WO2009145076A1 - 画像処理装置、画像処理方法、及び画像処理プログラム - Google Patents
画像処理装置、画像処理方法、及び画像処理プログラム Download PDFInfo
- Publication number
- WO2009145076A1 WO2009145076A1 PCT/JP2009/059119 JP2009059119W WO2009145076A1 WO 2009145076 A1 WO2009145076 A1 WO 2009145076A1 JP 2009059119 W JP2009059119 W JP 2009059119W WO 2009145076 A1 WO2009145076 A1 WO 2009145076A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anisotropic
- region
- filter
- pixel
- image
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 139
- 238000003672 processing method Methods 0.000 title claims description 4
- 238000001914 filtration Methods 0.000 claims abstract description 17
- 238000009499 grossing Methods 0.000 claims abstract description 16
- 238000003384 imaging method Methods 0.000 claims description 20
- 210000000056 organ Anatomy 0.000 claims description 20
- 238000004364 calculation method Methods 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 10
- 230000000007 visual effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 72
- 230000008569 process Effects 0.000 description 64
- 230000009467 reduction Effects 0.000 description 30
- 238000010586 diagram Methods 0.000 description 17
- 210000004204 blood vessel Anatomy 0.000 description 16
- 210000004072 lung Anatomy 0.000 description 9
- 238000013500 data storage Methods 0.000 description 8
- 238000002595 magnetic resonance imaging Methods 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 210000004185 liver Anatomy 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000011946 reduction process Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/461—Displaying means of special interest
- A61B6/463—Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/24—Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10116—X-ray image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30061—Lung
Definitions
- the present invention relates to an image processing apparatus, an image processing method, and an image processing program, and more particularly to a technique for reducing image noise that is likely to occur in an X-ray CT image with a low irradiation X-ray dose and a magnetic resonance imaging image with a low magnetic field strength.
- Patent Document 1 discloses a technique for extracting a characteristic for each image portion and performing an enhancement process by selecting a filter function corresponding to the characteristic as an image enhancement process.
- a technique for image enhancement using an average value is disclosed.
- Patent Document 2 discloses a technique for separating an image into an edge portion and a flat portion and performing a smoothing process suitable for the characteristics of each image portion.
- JP 2006-167187 A Japanese Patent Laid-Open No. 10-283471
- Patent Document 1 is a technique related to image enhancement, there is a problem that high-frequency noise is also enhanced. Further, Patent Document 2 describes noise reduction, but it has not been considered that a blood vessel has a traveling direction. Further, Patent Document 2 has a problem that the amount of calculation increases because smoothing processing corresponding to the respective characteristics is performed on the edge portion and the flat portion.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a noise reduction technique that is effective even when the running direction of blood vessels is complicated (for example, blood vessels in a lung field).
- an image processing apparatus, method, and program according to the present invention perform noise removal processing using a filter having a shape corresponding to a partial characteristic of an image, and in particular, consider the running direction of a blood vessel. Noise reduction processing is performed. Note that although the present invention is originally a three-dimensional process (across multiple slices), a two-dimensional process (within the same slice) will be described in order to simplify the description.
- the image processing apparatus includes an image reading unit that reads a medical image, and an anisotropic pixel that is continuous with the target pixel with respect to the target pixel included in the medical image.
- Anisotropic area setting means for setting a plurality of areas, and a statistic calculation means for calculating a statistic of pixel values of pixels constituting each anisotropic area for each of the plurality of anisotropic areas Determining an anisotropic region in which the statistic is minimum among the plurality of anisotropic regions, and forming an anisotropic shape filter configured in the same direction as the anisotropic region, or the plurality
- the anisotropic region in which the statistic is maximized among the anisotropic regions is determined, and the anisotropic region is rotated 90 degrees clockwise or counterclockwise around the target pixel.
- pixel value includes the CT value of the CT image that is the original image, the density values of the MRI image, US image, and XR image that are the original images, as well as the gradation values for these CT values and density values. It includes pixel values after image processing such as processing.
- Median filter processing refers to processing for replacing the median of the pixel values of the pixels constituting the filter with the pixel value of the pixel of interest.
- “Smoothing process” refers to a process of replacing the average value of the pixel values of the pixels constituting the filter with the pixel value of the pixel of interest.
- the image processing method includes a step of reading a medical image, and for a target pixel included in the medical image, a plurality of anisotropic regions centered on the target pixel and continuing to the target pixel are set.
- An anisotropic region that minimizes the amount is determined, and the anisotropic shape filter configured in the same direction as the anisotropic region, or the statistic among the plurality of anisotropic regions is the largest
- An anisotropic region filter that is configured in a direction rotated 90 degrees clockwise or counterclockwise around the target pixel is determined.
- the image processing program includes a step of reading a medical image, and for a target pixel included in the medical image, a plurality of anisotropic regions centering on the target pixel and continuing to the target pixel are set.
- An anisotropic region that minimizes the amount is determined, and the anisotropic shape filter configured in the same direction as the anisotropic region, or the statistic among the plurality of anisotropic regions is the largest
- An anisotropic region filter that is configured in a direction rotated 90 degrees clockwise or counterclockwise around the target pixel is determined. And setting the target pixel And, wherein the executing and performing a median filtering or smoothing filter processing, to the computer by using the anisotropic shape filter.
- noise can be reduced in consideration of the traveling direction of the blood vessel, so that noise can be effectively reduced especially when the traveling direction of the blood vessel is complicated (for example, blood vessels in the lung field). Furthermore, noise can be effectively reduced even for an image with more noise due to shooting conditions.
- FIG. 1 is a schematic configuration diagram of an image processing system using an image processing apparatus according to the present invention.
- the block diagram which shows an image processing program.
- the flowchart which shows the flow of the process of 1st embodiment.
- Fig. 4 is a schematic diagram showing examples of isotropic and anisotropic regions.
- Fig. 4 (a) shows isotropic regions and Figs. 4 (b) to (i) are anisotropic.
- An example of the target area is shown.
- the schematic diagram which shows the other example of an anisotropic area
- the schematic diagram which shows the processing content of a median filter and a smoothing filter.
- the flowchart which shows the flow of a process of 2nd embodiment.
- the schematic diagram which shows the change process of filter size.
- the flowchart which shows the flow of processing of a third embodiment. Flowchart showing the flow of processing of the fourth embodiment The schematic diagram which shows the example of a standard deviation table and a reference standard deviation table. The flowchart which shows the flow of the process of 5th embodiment. The flowchart which shows the flow of a process of 6th embodiment. The schematic diagram which shows the example of a display of the histogram of a standard deviation. The flowchart which shows the flow of a process of 7th embodiment. The schematic diagram which shows the example of a screen display used by 7th embodiment. The schematic diagram which shows the example of a screen display used by 7th embodiment. The flowchart which shows the flow of a process of 8th embodiment.
- FIG. 1 is a schematic configuration diagram of an image processing system using an image processing apparatus according to the present invention.
- the image processing system 1 includes an X-ray CT apparatus, a magnetic resonance imaging apparatus (hereinafter referred to as “MRI apparatus”), an ultrasonic apparatus (hereinafter referred to as “US apparatus”), and an X-ray apparatus installed in a hospital or medical examination center.
- a medical image photographing device 2 such as a line photographing device, an image database (image DB) 3 for storing medical images, and an image processing device 10 to which the present invention is applied are connected to each other via a LAN 4. .
- the image processing apparatus 10 includes a central processing unit (CPU) 11 that mainly controls the operation of each component, a main memory 12, a data recording device 13, a display memory 14 that temporarily stores display data, a liquid crystal monitor, and a CRT.
- a pointing device (not shown) such as a mouse 16, a trackball, and a touch panel for operating a soft switch on the image displaying device 15, a controller 16a for the pointing device, and various parameters.
- the data recording device 13 includes a storage device such as a memory and a hard disk built in or externally attached to the image processing device 10, a device for writing / reading data to / from a removable external medium, and an external storage device and a network.
- a storage device such as a memory and a hard disk built in or externally attached to the image processing device 10
- a device for writing / reading data to / from a removable external medium and an external storage device and a network.
- a device that transmits and receives data via the network may be used.
- FIG. 2 is a block diagram showing an image processing program installed in the image processing apparatus 10.
- the image processing program includes an image reading unit 11a for reading a medical image, and an anisotropic pixel including a pixel row of an arbitrary shape that is continuous with the target pixel with respect to the target pixel included in the medical image.
- An anisotropic region setting unit 11b for setting a plurality of regions, a statistic calculation unit 11c for calculating a statistic of pixel values of pixels constituting each anisotropic region, an anisotropic shape filter or isotropic
- a filter setting unit 11d for setting a target shape filter, a filter processing unit 11e for performing median filter processing or smoothing filter processing, an image size changing unit 11f for enlarging / reducing a medical image, and an isotropic shape filter for a target pixel
- a filter determining unit 11g that determines application of the target region, an organ region extracting unit 11h that extracts a target organ region from a medical image, and the maximum value of the statistics of the anisotropic region is within a predetermined reference range.
