WO2009148028A1 - 減圧脱泡装置、ガラス製品の製造装置、及びガラス製品の製造方法 - Google Patents

減圧脱泡装置、ガラス製品の製造装置、及びガラス製品の製造方法 Download PDF

Info

Publication number
WO2009148028A1
WO2009148028A1 PCT/JP2009/060009 JP2009060009W WO2009148028A1 WO 2009148028 A1 WO2009148028 A1 WO 2009148028A1 JP 2009060009 W JP2009060009 W JP 2009060009W WO 2009148028 A1 WO2009148028 A1 WO 2009148028A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten glass
vacuum degassing
flow path
width
glass flow
Prior art date
Application number
PCT/JP2009/060009
Other languages
English (en)
French (fr)
Inventor
礼 北村
弘信 山道
浩明 濱本
伊藤 肇
豊作 米津
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to RU2010153998/03A priority Critical patent/RU2491235C2/ru
Priority to EP09758295A priority patent/EP2272806B1/en
Priority to PL09758295T priority patent/PL2272806T3/pl
Priority to JP2010515866A priority patent/JP5365630B2/ja
Priority to KR1020107021745A priority patent/KR101271801B1/ko
Priority to ES09758295T priority patent/ES2391070T3/es
Priority to BRPI0912139A priority patent/BRPI0912139A2/pt
Priority to CN2009801212495A priority patent/CN102046541B/zh
Publication of WO2009148028A1 publication Critical patent/WO2009148028A1/ja
Priority to US12/895,930 priority patent/US8720229B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2257Refining by thin-layer fining

