WO2009145252A1 - 受信装置および適応変調方法 - Google Patents

受信装置および適応変調方法 Download PDF

Info

Publication number
WO2009145252A1
WO2009145252A1 PCT/JP2009/059761 JP2009059761W WO2009145252A1 WO 2009145252 A1 WO2009145252 A1 WO 2009145252A1 JP 2009059761 W JP2009059761 W JP 2009059761W WO 2009145252 A1 WO2009145252 A1 WO 2009145252A1
Authority
WO
WIPO (PCT)
Prior art keywords
received power
signal
modulation scheme
communication signal
signal transmitted
Prior art date
Application number
PCT/JP2009/059761
Other languages
English (en)
French (fr)
Inventor
徹 佐原
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN2009801192453A priority Critical patent/CN102047625A/zh
Priority to US12/993,808 priority patent/US8599942B2/en
Priority to KR1020107029273A priority patent/KR101148974B1/ko
Publication of WO2009145252A1 publication Critical patent/WO2009145252A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a receiving apparatus and an adaptive modulation method, and more particularly, to a radio communication technique using an orthogonal frequency division multiple access scheme.
  • next generation PHS Next Generation Generation Personal Handy-phone System
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SINR Signal Quality of a received communication signal
  • the base station Based on Signal toInterference and Noise Ratio (signal-to-interference and noise ratio), the base station sends a modulation method request (MR: MCR Request) including the determined modulation method (MCS: Modulation and Coding Scheme) (See Non-Patent Document 1).
  • MR MCR Request
  • MCS Modulation and Coding Scheme
  • a modulation method of a communication signal transmitted from a transmission device to a reception device is determined based on signal quality after reception power is controlled by AGC (Automatic Gain Control).
  • AGC Automatic Gain Control
  • next-generation PHS in a receiving apparatus of a wireless communication system that adopts an OFDMA method in addition to an adaptive modulation method, AGC cannot be performed for each subchannel.
  • the reception power of the communication signal is controlled in accordance with the maximum reception power of the signal received at.
  • the present invention has been made in view of the above-described conventional problems, and in a wireless communication system employing an adaptive modulation scheme and an OFDMA scheme, a communication signal caused by a signal arriving intermittently from a device different from a transmission device.
  • An object of the present invention is to provide a receiving apparatus and an adaptive modulation method capable of reducing demodulation errors.
  • a receiving apparatus uses the received power of a communication signal transmitted from a transmitting apparatus via at least one of subchannels according to an orthogonal frequency division multiple access scheme together with the communication signal.
  • the transmission device Based on the reception power control means for controlling the maximum reception power of the signal received on any of the subchannels, and the signal quality of the communication signal whose reception power is controlled by the reception power control means, the transmission device A modulation scheme determining means for determining a modulation scheme for a new communication signal transmitted from the transmission apparatus, and transmitting the new communication signal to the transmitter using the modulation scheme determined by the modulation scheme determining means.
  • the receiving device that requests, the maximum reception power of the signal transmitted from the transmission device, and the maximum reception of the signal arriving from a device different from the transmission device
  • receiving power difference detecting means for detecting a received power difference between the received power difference and the modulation scheme determining means based on the received power difference detected by the received power difference detecting means.
  • the modulation method is determined.
  • the receiving apparatus includes not only the signal quality of a communication signal whose reception power is controlled, but also the maximum reception power of a signal transmitted from a transmission apparatus and the maximum reception power of a signal arriving from an apparatus different from the transmission apparatus. Based on the received power difference, a modulation method for a new communication signal transmitted from the transmission device is determined. Therefore, according to the present invention, it is possible to reduce a demodulation error of a communication signal caused by a signal that intermittently arrives from a device different from the transmission device.
  • it further includes period detection means for detecting a period in which the maximum received power of a signal arriving from a device different from the transmitting device exceeds the maximum received power of a signal transmitted from the transmitting device.
  • the modulation scheme determining means determines the modulation scheme of the new communication signal based further on the period detected by the period detecting means.
  • the modulation scheme determining unit is configured to perform the new communication based on the received power difference detected by the received power difference detecting unit at a timing corresponding to the cycle detected by the cycle detecting unit. Determine the modulation method of the signal.
  • the modulation method of the communication signal is changed at a timing corresponding to the arrival period of the strong input signal that periodically arrives from a device different from the transmission device, the strong signal is suppressed while suppressing a decrease in throughput. It is possible to reduce the demodulation error of the communication signal caused by the input signal.
  • the period detection unit may be configured such that the reception power of the control signal transmitted from the proximity transmission apparatus close to the transmission apparatus exceeds the reception power of the control signal transmitted from the transmission apparatus.
  • the received power difference detecting means detects a received power difference between the received power of the control signal transmitted from the transmitting apparatus and the received power of the control signal transmitted from the proximity transmitting apparatus.
  • it further includes frequency detection means for detecting a frequency at which a maximum received power of a signal arriving from a device different from the transmitting device exceeds a maximum received power of a signal transmitted from the transmitting device.
  • the modulation scheme determining means determines the modulation scheme of the new communication signal based further on the frequency detected by the frequency detecting means.
  • the modulation scheme determining unit determines the modulation scheme of the new communication signal based on whether or not the frequency detected by the frequency detecting unit is a predetermined value or more.
  • the maximum received power of a signal arriving from a device different from the transmitting device exceeds the maximum received power of a signal transmitted from the transmitting device at the frequency detected by the frequency detecting unit.
  • the modulation scheme determining means determines the modulation scheme of the new communication signal based on the comparison result by the estimated throughput comparison means.
  • the modulation scheme it is possible to determine whether or not the modulation scheme needs to be changed so as to increase the throughput based on the arrival frequency of a strong input signal coming from a device different from the transmission device.
  • the adaptive modulation method provides the received power of a communication signal transmitted from a transmission device via at least one of the subchannels based on the orthogonal frequency division multiple access scheme, along with the communication signal, in any one of the subchannels.
  • Receiving in accordance with the maximum received power of the signal received in step, the maximum received power of the signal transmitted from the transmitting device, and the maximum received power of a signal arriving from a device different from the transmitting device Based on the step of detecting a power difference, the signal quality of the communication signal whose reception power is controlled, and the detected reception power difference, a modulation method of a new communication signal transmitted from the transmission device is determined. Determining, and causing the transmitting apparatus to transmit the new communication signal using the determined modulation scheme.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to an embodiment of the present invention. It is a functional block diagram of the mobile station which concerns on embodiment of this invention. It is a figure which shows an example of required SINR (required SINR table) according to a modulation system. It is a figure explaining the fluctuation
  • SINR quired SINR table
  • FIG. 1 is an overall configuration diagram of a mobile communication system 10 according to an embodiment of the present invention.
  • the mobile communication system 10 includes a plurality of mobile stations 12 (only mobile stations 12-1 to 12-3 are shown here), a base station 14 (only one is shown here), It is comprised including.