- the image reading unit 11a may receive and read a medical image from the medical image capturing device 2 or the image DB 3 via the LAN 4, or may read from the data recording device 13 included in the image processing device 10.
- the above-described image processing program is loaded into the main memory 12, and fulfills its function by being executed by the CPU 11.
- a medical image is not limited to a CT image, and may be an MRI image, a US image, or an X-ray image.
- the imaging region is not limited to the chest but is also effective for a medical image obtained by imaging an organ including a luminal organ such as a blood vessel such as a liver.
- FIG. 3 is a flowchart showing a processing flow of the first embodiment.
- a third reference range (a standard deviation of 80 or more in this embodiment) that is a threshold value used in step S13 described later is stored in the data storage device 13.
- This third reference range has a tendency that the standard deviation tends to be larger when the anisotropic region straddles the blood vessel or at the edge portion. Therefore, by performing noise reduction processing on these regions, the blood vessel is reduced. Used to prevent crushing and blurring of edges.
- FIG. 3 is a flowchart showing a process flow of the first embodiment.
- Step S10 First, the image reading unit 11a reads a CT image.
- the filter determination unit 11g compares the CT value of the target pixel with the first reference range that is defined by the CT value and determines whether or not to use the isotropic shape filter.
- the process proceeds to step S11, and if it is within the first reference range, the process proceeds to step S12.
- Step S11 The filter setting unit 11d sets an isotropic filter having an N ⁇ N matrix shape with the pixel of interest at the center.
- the filter processing unit 11e performs median filter processing on the target pixel using an isotropic shape filter. Thereby, processing in the same direction is performed on the target pixel.
- FIG. 4 is a schematic diagram showing an example of an isotropic region and an anisotropic region
- FIG. 4 (a) shows a case where a filter 110 having a matrix size of 7 ⁇ 7 is applied to a CT image.
- a median filter is mainly used as a filtering method, and the central value is determined by ordering the pixel values of 49 pixels constituting the filter 110 in the order of larger (or smaller) pixel values. Then, the process of adopting the value as the pixel value of the target pixel is performed. If some blurring is allowed in the processing result, an average value of the pixel values of 49 pixels in the filter 110 may be calculated, and a smoothing filter that uses the average value as the pixel value of the target pixel may be used. Good.
- the anisotropic region setting unit 11b sets a plurality of anisotropic (also referred to as anisotropic) regions around the target pixel 100.
- the statistic calculator 11c calculates a statistic for each set anisotropic region.
- the anisotropic region refers to a region that is centered on the target pixel and that is continuous in an arbitrary direction with the target pixel in the N ⁇ N region as the center.
- the anisotropic region is a pixel other than the N ⁇ N matrix shape in the N ⁇ N region centered on the pixel of interest, and has an arbitrary shape that continues around the pixel of interest. Is a column.
- the anisotropic regions shown in FIGS. 4 (b) to 4 (i) are 1 ⁇ 7 (where 1 is a plurality of rows or 1) continuous to the target pixel 100 in the 7 ⁇ 7 region centered on the target pixel 100. (It may span the columns), and in the figure, it is composed of 7 pixels with circles.
- FIG. 4 (b) shows an example of an anisotropic region consisting of a 1 ⁇ 7 pixel row that is continuous diagonally from the upper left to the lower right with the target pixel 100 as the center.
- FIG. 4 (c) shows an example of an anisotropic region including a 1 ⁇ 7 pixel row that is continuous diagonally from the lower left to the upper right with the target pixel 100 as the center.
- FIG. 4 (d) shows an example of an anisotropic region including a 1 ⁇ 7 pixel row that is continuous on a straight line in the horizontal direction (X-axis direction) with the target pixel 100 as the center.
- FIG. 4 (b) shows an example of an anisotropic region consisting of a 1 ⁇ 7 pixel row that is continuous diagonally from the upper left to the lower right with the target pixel 100 as the center.
- FIG. 4 (c) shows an example of an anisotropic region including a 1 ⁇ 7 pixel row that is continuous diagonally from the lower left to the upper right with
- FIG. 4 (e) shows an example of an anisotropic region composed of a 1 ⁇ 7 pixel row that is continuous on a straight line in the vertical direction (Y-axis direction) with the target pixel 100 as the center.
- the anisotropic region pixels arranged in a straight line as described above may be used, but pixels arranged in an arbitrary shape as described below may be used.
- FIG. 4 (f) shows two pixels (Xn, Yn-1) and (Xn, Yn + 1) vertically adjacent to the target pixel 100 (Xn, Yn), and these pixels are adjacent to each other in an oblique direction.
- Two pixels (Xn-1, Yn + 2), (Xn + 1, Yn-2), and two pixels (Xn-1, Yn + 3), (Xn + 1, Yn-3) that are adjacent to these two pixels in the vertical direction for a total of 7 pixels Shows an example in which an anisotropic region is constructed.
- FIG. 4 (g) shows two pixels (Xn, Yn-1), (Xn, Yn + 1) adjacent to the target pixel 100 (Xn, Yn) in the Y-axis direction, and 2 adjacent to these pixels in an oblique direction.
- region is shown.
- FIG. 4 (h) shows two pixels (Xn-1, Yn) and (Xn + 1, Yn) that are adjacent to the target pixel 100 (Xn, Yn) in the horizontal direction, and two pixels that are adjacent to these pixels in an oblique direction. (Xn-2, Yn + 1), (Xn + 2, Yn-1), and two pixels (Xn-3, Yn + 1), (Xn + 3, Yn-1) adjacent to both of these pixels in the horizontal direction.
- region is shown.
- FIG. 4 (i) shows two pixels (Xn-1, Yn) and (Xn + 1, Yn) that are adjacent to the target pixel 100 (Xn, Yn) in the horizontal direction, and two pixels that are adjacent to these pixels in an oblique direction. (Xn-2, Yn-1), (Xn + 2, Yn + 1), and two pixels (Xn-3, Yn-1), (Xn + 3, Yn + 1) adjacent to these pixels in the horizontal direction.
- region is shown.
- the anisotropic region is configured using pixels arranged in 1 ⁇ N, but the anisotropic region uses n ( ⁇ N) columns and / or rows of the N ⁇ N region, You may comprise by nxN pixel.
- FIG. 5 shows an example in which three columns in a 7 ⁇ 7 region are used as an example of an anisotropic region composed of n ⁇ N pixels.
- FIG. 5 (a) shows an anisotropic region (first line: (Xn-3, Yn + 3), (Xn-2) continuous in an oblique direction from the upper left to the lower right with respect to the target pixel 100 (Xn, Yn).
- FIG. 5 (b) shows an anisotropic region composed of a total of 21 pixels of 3 ⁇ 7 pixels located in the fourth to sixth rows with respect to the target pixel 100 (Xn, Yn).
- the anisotropic region setting unit 11b sets the eight types of anisotropic regions shown in FIGS. 4 (b) to (i), and the statistic calculation unit 11c Standard deviation SD (b), SD (c), SD (d), SD (e), SD (f), SD (g), SD (h), SD (i) “SDk” (where k indicates a direction corresponding to b to i) is determined.
- the standard deviation SDk (k is the direction) is obtained as a statistic, but it may be a variance value.
- Step S13 The determination unit 11i compares maxSD, which is the maximum value of the eight standard deviations SDk calculated in step S12, with the third reference range recorded in the data recording device 13, and maxSD is outside the third reference range. It is determined whether or not there is. If YES, the process proceeds to step S14, and if NO, the process proceeds to step S15.
- Step S14 If maxSD is outside the third reference range, the filter setting unit 11d substitutes the pixel value (CT value or density value) of the target pixel as the pixel value of the image after filtering without setting the filter. .
- Step S15 The filter setting unit 11d searches for the minimum value of the eight standard deviations SDk calculated in step S12, and determines whether the minimum value of SDk is SD (b). If YES, the process proceeds to step S16, and if NO, the process proceeds to step S17.
- Step S16 The filter setting unit 11d sets an anisotropic shape filter in the same direction as the anisotropic region in FIG. 4 (b) for the target pixel 100, and the filter processing unit 11e sets the anisotropic shape filter. Is used to perform median filtering.
- FIGS. 6 (a) and 6 (b) are schematic diagrams showing the processing contents of the median filter and the smoothing filter.
- a 1 ⁇ 9 column filter composed of nine pixels a1 to a9 continuous from the upper left to the lower right is set for the target pixel a5
- FIG. 6 (b) shows the target pixel For a5
- a 1 ⁇ 9 column filter composed of nine pixels a1 to a9 continuous in the vertical direction is set.
- the filter processing unit 11e obtains the median value of the pixels a1 to a9.
- the filter processing unit 11e may obtain an average value of the pixels a1 to a9 as a low-pass filter.
- the filter setting unit 11d searches for the minimum value of the eight standard deviations SDk calculated in step S12, and determines whether or not the minimum value of SDk is SD (c). judge. If YES, the process proceeds to step S18.