Definitions

  • the present invention relates to a vacuum degassing apparatus, a glass product manufacturing apparatus, and a glass product manufacturing method.
  • a vacuum degassing device has been used for the purpose of removing bubbles generated in the molten glass before molding the molten glass in which the raw material is melted in the melting tank. It has been.
  • the vacuum degassing device allows bubbles contained in the molten glass to grow in a relatively short time by allowing the molten glass to pass through a vacuum degassing tank whose interior is maintained at a predetermined degree of vacuum. The bubbles are efficiently removed from the surface of the molten glass by floating in the molten glass using the buoyancy of the bubbles and breaking the bubbles on the surface of the molten glass.
  • the bottom area of the vacuum degassing tank In order to bring the liquid surface of the molten glass into wide contact with the upper space, the bottom area of the vacuum degassing tank must be increased.
  • the molten glass flow path in the vacuum degassing tank may be elongated in the longitudinal direction, or the lateral width of the molten glass flow path may be increased.
  • the thermal expansion in the longitudinal direction of the member forming the flow path is further increased, resulting in damage to the flow path and shortening the service life. Shrink.
  • the equipment for maintaining the vacuum deaeration tank at a height that provides a predetermined degree of vacuum is also increased. Therefore, it is preferable to widen the width of the molten glass channel rather than extending the molten glass channel in the longitudinal direction.
  • the present applicant has proposed a vacuum degassing apparatus in which the width of the molten glass flow path is widened to increase the size.
  • Patent Document 1 lists the following two points as problems when the width of the molten glass flow path of the vacuum degassing apparatus is uniformly expanded. First, it is expected that a portion in which the flow rate of the molten glass flow locally decreases on the downstream side of the molten glass channel. In such a case, the molten glass flow in the local portion where the flow velocity is reduced stays in the vacuum degassing tank for a longer time than the molten glass flow in the other portions, and thus light elements such as sodium (Na ) And the like are evaporated, and the composition of the molten glass is locally changed.
  • Na sodium
  • the plate glass or the like which is the final product has a problem that the refractive index is partially different, which leads to deterioration of the so-called ream that distorts the fluoroscopic image, leading to deterioration of quality.
  • a dense refractory brick having a joint width in the width direction of the molten glass passage that is, a dense refractory brick having a width of 1 m
  • a plurality of dense refractory bricks must be combined in the width direction of the glass channel. Therefore, joints inevitably exist in the ceiling, bottom, and both side walls that form the flow path of the vacuum degassing tank.
  • joints where the ceiling and bottom are connected to both side walls are expected to open easily due to the thermal expansion of dense refractory bricks that occur during heating and during use. .
  • the open joint is eroded by the molten glass, and bubbles are generated vigorously from the opened joint and are mixed into the molten glass.
  • the bubbles do not grow to a size that can be degassed by the vacuum degassing process, the bubbles are led out from the vacuum degassing tank together with fine gravel with many bubbles mixed in the molten glass. As a result, there arises a problem that the quality as a glass product is deteriorated.
  • the vacuum degassing apparatus described in Patent Document 1 is provided with a vacuum housing that is vacuumed to reduce the pressure inside, and provided in the vacuum housing to flow down the molten glass.
  • a vacuum degassing tank that performs vacuum degassing
  • a riser pipe that is provided in communication with the vacuum degassing tank, sucks and raises the molten glass before vacuum degassing and introduces it into the vacuum degassing tank
  • the vacuum A downcomer pipe that is provided in communication with the defoaming tank and that descends the defrosted molten glass from the depressurized defoaming tank, and the depressurized defoaming tank is provided with the defoamed molten glass.
  • the inner width of the downstream flow path for lowering the downflow pipe to the downcomer is configured to be narrower than the inner width of the upstream flow path for introducing the molten glass from the riser pipe.
  • a vacuum degassing device is provided. Further, in order to solve the second problem described above, a vacuum housing that is vacuumed to reduce the inside thereof, and a dense refractory brick is provided in the vacuum housing to flow down the molten glass.
  • a vacuum defoaming tank that performs vacuum degassing, a riser pipe that is provided in communication with the vacuum degassing tank, sucks and raises the molten glass before the vacuum degassing and introduces it into the vacuum degassing tank, and the vacuum degassing tank.
  • a vacuum degassing apparatus for molten glass comprising: a downcomer pipe provided in communication with a foam tank, and a descending pipe for lowering and deriving the molten glass after vacuum degassing from the vacuum degassing tank.
  • the dense refractory bricks at the bottom are A notch part for incorporating the dense refractory brick of the part, and fixing the dense refractory brick of the side wall part from the outside to the outside of the both side wall part of the vacuum degassing tank
  • the inner width of the downstream flow passage for lowering the molten glass to the downcomer is made narrower than the inner width of the upstream flow passage for introducing the molten glass from the riser.
  • the stagnation of the molten glass flow is caused by the fact that the diameter of the downcomer pipe is smaller than that of the molten glass flow path of the vacuum degassing tank having a wide width, as is apparent from FIG. is there.
  • the inner width of the upstream flow passage through which the molten glass is introduced from the riser pipe it is preferable to narrow the inner width of the upstream flow passage through which the molten glass is introduced from the riser pipe. That is, of the molten glass flow path of the vacuum degassing tank, the inner width of the upstream flow path for introducing the molten glass from the riser pipe, and the inner width of the downstream flow path for lowering the molten glass to the downcomer pipe It is preferable to make it narrower than the other width of the molten glass flow path, that is, the inner width of the intermediate portion of the molten glass flow path.
  • a dense refractory furnace material particularly an electroformed refractory furnace material is used as a constituent material of the vacuum degassing tank.
  • These materials are excellent in heat resistance, resistance to molten glass, etc., and are excellent as a constituent material of a vacuum degassing tank. In the process of use, it is eroded by molten glass.
  • the pressure loss (flow resistance) of the molten glass flow that passes through the vacuum degassing tank may increase.
  • the flow path of a conventional vacuum degassing tank that is long in the longitudinal direction is further lengthened, there is a problem of pressure loss (flow resistance) when the molten glass flow passes through the molten glass flow path. It becomes.
  • an increase in pressure loss of the molten glass flow passing through the vacuum degassing tank is not a problem.
  • the present invention is to retain the molten glass flow in the molten glass flow path, increase the local flow rate of the molten glass flow, and molten glass.
  • An object of the present invention is to provide a vacuum degassing apparatus capable of achieving a processing capacity of 200 tons / day or more without causing problems such as an excessive increase in flow pressure loss.
  • the present invention provides a vacuum degassing apparatus having a vacuum degassing tank, and an ascending pipe and a descending pipe connected to the vacuum degassing tank,
  • the vacuum degassing vessel the vacuum has a wide portion forming a flow path of molten glass in the degassing vessel, the width W 1 of the molten glass flow path in the width wide portion, the length L 1, a ratio W 1 / L 1 is 0.2 or more
  • the bottom of the molten glass flow path that is narrower than the width W 1 of the glass flow path and is connected to the riser pipe, and the bottom of the molten glass flow path that is connected to the downflow pipe is the molten glass in the wide area.
  • the width W 1 of the molten glass flow path at the wide portion is 1000 mm or more.
  • the length L 1 of the molten glass flow path in the wide portion is 5000 mm or more.
  • the bottom of the molten glass flow path at the site connected to the riser pipe and the bottom of the molten glass flow path at the site connected to the downflow pipe are the molten glass flow path at the wide site. It is preferable that they are 50 to 1000 mm lower than the bottom of each.
  • the riser and the width W 2 of molten glass flow path in the portion connected, the breadth of molten glass flow path of the portion connected with the downfalling pipe W 3, the inner diameter (the diameter of the riser ) R 2 and the inner diameter (diameter) r 3 of the downcomer preferably satisfy the relationship represented by the following formula. 1 x r 2 ⁇ W 2 ⁇ 5 x r 2 1 ⁇ r 3 ⁇ W 3 ⁇ 5 ⁇ r 3
  • the cross-sectional area S 1 of the molten glass flow path in the wide portion below the horizontal plane is connected to the riser pipe below the horizontal plane. It is preferable that the cross-sectional area S 2 of the molten glass flow path in the part and the cross-sectional area S 3 of the molten glass flow path in the part connected to the downcomer pipe below the horizontal plane satisfy the relationship represented by the following formula. 1.0 ⁇ S 1 / S 2 ⁇ 10.0 1.0 ⁇ S 1 / S 3 ⁇ 10.0
  • the width W 1 (mm) of the molten glass flow path in the wide part, the length L 1 (mm) of the molten glass flow path in the wide part, and the part connected to the riser pipe It is preferable that the length L 2 (mm) of the molten glass flow path and the length L 3 (mm) of the molten glass flow path at the portion connected to the downcomer satisfy the relationship represented by the following formula. 0.5 ⁇ W 1 ⁇ L 2 ⁇ 2 ⁇ L 1 0.5 ⁇ W 1 ⁇ L 3 ⁇ 2 ⁇ L 1
  • the present invention includes the above-described vacuum degassing apparatus, a melting means for producing a molten glass by melting a glass raw material provided upstream of the vacuum degassing apparatus, and a downstream side of the vacuum degassing apparatus.
  • An apparatus for producing a glass product comprising: a forming means for forming the provided molten glass; and a slow cooling means for gradually cooling the glass after forming is provided.
  • the present invention includes a step of defoaming molten glass with the above-described vacuum degassing apparatus, a melting step of melting glass raw material on the upstream side of the vacuum degassing apparatus to produce molten glass, and the vacuum degassing
  • a glass product manufacturing method including a forming step of forming molten glass on the downstream side of the apparatus and a slow cooling step of gradually cooling the glass after forming.
  • the present invention relates to a defoaming process by melting a glass raw material to produce a molten glass, and a vacuum degassing apparatus having a vacuum degassing tank and an ascending pipe and a descending pipe connecting the molten glass to the vacuum degassing tank.
  • a method for producing a glass product comprising: a treatment step; a shaping step for shaping the molten glass after the defoaming treatment; and a slow cooling step for gradually cooling the glass after shaping,
  • the molten glass flowing in the vacuum degassing tank has a wide part, and the ratio w 1 / l 1 of the width w 1 and the length l 1 of the molten glass flow in the wide part is 0.2 or more.
  • the width w 2 of the molten glass flow at the site connected to the riser flowing through the vacuum degassing tank and the width w 3 of the molten glass flow at the site connected to the downcomer are such that the molten glass flow at the wide site is
  • the depth h 2 of the molten glass flow at the portion connected to the riser, which is narrower than the width w 1 , and the depth h 3 of the molten glass flow at the portion connected to the downcomer are the molten glass in the wide portion.
  • a glass product manufacturing method characterized by being deeper than a flow depth h 1 .
  • 200 tons can be obtained without causing problems such as the retention of the molten glass flow in the molten glass flow path, the increase in the local flow rate of the molten glass flow, and the excessive increase in the pressure loss of the molten glass flow. It is possible to provide a vacuum degassing apparatus capable of achieving a processing capacity of more than / day.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the vacuum degassing apparatus of the present invention.
  • FIG. 2 is a plan view of the vacuum degassing tank 2 shown in FIG. However, the wall surface of the vacuum degassing tank 2 is omitted so that the internal structure of the vacuum degassing tank 2 can be seen.
  • FIG. 3 is a plan view showing another form of the vacuum degassing tank in the vacuum degassing apparatus of the present invention. The planar shape of the vacuum degassing tank is different from FIG.
  • FIG. 4 is a flowchart of one embodiment of the glass product manufacturing method of the present invention.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the vacuum degassing apparatus of the present invention.
  • a vacuum degassing apparatus 1 shown in FIG. 1 depressurizes molten glass supplied from a melting tank (not shown) under reduced pressure, and then forms a next processing apparatus (not shown, but a molding apparatus, followed by a slow cooling apparatus, etc. ) Is used for the process of continuously supplying to the substrate.
  • the vacuum degassing apparatus 1 has a vacuum degassing tank 2 in which a flow path of molten glass G is provided.
  • the vacuum degassing tank 2 By passing the molten glass G through the vacuum degassing tank 2 whose inside is maintained in a reduced pressure state below atmospheric pressure, the vacuum degassing of the molten glass is performed.
  • the horizontal line x in the vacuum degassing tank 2 indicates the liquid level of the molten glass G and, at the same time, indicates the horizontal plane when the liquid level of the molten glass is assumed in relation to the vacuum degassing tank 2.
  • the vacuum degassing tank 2 is normally housed in a vacuum housing, and the pressure inside the vacuum degassing tank 2 is reduced to a pressure lower than atmospheric pressure by sucking the vacuum housing under reduced pressure. Hold on.
  • the vacuum degassing tank 2 when the vacuum degassing tank 2 is not accommodated in the vacuum housing, the upper space of the molten glass G in the vacuum degassing tank 2 is sucked under reduced pressure using a vacuum pump or the like, so that the inside of the vacuum degassing tank 2 Is maintained at a reduced pressure below atmospheric pressure.
  • the ascending pipe 3 and the descending pipe 4 are connected to the vacuum degassing tank 2.
  • the ascending pipe 3 is a means for introducing the molten glass G that sucks and raises the molten glass G before the defoaming treatment and introduces the molten glass G into the vacuum degassing tank 2, and its lower end is connected to the upstream conduit structure 10.
  • the downcomer 4 is a deriving means for the molten glass G that descends the defoamed molten glass G from the vacuum degassing vessel 2 and has a lower end connected to the downstream conduit structure 20. ing.
  • FIG. 2 is a plan view of the vacuum degassing tank 2 shown in FIG. However, the wall surface of the vacuum degassing tank 2 and the vacuum housing are omitted so that the internal structure of the vacuum degassing tank 2 can be seen.
  • the vacuum degassing tank 2 has a wide portion 21 in order to achieve a processing capacity of 200 tons / day or more.
  • the wide portion 21 forms a flow path of the molten glass G in the vacuum degassing tank 2.
  • part in a vacuum degassing tank refers to the site
  • the width W 1 of the flow path of molten glass G in the width wide portion 21, the length L 1, the ratio of (W 1 / L 1) is 0.2 or more.
  • W 1 / L 1 of the wide portion 21 By setting W 1 / L 1 of the wide portion 21 to 0.2 or more, problems such as breakage of the molten glass flow path due to increased thermal expansion in the longitudinal direction and excessive increase in pressure loss of the molten glass flow do not occur.
  • a processing capacity of 200 tons / day or more can be achieved.
  • W 1 / L 1 of the wide portion 21 is a large vacuum degassing device that achieves a processing capacity of 200 tons / day or more. You can hold it.
  • W 1 / L 1 is preferably 0.25 or more, more preferably 0.3 or more, and further preferably 0.35 or more. In general, W 1 / L 1 is preferably 4 or less, more preferably 2.5 or less, and still more preferably 1.3 or less.
  • the width W 1 of the molten glass flow path of the wide portion 21 is 1000 mm or more.
  • W 1 is more preferably 2000 mm or more, and W 1 is further preferably 3000 mm or more.
  • the length L 1 of the molten glass flow path in the wide portion 21 is preferably 5000 mm or more in order to achieve a processing capacity of 200 tons / day or more.
  • L 1 is more preferably 6000 mm or more, and L 1 is further preferably 7000 mm or more.
  • the upper limit of W 1 is preferably 10,000 mm and the upper limit of L 1 is preferably 15000 mm.
  • the maximum height H 1 of the ceiling from the bottom of the wide part 21 is The thickness is preferably 500 to 5000 mm. Assuming that the ceiling on the flow path of the molten glass G in the vacuum degassing tank 2 is horizontal, the height H 1 from the bottom of the wide portion 21 to the ceiling is preferably 500 to 5000 mm. When the depth from the horizontal plane assuming the liquid level of the molten glass to the bottom of the wide portion 21 is h 1 , the height from the horizontal plane to the ceiling is a value obtained by subtracting h 1 from H 1 .
  • H 1 is less than 500 mm, it may be difficult to adjust h 1 to an appropriate depth, or the defoaming space may be narrowed and the defoaming efficiency may be reduced.
  • H 1 exceeds 5000 mm, it may be difficult to construct a vacuum degassing tank.
  • H 1 is more preferably 500 to 2000 mm, and H 1 is further preferably 700 to 1500 mm.
  • Depth from the horizontal surface assuming the liquid surface of the molten glass to the bottom of the wide portion 21 (same as the depth of the molten glass flow in the wide portion 21 when the molten glass G flows in the vacuum degassing tank 2)
  • h 1 Is preferably 100 to 1000 mm.
  • h 1 is not substantially limited to the value of H 1 as long as h 1 ⁇ H 1 and a certain amount of defoaming space is secured.
  • h 1 is the less than 100 mm, there is a possibility that the bottom of molten glass flow path of the wide portion 21 is subjected to erosion by the molten glass. Moreover, the pressure loss when the molten glass flow passes through the wide portion 21 may become a problem.
  • h 1 exceeds 1000 mm, bubbles existing near the bottom surface of the molten glass flow path are difficult to rise, and the effect of vacuum degassing may be reduced.
  • h 1 is more preferably 200 to 900 mm, further preferably 300 to 800 mm, and still more preferably 400 to 700 mm.
  • the height (H 1 -h 1 ) from the horizontal plane to the ceiling, which is the height of the defoaming space, is preferably 100 mm or more, and more preferably 200 mm or more.
  • the ascending pipe 3 is connected to the vacuum degassing tank 2 on the upstream side of the wide portion 21.
  • the downcomer 4 is connected to the vacuum degassing tank 2 on the downstream side of the wide portion 21.
  • part of the pressure reduction degassing tank 2 connected with the riser pipe 3 is called the riser pipe connection part 22, and the site
  • Ascending pipe connecting part 22 and downcomer connecting part 23 are narrower in width W 2 , W 3 (mm) of the flow path of molten glass G than width W 1 of the molten glass flow path of wide part 21. It is a part.
  • the molten glass flow is retained, more specifically, the upstream side and the downstream side of the molten glass flow channel even though the molten glass flow channel of the vacuum degassing tank 2 is wide. In the molten glass stream is prevented.