  • the base station 14 employs an OFDMA system and a TDMA / TDD (Time Division Multiple Access / Time Division Duplex: Time Division Multiple Access / Time Division Bidirectional Communication) scheme, and either a TDMA time slot or an OFDMA subchannel. Communication with each mobile station 12 is performed using at least one of the radio channels formed by a combination of any of the above.
  • TDMA / TDD Time Division Multiple Access / Time Division Duplex: Time Division Multiple Access / Time Division Bidirectional Communication
  • the mobile communication system 10 employs an adaptive modulation scheme that switches a radio signal modulation scheme according to the transmission path environment.
  • the mobile station 12 communicating with the base station 14 not only receives the received signal quality of the communication signal transmitted from the base station 14 (for example, SINR after the reception power is controlled by the AGC), but also the base station 14 and the maximum received power of a signal arriving from a device different from the base station 14 (here, other bases close to the base station 14).
  • a modulation method for a new communication signal transmitted from the base station 14 is determined. For this reason, the mobile station 12 can reduce a demodulation error of a communication signal caused by a signal that intermittently arrives from a device different from the base station 14 in communication.
  • FIG. 2 is a functional block diagram of the mobile station 12.
  • the mobile station 12 includes an antenna 20, a radio communication unit 22, an AGC unit 24, a demodulation unit 26, a decoding unit 28, a received power difference detection unit 30, a strong input signal characteristic detection unit 32, and a storage unit 34.
  • the decoding unit 28, the received power difference detection unit 30, the strong input signal characteristic detection unit 32, the SINR calculation unit 36, the modulation scheme determination unit 38, the physical frame formation unit 40, and the modulation unit 42 are, for example, a CPU (Central Processing Unit) or DSP (Digital Signal Processor).
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the antenna 20 receives a radio signal including a signal (control signal, communication signal, etc.) transmitted from the base station 14 and outputs the received radio signal to the radio communication unit 22. Further, the antenna 20 transmits a radio signal supplied from the radio communication unit 22 to the base station 14. Reception and transmission of radio signals are switched in a time division manner in accordance with instructions from the radio communication unit 22.
  • a radio signal including a signal (control signal, communication signal, etc.) transmitted from the base station 14 and outputs the received radio signal to the radio communication unit 22. Further, the antenna 20 transmits a radio signal supplied from the radio communication unit 22 to the base station 14. Reception and transmission of radio signals are switched in a time division manner in accordance with instructions from the radio communication unit 22.
  • the wireless communication unit 22 includes a low noise amplifier, a power amplifier, a local oscillator, a mixer, and a filter.
  • the radio communication unit 22 amplifies a radio signal input from the antenna 20 with a low noise amplifier, down-converts the radio signal to an intermediate frequency signal, and outputs the signal to the AGC unit 24.
  • the radio communication unit 22 up-converts the modulation signal input from the modulation unit 42 into a radio signal, amplifies the signal to a transmission output level with a power amplifier, and then supplies the radio signal to the antenna 20.
  • the AGC unit 24 is a variable gain amplifier that controls the received power of the signal according to the maximum received power of the signal input from the wireless communication unit 22. Specifically, the AGC unit 24 amplifies or attenuates the received power of the signal over the entire reception band so that the maximum received power of the signal input from the wireless communication unit 22 becomes the upper limit of the dynamic range.
  • the reception power of a communication signal transmitted from the base station 14 via at least one of these sub-channels is within the reception band. It is controlled according to the maximum received power of the signal received on any of the subchannels.
  • the demodulator 26 includes an A / D converter, a serial-parallel converter, an FFT (Fast Fourier Transform) arithmetic unit, and a parallel-serial converter.
  • the demodulator 26 performs GI (Guard Interval) removal, A / D conversion, serial-parallel conversion, discrete Fourier transform, parallel-serial conversion, etc., on the received power-controlled signal input from the AGC unit 24. , Obtain a sequence of complex symbols.
  • the complex symbol sequence acquired in this way is output to the decoding unit 28. Further, the complex symbols of each subcarrier obtained by the discrete Fourier transform are divided for each subchannel, and the divided complex symbols of each subchannel are supplied to the received power difference detection unit 30 and the SINR calculation unit 36.
  • the decoding unit 28 decodes the reception data corresponding to the symbol modulation method from the complex symbol sequence input from the demodulation unit 26, and outputs the decoded reception data to an upper layer (not shown).
  • the received power difference detector 30 receives the control signal received power from the base station 14 based on the complex symbols of each subchannel input from the demodulator 26 (the maximum received power of the signal transmitted from the base station 14). ) And received power of a control signal periodically transmitted at a predetermined interval from another base station (hereinafter referred to as “proximity base station”) close to the base station 14 (a signal arriving from a device different from the base station 14) The maximum received power) is detected.
  • the reception power difference is positive when the reception power of the control signal transmitted from the base station 14 exceeds the reception power of the control signal transmitted from the neighboring base station.
  • the detected received power difference is stored in the storage unit 34.
  • the strong input signal characteristic detector 32 Based on the received power difference detected by the received power difference detector 30, the strong input signal characteristic detector 32 receives from the base station 14 the received power of the control signal periodically transmitted at a predetermined interval from the adjacent base station. A cycle that exceeds the received power of the transmitted control signal, that is, a cycle in which the received power difference detected by the received power difference detection unit 30 is negative is detected. The detected cycle is stored in the storage unit 34.
  • the storage unit 34 is composed of, for example, a semiconductor memory element, and the received power difference detected by the received power difference detection unit 30, the period detected by the strong input signal characteristic detection unit 32, and the required SINR for each modulation method shown in FIG. (Required SINR table) and the like are stored. Note that the received power difference and period stored in the storage unit 34 are updated to information sequentially detected by the received power difference detection unit 30 and the strong input signal characteristic detection unit 32, respectively.
  • the SINR calculation unit 36 is based on the complex symbol of each subchannel input from the demodulation unit 26, and the SINR (one of signal qualities) of the communication signal transmitted from the base station 14 via at least one of the subchannels. Is calculated.
  • the modulation scheme determination unit 38 is transmitted from the base station 14 based on the SINR of the communication signal calculated by the SINR calculation unit 36, and the received power difference, period, and required SINR table stored in the storage unit 34. A new communication signal modulation method is determined.
  • FIG. 4 is a diagram showing a dynamic range variation caused by a control signal (denoted as another cell CCH (Common Channel)) periodically transmitted from a neighboring base station at a predetermined interval.
  • a control signal denoted as another cell CCH (Common Channel)
  • FIG. 7B shows the dynamic range when the control signal of the adjacent base station arrives.
  • the base station 14 Before a control signal having power higher than the received power of a control signal (denoted as own cell CCH) transmitted from the base station 14 arrives from the neighboring base station, the base station 14 The reception power control is performed by the AGC unit 24 so that the reception power of the control signal (own cell CCH) becomes the upper limit of the dynamic range.
  • the SINR of a communication signal (expressed as EXCH (Extra Channel)) transmitted from the base station 14 is higher than the required SINR of 64QAM (assuming that it is lower than the required SINR of 256QAM)
  • the modulation scheme determining unit 38 determines 64QAM as a modulation method (MCS) of a new communication signal requested to the base station 14.
  • MCS modulation method
