WO2009145237A1 - フィルター、プリント回路基板およびノイズ抑制方法 - Google Patents

フィルター、プリント回路基板およびノイズ抑制方法 Download PDF

Info

Publication number
WO2009145237A1
WO2009145237A1 PCT/JP2009/059727 JP2009059727W WO2009145237A1 WO 2009145237 A1 WO2009145237 A1 WO 2009145237A1 JP 2009059727 W JP2009059727 W JP 2009059727W WO 2009145237 A1 WO2009145237 A1 WO 2009145237A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
waveguide
filter
patch
unit cell
Prior art date
Application number
PCT/JP2009/059727
Other languages
English (en)
French (fr)
Inventor
直樹 小林
健 森下
博 鳥屋尾
徳昭 安道
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010514520A priority Critical patent/JP5454471B2/ja
Publication of WO2009145237A1 publication Critical patent/WO2009145237A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2005Electromagnetic photonic bandgaps [EPB], or photonic bandgaps [PBG]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane

Definitions

  • the present invention realizes a frequency selective noise suppression effect and a filter effect by using a waveguide that is surrounded by a plurality of conductor plates around the cross section in the traveling direction or that has a partially open end in the traveling direction section.
  • the present invention relates to a filter, a printed circuit board, and a noise suppression method.
  • a structure sandwiched between or surrounded by a plurality of conductor plates such as a pair of parallel plate conductors can propagate electromagnetic waves in a direction parallel to the conductor plates. It can be applied to a vessel, a filter, a leaky wave antenna, and the like.
  • a structural device for blocking or transmitting the propagation of electromagnetic waves over a specific frequency band is made.
  • an EBG (Electromagnetic Band Band Gap) structure has attracted attention as a method for blocking the propagation of electromagnetic waves over a wide frequency band.
  • 26 and 27 are diagrams showing a structure in which a mushroom-type EBG structure is applied to a space between parallel plate conductors in a three-dimensional orthogonal coordinate system.
  • 26 is a cross-sectional view when the EBG structure is cut along the xz plane
  • a waveguide structure 106 that propagates the electromagnetic wave 107 in the xy direction is formed in a space sandwiched between the conductor plates 101 and 102.
  • Reference numeral 108 denotes an electromagnetic wave generation source.
  • An LSI is also included as an example of the electromagnetic wave generation source 108.
  • the conductor patch 103 is periodically connected to the conductor plate 102 by the periodic arrangement via 104 and is sandwiched between the two conductor plates 101 and 102.
  • Japanese Patent Publication No. 2007-522735 describes a configuration of a device that can adjust the dielectric constant of a dielectric between conductors.
  • the mushroom type EBG structure for example, by applying the mushroom type EBG structure to the power supply ground plane pair of the printed circuit board, it is possible to realize a mounting circuit structure capable of blocking power supply system switching noise and electromagnetic noise leaking from signal vias.
  • the mushroom-type EBG structure has a problem in that it can only prevent propagation of electromagnetic waves in a specific single frequency band, and cannot prevent propagation of electromagnetic waves in various frequency bands.
  • the dielectric constant of the dielectric between the conductors can be adjusted, so that the electrical characteristics of the device can be controlled.
  • the structure of the device described in JP-T-2007-522735 relates to an antenna, and does not solve the above-described problem in the filter.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a filter, a printed circuit board, and a noise suppression method that can prevent propagation of electromagnetic waves in various frequency bands.
  • a conductor is arranged at least in the vertical direction of a space in which a signal propagates, and a signal is supplied between opposing conductors in at least one place in the signal propagation direction.
  • it has a waveguide for outputting a signal from between the opposing conductors, and one or more unit cells periodically arranged on the waveguide, and each unit cell is arranged in parallel to each other.
  • the one or more plate-shaped conductor patches and at least one conductor post connected to at least one conductor patch, and the conductor posts protruding from each unit cell are at least one of the waveguides. It is connected to one conductor and insulated from other conductors of the waveguide.
  • the printed circuit board of the present invention is characterized by having the above-mentioned filter.
  • a conductor is disposed at least in the vertical direction of a space in which a signal propagates, and a signal is supplied between opposing conductors in at least one place in the signal propagation direction.
  • one or more plate-like conductor patches arranged in parallel to each other and at least one conductor patch are connected.
  • the unit cells composed of one or more conductor posts are periodically arranged on the waveguide, and the conductor posts protruding from the unit cells are connected to at least one conductor of the waveguide and It is characterized by being insulated from other conductors of the waveguide.
  • one or more unit cells are periodically arranged on a waveguide, and each unit cell is arranged with one or more plate-like conductor patches arranged in parallel to each other and at least one or more sheets. It is composed of one or more conductor posts connected to a conductor patch, and the conductor posts protruding from each unit cell are connected to at least one conductor of the waveguide and insulated from other conductors, thereby providing wide bandwidth and various A filter having a proper cut-off frequency band can be realized.
  • the cutoff frequency band of the filter of the present invention includes a combination of conductor patches and conductor posts, a relative permittivity and a relative permeability of the space between the conductor patches of each unit cell, and a relative permittivity of the space between the conductor patch and the conductor of the waveguide. It can be set as appropriate according to the relative permeability, the relative permittivity of the space inside the waveguide, and the relative permeability. Therefore, according to the present invention, it is possible to select an appropriate structure from a plurality of combinations according to mounting constraints, and the range of filter mounting design can be expanded.
  • FIG. 1 is a perspective view showing the structure of a unit cell according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view of the waveguide according to the first embodiment of the present invention in a state where no unit cell is mounted.
  • FIG. 3 is a cross-sectional view showing the positional relationship and connection relationship between the waveguide shown in FIG. 2 and the unit cell shown in FIG.
  • FIG. 4 is a plan view of a filter in which a plurality of unit cells are periodically mounted in the first embodiment of the present invention.
  • FIG. 5 is a sectional view of a filter in which a plurality of unit cells are periodically mounted in the first embodiment of the present invention.
  • FIG. 6 is a sectional view showing another structural example of the filter according to the first embodiment of the present invention.
  • FIG. 7 is a sectional view showing another structural example of the filter according to the first embodiment of the present invention.
  • FIG. 8 is a sectional view showing another structural example of the filter according to the first embodiment of the present invention.
  • FIG. 9 is a sectional view showing another structural example of the filter according to the first embodiment of the present invention.
  • FIG. 10 is a sectional view showing another structural example of the filter according to the first embodiment of the present invention.
  • FIG. 11 is a perspective view showing the structure of a unit cell according to the second embodiment of the present invention.
  • FIG. 12 is a perspective view of the waveguide according to the second embodiment of the present invention in a state where no unit cell is mounted.
  • 13 is a cross-sectional view showing the positional relationship and connection relationship between the waveguide shown in FIG.
  • FIG. 14 is a plan view of a filter in which a plurality of unit cells are periodically mounted in the second embodiment of the present invention.
  • FIG. 15 is a diagram for explaining the connection between the power feeding unit and the load with respect to the filter of FIG. 14.
  • FIG. 16 is a diagram showing the input / output coupling rate characteristics of the filter according to the second embodiment of the present invention.
  • 17A to 17C are plan views of unit cells according to the third embodiment of the present invention.
  • 17D to 17F are cross-sectional views showing the connection relationship between the unit cell and the parallel plate waveguide according to the third embodiment of the present invention.
  • FIG. 18 is a graph showing the input / output coupling rate characteristics of the filter according to the third example of the present invention.
  • FIG. 19 is a perspective view showing the structure of a unit cell according to the fourth embodiment of the present invention.
  • 20 is a cross-sectional view showing the positional relationship and connection relationship between the parallel plate waveguide and the unit cells shown in FIG.
  • FIG. 21 is a diagram showing the coupling rate characteristics between the input and output of the filter according to the fourth embodiment of the present invention.
  • FIG. 22 is a sectional view of a filter according to a fifth embodiment of the present invention.
  • FIG. 23 is a diagram showing the input / output coupling rate characteristics of the filters of FIGS.
  • FIG. 24 is a diagram for explaining the connection between the waveguide and the DC voltage source in the sixth embodiment of the present invention.
  • FIG. 25 is a cross-sectional view showing a configuration in which a filter is mounted on a printed circuit board in the seventh embodiment of the present invention.
  • FIG. 26 is a cross-sectional view of a mushroom type EBG structure applied to a parallel plate waveguide, taken along the xz plane.
  • FIG. 27 is a cross-sectional view of a mushroom type EBG structure applied to a parallel plate waveguide, taken along the xy plane.