  • the molten glass flow path of the vacuum degassing tank is Local narrowing causes various problems that are unacceptable. That is, if the molten glass flow path of the vacuum degassing tank is locally narrowed, the flow rate of the molten glass flow is likely to increase, and the size of the region where it occurs is much larger than that of conventional devices. Since it becomes easy to become, erosion of the site
  • the bottom part of the molten glass flow path of the rising pipe connection part 22 and the down pipe connection part 23 is more than the bottom part of the molten glass flow path in the wide part 21. It is in a low position. That is, ascending pipe connection part 22 and downcomer pipe connection part 23 which are narrow parts are at positions where the bottom of the molten glass flow path is lower than wide part 21.
  • the cross-sectional area of the molten glass flow path of the wide portion 21 (see definition described later), and the molten glass flow path of the rising pipe connecting portion 22 and the descending pipe connecting portion 23 which are narrow portions. And the cross-sectional area (see definition below) becomes smaller.
  • the molten glass flow path of the riser connection part 22 and the downcomer connection part 23 is locally narrowed, an excessive increase in the pressure loss of the molten glass flow is suppressed.
  • the bottom of the molten glass flow path at the riser connecting portion 22 and the bottom of the molten glass flow path at the downflow pipe connecting portion 23 are respectively 50 to 1000 mm lower than the bottom of the molten glass flow path at the wide portion 21. Is preferred.
  • the depth from the horizontal surface assuming the liquid level of the molten glass to the bottom of the molten glass flow path of the rising pipe connecting part 22 (in the rising pipe connecting part 22 when the molten glass G flows in the vacuum degassing tank 2)
  • the depth from the horizontal surface assuming the liquid surface of the molten glass to the bottom of the molten glass flow path of the downcomer connecting part 23 (the molten glass G is in the vacuum degassing tank 2)
  • h 3 is the same as the depth of the molten glass flow at the downcomer connecting portion 23 when flowing, (h 2 -h 1 ) and (h 3 -h 1 ) are in the range of 50 to 1000 mm, respectively.
  • the difference in height is more preferably in the range of 50 to 400 mm. These height differences are more preferably in the range of 50 to 200 mm.
  • the cross-sectional area of the molten glass flow path at each position in the vacuum degassing tank 2 is the liquid glass surface of the cross section perpendicular to the flow direction of the molten glass G in the vacuum degassing tank 2 at each position. The area of the cross section below the assumed horizontal plane. In FIG. 1 and FIG. 2, the cross-sectional area of the molten glass channel in the wide portion 21 is an area represented by W 1 ⁇ h 1 .
  • this cross-sectional area is equal to the cross-sectional area of the molten glass flow in the wide portion 21.
  • the cross-sectional area of the molten glass flow path in the riser connecting portion 22 is an area represented by W 2 ⁇ h 2
  • the cross-sectional area of the molten glass flow path in the downcomer connecting portion 23 is W 3 ⁇ h. The area represented by 3 .
  • the width W 2 and W 3 of the molten glass flow path are made narrow at the rising pipe connecting part 22 and the down pipe connecting part 23. This is to prevent the molten glass flow from staying on the upstream side and the downstream side of the flow path. Therefore, in the ascending pipe connecting part 22 and the descending pipe connecting part 23, the difference between the widths W 2 and W 3 of the molten glass flow path and the inner diameters r 2 and r 3 of the ascending pipe 3 and the descending pipe 4 becomes small. Preferably it is.
  • the width W 2 of the molten glass flow path of the riser connection portion 22 and the inner diameter (diameter) r 2 of the riser tube 3 satisfy the relationship represented by the following formula (1). It is preferable that the width W 3 of the molten glass flow path and the inner diameter (diameter) r 3 of the downcomer 4 satisfy the relationship represented by the following formula (2).
  • W 2 is the width of the molten glass flow path at the portion through which the central axis of the riser pipe 3 passes in the riser connection portion 22
  • W 3 is the central axis of the downfall tube 4 in the downfall connection portion 23. It is the width of the molten glass flow path at the site through which.
  • the formula (1) if they meet the relationship shown in (2), the width W 2, W 3 of the molten glass flow path, the inner diameter r 2, r 3 of the uprising pipe 3 and downfalling pipe 4, the difference is Since it is small, the molten glass flow does not stay on the upstream side and the downstream side of the molten glass flow path. More preferably, the width W 2 of the molten glass flow path of the riser connecting portion 22 and the inner diameter r 2 of the riser 3 satisfy the relationship represented by the following formula (3), preferably the following formula (31). It is more preferable that the width W 3 of the molten glass flow path 23 and the inner diameter r 3 of the downcomer 4 satisfy the relationship shown in the following formula (4), preferably the following formula (41).
  • the inner diameters r 2 and r 3 of the ascending pipe 3 and the descending pipe 4 vary depending on the scale of the vacuum degassing apparatus, but in the case of a vacuum degassing apparatus having a processing capacity of 200 tons / day or more, it is usually 100 to 1000 mm
  • the thickness is preferably 200 to 800 mm, more preferably 300 to 700 mm, and still more preferably 400 to 600 mm. Therefore, the width W 2 of the molten glass flow path at the ascending pipe connecting portion 22 and the width W 3 of the molten glass flow path at the descending pipe connecting portion 23 are each preferably 100 to 5000 mm, and preferably 125 to 3000 mm. More preferably, the thickness is 150 to 2000 mm. In FIG.
  • the cross-sectional shapes of the ascending pipe 3 and the descending pipe 4 are circular.
  • the cross-sectional shapes of the ascending pipe and the descending pipe used in the vacuum degassing apparatus are not limited to this, and the cross-sectional shape is an elliptical shape. In some cases, it may be a polygonal shape such as a rectangle.
  • the maximum diameter among the inner diameters of the ascending pipe 3 and the descending pipe 4 is defined as r 2 and r 3 in the above formulas (1) to (4).
  • the shape of the opening of the uprising pipe 3 and downfalling pipe 4 are cases of an elliptical shape and the major axis of the elliptical shape as r 2, r 3.
  • the bottom part of the molten glass flow path of the riser pipe connection part 22 and the downcomer pipe connection part 23 which are narrow parts is set to be lower than the bottom part of the molten glass flow path of the wide part 21.
  • the low position is set so that the difference between the cross-sectional area of the molten glass flow path of the wide portion 21 and the cross-sectional area of the molten glass flow path of the riser connecting portion 22 and the descending pipe connecting portion 23 which are narrow portions is reduced. It is to do.
  • the position of the bottom part of the molten glass flow path of the rising pipe connection part 22 and the down pipe connection part 23 is not simply set in relation to the position of the bottom part of the molten glass flow path of the wide part 21, but the wide part 21.
  • the difference between the cross-sectional area of the molten glass flow path and the cross-sectional area of the molten glass flow path of the riser pipe connection part 22 and the downcomer pipe connection part 23 which are narrow parts substantially the molten glass flow in the wide part 21 It is necessary to set so that the difference between the cross-sectional area of the molten glass flow and the cross-sectional area of the molten glass flow in the riser connecting part 22 and the descending pipe connecting part 23 which are narrow parts is small.
  • the cross-sectional area S 1 of the molten glass flow path in the wide portion 21 and the cross-sectional area S 2 of the molten glass flow path in the riser connecting portion 22 satisfy the relationship represented by the following formula (5). It is preferable to set the depth h 2 from the horizontal plane assuming the liquid level to the bottom of the molten glass flow path of the riser connection part 22, and the cross-sectional area S 1 of the molten glass flow path and the downcomer pipe connection part in the wide part 21 Depth from the horizontal surface assuming the liquid level of the molten glass so that the cross-sectional area S 3 of the molten glass flow path 23 satisfies the relationship represented by the following formula (6) to the bottom of the molten glass flow path at the downcomer connecting portion 23 it is preferable to set the h 3.
  • S 1 is equal to W 1 ⁇ h 1
  • S 2 is equal to W 2 ⁇ h 2
  • S 3 is equal to W 3 ⁇ h 3 .
  • S 1 and S 2 preferably satisfy the relationship represented by the following formula (7), and more preferably satisfy the relationship represented by the following formula (8).
  • S 1 and S 3 more preferably satisfy the relationship represented by the following formula (9), and more preferably satisfy the relationship represented by the following formula (10).
  • the vacuum degassing apparatus 1 is provided with the wide portion 21 in the vacuum degassing tank 2, thereby preventing the molten glass flow path from being damaged or the molten glass flow pressure loss due to the increase in the thermal expansion in the longitudinal direction.
  • a processing capacity of 200 tons / day or more can be achieved without causing problems such as excessive increase. Therefore, the length L 1 of the molten glass flow path in the wide part 21 is compared with the lengths L 2 and L 3 of the molten glass flow path in the rising pipe connecting part 22 and the down pipe connecting part 23 which are narrow parts.
  • L 2 and L 3 are not the length of the molten glass channel in the portion where the width of the molten glass channel is equal to or less than W 2 and W 3 defined above, but a wide part than the width W 1 of the molten glass flow path 21 is intended the length of the entire portion of the width of the molten glass flow path is narrowed.
  • L 1 and L 2 that is preferably 0.5 times or more the width W 1 of the molten glass flow path in the wide portion 21, L 2 and L 3 is W If the width is less than 0.5 times 1 , the width of the molten glass flow path changes abruptly between the wide portion 21 and the ascending pipe connecting portion 22 and the descending pipe connecting portion 23 which are narrow portions. This is because an excessive increase in the pressure loss of the molten glass flow may occur.
  • L 1 and L 2 preferably satisfy the relationship represented by the following formula (13), and more preferably satisfy the relationship represented by the following formula (14).
  • L 1 and L 3 more preferably satisfy the relationship represented by the following formula (15), and more preferably satisfy the relationship represented by the following formula (16).
  • FIG. 3 is a plan view showing another form of the vacuum degassing tank in the vacuum degassing apparatus of the present invention.
  • the ascending pipe connecting part 22 ′ and the descending pipe connecting part 23 ′ which are narrow parts do not have a part where the width of the molten glass channel is constant.
  • the cross-sectional shape of the vacuum degassing tank 2 ′ shown in FIG. 3 is the same as that of the vacuum degassing tank 2 shown in FIG.
  • the vacuum degassing tank 2 ′ shown in FIG. 3 has the exception that the ascending pipe connecting part 22 ′ and the descending pipe connecting part 23 ′, which are narrow parts, do not have a portion where the width of the molten glass channel is constant.
  • the constituent materials of the vacuum degassing tank, the riser pipe, and the downcomer pipe are not particularly limited as long as they are excellent in heat resistance and corrosion resistance against molten glass. Therefore, platinum alloys such as platinum or platinum rhodium alloys can also be used.
  • platinum alloys such as platinum or platinum rhodium alloys can also be used.
  • the vacuum degassing apparatus of the present invention is a large vacuum degassing apparatus that achieves a processing capacity of 200 tons / day or more, it is preferable to use a refractory brick such as an electroformed brick.
  • the decompression tank of the present invention since the decompression tank of the present invention has a wide portion, it is necessary to configure a combination of a plurality of refractory bricks in the lateral width direction of the molten glass flow channel, as in the decompression defoaming tank described in Patent Document 1. is there. And when combining a plurality of refractory bricks and comprising a vacuum deaeration tank, it is preferable to implement the procedure similar to the vacuum deaeration tank of patent document 1.
  • FIG. That is, the side wall portion of the vacuum defoaming tank is constructed by assembling, in the longitudinal direction, a monolithic refractory brick without joints in the height direction of the vacuum degassing tank.
  • the ceiling part and the bottom part of the vacuum degassing tank are constructed by assembling a plurality of refractory bricks in the lateral width direction and also in the longitudinal direction.
  • the refractory bricks that constitute the ceiling and bottom are provided with notches for incorporating the refractory bricks forming the side walls, and the notches are formed with the side walls. It is preferable to incorporate refractory bricks from the outside. And fixing the jack etc. from the outside of the refractory bricks forming the side walls so that the joints of the refractory bricks forming the side walls and the refractory bricks forming the ceiling and the refractory bricks forming the bottom are not opened.
  • the fire resistance that constitutes the ceiling part is made by making the refractory brick located at least in the center to have its lateral width squeezed upward Brick can be prevented from falling.
  • the inside of the vacuum degassing tank is preferably decompressed to 51 to 613 hPa (38 to 460 mmHg).
  • the inside of the vacuum degassing tank is more preferably decompressed to 80 to 338 hPa (60 to 253 mmHg).
  • the glass to be degassed under reduced pressure using the vacuum degassing apparatus of the present invention is not limited in terms of composition as long as it is a glass produced by a heat melting method. Therefore, alkali glass such as soda lime silica glass represented by soda lime glass or alkali borosilicate glass may be used.
  • soda lime glass used for building or vehicle sheet glass it is expressed in terms of mass percentage based on oxide, SiO 2 : 65 to 75%, Al 2 O 3 : 0 to 3%, CaO: 5 to 15%, MgO: 0 to 15%, Na 2 O: 10 to 20%, K 2 O: 0 to 3%, Li 2 O: 0 to 5%, Fe 2 O 3 : 0 to 3%, TiO 2 : 0 to 5%, CeO 2 : 0 to 3%, BaO: 0 to 5%, SrO: 0 to 5%, B 2 O 3 : 0 to 5%, ZnO: 0 to 5%, ZrO 2 : 0 to 5 %, SnO 2 : 0 to 3%, SO 3 : 0 to 0.5%.
  • SiO 2 39 to 70%, Al 2 O 3 : 3 to 25%, B 2 O: 1 to It is preferable to have a composition of 20%, MgO: 0 to 10%, CaO: 0 to 17%, SrO: 0 to 20%, BaO: 0 to 30%.
  • MgO 0 to 10%
  • CaO 0 to 17%
  • SrO 0 to 20%
  • BaO 0 to 30%.
  • SiO 2 50 to 75%
  • Al 2 O 3 0 to 15%
  • Na 2 O + K 2 O preferably 6 to 24%.
  • the apparatus for producing a glass product of the present invention includes the above-described vacuum degassing apparatus, a melting means for manufacturing a molten glass by melting a glass raw material provided upstream of the vacuum degassing apparatus, and the vacuum degassing It comprises a forming means for forming molten glass provided on the downstream side of the apparatus, and a slow cooling means for gradually cooling the glass after forming.
  • molding means, and a slow cooling means it is the range of a well-known technique.
  • the melting means throws a glass raw material prepared so as to have a desired composition into a melting tank, and at a predetermined temperature according to the type of glass, for example, in the case of soda lime glass for buildings and vehicles, about The glass raw material is melted by heating to 1400 to 1600 ° C. to obtain a molten glass.
  • the molding means include an apparatus using a float method, a fusion method, a down draw method, or the like.
  • a forming means using a float bath for the float process is preferable because high-quality plate glass having a wide range of thickness from thin glass to thick glass can be produced in large quantities.
  • a slow cooling furnace provided with a transport roll as a transport mechanism for the glass after molding and a mechanism for gradually lowering the temperature of the glass after molding is generally used.
  • the mechanism for gradually lowering the temperature supplies the amount of heat whose output is controlled by a combustion gas or an electric heater to a required position in the furnace to slowly cool the formed glass (slow cooling).
  • FIG. 4 is a flowchart of one embodiment of the glass product manufacturing method of the present invention.
  • the glass product manufacturing method of the present invention is characterized by using the above-described vacuum degassing apparatus of the present invention.
  • the method for producing a glass product of the present invention includes a step of defoaming molten glass with the above-described vacuum degassing apparatus, and a melting step of producing molten glass by melting glass raw material upstream of the vacuum degassing apparatus.
  • a method for producing a glass product comprising: a molding step of molding molten glass downstream of the vacuum degassing apparatus; and a slow cooling step of gradually cooling the glass after molding.
  • the glass product manufacturing method of the present invention comprises a melting step of manufacturing a molten glass by melting a glass raw material, a vacuum defoaming tank and a riser pipe and a downfall pipe connecting the molten glass to the vacuum degassing tank.
  • the molten glass flowing in the vacuum degassing vessel has a wide portion, the width w 1 of the molten glass flow in the width wide portion, the length l 1, preferably the ratio w 1 / l 1 0.
  • the depth h 2 of the molten glass flow at the portion connected to the riser and the depth h 3 of the molten glass flow at the portion connected to the downcomer are the depth of the molten glass flow at the wide portion.
  • w 1 , w 2 , w 3 , and l 1 are the same as W 1 , W 2 , W 3 , and L 1 in the glass flow path.
  • the depth h 1 of the molten glass flow in the wide portion is equal to the depth from the horizontal plane assuming the liquid surface of the molten glass to the bottom of the molten glass flow path in the wide portion
  • the depth h 2 of the molten glass flow at the connected portion is equal to the depth from the horizontal surface assuming the liquid level of the molten glass to the bottom of the molten glass flow path at the portion connected to the riser, and the portion connected to the downcomer
  • the depth h 3 of the molten glass flow at is equal to the depth from the horizontal plane assuming the liquid level of the molten glass to the bottom of the molten glass flow path at the portion connected to the downcomer.
  • the method for producing a glass product of the present invention is within the scope of known techniques except that the above-described vacuum degassing apparatus of the present invention is used.
  • the apparatus used in the glass product manufacturing method of the present invention is as described above.
  • FIG. 4 in addition to the melting step, the forming step and the slow cooling step, which are components of the glass product manufacturing method of the present invention, a cutting step used as necessary and other post-steps are also shown.
  • the vacuum degassing apparatus, the glass product manufacturing apparatus, and the glass product manufacturing method of the present invention can be used for manufacturing a wide variety of glass products for building materials, vehicles, optics, medical use, and the like.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2008-144519 filed on June 2, 2008 are incorporated herein as the disclosure of the specification of the present invention. Is.
  • Vacuum degassing device 2 Vacuum degassing tank 21, 21': Wide part 22, 22 ': Rising pipe connection part 23, 23': Down pipe connecting part 3: Rising pipe 4: Down pipe 10: Upstream conduit structure 20: Downstream conduit structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