- step S18 as in step S16, the filter setting unit 11d sets an anisotropic shape filter in the same direction as the anisotropic region in FIG. 4 (c), and the filter processing unit 11e uses the filter to set the median. Perform filtering.
- the anisotropic shape filter needs to have the same direction as the direction of the anisotropic region, but the length (size) of the anisotropic shape filter is the length of the anisotropic region. It may be different from the size.
- steps S15 and S16 are performed in the five directions from FIG. 4 (d) to FIG. 4 (h).
- Step S19 and Step S110 among the statistics determined in FIG. 4 (i), that is, Step S12, Step S15 and Step S15 are performed for the last anisotropic region that has not yet been processed in Step S15 and Step S16. Processing similar to S16 is performed.
- Step S111 It is determined whether or not the processing has been completed for all the pixels of the medical image. If YES, the processing ends. If NO, the process returns to step S10.
- a specific region of the subject for example, a lung field region in a chest tomographic image
- noise reduction using an anisotropic shape filter according to the region Noise reduction processing using a process or an isotropic shape filter can be performed.
- Noise reduction can be performed since it is possible to perform noise reduction processing along the running of blood vessels for regions where a large number of blood vessels are imaged, such as lung field regions, while preventing erroneous cutting of thin blood vessel regions due to noise reduction processing.
- the number of anisotropic regions is eight in FIGS. 4 (b) to 4 (i). However, if the image size becomes larger, the number of anisotropic regions (isotropic regions) On the contrary, if the image size becomes smaller, the number of anisotropic regions may be reduced.
- the second embodiment is an embodiment in which the filter direction and the filter size are changed simultaneously.
- the anisotropic area has been described as an area composed of a pixel row having an arbitrary shape continuous to the target pixel of n ⁇ 7 (where n ⁇ 7) size.
- the filter size may be changed according to the size of FOV (Field of view).
- FIG. 7 is a flowchart showing a process flow of the second embodiment.
- the data storage device 13 of the image processing apparatus 10 includes a coefficient r for changing the filter size according to the magnification R that indicates the enlargement / reduction ratio of the image size (H ⁇ W) and the size of the FOV.
- a function or a table for determining is stored.
- the coefficient r is a coefficient of 0 or more and 1 or less, and increases as the magnification R increases, and decreases as the magnification R decreases.
- Step S20 When the user inputs a desired image size, the image size changing unit 11f enlarges / reduces the medical image using a magnification R that matches the input value.
- Step S21 to Step S25 Steps S21 to S25 perform the same processing as steps S10 to S14 of the first embodiment.
- the filter setting unit 11d refers to the data storage device 13, and determines the coefficient r1 based on the enlargement ratio R of the image and the direction of the anisotropic region in FIG. 4B. Then, an anisotropic shape filter having a filter size determined using the coefficient r1 is set.
- FIG. 8 is a schematic diagram for explaining the filter size changing process, and the anisotropic region 80 in FIG. 8 is the same anisotropic region as that in FIG. is there.
- the filter setting unit 11d includes the pixel value 60A of the pixel (Xn-3, Yn + 3) located at the upper left end of the anisotropic region 80 composed of 7 pixels of 1 ⁇ 7, and the pixel (Xn-3, Yn + 3). ) And the pixel value 60B of the pixel (Xn ⁇ 2, Yn + 2) adjacent thereto are interpolated according to the following equation using the coefficient r1 to calculate the pixel value 60AB.
- the filter setting unit 11d includes the pixel value 61A of the pixel (X + 3, Yn-3) located at the lower right end of the pixel column and the pixel (Xn + 2, Yn ⁇ ) adjacent to the pixel (Xn + 3, Yn-3).
- the pixel value 61AB is calculated by weighted addition of the pixel value 61B of 2) and the coefficient r1 described above according to the following equation.
- the filter setting unit 11d sets a filter 90 composed of 5 pixels in which the number of pixels constituting the entire filter is 2 pixels less than 7 pixels in the anisotropic region 80.
- the pixel value of the anisotropic region is used for the target pixel 100 and both adjacent pixels, and the calculated values 60AB and 61AB are used for the pixel values of the end pixels.
- the pixel values of the pixels at both ends of the filter 90 are interpolated from the pixel value of the anisotropic region and the pixel value of the pixel in the anisotropic region adjacent to the pixel value, thereby creating a filter.
- the size is not limited to the number of pixels (integer multiple), and can be set to an arbitrary size.
- Step S27 The filter processing unit 11e sorts the set pixel values of the anisotropic shape filter 90 in order of increasing or decreasing order, obtains the median value, and sets the value as the pixel value of the target pixel 100.
- Step S28 to Step S211 the filter setting unit 11d determines whether or not the statistical amount of the anisotropic region shown in FIG. 4C is the minimum value. If YES, the process proceeds to step S29. .
- step S29 as in step S27, the filter setting unit 11d determines the coefficient r2 according to the direction of the anisotropic region and the magnification R, sets a filter using the coefficient r2, and the filter processing unit 11e Filter processing is performed in the direction of the anisotropic region shown in FIG.
- step S26 and step S27 processing similar to that in step S26 and step S27 is performed for the six directions from FIG. 4 (d) to FIG. 4 (i).
- Step S212 It is determined whether or not the processing has been completed for all the pixels of the medical image. If YES, the processing ends. If NO, the process returns to step S21.
- the size of the filter is conventionally configured as an isotropic shape filter having a matrix shape of (2N + 1) ⁇ (2N + 1) (N: natural number), (2N + 1) ⁇ (2N + 1)
- the next largest filter was limited to ⁇ 2 (N + 1) +1 ⁇ ⁇ ⁇ 2 (N + 1) +1 ⁇ .
- the filter size is limited to a 5 ⁇ 5 filter next to a 3 ⁇ 3 filter and a 7 ⁇ 7 filter next to the 3 ⁇ 3 filter.
- the filter size can be changed in accordance with the image size, the FOV size, and the direction of the anisotropic region, so that noise can be reduced more effectively.
- step S22 performed isotropic processing using an isotropic shape filter with a 7 ⁇ 7 matrix shape, but the filter setting unit 11d has a pixel value of the pixel located at the end and one inside it.
- the pixel value of the pixel located at is calculated by the equation (1) or (2) using the coefficient r0 corresponding to the magnification R, so that an arbitrary size smaller than 7 ⁇ 7 and larger than 5 ⁇ 5
- An isotropic shape filter may be generated by interpolation, and isotropic processing may be performed using this filter.
- FIG. 9 is a flowchart showing a process flow of the third embodiment. Also in this embodiment, eight anisotropic regions shown in FIGS. 4B to 4I are set.
- Step S30 to Step S34 Steps S30 to S34 perform the same processing as steps S10 to S14 of the first embodiment.
- Step S35 The filter setting unit 11d searches for the maximum value among the eight standard deviations SDk calculated in step S32, and determines whether or not the maximum value of SDk is SD (b). If YES, the process proceeds to step S36, and if NO, the process proceeds to step S37. In the search for the maximum value, information on the direction of the anisotropic region may be acquired and used when obtaining maxSD in step S33.
- Step S36 The filter setting unit 11d sets an anisotropic shape filter in the same direction as the direction in which the anisotropic region in FIG. 4B is rotated 90 degrees to the right or left around the target pixel 100.
- the filter processing unit 11e performs a filter process similar to that in step S16 using the anisotropic shape filter. As a result, processing in the vertical direction as shown in FIG. 4B is executed.
- the coordinates of the pixel at the upper right end are (Xn + 3, Yn + 3) and the coordinates at the lower left end are (Xn-3, Yn) centered on the target pixel 100.
- -3) Set a filter consisting of 7 pixels from the upper right to the lower left.
- step S37 the filter setting unit 11d searches for the maximum value of the eight standard deviations SDk calculated in step S32, and determines whether or not the maximum value of SDk is SD (c). judge. If YES, the process proceeds to step S38.
- step S38 as in step S36, the filter setting unit 11d sets an anisotropic shape filter along a direction perpendicular to the direction of the anisotropic region in FIG. Performs filtering using the anisotropic shape filter.
- processing similar to that in step S35 and step S36 is performed in the five directions from FIG. 4 (d) to FIG. 4 (h).
- Step S39 and S310 among the statistics obtained in FIG. 4 (i), i.e., Step S32, the last anisotropic region for which the processing of Steps S35 and S36 has not been completed yet, Steps S35 and S36. The same processing is performed.
- Step S311 It is determined whether or not the processing has been completed for all the pixels of the medical image. If YES, the processing ends. If NO, the process returns to step S30.
- a specific part of the subject for example, a lung field region in a chest tomographic image
- Noise reduction processing using a region or noise reduction processing using a matrix shape can be performed.
- noise reduction processing can be performed along the running of blood vessels. Reduction can be performed.
- the fourth embodiment is an embodiment in which standard deviations of a plurality of anisotropic regions are obtained for each pixel in advance.
- FIG. 10 is a flowchart showing a process flow of the fourth embodiment.
- the data recording device 13 stores a second reference range used in step S42 described later.