  • FIG. 1 is a perspective view showing the structure of a unit cell according to the first embodiment of the present invention.
  • Reference numeral 309 denotes the entire unit cell.
  • the unit cell 309 has a structure in which M (M is a natural number of 1 or more) conductor posts 305 to 307 vertically penetrate N conductor patches 301 to 304 (N is a natural number of 1 or more).
  • Reference numerals 301, 302, 303, and 304 represent a first conductor patch, a second conductor patch, a third conductor patch, and an Nth conductor patch, respectively.
  • Reference numerals 305, 306, and 307 denote a first conductor post, a second conductor post, and an Mth conductor post, respectively.
  • N is 4 or more and M is 3 or more. However, N may be a number smaller than 4, and M may be a number smaller than 3.
  • connection portion 308 is a connection portion between the conductor patches 301 to 304 and the conductor posts 305 to 307.
  • the conductor posts 305 to 307 may be electrically connected directly to the conductor patches 301 to 304, or may be insulated from the conductor patches 301 to 304 by clearance holes (not shown) provided in the conductor patches 301 to 304. Sometimes it is.
  • FIG. 2 is a perspective view showing a state where no unit cell is mounted in the waveguide according to the first embodiment of the present invention.
  • Reference numeral 405 denotes the entire waveguide on which no unit cell is mounted.
  • the traveling direction of the waveguide 405 is the y direction.
  • the thickness in the z direction is h
  • the width in the x direction is w.
  • Reference numeral 401 denotes a conductor plate that is a conductor wall parallel to the xy plane disposed on the top surface of the waveguide 405, and 402 is a conductor plate that is a conductor wall parallel to the xy plane disposed on the bottom surface of the waveguide 405. Therefore, the conductor plates 401 and 402 are disposed to face each other.
  • Reference numeral 403 denotes a waveguide wall surface arranged parallel to the yz plane in FIG. 2, and 404 denotes a waveguide wall surface arranged parallel to the yz plane in FIG.
  • the waveguide wall surfaces 403 and 404 are open walls.
  • the waveguide wall surfaces 403 and 404 are opposing conductor walls.
  • a waveguide structure is also formed when one or more conductor posts conduct between parallel conductors of parallel plate conductors.
  • a microstrip line structure and a strip line structure widely used in a printed circuit board can also be regarded as a waveguide structure.
  • FIG. 3 is a sectional view showing the positional relationship and connection relationship between the waveguide 405 shown in FIG. 2 and the unit cell 309 shown in FIG. More specifically, FIG. 3 shows a structure in which conductor posts 305 to 307 protruding from the unit cell 309 are connected to the conductor plates 401 and 402 of the waveguide 405 of FIG. It is the figure seen from.
  • the conductor posts 305 to 307 protruding from the unit cell 309 are electrically connected to the conductor plate 401 at the connection portion 501.
  • FIG. 3 only one connection portion 501 is shown, but there are naturally a plurality of connection portions 501 per unit cell 309.
  • Each of the conductor posts 305 to 307 may be electrically connected to the conductor plate 401 at the connection portion 501 or may be insulated from the conductor plate 401 by a clearance hole (not shown) provided in the conductor plate 401. is there.
  • connection portion 502 In FIG. 3, only one connection portion 502 is shown, but there are naturally a plurality of connection portions 502 per unit cell 309. Each of the conductor posts 305 to 307 may be electrically connected to the conductor plate 402 at the connection portion 502, or may be insulated from the conductor plate 402 by a clearance hole (not shown) provided in the conductor plate 402. is there.
  • FIG. 4 is a plan view of a filter in which a plurality of unit cells 309 are periodically mounted in this embodiment
  • FIG. 5 is a cross-sectional view of the filter of FIG. 4 is a view of the filter as viewed from above
  • FIG. 5 is a cross-sectional view of the filter of FIG. 4 taken along the yz plane.
  • each unit cell 309 has a width c in the x direction and a length a in the y direction. The interval between the unit cells 309 in the x direction is d, and the interval in the y direction is b.
  • the unit cells 309 are periodically arranged such that the cycle in the x direction is (c + d) and the cycle in the y direction is (a + b). Each unit cell 309 is connected to the waveguide 405 so as to satisfy the connection relationship described in FIG.
  • FIGS. 6, 7 and 8 are cross-sectional views showing other structural examples of the filter according to this embodiment.
  • a part of the conductor patch of each unit cell 309 (conductor patch 304 in the example of FIG. 6) is disposed inside the waveguide 405, that is, between the conductor plates 401 and 402.
  • some unit cells 309 are arranged so as to penetrate the waveguide 405 from below.
  • the conductor patches 301 to 304 of each unit cell 309 have the same shape, and the lengths of the conductor posts 305 to 307 are all the same.
  • the conductor patches 301 to 304 of each unit cell 309 may have different shapes, or the conductor posts 305 to 307 may have different lengths.
  • the space between the conductor patches 301 to 304 and the space inside the waveguide 405 may be filled with a material having a specific relative permittivity and relative permeability.
  • a space other than the conductor is occupied by a medium having a relative dielectric constant of about 4.3 such as FR (flame flame retardant) -4.
  • the space layer 2503 may be filled with a material having a different relative dielectric constant for each layer or a material having a different relative permeability for each layer.
  • a plurality of unit cells 309 may be disposed so as to penetrate the waveguide 405 from the upper side and the lower side.
  • a filter having a wide band and various cut-off frequency bands can be realized.
  • the cut-off frequency band of the filter includes a combination of conductor patches 301 to 304 and conductor posts 305 to 307, a relative permittivity and a relative permeability of the space between the conductor patches 301 to 304 of each unit cell 309, and the conductor patches 301 to 304 and the conductor. It can be appropriately set according to the relative permittivity and relative permeability of the space between the plates 401 and 402 and the relative permittivity and relative permeability of the space inside the waveguide 405. Therefore, in this embodiment, it is possible to select an appropriate structure from a plurality of combinations according to mounting constraints, and the range of filter mounting design can be expanded.
  • FIG. 11 is a perspective view showing the structure of a unit cell according to the second embodiment of the present invention.
  • the unit cell 1109 has a structure in which a conductor post 305 having a length h1 and a conductor post 306 having a length h2 are connected to two rectangular conductor patches 301 and 302 having a width L1 and a length L2. It has become.
  • the conductor post 305 is electrically connected to the conductor patch 302 at one point 1101 at the four corners of the conductor patch 302, and protrudes along the z direction perpendicular to the conductor patch 302.
  • the conductor post 306 is electrically connected to the conductor patch 301 at the center point 1102 of the conductor patch 301, and is insulated from the conductor patch 302 by a clearance hole provided at the center point 1103 of the conductor patch 302.
  • FIG. 12 is a perspective view showing a state where no unit cell is mounted in the waveguide according to the second embodiment of the present invention.
  • the waveguide 1201 has a parallel plate type waveguide structure in which two conductors 401 and 402 each having a width in the x direction wx and a length in the y direction wy are opposed to each other with a distance h.
  • Waveguide walls 1203 and 1204 parallel to the yz plane and waveguide walls 1205 and 1206 parallel to the xz plane are open walls.
  • FIG. 13 is a cross-sectional view showing the positional relationship and connection relationship between the waveguide 1201 shown in FIG. 12 and the unit cell 1109 shown in FIG. More specifically, FIG. 13 shows a structure in which the conductor posts 305 and 306 protruding from the unit cell 1109 are connected to the conductor plates 401 and 402 of the waveguide 1201 of FIG. It is the figure seen from.
  • the conductor post 305 protruding from the unit cell 1109 is electrically connected to the conductor plate 401 at the connection portion 1301.
  • the conductor post 306 protruding from the unit cell 1109 is electrically connected to the conductor plate 402 at the connection portion 1303.
  • the conductor post 306 is insulated from the conductor plate 401 by a clearance hole provided at a point 1302 of the conductor plate 401.
  • the conductor post 306 is connected to the conductor patch 301 on the side far from the waveguide 1201, insulated from the conductor patch 302 on the side close to the waveguide 1201, and the conductor post 306 of the waveguide 1201 on the side facing the conductor patch 302.
  • the conductor post 305 is insulated from the conductor patch 301, connected to the conductor patch 302, connected to the conductor plate 401 of the waveguide 1201 on the side facing the conductor patch 302, and the side not facing the conductor patch 302. It is insulated from the conductor plate 402.
  • the unit cell 1109 having the above connection relationship is periodically arranged on the waveguide in the same manner as in the examples of FIGS. 4 and 5, thereby realizing a band stop filter having two close cutoff frequency bands. it can.
  • calculation examples of the characteristics of this filter will be described with reference to the drawings.
  • FIG. 14 is a plan view of a filter in which a plurality of unit cells 1109 are periodically mounted in the present embodiment.
  • the lower left is the origin O.
  • a unit cell 1109 using a square conductor patch with a side of 5 mm is 10 mm in both the x and y directions with respect to the waveguide 1201 having a width in the x direction of 100 mm and a length in the y direction of 70 mm. Arranged in a cycle.
  • Each unit cell 1109 is connected to the waveguide 1201 so as to satisfy the connection relationship described in FIG.
  • reference numeral 1401 denotes an input port of the waveguide
  • 1402 denotes an output port of the waveguide.
  • the length h1 of the conductor post 305 is 0.2 mm