  • the neighboring base station Reception power control is performed by the AGC unit 24 so that the reception power of the incoming control signal (other cell CCH) becomes the upper limit of the dynamic range.
  • the lower limit of the dynamic range is increased by the received power difference ⁇ between both control signals (received power of the other cell CCH ⁇ received power of the own cell CCH) as compared to the lower limit shown in FIG.
  • the SINR of the communication signal (EXCH) transmitted from the base station 14 is less than the required SINR of 64QAM, an error occurs when demodulating the communication signal (EXCH) modulated by 64QAM. End up.
  • the received power difference is added to the lower limit of the dynamic range.
  • a new communication signal modulation method (MCS) required for the base station 14 is determined to be 16QAM.
  • the modulation scheme determining unit 38 transmits the received power of the control signal periodically transmitted from the neighboring base station from the base station 14 when the received power difference stored in the storage unit 34 is periodically negative.
  • the best possible modulation scheme applicable with this predicted SINR is selected from the required SINR table. For example, in the case shown in FIG.
  • the modulation scheme determination unit 38 requests the base station 14 to A new communication signal modulation scheme (MCS) is determined to be 16QAM. Thereby, the demodulation error of the communication signal resulting from the control signal periodically transmitted from the neighboring base station can be reduced.
  • MCS communication signal modulation scheme
  • the modulation scheme determining unit 38 determines the timing at which the received power of the control signal transmitted from the neighboring base station exceeds the received power of the control signal transmitted from the base station 14 based on the period stored in the storage unit 34.
  • the modulation method may be determined by the method described above with reference to FIG. 5 according to the estimated timing. That is, the modulation scheme determination unit 38 estimates the timing at which the control signal of the neighboring base station arrives, and is applied together with the timing estimated by the modulation scheme based on the predicted SINR that anticipates an increase in the lower limit of the dynamic range.
  • the modulation method may be determined.
  • the demodulation error of the communication signal due to the control signal to be performed can be reduced.
  • the physical frame forming unit 40 stores transmission data input from an upper layer (not shown) in a physical frame corresponding to a communication signal (for example, EXCH), and outputs the physical frame to the modulation unit 42.
  • the physical frame forming unit 40 transmits a modulation scheme request (MR) including the modulation scheme (MCS) determined by the modulation scheme determination unit 38 to a physical frame corresponding to a predetermined uplink communication signal (for example, ANCH (Anchor Channel)).
  • MR modulation scheme request
  • MCS modulation scheme
  • ANCH Anchor Channel
  • the modulation unit 42 includes a serial-parallel converter, an IFFT (Inverse Fourier Transform) operation unit, a parallel-serial converter, and a D / A converter.
  • the modulation unit 42 performs symbol mapping (assignment of amplitude and phase) on the physical frame input from the physical frame formation unit 40 according to the modulation scheme determined by the modulation scheme determination unit 38, and converts the complex symbol sequence into obtain. Then, the modulation unit 42 performs serial-parallel conversion, inverse discrete Fourier transform, parallel-serial conversion, D / A conversion, and the like on each carrier component of the obtained complex symbol sequence to obtain a baseband OFDM signal.
  • the baseband OFDM signal acquired in this way is output to the wireless communication unit 22 after the GI is added.
  • the mobile station 12 when the base station 14 transmits a control signal and a communication signal to the mobile station 12 (S100), the mobile station 12 receives a reception signal of a radio signal received together with the control signal and the communication signal. Is controlled so that the maximum received power of the signal (the received power of the control signal coming from the neighboring base station) becomes the upper limit of the dynamic range (S102).
  • the mobile station 12 detects the received power difference between the received power of the control signal of the base station 14 and the received power of the control signal of the neighboring base station based on the received signal after the received power control (S104). Also, the mobile station 12 calculates the SINR of the communication signal based on the received signal after the received power control, and adds the received power difference (negative value) detected in S104 to the SINR as the predicted SINR. Calculate (S106). Then, the mobile station 12 selects the best modulation scheme applicable with this predicted SINR from the required SINR table and determines it as the modulation scheme (MCS) to be notified to the base station 14 (S108). The modulation scheme thus determined is stored in the modulation scheme request (MR) and transmitted to the base station 14 (S110).
  • MCS modulation scheme request
  • the base station 14 that has received the modulation scheme request from the mobile station 12 transmits a physical frame storing transmission data addressed to the mobile station 12 to a modulation scheme specified in the modulation scheme request or a lower required SINR than the modulation scheme. Modulation is performed by the modulation method, and a communication signal including the modulated physical frame and a modulation method identifier (MI: MCR Indicator) indicating the modulation method used for modulation of the physical frame is transmitted to the mobile station 12 (S112).
  • MI MCR Indicator
  • the mobile station 12 receives not only the SINR of the communication signal transmitted from the base station 14 but also the received power of the control signal transmitted from the base station 14 and the adjacent base station of the base station 14. Based on the received power difference from the received power of the control signal transmitted periodically, a modulation method for a new communication signal transmitted from the base station 14 is determined. For this reason, the demodulation error of the communication signal resulting from the control signal periodically transmitted from the adjacent base station can be reduced.
  • the maximum received power of the signal transmitted from the base station 14 is the received power of the control signal, but the maximum received power of the signal transmitted from the base station 14 is other than the control signal.
  • the received power of the signal (for example, communication signal) may be used.
  • control signal transmitted periodically from an adjacent base station was illustrated as a strong input signal which has strong power exceeding the maximum received power of the signal transmitted from the base station 14, strong input
  • the signal may be another signal that arrives periodically or aperiodically from a device other than the neighboring base station.
  • the strong input signal characteristic detection unit 32 detects the frequency at which the maximum received power of a signal arriving from a device different from the base station 14 exceeds the maximum received power of a signal transmitted from the base station 14, and determines the modulation method.
  • the unit 38 may determine a new communication signal modulation method based further on the frequency detected by the strong input signal characteristic detection unit 32.
  • the modulation scheme determination unit 38 may determine a modulation scheme for a new communication signal based on whether or not the frequency detected by the strong input signal characteristic detection unit 32 is equal to or higher than a predetermined value. By so doing, it is possible to suitably reduce communication signal demodulation errors caused by strong input signals coming from a device different from the base station 14 at a certain frequency.
  • the modulation scheme determining unit 38 is based on the received power difference detected by the received power difference detecting unit 30 under the condition that the strong input signal continuously arrives at the frequency detected by the strong input signal characteristic detecting unit 32.
  • the estimated throughput when the modulation scheme determined without being applied is compared with the estimated throughput when the modulation scheme determined based on the received power difference is applied, and based on the comparison result, It may be determined whether the modulation scheme needs to be changed so that the throughput is increased.
  • the present invention can be widely applied not only to mobile stations but also to receivers for wireless communication systems that employ adaptive modulation and OFDMA.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 送信装置とは異なる装置から間欠的に到来する信号に起因する通信信号の復調エラーを低減する。移動局12は、OFDMAによるサブチャネルの少なくとも1つを介して基地局から送信される通信信号の受信電力を、その通信信号とともにサブチャネルのいずれかで受信される信号の最大受信電力に応じて制御するAGC部24と、基地局から送信される信号の最大受信電力と、基地局とは異なる装置から到来する信号の最大受信電力と、の受信電力差を検出する受信電力差検出部30と、AGC部24により受信電力が制御された通信信号の信号品質と、受信電力差検出部30により検出された受信電力差と、に基づいて、基地局から送信される新たな通信信号の変調方式を決定する変調方式決定部38と、を含み、決定された変調方式を用いて新たな通信信号を送信するよう基地局に要求する。