 溶融ガラス流路での溶融ガラス流の滞留、局所的な溶融ガラス流の流速の増加、および、溶融ガラス流の圧損の過大な増加等の問題を生じることなしに、200トン/日以上の処理能力を達成することができる減圧脱泡装置の提供。  減圧脱泡槽、ならびに前記減圧脱泡槽と接続する上昇管および下降管を有する減圧脱泡装置であって、前記減圧脱泡槽が、該減圧脱泡槽における溶融ガラスの流路をなす幅広部位を有し、該幅広部位における溶融ガラス流路の幅W1と、長さL1と、の比W1/L1が0.2以上であり、前記減圧脱泡槽のうち、前記上昇管と接続する部位の溶融ガラス流路の幅W2、および、前記下降管と接続する部位の溶融ガラス流路の幅W3が、前記幅広部位における溶融ガラス流路の幅W1よりも狭く、前記上昇管と接続する部位の溶融ガラス流路の底部、および、前記下降管と接続する部位の溶融ガラス流路の底部が、前記幅広部位における溶融ガラス流路の底部よりも低い位置にあることを特徴とする減圧脱泡装置。

Description

減圧脱泡装置、ガラス製品の製造装置、及びガラス製品の製造方法
 本発明は、減圧脱泡装置、ガラス製品の製造装置、及びガラス製品の製造方法に関する。
 従来、成形されたガラス製品の品質を向上させるために、溶解槽で原料を溶解した溶融ガラスを成形装置で成形する前に溶融ガラス内に発生した気泡を除去する目的で減圧脱泡装置が用いられている。
 減圧脱泡装置は、内部が所定の減圧度に保持された減圧脱泡槽内に溶融ガラスを通過させることにより、溶融ガラス内に含まれる気泡を比較的短時間に成長させ、大きく成長した気泡の浮力を利用して溶融ガラス中を浮上させ、溶融ガラスの表面で気泡を破泡させることで、効率よく溶融ガラス表面から気泡を除去するものである。
 ガラス製造量の増加、ガラス製造コストの削減等の観点からガラス製造設備の大型化が求められており、減圧脱泡装置についても脱泡処理量の増加、すなわち、減圧脱泡装置における溶融ガラス流の大流量化が求められている。
 溶融ガラス流の大流量化を図り、所望の減圧脱泡処理を行うには、各種の要因変動(例えば脱泡処理を行う溶融ガラス流の流量の変動や、溶解炉内の溶融ガラスの温度低下によって生じる溶融ガラス内に溶存するガス成分の濃度の変動や、減圧された減圧脱泡槽の圧力の変動等の各種の要因の変動)を考慮して、溶融ガラスに発生する気泡を所望の範囲内で減圧脱泡することのできるように、減圧脱泡槽内の溶融ガラスの液表面を上部空間と広い範囲で接触させることが必要である。そして、溶融ガラスの液表面を上部空間と広く接触させるには、減圧脱泡槽の底面積を広くしなければならない。
 減圧脱泡槽の底面積を広くするには、減圧脱泡槽における溶融ガラス流路を長手方向に長くするか、または、該溶融ガラス流路の横幅を広げればよい。しかしながら、長手方向に長い従来の減圧脱泡槽の溶融ガラス流路をさらに長くすると、流路を形成する部材の長手方向の熱膨張をさらに大きくし、流路の破損の原因となって寿命を縮める。また、流路全体が長くなるので、減圧脱泡槽を所定の減圧度となる高さに維持する設備も大型化する。そのため、溶融ガラス流路を長手方向に延ばすよりも、該溶融ガラス流路の横幅を広げる方が好ましい。本出願人は、特許文献1において、大型化のため溶融ガラス流路の横幅を広げた減圧脱泡装置を提案している。
 特許文献1は、減圧脱泡装置の溶融ガラス流路の横幅を一様に広げた場合の問題点として、以下の2点を挙げている。
 第1に、該溶融ガラス流路の下流側で溶融ガラス流の流速が局所的に低下する部分が生じることが予想される。このような場合、流下速度が低下する局所的部分の溶融ガラス流は、他の部分の溶融ガラス流に比べて減圧脱泡槽内に長い時間滞在するため、その間に軽元素、例えばナトリウム(Na)等を蒸発させ、溶融ガラスの組成が局所的に変わってしまう。その結果、最終製品となった板ガラス等には、屈折率が部分的に異なり透視像を歪ませるいわゆるリームの悪化に繋がり、品質の劣化にいたるといった問題が発生する。
 第2に、該溶融ガラス流路の横幅方向に目地の存在しない一体物の緻密質耐火物製レンガ、つまり横幅が1mもある緻密質耐火物製レンガを作ることは困難であるため、該溶融ガラス流路の横幅方向に複数の緻密質耐火物製レンガを組み合わせなければならない。そのため、減圧脱泡槽の流路を形成する天井部や底部や両側壁部に目地が不可避的に存在する。このような目地のうち、特に天井部や底部が両側壁部と接続される部分の目地は、熱上げ中および使用時に生じる緻密質耐火物製レンガの熱膨張によって容易に開くことが予想される。目地が一端開くと、開いた目地は溶融ガラスによる侵蝕が激しくなるとともに、開いた目地から気泡が激しく発生し、溶融ガラス内に混入する。しかも、この気泡は減圧脱泡処理で減圧脱泡されるほどの大きさに成長しないため、溶融ガラス内に気泡を多数混入させたまま、細かな砂利とともに減圧脱泡槽から導出される。その結果、ガラス製品としての品質を劣化させてしまうといった問題が発生する。
 特許文献1に記載の減圧脱泡装置では、上述した第1の問題点を解決するため、真空吸引されて内部が減圧される減圧ハウジングと、この減圧ハウジング内に設けられ、溶融ガラスを流下して減圧脱泡を行う減圧脱泡槽と、この減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを吸引上昇させて前記減圧脱泡槽に導入する上昇管と、前記減圧脱泡槽に連通して設けられ、減圧脱泡された溶融ガラスを前記減圧脱泡槽から下降させて導出する下降管とを具備し、前記減圧脱泡槽は、減圧脱泡された溶融ガラスを前記下降管に下降させる下流部の流路の内幅を、前記上昇管から溶融ガラスを導入する上流部の流路の内幅に比べて狭くなるよう構成されること特徴とする溶融ガラスの減圧脱泡装置を提供している。
 また、上述した第2の問題点を解決するため、真空吸引されて内部が減圧される減圧ハウジングと、この減圧ハウジング内に緻密質耐火物製レンガを組んで設けられ、溶融ガラスを流下して減圧脱泡を行う減圧脱泡槽と、この減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを吸引上昇させて前記減圧脱泡槽に導入する上昇管と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から下降させて導出する下降管とを具備する溶融ガラスの減圧脱泡装置であって、前記減圧脱泡槽は、矩形断面形状の流路を形成するための、前記緻密質耐火物製レンガを組んで構成される天井部、底部および両側壁部を有し、前記両側壁部と接続される前記天井部および前記底部の前記緻密質耐火物製レンガは、前記両側壁部の前記緻密質耐火物製レンガを組み込むための切り欠き部を有し、前記減圧脱泡槽の前記両側壁部の外側に、前記両側壁部の緻密質耐火物製レンガを外側から固定する固定手段を有することを特徴とする溶融ガラスの減圧脱泡装置を提供している。
特開2000-178029号公報
 特許文献1に記載の減圧脱泡装置では、溶融ガラス流路の下流側で溶融ガラス流の流速が局所的に低下することを防止するため、すなわち、溶融ガラス流が滞留することを防止するため、減圧脱泡槽のうち、溶融ガラスを下降管に下降させる下流部の流路の内幅を、上昇管から溶融ガラスを導入する上流部の流路の内幅に比べて狭くなるよう構成しているが、溶融ガラス流の滞留が生じるのは、特許文献1の図2から明らかなように、横幅を広げた減圧脱泡槽の溶融ガラス流路に比べて下降管の径が小さいからである。したがって、溶融ガラス流の滞留防止という観点でみた場合、上昇管から溶融ガラスを導入する上流部の流路の内幅も狭くすることが好ましい。すなわち、減圧脱泡槽の溶融ガラス流路のうち、上昇管から溶融ガラスを導入する上流部の流路の内幅、および、溶融ガラスを下降管に下降させる下流部の流路の内幅を、溶融ガラス流路の他の部位、すなわち、溶融ガラス流路の中間部分の内幅に比べて狭くすることが好ましい。
 但し、溶融ガラス流路の内幅を局所的に狭くすると、その部分を流れる溶融ガラス流の流速が増加する。特許文献1の段落[0039]に記載されているような処理能力20トン/日程度の減圧脱泡装置では、溶融ガラス流は単純に直線的に流れる傾向にあり、局所的な溶融ガラス流の流速の増加は問題になることはないが、処理能力200トン/日以上の大型の減圧脱泡装置とした場合、局所的な溶融ガラス流の流速の増加が問題となることを本発明者らは本発明の際に見出した。
 大型の減圧脱泡装置を製造する場合、特許文献1にも記載されているように、減圧脱泡槽の構成材料には緻密質耐火物炉材、特に電鋳耐火物炉材が用いられる。これらの材料は、耐熱性、溶融ガラスへの耐性等に優れており、減圧脱泡槽の構成材料として優れているが、減圧脱泡槽のうち溶融ガラスと接する部位は、減圧脱泡装置を使用する過程で溶融ガラスによる侵食を受ける。特許文献1の段落[0039]に記載されているような処理能力20トン/日程度の減圧脱泡装置では、溶融ガラス流の流速が局所的に増加する部位があったとしても、溶融ガラスによる侵食は問題とならなかったが、処理能力200トン/日以上の大型の減圧脱泡装置とした場合、溶融ガラス流の流速が局所的に増加する部位での溶融ガラスによる侵食が無視できないことが本発明の際に明らかになった。
 また、溶融ガラス流路の内幅を局所的に狭くすると、減圧脱泡槽を通過する溶融ガラス流の圧損(流動抵抗)が増加する可能性がある。特許文献1には記載されていないが、長手方向に長い従来の減圧脱泡槽の流路をさらに長くすると、該溶融ガラス流路を溶融ガラス流が通過する際の圧損(流動抵抗)が問題となる。また、特許文献1の段落[0039]に記載されているような処理能力20トン/日程度の減圧脱泡装置では、減圧脱泡槽を通過する溶融ガラス流の圧損の増加は問題とならなかったが、処理能力200トン/日以上の大型の減圧脱泡装置とした場合、溶融ガラス流路の内幅を局所的に狭くすることによって、溶融ガラス流の圧損の過大な増加が起こり、減圧脱泡装置にとって致命的な問題となることを本発明者らは本発明の際に見出した。
 本発明は、上記した従来技術に対して今回新たに見出した問題点を解決するため、溶融ガラス流路での溶融ガラス流の滞留、局所的な溶融ガラス流の流速の増加、および、溶融ガラス流の圧損の過大な増加等の問題を生じることなしに、200トン/日以上の処理能力を達成することができる減圧脱泡装置を提供することを目的とする。
 上記の目的を達成するため、本発明は、減圧脱泡槽、ならびに前記減圧脱泡槽と接続する上昇管および下降管を有する減圧脱泡装置であって、
 前記減圧脱泡槽が、該減圧脱泡槽における溶融ガラスの流路をなす幅広部位を有し、該幅広部位における溶融ガラス流路の幅W1と、長さL1と、の比W1/L1が0.2以上であり、
 前記減圧脱泡槽のうち、前記上昇管と接続する部位の溶融ガラス流路の幅W2、および、前記下降管と接続する部位の溶融ガラス流路の幅W3が、前記幅広部位における溶融ガラス流路の幅W1よりも狭く、前記上昇管と接続する部位の溶融ガラス流路の底部、および、前記下降管と接続する部位の溶融ガラス流路の底部が、前記幅広部位における溶融ガラス流路の底部よりも低い位置にあることを特徴とする減圧脱泡装置を提供する。
 本発明の減圧脱泡装置において、前記幅広部位における溶融ガラス流路の幅W1が1000mm以上であることが好ましい。
 本発明の減圧脱泡装置において、前記幅広部位における溶融ガラス流路の長さL1が5000mm以上であることが好ましい。
 本発明の減圧脱泡装置において、前記上昇管と接続する部位の溶融ガラス流路の底部、および、前記下降管と接続する部位の溶融ガラス流路の底部が、前記幅広部位における溶融ガラス流路の底部よりもそれぞれ50~1000mm低い位置にあることが好ましい。
 本発明の減圧脱泡装置において、前記上昇管と接続する部位の溶融ガラス流路の幅W2、前記下降管と接続する部位の溶融ガラス流路の幅W3、前記上昇管の内径(直径)r2、および、前記下降管の内径(直径)r3が、下記式に示す関係を満たすことが好ましい。
 1×r2 ≦ W2 ≦ 5×r2
 1×r3 ≦ W3 ≦ 5×r3
 本発明の減圧脱泡装置において、溶融ガラスの液面を想定した水平面を基準として、前記水平面下の前記幅広部位における溶融ガラス流路の断面積S1、前記水平面下の前記上昇管と接続する部位の溶融ガラス流路の断面積S2、および、前記水平面下の前記下降管と接続する部位の溶融ガラス流路の断面積S3が、下記式に示す関係を満たすことが好ましい。
 1.0 ≦ S1/S2 ≦ 10.0
 1.0 ≦ S1/S3 ≦ 10.0
 本発明の減圧脱泡装置において、前記幅広部位における溶融ガラス流路の幅W1(mm)、前記幅広部位における溶融ガラス流路の長さL1(mm)、前記上昇管と接続する部位の溶融ガラス流路の長さL2(mm)、および、前記下降管と接続する部位の溶融ガラス流路の長さL3(mm)が、下記式に示す関係を満たすことが好ましい。
 0.5×W1 ≦ L2 ≦ 2×L1
 0.5×W1 ≦ L3 ≦ 2×L1
 本発明は、上記した減圧脱泡装置と、該減圧脱泡装置よりも上流側に設けられたガラス原料を溶解して溶融ガラスを製造する溶解手段と、該減圧脱泡装置よりも下流側に設けられた溶融ガラスを成形する成形手段と、成形後のガラスを徐冷する徐冷手段と、を備えたガラス製品の製造装置を提供する。
 本発明は、上記した減圧脱泡装置により溶融ガラスを脱泡処理する工程と、該減圧脱泡装置よりも上流側でガラス原料を溶解して溶融ガラスを製造する溶解工程と、該減圧脱泡装置よりも下流側で溶融ガラスを成形する成形工程と、成形後のガラスを徐冷する徐冷工程と、を含むガラス製品の製造方法を提供する。
 本発明は、ガラス原料を溶解して溶融ガラスを製造する溶解工程と、該溶融ガラスを減圧脱泡槽ならびに前記減圧脱泡槽と接続する上昇管および下降管を有する減圧脱泡装置によって脱泡処理する工程と、該脱泡処理後の溶融ガラスを成形する成形工程と、成形後のガラスを徐冷する徐冷工程と、を含むガラス製品の製造方法であって、
 前記減圧脱泡槽を流れる溶融ガラスが、幅広部位を有し、該幅広部位における溶融ガラス流の幅w1と、長さl1と、の比w1/l1が0.2以上であり、