  • the length h2 of the conductor post 306 is 1.4 mm
  • the thickness h in the z direction of the waveguide 1201 is 1.0 mm.
  • the space between the conductor patches 301 and 302, the space between the conductor patches 301 and 302 and the conductor plates 401 and 402, and the space inside the waveguide 1201 have a relative permittivity of 4.05 and a relative permeability of 1. It is assumed that the medium is 0 and the dielectric loss tangent tan ⁇ is 0.025.
  • a current source 1501 serving as a power feeding unit is connected between conductor plates 401 and 402 at the input port 1401 of the waveguide, the conductor plate 401 and the output port 1402 of the waveguide are connected to each other.
  • a 50 ⁇ resistor 1502 serving as a load is connected between 402
  • the propagation characteristics of the filter of FIG. 14 are analyzed using an equivalent circuit analysis method of a multilayer conductor, and the calculation result is between input and output.
  • a binding rate (S21) was obtained.
  • the current source 1501 includes an internal resistance of 50 ⁇ .
  • An equivalent circuit analysis method for multilayer conductors is described in, for example, the document “Kobayashi et al.,“ Analysis power distribution systems using SPICE ”, EMCJ, October 2005”.
  • FIG. 16 shows the input / output coupling rate characteristics of the filter of FIG. 14 calculated using the equivalent circuit analysis method. According to FIG. 16, it can be seen that the propagation rate of the filter of FIG. 14 has a markedly reduced coupling rate around 2 GHz and around 6 GHz. Therefore, it can be seen that the waveguide structure of this example is effective as a band stop filter having a plurality of cutoff frequency bands.
  • FIGS. 17A, 17B, and 17C are plan views of the unit cells 1701, 1702, and 1703, respectively.
  • FIGS. 17D, 17E, and 17F are cross-sectional views showing the connection relationship between the unit cells 1701, 1702, and 1703 and the parallel plate waveguide, respectively.
  • each of the conductor patches 301 used in the unit cells 1701, 1702, and 1703 is a square having a side of 5 mm.
  • the distance between the unit cells 1701, 1702, 1703 and the parallel plate waveguide is 0.2 mm.
  • the thickness of the parallel plate waveguide is 1 mm.
  • one conductor post 305 is connected to the center point of the conductor patch 301.
  • conductor posts 305 and 306 are connected near the midpoints of the two sides of the conductor patch 301.
  • conductor posts 305 to 307 and 311 are connected to the four corners of the conductor patch 301.
  • the conductor posts 305 to 307, 311 are not connected to the conductor plate 401 of the parallel plate waveguide on the side facing the conductor patch 301, and are connected to the conductor plate 402 on the side not facing the conductor patch 301. Has been.
  • FIG. 18 shows the result of calculating the coupling ratio characteristics between the input and output of the filter in which the unit cells 1701, 1702, and 1703 are periodically arranged using the above-described equivalent circuit analysis method.
  • S1701 is a characteristic of a filter in which unit cells 1701 are periodically arranged
  • S1702 is a characteristic of a filter in which unit cells 1702 are periodically arranged
  • S1703 is a characteristic of a filter in which unit cells 1703 are periodically arranged.
  • FIG. 18 shows that the waveguide functions as a band stop filter regardless of which unit cell 1701, 1702, 1703 is used.
  • the frequency characteristics change depending on the arrangement of vias (conductor posts).
  • the unit cell 1702 in which one conductor post 305, 306 is arranged on each of the two sides of the conductor patch 301 than in the case of the unit cell 1701 in which one conductor post 305 is arranged in the center of the conductor patch 301, It can be seen that a cut-off frequency band is generated on the higher frequency side.
  • the cut-off frequency band is shifted to the high frequency side, compared to the case of the unit cells 1701 and 1702, and It can be seen that the cutoff frequency band becomes wider.
  • FIG. 19 is a perspective view showing the structure of a unit cell according to the fourth embodiment of the present invention.
  • the unit cell 1909 has a structure in which a conductor post 305 is connected to two rectangular conductor patches 301 and 302.
  • the conductor post 305 is electrically connected to the conductor patch 301 at the connection portion 1904 and is electrically connected to the conductor patch 302 at the connection portion 1905.
  • FIG. 20 is a cross-sectional view showing a positional relationship and a connection relationship between the parallel plate waveguide 2009 and the unit cell 1909 shown in FIG. Similar to the other embodiments, the parallel plate waveguide 2009 includes conductor plates 401 and 402. In the example of FIG. 20, the conductor patch 302 of the unit cell 1909 is disposed inside the parallel plate waveguide 2009, that is, between the conductor plates 401 and 402.
  • the conductor post 305 protruding from the unit cell 1909 is electrically connected to the conductor plate 402 at the connection portion 2004.
  • the conductor post 305 is insulated from the conductor plate 401 by a clearance hole provided at a point 2003 of the conductor plate 401. That is, the conductor post 305 is insulated from the conductor plate 401 of the parallel plate waveguide 2009 on the side facing the conductor patch 301 and is connected to the conductor plate 402 on the side not facing the conductor patch 301.
  • FIG. 21 shows the calculation result of the input / output coupling rate characteristic of the filter in which the unit cells 1909 are periodically arranged using the finite element method.
  • the conductor patches 301 and 302 are squares each having a side of 9 mm
  • the thickness h of the parallel plate waveguide 2009 is 0.46 mm
  • the length h2 of the conductor post 305 is 0.52 mm
  • FIG. 21 shows that the waveguide structure of this example functions as a band stop filter.
  • FIGS. 11 to 14 the connection relationship between the unit cell and the waveguide, and the conductor post and the waveguide is as shown in FIGS. 11 to 14, but the material constant between the opposing conductor patches is shown in FIGS. The value is different from.
  • FIG. 22 is a sectional view of a filter according to a fifth embodiment of the present invention.
  • the space between the conductor patches 301 and 302 is 2201
  • the space between the conductor patch 302 and the conductor plate 401 is 2202
  • the space between the conductor plates 401 and 402 is 2203.
  • the space 2201 has a relative dielectric constant of 10
  • the spaces 2202 and 2203 have a relative dielectric constant of 4.05
  • the space 2202 has a relative dielectric constant of 10 and the spaces 2201 and 2203 have a relative dielectric constant.
  • FIG. 23 shows the result of calculating the coupling ratio characteristics between the input and output of the filter using the above-described equivalent circuit analysis method.
  • S1410 is a characteristic of the filter of FIG. 14
  • S2204 is a characteristic of a filter in which the relative permittivity of only the space 2201 is 10 and the relative permittivity of the spaces 2202 and 2203 is 4.05
  • S2205 is the relative permittivity of only the space 2202. This is a filter characteristic in which the rate is 10 and the relative permittivity of the spaces 2201 and 2203 is 4.05.
  • the present invention may be applied to the third and fourth embodiments.
  • the present invention may be applied to the third and fourth embodiments.
  • the relative dielectric constant of the layer between the conductor patch 301 and the conductor plate 401 is set to a value different from the relative dielectric constant of the layer between the conductor plates 401 and 402. Good.
  • the cutoff frequency band of the filter is calculated from the calculation result of FIG. Shift to the low frequency side.
  • the layers sandwiched between the conductor patch and the conductor plate of the waveguide are filled with different materials, and at the same time, the electrically insulated conductor is used as a material that fills these layers.
  • a material in which the material constant of the space between them, that is, the relative permittivity and the relative permeability depend on the DC voltage value is used.
  • FIG. 24 is a diagram showing a state in which a DC voltage source 2401 is connected to the filter shown in FIG.
  • the DC voltage source 2401 applies a DC voltage between the conductor plates 401 and 402.
  • the conductor plates 401 and 402 are electrically insulated.
  • the conductor patches 301 and 302 are electrically insulated, as a material that fills the space 2201 between the conductor patches 301 and 302, a material whose relative dielectric constant depends on the voltage value applied from the DC voltage source 2401. , And the applied voltage is controlled by the DC voltage source 2401, so that the cut-off frequency band shown in FIG. 23 can be controlled.
  • the present invention may be applied to the fourth embodiment.
  • a material whose relative dielectric constant depends on a DC voltage is used as a material that fills the space between the conductor patch 301 and the conductor plate 401.
  • a DC voltage may be applied between the two.
  • FIG. 25 is a cross-sectional view showing a configuration in which the filter described in the first to sixth embodiments is mounted on a printed circuit board.
  • the filter described in the first to sixth embodiments is realized on a microstrip line type waveguide in a printed circuit board and a parallel plate type waveguide used as a power ground plane pair. ing.
  • 2701 is an LSI driver
  • 2702 is an LSI receiver
  • 2703 is a microstrip
  • 2704 is a ground plane
  • 2705 is a power plane
  • 2706 is a dielectric material for a printed circuit board.
  • unit cells 2707 are periodically arranged to remove specific frequency components of signals transmitted on the microstrip line, and further, specific frequency components of power supply noise transmitted between the power supply ground plane pairs are removed. Therefore, the unit cells 2708 are periodically arranged.
  • the present invention can be applied to a filter using a waveguide structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 フィルターは、信号が伝搬する空間の少なくとも上下方向に導体板(401,402)が配置された導波路(405)と、導波路(405)上に周期的に配置された1つ以上のユニットセル(309)とを有し、ユニットセル(309)は、互いに平行に配置された1枚以上の板状の導体パッチ(301~304)と、少なくとも1枚以上の導体パッチ(301~304)と接続され、導体パッチ(301~304)と垂直の方向に突出する1本以上の導体ポスト(305~307)とからなり、導体ポスト(305~307)は、導波路(405)の少なくとも1つの導体板と接続され且つ他の導体板と絶縁される。

