendage
EP2861293A4 (fr) * 2012-06-19 2016-08-31 Subramaniam Chitoor Krishnan Appareil et méthode de traitement des saignements provenant de l'appendice auriculaire gauche
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10722121B2 (en) 2013-03-15 2020-07-28 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US10932670B2 (en) 2013-03-15 2021-03-02 Avinger, Inc. Optical pressure sensor assembly
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US11980386B2 (en) 2013-03-15 2024-05-14 Avinger, Inc. Tissue collection device for catheter
US11723538B2 (en) 2013-03-15 2023-08-15 Avinger, Inc. Optical pressure sensor assembly
US11890076B2 (en) 2013-03-15 2024-02-06 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10806484B2 (en) 2013-07-08 2020-10-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US11944342B2 (en) 2013-07-08 2024-04-02 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10470795B2 (en) 2014-02-06 2019-11-12 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10568655B2 (en) 2014-02-06 2020-02-25 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US11931061B2 (en) 2014-07-08 2024-03-19 Avinger, Inc. High speed chronic total occlusion crossing devices
US11147583B2 (en) 2014-07-08 2021-10-19 Avinger, Inc. High speed chronic total occlusion crossing devices
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11627881B2 (en) 2015-07-13 2023-04-18 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11974830B2 (en) 2015-07-13 2024-05-07 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11033190B2 (en) 2015-07-13 2021-06-15 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11403759B2 (en) 2015-09-18 2022-08-02 Auris Health, Inc. Navigation of tubular networks
US11278248B2 (en) 2016-01-25 2022-03-22 Avinger, Inc. OCT imaging catheter with lag correction
WO2017167759A1 (fr) * 2016-03-31 2017-10-05 Koninklijke Philips N.V. Guidage par imagerie d'un introducteur orientable pour interventions mini-invasives
CN109475405A (zh) * 2016-03-31 2019-03-15 皇家飞利浦有限公司 用于微创过程的可操纵引入器的图像引导
US10980607B2 (en) 2016-03-31 2021-04-20 Koninklijke Philips N.V. Image guidance of a steerable introducer for minimally invasive procedures
US11957376B2 (en) 2016-04-01 2024-04-16 Avinger, Inc. Atherectomy catheter with serrated cutter
US11399863B2 (en) 2016-04-01 2022-08-02 Avinger, Inc. Atherectomy catheter with serrated cutter
US11344327B2 (en) 2016-06-03 2022-05-31 Avinger, Inc. Catheter device with detachable distal end
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
WO2018094041A1 (fr) * 2016-11-16 2018-05-24 Avinger, Inc. Procédés, systèmes et appareils pour afficher une position de cathéter en temps réel
US11992183B2 (en) 2017-03-28 2024-05-28 Auris Health, Inc. Shaft actuating handle
US11529129B2 (en) 2017-05-12 2022-12-20 Auris Health, Inc. Biopsy apparatus and system
US11534247B2 (en) 2017-06-28 2022-12-27 Auris Health, Inc. Instrument insertion compensation
US11712173B2 (en) 2018-03-28 2023-08-01 Auris Health, Inc. Systems and methods for displaying estimated location of instrument
US11950898B2 (en) 2018-03-28 2024-04-09 Auris Health, Inc. Systems and methods for displaying estimated location of instrument
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices
US11817201B2 (en) 2020-09-08 2023-11-14 Medtronic, Inc. Imaging discovery utility for augmenting clinical image management

Similar Documents

Publication Publication Date Title
WO2009148317A1 (fr) Systeme automatique de positionnement de catheter
JP7053747B2 (ja) 頚動脈血流の逆流を確立する方法およびシステム
US11857737B2 (en) System and method for low-profile occlusion balloon catheter
US20090054922A1 (en) Apparatus and Method for the Intravascular Control of Trauma
EP2967601A2 (fr) Systèmes, appareil et méthodes de traitement de vaisseaux sanguins
JP4526821B2 (ja) バルーン・カテーテル
JP2022509487A (ja) 医療器具を患者体内に導入するためのシステム及び方法
US7553323B1 (en) Steerable endovascular graft delivery system
CN115461110A (zh) 具有可控灌注闭塞的导引器
JP2023537955A (ja) 経頸動脈処置用バルーンカテーテル
US20090299281A1 (en) Minimally Invasive Method For Coronary Bypass And Other Treatments
US20230165696A1 (en) Stents having bridge length pattern variations
Ing Stenting branch pulmonary arteries
Regazzoli et al. Complex Femoral Accesses
CN116725497A (zh) 血管内压力梯度确定方法
Kasirajan et al. Carotid bifurcation stented balloon angioplasty with cerebral protection
Zahn Intra-operative stent implantation
EP3958794A1 (fr) Implant, dispositif d'administration et méthode de pose d'un implant
Gray Procedural techniques of carotid stenting
Ing 12 Stenting branch pulmonary arteries
Tamburino et al. Tips and Tricks and Management of Complications in Valvular Interventional Cardiology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758564

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758564

Country of ref document: EP

Kind code of ref document: A1