Description

受信装置および適応変調方法
 本発明は、受信装置および適応変調方法に関し、特に、直交周波数分割多元接続方式を用いた無線通信技術に関する。
 近年の無線通信システムでは、刻々と変動する伝送路環境に応じて無線信号の変調方式を切り替える適応変調(Adaptive Modulation)方式が採用されている。
 たとえば、OFDMA(Orthogonal Frequency Division Multiple Access:直交周波数分割多元接続)方式を採用する次世代PHS(Next Generation Personal Handy-phone System)では、移動局が、受信された通信信号の信号品質を示すSINR(Signal to Interference and Noise Ratio:信号対干渉および雑音比)に基づいて変調方式を決定し、決定された変調方式(MCS:Moduration and Coding Scheme)を含む変調方式要求(MR:MCR Request)を基地局に送信するように規定されている(非特許文献1参照)。
 かかる無線通信システムでは、一般に、AGC(Automatic Gain Control:自動利得制御)によって受信電力が制御された後の信号品質に基づいて、送信装置から受信装置に送信される通信信号の変調方式が決定される。
 上記次世代PHSのように適応変調方式に加えてOFDMA方式を採用する無線通信システムの受信装置では、サブチャネルごとにAGCを行うことができないため、通信信号とともに受信帯域内のいずれかのサブチャネルで受信される信号の最大受信電力に応じて、通信信号の受信電力が制御される。
 このため、送信装置から送信される信号の最大受信電力(たとえば制御信号の受信電力)よりも強い電力を有する強入力信号が間欠的に受信装置に到来すると、その強入力信号の受信電力に引っ張られてダイナミックレンジ(受信回路に入力可能な受信電力の範囲)の下限(雑音電力)が一時的に上昇し、ダイナミックレンジの下限が上昇する前の変調方式が適用された通信信号を復調する際にエラーが発生する場合があった。
 本発明は、上記従来の課題に鑑みてなされたものであり、適応変調方式およびOFDMA方式を採用する無線通信システムにおいて、送信装置とは異なる装置から間欠的に到来する信号に起因する通信信号の復調エラーを低減することができる受信装置および適応変調方法を提供することを目的とする。
 上記課題を解決するために、本発明に係る受信装置は、直交周波数分割多元接続方式によるサブチャネルの少なくとも1つを介して送信装置から送信される通信信号の受信電力を、該通信信号とともに前記サブチャネルのいずれかで受信される信号の最大受信電力に応じて制御する受信電力制御手段と、前記受信電力制御手段により受信電力が制御された前記通信信号の信号品質に基づいて、前記送信装置から送信される新たな通信信号の変調方式を決定する変調方式決定手段と、を含み、前記変調方式決定手段により決定された変調方式を用いて前記新たな通信信号を送信するよう前記送信装置に要求する受信装置であって、前記送信装置から送信される信号の最大受信電力と、前記送信装置とは異なる装置から到来する信号の最大受信電力と、の受信電力差を検出する受信電力差検出手段をさらに含み、前記変調方式決定手段は、前記受信電力差検出手段により検出された受信電力差にさらに基づいて、前記新たな通信信号の変調方式を決定することを特徴とする。
 本発明に係る受信装置は、受信電力が制御された通信信号の信号品質だけでなく、送信装置から送信される信号の最大受信電力と送信装置とは異なる装置から到来する信号の最大受信電力との受信電力差にさらに基づいて、送信装置から送信される新たな通信信号の変調方式を決定する。このため、本発明によれば、送信装置とは異なる装置から間欠的に到来する信号に起因する通信信号の復調エラーを低減することができる。
 また、本発明の一態様では、前記送信装置とは異なる装置から到来する信号の最大受信電力が、前記送信装置から送信される信号の最大受信電力を超える周期を検出する周期検出手段をさらに含み、前記変調方式決定手段は、前記周期検出手段により検出された周期にさらに基づいて、前記新たな通信信号の変調方式を決定する。
 この態様によれば、送信装置とは異なる装置から周期的に到来する強入力信号に起因する通信信号の復調エラーを低減することができる。
 また、本発明の一態様では、前記変調方式決定手段は、前記周期検出手段により検出された周期に対応するタイミングで、前記受信電力差検出手段により検出された受信電力差に基づく前記新たな通信信号の変調方式を決定する。
 この態様によれば、送信装置とは異なる装置から周期的に到来する強入力信号の到来周期に対応するタイミングで通信信号の変調方式が変更されるので、スループットの低下を抑制しつつ、かかる強入力信号に起因する通信信号の復調エラーを低減することができる。
 また、本発明の一態様では、前記周期検出手段は、前記送信装置に近接する近接送信装置から送信される制御信号の受信電力が、前記送信装置から送信される制御信号の受信電力を超える周期を検出し、前記受信電力差検出手段は、前記送信装置から送信される制御信号の受信電力と、前記近接送信装置から送信される制御信号の受信電力と、の受信電力差を検出する。
 この態様によれば、近接送信装置から周期的に送信される制御信号に起因する通信信号の復調エラーを好適に低減することができる。
 また、本発明の一態様では、前記送信装置とは異なる装置から到来する信号の最大受信電力が、前記送信装置から送信される信号の最大受信電力を超える頻度を検出する頻度検出手段をさらに含み、前記変調方式決定手段は、前記頻度検出手段により検出された頻度にさらに基づいて、前記新たな通信信号の変調方式を決定する。
 この態様によれば、送信装置とは異なる装置から間欠的に到来する強入力信号に起因する通信信号の復調エラーを低減することができる。
 また、本発明の一態様では、前記変調方式決定手段は、前記頻度検出手段により検出された頻度が所定値以上であるか否かに基づいて、前記新たな通信信号の変調方式を決定する。
 この態様によれば、送信装置とは異なる装置から一定以上の頻度で到来する強入力信号に起因する通信信号の復調エラーを好適に低減することができる。
 また、本発明の一態様では、前記頻度検出手段により検出された頻度で、前記送信装置とは異なる装置から到来する信号の最大受信電力が前記送信装置から送信される信号の最大受信電力を超えるという条件のもと、前記受信電力差に基づくことなく決定される変調方式が適用された場合の推定スループットと、前記受信電力差に基づいて決定される変調方式が適用された場合の推定スループットと、を比較する推定スループット比較手段をさらに含み、前記変調方式決定手段は、前記推定スループット比較手段による比較結果に基づいて、前記新たな通信信号の変調方式を決定する。
 この態様によれば、送信装置とは異なる装置から到来する強入力信号の到来頻度に基づいて、スループットが高くなるよう変調方式の変更要否を判定することができる。
 また、本発明に係る適応変調方法は、直交周波数分割多元接続方式によるサブチャネルの少なくとも1つを介して送信装置から送信される通信信号の受信電力を、該通信信号とともに前記サブチャネルのいずれかで受信される信号の最大受信電力に応じて制御するステップと、前記送信装置から送信される信号の最大受信電力と、前記送信装置とは異なる装置から到来する信号の最大受信電力と、の受信電力差を検出するステップと、受信電力が制御された前記通信信号の信号品質と、前記検出された受信電力差と、に基づいて、前記送信装置から送信される新たな通信信号の変調方式を決定するステップと、前記送信装置に前記決定された変調方式を用いて前記新たな通信信号を送信させるステップと、を含むことを特徴とする。
本発明の実施形態に係る移動通信システムの全体構成図である。 本発明の実施形態に係る移動局の機能ブロック図である。 変調方式別の所要SINR(所要SINRテーブル)の一例を示す図である。 近接基地局から送信される制御信号に起因するダイナミックレンジの変動を説明する図である。 ダイナミックレンジの変動を見込んだ変調方式の決定方法を説明する図である。 本発明の実施形態に係る適応変調シーケンスの一例を示す図である。