 前記減圧脱泡槽を流れる前記上昇管と接続する部位の溶融ガラス流の幅w2、および、前記下降管と接続する部位の溶融ガラス流の幅w3が、前記幅広部位における溶融ガラス流の幅w1よりも狭く、前記上昇管と接続する部位の溶融ガラス流の深さh2、および、前記下降管と接続する部位の溶融ガラス流の深さh3が、前記幅広部位における溶融ガラス流の深さh1よりも深いことを特徴とするガラス製品の製造方法を提供する。
 本発明によれば、溶融ガラス流路での溶融ガラス流の滞留、局所的な溶融ガラス流の流速の増加、および溶融ガラス流の圧損の過大な増加等の問題を生じることなしに、200トン/日以上の処理能力を達成することができる減圧脱泡装置を提供することができる。
図1は、本発明の減圧脱泡装置の一構成例を示す断面図である。 図2は、図1に示す減圧脱泡槽2の平面図である。但し、減圧脱泡槽2の内部構造が見えるように、減圧脱泡槽2上部の壁面が省略されている。 図3は、本発明の減圧脱泡装置における減圧脱泡槽の別の形態を示した平面図である。減圧脱泡槽の平面形状が図2とは異なっている。 図4は、本発明のガラス製品の製造方法の1実施形態の流れ図である。
 以下、図面を参照して本発明を説明する。図1は、本発明の減圧脱泡装置の一構成例を示す断面図である。図1に示す減圧脱泡装置1は、溶解槽(図示しない)から供給される溶融ガラスを減圧脱泡して、次の処理装置(図示していないが、成形装置、続いて徐冷装置など)に連続的に供給するプロセスに用いられるものである。
 減圧脱泡装置1は、その内部に溶融ガラスGの流路が設けられた減圧脱泡槽2を有する。その内部が大気圧未満の減圧状態に保持された減圧脱泡槽2に溶融ガラスGを通過させることにより、溶融ガラスの減圧脱泡が行われる。図1において減圧脱泡槽2中の水平線xは溶融ガラスGの液面を示すと同時に、減圧脱泡槽2との関係では溶融ガラスの液面を想定した場合の水平面を示す。
 なお、図示していないが、減圧脱泡槽2は、通常、減圧ハウジング内に収容されており、減圧ハウジングを減圧吸引することにより、減圧脱泡槽2内部の気圧を大気圧未満の減圧状態に保持する。一方、減圧脱泡槽2が減圧ハウジング内に収容されていない場合、減圧脱泡槽2の溶融ガラスGの上部空間を、減圧ポンプ等を用いて減圧吸引することで、減圧脱泡槽2内部の気圧を大気圧未満の減圧状態に保持する。
 減圧脱泡槽2には、上昇管3および下降管4が接続されている。上昇管3は、脱泡処理前の溶融ガラスGを吸引上昇させて該減圧脱泡槽2に導入する溶融ガラスGの導入手段であり、その下端部は上流側の導管構造10と接続されている。一方、下降管4は、脱泡処理後の溶融ガラスGを該減圧脱泡槽2から下降させて導出する溶融ガラスGの導出手段であり、その下端部は下流側の導管構造20と接続されている。
 図2は、図1に示す減圧脱泡槽2の平面図である。但し、減圧脱泡槽2の内部構造が見えるように、減圧脱泡槽2上部の壁面、減圧ハウジングなどが省略されている。
 本発明の減圧脱泡装置は、200トン/日以上の処理能力を達成するため、減圧脱泡槽2が幅広部位21を有している。該幅広部位21は、該減圧脱泡槽2における溶融ガラスGの流路をなす。本明細書において、減圧脱泡槽における幅広部位とは、減圧脱泡槽の溶融ガラス流路のうち、他の部位よりも幅が大きくなった部位を指す。
 本発明の減圧脱泡装置1では、該幅広部位21の溶融ガラスGの流路の幅W1と、長さL1と、の比(W1/L1)が0.2以上である。幅広部位21のW1/L1を0.2以上とすることにより、長手方向の熱膨張の増大による溶融ガラス流路の破損や溶融ガラス流の圧損の過大な増加等の問題を生じることなしに200トン/日以上の処理能力を達成することができる。また、幅広部位21のW1/L1を0.2以上とすることにより、200トン/日以上の処理能力を達成する大型の減圧脱泡装置であるにもかかわらず、その寸法を最小限におさえることができる。
 W1/L1は0.25以上であることが好ましく、0.3以上であることがより好ましく、0.35以上であることがさらに好ましい。また、通常、W1/L1は好ましくは4以下、より好ましくは2.5以下、さらに好ましくは1.3以下である。
 幅広部位21の溶融ガラス流路の幅W1が1000mm以上であることが200トン/日以上の処理能力を達成するうえで好ましい。
 W1は2000mm以上であることがより好ましく、W1は3000mm以上であることがさらに好ましい。
 したがって、幅広部位21の溶融ガラス流路の長さL1は5000mm以上であることが200トン/日以上の処理能力を達成するうえで好ましい。
 L1は6000mm以上であることがより好ましく、L1は7000mm以上であることがさらに好ましい。
 なお、操業性の面を考慮すると、W1の上限としては、10000mm、L1の上限として15000mmが好ましい。
 減圧脱泡槽2における溶融ガラスGの流路上の天井部は水平な場合と溶融ガラスの流れの幅方向にアーチ状の場合があるが、幅広部位21の底から天井の最大高さH1は500~5000mmであることが好ましい。減圧脱泡槽2における溶融ガラスGの流路上の天井部が水平であると仮定すると、幅広部位21の底から天井までの高さH1は500~5000mmであることが好ましい。溶融ガラスの液面を想定した水平面から幅広部位21の底部までの深さをh1とすると、当該水平面から天井部までの高さは、H1からh1を減じた値となる。
 H1が500mm未満であるとh1を適切な深さに調整することが困難となるおそれや脱泡空間が狭くなり脱泡の効率が低下するおそれが生じる。一方、H1が5000mm超だと減圧脱泡槽を構築するのが難しくなるなどのおそれが生じる。H1は500~2000mmであることがより好ましく、H1は700~1500mmであることがさらに好ましい。
 溶融ガラスの液面を想定した水平面から幅広部位21の底部までの深さ(減圧脱泡槽2に溶融ガラスGが流れている場合の幅広部位21における溶融ガラス流の深さに同じ)h1は100~1000mmであることが好ましい。h1は、h1<H1でありかつある程度の脱泡空間が確保される限り、実質的にHの値に制約されることはない。
 h1が100mm未満だと、幅広部位21の溶融ガラス流路の底面が溶融ガラスによる侵食を受けるおそれがある。また、幅広部位21を溶融ガラス流が通過する際の圧損が問題となるおそれがある。一方、h1が1000mm超だと、溶融ガラス流路の底面付近に存在する気泡が浮上することが困難となり、減圧脱泡の効果が低下するおそれがある。
 h1は200~900mmであることがより好ましく、300~800mmであることがさらに好ましく、400~700mmであることがさらにまた好ましい。なお、脱泡空間の高さである前記水平面から天井部までの高さ(H1-h1)は100mm以上が好ましく、200mm以上がより好ましい。
 上昇管3は、該幅広部位21よりも上流側で減圧脱泡槽2と接続している。下降管4は、該幅広部位21よりも下流側で減圧脱泡槽2と接続している。以下、本明細書において、上昇管3と接続する減圧脱泡槽2の部位を上昇管接続部位22と言い、下降管4と接続する減圧脱泡槽2の部位を下降管接続部位23と言う。
 上昇管接続部位22および下降管接続部位23は、溶融ガラスGの流路の幅W2、W3(mm)が、幅広部位21の溶融ガラス流路の幅W1よりも幅が狭い幅狭部位となっている。このような構造とすることにより、減圧脱泡槽2の溶融ガラス流路が幅広であるにもかかわらず、溶融ガラス流の滞留、より具体的には、溶融ガラス流路の上流側および下流側での溶融ガラス流の滞留が防止される。
 但し、特許文献1に記載の減圧脱泡装置の問題点として上述したように、200トン/日以上の処理能力を達成する大型の減圧脱泡装置において、減圧脱泡槽の溶融ガラス流路を局所的に狭くすると、許容不可能な様々な問題が発生する。
 すなわち、減圧脱泡槽の溶融ガラス流路を局所的に狭くすると、局所的な溶融ガラス流の流速の増加が起こりやすく、それが発生する領域の大きさが従来の装置に比べて非常に大きくなりやすくなるので、溶融ガラスと接する減圧脱泡槽の部位の侵食がより一層問題となる可能性がある。
 また、減圧脱泡槽の溶融ガラス流路を局所的に狭くすると、溶融ガラス流の圧損の過大な増加が起こり、減圧脱泡装置にとって致命的な問題となる可能性がある。
 本発明の減圧脱泡装置では、これらの問題点を防止するため、上昇管接続部位22および下降管接続部位23の溶融ガラス流路の底部が、幅広部位21における溶融ガラス流路の底部よりも低い位置にある。すなわち、幅狭部位である上昇管接続部位22および下降管接続部位23は、溶融ガラス流路の底部が幅広部位21よりも低い位置にある。このような構成とすることにより、幅広部位21の溶融ガラス流路の断面積(後述の定義を参照)と、幅狭部位である上昇管接続部位22および下降管接続部位23の溶融ガラス流路の断面積(後述の定義を参照)と、の差が小さくなる。これは、実質的には幅広部位21の溶融ガラス流の断面積と、幅狭部位である上昇管接続部位22および下降管接続部位23の溶融ガラス流の断面積と、の差を小さくすることを意図する。この結果、上昇管接続部位22および下降管接続部位23の溶融ガラス流路が局所的に狭くなっているにもかかわらず、局所的な溶融ガラス流の流速の増加が抑えられ、溶融ガラスと接する減圧脱泡槽の部位の侵食のおそれが少なくなる。また、上昇管接続部位22および下降管接続部位23の溶融ガラス流路が局所的に狭くなっているにもかかわらず、溶融ガラス流の圧損の過大な増加が抑えられる。
 上昇管接続部位22の溶融ガラス流路の底部、および、下降管接続部位23の溶融ガラス流路の底部は、幅広部位21における溶融ガラス流路の底部よりもそれぞれ50~1000mm低い位置にあることが好ましい。すなわち、溶融ガラスの液面を想定した水平面から上昇管接続部位22の溶融ガラス流路の底部までの深さ(減圧脱泡槽2に溶融ガラスGが流れている場合の上昇管接続部位22における溶融ガラス流の深さに同じ)をh2、溶融ガラスの液面を想定した水平面から下降管接続部位23の溶融ガラス流路の底部までの深さ(減圧脱泡槽2に溶融ガラスGが流れている場合の下降管接続部位23における溶融ガラス流の深さに同じ)をh3とすると、(h2-h1)と(h3-h1)はそれぞれ50~1000mmの範囲内にあることが好ましい。これら高さの差は、それぞれ50~400mmの範囲内にあることがより好ましい。これら高さの差は、それぞれ50~200mmの範囲内にあることがさらに好ましい。
 前記減圧脱泡槽2中の各位置における溶融ガラス流路の断面積とは、各位置における減圧脱泡槽2の溶融ガラスGの流れ方向に直角方向の断面のうち、溶融ガラスの液面を想定した水平面より下の断面の面積を言う。図1、図2においては、幅広部位21における溶融ガラス流路の断面積とは、W1×h1で表される面積である。減圧脱泡槽2に溶融ガラスGが流れている場合、この断面積は幅広部位21における溶融ガラス流の断面積に等しい。同様に、上昇管接続部位22における溶融ガラス流路の断面積は、W2×h2で表される面積であり、下降管接続部位23における溶融ガラス流路の断面積は、W3×h3で表される面積である。
 上述したように、本発明の減圧脱泡装置1において、上昇管接続部位22および下降管接続部位23で溶融ガラス流路の幅W2、W3を狭い幅狭部位とするのは、溶融ガラス流路の上流側および下流側での溶融ガラス流の滞留を防止するためである。
 したがって、上昇管接続部位22および下降管接続部位23では、溶融ガラス流路の幅W2、W3と、上昇管3および下降管4の内径r2、r3と、の差が小さくなっていることが好ましい。具体的には、上昇管接続部位22の溶融ガラス流路の幅W2および上昇管3の内径(直径)r2が下記式(1)に示す関係を満たすことが好ましく、下降管接続部位23の溶融ガラス流路の幅W3および下降管4の内径(直径)r3が下記式(2)に示す関係を満たすことが好ましい。
 1×r2 ≦ W2 ≦ 5 ×r2  (1)
 1×r3 ≦ W3 ≦ 5 ×r3  (2)
 ここで、W2は上昇管接続部位22のうち上昇管3の中心軸が通過する部位での溶融ガラス流路の幅であり、W3は下降管接続部位23のうち下降管4の中心軸が通過する部位での溶融ガラス流路の幅である。
 上記式(1)、(2)に示す関係を満たしていれば、溶融ガラス流路の幅W2、W3と、上昇管3および下降管4の内径r2、r3と、の差が小さいので、溶融ガラス流路の上流側および下流側で溶融ガラス流の滞留が起こることがない。
 上昇管接続部位22の溶融ガラス流路の幅W2および上昇管3の内径r2が下記式(3)、好ましくは下記式(31)に示す関係を満たすことがより好ましく、下降管接続部位23の溶融ガラス流路の幅W3および下降管4の内径r3が下記式(4)、好ましくは下記式(41)に示すに示す関係を満たすことがより好ましい。
 1 ×r2 ≦ W2 ≦ 3 ×r2     (3)
 1 ×r3 ≦ W3 ≦ 2 ×r3     (4)
 1.25 ×r2 ≦ W2 ≦ 3 ×r2  (31)
 1.5 ×r3  ≦ W3 ≦ 2 ×r3  (41)
 上昇管3および下降管4の内径r2、r3は、減圧脱泡装置の規模によっても異なるが、処理能力200トン/日以上の減圧脱泡装置の場合、通常は100~1000mmであり、好ましくは200~800mmであり、より好ましくは300~700mmであり、さらに好ましくは400~600mmである。
 したがって、上昇管接続部位22の溶融ガラス流路の幅W2、および、下降管接続部位23の溶融ガラス流路の幅W3は、それぞれ100~5000mmであることが好ましく、125~3000mmであることがより好ましく、150~2000mmであることがさらに好ましい。
 なお、図2では上昇管3および下降管4の断面形状が円形であるが、減圧脱泡装置に用いられる上昇管、下降管の断面形状はこれに限定されず、断面形状が楕円形状である場合や矩形のような多角形形状である場合もある。このような場合、上昇管3および下降管4の内径のうち最大径を上記式(1)~(4)におけるr2、r3とする。例えば、上昇管3および下降管4の開口部の形状が楕円形状の場合、楕円形状の長径をr2、r3とする。