Description

フィルター、プリント回路基板およびノイズ抑制方法
 本発明は、複数の導体板により進行方向断面の周囲を囲まれるか、あるいは進行方向断面が部分的に開放端となっている導波路を用いて、周波数選択型ノイズ抑制効果、フィルター効果を実現することができるフィルター、プリント回路基板およびノイズ抑制方法に関するものである。
 平行平板導体対などの複数の導体板に挟まれるか周囲を囲まれる構造体は、導体板と平行な方向に電磁波を伝播させることが可能なため、電気回路の電源系、導波路や空洞共振器、フィルター、漏れ波アンテナ等に応用することが可能である。このような構造をフィルターとして用いる場合には、特定の周波数帯域にわたって電磁波の伝播を遮断したり、透過させたりするための構造的工夫がなされる。広い周波数帯域にわたって電磁波の伝播を遮断させる方法として、EBG(Electromagnetic Band Gap)構造が近年注目されている。
 以下では、このEBG構造を適用した導波路として有名な構造として、文献「O.Ramahi,S.Shahparnia and B.Mohajer-Irvani,“TOWARDS NEW PARADIGMS IN NOISE MITIGATION IN AND FROM PRINTED CIRCUIT BOARDS USING METALLO-DIELECTRIC ELECTROMAGNETIC BAND GAP STRUCTURES”, EMC Europe 2004 (6th International Symposium on EMC), September 6-10 2004,ISBN:90-6144-990-1,p.372-377」に開示された平行平板型導波路構造を例に挙げて説明する。図26と図27は、平行平板導体間の空間にマッシュルーム型EBG構造を適用した構造を、3次元直交座標系内に示した図である。図26はEBG構造をxz平面で切断したときの断面図、図27はEBC構造を図26のz=hの位置においてxy平面で切断したときの断面図である。101,102は互いに平行な2つの導体板である。図26、図27の例では、導体板101の下面の位置をz=0とし、導体板102の上面の位置をz=h+pとし、導体パッチ103の上面の位置をz=hとしている。また、図27における左下の隅をx=0、y=0としている。
 導体板101と102で挟まれた空間に、xy方向に電磁波107を伝播させる導波路構造106が形成される。108は電磁波発生源である。LSIも電磁波発生源108の一例として含まれる。導体パッチ103は、周期配置ビア104によって導体板102に周期的に接続されており、且つ2つの導体板101と102に挟まれている。図26、図27の構造を用いることにより、導体板101と102との間(0<z<h+p)をxy平面の任意の方向に伝播するはずの電磁波107は、特定の周波数帯域において、導体パッチ103がある領域を伝播することがほとんどできない。
 何故なら、導体板101と導体パッチ103との間の容量Cpatchと、導体パッチ103の直下のビアのインダクタンスLviaの直列共振周波数2π/(Lvia×Cpatch)1/2で見積もられる周波数帯域で、周期的に配置された導体パッチ103毎に共振現象が生じるため、導体板101と導体板102との間を電磁波107が伝播することが困難になるからである。したがって、図26、図27に示したEBC構造を電源グランドプレーン間等に適用することにより、特定の周波数帯域における電源ノイズを抑制可能な実装回路設計が可能となる。
 また、特表2007-522735号公報には、導体間の誘電体の誘電率を調整可能な装置の構成が記載されている。
 上述のように、文献「O.Ramahi,S.Shahparnia and B.Mohajer-Irvani,“TOWARDS NEW PARADIGMS IN NOISE MITIGATION IN AND FROM PRINTED CIRCUIT BOARDS USING METALLO-DIELECTRIC ELECTROMAGNETIC BAND GAP STRUCTURES”, EMC Europe 2004 (6th International Symposium on EMC), September 6-10 2004,ISBN:90-6144-990-1,p.372-377」に開示されたマッシュルーム型EBG構造を導波路の内部に用いることにより、特定の周波数帯域における帯域阻止フィルターを実現することができる。例えばマッシュルーム型EBG構造をプリント回路基板の電源グランドプレーン対へ応用することにより、電源系のスイッチングノイズや信号ビアから漏れる電磁ノイズを遮断可能な実装回路構造を実現することができる。しかしながら、上記マッシュルーム型EBG構造では、特定の単一の周波数帯域の電磁波の伝搬を阻止することしかできず、様々な周波数帯域について電磁波の伝搬を阻止することはできないという問題点があった。
 また、特表2007-522735号公報によれば、導体間の誘電体の誘電率を調整可能なので、装置の電気的特性を制御することが可能である。ただし、特表2007-522735号公報に記載された装置の構造は、アンテナに関するものであって、フィルターにおいて上記の問題点を解決するものではなかった。
 本発明は、上記課題を解決するためになされたもので、様々な周波数帯域について電磁波の伝搬を阻止することができるフィルター、プリント回路基板およびノイズ抑制方法を提供することを目的とする。
 本発明のフィルターは、信号が伝搬する空間の少なくとも上下方向に導体が配置され、信号伝搬方向の少なくとも一箇所以上の箇所において対向する導体間に信号が供給され、信号伝搬方向の他の一箇所以上の箇所において対向する導体間から信号が出力される導波路と、この導波路上に周期的に配置された1つ以上のユニットセルとを有し、各ユニットセルは、互いに平行に配置された1枚以上の板状の導体パッチと、少なくとも1枚以上の導体パッチと接続された1本以上の導体ポストとからなり、各ユニットセルから突出した前記導体ポストは、前記導波路の少なくとも1つの導体と接続され且つ前記導波路の他の導体と絶縁されることを特徴とするものである。
 また、本発明のプリント回路基板は、上記のフィルターを有することを特徴とするものである。
 また、本発明は、信号が伝搬する空間の少なくとも上下方向に導体が配置され、信号伝搬方向の少なくとも一箇所以上の箇所において対向する導体間に信号が供給され、信号伝搬方向の他の一箇所以上の箇所において対向する導体間から信号が出力される導波路を用いたノイズ抑制方法において、互いに平行に配置された1枚以上の板状の導体パッチと、少なくとも1枚以上の導体パッチと接続された1本以上の導体ポストとからなるユニットセルを、前記導波路上に周期的に配置し、各ユニットセルから突出した前記導体ポストは、前記導波路の少なくとも1つの導体と接続され且つ前記導波路の他の導体と絶縁されることを特徴とするものである。
 本発明によれば、導波路上に1つ以上のユニットセルを周期的に配置し、各ユニットセルを、互いに平行に配置された1枚以上の板状の導体パッチと、少なくとも1枚以上の導体パッチと接続された1本以上の導体ポストとから構成し、各ユニットセルから突出した導体ポストを、導波路の少なくとも1つの導体と接続し且つ他の導体と絶縁することにより、広帯域かつ様々な遮断周波数帯域を有するフィルターを実現することができる。本発明のフィルターの遮断周波数帯域は、導体パッチや導体ポストの組み合わせ、各ユニットセルの導体パッチ間の空間の比誘電率や比透磁率、導体パッチと導波路の導体間の空間の比誘電率や比透磁率、導波路内部の空間の比誘電率や比透磁率によって適宜設定することが可能である。したがって、本発明では、実装の制約条件により複数の組み合わせから適当な構造を選択することが可能となり、フィルターの実装設計の幅を広げることができる。
図1は、本発明の第1実施例に係るユニットセルの構造を示す斜視図である。 図2は、本発明の第1実施例に係る導波路においてユニットセルを搭載していない状態における斜視図である。 図3は、図2に示した導波路と図1に示したユニットセルの位置関係および接続関係を表す断面図である。 図4は、本発明の第1実施例においてユニットセルを周期的に複数搭載したフィルターの平面図である。 図5は、本発明の第1実施例においてユニットセルを周期的に複数搭載したフィルターの断面図である。 図6は、本発明の第1実施例に係るフィルターの別の構造例を示す断面図である。 図7は、本発明の第1実施例に係るフィルターの別の構造例を示す断面図である。 図8は、本発明の第1実施例に係るフィルターの別の構造例を示す断面図である。 図9は、本発明の第1実施例に係るフィルターの別の構造例を示す断面図である。 図10は、本発明の第1実施例に係るフィルターの別の構造例を示す断面図である。 図11は、本発明の第2実施例に係るユニットセルの構造を示す斜視図である。 図12は、本発明の第2実施例に係る導波路においてユニットセルを搭載していない状態における斜視図である。 図13は、図12に示した導波路と図11に示したユニットセルの位置関係および接続関係を表す断面図である。 図14は、本発明の第2実施例においてユニットセルを周期的に複数搭載したフィルターの平面図である。 図15は、図14のフィルターに対する給電部と負荷の接続を説明するための図である。 図16は、本発明の第2実施例に係るフィルターの入出力間結合率特性を示す図である。 図17A-図17Cは、本発明の第3実施例に係るユニットセルの平面図である。 図17D-図17Fは、本発明の第3実施例に係るユニットセルと平行平板導波路との接続関係を示す断面図である。 図18は、本発明の第3実施例に係るフィルターの入出力間結合率特性を示す図である。 図19は、本発明の第4実施例に係るユニットセルの構造を示す斜視図である。 図20は、平行平板導波路と図19に示したユニットセルの位置関係および接続関係を表す断面図である。 図21は、本発明の第4実施例に係るフィルターの入出力間結合率特性を示す図である。 図22は、本発明の第5実施例に係るフィルターの断面図である。 図23は、図14と図22のフィルターの入出力間結合率特性を示す図である。 図24は、本発明の第6実施例において導波路と直流電圧源との接続を説明するための図である。 図25は、本発明の第7実施例においてプリント回路基板にフィルターを搭載した構成を示す断面図である。 図26は、平行平板導波路に適用したマッシュルーム型EBG構造をxz平面で切断したときの断面図である。 図27は、平行平板導波路に適用したマッシュルーム型EBG構造をxy平面で切断したときの断面図である。
[第1実施例]