 以下、本発明の一実施形態を図面に基づいて詳細に説明する。
 図1は、本発明の一実施形態に係る移動通信システム10の全体構成図である。同図に示すように、移動通信システム10は、複数の移動局12(ここでは移動局12-1~12-3のみを示す)と、基地局14(ここでは1つのみを示す)と、を含んで構成されている。
 基地局14は、OFDMA方式およびTDMA/TDD(Time Division Multiple Access/Time Division Duplex:時分割多元接続/時分割双方向通信)方式を採用しており、TDMAによるタイムスロットのいずれかとOFDMAによるサブチャネルのいずれかとの組み合わせからなる無線チャネルの少なくとも1つを使用して各移動局12と通信を行う。
 移動通信システム10は、伝送路環境に応じて無線信号の変調方式を切り替える適応変調方式を採用する。本適応変調方式では、基地局14と通信する移動局12が、基地局14から送信される通信信号の受信信号品質(たとえばAGCにより受信電力が制御された後のSINR)だけでなく、基地局14から送信される信号の最大受信電力(ここでは制御信号の受信電力とする)と、基地局14とは異なる装置から到来する信号の最大受信電力(ここでは基地局14に近接する他の基地局から周期的に送信される制御信号の受信電力とする)と、の受信電力差にさらに基づいて、基地局14から送信される新たな通信信号の変調方式を決定する。このため、移動局12は、通信中の基地局14とは異なる装置から間欠的に到来する信号に起因する通信信号の復調エラーを低減することができる。
 以下では、上記処理を実現するために移動局12が備える構成について説明する。
 図2は、移動局12の機能ブロック図である。同図に示すように、移動局12は、アンテナ20、無線通信部22、AGC部24、復調部26、復号部28、受信電力差検出部30、強入力信号特性検出部32、記憶部34、SINR演算部36、変調方式決定部38、物理フレーム形成部40、および変調部42を含んで構成される。これらのうち、復号部28、受信電力差検出部30、強入力信号特性検出部32、SINR演算部36、変調方式決定部38、物理フレーム形成部40、および変調部42は、たとえばCPU(Central Processing Unit)またはDSP(Digital Signal Processor)で構成される。
 アンテナ20は、基地局14から送信される信号(制御信号、通信信号など)を含む無線信号を受信し、受信された無線信号を無線通信部22に出力する。また、アンテナ20は、無線通信部22から供給される無線信号を基地局14に対して送信する。無線信号の受信と送信は、無線通信部22の指示に従って時分割で切り替えられる。
 無線通信部22は、ローノイズアンプ、パワーアンプ、局部発振器、ミキサ、およびフィルタを含む。無線通信部22は、アンテナ20から入力される無線信号をローノイズアンプで増幅し、中間周波数信号にダウンコンバートしてから、AGC部24に出力する。また、無線通信部22は、変調部42から入力される変調信号を無線信号にアップコンバートし、パワーアンプで送信出力レベルまで増幅してから、アンテナ20に供給する。
 AGC部24は、無線通信部22から入力される信号の最大受信電力に応じて、その信号の受信電力を制御する可変利得アンプである。具体的には、AGC部24は、無線通信部22から入力される信号の最大受信電力がダイナミックレンジの上限となるよう、受信帯域全域にわたり、その信号の受信電力を増幅または減衰する。
 移動通信システム10では、この受信帯域にOFDMAによる複数のサブチャネルが規定されているため、これらサブチャネルの少なくとも1つを介して基地局14から送信される通信信号の受信電力は、受信帯域内のいずれかのサブチャネルで受信される信号の最大受信電力に応じて制御される。
 復調部26は、A/D変換器、直並列変換器、FFT(Fast Fourier Transform:高速フーリエ変換)演算部、および並直列変換器を含んで構成される。復調部26は、AGC部24から入力される受信電力制御後の信号に、GI(Guard Interval:ガードインターバル)の除去、A/D変換、直並列変換、離散フーリエ変換、並直列変換などを施し、連続する複素シンボル列を取得する。こうして取得された複素シンボル列は、復号部28に出力される。また、離散フーリエ変換により得られる各サブキャリアの複素シンボルをサブチャネルごとに区分し、区分された各サブチャネルの複素シンボルを受信電力差検出部30およびSINR演算部36に供給される。
 復号部28は、復調部26から入力される複素シンボル列からシンボルの変調方式に応じた受信データを復号し、復号された受信データを図示しない上位層に出力する。
 受信電力差検出部30は、復調部26から入力される各サブチャネルの複素シンボルに基づいて、基地局14から送信される制御信号の受信電力(基地局14から送信される信号の最大受信電力)と、基地局14に近接する他の基地局(以下「近接基地局」という)から所定の間隔で周期的に送信される制御信号の受信電力(基地局14とは異なる装置から到来する信号の最大受信電力)と、の受信電力差を検出する。ここでは、基地局14から送信される制御信号の受信電力が近接基地局から送信される制御信号の受信電力を上回る場合に、受信電力差が正になるものとする。検出された受信電力差は、記憶部34に記憶される。
 強入力信号特性検出部32は、受信電力差検出部30により検出される受信電力差に基づいて、近接基地局から所定の間隔で周期的に送信される制御信号の受信電力が基地局14から送信される制御信号の受信電力を超える周期、すなわち受信電力差検出部30により検出される受信電力差が負になる周期を検出する。検出された周期は、記憶部34に記憶される。
 記憶部34は、たとえば半導体メモリ素子で構成され、受信電力差検出部30で検出された受信電力差、強入力信号特性検出部32で検出された周期、図3に示す変調方式別の所要SINR(所要SINRテーブル)などを記憶する。なお、記憶部34に記憶される受信電力差および周期は、受信電力差検出部30および強入力信号特性検出部32で順次検出される情報にそれぞれ更新される。
 SINR演算部36は、復調部26から入力される各サブチャネルの複素シンボルに基づいて、サブチャネルの少なくとも1つを介して基地局14から送信される通信信号のSINR(信号品質の1つ)を算出する。
 変調方式決定部38は、SINR演算部36により算出される通信信号のSINRと、記憶部34に記憶される受信電力差、周期、および所要SINRテーブルと、基づいて、基地局14から送信される新たな通信信号の変調方式を決定する。
 ここで、変調方式決定部38による変調方式の決定方法を具体的に説明する。
 図4は、近接基地局から所定の間隔で周期的に送信される制御信号(他セルCCH(Common Channel)と表記)に起因するダイナミックレンジの変動を示す図であり、同図(a)は近接基地局の制御信号が到来する前のダイナミックレンジを、同図(b)は近接基地局の制御信号が到来した場合のダイナミックレンジを、それぞれ示している。
 図4(a)に示すように、基地局14から送信される制御信号(自セルCCHと表記)の受信電力よりも強い電力を有する制御信号が近接基地局から到来する前は、基地局14の制御信号(自セルCCH)の受信電力がダイナミックレンジの上限となるよう、AGC部24によって受信電力制御が行われる。ここでは、基地局14から送信される通信信号(EXCH(Extra Channel)と表記)のSINRが64QAMの所要SINRよりも高いため(ただし256QAMの所要SINRよりは低いものとする)、変調方式決定部38は、基地局14に要求する新たな通信信号の変調方式(MCS)を64QAMに決定する。