- This second reference range is a reference range defined using a further standard deviation of a plurality of standard deviations obtained from a plurality of anisotropic regions, and determines whether or not an isotropic shape filter is used. Used for.
- the third reference range used in step S44 is also stored.
- Step S40 For all pixels of the original image, the anisotropic region setting unit 11b sets eight anisotropic regions shown in FIGS. 4 (b) to 4 (d), and the statistic calculation unit 11c The standard deviation of the pixel value of the anisotropic region set to is calculated. Further, the statistic calculation unit 11c has a maximum standard deviation calculated for each pixel and a further standard deviation (hereinafter referred to as ⁇ a standard population '' including a plurality of standard deviations set for one pixel of interest). Calculated as “additional SD”). The statistic calculator 11c generates a reference standard deviation table storing the maximum value and further SD, and stores it in the main memory 12 or the data storage device 13.
- FIG. 11 shows an example of the standard deviation table.
- FIG. 11 (a) is a standard deviation table 111 storing standard deviations of a plurality of anisotropic regions set for each pixel, and FIG. 11 (b) is based on the standard deviation of FIG. 11 (a).
- the reference standard deviation table 112 generated is shown in FIG.
- the reference standard deviation table 112 stores the direction and maximum value of the anisotropic region where the standard deviation is the maximum value (maxSD) for each pixel, and further SD.
- the filter determining unit 11g refers to the “additional SD” value corresponding to the target pixel 100 in the reference standard deviation table 112 in FIG.
- Step S42 The filter determining unit 11g determines whether or not the “further SD” of the pixel of interest is outside the second reference range. If it is outside the second reference range, the process proceeds to step S43, and if within the second reference range, the step Proceed to S44.
- Step S43 The filter setting unit 11d sets an isotropic shape filter having an N ⁇ N matrix shape centered on the pixel of interest, and pays attention to the median of the pixel values of the pixels constituting the filter set by the filter processing unit 11e. Median filter processing for replacing the pixel value of the pixel is performed. Thereby, processing in the same direction is performed on the target pixel.
- Step S44 The determination unit 11i obtains maxSD, which is the maximum value among the standard deviations SDk of the eight anisotropic regions set for the pixel of interest, with reference to the reference standard deviation table 112, The three reference ranges are compared to determine whether maxSD is outside the third reference range. If YES, the process proceeds to step S45, and if NO, the process proceeds to step S46.
- Step S45 processing other than the processing of the isotropic region and the processing of the anisotropic region, for example, the processing of substituting the pixel value of the target pixel as the pixel value after the filtering processing is performed without performing the filtering processing.
- Step S46 The filter determination unit 11g refers to maxSD in the reference standard deviation table 112, and determines whether or not the direction indicating the maximum value is the direction shown in FIG. If YES, the process proceeds to step S47, and if NO, the process proceeds to step S48.
- Step S47 Similarly to step S36, the filter setting unit 11d sets an anisotropic shape filter along the direction perpendicular to the anisotropic region in FIG. 11e performs median filtering using the anisotropic shape filter.
- step S48 as in step S46, the filter determination unit 11g refers to maxSD in the reference standard deviation table 112, and determines whether or not the direction indicating the maximum value is the direction shown in FIG. If YES, the process proceeds to step S49, and if NO, the process proceeds to step S410. The same processing is performed for the remaining anisotropic regions.
- Step S412 It is determined whether or not the processing has been completed for all the pixels of the medical image. If YES, the processing ends. If NO, the process returns to step S41.
- steps S46 to S411 the maximum value of a plurality of standard deviations is searched and the anisotropic shape filter is set in the direction perpendicular to the anisotropic region indicating the maximum value.
- the minimum value may be searched, and an anisotropic shape filter in the same direction as the anisotropic region indicating the minimum value may be set.
- FIG. 12 is a flowchart showing a process flow of the fifth embodiment.
- Step S50 First, the image reading unit 11a reads a CT image.
- the organ extraction unit 11h extracts an organ region that is a target of noise reduction processing from the CT image.
- the extraction of the organ region can be performed, for example, by performing a binary process on the liver region with a CT value corresponding to the liver and performing a separation process from the adjacent organ region.
- Step S51 The filter determination unit 11g compares the coordinates of the target pixel with the coordinates of the target organ region extracted by the organ extraction unit 11h, and determines whether or not the target pixel is in the target organ region. If the target pixel is outside the target organ region, the process proceeds to step S52, and if it is within the region, the process proceeds to step S53.
- step S52 to S512 is the same as that from step S11 to step S111 in FIG. 3 of the first embodiment.
- steps S32 to S311 of the third embodiment may be executed instead of steps S11 to S111 of the first embodiment.
- the image size may be combined with the second embodiment by combining enlargement / reduction, or by referring to the reference standard deviation table in advance as in the fourth embodiment, the standard deviation in the processing from step S52 to S512 Instead of obtaining the reference standard deviation table. According to the present embodiment, it is possible to perform noise reduction processing according to the target organ.
- a third reference range serving as a reference for determining whether or not to perform filter processing using an anisotropic shape filter is set using a GUI.
- FIG. 13 is a flowchart showing a process flow of the sixth embodiment.
- Step S60 The image reading unit 11a reads an original image composed of CT images.
- the anisotropic region setting unit 11b performs a plurality of anisotropic operations on all pixels in the original image or on all pixels in the region for which noise reduction processing specified by tracing with the mouse 16 in advance on the medical image is specified by the user. Set the target area.
- the statistic calculator 11c calculates the standard deviation of each anisotropic region.
- the calculated standard deviation is temporarily stored by generating the standard deviation table 111 of FIG.
- Step S62 The statistic calculation unit 11c generates a histogram of the calculated standard deviation, and the display control unit 11j displays the histogram of the monitor 15 standard deviation.
- Step S63 The user sets the third reference range on the standard deviation histogram displayed on the monitor 15.
- the statistic calculation unit 11c calculates and presents a recommended example of the third reference range.
- the user may set and input the recommended example as the third reference range, or may finely adjust the recommended example and input the setting.
- the reference range setting unit 11k sets the set and input value as the third reference range.
- FIG. 14 is a schematic diagram showing a display example of a standard deviation histogram.
- the statistic calculator 11c presents a range from the standard deviation SD1 indicating the peak value H of the standard deviation histogram 140 to the standard deviation SD2 indicating the half width (1/2) H To do.
- the user can change the third reference range by dragging the bar 141 with the mouse 16 in the left-right direction.
- Steps S10-S111 etc. Subsequently, the noise reduction process of any one of the aforementioned steps S10 to S111, steps S20 to S211, steps S30 to S311, steps S40 to S411, and steps S50 to S512 is executed.
- Step S63 The image subjected to the noise reduction process is displayed, and the process ends.
- the third reference range can be set according to the degree of image noise for each image.
- FIG. 15 is a flowchart showing a process flow of the seventh embodiment.
- Step S70 The image reading unit 11a reads an original image composed of CT images.
- Step S71 The display control unit 11j displays the original image 161 on the monitor 15.
- the region-of-interest setting unit 11l sets the designated region as a region of interest (ROI).
- Step S72 The statistic calculator 11c calculates the CT value in the ROI and the standard deviation of the anisotropic region set in the pixel in the ROI.
- the statistic calculation unit 11c generates a histogram indicating the distribution of CT values in the ROI and the calculated standard deviation, and the display control unit 11j displays the histogram on the monitor 15.
- Step S73 On the CT value histogram displayed on the monitor 15, the user designates a first reference range that determines whether or not the process uses an isotropic shape filter. Further, on the standard deviation histogram, a third reference range for determining whether or not to perform processing using an anisotropic shape filter is designated.
- the reference range setting unit 11k sets each reference range according to the designated first reference range and third reference range.
- Steps S10-S111 etc. Subsequently, the noise reduction process of any one of the aforementioned steps S10 to S111, steps S20 to S211, steps S30 to S311, steps S40 to S411, and steps S50 to S512 is executed.
- Step S74 The post-processing image that has undergone the noise reduction processing is displayed, and the processing ends.
- 16 and 17 are schematic diagrams illustrating screen display examples displayed in the present embodiment.
- the screen 160 in FIG. 16 includes an original image 161 composed of a CT image, a region of interest 162 set by the user using the mouse 16 on the original image 161, and a region of interest set by the user.
- a “process” button 163 that sets the area having the CT value or SD value within the set value range, a “do not process” button 164 that sets the area outside the set value range, and “end” that ends all the processes
- a soft button including a button 165, a “histogram display” button 166 for transitioning to a histogram display screen (screen 170), and a processed image 167 subjected to noise reduction processing are displayed.
- the processed image 167 is displayed in step S74 described later.
- the region of interest 162 set on the original image 161 is drawn with a dotted line.
- the region of interest 162 is for defining a region for obtaining a CT value and standard deviation for setting the reference range. If the user sets the region of interest 162 on the original image 161 and wants to set the value of the region of interest 162 as the reference range, click the “Process” button 163, otherwise click the “Do not process” button 164 To do. In FIG. 16, since the “do not process” button 164 is selected, the reference range setting unit 11lk sets the CT values and standard deviations outside the first reference range and third reference values set in FIG. 15 and FIG. Set out of range.
