WO2009145295A1 - 無線通信装置および無線通信方法 - Google Patents

無線通信装置および無線通信方法 Download PDF

Info

Publication number
WO2009145295A1
WO2009145295A1 PCT/JP2009/059856 JP2009059856W WO2009145295A1 WO 2009145295 A1 WO2009145295 A1 WO 2009145295A1 JP 2009059856 W JP2009059856 W JP 2009059856W WO 2009145295 A1 WO2009145295 A1 WO 2009145295A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
retransmission
transmission
unit
size
Prior art date
Application number
PCT/JP2009/059856
Other languages
English (en)
French (fr)
Inventor
信悟 上甲
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US12/995,104 priority Critical patent/US20110105113A1/en
Publication of WO2009145295A1 publication Critical patent/WO2009145295A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a wireless communication apparatus and a wireless communication method to which hybrid automatic retransmission control is applied.
  • HARQ hybrid automatic retransmission control
  • ARQ automatic retransmission control
  • FEC forward error correction
  • the transmitting device When receiving the retransmission request, the transmitting device transmits the first-transmitted data (hereinafter referred to as transmission data) to the receiving device as retransmission data.
  • the receiving apparatus stores transmission data that has failed to be decoded.
  • retransmission data is received from the transmitting apparatus, the received transmission data is combined with the received retransmission data for decoding. With such processing, HARQ improves error correction capability.
  • Ack and Nack are collectively referred to as “response message” as appropriate.
  • retransmission is controlled according to a response message from a receiving device, but a transmitting device does not always receive a response message normally from the receiving device.
  • the transmission device fails to receive the response message, the state of the reception device is unknown.
  • the conventional transmission device continues communication by either of the following methods (a) or (b).
  • the transmitting apparatus when the receiving apparatus actually fails to decode the transmission data, the transmitting apparatus transmits a response message retransmission request to the receiving apparatus and receives the response message from the receiving apparatus. Thereafter, retransmission data is transmitted. That is, the method (b) has a problem that a large retransmission delay occurs.
  • An object of the present invention is to provide a wireless communication apparatus and a wireless communication method capable of continuing communication with a receiving apparatus while reducing retransmission delay.
  • a response reception unit (transmission / reception unit 111) that receives a response message indicating whether or not the transmission data is received from the reception device, and the data transmission when the response message received by the response reception unit indicates a decoding failure of the transmission data
  • a retransmission processing unit (control unit 112) that transmits retransmission data corresponding to the transmission data transmitted by a unit to the reception device, wherein the retransmission data is combined with the transmission data in the reception device by wireless communication Response determination for determining whether or not the response reception unit has normally received the response message after transmission of the transmission data in the device (wireless base station 1) (The control unit 112), and when the response determination unit determines that the response reception unit has not normally received the response message, the retransmission processing unit transmits a part of the transmission data to the retransmission data. And transmitting to the receiving device.
  • the retransmission processing unit transmits a part of the transmission data to the receiving device
  • the reception apparatus can perform decoding.
  • the wireless communication apparatus in a wireless communication system to which HARQ is applied, when a response message from the receiving apparatus is not normally received, the amount of radio resources consumed and the retransmission delay are reduced.
  • the communication with the receiving device can be continued while reducing.
  • a third aspect of the present invention relates to the second aspect of the present invention, wherein the size determining unit increases the size of the retransmission data as the error rate is higher, and increases the size of the retransmission data as the error rate is lower.
  • the gist is to reduce the size.
  • a fourth aspect of the present invention relates to the second aspect of the present invention, and relates to a resource allocation unit (control) that allocates radio resources used for data transmission to the receiving apparatus or a receiving apparatus (radio terminal 3) different from the receiving apparatus. 112), the retransmission processing unit transmits a part of the transmission data as the retransmission data using the radio resource, and the resource allocation unit is configured so that the retransmission processing unit is a part of the transmission data. Is transmitted as the retransmission data, the radio resource is allocated to both the receiving device and the different receiving device.
  • a fifth aspect of the present invention relates to the fourth aspect of the present invention, wherein the size determination unit transmits a difference between the size of the transmission data and the determined size of the retransmission data to the different receiving device.
  • the gist is to determine the size of the predetermined data.
  • a sixth aspect of the present invention relates to the fourth aspect of the present invention, wherein when there are a plurality of different receiving apparatuses, the resource allocating unit determines whether the resource allocating unit is in accordance with the reception quality information received by the information receiving unit.
  • a priority setting unit (scheduler 114) for setting a priority for allocating the radio resource to each of a plurality of receiving apparatuses; and the resource allocation unit, wherein the retransmission processing unit converts a part of the transmission data to the retransmission data
  • the gist is to allocate the radio resources to the receiving device having the highest priority among the plurality of receiving devices and the receiving device to which the retransmission data is transmitted.
  • a seventh aspect of the present invention relates to the fifth aspect of the present invention, and relates to a first modulation method used for data transmission to the receiving device and a second modulation method used for data transmission to the different receiving device. And the retransmission data determined by the size determination unit in accordance with the first modulation method and the second modulation method determined by the modulation method determination unit. And a size adjusting unit (scheduler 114) for adjusting the size of each of the predetermined data.
  • An eighth aspect of the present invention relates to the seventh aspect of the present invention, wherein the size adjustment unit is configured such that an information amount per symbol defined in the first modulation scheme is defined in the second modulation scheme.
  • the amount of information per symbol defined in the first modulation scheme is reduced by reducing the size of the retransmission data and increasing the size of the predetermined data.
  • the gist is to increase the size of the retransmission data and reduce the size of the predetermined data when the amount of information per symbol defined in the modulation method is larger.
  • a ninth aspect of the present invention relates to the first aspect of the present invention, and is provided with a modulation scheme determination unit (control unit 112) that determines a modulation scheme used for data transmission to the receiving device, and the retransmission processing unit.
  • a size determination unit that determines the size of the retransmission data transmitted by the retransmission processing unit according to the modulation method determined by the modulation method determination unit ( And a data size determination unit 115).
  • a tenth aspect of the present invention relates to the first aspect of the present invention, wherein the retransmission processing unit is determined by the response determination unit that the response message has not been received normally, and the transmission data is In the case of real-time data that requires a low delay, all of the transmission data is transmitted as the retransmission data, the response determination unit determines that the response message is not normally received, and the transmission data Is a data other than the real-time data, a part of the transmission data is transmitted as the retransmission data.
  • a step of transmitting encoded transmission data to a receiving device and a response message indicating whether the receiving device has successfully decoded the transmission data are received from the receiving device.
  • a wireless communication method combined with the transmission data in the reception device comprising: determining whether the response message has been normally received from the reception device after transmission of the transmission data; In the step of transmitting the retransmission data, the response message is not normally received in the determination step. When it is determined, to increase the transmission part of the transmission data as the retransmission data.
  • a wireless communication apparatus in a wireless communication system to which HARQ is applied, when a response message from a receiving apparatus is not normally received, communication with the receiving apparatus is achieved while reducing radio resource consumption and retransmission delay. It is possible to provide a wireless communication apparatus and a wireless communication method that can continue the communication.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system according to an embodiment of the present invention.
  • FIG. 2 is a functional block configuration diagram of the radio base station according to the embodiment of the present invention.