 以下、本発明の実施例について図面を参照して説明する。図1は、本発明の第1実施例に係るユニットセルの構造を示す斜視図である。309はユニットセル全体を表している。ユニットセル309は、N層(Nは1以上の自然数)の導体パッチ301~304をM個(Mは1以上の自然数)の導体ポスト305~307が垂直に貫通した構造となっている。301,302,303,304は、それぞれ第一導体パッチ、第二導体パッチ、第三導体パッチ、第N導体パッチを表している。305,306,307は、それぞれ第一導体ポスト、第二導体ポスト、第M導体ポストを表している。
 図1における310は座標系である。本実施例では、各導体パッチ301~304は、xy平面に平行であるとする。なお、本実施例では、Nを4以上、Mを3以上としているが、Nは4より小さい数でもよく、Mは3より小さい数でもよい。
 308は導体パッチ301~304と導体ポスト305~307との接続部である。図1では、接続部308を1箇所のみ示しているが、当然、ユニットセル309内には複数の接続部308が存在する。なお、各導体ポスト305~307は、導体パッチ301~304と電気的に直接接続されている場合もあれば、導体パッチ301~304に設けられた図示しないクリアランスホールによって導体パッチ301~304と絶縁されている場合もある。
 図2は、本発明の第1実施例に係る導波路においてユニットセルを搭載していない状態における斜視図である。405はユニットセルを搭載していない導波路の全体を表している。導波路405の進行方向はy方向としてある。導波路405の断面寸法は、z方向の厚みがh、x方向の幅がwとなっている。
 401は導波路405の上面に配置された、xy平面と平行な導体壁である導体板、402は導波路405の下面に配置された、xy平面と平行な導体壁である導体板である。したがって、導体板401と402は対向して配置されている。403は図2において手前側に配置された、yz平面と平行な導波路壁面、404は図2にいて奥側に配置された、yz平面と平行な導波路壁面である。
 導波路405が平行平板型導波路の場合、導波路壁面403,404は開放壁である。一方、導波路405が矩形導波路の場合、導波路壁面403,404は対向する導体壁である。さらに、平行平板導体の対向する導体間を、1つ以上の導体ポストで導通した場合も導波路構造が形成される。プリント回路基板内で広く用いられるマイクロストリップ線路構造やストリップ線路構造も当然、導波路構造と見なすことができる。
 図3は、図2に示した導波路405と図1に示したユニットセル309の位置関係および接続関係を表す断面図である。図3は、より具体的には、図2の導波路405の導体板401と402に、ユニットセル309から突き出した導体ポスト305~307を接続した構造を、導波路の側面方向、すなわちx方向から眺めた図である。
 ユニットセル309から突き出した導体ポスト305~307は、接続部501において導体板401と電気的に接続されている。図3では、接続部501を1箇所のみ示しているが、当然、1つのユニットセル309あたり、複数の接続部501が存在する。各導体ポスト305~307は、接続部501において導体板401と電気的に接続されている場合もあれば、導体板401に設けられた図示しないクリアランスホールによって導体板401と絶縁されている場合もある。
 同様に、ユニットセル309から突き出した導体ポスト305~307は、接続部502において導体板402と電気的に接続されている。図3では、接続部502を1箇所のみ示しているが、当然、1つのユニットセル309あたり、複数の接続部502が存在する。各導体ポスト305~307は、接続部502において導体板402と電気的に接続されている場合もあれば、導体板402に設けられた図示しないクリアランスホールによって導体板402と絶縁されている場合もある。
 図4は本実施例においてユニットセル309を周期的に複数搭載したフィルターの平面図、図5は図4のフィルターの断面図である。図4はフィルターを上から眺めた図であり、図5は図4のフィルターをyz平面で切断したときの断面図である。図4において、各ユニットセル309は、x方向に幅c、y方向に長さaの寸法を有している。各ユニットセル309間のx方向の間隔はd、y方向の間隔はbである。つまり、ユニットセル309は、x方向の周期が(c+d)でy方向の周期が(a+b)となるように周期的に配置されている。そして、各ユニットセル309は、図3で説明した接続関係を満たすように導波路405に接続されている。
 図6、図7、図8はそれぞれ本実施例に係るフィルターの別の構造例を示す断面図である。図6の例は、各ユニットセル309の導体パッチの一部(図6の例では導体パッチ304)を、導波路405の内部、すなわち導体板401と402との間に配置したものである。図7の例では、一部のユニットセル309が導波路405を下側から貫通するように配置されている。
 また、図1、図3~図7の例では、各ユニットセル309の導体パッチ301~304が同一の形状をしていて、導体ポスト305~307の長さも全て同一になっていた。これに対して、図8に示すように、各ユニットセル309の導体パッチ301~304が異なる形状をしていてもよいし、導体ポスト305~307が異なる長さになっていてもよい。
 以上から明らかなように、必ずしも全ての導体ポストが導波路405を貫通する必要はない。さらに、各導体パッチ301~304間の空間、および導波路405内部の空間を、特定の比誘電率と比透磁率を有する材料で満たすようにしてもよい。例えば本実施例のフィルターをプリント回路基板に実装する場合、FR(flame retardant)-4等の比誘電率4.3程度の媒質で導体以外の空間が占められることになる。
 さらに、図9に示すように、各ユニットセル309の導体パッチ301~304間の空間の層2501、導体パッチ301~304と導体板401,402間の空間の層2502、および導波路405内部の空間の層2503を、層毎に比誘電率が異なる材料もしくは層毎に比透磁率が異なる材料で満たすようにしてもよい。さらに、図10に示すように、複数のユニットセル309を、導波路405を上側と下側から貫通するように配置してもよい。
 以上のように、本実施例によれば、広帯域かつ様々な遮断周波数帯域を有するフィルターを実現することができる。フィルターの遮断周波数帯域は、導体パッチ301~304や導体ポスト305~307の組み合わせ、各ユニットセル309の導体パッチ301~304間の空間の比誘電率や比透磁率、導体パッチ301~304と導体板401,402間の空間の比誘電率や比透磁率、導波路405内部の空間の比誘電率や比透磁率によって適宜設定することが可能である。したがって、本実施例では、実装の制約条件により複数の組み合わせから適当な構造を選択することが可能となり、フィルターの実装設計の幅を広げることができる。
[第2実施例]
 次に、本発明の第2実施例に係るフィルターを、図面および計算例を参照して説明する。なお、本実施例は、2つの遮断周波数帯域を有するバンドストップフィルターを具現化する例を示すものである。図11は、本発明の第2実施例に係るユニットセルの構造を示す斜視図である。
 ユニットセル1109は、幅がL1で長さがL2の二枚の矩形の導体パッチ301,302に対して、長さがh1の導体ポスト305と長さがh2の導体ポスト306が接続された構造となっている。なお、導体ポスト305は、導体パッチ302の4隅の一点1101において導体パッチ302と電気的に接続されており、且つ導体パッチ302に対して垂直にz方向に沿って突き出ている。導体ポスト306は、導体パッチ301の中央点1102において導体パッチ301と電気的に接続されており、且つ導体パッチ302の中央点1103に設けられたクリアランスホールによって導体パッチ302と絶縁されている。
 図12は、本発明の第2実施例に係る導波路においてユニットセルを搭載していない状態における斜視図である。導波路1201は、x方向の幅がwx、y方向の長さがwyである2つの導体401,402が距離h離れて対向して配置される平行平板型導波路構造となっている。yz平面と平行な導波路壁1203,1204、およびxz平面と平行な導波路壁1205,1206は開放壁となっている。
 図13は、図12に示した導波路1201と図11に示したユニットセル1109の位置関係および接続関係を表す断面図である。図13は、より具体的には、図12の導波路1201の導体板401と402に、ユニットセル1109から突き出した導体ポスト305,306を接続した構造を、導波路の側面方向、すなわちx方向から眺めた図である。
 ユニットセル1109から突き出した導体ポスト305は、接続部1301において導体板401と電気的に接続されている。ユニットセル1109から突き出した導体ポスト306は、接続部1303において導体板402と電気的に接続されている。また、導体ポスト306は、導体板401の点1302に設けられたクリアランスホールによって導体板401と絶縁されている。つまり、導体ポスト306は、導波路1201から遠い側にある導体パッチ301と接続され、導波路1201に近い側にある導体パッチ302と絶縁され、この導体パッチ302に面した側の導波路1201の導体板401と絶縁され、導体パッチ302に面していない側の導体板402と接続されている。また、導体ポスト305は、導体パッチ301と絶縁され、導体パッチ302と接続され、この導体パッチ302に面した側の導波路1201の導体板401と接続され、導体パッチ302に面していない側の導体板402と絶縁されている。
 以上の接続関係にあるユニットセル1109を、図4、図5の例と同様に導波路上に周期的に配置することにより、接近した2つの遮断周波数帯域を有するバンドストップフィルターを実現することができる。以下に、このフィルターの特性の計算例を、図面を参照にして示す。
 図14は、本実施例においてユニットセル1109を周期的に複数搭載したフィルターの平面図である。図14では左下を原点Oとしている。図14の例では、x方向の幅が100mm、y方向の長さが70mmの導波路1201に対して、一辺が5mmの正方形導体パッチ用いたユニットセル1109を、x方向およびy方向共に10mmの周期で配置している。各ユニットセル1109は、図13で説明した接続関係を満たすように導波路1201に接続されている。図14において、1401は導波路の入力ポート、1402は導波路の出力ポートである。
 ユニットセル1109および導波路1201の物理パラメータとして、導体ポスト305の長さh1を0.2mm、導体ポスト306の長さh2を1.4mm、導波路1201のz方向の厚みhを1.0mmとする。さらに、各導体パッチ301,302間の空間、導体パッチ301,302と導体板401,402間の空間、および導波路1201内部の空間は、比誘電率が4.05、比透磁率が1.0、誘電正接tanδが0.025の媒質で満たされているとする。