 ここで、図4(b)に示すように、基地局14から送信される制御信号(自セルCCH)の受信電力よりも強い電力を有する制御信号が近接基地局から到来すると、近接基地局から到来した制御信号(他セルCCH)の受信電力がダイナミックレンジの上限となるよう、AGC部24によって受信電力制御が行われる。これにより、ダイナミックレンジの下限が、図4(a)に示す下限に比べて、両制御信号間の受信電力差α(他セルCCHの受信電力-自セルCCHの受信電力)だけ上昇する。しかしながら、この場合には、基地局14から送信された通信信号(EXCH)のSINRが64QAMの所要SINR未満となるため、64QAMで変調された通信信号(EXCH)を復調する際にエラーが発生してしまう。
 そこで、本実施形態では、図5に示すように、近接基地局から到来する制御信号(他セルCCH)によるダイナミックレンジの変動(下限の上昇)を見込んで、ダイナミックレンジの下限に上記受信電力差αだけ雑音電力を上乗せした上で、基地局14に要求する新たな通信信号の変調方式(MCS)を16QAMに決定するようにしている。
 すなわち、変調方式決定部38は、記憶部34に記憶される受信電力差が周期的に負になる場合に(近接基地局から周期的に送信される制御信号の受信電力が基地局14から送信される制御信号の受信電力を超える場合に)、SINR演算部36により算出される通信信号(EXCH)のSINRに記憶部34に記憶される受信電力差(-α)を加えた値を予測SINRとして算出し、この予測SINRで適用な可能な最良の変調方式を所要SINRテーブルから選出する。たとえば図5に示す場合では、通信信号(EXCH)の予測SINRが16QAMの所要SINRより高いため(ただし64QAMの所要SINRよりは低いものとする)、変調方式決定部38は、基地局14に要求する新たな通信信号の変調方式(MCS)を16QAMに決定する。これにより、近接基地局から周期的に送信される制御信号に起因する通信信号の復調エラーを低減することができる。
 なお、変調方式決定部38は、記憶部34に記憶される周期に基づいて、近接基地局から送信される制御信号の受信電力が基地局14から送信される制御信号の受信電力を超えるタイミングを推定し、推定したタイミングに応じて図5を用いて説明した上記方法で変調方式の決定を行ってもよい。すなわち、変調方式決定部38は、近接基地局の制御信号が到来するタイミングを推定し、ダイナミックレンジの下限の上昇を見込んだ予測SINRに基づく変調方式が推定したタイミングに併せて適用されるよう、変調方式の決定を行ってもよい。こうすれば、SINR演算部36で得られた実際のSINRより所要SINRの低い変調方式が適用される期間が最小化されるため、スループットの低下を抑制しつつ、近接基地局から周期的に送信される制御信号に起因する通信信号の復調エラーを低減することができる。
 物理フレーム形成部40は、図示しない上位層から入力される送信データを、通信信号(たとえばEXCH)に対応する物理フレームに格納し、その物理フレームを変調部42に出力する。また、物理フレーム形成部40は、変調方式決定部38で決定された変調方式(MCS)を含む変調方式要求(MR)を所定の上り通信信号(たとえばANCH(Anchor Channel))に対応する物理フレームのMRフィールドに指定し、その物理フレームを変調部42に出力する。
 変調部42は、直並列変換器、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)演算部、並直列変換器、およびD/A変換器を含んで構成される。変調部42は、物理フレーム形成部40から入力される物理フレームに対して、変調方式決定部38で決定された変調方式に応じたシンボルマッピング(振幅と位相の割り当て)を行い、複素シンボル列を得る。そして、変調部42は、得られた複素シンボル列の各キャリア成分に、直並列変換、逆離散フーリエ変換、並直列変換、D/A変換などを施し、ベースバンドOFDM信号を取得する。こうして取得されたベースバンドOFDM信号は、GIが付加された後に、無線通信部22に出力される。
 ここで、移動局12と基地局14との間で実行される適応変調シーケンスの一例を図6に基づいて説明する。ここでは、基地局14の制御信号よりも強い電力を有する近接基地局の制御信号が間欠的に移動局12に到来するものとする。
 同図に示すように、基地局14が、制御信号および通信信号を移動局12に対して送信すると(S100)、移動局12は、その制御信号および通信信号とともに受信された無線信号の受信信号の電力を、その信号の最大受信電力(近接基地局から到来した制御信号の受信電力)がダイナミックレンジの上限となるよう制御する(S102)。
 次に、移動局12は、受信電力制御後の受信信号に基づいて、基地局14の制御信号の受信電力と近接基地局の制御信号の受信電力との受信電力差を検出する(S104)。また、移動局12は、受信電力制御後の受信信号に基づいて、通信信号のSINRを算出し、このSINRにS104で検出された受信電力差(負の値)を加えた値を予測SINRとして算出する(S106)。そして、移動局12は、この予測SINRで適用可能な最良の変調方式を所要SINRテーブルから選出し、基地局14に通知する変調方式(MCS)として決定する(S108)。こうして決定された変調方式は、変調方式要求(MR)に格納されて、基地局14に送信される(S110)。
 移動局12からの変調方式要求を受信した基地局14は、移動局12宛ての送信データが格納された物理フレームを、変調方式要求に指定された変調方式またはその変調方式よりも所要SINRの低い変調方式で変調し、変調された物理フレームとその物理フレームの変調に用いた変調方式を示す変調方式識別子(MI:MCR Indicator)を含む通信信号を移動局12に送信する(S112)。
 以上説明した実施形態によれば、移動局12は、基地局14から送信される通信信号のSINRだけでなく、基地局14から送信される制御信号の受信電力と基地局14の近接基地局から周期的に送信される制御信号の受信電力との受信電力差にさらに基づいて、基地局14から送信される新たな通信信号の変調方式を決定する。このため、近接基地局から周期的に送信される制御信号に起因する通信信号の復調エラーを低減することができる。
 なお、本発明は、上記実施形態に限定されるものではない。
 たとえば、以上の説明では、基地局14から送信される信号の最大受信電力は制御信号の受信電力であるという前提を設けたが、基地局14から送信される信号の最大受信電力は制御信号以外の信号(たとえば通信信号)の受信電力であってもよい。
 また、上記実施形態では、基地局14から送信される信号の最大受信電力を超えるような強い電力を有する強入力信号として近接基地局から周期的に送信される制御信号を例示したが、強入力信号は近接基地局以外の装置から周期的または非周期的に到来する他の信号であってもよい。
 この場合、強入力信号特性検出部32は、基地局14とは異なる装置から到来する信号の最大受信電力が基地局14から送信される信号の最大受信電力を超える頻度を検出し、変調方式決定部38は、強入力信号特性検出部32により検出された頻度にさらに基づいて、新たな通信信号の変調方式を決定してもよい。
 たとえば、変調方式決定部38は、強入力信号特性検出部32により検出された頻度が所定値以上であるか否かに基づいて、新たな通信信号の変調方式を決定してもよい。こうすれば、基地局14とは異なる装置から一定以上の頻度で到来する強入力信号に起因する通信信号の復調エラーを好適に低減することができる。
 また、変調方式決定部38は、強入力信号特性検出部32により検出された頻度で引き続き強入力信号が到来するという条件のもと、受信電力差検出部30で検出された受信電力差に基づくことなく決定される変調方式が適用された場合の推定スループットと、その受信電力差に基づいて決定される変調方式が適用された場合の推定スループットと、を比較し、その比較結果に基づいて、スループットが高くなるよう変調方式の変更要否を判定してもよい。
 また、本発明は、移動局だけでなく、適応変調方式およびOFDMA方式を採用する無線通信システムの受信装置に広く適用可能である。