  • FIG. 3 is a conceptual diagram for explaining retransmission size determination processing executed by the data size determination unit according to the embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a configuration example of a table in which CQI and reception SNR are associated with each other according to the embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a configuration example of a table in which the modulation scheme, the reception SNR, and the error rate according to the embodiment of the present invention are associated with each other.
  • FIG. 6 is a diagram for explaining a modulation scheme used in adaptive modulation.
  • FIG. 7 is a flowchart showing an operation of the radio base station according to the embodiment of the present invention.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment.
  • the wireless communication system 10 includes a wireless base station 1, a wireless terminal 2, and a wireless terminal 3.
  • the wireless terminal 2 and the wireless terminal 3 are located in the service area of the wireless base station 1 and communicate with the wireless base station 1 via a wireless section.
  • a wireless section In the example of FIG. 1, only a total of two wireless terminals, the wireless terminal 2 and the wireless terminal 3, are illustrated, but many wireless terminals may communicate with the wireless base station 1.
  • the wireless terminal 2 and the wireless terminal 3 constitute a plurality of receiving apparatuses that receive data from the wireless base station 1.
  • the wireless base station 1 constitutes a wireless communication device that performs wireless communication with the plurality of receiving devices.
  • the radio terminal 2 and the radio terminal 3 periodically measure the reception quality of a radio signal transmitted by the radio base station 1, specifically, a pilot signal that is a broadcast signal, and receive the reception quality information indicating the reception quality Transmitting to station 1 regularly.
  • the reception quality measured by the wireless terminal 2 and the wireless terminal 3 is a reception SNR (Signal to Interference plus Noise power Ratio).
  • the reception quality information transmitted from the wireless terminal 2 and the wireless terminal 3 to the wireless base station 1 is referred to as CQI (Channel Quality Indicator).
  • the wireless terminal 2 fails to decode the initial transmission data received from the wireless base station 1, and transmits a Nack, which is a negative response message requesting retransmission of the initial transmission data, to the wireless base station 1. Yes. That is, the wireless terminal 2 is a transmission destination of retransmission data for which retransmission is requested. On the other hand, the wireless terminal 3 is a transmission destination of transmission data for which retransmission is not requested (initial transmission data) or retransmission data for which retransmission is requested.
  • the receiving side transmits an acknowledgment message (Ack) indicating successful decoding when the data (data packet) transmitted by the transmitting side is successfully decoded, and when decoding is unsuccessful.
  • a negative acknowledgment message (Nack) indicating a decoding failure is transmitted to the transmission side.
  • Ack and Nack are collectively referred to as “response message”.
  • the transmission side may not normally receive a response message from the reception side.
  • the state where the response message cannot be normally received means a state where the response message is not received, a state where the response message can be received but cannot be decoded, or a state where the decoding result includes an error even if it can be decoded.
  • the radio base station 1 allocates radio resources to each of the radio terminal 2 or the radio terminal 3 based on the CQI received from each of the radio terminal 2 and the radio terminal 3, and uses the allocated radio resource to establish the radio terminal 2 or the radio terminal. 3 to send data.
  • the radio resource used for data transmission means a transmission time frame (hereinafter referred to as a transmission slot) or a frequency channel.
  • a transmission slot will be described as an example of radio resources allocated by the radio base station 1.
  • the wireless communication system 10 employs an adaptive modulation method.
  • the radio base station 1 dynamically switches the modulation scheme (hereinafter referred to as “modulation class” as appropriate) based on the CQI received from each of the radio terminal 2 and the radio terminal 3. Specifically, the radio base station 1 selects an appropriate modulation scheme from a plurality of modulation schemes such as BPSK (Binary Phase Shift Keying) and 24QAM (Quadrature Amplitude Modulation).
  • modulation class the modulation scheme
  • 24QAM Quadrature Amplitude Modulation
  • retransmission gain can be obtained by combining initial transmission data and retransmission data. Therefore, selecting a higher modulation class in consideration of retransmission gain requires a lower modulation class to be completed in one transmission. Rather than making a choice, it leads to improving the performance of the entire system. Therefore, retransmission is frequently performed in such a system.
  • FIG. 2 is a functional block configuration diagram of the radio base station 1.
  • the radio base station 1 includes an antenna 110, a transmission / reception unit 111, a control unit 112, a data storage unit 113, a scheduler 114, and a data size determination unit 115.
  • the transmission / reception unit 111 transmits and receives a radio signal including data via the antenna 110.
  • the transmission / reception unit 111 transmits the encoded (error correction encoded) initial transmission data to the wireless terminal 2.
  • the transmission / reception unit 111 receives the response message described above from the wireless terminal 2. Further, the transmission / reception unit 111 receives a CQI indicating the reception SNR of the radio signal transmitted by the radio base station 1 from each of the radio terminals 2 and 3.
  • the transmission / reception unit 111 configures a data transmission unit that transmits initial transmission data, a response reception unit that receives a response message, and an information reception unit that receives reception quality information (CQI).
  • CQI reception quality information
  • the data storage unit 113 temporarily stores transmission data to be transmitted to the wireless terminal 2 and stores the transmitted initial transmission data until the transmission / reception unit 111 receives Ack.
  • the transmission / reception unit 111 receives Nack
  • the initial transmission data stored in the data storage unit 113 is acquired by the control unit 112 and retransmitted as retransmission data.
  • control unit 112 includes a response determination unit that determines whether or not the response message has been normally received, and a retransmission processing unit that transmits a part of the initial transmission data to the wireless terminal 2 as retransmission data.
  • the data size determination unit 115 determines the error rate (packet error rate) of the first transmission data received by the wireless terminal 2 based on the CQI received by the transmission / reception unit 111, specifically, the CQI corresponding to the transmission of the first transmission data. presume. In addition, the data size determination unit 115 determines the size of retransmission data according to the estimated error rate.
  • the data size determination unit 115 configures an error rate estimation unit that estimates an error rate of initial transmission data received by the wireless terminal 2 and a size determination unit that determines the size of retransmission data.
  • the data size determination unit 115 determines the difference between the size of the initial transmission data and the determined size of retransmission data as the size of data to be transmitted to the wireless terminal 3.
  • the data to be transmitted to the wireless terminal 3 is initial transmission data or retransmission data.
  • initial transmission data or retransmission data transmitted to the wireless terminal 3 will be referred to as “predetermined data” as appropriate.
  • the scheduler 114 sets the priority to which the control unit 112 allocates radio resources for each radio terminal according to the above-described CQI. That is, in the radio communication system 10, the scheduler 114 is used for the radio base station 1 to manage a large number of radio terminals and effectively utilize radio resources.
  • the Max CIR method is a method for setting a high priority for a wireless terminal having a high instantaneous reception SNR (hereinafter, instantaneous reception SNR).
  • instantaneous reception SNR instantaneous reception SNR
  • PF scheme a high priority is set for a wireless terminal having a relatively high instantaneous reception SNR with respect to the average reception SNR.
  • DRC is an instantaneous data rate calculated from CQI
  • R is a value obtained by averaging the data rate by an exponential function weighted average using a certain time constant. Therefore, the ratio of the instantaneous data rate (instantaneous reception SNR) to the average rate (average reception SNR) is calculated as the priority.
  • the control unit 112 allocates radio resources used for data transmission to the radio terminal 2 or the radio terminal 3 according to the priority set by the scheduler 114. That is, the control unit 112 constitutes a resource allocation unit that allocates radio resources. When transmitting a part of the initial transmission data to the wireless terminal 2 as retransmission data, the control unit 112 allocates wireless resources to both the wireless terminal 2 and the wireless terminal 3.
  • Example of retransmission size determination process As described above, when the control unit 112 of the radio base station 1 determines that the response message from the radio terminal 2 has not been received normally, the first time illustrated in FIG. Part of the transmission data is transmitted to the wireless terminal 2 as retransmission data shown in FIG.
  • the size SIZE1 of the retransmission data shown in FIG. 3B is determined as follows.
  • control unit 112 determines that the response message from the wireless terminal 2 is not normally received, the control unit 112 notifies the data size determining unit 115 of the CQI of the wireless terminal 2 at the time of transmission of the initial transmission data illustrated in FIG. To do.
  • the data size determination unit 115 estimates the error rate R of the initial transmission data received by the wireless terminal 2 from the notified CQI, and determines the size SIZE1 of the retransmission data according to the error rate R.