 上述したように、本発明の減圧脱泡装置において、幅狭部位である上昇管接続部位22および下降管接続部位23の溶融ガラス流路の底部を幅広部位21の溶融ガラス流路の底部よりも低い位置とするのは、幅広部位21の溶融ガラス流路の断面積と、幅狭部位である上昇管接続部位22および下降管接続部位23の溶融ガラス流路の断面積と、の差を小さくするためである。したがって、上昇管接続部位22および下降管接続部位23の溶融ガラス流路の底部の位置は、単に幅広部位21の溶融ガラス流路の底部の位置との関係で設定するのではなく、幅広部位21の溶融ガラス流路の断面積と、幅狭部位である上昇管接続部位22および下降管接続部位23の溶融ガラス流路の断面積と、の差、実質的には幅広部位21の溶融ガラス流の断面積と、幅狭部位である上昇管接続部位22および下降管接続部位23の溶融ガラス流の断面積と、の差が小さくなるように設定する必要がある。具体的には、幅広部位21における溶融ガラス流路の断面積S1および上昇管接続部位22の溶融ガラス流路の断面積S2が下記式(5)に示す関係を満たすように溶融ガラスの液面を想定した水平面から上昇管接続部位22の溶融ガラス流路の底部までの深さh2を設定することが好ましく、幅広部位21における溶融ガラス流路の断面積S1および下降管接続部位23の溶融ガラス流路の断面積S3が下記式(6)に示す関係を満たすように溶融ガラスの液面を想定した水平面から下降管接続部位23の溶融ガラス流路の底部までの深さh3を設定することが好ましい。なお、前記のように、図1、図2においては、S1はW1×h1に等しく、S2はW2×h2に等しく、S3はW3×h3に等しい。
 1.0 ≦ S1/S2 ≦ 10.0  (5)
 1.0 ≦ S1/S3 ≦ 10.0  (6)
 S1およびS2は下記式(7)に示す関係を満たすことがより好ましく、下記式(8)に示す関係を満たすことがより好ましい。
 1.0 ≦ S1/S2 ≦ 5.0  (7)
 1.0 ≦ S1/S2 ≦ 3.0  (8)
 S1およびS3は下記式(9)に示す関係を満たすことがさらに好ましく、下記式(10)に示す関係を満たすことがさらに好ましい。
 1.0 ≦ S1/S3 ≦ 5.0  (9)
 1.0 ≦ S1/S3 ≦ 3.0  (10)
 上述したように、本発明の減圧脱泡装置1は、減圧脱泡槽2に幅広部位21を設けることによって、長手方向の熱膨張の増大による溶融ガラス流路の破損や溶融ガラス流の圧損の過大な増加等の問題を生じることなしに200トン/日以上の処理能力を達成するものである。したがって、幅広部位21における溶融ガラス流路の長さL1と、幅狭部位である上昇管接続部位22および下降管接続部位23における溶融ガラス流路の長さL2およびL3と、を比較した場合、具体的には、両者が下記式(11)、(12)に示す関係を満たすことが好ましい。
 0.5×W1 ≦ L2 ≦ 2×L1 (11)
 0.5×W1 ≦ L3 ≦ 2×L1 (12)
 上記式(11)、(12)において、L2およびL3は溶融ガラス流路の幅が上記で定義したW2およびW3以下となる部分の溶融ガラス流路の長さではなく、幅広部位21の溶融ガラス流路の幅W1よりも溶融ガラス流路の幅が狭くなる部分全体の長さを意図する。
 上記式(11)、(12)において、L2およびL3が幅広部位21における溶融ガラス流路の幅W1の0.5倍以上であることが好ましいのは、L2およびL3がW1の0.5倍未満だと、幅広部位21と、幅狭部位である上昇管接続部位22および下降管接続部位23と、の間で、溶融ガラス流路の幅が急激に変化するため、溶融ガラス流の圧損の過大な増加が生じるおそれがあるためである。
 L1およびL2は下記式(13)に示す関係を満たすことがより好ましく、下記式(14)に示す関係を満たすことがさらに好ましい。
 0.6×W1  ≦ L2 ≦ 1.5×L1 (13)
 0.75×W1 ≦ L2 ≦   1×L1 (14)
 L1およびL3は下記式(15)に示す関係を満たすことがより好ましく、下記式(16)に示す関係を満たすことがさらに好ましい。
 0.6×W1  ≦ L3 ≦ 1.5×L1 (15)
 0.75×W1 ≦ L3 ≦   1×L1 (16)
 図2に示す減圧脱泡槽2では、幅狭部位である上昇管接続部位22および下降管接続部位23のうち、実際に上昇管3および下降管4と接続する部位付近で、溶融ガラス流路の幅が一定になっているが、本発明の減圧脱泡装置において、幅狭部位である上昇管接続部位および下降管接続部位は、溶融ガラス流路の幅が一定になる部分を有していなくてもよい。図3は、本発明の減圧脱泡装置における減圧脱泡槽の別の形態を示した平面図である。図3に示す減圧脱泡槽2´において、幅狭部位である上昇管接続部位22´および下降管接続部位23´は、溶融ガラス流路の幅が一定になる部分を有していない。なお、図3に示す減圧脱泡槽2´の断面形状は、図1に示す減圧脱泡槽2と同一である。
 図3に示す減圧脱泡槽2´は、幅狭部位である上昇管接続部位22´および下降管接続部位23´が溶融ガラス流路の幅が一定になる部分を有していないことを除いて、図2に示す減圧脱泡槽2について上述した点を満たすことが好ましい。
 本発明の減圧脱泡装置において、減圧脱泡槽、上昇管および下降管の構成材料は、耐熱性および溶融ガラスに対する耐食性に優れる材料である限り特に限定されない。したがって、白金若しくは白金ロジウム合金のような白金合金を使用することもできる。但し、本発明の減圧脱泡装置は、200トン/日以上の処理能力を達成する大型の減圧脱泡装置であることから、電鋳レンガのような耐火レンガを用いることが好ましい。但し、本発明の減圧槽は幅広部位を有しているので、特許文献1に記載の減圧脱泡槽と同様に、溶融ガラス流路の横幅方向に複数の耐火レンガを組み合わせて構成する必要がある。そして、複数の耐火レンガを組み合わせて減圧脱泡槽を構成する際には、特許文献1に記載の減圧脱泡槽と同様の手順を実施することが好ましい。すなわち、減圧脱泡槽の側壁部は減圧脱泡槽の高さ方向に目地のない一体物の耐火レンガを長手方向に組み上げて構成する。減圧脱泡槽の天井部および底部は、横幅方向に複数の耐火レンガを組むとともに長手方向にも組み上げて構成する。天井部および底部を構成する耐火レンガのうち、側壁部と接続される耐火レンガには、側壁部をなす耐火レンガを組み込むための切り欠き部を設けておき、この切り欠き部に側壁部をなす耐火レンガを外側から組み込むことが好ましい。そして、側壁部をなす耐火レンガと、天井部をなす耐火レンガおよび底部をなす耐火レンガと、の接触部分の目地が開くことのないように、側壁部をなす耐火レンガの外側からジャッキ等の固定手段を用いて締めつけることが好ましい。また、長手方向についても、特許文献1の図1に示されるように、熱膨張によって減圧脱泡槽の前部壁面をなす耐火レンガおよび後部壁面をなす耐火レンガと、天井部をなす耐火レンガおよび底部をなす耐火レンガと、が接続される部分の目地が開かないように、前部壁面をなす耐火レンガおよび後部壁面をなす耐火レンガを外側からジャッキ等の固定手段を用いて締めつけることが好ましい。横幅方向に複数の耐火レンガを組んで構成される減圧脱泡槽の天井部において、少なくとも中央に位置する耐火レンガをその横幅が上方に迫り出す迫構造とすることにより、天井部を構成する耐火レンガが落下するのを防止できる。
 上記した構成の本発明の減圧脱泡装置により、溶融ガラス流路での溶融ガラス流の滞留、局所的な溶融ガラス流の流速の増加、および溶融ガラス流の圧損の過大な増加等の問題を生じることなしに、200トン/日以上、好ましくは500トン/日以上、より好ましくは700トン/日以上の処理能力を達成することができる。
 本発明の減圧脱泡装置を用いて減圧脱泡を実施する際、減圧脱泡槽の内部を所定の減圧状態に保持した状態で、該減圧脱泡槽に溶融ガラスを供給する。ここで減圧脱泡槽内部は、51~613hPa(38~460mmHg)に減圧されていることが好ましい。減圧脱泡槽内部は、80~338hPa(60~253mmHg)に減圧されていることがより好ましい。
 本発明の減圧脱泡装置を用いて減圧脱泡するガラスは、加熱溶融法により製造されるガラスである限り、組成的には制約されない。したがって、ソーダライムガラスに代表されるソーダライムシリカ系ガラスやアルカリホウケイ酸ガラスのようなアルカリガラスであってもよい。
 建築用または車両用の板ガラスに使用されるソーダライムガラスの場合には、酸化物基準の質量百分率表示で、SiO2:65~75%、Al23:0~3%、CaO:5~15%、MgO:0~15%、Na2O:10~20%、K2O:0~3%、Li2O:0~5%、Fe23:0~3%、TiO2:0~5%、CeO2:0~3%、BaO:0~5%、SrO:0~5%、B23:0~5%、ZnO:0~5%、ZrO2:0~5%、SnO2:0~3%、SO3:0~0.5%、という組成を有することが好ましい。
 液晶ディスプレイ用の基板に使用される無アルカリガラスの場合には、酸化物基準の質量百分率表示で、SiO2:39~70%、Al23:3~25%、B2O:1~20%、MgO:0~10%、CaO:0~17%、SrO:0~20%、BaO:0~30%、という組成を有することが好ましい。
 プラズマディスプレイ用の基板に使用される混合アルカリ系ガラスの場合には、酸化物基準の質量百分率表示で、SiO2:50~75%、Al23:0~15%、MgO+CaO+SrO+BaO+ZnO:6~24%、Na2O+K2O:6~24%、という組成を有することが好ましい。
 本発明のガラス製品の製造装置は、前述した減圧脱泡装置と、該減圧脱泡装置よりも上流側に設けられたガラス原料を溶解して溶融ガラスを製造する溶解手段と、該減圧脱泡装置よりも下流側に設けられた溶融ガラスを成形する成形手段と、成形後のガラスを徐冷する徐冷手段と、を備えるものである。なお、溶解手段、成形手段、徐冷手段については、公知技術の範囲である。例えば、溶解手段は、所望の組成になるように調製したガラス原料を溶解槽に投入し、ガラスの種類に応じた所定の温度、例えば、建築用や車両用などのソーダライムガラスの場合、約1400~1600℃に加熱してガラス原料を溶解して溶融ガラスを得る。例えば、成形手段としては、フロート法、フュージョン法またはダウンドロー法などによる装置が挙げられる。これらの中でもフロート法のためのフロートバスを用いた成形手段が、薄板ガラスから厚板ガラスまでの広範囲の厚さの高品質な板ガラスを大量に製造できる理由から好ましい。例えば、徐冷手段としては、成形後のガラスの搬送機構としての搬送ロールと、成形後のガラスの温度を徐々に下げるための機構を備えた徐冷炉が一般的に用いられる。徐々に温度を下げる機構は、燃焼ガスまたは電気ヒータにより、その出力が制御された熱量を、炉内の必要位置に供給して成形後のガラスをゆっくり冷却する(徐冷する)。これによって、成形後のガラスに内在する残留応力をなくすことができる。
 次に、本発明のガラス製品の製造方法について説明する。図4は、本発明のガラス製品の製造方法の1実施形態の流れ図である。本発明のガラス製品の製造方法は、上述した本発明の減圧脱泡装置を用いることを特徴とする。本発明のガラス製品の製造方法は、前述した減圧脱泡装置により溶融ガラスを脱泡処理する工程と、該減圧脱泡装置よりも上流側でガラス原料を溶解して溶融ガラスを製造する溶解工程と、該減圧脱泡装置よりも下流側で溶融ガラスを成形する成形工程と、成形後のガラスを徐冷する徐冷工程と、を含むガラス製品の製造方法である。または、本発明のガラス製品の製造方法は、ガラス原料を溶解して溶融ガラスを製造する溶解工程と、該溶融ガラスを減圧脱泡槽ならびに前記減圧脱泡槽と接続する上昇管および下降管を有する減圧脱泡装置によって脱泡処理する工程と、該脱泡処理後の溶融ガラスを成形する成形工程と、成形後のガラスを徐冷する徐冷工程と、を含むガラス製品の製造方法であって、前記減圧脱泡槽を流れる溶融ガラスが、幅広部位を有し、該幅広部位における溶融ガラス流の幅w1と、長さl1と、の比w1/l1が好ましくは0.2以上好ましくは4以下であり、前記減圧脱泡槽を流れる前記上昇管と接続する部位の溶融ガラス流の幅w2、および、前記下降管と接続する部位の溶融ガラス流の幅w3が、前記幅広部位における溶融ガラス流の幅w1よりも狭く、前記上昇管と接続する部位の溶融ガラス流の深さh2、および、前記下降管と接続する部位の溶融ガラス流の深さh3が、前記幅広部位における溶融ガラス流の深さh1よりも深いことを特徴とするガラス製品の製造方法である。なお、w1、w2、w3、l1、は、ガラス流路でのW1、W2、W3、L1と同一である。また、上述したように、幅広部位における溶融ガラス流の深さh1は、溶融ガラスの液面を想定した水平面から該幅広部位における溶融ガラス流路の底部までの深さに等しく、上昇管と接続する部位における溶融ガラス流の深さh2は溶融ガラスの液面を想定した水平面から該上昇管と接続する部位における溶融ガラス流路の底部までの深さに等しく、下降管と接続する部位における溶融ガラス流の深さh3は溶融ガラスの液面を想定した水平面から該下降管と接続する部位の溶融ガラス流路の底部までの深さに等しい。
 本発明のガラス製品の製造方法は、前述した本発明の減圧脱泡装置を利用する以外は公知技術の範囲である。また、本発明のガラス製品の製造方法で利用する装置については、前述の通りである。図4には、本発明のガラス製品の製造方法の構成要素である溶解工程および成形工程ならびに徐冷工程に加えて、さらに必要に応じて用いる切断工程、その他後工程も示す。
 本発明の減圧脱泡装置、およびガラス製品の製造装置、ならびにガラス製品の製造方法は、建材用、車両用、光学用、医療用、その他幅広いガラス製品の製造に利用可能である。
 なお、2008年6月2日に出願された日本特許出願2008-144519号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として取り入れるものである。
   1:減圧脱泡装置
   2,2´:減圧脱泡槽
   21,21´:幅広部位
   22,22´:上昇管接続部位
   23,23´:下降管接続部位
   3:上昇管
   4:下降管
   10:上流側導管構造
   20:下流側導管構造