- the screen 170 includes an original image 161, a CT value histogram 171, a standard deviation histogram 172, an arrow pointer 173, a gauge 174 for specifying a CT value range on the CT value histogram 171 and a standard deviation.
- a gauge 175 for designating the SD range on the histogram 172, a “return” button 176 for transitioning to the screen 160, and a processed image 167 are displayed.
- the user operates the pointer 173 with the mouse 16 to change the interval of the gauge 174 or the gauge 175, thereby specifying the CT value range and the SD range.
- the reference range setting unit 11k sets the designated CT value range and SD range as the first reference range and the third reference range, respectively.
- the post-processing image 167 is also updated with the change of the reference range.
- the present embodiment it is possible to set the reference range for performing anisotropic processing or isotropic processing by confirming the noise state of the original image and blood vessel running. Furthermore, by displaying the CT value histogram, the standard deviation histogram, the original image, and the noise-reduced image in parallel, the set value can be set using either the CT value or the standard deviation. The set value can also be evaluated while comparing the original image and the noise-reduced image.
- the eighth embodiment is an embodiment for determining whether or not to perform the noise reduction processing according to the present invention based on the photographing conditions. Hereinafter, the eighth embodiment will be described with reference to FIG.
- FIG. 18 is a flowchart showing the flow of processing of the eighth embodiment.
- Step S80 The image reading unit 11a reads the original image, and the imaging information acquisition unit 11m acquires imaging information indicating imaging conditions at the time of imaging from the medical image imaging apparatus 2 or incidental information of the image to be processed.
- the imaging conditions here are imaging conditions that particularly affect noise.
- CT images the values indicate the tube current used during imaging, and in the case of MRI images, the strength of static magnetic fields and / or gradient magnetic fields.
- MRI images the strength of static magnetic fields and / or gradient magnetic fields.
- there is a frequency In the case of a US image, and in the case of an X-ray image, there is a value indicating the X-ray intensity.
- Step S81 The image selection unit 11n compares the shooting information acquired in step S80 with the reference condition stored in the data storage device 13 in advance, and determines whether the shooting condition is within the reference condition or not. A medical image to be processed using a region is selected.
- the reference condition is a range of shooting conditions that are expected to have a relatively large amount of image noise. If the shooting conditions correspond to this reference condition, the image should be processed using an anisotropic region. Sort out.
- US images are generally noisy compared to other types of images
- information indicating the type of medical image is acquired as imaging information
- image type: US image is set as a reference condition.
- the US image may be set so as to be selected as an image to be processed using the anisotropic region.
- step S82 If the photographing condition does not satisfy the reference condition, the process proceeds to step S82, and the filter process using only the isotropic shape filter is executed.
- the image selected by the image selection unit 11n as the image to be processed using the anisotropic region is the steps S10 to S111, steps S20 to S212, steps S30 to S311, steps S40 to S412, S50 to S512, or Proceeding to steps S61 to S63 and steps S71 to S73, noise reduction processing using an isotropic region and an anisotropic region is executed. Thereafter, the flipped image is displayed.
- noise reduction processing using an anisotropic region can be performed only on an image that is expected to generate a relatively large amount of image noise due to shooting conditions. Can be expected to improve.
- the original image is mainly a CT image.
- the original image is an MRI image, a US image, or an X-ray image
- a density value can be used instead of the CT value.
- the processing is performed on one tomographic image.
- slice thickness is thin
- median processing and smoothing processing that spans between slices are possible. Therefore, in that case, an anisotropic region can be set across slices, and the number of anisotropic regions set for one target pixel increases.
- image processing system 1 image processing system, 2 medical imaging device, 3 image database (image DB), 4 LAN, 10 image processing device, 11 CPU, 12 main memory, 13 data storage device, 14 display memory, 15 monitor, 16 mouse, 16a Controller, 17 keyboard, 18 network adapter, 19 bus
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- High Energy & Nuclear Physics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Pulmonology (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Processing (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
ノイズ低減フィルタのフィルタ方向を変更する実施形態である。以下、図3に従って、本発明の第一実施形態について説明する。