Claims (8)

  1.  直交周波数分割多元接続方式によるサブチャネルの少なくとも1つを介して送信装置から送信される通信信号の受信電力を、該通信信号とともに前記サブチャネルのいずれかで受信される信号の最大受信電力に応じて制御する受信電力制御手段と、
     前記受信電力制御手段により受信電力が制御された前記通信信号の信号品質に基づいて、前記送信装置から送信される新たな通信信号の変調方式を決定する変調方式決定手段と、
     を含み、前記変調方式決定手段により決定された変調方式を用いて前記新たな通信信号を送信するよう前記送信装置に要求する受信装置であって、
     前記送信装置から送信される信号の最大受信電力と、前記送信装置とは異なる装置から到来する信号の最大受信電力と、の受信電力差を検出する受信電力差検出手段をさらに含み、
     前記変調方式決定手段は、前記受信電力差検出手段により検出された受信電力差にさらに基づいて、前記新たな通信信号の変調方式を決定する、
     ことを特徴とする受信装置。
  2.  請求項1に記載の受信装置において、
     前記送信装置とは異なる装置から到来する信号の最大受信電力が、前記送信装置から送信される信号の最大受信電力を超える周期を検出する周期検出手段をさらに含み、
     前記変調方式決定手段は、前記周期検出手段により検出された周期にさらに基づいて、前記新たな通信信号の変調方式を決定する、
     ことを特徴とする受信装置。
  3.  請求項2に記載の受信装置において、
     前記変調方式決定手段は、前記周期検出手段により検出された周期に対応するタイミングで、前記受信電力差検出手段により検出された受信電力差に基づく前記新たな通信信号の変調方式を決定する、
     ことを特徴とする受信装置。
  4.  請求項2に記載の受信装置において、
     前記周期検出手段は、前記送信装置に近接する近接送信装置から送信される制御信号の受信電力が、前記送信装置から送信される制御信号の受信電力を超える周期を検出し、
     前記受信電力差検出手段は、前記送信装置から送信される制御信号の受信電力と、前記近接送信装置から送信される制御信号の受信電力と、の受信電力差を検出する、
     ことを特徴とする受信装置。
  5.  請求項1に記載の受信装置において、
     前記送信装置とは異なる装置から到来する信号の最大受信電力が、前記送信装置から送信される信号の最大受信電力を超える頻度を検出する頻度検出手段をさらに含み、
     前記変調方式決定手段は、前記頻度検出手段により検出された頻度にさらに基づいて、前記新たな通信信号の変調方式を決定する、
     ことを特徴とする受信装置。
  6.  請求項5に記載の受信装置において、
     前記変調方式決定手段は、前記頻度検出手段により検出された頻度が所定値以上であるか否かに基づいて、前記新たな通信信号の変調方式を決定する、
     ことを特徴とする受信装置。
  7.  請求項5に記載の受信装置において、
     前記頻度検出手段により検出された頻度で、前記送信装置とは異なる装置から到来する信号の最大受信電力が前記送信装置から送信される信号の最大受信電力を超えるという条件のもと、前記受信電力差に基づくことなく決定される変調方式が適用された場合の推定スループットと、前記受信電力差に基づいて決定される変調方式が適用された場合の推定スループットと、を比較する推定スループット比較手段をさらに含み、
     前記変調方式決定手段は、前記推定スループット比較手段による比較結果に基づいて、前記新たな通信信号の変調方式を決定する、
     ことを特徴とする受信装置。
  8.  直交周波数分割多元接続方式によるサブチャネルの少なくとも1つを介して送信装置から送信される通信信号の受信電力を、該通信信号とともに前記サブチャネルのいずれかで受信される信号の最大受信電力に応じて制御するステップと、
     前記送信装置から送信される信号の最大受信電力と、前記送信装置とは異なる装置から到来する信号の最大受信電力と、の受信電力差を検出するステップと、
     受信電力が制御された前記通信信号の信号品質と、前記検出された受信電力差と、に基づいて、前記送信装置から送信される新たな通信信号の変調方式を決定するステップと、
     前記送信装置に前記決定された変調方式を用いて前記新たな通信信号を送信させるステップと、
     を含むことを特徴とする適応変調方法。
PCT/JP2009/059761 2008-05-28 2009-05-28 受信装置および適応変調方法 WO2009145252A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801192453A CN102047625A (zh) 2008-05-28 2009-05-28 接收装置以及自适应调制方法
US12/993,808 US8599942B2 (en) 2008-05-28 2009-05-28 Receiving device and adaptive modulation method
KR1020107029273A KR101148974B1 (ko) 2008-05-28 2009-05-28 수신장치 및 적응 변조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008139691A JP4920010B2 (ja) 2008-05-28 2008-05-28 受信装置および適応変調方法
JP2008-139691 2008-05-28