Claims (10)

  1.  減圧脱泡槽、ならびに前記減圧脱泡槽と接続する上昇管および下降管を有する減圧脱泡装置であって、
     前記減圧脱泡槽が、該減圧脱泡槽における溶融ガラスの流路をなす幅広部位を有し、該幅広部位における溶融ガラス流路の幅W1と、長さL1と、の比W1/L1が0.2以上であり、
     前記減圧脱泡槽のうち、前記上昇管と接続する部位の溶融ガラス流路の幅W2、および、前記下降管と接続する部位の溶融ガラス流路の幅W3が、前記幅広部位における溶融ガラス流路の幅W1よりも狭く、前記上昇管と接続する部位の溶融ガラス流路の底部、および、前記下降管と接続する部位の溶融ガラス流路の底部が、前記幅広部位における溶融ガラス流路の底部よりも低い位置にあることを特徴とする減圧脱泡装置。
  2.  前記幅広部位における溶融ガラス流路の幅W1が1000mm以上である請求項1に記載の減圧脱泡装置。
  3.  前記幅広部位における溶融ガラス流路の長さL1が5000mm以上である請求項1または2に記載の減圧脱泡装置。
  4.  前記上昇管と接続する部位の溶融ガラス流路の底部、および、前記下降管と接続する部位の溶融ガラス流路の底部が、前記幅広部位における溶融ガラス流路の底部よりもそれぞれ50~1000mm低い位置にある請求項1ないし3のいずれかに記載の減圧脱泡装置。
  5.  前記上昇管と接続する部位の溶融ガラス流路の幅W2、前記下降管と接続する部位の溶融ガラス流路の幅W3、前記上昇管の内径(直径)r2、および、前記下降管の内径(直径)r3が、下記式に示す関係を満たす請求項1ないし4のいずれかに記載の減圧脱泡装置。
     1×r2 ≦ W2 ≦ 5×r2
     1×r3 ≦ W3 ≦ 5×r3
  6.  溶融ガラスの液面を想定した水平面を基準として、前記水平面下の前記幅広部位における溶融ガラス流路の断面積S1、前記水平面下の前記上昇管と接続する部位の溶融ガラス流路の断面積S2、および、前記水平面下の前記下降管と接続する部位の溶融ガラス流路の断面積S3が、下記式に示す関係を満たす請求項1ないし5のいずれかに記載の減圧脱泡装置。
     1.0 ≦ S1/S2 ≦ 10.0
     1.0 ≦ S1/S3 ≦ 10.0
  7.  前記幅広部位における溶融ガラス流路の幅W1、前記幅広部位における溶融ガラス流路の長さL1、前記上昇管と接続する部位の溶融ガラス流路の長さL2、および、前記下降管と接続する部位の溶融ガラス流路の長さL3が、下記式に示す関係を満たす請求項1ないし6のいずれかに記載の減圧脱泡装置。
     0.5×W1 ≦ L2 ≦ 2×L1
     0.5×W1 ≦ L3 ≦ 2×L1
  8.  請求項1ないし7のいずれかに記載の減圧脱泡装置と、該減圧脱泡装置よりも上流側に設けられたガラス原料を溶解して溶融ガラスを製造する溶解手段と、該減圧脱泡装置よりも下流側に設けられた溶融ガラスを成形する成形手段と、成形後のガラスを徐冷する徐冷手段と、を備えたガラス製品の製造装置。
  9.  請求項1ないし7のいずれかに記載の減圧脱泡装置により溶融ガラスを脱泡処理する工程と、該減圧脱泡装置よりも上流側でガラス原料を溶解して溶融ガラスを製造する溶解工程と、該減圧脱泡装置よりも下流側で溶融ガラスを成形する成形工程と、成形後のガラスを徐冷する徐冷工程と、を含むガラス製品の製造方法。
  10.  ガラス原料を溶解して溶融ガラスを製造する溶解工程と、該溶融ガラスを減圧脱泡槽ならびに前記減圧脱泡槽と接続する上昇管および下降管を有する減圧脱泡装置によって脱泡処理する工程と、該脱泡処理後の溶融ガラスを成形する成形工程と、成形後のガラスを徐冷する徐冷工程と、を含むガラス製品の製造方法であって、
     前記減圧脱泡槽を流れる溶融ガラスが、幅広部位を有し、該幅広部位における溶融ガラス流の幅w1と、長さl1と、の比w1/l1が0.2以上であり、
     前記減圧脱泡槽を流れる前記上昇管と接続する部位の溶融ガラス流の幅w2、および、前記下降管と接続する部位の溶融ガラス流の幅w3が、前記幅広部位における溶融ガラス流の幅w1よりも狭く、前記上昇管と接続する部位の溶融ガラス流の深さh2、および、前記下降管と接続する部位の溶融ガラス流の深さh3が、前記幅広部位における溶融ガラス流の深さh1よりも深いことを特徴とするガラス製品の製造方法。
PCT/JP2009/060009 2008-06-02 2009-06-01 減圧脱泡装置、ガラス製品の製造装置、及びガラス製品の製造方法 WO2009148028A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RU2010153998/03A RU2491235C2 (ru) 2008-06-02 2009-06-01 Устройство для вакуумного дегазирования, устройство для изготовления стеклянных изделий, и способ изготовления стеклянных изделий
EP09758295A EP2272806B1 (en) 2008-06-02 2009-06-01 Vacuum defoaming equipment, equipment for producing glass product, and method for producing glass product
PL09758295T PL2272806T3 (pl) 2008-06-02 2009-06-01 Urządzenie do odgazowywania próżniowego, urządzenie do wytwarzania wyrobu szklanego, oraz sposób wytwarzania wyrobu szklanego
JP2010515866A JP5365630B2 (ja) 2008-06-02 2009-06-01 減圧脱泡装置、ガラス製品の製造装置、及びガラス製品の製造方法
KR1020107021745A KR101271801B1 (ko) 2008-06-02 2009-06-01 감압 탈포 장치, 유리 제품의 제조 장치, 및 유리 제품의 제조 방법
ES09758295T ES2391070T3 (es) 2008-06-02 2009-06-01 Equipo desgaseador a vacío, equipo para producir un producto de vidrio y método para producir un producto de vidrio
BRPI0912139A BRPI0912139A2 (pt) 2008-06-02 2009-06-01 aparelho de desgaseificação a vácuo, aparelho para produzir produtos de vidro e processo para produzir produtos de vidro
CN2009801212495A CN102046541B (zh) 2008-06-02 2009-06-01 减压脱泡装置、玻璃制品的制造装置及玻璃制品的制造方法
US12/895,930 US8720229B2 (en) 2008-06-02 2010-10-01 Vacuum degassing apparatus, apparatus for producing glass products and process for producing glass products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008144519 2008-06-02
JP2008-144519 2008-06-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/895,930 Continuation US8720229B2 (en) 2008-06-02 2010-10-01 Vacuum degassing apparatus, apparatus for producing glass products and process for producing glass products