まず、画像読込部11aがCT画像を読み込む。次に、フィルタ決定部11gは、注目画素のCT値と、CT値で定義され、等方的形状フィタを用いるか否かを決定するための第一基準範囲とを比較する。本実施形態では、第一基準範囲として、被検体の肺野のCT値(CT値=-1800~-600)がデータ記憶装置13に格納される。注目画素のCT値が第一基準範囲外であればステップS11へ進み、第一基準範囲内であればステップS12へ進む。
フィルタ設定部11dは、注目画素を中心とするN×Nのマトリクス形状の等方的形状のフィルタを設定する。フィルタ処理部11eは、等方的形状フィルタを用いて注目画素に対しメジアンフィルタ処理を実行する。これにより、注目画素に対して等方向の処理が実行される。
非等方的領域設定部11bは、注目画素100を中心とする非等方的(異方的ともいう)領域を複数設定する。統計量算出部11cは、設定された各非等方的領域の統計量を算出する。
上記では、統計量として標準偏差SDk(kは方向)を求めたが、分散値でもよい。
判定部11iは、ステップS12で算出された8つの標準偏差SDkうちの最大値であるmaxSDと、データ記録装置13に記録された第三基準範囲とを比較し、maxSDが第三基準範囲外にあるか否かを判定する。YESであればステップS14へ進み、NOであればステップS15へ進む。
maxSDが第三基準範囲外であれば、フィルタ設定部11dはふぃうるたを設定することなく、注目画素の画素値(CT値又は濃度値)をフィルタ処理後の画像の画素値として代入する。
フィルタ設定部11dは、ステップS12で算出された8つの標準偏差SDkのうちの最小値を検索し、SDkの最小値がSD(b)であるか否かを判定する。YESであればステップS16へ進み、NOであればステップS17へ進む。
フィルタ設定部11dは、注目画素100に対して図4(b)の非等方的領域と同一方向の非等方的形状フィルタを設定し、フィルタ処理部11eは、その非等方的形状フィルタを用いてメジアンフィルタ処理を行う。
(ステップS17~ステップS110)
ステップS17では、ステップS15と同様、フィルタ設定部11dは、ステップS12で算出された8つの標準偏差SDkのうちの最小値を検索し、SDkの最小値がSD(c)であるか否かを判定する。YESであればステップS18へ進む。ステップS18では、ステップS16と同様、フィルタ設定部11dは、図4(c)の非等方的領域と同一方向の非等方的形状フィルタを設定し、フィルタ処理部11eはそのフィルタを用いメジアンフィルタ処理を行う。非等方的形状フィルタは、その方向が非等方的領域の方向と同一であることが必要であるが、非等方的形状フィルタの長さ(サイズ)は、非等方的領域の長さ(サイズ)と異なってもよい。
医用画像のすべての画素についての処理が終わったか否かが判定され、YESであれば処理が終了され、NOであればステップS10へ戻る。
第二実施形態は、フィルタ方向とフィルタサイズとを同時に変更する実施形態である。第一実施形態では、非等方的領域をn×7(但し、n<7)サイズの注目画素に連続する任意の形状の画素列から構成される領域として説明したが、画像の拡大・縮小やFOV(Field of view)の大小に伴ってフィルタサイズを変更してもよい。
ユーザが、所望する画像サイズを入力すると、画像サイズ変更部11fは入力値に合った倍率Rを用いて医用画像を拡大・縮小処理する。
ステップS21からステップS25は、第一実施形態のステップS10からステップS14までと同様の処理を行う。
フィルタ設定部11dは、データ記憶装置13を参照し、画像の拡大率Rと図4(b)の非等方的領域の向きとに基づいて、係数r1を決定する。そして、係数r1を用いて決定したフィルタサイズを有する非等方的形状フィルタを設定する。
同様に、フィルタ設定部11dは、この画素列の右下端部に位置する画素(X+3,Yn-3)の画素値61Aと、画素(Xn+3,Yn-3)に隣接する画素(Xn+2,Yn-2)の画素値61Bと、前述の係数r1とを、下式に従い加重加算することにより、画素値61ABを算出する。
上記式(1)、(2)によれば、画像の拡大率Rが相対的に大きいときに、非等方的領域の端部に位置する画素の寄与率をより大きくすることができる。これらの算出値を用いて、フィルタ設定部11dは、フィルタ全体を構成する画素数が非等方的領域80の7画素よりも2画素少ない5画素から構成されるフィルタ90を設定する。フィルタ90は、注目画素100及びこれに隣接する両画素は非等方的領域の画素値を用い、端部の画素の画素値は上記の算出値60AB、及び61ABを用いる。
フィルタ処理部11eは、設定された非等方的形状フィルタ90の画素値を大きい順または小さい順にソートし、中央値をもとめ、その値を注目画素100の画素値とする。
(ステップS28~ステップS211)
ステップS28では、ステップS26と同様に、フィルタ設定部11dが図4(c)に示す非等方的領域の統計量が最小値であるか否かを判定し、YESであればステップS29へ進む。ステップS29では、ステップS27と同様、フィルタ設定部11dが、非等方的領域の向きと倍率Rに応じた係数r2を決定してその係数r2を用いたフィルタを設定し、フィルタ処理部11eがそのフィルタを用いて図4(c)に示す非等方的領域の向きにフィルタ処理を行う。
医用画像の全ての画素についての処理が終わったか否かが判定され、YESであれば処理が終了され、NOであればステップS21へ戻る。
本実施形態は、第一実施形態の逆のアプローチであって、前述の図3のステップS15~ステップS110では、標準偏差の最小値を求め、その最小値を有する非等方的領域と同一方向の非等方的形状フィルタを設定したのに対し、本実施形態では、標準偏差が最大値となる非等方的領域を検出し、その非等方的領域の向きに対して垂直方向にフィルタを設定する。以下、図9に従って第三実施形態の処理の流れを説明する。図9は、第三実施形態の処理の流れを示すフローチャートである。なお、本実施形態においても図4(b)~図4(i)に示す8つの非等方的領域を設定するものとする。
ステップS30からステップS34は、第一実施形態のステップS10からステップS14までと同様の処理を行う。
フィルタ設定部11dは、ステップS32で算出された8つの標準偏差SDkのうちの最大値を検索し、SDkの最大値がSD(b)であるか否かを判定する。YESであればステップS36へ進み、NOであればステップS37へ進む。最大値の検索は、ステップS33においてmaxSDを求める際に、非等方的領域の向きの情報を取得しておき、これを流用してもよい。
フィルタ設定部11dは、注目画素100を中心に図4(b)の非等方的領域を右又は左に90度回転した方向と同一方向の非等方的形状フィルタを設定する。フィルタ処理部11eは、その非等方的形状フィルタを用いてステップS16と同様のフィルタ処理を行う。これにより、図4(b)と垂直方向の処理が実行される。
ステップS37では、ステップS35と同様、フィルタ設定部11dは、ステップS32で算出された8つの標準偏差SDkのうちの最大値を検索し、SDkの最大値がSD(c)であるか否かを判定する。YESであればステップS38へ進む。ステップS38では、ステップS36と同様、フィルタ設定部11dは、図4(c)の非等方的領域の向きに対し垂直な方向に沿った非等方的形状フィルタを設定し、フィルタ処理部11はその非等方的形状フィルタを用いてフィルタ処理を行う。以下、図示を省略するが、図4(d)から図4(h)までの5つの方向についてもステップS35及びステップS36と同様の処理を行う。
医用画像のすべての画素についての処理が終わったか否かが判定され、YESであれば処理が終了され、NOであればステップS30へ戻る。
第四実施形態は、予め、画素ごとに複数の非等方的領域の標準偏差を求めておく実施形態である。以下、図10に従って第四実施形態について説明する。図10は、第四実施形態の処理の流れを示すフローチャートである。
原画像の全画素について、非等方的領域設定部11bは、図4(b)~図4(d)に示す8つの非等方的領域を設定し、統計量算出部11cは、画素毎に設定された非等方的領域の画素値の標準偏差を算出する。さらに、統計量算出部11cは、画素ごとに算出された複数の標準偏差うちの最大値と、一の注目画素に対して設定された複数の標準偏差を母集団とするさらなる標準偏差(以下「さらなるSD」という。)を算出する。統計量算出部11cは、最大値とさらなるSDとを格納した参照用標準偏差テーブル生成し、主メモリ12又はデータ記憶装置13に格納する。
フィルタ決定部11gは、図11の参照用標準偏差テーブル112の注目画素100に対応する「さらなるSD」の値を参照する。
フィルタ決定部11gは、注目画素の「さらなるSD」が第二基準範囲外にあるか否かを判定し、第二基準範囲外であればステップS43へ進み、第二基準範囲内であればステップS44へ進む。
フィルタ設定部11dは、注目画素を中心とするN×Nのマトリクス形状からなる等方的形状フィルタを設定し、フィルタ処理部11eが設定されたフィルタを構成する画素の画素値の中央値を注目画素の画素値に置き換えるメジアンフィルタ処理を行う。これにより、注目画素に対して等方向の処理が実行される。
判定部11iは、注目画素に対して設定された8つの非等方的領域の標準偏差SDkうちの最大値であるmaxSDを、参照用標準偏差テーブル112を参照して取得し、この値と第三基準範囲とを比較し、maxSDが第三基準範囲外にあるか否かを判定する。YESであればステップS45へ進み、NOであればステップS46へ進む。
ここでは、等方的領域の処理及び非等方的領域の処理以外の処理、例えばフィルタ処理を行うことなく、注目画素の画素値をフィルタ処理後の画素値として代入する処理が行われる。
フィルタ決定部11gは、参照用標準偏差テーブル112のmaxSDを参照し、最大値を示す方向が図4(b)の方向か否かを判定する。YESであればステップS47へ進み、NOであればステップS48へ進む。
フィルタ設定部11dは、ステップS36と同様、注目画素100に対して図4(b)の非等方的領域に対して垂直な方向に沿って非等方的形状フィルタを設定し、フィルタ処理部11eは、その非等方的形状フィルタを用いてメジアンフィルタ処理を行う。
ステップS48では、ステップS46と同様、フィルタ決定部11gは、参照用標準偏差テーブル112のmaxSDを参照し、最大値を示す方向が図4(c)の方向か否かを判定する。YESであればステップS49へ進み、NOであればステップS410へ進む。残りの非等方的領域についても同様の処理を行う。
医用画像のすべての画素についての処理が終わったか否かが判定され、YESであれば処理が終了され、NOであればステップS41へ戻る。
第五実施形態は、非等方的領域を用いたノイズ低減処理を臓器の種類によって選択処理する実施形態である。第五実施形態を図12に沿って説明する。図12は、第五実施形態の処理の流れを示すフローチャートである。
まず、画像読込部11aがCT画像を読み込む。次に、臓器抽出部11hは、ノイズ低減処理の対象となる臓器領域をCT画像から抽出する。なお、臓器領域の抽出は、例えば肝臓領域を肝臓に対応するCT値で二値処理をし、隣接する臓器領域との切り離し処理を行うことにより抽出することができる。また、複数スライスがある場合には、一のスライスで肝臓領域を抽出しておき、それに隣接するスライスにおいて、先に抽出された肝臓領域との形状の相関を基に肝臓領域を抽出することができる。
フィルタ決定部11gは、注目画素の座標と、臓器抽出部11hが抽出した対象臓器領域の座標とを比較し、注目画素が対象臓器領域内にあるか否かを判定する。注目画素が対象臓器領域外であればステップS52へ進み、領域内であればステップS53へ進む。
本実施形態によれば、対象臓器に応じたノイズ低減処理を行うことができる。
第六実施形態は、非等方的形状フィルタを用いたフィルタ処理を行うか否かを決定する基準となる第三基準範囲を、GUIを使って設定する実施形態である。以下、図13のフローチャートに沿って説明する。図13は、第六実施形態の処理の流れを示すフローチャートである。
画像読込部11aが、CT画像からなる原画像を読み込む。