  • the data size determination unit 115 uses the multiplication result of the size SIZE0 of the initial transmission data shown in FIG. 3A and the estimated error rate R as the size of the retransmission data. SIZE1 is determined.
  • SIZE1 SIZE0 ⁇ R (1) That is, when it is unclear whether or not the decoding of the first transmission data is successful in the wireless terminal 2, if the possibility of decoding failure is high, most of the first transmission data is retransmitted and there is a possibility of decoding failure If it is low, only a small part of the initial transmission data is retransmitted. Even when the response message is not normally received, the retransmission data size SIZE1 is the same as the initial transmission data size SIZE0 only if the estimated error rate R is 100%.
  • the data size determination unit 115 transmits the difference between the size SIZE0 of the initial transmission data and the size SIZE1 of the retransmission data (SIZE0-SIZE1) to the wireless terminal 3 or The size of retransmission data is determined as SIZE2.
  • the wireless terminal 3 having the highest priority set by the scheduler 114 has a wireless resource. Assigned.
  • the following relationship holds among the size SIZE0 of the initial transmission data, the size SIZE1 of the retransmission data, and the size SIZE2 of the predetermined data transmitted to the wireless terminal 3.
  • the retransmission data to the wireless terminal 2 and the predetermined data to the wireless terminal 3 are wireless resources in which the sum of the sizes is a resource having the same size as the wireless resource (transmission slot) to which the first transmission data is transmitted. It is transmitted in (transmission slot).
  • the data size determining unit 115 notifies the scheduler 114 of the sizes SIZE1 and SIZE2 determined by the equations (1) and (2).
  • the scheduler 114 adjusts the sizes SIZE1 and SIZE2 according to the modulation method.
  • the data size determination unit 115 depends on the CQI of the wireless terminal 2 at the time of transmitting the first transmission data and the modulation scheme (modulation class) when the first transmission data is transmitted to the wireless terminal 2.
  • the error rate R of the initial transmission data received by the wireless terminal 2 is estimated.
  • the data size determination unit 115 specifies the reception SNR of the wireless terminal 2 at the time of transmission of the first transmission data, using a table associated with the CQI and the reception SNR. Furthermore, as shown in FIG. 5, the data size determination unit 115 specifies the error rate R using a table in which the modulation scheme at the time of transmission of the first transmission data, the reception SNR, and the error rate R are associated with each other. .
  • the higher the modulation class that is, the higher the modulation class, the higher the error rate R. Further, the higher the received SNR, the lower the error rate R. Note that the value of the error rate R shown in FIG. 4 is obtained in advance by computer simulation.
  • Modulation class 8 is the fastest modulation class
  • modulation class 0 is the slowest modulation class.
  • 24QAM is used in modulation class 8
  • ⁇ / 2-BPSK is used in modulation class 0.
  • the amount of information per symbol differs in each modulation class.
  • the scheduler 114 is configured such that the information amount per symbol defined in the modulation class used for data transmission to the wireless terminal 2 is the information amount per symbol defined in the modulation class used for data transmission to the wireless terminal 3.
  • the size SIZE1 is reduced and the size SIZE2 is increased.
  • the scheduler 114 determines that the amount of information per symbol specified in the modulation class used for data transmission to the wireless terminal 2 is equal to the amount per symbol specified in the modulation class used for data transmission to the wireless terminal 3.
  • the amount of information is larger than the amount of information, the size SIZE1 is increased and the size SIZE2 is decreased.
  • the total size of the size SIZE1 and the size SIZE2 does not change before and after the size adjustment.
  • FIG. 7 is a flowchart showing the operation of the radio base station 1.
  • step S11 the transmission / reception unit 111 and the control unit 112 transmit initial transmission data to the wireless terminal 2. Further, the transmission / reception unit 111 receives the CQI from each of the wireless terminals 2 and 3 (step S12).
  • the wireless terminal 2 decodes after receiving the initial transmission data from the wireless base station 1 and transmits Ack as a response message to the wireless base station 1 if the CRC check and correct decoding are successful. Nack is transmitted to the radio base station 1 as a response message.
  • step S13 the control unit 112 determines whether or not the response message from the wireless terminal 2 has been normally received. If the response message is normally received, the process proceeds to step S14. If the response message is not normally received, the process proceeds to step S18.
  • step S14 the control unit 112 determines whether the received response message is Ack or Nack. If the response message is Ack, the process proceeds to step S15. If the response message is Nack, the process proceeds to step S17.
  • step S15 and step S16 the scheduler 114 and the control unit 112 perform allocation processing and transmission processing for the next data as usual.
  • step S17 when the response message is Nack the control unit 112 transmits all of the initial transmission data to the wireless terminal 2 as retransmission data.
  • the wireless terminal 2 performs a CRC check after soft-combining with the initial transmission data, and transmits Ack or Nack to the wireless base station 1 according to the CRC check result.
  • step S18 the data size determination unit 115 determines the error rate of the first transmission data received by the wireless terminal 2 according to the CQI received from the wireless terminal 2 in step S12. Estimate R.
  • step S19 the data size determination unit 115 determines the size SIZE1 of retransmission data to the wireless terminal 2 and the size SIZE2 of predetermined data to the wireless terminal 3 according to the above equations (1) and (2). .
  • step S21 the control unit 112 allocates radio resources used for data transmission to the radio terminal 2 or the radio terminal 3.
  • step S ⁇ b> 23 the transmission / reception unit 111 and the control unit 112 transmit retransmission data to the wireless terminal 2 and transmit predetermined data to the wireless terminal 3.
  • control unit 112 determines whether or not the response message has been normally received after the transmission of the initial transmission data to the wireless terminal 2, and receives the response message normally. If it is determined that it is not, a part of the initial transmission data is transmitted to the wireless terminal 2 as retransmission data.
  • the wireless terminal 2 can perform decoding even if a part of the initial transmission data is transmitted as retransmission data.
  • the data size determination unit 115 estimates the error rate R of the initial transmission data received by the wireless terminal 2, and determines the size of the retransmission data according to the estimated error rate R. Specifically, the data size determination unit 115 increases the size of retransmission data as the error rate R is higher, and decreases the size of retransmission data as the error rate R is lower.
  • the data size determining unit 115 determines the difference between the size of the initial transmission data and the determined size of the retransmission data as the size of the predetermined data to be transmitted to the wireless terminal 3. And the control part 112 allocates a radio
  • the control unit 112 allocates wireless resources to the wireless terminal 3 having the highest priority set by the scheduler 114 and the wireless terminal 2.
  • the scheduler 114 sets a high priority for a radio terminal with a high reception SNR, can transmit data to a radio terminal with a high reception SNR at an early stage, and effectively uses radio resources. At the same time, the throughput can be improved.
  • the scheduler 114 adjusts the size determined by the data size determination unit 115 according to the modulation method. For this reason, when a high-speed modulation method is used, radio resources can be used effectively by transmitting as much data as possible, and throughput can be improved.
  • the scheduler 114 adjusts the size determined by the data size determining unit 115 according to the modulation class.
  • the scheduler 114 may determine the data size according to only the modulation class.
  • the QoS of the initial transmission data (and retransmission data) transmitted to the wireless terminal 2 is not considered.
  • a configuration that takes QoS into consideration may be used.
  • the initial transmission data transmitted to the wireless terminal 2 is real-time data (for example, voice data) that requires low delay. In this case, all of the transmission data may be transmitted as retransmission data.
  • the reception SNR is used as the reception quality.
  • the reception SNR is not limited to this, and RSSI (Received Signal Strength Indicator) or reception BER (Bit Error Rate) may be used.
  • FIG. 1 shows a portable wireless terminal, it may be a fixed wireless terminal or a card wireless terminal. Alternatively, a device that does not have a data transmission function may be used instead of the wireless terminal.
  • the wireless communication apparatus and the wireless communication method according to the present invention in the wireless communication system to which HARQ is applied, when the response message from the receiving apparatus is not normally received, the radio resource consumption and the retransmission Since it is possible to provide a wireless communication device and a wireless communication method capable of continuing communication with a receiving device while reducing delay, it is useful in wireless communication such as mobile communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本発明に係る無線基地局1は、初回送信データを無線端末に送信し、無線端末が初回送信データの復号に成功したか否かを示す応答メッセージを無線端末から受信する。無線基地局1の制御部112は、応答メッセージを正常に受信したか否かを判定し、応答メッセージを正常に受信していないと判定した場合、初回送信データの一部を再送データとして無線端末に送信する。