 図15に示すように、導波路の入力ポート1401において導体板401と402の間に給電部である電流源1501を接続していることを想定し、導波路の出力ポート1402において導体板401と402の間に負荷となる50Ωの抵抗1502を接続していることを想定して、図14のフィルターの伝搬特性を多層導体の等価回路解析手法を用いて解析し、計算結果として入出力間の結合率(S21)を得た。なお、電流源1501は50Ωの内部抵抗を含む。また、多層導体の等価回路解析手法は、例えば文献「小林他,“Analysis of multilayered power distribution systems using SPICE”,EMCJ,2005年10月」に記載されている。
 等価回路解析手法を用いて計算した、図14のフィルターの入出力間結合率特性を図16に示す。図16によれば、図14のフィルターの伝搬特性は、2GHz近辺と6GHz近辺で結合率が著しく低下していることが分かる。したがって、本実施例の導波路構造は、複数の遮断周波数帯域を有するバンドストップフィルターとして有効であることが分かる。
[第3実施例]
 次に、本発明の第3実施例に係るフィルターを、図面および計算例を参照して説明する。図17A、図17B、図17Cはそれぞれユニットセル1701,1702,1703の平面図、図17D、図17E、図17Fはそれぞれユニットセル1701,1702,1703と平行平板導波路との接続関係を示す断面図である。第1実施例、第2実施例と同様に、平行平板導波路は導体板401,402を有する。
 図17A、図17B、図17Cに示すように、ユニットセル1701,1702,1703に使用される導体パッチ301は、いずれも一辺が5mmの正方形である。ユニットセル1701,1702,1703と平行平板導波路との間の距離は0.2mmである。平行平板導波路の厚みは1mmである。
 ユニットセル1701では、導体パッチ301の中心点に1つの導体ポスト305が接続されている。ユニットセル1702では、導体パッチ301の2辺のそれぞれの中点近傍に導体ポスト305,306が接続されている。ユニットセル1703では、導体パッチ301の4隅に導体ポスト305~307,311が接続されている。導体ポスト305~307,311は、いずれも導体パッチ301に面した側の平行平板導波路の導体板401とは接続されておらず、導体パッチ301に面していない側の導体板402と接続されている。
 以上の接続関係にあるユニットセル1701,1702,1703を、図4、図5の例と同様に導波路上に周期的に配置する。ユニットセル1701,1702,1703を周期的に配置したフィルターの入出力間結合率特性を上述の等価回路解析手法を用いて計算した結果を図18に示す。図18において、S1701はユニットセル1701を周期的に配置したフィルターの特性、S1702はユニットセル1702を周期的に配置したフィルターの特性、S1703はユニットセル1703を周期的に配置したフィルターの特性である。
 図18によれば、いずれのユニットセル1701,1702,1703を用いても、導波路はバンドストップフィルターとして機能することが分かる。ただし、ビア(導体ポスト)の配置により周波数特性が変化する。導体ポスト305を導体パッチ301の中央に1本配置したユニットセル1701の場合よりも、導体パッチ301の2辺に導体ポスト305,306を1本ずつ配置したユニットセル1702の場合の方が、より高い周波数側に遮断周波数帯域が生じることが分かる。
 さらに、ユニットセル1701,1702の場合よりも、導体パッチ301の4隅に導体ポスト305~307,311を配置したユニットセル1703の場合の方が、遮断周波数帯域が高周波側にシフトし、尚且つ遮断周波数帯域が広くなることが分かる。
[第4実施例]
 次に、本発明の第4実施例に係るフィルターを、図面および計算例を参照して説明する。図19は、本発明の第4実施例に係るユニットセルの構造を示す斜視図である。ユニットセル1909は、二枚の矩形の導体パッチ301,302に対して導体ポスト305が接続された構造となっている。導体ポスト305は、接続部1904において導体パッチ301と電気的に接続され、また接続部1905において導体パッチ302と電気的に接続されている。
 図20は、平行平板導波路2009と図19に示したユニットセル1909の位置関係および接続関係を表す断面図である。他の実施例と同様に、平行平板導波路2009は、導体板401,402を有する。図20の例では、ユニットセル1909の導体パッチ302が、平行平板導波路2009の内部、すなわち導体板401と402との間に配置されている。
 ユニットセル1909から突き出した導体ポスト305は、接続部2004において導体板402と電気的に接続されている。また、導体ポスト305は、導体板401の点2003に設けられたクリアランスホールによって導体板401と絶縁されている。つまり、導体ポスト305は、導体パッチ301に面した側の平行平板導波路2009の導体板401と絶縁され、導体パッチ301に面していない側の導体板402と接続されている。
 以上の接続関係にあるユニットセル1909を、図4、図5の例と同様に導波路上に周期的に配置する。ユニットセル1909を周期的に配置したフィルターの入出力間結合率特性を有限要素法を用いて計算した結果を図21に示す。ここでは、導体パッチ301,302が一辺が9mmの正方形で、平行平板導波路2009の厚みhが0.46mm、導体ポスト305の長さh2が0.52mm、導体板401と導体パッチ302の間隔が0.06mmであり、導体パッチ301と導体板401間の空間および平行平板導波路2009の内部の空間が比誘電率4.188、誘電正接0.02の誘電体材料で満たされているとする。図21によれば、本実施例の導波路構造がバンドストップフィルターとして機能していることが分かる。
[第5実施例]
 次に、本発明の第5実施例に係るフィルターを、図面および計算例を参照して説明する。本実施例においては、ユニットセルおよび導波路、導体ポストと導波路との接続関係は、図11~図14で示したとおりであるが、対向する導体パッチ間の材料定数を図11~図14とは異なる値とする。
 図22は本発明の第5実施例に係るフィルターの断面図である。本実施例では、導体パッチ301と302間の空間を2201、導体パッチ302と導体板401間の空間を2202、導体板401と402間の空間を2203とする。ここで、空間2201のみ比誘電率を10とし、空間2202,2203の比誘電率を4.05とした場合のフィルターと、空間2202のみ比誘電率を10とし、空間2201,2203の比誘電率を4.05とした場合のフィルターの2種類が存在するものとする。これらのフィルターを、図14のフィルター、すなわち導体以外の全ての層が比誘電率の4.05の材料で満たされているフィルターと比較する。
 フィルターの入出力間結合率特性を上述の等価回路解析手法を用いて計算した結果を図23に示す。図23において、S1410は図14のフィルターの特性、S2204は空間2201のみ比誘電率を10とし、空間2202,2203の比誘電率を4.05としたフィルターの特性、S2205は空間2202のみ比誘電率を10とし、空間2201,2203の比誘電率を4.05としたフィルターの特性である。
 図23によれば、空間2201のみ比誘電率を10とした場合、2つの遮断周波数帯域が図14のフィルターの場合よりも低周波側にシフトしていることが分かる。空間2202のみ比誘電率を10とした場合にも、同様に2つの遮断周波数帯域が図14のフィルターの場合よりも低周波側にシフトしているが、同時に高周波側の遮断周波数帯域が広くなっていることも分かる。
 なお、本実施例では、図11~図14の構造を用いて、特定の層の比誘電率がその他の層の比誘電率と異なる場合を示したが、このような比誘電率の設定を上記の第3実施例、第4実施例に適用してもよいことは言うまでもない。例えば第3実施例の図17の構成に適用する場合は、導体パッチ301と導体板401間の層の比誘電率を、導体板401と402間の層の比誘電率と異なる値にすればよい。例えば導体パッチ301と導体板401間の層の比誘電率を10、導体板401と402間の層の比誘電率を4.05とした場合、フィルターの遮断周波数帯域は図18の計算結果よりも低周波側にシフトする。
[第6実施例]
 次に、本発明の第6実施例に係るフィルターを図面を参照して説明する。本実施例においては、第5実施例と同様に、導体パッチや導波路の導体板によって挟まれた各層を異なる材料で満たすと同時に、これらの各層を満たす材料として、電気的に絶縁された導体間の空間の材料定数、すなわち比誘電率や比透磁率が直流電圧値に依存する材料を用いる。以上の構造とすることにより、本実施例では、導体間に印加する直流電圧により、遮断周波数帯域を変化させることが可能なアクティブフィルターを実現することができる。
 図24は、図22に示したフィルターに対して、直流電圧源2401を接続した状態を示す図である。直流電圧源2401は、導体板401と402との間に直流電圧を印加する。導体板401と402は、電気的に絶縁されていることは言うまでもない。ここで、導体パッチ301と302は電気的に絶縁されているため、導体パッチ301と302間の空間2201を満たす材料として、比誘電率が直流電圧源2401から印加される電圧値に依存する材料を使用し、印加する電圧を直流電圧源2401で制御することにより、図23に示した遮断周波数帯域を制御することができる。
 なお、本実施例では、図22の構造を用いて、特定の層の比誘電率を直流電圧源2401により制御する例を示したが、このような比誘電率の制御を第3実施例、第4実施例に適用してもよいことは言うまでもない。第3実施例の図17の構成に適用する場合は、導体パッチ301と導体板401間の空間を満たす材料として、比誘電率が直流電圧に依存する材料を使用し、導体板401と402との間に直流電圧を印加すればよい。
[第7実施例]
 図25は、プリント回路基板に第1実施例~第6実施例で説明したフィルターを搭載した構成を示す断面図である。図25の例では、第1実施例~第6実施例で説明したフィルターを、プリント回路基板内のマイクロストリップ線路型導波路、および電源グランドプレーン対として用いられる平行平板型導波路上に実現している。
 図25において、2701はLSIドライバー、2702はLSIレシーバー、2703はマイクロストリップ、2704はグランドプレーン、2705は電源プレーン、2706はプリント回路基板用の誘電体材料である。本実施例では、マイクロストリップ線路上を伝わる信号の特定の周波数成分を除去するためにユニットセル2707を周期的に配置し、さらに電源グランドプレーン対間を伝わる電源ノイズの特定の周波数成分を除去するためにユニットセル2708を周期的に配置している。
 以上、上記実施例を参照して本発明を説明したが、本発明は、上記実施例だけに限定されるものではない。本発明の構成や詳細は、上記実施例を適宜組み合わせて用いてもよく、さらに本発明の請求の範囲内において、適宜変更することもできる。
 この出願は、2008年5月27日に出願された日本出願特願2008-137865号を基礎とする優先権を主張し、その開示の内容を全てここに取り込む。
 本発明は、導波路構造を用いたフィルターに適用することができる。