非等方的領域設定部11bは、原画像の全ての画素または予め医用画像上にユーザがマウス16でトレースして指定したノイズ低減処理を所望する領域内の全ての画素について複数の非等方的領域を設定する。統計量算出部11cは各非等方的領域の標準偏差を算出する。
統計量算出部11cは、算出された標準偏差のヒストグラムを生成し、表示制御部11jがモニタ15標準偏差のヒストグラムを表示する。
ユーザは、モニタ15に表示された標準偏差のヒストグラム上で、第三基準範囲を設定する。統計量算出部11cは、第三基準範囲の推奨例を算出・提示する。ユーザは、推奨例を第三基準範囲として設定入力してもよいし、推奨例を微調整した後、設定入力してもよい。基準範囲設定部11kは、設定入力された値を第三基準範囲として設定する。
続いて、前述のステップS10~S111、ステップS20~S211、ステップS30~S311、ステップS40~S411、ステップS50~ステップS512のいずれかのノイズ低減処理が実行される。
ノイズ低減処理がされた画像が表示され、処理を終了する。
標準偏差のヒストグラムを用いて第三基準範囲を設定することにより、画像毎の画像ノイズの多少に応じて第三基準範囲を設定することができる。
第七実施形態は、ユーザが原画像上に関心領域を設定し、その関心領域のCT値や標準偏差を用いて第一基準範囲及び/又は第三基準範囲を設定するものである。以下、図15に従って第七実施形態について説明する。図15は、第七実施形態の処理の流れを示すフローチャートである。
画像読込部11aが、CT画像からなる原画像を読み込む。
表示制御部11jがモニタ15上に原画像161を表示する。ユーザがマウス16で原画像161上に領域指定をすると、関心領域設定部11lが、指定された領域を関心領域(ROI)に設定する。
統計量算出部11cは、ROI内のCT値や、ROI内の画素に設定された非等方的領域の標準偏差を算出する。
統計量算出部11cは、ROI内のCT値の分布や算出された標準偏差の分布を示すヒストグラムを生成し、表示制御部11jがモニタ15に表示する。
ユーザは、モニタ15に表示されたCT値のヒストグラム上で、等方的形状フィルタを用いた処理か否かを決定する第一基準範囲を指定する。また、標準偏差のヒストグラム上で、非等方的形状フィルタを用いた処理を行うか否かを決定する第三基準範囲を指定する。
続いて、前述のステップS10~S111、ステップS20~S211、ステップS30~S311、ステップS40~S411、ステップS50~ステップS512のいずれかのノイズ低減処理が実行される。
ノイズ低減処理がされた処理後画像が表示され、処理を終了する。
図16及び図17は、本実施形態で表示される画面表示例を示す模式図である。
<第八実施形態>
第八実施形態は、撮影条件に基づいて本発明に係るノイズ低減処理を行うか否かを決定する実施形態である。以下、図18に従って第八実施形態について説明する。図18は、第八実施形態の処理の流れを示すフローチャートである。
画像読込部11aが原画像を読み込むとともに、撮影情報取得部11mは、医用画像撮影装置2又は処理対象となる画像の付帯情報から、撮影時の撮影条件を示す撮影情報を取得する。ここでいう撮影条件とは、特にノイズに影響を与える撮影条件であり、CT画像の場合は、撮影時に用いられる管電流、MRI画像の場合は、静磁場及び/または傾斜磁場の強弱を示す値、US画像の場合は周波数、レントゲン画像の場合は、X線の強度を示す値などがある。
画像選別部11nは、ステップS80で取得した撮影情報と、予めデータ記憶装置13に格納された基準条件とを比較し、撮影条件が基準条件内にあるか否かに基づいて、非等方的領域を用いた処理を行うべき医用画像を選別する。基準条件は、画像ノイズが比較的多いと予想される撮影条件の範囲を設定したものであり、撮影条件がこの基準条件にあたる場合には、非等方的領域を用いた処理をすべき画像として選別する。
Claims (12)
- 医用画像を読み込む画像読込手段と、前記医用画像に含まれる注目画素に対し、その注目画素を中心とし、前記注目画素に連続する非等方的領域を複数設定する非等方的領域設定手段と、前記複数の非等方的領域の各々について、各非等方的領域を構成する画素の画素値の統計量を算出する統計量算出手段と、
前記複数の非等方的領域のうち前記統計量が最小となる非等方的領域を決定し、その非等方的領域と同一方向に構成された非等方的形状フィルタ、又は前記複数の非等方的領域のうち前記統計量が最大となる非等方的領域を決定し、その非等方的領域を、前記注目画素を中心として右回り又は左回りに90度回転させた方向に構成された非等方的形状フィルタ、のいずれかを設定するフィルタ設定手段と、前記注目画素に対し、前記非等方的形状フィルタを用いてメジアンフィルタ処理又は平滑化フィルタ処理を行うフィルタ処理手段と、を備えることを特徴とする画像処理装置。 - 前記医用画像の画像サイズ又は前記医用画像の有効視野範囲を任意の倍率に拡大・縮小する画像サイズ変更手段を更に備え、前記フィルタ設定手段は、前記非等方的領域の端部の画素の画素値と、前記端部の画素に隣接する前記非等方的領域内の画素の画素値とを、前記任意の倍率に応じて決定された係数を用いて補間した画素値を算出し、前記非等方的領域から前記端部の画素を除いた形状であって、前記端部の画素に隣接する画素の画素値を前記算出した画素値に置き換えた非等方的形状フィルタを設定する、ことを特徴とする請求項1に記載の画像処理装置。
- 前記医用画像はX線CT画像、MRI画像、US画像、及びレントゲン画像のいずれかであって、
前記注目画素のCT値または濃度値が、所定のCT値範囲または濃度値範囲を定めた第一基準範囲外にある場合に、前記注目画素を中心とするマトリクス形状の等方的形状フィルタを適用することを決定するフィルタ決定手段を更に備え、
前記等方的形状フィルタを適用することが決定されると、前記フィルタ設定手段は、前記非等方的形状フィルタに代えて前記等方的形状フィルタを設定する、ことを特徴とする請求項1又は2に記載の画像処理装置。 - 前記医用画像において所望する臓器が撮影されている対象臓器領域を抽出する臓器領域抽出手段と、
前記注目画素の座標と前記対象臓器領域の座標とに基づいて、前記注目画素が前記対象臓器領域に含まれるか否かを判定し、前記注目画素が前記対象臓器領域に含まれない場合に、前記注目画素を中心とするマトリクス形状の等方的形状フィルタを適用することを決定するフィルタ決定手段を更に備え、
前記等方的形状フィルタを適用することが決定されると、前記フィルタ設定手段は、前記非等方的形状フィルタに代えて前記等方的形状フィルタを設定する、ことを特徴とする請求項1又は2に記載の画像処理装置。 - 前記統計量算出手段は、前記注目画素に対して設定された前記複数の非等方的領域の統計量を母集団とするさらなる統計量を算出し、
前記さらなる統計量が、所定の前記さらなる統計量の範囲を定めた第二基準範囲外にある場合に、前記注目画素を中心とするマトリクス形状の等方的形状フィルタを適用することを決定するフィルタ決定手段を更に備え、
前記等方的形状フィルタを適用することが決定されると、前記フィルタ設定手段は、前記非等方的形状フィルタに代えて前記等方的形状フィルタを設定する、ことを特徴とする請求項1又は2に記載の画像処理装置。 - 前記フィルタ決定手段により、前記等方的形状フィルタを適用しないと決定された注目画素について、その注目画素に対し前記算出された複数の非等方的領域の統計量のうちの最大値が、所定の前記統計量の範囲を定めた第三基準範囲内にあるか否かを判定する判定手段を更に備え、
前記判定手段が、前記統計量の最大値が前記所定の第三基準範囲内にあると判定すると、前記フィルタ設定手段は前記非等方的形状フィルタを設定する、
ことを特徴とする請求項3乃至5のいずれか一項に記載の画像処理装置。 - 前記算出された複数の非等方的領域の統計量のうちの最大値が、前記第三基準範囲外にある場合は、前記フィルタ設定手段は、前記非等方的形状フィルタを設定することなく、前記医用画像の注目画素の画素値をフィルタ処理後画像の画素値として代入する、ことを特徴とする請求項6に記載の画像処理装置。
- 前記非等方的領域設定手段は、前記医用画像の各画素について前記非等方的領域を複数設定し、前記統計量算出手段は、前記医用画像の各画素について設定された非等方的領域の統計量を算出し、その算出した統計量のヒストグラムを生成し、前記ヒストグラムを表示するヒストグラム表示手段と、
前記表示されたヒストグラム上で所望する範囲を指定することにより、前記第三基準範囲を設定する基準範囲設定手段と、
を更に備える、ことを特徴とする請求項6又は7に記載の画像処理装置。 - 前記医用画像を表示する画像表示手段と、前記医用画像上に関心領域を設定する関心領域設定手段と、を更に備え、前記統計量算出手段は、前記関心領域を構成する画素のCT値又は濃度値のヒストグラム及び前記関心領域を構成する画素に対して設定された前記非等方的領域の統計量のヒストグラムの少なくとも一つを生成し、前記CT値又は濃度値のヒストグラム及び前記統計量のヒストグラムの少なくとも一つを表示するヒストグラム表示手段と、
前記表示されたCT値又は濃度値のヒストグラム及び前記統計量のヒストグラム上で所望する範囲を設定することにより、前記第一基準範囲又は前記第三基準範囲の少なくとも一つを設定する基準範囲設定手段と、を更に備えることを特徴とする請求項3、6、又は7のいずれか一項に記載の画像処理装置。 - 前記医用画像の撮影条件を示す撮影情報を取得する取得手段と、前記撮影情報に基づいて前記撮影条件が所定の条件を満たす医用画像を選別する選別手段と、を更に備え、
前記非等方的領域設定手段は、前記選別された医用画像の画素に対して前記非等方的領域を設定することを特徴とする請求項1乃至9のいずれか一項に記載の画像処理装置。 - 医用画像を読み込むステップと、前記医用画像に含まれる注目画素に対し、その注目画素を中心とし、前記注目画素に連続する非等方的領域を複数設定するステップと、前記複数の非等方的領域の各々について、各非等方的領域を構成する画素の画素値の統計量を算出するステップと、前記複数の非等方的領域のうち前記統計量が最小となる非等方的領域を決定し、その非等方的領域と同一方向に構成された非等方的形状フィルタ、又は前記複数の非等方的領域のうち前記統計量が最大となる非等方的領域を決定し、その非等方的領域を、前記注目画素を中心として右回り又は左回りに90度回転させた方向に構成された非等方的形状フィルタ、のいずれかを設定するステップと、前記注目画素に対し、前記非等方的形状フィルタを用いてメジアンフィルタ処理又は平滑化フィルタ処理を行うステップとを含むことを特徴とする画像処理方法。
- 医用画像を読み込むステップと、前記医用画像に含まれる注目画素に対し、その注目画素を中心とし、前記注目画素に連続する非等方的領域を複数設定するステップと、前記複数の非等方的領域の各々について、各非等方的領域を構成する画素の画素値の統計量を算出するステップと、前記複数の非等方的領域のうち前記統計量が最小となる非等方的領域を決定し、その非等方的領域と同一方向に構成された非等方的形状フィルタ、又は前記複数の非等方的領域のうち前記統計量が最大となる非等方的領域を決定し、その非等方的領域を、前記注目画素を中心として右回り又は左回りに90度回転させた方向に構成された非等方的形状フィルタ、のいずれかを設定するステップと、前記注目画素に対し、前記非等方的形状フィルタを用いてメジアンフィルタ処理又は平滑化フィルタ処理を行うステップと、をコンピュータに実行させることを特徴とする画像処理プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010514442A JP5367704B2 (ja) | 2008-05-28 | 2009-05-18 | 画像処理装置、画像処理方法、及び画像処理プログラム |
US12/993,337 US8326013B2 (en) | 2008-05-28 | 2009-05-18 | Image processing device, image processing method, and image processing program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-139403 | 2008-05-28 | ||