Publications (1)

Publication Number Publication Date
WO2009145252A1 true WO2009145252A1 (ja) 2009-12-03

Family

ID=41377122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059761 WO2009145252A1 (ja) 2008-05-28 2009-05-28 受信装置および適応変調方法

Country Status (5)

Country Link
US (1) US8599942B2 (ja)
JP (1) JP4920010B2 (ja)
KR (1) KR101148974B1 (ja)
CN (1) CN102047625A (ja)
WO (1) WO2009145252A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102763357A (zh) * 2010-01-26 2012-10-31 京瓷株式会社 基站及基站中基准定时的调整方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100138838A (ko) * 2009-06-24 2010-12-31 엘지전자 주식회사 광대역 무선 접속 시스템에서 변조 및 부호화 기법 결정 방법
CN102271354A (zh) * 2010-06-02 2011-12-07 中兴通讯股份有限公司 Lte系统中的链路自适应方法、基站和终端
GB2492123B (en) * 2011-06-22 2013-06-12 Renesas Mobile Corp Method, apparatus and computer program for setting a radio frequency gain
US9191905B2 (en) * 2011-06-22 2015-11-17 Broadcom Corporation Method, apparatus and computer readable medium for setting a radio frequency gain
JP5840436B2 (ja) * 2011-09-28 2016-01-06 京セラ株式会社 通信装置および通信制御方法
US10420038B2 (en) * 2015-11-05 2019-09-17 Intel IP Corporation Transmit power control for uplink transmissions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290246A (ja) * 2001-03-28 2002-10-04 Hitachi Kokusai Electric Inc 送受信機
JP2005318533A (ja) * 2004-03-29 2005-11-10 Matsushita Electric Ind Co Ltd 通信装置及び通信方法
JP2007281780A (ja) * 2006-04-05 2007-10-25 Sharp Corp 適応変調制御装置、通信装置、及び、適応変調制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396867B1 (en) * 1997-04-25 2002-05-28 Qualcomm Incorporated Method and apparatus for forward link power control
KR100313914B1 (ko) 1998-10-09 2001-12-20 서평원 이동통신시스템의패킷데이터전송속도제어방법
JP2001044930A (ja) * 1999-07-30 2001-02-16 Matsushita Electric Ind Co Ltd 無線通信装置および無線通信方法
JP3836019B2 (ja) * 2001-11-21 2006-10-18 松下電器産業株式会社 受信装置、送信装置及び送信方法
JP4194091B2 (ja) 2003-09-02 2008-12-10 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 無線通信システムおよび無線通信装置
CN1939021A (zh) * 2004-03-29 2007-03-28 松下电器产业株式会社 通信装置及通信方法
CN101496312B (zh) * 2006-07-28 2012-11-21 京瓷株式会社 无线通信方法和无线基站
US8086258B2 (en) * 2007-09-28 2011-12-27 Ntt Docomo, Inc. Base station, receiving device, mobile terminal, and frequency sharing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290246A (ja) * 2001-03-28 2002-10-04 Hitachi Kokusai Electric Inc 送受信機
JP2005318533A (ja) * 2004-03-29 2005-11-10 Matsushita Electric Ind Co Ltd 通信装置及び通信方法
JP2007281780A (ja) * 2006-04-05 2007-10-25 Sharp Corp 適応変調制御装置、通信装置、及び、適応変調制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102763357A (zh) * 2010-01-26 2012-10-31 京瓷株式会社 基站及基站中基准定时的调整方法

Also Published As

Publication number Publication date
JP2009290458A (ja) 2009-12-10
CN102047625A (zh) 2011-05-04
KR20110028301A (ko) 2011-03-17
US20110069786A1 (en) 2011-03-24
KR101148974B1 (ko) 2012-05-23
US8599942B2 (en) 2013-12-03
JP4920010B2 (ja) 2012-04-18

Similar Documents

Publication Publication Date Title
US8948062B2 (en) Radio base station and radio communication method
JP4920010B2 (ja) 受信装置および適応変調方法
US8121554B2 (en) Radio apparatus
US8560000B2 (en) Transmit power control method for reducing cellular interference in cellular radio communication system and radio base station device for implementing the same
KR101459014B1 (ko) 이동통신 시스템의 주파수 제어 장치 및 방법
WO2007112547A1 (en) Method & system for fractional frequency reuse in a wireless communication network
US20120009965A1 (en) Wireless communication method, mobile station, and base station
US10554355B2 (en) Station (STA) and method for usage of phase noise compensation based on operational parameters
US8300572B2 (en) Method and system for controlling power in a communication system
US7894332B2 (en) Power profile reshaping in orthogonal frequency division multiple access symbols
US20100172452A1 (en) Ofdma reception device and ofdma reception method
JP5285769B2 (ja) 無線通信端末、基地局、無線通信方法および無線通信システム
US7684765B2 (en) Transmit antenna switching apparatus and method in MIMO system
US9209873B1 (en) Method and apparatus for estimating noise and providing linear equalizers for multi-user MIMO (MU-MIMO) wireless communication systems
JP5172302B2 (ja) 基地局装置の変調方式選択方法およびそれを利用した基地局装置
US7697654B1 (en) Determining effective carrier-to-interference plus noise ratio in OFDMA systems
JP2016526818A (ja) Mimoシステムにおけるチャネルサウンディングおよびチャネル推定方策
WO2009128307A1 (ja) 移動局装置および送信電力制御方法
US20070202820A1 (en) Method for determining a value of the transmission power for a signal that is to be transmitted from a transmitter station to a receiver station and associated device
US9191882B2 (en) Systems and methods for improved association in wireless networks
JP5241611B2 (ja) 移動通信システム、基地局装置、移動局装置、および接続要求検出方法
JP2012085084A (ja) Ofdm信号送信装置
JP5216504B2 (ja) 無線通信システム、送信装置、受信装置、および無線通信方法
JP4949199B2 (ja) 無線通信装置及び無線通信方法
JP2011114603A (ja) 移動局および接続先選択方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119245.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12993808

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107029273

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09754760

Country of ref document: EP

Kind code of ref document: A1