Description

無線通信装置および無線通信方法
 本発明は、ハイブリッド自動再送制御が適用される無線通信装置および無線通信方法に関する。
 一般的に、無線通信システムでは、有線通信システムと比較して伝送誤りが頻繁に発生する。このような無線通信システムにおいて通信の信頼性を確保するために、近年では、自動再送制御(ARQ)および前方誤り訂正(FEC)を併用するハイブリッド自動再送制御(HARQ)が広く用いられている。
 HARQでは、受信側の無線通信装置(以下、受信装置)は、送信側の無線通信装置(以下、送信装置)が送信したデータの復号に成功した場合には復号成功を示す肯定応答(以下、Ack)を送信装置に送信し、当該データの復号に失敗した場合には復号失敗を示す否定応答(以下、Nack)を送信装置に送信する(例えば、特許文献1参照)。
 送信装置は、再送要求を受信すると、初回送信したデータ(以下、送信データ)を再送データとして受信装置に送信する。受信装置は、復号に失敗した送信データを保存しており、送信装置から再送データを受信すると、保存した送信データと、受信した再送データとを合成して復号を行う。このような処理により、HARQでは誤り訂正能力を向上させている。なお、以下では、AckおよびNackを適宜「応答メッセージ」と総称する。
特開2003-179581号公報([請求項1]など)
 上記のようにHARQでは、受信装置からの応答メッセージに応じて再送が制御されるが、送信装置は、必ずしも応答メッセージを受信装置から正常に受信できるとは限らない。送信装置が応答メッセージの受信に失敗すると、受信装置の状態が不明になる。
 このような場合、従来の送信装置は、次の(a)または(b)のいずれかの方法により、通信を継続する。(a)受信装置が送信データの復号に失敗したとみなして、送信装置は、送信済みの送信データの全体を再送データとして受信装置に送信する。(b)送信装置は、応答メッセージの再送を受信装置に要求する。
 しかしながら、上記(a)の方法では、実際には受信装置が送信データの復号に成功している場合、再送データの再送が無駄になるため、再送に伴って多くの無線資源が無駄に消費される問題がある。特に、送信装置が複数の受信装置と通信する無線基地局である場合には、ある受信装置(無線端末)に割り当てる無線資源が増大すると、他の受信装置に割り当て可能な無線資源が相対的に減少してしまう。
 また、上記(b)の方法では、実際には受信装置が送信データの復号に失敗している場合、送信装置は、応答メッセージの再送要求を受信装置へ送信し、応答メッセージを受信装置から受信し、その後に、再送データを送信する。つまり、上記(b)の方法では、大幅な再送遅延が生じる問題がある。
 そこで、本発明は、上述した課題を解決するためになされたものであり、HARQが適用される無線通信システムにおいて、受信装置からの応答メッセージが正常に受信されない場合に、無線資源の消費量と、再送遅延とを低減しつつ、受信装置との通信を継続することができる無線通信装置および無線通信方法を提供することを目的とする。
 上述した課題を解決するために、本発明は以下のような側面を有している。まず、本発明の第1の側面は、符号化された送信データを受信装置(無線端末2)に送信するデータ送信部(送受信部111)と、前記受信装置が前記送信データの復号に成功したか否かを示す応答メッセージを前記受信装置から受信する応答受信部(送受信部111)と、前記応答受信部によって受信された前記応答メッセージが前記送信データの復号失敗を示す場合に、前記データ送信部が送信した前記送信データに対応する再送データを前記受信装置に送信する再送処理部(制御部112)とを備え、前記再送データは、前記受信装置において、前記送信データと合成される無線通信装置(無線基地局1)であって、前記送信データの送信後において、前記応答受信部が前記応答メッセージを正常に受信したか否かを判定する応答判定部(制御部112)を備え、前記再送処理部は、前記応答判定部によって前記応答受信部が前記応答メッセージを正常に受信していないと判定された場合、前記送信データの一部を前記再送データとして前記受信装置に送信することを要旨とする。
このような無線通信装置によれば、再送処理部は、受信装置からの応答メッセージを正常に受信していないと判定された場合、送信データの一部を再送データとして受信装置に送信する。
 このため、送信データの全体を再送データとして受信装置に送信する従来の方法と比較して、無線資源の消費量を削減できる。また、応答メッセージの再送を受信装置に要求する従来の方法と比較して、再送遅延を低減できる。なお、再送データは、受信装置において送信データと合成されるため、送信データの一部を再送データとして送信しても、受信装置では復号を行うことができる。
 したがって、第1の側面に係る無線通信装置によれば、HARQが適用される無線通信システムにおいて、受信装置からの応答メッセージが正常に受信されない場合に、無線資源の消費量と、再送遅延とを低減しつつ、受信装置との通信を継続することができる。
 本発明の第2の側面は、本発明の第1の側面に係り、前記無線通信装置が送信する無線信号の受信品質(例えば、受信SNR)を示す受信品質情報(CQI)を前記受信装置から受信する情報受信部(送受信部111)と、前記情報受信部が受信した前記受信品質情報に基づき、前記受信装置が受信した前記送信データの誤り率を推定する誤り率推定部(データサイズ決定部115)と、前記再送処理部が前記送信データの一部を前記再送データとして送信する場合、前記誤り率推定部によって推定された前記誤り率に応じて、前記再送処理部が送信する前記再送データのサイズを決定するサイズ決定部(データサイズ決定部115)とをさらに備えることを要旨とする。
 本発明の第3の側面は、本発明の第2の側面に係り、前記サイズ決定部は、前記誤り率が高いほど前記再送データのサイズを大きくし、前記誤り率が低いほど前記再送データのサイズを小さくすることを要旨とする。
 本発明の第4の側面は、本発明の第2の側面に係り、データ送信に用いられる無線資源を前記受信装置または前記受信装置と異なる受信装置(無線端末3)に割り当てる資源割り当て部(制御部112)をさらに備え、前記再送処理部は、前記無線資源を用いて前記送信データの一部を前記再送データとして送信し、前記資源割り当て部は、前記再送処理部が前記送信データの一部を前記再送データとして送信する場合、前記無線資源を前記受信装置および前記異なる受信装置の両方に割り当てることを要旨とする。
 本発明の第5の側面は、本発明の第4の側面に係り、前記サイズ決定部は、前記送信データのサイズと、決定した前記再送データのサイズとの差分を、前記異なる受信装置へ送信する所定データのサイズとして決定することを要旨とする。
 本発明の第6の側面は、本発明の第4の側面に係り、前記異なる受信装置が複数存在する場合に、前記情報受信部が受信した前記受信品質情報に応じて、前記資源割り当て部が前記無線資源を割り当てる優先度を複数の受信装置のそれぞれに設定する優先度設定部(スケジューラ114)をさらに備え、前記資源割り当て部は、前記再送処理部が前記送信データの一部を前記再送データとして送信する場合に、前記複数の受信装置の中で前記優先度が最も高い受信装置と、前記再送データの送信先の前記受信装置とに前記無線資源を割り当てることを要旨とする。
 本発明の第7の側面は、本発明の第5の側面に係り、前記受信装置へのデータ送信に用いられる第1変調方式と、前記異なる受信装置へのデータ送信に用いられる第2変調方式とを決定する変調方式決定部(制御部112)と、前記変調方式決定部によって決定された前記第1変調方式および前記第2変調方式に応じて、前記サイズ決定部によって決定された前記再送データおよび前記所定データのそれぞれのサイズを調整するサイズ調整部(スケジューラ114)とをさらに備えることを要旨とする。
 本発明の第8の側面は、本発明の第7の側面に係り、前記サイズ調整部は、前記第1変調方式において規定される1シンボル当たりの情報量が、前記第2変調方式において規定される1シンボル当たりの情報量よりも少ない場合、前記再送データのサイズを小さくするとともに前記所定データのサイズを大きくし、前記第1変調方式において規定される1シンボル当たりの情報量が、前記第2変調方式において規定される1シンボル当たりの情報量よりも多い場合、前記再送データのサイズを大きくするとともに前記所定データのサイズを小さくすることを要旨とする。
本発明の第9の側面は、本発明の第1の側面に係り、前記受信装置へのデータ送信に用いられる変調方式を決定する変調方式決定部(制御部112)と、前記再送処理部が前記送信データの一部を前記再送データとして送信する場合、前記変調方式決定部によって決定された前記変調方式に応じて、前記再送処理部が送信する前記再送データのサイズを決定するサイズ決定部(データサイズ決定部115)とをさらに備えることを要旨とする。
 本発明の第10の側面は、本発明の第1の側面に係り、前記再送処理部は、前記応答判定部によって前記応答メッセージを正常に受信していないと判定され、かつ、前記送信データが低遅延を要求されるリアルタイム系データである場合、前記送信データの全部を前記再送データとして送信し、前記応答判定部によって前記応答メッセージを正常に受信していないと判定され、かつ、前記送信データが前記リアルタイム系データ以外のデータである場合、前記送信データの一部を前記再送データとして送信することを要旨とする。
本発明の第11の側面は、符号化された送信データを受信装置に送信するステップと、前記受信装置が前記送信データの復号に成功したか否かを示す応答メッセージを前記受信装置から受信するステップと、前記受信するステップにおいて受信された前記応答メッセージが前記送信データの復号失敗を示す場合に、前記送信データに対応する再送データを前記受信装置に送信するステップとを備え、前記再送データは、前記受信装置において、前記送信データと合成される無線通信方法であって、前記送信データの送信後において、前記受信装置から前記応答メッセージを正常に受信したか否かを判定するステップを備え、前記再送データを送信するステップでは、前記判定するステップにおいて前記応答メッセージを正常に受信していないと判定された場合、前記送信データの一部を前記再送データとして送信することを要旨とする。
 本発明によれば、HARQが適用される無線通信システムにおいて、受信装置からの応答メッセージが正常に受信されない場合に、無線資源の消費量と、再送遅延とを低減しつつ、受信装置との通信を継続することができる無線通信装置および無線通信方法を提供できる。
図1は、本発明の実施形態に係る無線通信システムの全体概略構成図である。 図2は、本発明の実施形態に係る無線基地局の機能ブロック構成図である。 図3は、本発明の実施形態に係るデータサイズ決定部が実行する再送サイズ決定処理を説明するための概念図である。 図4は、本発明の実施形態に係るCQIと受信SNRと対応付けたテーブルの構成例を示す図である。 図5は、本発明の実施形態に係る変調方式と、受信SNRと、誤り率とを対応付けたテーブルの構成例を示す図である。 図6は、適応変調において用いられる変調方式を説明するための図である。 図7は、本発明の実施形態に係る無線基地局の動作を示すフローチャートである。