Claims (18)

  1.  信号が伝搬する空間の少なくとも上下方向に導体が配置され、信号伝搬方向の少なくとも一箇所以上の箇所において対向する導体間に信号が供給され、信号伝搬方向の他の一箇所以上の箇所において対向する導体間から信号が出力される導波路と、
     この導波路上に周期的に配置された1つ以上のユニットセルとを有し、
     各ユニットセルは、
     互いに平行に配置された1枚以上の板状の導体パッチと、
     少なくとも1枚以上の導体パッチと接続された1本以上の導体ポストとからなり、
     各ユニットセルから突出した前記導体ポストは、前記導波路の少なくとも1つの導体と接続され且つ前記導波路の他の導体と絶縁されることを特徴とするフィルター。
  2.  請求項1記載のフィルターにおいて、
     各ユニットセルは、前記導波路の外側に配置された2枚の導体パッチと、2つの群の導体ポストとからなり、
     第1群の前記導体ポストは、前記導波路から遠い側にある第1の導体パッチと接続され、前記導波路に近い側にある第2の導体パッチと絶縁され、この第2の導体パッチに面した側の導波路の導体と絶縁され、前記第2の導体パッチに面していない側の導波路の導体と接続され、
     第2群の前記導体ポストは、前記第1の導体パッチと絶縁され、前記第2の導体パッチと接続され、この第2の導体パッチに面した側の導波路の導体と接続され、前記第2の導体パッチに面していない側の導波路の導体と絶縁されることを特徴とするフィルター。
  3.  請求項2記載のフィルターにおいて、
     前記導体パッチは、平面視四角形であり、
     前記2つの群の導体ポストは、1本の第1群の導体ポストと1本の第2群の導体ポストとから構成され、
     前記第1群の導体ポストは、前記導体パッチの中央付近に配置され、
     前記第2郡の導体ポストは、前記導体パッチの隅近辺に配置されることを特徴とするフィルター。
  4.  請求項1記載のフィルターにおいて、
     各ユニットセルは、前記導波路の外側に配置された1枚の導体パッチと、1本の導体ポストとからなり、
     前記導体ポストは、前記導体パッチと接続され、この導体パッチに面した側の導波路の導体と絶縁され、前記導体パッチに面していない側の導波路の導体と接続されることを特徴とするフィルター。
  5.  請求項1記載のフィルターにおいて、
     各ユニットセルは、前記導波路の外側に配置された平面視四角形の1枚の導体パッチと、2本の導体ポストとからなり、
     前記2本の導体ポストは、前記導体パッチの対向する2辺の中点付近でそれぞれ前記導体パッチと接続され、この導体パッチに面した側の導波路の導体と絶縁され、前記導体パッチに面していない側の導波路の導体と接続されることを特徴とするフィルター。
  6.  請求項1記載のフィルターにおいて、
     各ユニットセルは、前記導波路の外側に配置された平面視四角形の1枚の導体パッチと、4本の導体ポストとからなり、
     前記4本の導体ポストは、前記導体パッチの4隅付近でそれぞれ前記導体パッチと接続され、この導体パッチに面した側の導波路の導体と絶縁され、前記導体パッチに面していない側の導波路の導体と接続されることを特徴とするフィルター。
  7.  請求項1記載のフィルターにおいて、
     各ユニットセルは、2枚以上の前記導体パッチを有し、1枚以上の第1の導体パッチは、前記導波路の外側に配置され、1枚以上の第2の導体パッチは、前記導波路の内側に配置されることを特徴とするフィルター。
  8.  請求項7記載のフィルターにおいて、
     各ユニットセルは、1本以上の前記導体ポストを有し、
     この導体ポストは、前記第1、第2の導体パッチと接続され、前記第1の導体パッチに面した側の導波路の導体と絶縁され、前記第1の導体パッチに面していない側の導波路の導体と接続されることを特徴とするフィルター。
  9.  請求項3記載のフィルターにおいて、
     前記導波路は、平行平板導波路であることを特徴とするフィルター。
  10.  請求項4記載のフィルターにおいて、
     前記導波路は、平行平板導波路であることを特徴とするフィルター。
  11.  請求項5記載のフィルターにおいて、
     前記導波路は、平行平板導波路であることを特徴とするフィルター。
  12.  請求項6記載のフィルターにおいて、
     前記導波路は、平行平板導波路であることを特徴とするフィルター。
  13.  請求項7記載のフィルターにおいて、
     前記導波路は、平行平板導波路であることを特徴とするフィルター。
  14.  請求項1記載のフィルターにおいて、
     さらに、電圧値が可変な直流電圧源を有し、
     前記ユニットセルの導体パッチ間の空間と前記導波路の導体間の空間を埋める材料のうち少なくとも一方の空間を埋める材料は、材料特性が直流電圧依存性を有し、
     前記直流電圧源は、互いに絶縁された前記導体パッチ間または互いに絶縁された前記導体間に直流電圧を印加することを特徴とするフィルター。
  15.  請求項14記載のフィルターにおいて、
     前記導波路は、平行平板導波路であり、
     前記直流電圧依存性を有する材料を挟む一方の導体は、前記導波路の一方の導体と同電位であり、この直流電圧依存性を有する材料を挟む他方の導体は、前記導波路の他方の導体と同電位であり、
     前記直流電圧源は、前記導波路の互いに絶縁された導体間に直流電圧を印加することを特徴とするフィルター。
  16.  請求項1記載のフィルターにおいて、
     各ユニットセルにおいて前記1枚以上の導体パッチの形状が異なることを特徴とするフィルター。
  17.  請求項1記載のフィルターを有することを特徴とするプリント回路基板。
  18.  信号が伝搬する空間の少なくとも上下方向に導体が配置され、信号伝搬方向の少なくとも一箇所以上の箇所において対向する導体間に信号が供給され、信号伝搬方向の他の一箇所以上の箇所において対向する導体間から信号が出力される導波路を用いたノイズ抑制方法において、
     互いに平行に配置された1枚以上の板状の導体パッチと、少なくとも1枚以上の導体パッチと接続された1本以上の導体ポストとからなるユニットセルを、前記導波路上に周期的に配置し、
     各ユニットセルから突出した前記導体ポストは、前記導波路の少なくとも1つの導体と接続され且つ前記導波路の他の導体と絶縁されることを特徴とするノイズ抑制方法。
PCT/JP2009/059727 2008-05-27 2009-05-27 フィルター、プリント回路基板およびノイズ抑制方法 WO2009145237A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010514520A JP5454471B2 (ja) 2008-05-27 2009-05-27 フィルター、プリント回路基板およびノイズ抑制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-137865 2008-05-27
JP2008137865 2008-05-27