Publications (1)

Publication Number Publication Date
WO2009148028A1 true WO2009148028A1 (ja) 2009-12-10

Family

ID=41398105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060009 WO2009148028A1 (ja) 2008-06-02 2009-06-01 減圧脱泡装置、ガラス製品の製造装置、及びガラス製品の製造方法

Country Status (10)

Country Link
US (1) US8720229B2 (ja)
EP (1) EP2272806B1 (ja)
JP (1) JP5365630B2 (ja)
KR (1) KR101271801B1 (ja)
CN (1) CN102046541B (ja)
BR (1) BRPI0912139A2 (ja)
ES (1) ES2391070T3 (ja)
PL (1) PL2272806T3 (ja)
RU (1) RU2491235C2 (ja)
WO (1) WO2009148028A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002031A1 (ja) * 2010-06-30 2012-01-05 旭硝子株式会社 溶融ガラスの減圧脱泡装置および減圧脱泡方法並びにガラス製品の製造装置および製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8997525B2 (en) 2010-06-17 2015-04-07 Johns Manville Systems and methods for making foamed glass using submerged combustion
US9032760B2 (en) 2012-07-03 2015-05-19 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US9776903B2 (en) * 2010-06-17 2017-10-03 Johns Manville Apparatus, systems and methods for processing molten glass
US8707740B2 (en) 2011-10-07 2014-04-29 Johns Manville Submerged combustion glass manufacturing systems and methods
US9021838B2 (en) 2010-06-17 2015-05-05 Johns Manville Systems and methods for glass manufacturing
JP5975022B2 (ja) * 2011-04-12 2016-08-23 旭硝子株式会社 溶融ガラスの減圧脱泡方法、溶融ガラスの減圧脱泡装置、溶融ガラスの製造方法、溶融ガラスの製造装置、ガラス製品の製造方法、およびガラス製品の製造装置
US9533905B2 (en) 2012-10-03 2017-01-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
EP2903941A4 (en) 2012-10-03 2016-06-08 Johns Manville METHOD AND SYSTEMS FOR DESTABILIZING FOAM IN A DEVICE HAVING BEEN SWITCHED DOWN UNDERWATER COMBUSTION FURNACE
US9249042B2 (en) 2013-03-01 2016-02-02 Owens-Brockway Glass Container Inc. Process and apparatus for refining molten glass
US9637406B2 (en) 2013-03-15 2017-05-02 Owens-Brockway Glass Container Inc. Apparatus for melting and refining silica-based glass
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same
US10233105B2 (en) 2016-10-14 2019-03-19 Johns Manville Submerged combustion melters and methods of feeding particulate material into such melters
EP4124604A1 (en) * 2021-07-26 2023-02-01 Stoelzle Oberglas GmbH Method of adding cullet material into a molten glass stream and molten glass stream feeder
CN117455778B (zh) * 2023-12-21 2024-04-05 日照市茂源电子有限责任公司 一种基于图像增强的光学玻璃预制件检测方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178029A (ja) * 1998-12-15 2000-06-27 Asahi Glass Co Ltd 溶融ガラスの減圧脱泡装置
JP2003104730A (ja) * 2001-09-28 2003-04-09 Asahi Glass Co Ltd 減圧脱泡装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU35980A1 (ru) * 1929-02-09 1934-04-30 В.Э. Бромлей Способ и прибор дл плавки и дегазофикации стекла под разреженным давлением
SU34719A1 (ru) * 1933-01-31 1934-02-28 В.Э. Бромлей Электрическа печь дл плавки стекла под разрежением
US3042510A (en) * 1958-11-25 1962-07-03 Heraeus Gmbh W C Degasification of molten steel
US3367396A (en) * 1965-04-05 1968-02-06 Heppenstall Co Installation for the vacuum treatment of melts, in particular steel melts, and process for its operation
US4110098A (en) * 1974-08-14 1978-08-29 Saint-Gobain Industries Molten glass refining apparatus
SU903307A1 (ru) * 1980-06-13 1982-02-07 Киевский институт автоматики им.ХХУ съезда КПСС Мешалка стекловаренной печи
SU998394A1 (ru) * 1981-05-27 1983-02-23 за витель 1- .:,, ||Й -...Г ti . . С.М. фоминов ,., -- А;. .-i Вертикальна электрическа стекловаренна печь
JPH05263123A (ja) * 1992-03-18 1993-10-12 Hitachi Cable Ltd 連続真空脱ガス装置
DE19822437C1 (de) * 1998-05-19 1999-07-29 Schott Glas Verfahren zum physikalischen Läutern einer Flüssigkeit und Vorrichtung zur Durchführung des Verfahrens
JP4110663B2 (ja) * 1999-04-13 2008-07-02 旭硝子株式会社 溶融ガラス流の減圧脱泡方法
DE10041757C1 (de) * 2000-08-25 2002-02-21 Schott Glas Verfahren und Vorrichtung zum Läutern von Glas
DE20022727U1 (de) * 2000-11-11 2002-02-28 Schott Glas Vorrichtung zur Unterdruck-Läuterung einer Glasschmelze
DE20122083U1 (de) * 2001-02-03 2004-03-18 Schott Glas Unterdruck-Aggregat für die Glasherstellung
KR100847717B1 (ko) * 2001-09-28 2008-07-23 아사히 가라스 가부시키가이샤 용융유리의 진공탈가스 장치
KR20090040359A (ko) * 2002-12-27 2009-04-23 아사히 가라스 가부시키가이샤 용융 유리용 도관, 용융 유리 탈포방법 및 용융 유리 탈포장치
KR100903545B1 (ko) * 2003-02-04 2009-06-23 아사히 가라스 가부시키가이샤 용융 유리용 도관, 용융 유리용 접속 도관 및 감압 탈포장치
JP4756856B2 (ja) * 2004-12-15 2011-08-24 AvanStrate株式会社 ガラス組成物およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178029A (ja) * 1998-12-15 2000-06-27 Asahi Glass Co Ltd 溶融ガラスの減圧脱泡装置
JP2003104730A (ja) * 2001-09-28 2003-04-09 Asahi Glass Co Ltd 減圧脱泡装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2272806A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002031A1 (ja) * 2010-06-30 2012-01-05 旭硝子株式会社 溶融ガラスの減圧脱泡装置および減圧脱泡方法並びにガラス製品の製造装置および製造方法
JP5772823B2 (ja) * 2010-06-30 2015-09-02 旭硝子株式会社 溶融ガラスの減圧脱泡装置および減圧脱泡方法並びにガラス製品の製造装置および製造方法

Also Published As

Publication number Publication date
JPWO2009148028A1 (ja) 2011-10-27
PL2272806T3 (pl) 2013-02-28
JP5365630B2 (ja) 2013-12-11
EP2272806A4 (en) 2011-07-06
RU2010153998A (ru) 2012-08-10
KR101271801B1 (ko) 2013-06-07
US20110016922A1 (en) 2011-01-27
CN102046541A (zh) 2011-05-04
KR20110016860A (ko) 2011-02-18
EP2272806B1 (en) 2012-09-26
CN102046541B (zh) 2013-08-14
BRPI0912139A2 (pt) 2015-11-03
EP2272806A1 (en) 2011-01-12
ES2391070T3 (es) 2012-11-21
RU2491235C2 (ru) 2013-08-27
US8720229B2 (en) 2014-05-13

Similar Documents

Publication Publication Date Title
JP5365630B2 (ja) 減圧脱泡装置、ガラス製品の製造装置、及びガラス製品の製造方法
JP5397371B2 (ja) 溶融ガラス製造装置およびそれを用いた溶融ガラス製造方法
KR100855924B1 (ko) 용융유리의 진공탈가스 장치
JP5470853B2 (ja) ガラス製造方法および減圧脱泡装置
US8468851B2 (en) Vacuum degassing apparatus and vacuum degassing method for molten glass
TWI552972B (zh) A molten glass manufacturing apparatus, a method for producing a molten glass, and a method for manufacturing the same
KR101341741B1 (ko) 용융 유리 제조 방법 및 감압 탈포 장치, 그리고 유리 제품의 제조 방법
KR101493578B1 (ko) 용융 유리의 감압 탈포 장치 및 감압 탈포 방법 그리고 유리 제품의 제조 장치 및 제조 방법
KR20190033025A (ko) 무알칼리 유리 기판
JP2006298657A (ja) 溶融ガラスの減圧脱泡装置、および該減圧脱泡装置を用いた溶融ガラスの清澄方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121249.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758295

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515866

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009758295

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107021745

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 8528/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010153998

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0912139

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101126