 次に、図面を参照して、本発明の実施形態に係る無線通信システムについて説明する。具体的には、(1)無線通信システムの全体概略構成、(2)無線基地局の構成、(3)再送サイズ決定処理の一例、(4)誤り率推定処理の一例、(5)サイズ調整処理の一例、(6)無線基地局の動作、(7)作用および効果、(8)その他の実施形態について説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。図1に示すように、無線通信システム10は、無線基地局1、無線端末2、および無線端末3を含む。
 無線端末2および無線端末3は、無線基地局1のサービスエリア内に位置しており、無線区間を介して無線基地局1と通信する。図1の例では、無線端末2および無線端末3の合計2つの無線端末のみを図示しているが、多数の無線端末が無線基地局1と通信していてもよい。
 本実施形態において無線端末2および無線端末3は、無線基地局1からデータを受信する複数の受信装置を構成する。無線基地局1は、当該複数の受信装置と無線通信を実行する無線通信装置を構成する。
 無線端末2および無線端末3は、無線基地局1が送信する無線信号、具体的には報知信号であるパイロット信号の受信品質を定期的に測定し、当該受信品質を示す受信品質情報を無線基地局1に定期的に送信している。本実施形態では、無線端末2および無線端末3が測定する受信品質は受信SNR(Signal to Interference plus Noise power Ratio)である。また、以下では、無線端末2および無線端末3から無線基地局1へ送信される受信品質情報をCQI(Channel Quality Indicator)と称する。
 無線通信システム10には、上述したHARQが採用されている。本実施形態では、無線端末2は、無線基地局1から受信した初回送信データの復号に失敗し、当該初回送信データの再送を要求する否定応答メッセージであるNackを無線基地局1に送信している。すなわち、無線端末2は、再送が要求された再送データの送信先である。一方、無線端末3は、再送が要求されていない送信データ(初回送信データ)、または再送が要求された再送データの送信先である。
 なお、一般的なHARQでは、受信側は、送信側が送信したデータ(データパケット)の復号に成功した場合には復号成功を示す肯定応答メッセージ(Ack)を送信し、復号に失敗した場合には復号失敗を示す否定応答メッセージ(Nack)を送信側に送信する。以下の実施形態では、AckおよびNackを「応答メッセージ」と総称する。
 無線通信システム10では、無線区間において伝送誤りやデータ損失が発生し易く、送信側は、受信側からの応答メッセージを正常に受信できないことがある。ここで、応答メッセージを正常に受信できない状態とは、応答メッセージが受信されない状態、あるいは応答メッセージを受信できても復号できない状態、若しくは復号できても復号結果に誤りが含まれる状態を意味する。
 無線基地局1は、無線端末2および無線端末3のそれぞれから受信したCQIに基づき、無線端末2または無線端末3のそれぞれに無線資源を割り当て、割り当てた無線資源を用いて無線端末2または無線端末3にデータを送信する。ここで、データ送信に用いられる無線資源とは、送信時間枠(以下、送信スロット)または周波数チャネルなどを意味する。以下の実施形態では、説明の便宜上、無線基地局1が割り当てる無線資源として送信スロットを例に説明する。
 また、通信速度の高速化を目的として、無線通信システム10には適応変調方式が採用されている。無線基地局1は、無線端末2および無線端末3のそれぞれから受信したCQIに基づき、変調方式(以下、適宜「変調クラス」と称する)を動的に切り替える。具体的には、無線基地局1は、BPSK(Binary Phase Shift Keying)や24QAM(Quadrature Amplitude Modulation)などの複数の変調方式から、適切な変調方式を選択する。
 HARQでは、初回送信データと再送データとを合成することで再送ゲインを得ることができるため、再送ゲインを見込んで高い変調クラスを選択する方が、1回の送信で完結するよう低い変調クラスを選択するよりも、システム全体の性能を上げることにつながる。    
  したがって、このようなシステムにおいては再送が頻繁に行われる。
 (2)無線基地局の構成
 次に、無線基地局1の構成について説明する。図2は、無線基地局1の機能ブロック構成図である。
 図2に示すように、無線基地局1は、アンテナ110、送受信部111、制御部112、データ保存部113、スケジューラ114、およびデータサイズ決定部115を含む。
 送受信部111は、アンテナ110を介して、データを含む無線信号の送信および受信を行う。送受信部111は、符号化(誤り訂正符号化)された初回送信データを無線端末2に送信する。送受信部111は、上述した応答メッセージを無線端末2から受信する。さらに、送受信部111は、無線基地局1が送信する無線信号の受信SNRを示すCQIを無線端末2および3のそれぞれから受信する。
 すなわち、本実施形態において送受信部111は、初回送信データを送信するデータ送信部と、応答メッセージを受信する応答受信部と、受信品質情報(CQI)を受信する情報受信部とを構成する。
 データ保存部113は、無線端末2に送信すべき送信データを一時的に保存するとともに、送受信部111がAckを受信するまで、送信済みの初回送信データを保存する。送受信部111がNackを受信すると、データ保存部113が保存している初回送信データは、制御部112によって取得され、再送データとして再送される。
 制御部112は、無線基地局1全体の動作を制御する。具体的には、制御部112は、無線端末2に対するデータ(データパケット)の送信および再送などを制御する。送受信部111がNackを受信した場合、制御部112は、送受信部111が送信した初回送信データに対応する再送データを無線端末2に送信する。
 さらに、制御部112は、初回送信データの送信後において、送受信部111が応答メッセージを正常に受信したか否かを判定する。制御部112は、送受信部111が応答メッセージを正常に受信していないと判定すると、データ保存部113が保存している初回送信データの一部を再送データとして無線端末2に送信する。
 すなわち、本実施形態において制御部112は、応答メッセージを正常に受信したか否かを判定する応答判定部と、初回送信データの一部を再送データとして無線端末2に送信する再送処理部とを構成する。
 なお、制御部112は、送受信部111が受信したCQIに応じて、無線端末2へのデータ送信に用いられる変調方式と、無線端末3へのデータ送信に用いられる変調方式とを決定する変調方式決定部としても機能する。
 データサイズ決定部115は、送受信部111が受信したCQI、具体的には、初回送信データの送信時に対応するCQIに基づき、無線端末2が受信した初回送信データの誤り率(パケット誤り率)を推定する。また、データサイズ決定部115は、推定された誤り率に応じて、再送データのサイズを決定する。
 本実施形態においてデータサイズ決定部115は、無線端末2が受信した初回送信データの誤り率を推定する誤り率推定部と、再送データのサイズを決定するサイズ決定部とを構成する。
 初回送信データの一部を再送データとして送信する場合、データサイズ決定部115は、初回送信データのサイズと、決定した再送データのサイズとの差分を、無線端末3へ送信するデータのサイズとして決定する。ここで、無線端末3へ送信するデータは、初回送信データまたは再送データである。以下では、無線端末3に送信される初回送信データまたは再送データを適宜「所定データ」と称する。
 スケジューラ114は、上述したCQIに応じて、制御部112が無線資源を割り当てる優先度を無線端末毎に設定する。すなわち、無線通信システム10において、無線基地局1が多数の無線端末を管理し、無線資源を有効活用するために、スケジューラ114が用いられる。
 スケジューラ114の方式としては、Max CIR方式およびPF(Proportional fair)方式などがある。Max CIR方式は、瞬時の受信SNR(以下、瞬時受信SNR)が高い無線端末に対して高い優先度を設定する方式である。一方、PF方式では、平均受信SNRに対する瞬時受信SNRが相対的に高い無線端末に対して高い優先度を設定する方式である。具体的には、PF方式では、スケジューラ114は、優先度 = DRC/Rによって優先度を算出する。ここでDRCは、CQIから算出される瞬時のデータレートであり、Rはデータレートをある時定数を用いる指数関数重み付き平均等によって平均した値である。したがって、平均レート(平均受信SNR)に対する瞬時のデータレート(瞬時受信SNR)の比が優先度として算出される。
 制御部112は、スケジューラ114が設定した優先度に応じて、データ送信に用いられる無線資源を無線端末2または無線端末3に割り当てる。すなわち制御部112は、無線資源を割り当てる資源割り当て部を構成する。制御部112は、初回送信データの一部を再送データとして無線端末2へ送信する場合、無線資源を無線端末2および無線端末3の両方に割り当てる。
 (3)再送サイズ決定処理の一例
 上述したように、無線基地局1の制御部112は、無線端末2からの応答メッセージを正常に受信していないと判定すると、図3(a)に示す初回送信データの一部を、図3(b)に示す再送データとして無線端末2に送信する。図3(b)に示す再送データのサイズSIZE1は、次のようにして決定される。
 制御部112は、無線端末2からの応答メッセージを正常に受信していないと判定すると、図3(a)に示す初回送信データの送信時における無線端末2のCQIをデータサイズ決定部115に通知する。データサイズ決定部115は、通知されたCQIから、無線端末2が受信した初回送信データの誤り率Rを推定し、当該誤り率Rに応じて、再送データのサイズSIZE1を決定する。
 例えば、データサイズ決定部115は、以下の式(1)に示すように、図3(a)に示す初回送信データのサイズSIZE0と、推定した誤り率Rとの乗算結果を、再送データのサイズSIZE1として決定する。
 SIZE1=SIZE0×R              ・・・(1)
 つまり、無線端末2において初回送信データの復号が成功したか否かが不明である場合において、復号失敗の可能性が高い場合には初回送信データの大部分を再送し、復号失敗の可能性が低い場合には初回送信データの少しの部分だけを再送する。なお、応答メッセージを正常に受信していない場合であっても、推定した誤り率Rが100%である場合に限り、再送データのサイズSIZE1は、初回送信データのサイズSIZE0と同一となる。
 データサイズ決定部115は、図3(b)に示すように、初回送信データのサイズSIZE0と、再送データのサイズSIZE1との差分(SIZE0-SIZE1)を、無線端末3に送信する初回送信データまたは再送データのサイズSIZE2として決定する。
 ただし、無線端末2以外の無線端末(すなわち、無線端末3)が複数存在する場合は、当該複数の無線端末3のうち、スケジューラ114によって設定された優先度が最も高い無線端末3に無線資源が割り当てられる。
 すなわち、初回送信データのサイズSIZE0、再送データのサイズSIZE1、無線端末3に送信する所定データのサイズSIZE2には、次の関係が成り立つ。