Publications (1)

Publication Number Publication Date
WO2009145237A1 true WO2009145237A1 (ja) 2009-12-03

Family

ID=41377108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059727 WO2009145237A1 (ja) 2008-05-27 2009-05-27 フィルター、プリント回路基板およびノイズ抑制方法

Country Status (2)

Country Link
JP (1) JP5454471B2 (ja)
WO (1) WO2009145237A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111297A1 (ja) * 2010-03-08 2011-09-15 日本電気株式会社 構造体、配線基板および配線基板の製造方法
JP2014027559A (ja) * 2012-07-27 2014-02-06 Toshiba Corp Ebg構造体および回路基板
JP5725032B2 (ja) * 2010-09-28 2015-05-27 日本電気株式会社 構造体及び配線基板
JP2015226091A (ja) * 2014-05-26 2015-12-14 日本電信電話株式会社 フィルタ
WO2017195739A1 (ja) * 2016-05-11 2017-11-16 日本電気株式会社 構造体および配線基板
WO2021034009A1 (en) * 2019-08-16 2021-02-25 Samsung Electronics Co., Ltd. Apparatus and printed circuit board including pcb embedded filter having via group patterns

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104211A (ja) * 2005-10-03 2007-04-19 Denso Corp アンテナ、無線装置、アンテナの設計方法、及びアンテナの動作周波数測定方法
JP2008022543A (ja) * 2006-06-14 2008-01-31 Mitsubishi Electric Corp 帯域阻止フィルタ
JP2008042233A (ja) * 2006-08-01 2008-02-21 Denso Corp 線路導波管変換器および無線通信装置
JP2008517493A (ja) * 2004-10-01 2008-05-22 デ,ロシェモント,エル.,ピエール セラミックアンテナモジュール及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517493A (ja) * 2004-10-01 2008-05-22 デ,ロシェモント,エル.,ピエール セラミックアンテナモジュール及びその製造方法
JP2007104211A (ja) * 2005-10-03 2007-04-19 Denso Corp アンテナ、無線装置、アンテナの設計方法、及びアンテナの動作周波数測定方法
JP2008022543A (ja) * 2006-06-14 2008-01-31 Mitsubishi Electric Corp 帯域阻止フィルタ
JP2008042233A (ja) * 2006-08-01 2008-02-21 Denso Corp 線路導波管変換器および無線通信装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111297A1 (ja) * 2010-03-08 2011-09-15 日本電気株式会社 構造体、配線基板および配線基板の製造方法
CN102792519A (zh) * 2010-03-08 2012-11-21 日本电气株式会社 结构、线路板和制造线路板的方法
US9357633B2 (en) 2010-03-08 2016-05-31 Nec Corporation Structure, wiring board, and method of manufacturing wiring board
JP5725032B2 (ja) * 2010-09-28 2015-05-27 日本電気株式会社 構造体及び配線基板
JP2014027559A (ja) * 2012-07-27 2014-02-06 Toshiba Corp Ebg構造体および回路基板
JP2015226091A (ja) * 2014-05-26 2015-12-14 日本電信電話株式会社 フィルタ
WO2017195739A1 (ja) * 2016-05-11 2017-11-16 日本電気株式会社 構造体および配線基板
WO2021034009A1 (en) * 2019-08-16 2021-02-25 Samsung Electronics Co., Ltd. Apparatus and printed circuit board including pcb embedded filter having via group patterns
US11284513B2 (en) 2019-08-16 2022-03-22 Samsung Electronics Co., Ltd. Apparatus and printed circuit board including PCB embedded filter having via group patterns

Also Published As

Publication number Publication date
JPWO2009145237A1 (ja) 2011-10-13
JP5454471B2 (ja) 2014-03-26

Similar Documents

Publication Publication Date Title
US9781832B2 (en) Laminated multi-conductor cable
JP5644769B2 (ja) サーフェイス通信装置
US8816936B2 (en) Antenna and printed-circuit board using waveguide structure
JP5695744B2 (ja) 電磁波伝搬装置
JP5454471B2 (ja) フィルター、プリント回路基板およびノイズ抑制方法
JP5725013B2 (ja) 構造体、配線基板および配線基板の製造方法
US10104765B2 (en) Printed wiring board and method of producing the same
CN102084538A (zh) 平行传导表面之间的间隙中的波导和传输线
CN103120038B (zh) 结构体和配线基板
US8907749B2 (en) Gigahertz common-mode filter for multi-layer planar structure
TW201010171A (en) Differential transmission line
WO2011152054A1 (ja) 配線基板及び電子装置
WO2010044276A1 (ja) 構造体、電子装置、及び配線基板
US8576027B2 (en) Differential-common mode resonant filters
JP5136131B2 (ja) 構造、プリント基板
CN103997201A (zh) 一种基于平面混合桥电磁带隙结构的电源分配网络
JP5126625B2 (ja) 小型フィルタリング構造
KR101838592B1 (ko) 다층기판을 이용한 적층구조를 갖는 서큘레이터
JP5542231B1 (ja) 多層回路基板
JP2016082308A (ja) 電子回路
CN103997200A (zh) 一种基于平面c-型桥电磁带隙结构的电源分配网络
CN110994172A (zh) 一种基于宽阻带低频多层频率选择表面的天线罩
JP2016136666A (ja) 伝送線路
EP1887648A1 (en) Microwave structure with housing
JP2021132296A (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754745

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514520

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754745

Country of ref document: EP

Kind code of ref document: A1