 SIZE2=SIZE0-SIZE1   ・・・(2)
 このように、再送データのサイズSIZE1と、無線端末3に送信する所定データのサイズSIZE2との和は、初回送信データのサイズSIZE0と等しくなる。つまり、無線端末2への再送データと、無線端末3への所定データとは、そのサイズの和が、初回送信データが送信された無線資源(送信スロット)と同じ大きさのリソースとなる無線資源(送信スロット)において送信される。
 データサイズ決定部115は、式(1)および式(2)によって決定されたサイズSIZE1およびSIZE2をスケジューラ114に通知する。スケジューラ114は、変調方式に応じてサイズSIZE1およびSIZE2を調整する。
 (4)誤り率推定処理の一例
 次に、図4および図5を用いて、データサイズ決定部115によって実行される誤り率Rの推定処理について説明する。
 本実施形態では、データサイズ決定部115は、初回送信データの送信時における無線端末2のCQIと、無線端末2に対して初回送信データを送信した際の変調方式(変調クラス)とに応じて、無線端末2が受信した初回送信データの誤り率Rを推定する。
 データサイズ決定部115は、図4に示すように、CQIと受信SNRと対応付けたテーブルを用いて、初回送信データの送信時における無線端末2の受信SNRを特定する。さらに、データサイズ決定部115は、図5に示すように、初回送信データの送信時における変調方式と、受信SNRと、誤り率Rとを対応付けたテーブルを用いて、誤り率Rを特定する。
 図5に示すように、変調クラスが高くなるほど、すなわち、高速な変調クラスであるほど、誤り率Rが高くなる。また、受信SNRが高いほど、誤り率Rが低くなる。なお、図4に示す誤り率Rの値は、計算機シミュレーションによって予め求められる。
 (5)サイズ調整処理の一例
 スケジューラ114は、無線端末2へのデータ送信に用いられる変調クラスと、無線端末3へのデータ送信に用いられる変調クラスとに応じて、データサイズ決定部115によって決定されたサイズSIZE1およびSIZE2のそれぞれを調整する。
 図6の例では、変調クラス0~8の合計9つの変調クラスが用意されている。変調クラス8は最も高速な変調クラスであり、変調クラス0は最も低速な変調クラスである。具体的には、変調クラス8では24QAMが用いられ、変調クラス0ではπ/2-BPSKが用いられる。このように、各変調クラスにおいては、1シンボル当たりの情報量が異なっている。
 スケジューラ114は、無線端末2へのデータ送信に用いられる変調クラスにおいて規定される1シンボル当たりの情報量が、無線端末3へのデータ送信に用いられる変調クラスにおいて規定される1シンボル当たりの情報量よりも少ない場合、上記サイズSIZE1を小さくするとともに、上記サイズSIZE2を大きくする。
 また、スケジューラ114は、無線端末2へのデータ送信に用いられる変調クラスにおいて規定される1シンボル当たりの情報量が、無線端末3へのデータ送信に用いられる変調クラスにおいて規定される1シンボル当たりの情報量よりも多い場合、上記サイズSIZE1を大きくするとともに、上記サイズSIZE2を小さくする。
 なお、サイズ調整前後において、サイズSIZE1およびサイズSIZE2の合計サイズは変化しないことに留意すべきである。
 例えば、無線端末2へのデータ送信に用いられる変調クラスをαbit/シンボル、無線端末3へのデータ送信に用いられる変調クラスをβbit/シンボルとし、推定された誤り率Rが30%であるとすると、無線端末2へ送信される再送データのサイズは、初回送信パケットサイズの、(30×(α/(α+β))+(100-30)×(β/(α+β)))%とする。
 (6)無線基地局の動作
 次に、無線基地局1の動作について説明する。図7は、無線基地局1の動作を示すフローチャートである。
 ステップS11において、送受信部111および制御部112は、初回送信データを無線端末2に送信する。また、送受信部111は、CQIを無線端末2および3のそれぞれから受信する(ステップS12)。
 無線端末2は、無線基地局1からの初回送信データを受信した後に復号し、CRCチェックをして正しく復号できていればAckを応答メッセージとして無線基地局1へ送信し、正しく復号できなければNackを応答メッセージとして無線基地局1へ送信する。
 ステップS13において、制御部112は、無線端末2からの応答メッセージを正常に受信したか否かを判定する。応答メッセージを正常に受信した場合には処理がステップS14に進み、応答メッセージを正常に受信していない場合には処理がステップS18に進む。
 ステップS14において、制御部112は、受信した応答メッセージがAckであるかNackであるかを判定する。応答メッセージがAckである場合には処理がステップS15に進み、応答メッセージがNackである場合には処理がステップS17に進む。
 ステップS15およびステップS16においては、スケジューラ114および制御部112は、通常通り、次のデータについての割り当て処理および送信処理を行う。
 応答メッセージがNackである場合のステップS17においては、制御部112は、初回送信データの全部を再送データとして無線端末2に送信する。無線端末2は、再送データを受信すると、初回送信データと軟合成してからCRCチェックを実行し、CRCチェックの結果に応じてAckまたはNackを無線基地局1へ送信する。
 一方、応答メッセージを正常に受信していない場合、ステップS18において、データサイズ決定部115は、ステップS12において無線端末2から受信したCQIに応じて、無線端末2が受信した初回送信データの誤り率Rを推定する。
 ステップS19において、データサイズ決定部115は、上記の式(1)および式(2)に従って、無線端末2への再送データのサイズSIZE1と、無線端末3への所定データのサイズSIZE2とを決定する。
 ステップS20において、スケジューラ114は、無線端末2へのデータ送信に用いられる変調クラスと、無線端末3へのデータ送信に用いられる変調クラスとに応じて、データサイズ決定部115によって決定されたサイズSIZE1およびSIZE2のそれぞれを調整する。
 ステップS21において、制御部112は、データ送信に用いられる無線資源を無線端末2または無線端末3に割り当てる。そして、ステップS23において、送受信部111および制御部112は、再送データを無線端末2へ送信するとともに、所定データを無線端末3へ送信する。
 (7)作用および効果
 以上説明したように、制御部112は、無線端末2への初回送信データの送信後において、応答メッセージを正常に受信したか否かを判定し、応答メッセージを正常に受信していないと判定した場合、初回送信データの一部を再送データとして無線端末2に送信する。
 したがって、初回送信データの全体を再送データとし送信する従来の方法と比較して、無線資源の消費量を削減できる。また、応答メッセージの再送を無線端末2に要求する従来の方法と比較して、再送遅延を低減できる。なお、再送データは、無線端末2において送信データと合成(軟合成)されるため、初回送信データの一部を再送データとして送信しても、無線端末2では復号を行うことができる。
 本実施形態では、データサイズ決定部115は、無線端末2が受信した初回送信データの誤り率Rを推定し、推定した誤り率Rに応じて、再送データのサイズを決定する。具体的には、データサイズ決定部115は、誤り率Rが高いほど再送データのサイズを大きくし、誤り率Rが低いほど再送データのサイズを小さくする。
 すなわち、無線端末2において初回送信データの復号が成功したか否かが不明である場合において、復号失敗の可能性が高い場合には初回送信データの大部分を再送し、復号失敗の可能性が低い場合には初回送信データの少しの部分だけを再送する。これにより、初回送信データの一部を再送データとして送信する場合に、無線端末2において復号が成功する確率を維持しつつ、必要最小限の再送データのみを送信することができ、無線資源を節約できる。
 本実施形態では、データサイズ決定部115は、初回送信データのサイズと、決定した再送データのサイズとの差分を、無線端末3へ送信する所定データのサイズとして決定する。そして、制御部112は、初回送信データの一部を再送データとして無線端末2に送信する場合、無線資源を無線端末2および無線端末3の両方に割り当てる。このため、再送データ量の低減分に相当する無線資源を他の無線端末が利用することができ、無線資源を有効活用することができる。
 ここで、制御部112は、無線端末3が複数存在する場合に、スケジューラ114が設定した優先度が最も高い無線端末3と、無線端末2とに無線資源を割り当てる。上記のようにスケジューラ114は、受信SNRが高い無線端末に対して高い優先度を設定しており、受信SNRが高い無線端末へ早期にデータを送信することができ、無線資源を有効に活用するとともにスループットを向上させることができる。
 本実施形態では、スケジューラ114は、変調方式に応じて、データサイズ決定部115が決定したサイズを調整する。このため、高速な変調方式が用いられる場合には、できるだけ多くのデータを送信することによって、無線資源を有効に活用することができ、スループットを向上させることができる。
 (8)その他の実施形態
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 上述した実施形態では、スケジューラ114は、変調クラスに応じて、データサイズ決定部115が決定したサイズを調整していた。しかしながら、スケジューラ114は、変調クラスのみに応じてデータサイズを決定してもよい。
 上述した実施形態では、無線端末2へ送信する初回送信データ(および再送データ)のQoSを考慮していなかった。しかしながら、QoSを考慮する構成であってもよい。
例えば、制御部112は、応答メッセージを正常に受信していない場合であっても、無線端末2へ送信する初回送信データが低遅延を要求されるリアルタイム系データ(例えば、音声データなど)である場合、送信データの全部を再送データとして送信してもよい。
 上述した実施形態では、受信品質として受信SNRが使用されていたが、受信SNRに限らず、RSSI(Received Signal Strength Indicator)や受信BER(Bit Error Rate)などを使用してもよい。
 なお、図1では可搬型の無線端末を図示していたが、固定型の無線端末や、カード型の無線端末などであってもよい。あるいは、無線端末に代えて、データ送信機能を持たない装置を使用してもよい。
 このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
なお、日本国特許出願第2008-141755号(2008年5月29日出願)の全内容が、参照により、本願明細書に組み込まれている。
以上のように、本発明に係る無線通信装置および無線通信方法は、HARQが適用される無線通信システムにおいて、受信装置からの応答メッセージが正常に受信されない場合に、無線資源の消費量と、再送遅延とを低減しつつ、受信装置との通信を継続することができる無線通信装置および無線通信方法を提供できるため、移動体通信などの無線通信において有用である。

Claims (11)

  1.  符号化された送信データを受信装置に送信するデータ送信部と、
     前記受信装置が前記送信データの復号に成功したか否かを示す応答メッセージを前記受信装置から受信する応答受信部と、
     前記応答受信部によって受信された前記応答メッセージが前記送信データの復号失敗を示す場合に、前記データ送信部が送信した前記送信データに対応する再送データを前記受信装置に送信する再送処理部と
    を備え、
     前記再送データは、前記受信装置において、前記送信データと合成される無線通信装置であって、
     前記送信データの送信後において、前記応答受信部が前記応答メッセージを正常に受信したか否かを判定する応答判定部を備え、
     前記再送処理部は、前記応答判定部によって前記応答受信部が前記応答メッセージを正常に受信していないと判定された場合、前記送信データの一部を前記再送データとして前記受信装置に送信する無線通信装置。
  2.  前記無線通信装置が送信する無線信号の受信品質を示す受信品質情報を前記受信装置から受信する情報受信部と、
     前記情報受信部が受信した前記受信品質情報に基づき、前記受信装置が受信した前記送信データの誤り率を推定する誤り率推定部と、
     前記再送処理部が前記送信データの一部を前記再送データとして送信する場合、前記誤り率推定部によって推定された前記誤り率に応じて、前記再送処理部が送信する前記再送データのサイズを決定するサイズ決定部と
    をさらに備える請求項1に記載の無線通信装置。
  3.  前記サイズ決定部は、前記誤り率が高いほど前記再送データのサイズを大きくし、前記誤り率が低いほど前記再送データのサイズを小さくする請求項2に記載の無線通信装置。
  4.  データ送信に用いられる無線資源を前記受信装置または前記受信装置と異なる受信装置に割り当てる資源割り当て部をさらに備え、
     前記再送処理部は、前記無線資源を用いて前記送信データの一部を前記再送データとして送信し、
     前記資源割り当て部は、前記再送処理部が前記送信データの一部を前記再送データとして送信する場合、前記無線資源を前記受信装置および前記異なる受信装置の両方に割り当てる請求項2に記載の無線通信装置。
  5.  前記サイズ決定部は、前記送信データのサイズと、決定した前記再送データのサイズとの差分を、前記異なる受信装置へ送信する所定データのサイズとして決定する請求項4に記載の無線通信装置。
  6.  前記異なる受信装置が複数存在する場合に、前記情報受信部が受信した前記受信品質情報に応じて、前記資源割り当て部が前記無線資源を割り当てる優先度を複数の受信装置のそれぞれに設定する優先度設定部をさらに備え、
     前記資源割り当て部は、前記再送処理部が前記送信データの一部を前記再送データとして送信する場合に、前記複数の受信装置の中で前記優先度が最も高い受信装置と、前記再送データの送信先の前記受信装置とに前記無線資源を割り当てる請求項4に記載の無線通信装置。
  7.  前記受信装置へのデータ送信に用いられる第1変調方式と、前記異なる受信装置へのデータ送信に用いられる第2変調方式とを決定する変調方式決定部と、
     前記変調方式決定部によって決定された前記第1変調方式および前記第2変調方式に応じて、前記サイズ決定部によって決定された前記再送データおよび前記所定データのそれぞれのサイズを調整するサイズ調整部と
    をさらに備える請求項5に記載の無線通信装置。
  8.  前記サイズ調整部は、
     前記第1変調方式において規定される1シンボル当たりの情報量が、前記第2変調方式において規定される1シンボル当たりの情報量よりも少ない場合、前記再送データのサイズを小さくするとともに前記所定データのサイズを大きくし、
     前記第1変調方式において規定される1シンボル当たりの情報量が、前記第2変調方式において規定される1シンボル当たりの情報量よりも多い場合、前記再送データのサイズを大きくするとともに前記所定データのサイズを小さくする請求項7に記載の無線通信装置。
  9.  前記受信装置へのデータ送信に用いられる変調方式を決定する変調方式決定部と、
     前記再送処理部が前記送信データの一部を前記再送データとして送信する場合、前記変調方式決定部によって決定された前記変調方式に応じて、前記再送処理部が送信する前記再送データのサイズを決定するサイズ決定部と
    をさらに備える請求項1に記載の無線通信装置。
  10.  前記再送処理部は、
     前記応答判定部によって前記応答メッセージを正常に受信していないと判定され、かつ、前記送信データが低遅延を要求されるリアルタイム系データである場合、前記送信データの全部を前記再送データとして送信し、
     前記応答判定部によって前記応答メッセージを正常に受信していないと判定され、かつ、前記送信データが前記リアルタイム系データ以外のデータである場合、前記送信データの一部を前記再送データとして送信する請求項1に記載の無線通信装置。
  11.  符号化された送信データを受信装置に送信するステップと、
     前記受信装置が前記送信データの復号に成功したか否かを示す応答メッセージを前記受信装置から受信するステップと、
     前記受信するステップにおいて受信された前記応答メッセージが前記送信データの復号失敗を示す場合に、前記送信データに対応する再送データを前記受信装置に送信するステップと
    を備え、
     前記再送データは、前記受信装置において、前記送信データと合成される無線通信方法であって、
     前記送信データの送信後において、前記受信装置から前記応答メッセージを正常に受信したか否かを判定するステップを備え、
     前記再送データを送信するステップでは、前記判定するステップにおいて前記応答メッセージを正常に受信していないと判定された場合、前記送信データの一部を前記再送データとして送信する無線通信方法。
PCT/JP2009/059856 2008-05-29 2009-05-29 無線通信装置および無線通信方法 WO2009145295A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/995,104 US20110105113A1 (en) 2008-05-29 2009-05-29 Radio communication device and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008141755A JP2009290618A (ja) 2008-05-29 2008-05-29 無線通信装置および無線通信方法
JP2008-141755 2008-05-29

Publications (1)

Publication Number Publication Date
WO2009145295A1 true WO2009145295A1 (ja) 2009-12-03

Family

ID=41377164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059856 WO2009145295A1 (ja) 2008-05-29 2009-05-29 無線通信装置および無線通信方法

Country Status (4)

Country Link
US (1) US20110105113A1 (ja)
JP (1) JP2009290618A (ja)
KR (1) KR20100135977A (ja)
WO (1) WO2009145295A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130122201A (ko) * 2012-04-30 2013-11-07 한국전자통신연구원 멀티 포인트 전송 환경에서의 무선 데이터 송수신 방법
CN106922030B (zh) * 2015-12-24 2020-03-03 中兴通讯股份有限公司 调度的处理方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051003A (ja) * 2000-05-22 2002-02-15 Matsushita Electric Ind Co Ltd データ伝送システム及びデータ伝送方法
JP2004064691A (ja) * 2002-07-31 2004-02-26 Matsushita Electric Ind Co Ltd 通信装置及びデータの再送制御方法
JP2005503692A (ja) * 2001-04-30 2005-02-03 モトローラ・インコーポレイテッド 部分チェイス合成を使用するデータの送受信のための装置及び方法
JP2005039601A (ja) * 2003-07-16 2005-02-10 Mitsubishi Electric Corp データ伝送方法、データ送信局およびデータ受信局
JP2005223620A (ja) * 2004-02-05 2005-08-18 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信システム
WO2008056774A1 (fr) * 2006-11-10 2008-05-15 Panasonic Corporation Dispositif de station mobile de communication radio et procédé de sélection de mcs

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9821089D0 (en) * 1998-09-30 1998-11-18 Koninkl Philips Electronics Nv Method for the communication of information and apparatus employing the method
US7110351B2 (en) * 2000-12-19 2006-09-19 Nortel Networks Limited Enhanced ARQ with OFDM modulation symbols
KR100827147B1 (ko) * 2001-10-19 2008-05-02 삼성전자주식회사 부호분할다중접속 이동통신시스템에서 고속 데이터의효율적 재전송 및 복호화를 위한 송,수신장치 및 방법
JP2003264873A (ja) * 2002-03-08 2003-09-19 Matsushita Electric Ind Co Ltd 無線通信装置及び再送方法
JP3679089B2 (ja) * 2002-11-20 2005-08-03 松下電器産業株式会社 基地局装置および再送パケットの送信電力制御方法
JP4186607B2 (ja) * 2002-12-09 2008-11-26 富士通株式会社 送信装置、受信装置
US7293217B2 (en) * 2002-12-16 2007-11-06 Interdigital Technology Corporation Detection, avoidance and/or correction of problematic puncturing patterns in parity bit streams used when implementing turbo codes
US7346018B2 (en) * 2003-01-16 2008-03-18 Qualcomm, Incorporated Margin control in a data communication system
US7813322B2 (en) * 2003-02-19 2010-10-12 Qualcomm Incorporated Efficient automatic repeat request methods and apparatus
WO2008093619A1 (ja) * 2007-01-29 2008-08-07 Panasonic Corporation 無線通信システム、無線通信装置及び再送制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051003A (ja) * 2000-05-22 2002-02-15 Matsushita Electric Ind Co Ltd データ伝送システム及びデータ伝送方法
JP2005503692A (ja) * 2001-04-30 2005-02-03 モトローラ・インコーポレイテッド 部分チェイス合成を使用するデータの送受信のための装置及び方法
JP2004064691A (ja) * 2002-07-31 2004-02-26 Matsushita Electric Ind Co Ltd 通信装置及びデータの再送制御方法
JP2005039601A (ja) * 2003-07-16 2005-02-10 Mitsubishi Electric Corp データ伝送方法、データ送信局およびデータ受信局
JP2005223620A (ja) * 2004-02-05 2005-08-18 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信システム
WO2008056774A1 (fr) * 2006-11-10 2008-05-15 Panasonic Corporation Dispositif de station mobile de communication radio et procédé de sélection de mcs

Also Published As

Publication number Publication date
JP2009290618A (ja) 2009-12-10
KR20100135977A (ko) 2010-12-27
US20110105113A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
US9510298B2 (en) Method, device, and system for transmitting data based on HARQ
US8312337B2 (en) System and method for dynamic hybrid automatic repeat request (HARQ) enable/disable
RU2492577C2 (ru) Исправление ошибок для постоянного распределения ресурсов
JP5293423B2 (ja) 端末装置および基地局装置
US20070097887A1 (en) Communication method and system using time division duplex scheme and frequency division duplex scheme
US20060133402A1 (en) Data transmission method
US20100182951A1 (en) Apparatus and method for rate control in broadband wireless communication system
JP2005027306A (ja) 無線パケット・データ・システムでスケジューラ性能を改善する方法および装置
US8780733B2 (en) Radio communication system for supporting hybrid automatic repeat request (HARQ) and data transmission method
US20120275368A1 (en) Method and apparatus for sending control signaling
JP4949323B2 (ja) 無線通信システム、無線通信局装置および無線通信方法
US8208433B2 (en) Method and apparatus for allocating resources in wireless communication system
KR20100076843A (ko) 무선 통신 시스템에서 제어 장치 및 방법
EP2525520A1 (en) Method and a radio communication node for data transmission when HARQ feedback and measurement gap collide
KR20110048516A (ko) 전력 제어 기술
US7978625B2 (en) Apparatus and method for retransmission in wireless communication system
WO2009145295A1 (ja) 無線通信装置および無線通信方法
KR101433033B1 (ko) 이동통신 시스템에서 변조 및 코딩 방식 선택 장치 및 방법
JP5047394B2 (ja) 無線通信システム、基地局装置および無線通信方法
US9215042B2 (en) Apparatus and method for transmitting and receiving packet data in a wireless communication system using hybrid automatic repeat request
Shariatmadari et al. 5G control channel design for ultra-reliable low-latency communications
KR100979511B1 (ko) Mimo와 harq를 이용한 데이터 패킷 전송방법 및 그방법을 지원하는 시스템
CN112042137B (zh) 用于处置无线电信道上的传输的方法和传送节点
KR20050005992A (ko) 이동통신 시스템에서 재전송 전력을 가변하여 전송하는복합 재전송 장치 및 방법
KR100811355B1 (ko) 무선통신시스템에서의 데이터 전송 요청 방법.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107027184

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12995104

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09754803

Country of ref document: EP

Kind code of ref document: A1