JP2008139403 | 2008-05-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009145076A1 true WO2009145076A1 (ja) | 2009-12-03 |
Family
ID=41376957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/059119 WO2009145076A1 (ja) | 2008-05-28 | 2009-05-18 | 画像処理装置、画像処理方法、及び画像処理プログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US8326013B2 (ja) |
JP (1) | JP5367704B2 (ja) |
WO (1) | WO2009145076A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013035255A1 (ja) * | 2011-09-07 | 2013-03-14 | 株式会社島津製作所 | 画像処理装置およびそれを備えた放射線撮影装置 |
JP2013150778A (ja) * | 2011-12-26 | 2013-08-08 | Toshiba Corp | 超音波診断装置、医用画像処理装置、及び医用画像処理方法 |
WO2014119412A1 (ja) * | 2013-01-30 | 2014-08-07 | 株式会社 日立メディコ | 医用画像処理装置及び医用画像撮像装置 |
JP2015121877A (ja) * | 2013-12-20 | 2015-07-02 | 東芝デジタルメディアエンジニアリング株式会社 | 中央値検索方法及び中央値検索装置 |
JP2015177972A (ja) * | 2014-02-28 | 2015-10-08 | 株式会社東芝 | 画像処理装置およびx線診断装置 |
JPWO2014038428A1 (ja) * | 2012-09-07 | 2016-08-08 | 株式会社日立製作所 | 画像処理装置及び画像処理方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9129360B2 (en) * | 2009-06-10 | 2015-09-08 | Koninklijke Philips N.V. | Visualization apparatus for visualizing an image data set |
US9946947B2 (en) * | 2012-10-31 | 2018-04-17 | Cognex Corporation | System and method for finding saddle point-like structures in an image and determining information from the same |
JP6113487B2 (ja) * | 2012-12-13 | 2017-04-12 | 東芝メディカルシステムズ株式会社 | 医用画像診断装置及び医用画像処理装置 |
JP6594075B2 (ja) * | 2015-07-22 | 2019-10-23 | キヤノン株式会社 | 画像処理装置、撮像システム、画像処理方法 |
US11593918B1 (en) * | 2017-05-16 | 2023-02-28 | Apple Inc. | Gradient-based noise reduction |
US10762405B2 (en) | 2017-10-26 | 2020-09-01 | Datalogic Ip Tech S.R.L. | System and method for extracting bitstream data in two-dimensional optical codes |
CN111991018A (zh) * | 2019-05-27 | 2020-11-27 | 上海西门子医疗器械有限公司 | 显示断层图像的方法、指示断层图像的ct值的范围的方法和设备 |
CN111968195B (zh) * | 2020-08-20 | 2022-09-02 | 太原科技大学 | 用于低剂量ct图像降噪及去伪影的双注意力生成对抗网络 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63209643A (ja) * | 1987-02-26 | 1988-08-31 | 三菱電機株式会社 | 磁気共鳴画像の処理方法 |
JPH10283471A (ja) * | 1997-04-07 | 1998-10-23 | Hitachi Ltd | 画像処理方法、画像処理装置および画像処理プログラムを記録した記録媒体 |
JP2002063574A (ja) * | 2000-08-18 | 2002-02-28 | Ge Medical Systems Global Technology Co Llc | 画像処理方法および装置、記録媒体並びに画像撮影装置 |
JP2003225234A (ja) * | 2002-02-01 | 2003-08-12 | Hitachi Medical Corp | 血流動態解析装置 |
JP2006167187A (ja) * | 2004-12-16 | 2006-06-29 | Hitachi Medical Corp | 医用画像表示装置 |
JP2007202916A (ja) * | 2006-02-03 | 2007-08-16 | Hitachi Medical Corp | 医用画像表示装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0777892B1 (en) * | 1994-08-29 | 1999-11-10 | Torsana A/S | A method of estimation |
US5825909A (en) * | 1996-02-29 | 1998-10-20 | Eastman Kodak Company | Automated method and system for image segmentation in digital radiographic images |
JP2002006574A (ja) * | 2000-06-19 | 2002-01-09 | Matsushita Electric Ind Co Ltd | カラー画像形成装置 |
EP1526480A1 (en) * | 2000-10-17 | 2005-04-27 | Fuji Photo Film Co., Ltd | Apparatus for suppressing noise by adapting filter characteristics to input image signal based on characteristics of input image signal |
US7430335B2 (en) * | 2003-08-13 | 2008-09-30 | Apple Inc | Pre-processing method and system for data reduction of video sequences and bit rate reduction of compressed video sequences using spatial filtering |
US7835555B2 (en) * | 2005-11-29 | 2010-11-16 | Siemens Medical Solutions Usa, Inc. | System and method for airway detection |
WO2007135913A1 (ja) * | 2006-05-19 | 2007-11-29 | Hitachi Medical Corporation | 医用画像表示装置及びプログラム |
US8582916B2 (en) * | 2007-12-25 | 2013-11-12 | Medic Vision—Brain Technologies Ltd. | Noise reduction of images |
-
2009
- 2009-05-18 JP JP2010514442A patent/JP5367704B2/ja not_active Expired - Fee Related
- 2009-05-18 US US12/993,337 patent/US8326013B2/en not_active Expired - Fee Related
- 2009-05-18 WO PCT/JP2009/059119 patent/WO2009145076A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63209643A (ja) * | 1987-02-26 | 1988-08-31 | 三菱電機株式会社 | 磁気共鳴画像の処理方法 |
JPH10283471A (ja) * | 1997-04-07 | 1998-10-23 | Hitachi Ltd | 画像処理方法、画像処理装置および画像処理プログラムを記録した記録媒体 |
JP2002063574A (ja) * | 2000-08-18 | 2002-02-28 | Ge Medical Systems Global Technology Co Llc | 画像処理方法および装置、記録媒体並びに画像撮影装置 |
JP2003225234A (ja) * | 2002-02-01 | 2003-08-12 | Hitachi Medical Corp | 血流動態解析装置 |
JP2006167187A (ja) * | 2004-12-16 | 2006-06-29 | Hitachi Medical Corp | 医用画像表示装置 |
JP2007202916A (ja) * | 2006-02-03 | 2007-08-16 | Hitachi Medical Corp | 医用画像表示装置 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013035255A1 (ja) * | 2011-09-07 | 2013-03-14 | 株式会社島津製作所 | 画像処理装置およびそれを備えた放射線撮影装置 |
CN103747736A (zh) * | 2011-09-07 | 2014-04-23 | 株式会社岛津制作所 | 图像处理装置以及具备该图像处理装置的放射线摄影装置 |
JPWO2013035255A1 (ja) * | 2011-09-07 | 2015-03-23 | 株式会社島津製作所 | 画像処理装置およびそれを備えた放射線撮影装置 |
JP2013150778A (ja) * | 2011-12-26 | 2013-08-08 | Toshiba Corp | 超音波診断装置、医用画像処理装置、及び医用画像処理方法 |
JPWO2014038428A1 (ja) * | 2012-09-07 | 2016-08-08 | 株式会社日立製作所 | 画像処理装置及び画像処理方法 |
WO2014119412A1 (ja) * | 2013-01-30 | 2014-08-07 | 株式会社 日立メディコ | 医用画像処理装置及び医用画像撮像装置 |
JPWO2014119412A1 (ja) * | 2013-01-30 | 2017-01-26 | 株式会社日立製作所 | 医用画像処理装置及び医用画像撮像装置 |
JP2015121877A (ja) * | 2013-12-20 | 2015-07-02 | 東芝デジタルメディアエンジニアリング株式会社 | 中央値検索方法及び中央値検索装置 |
JP2015177972A (ja) * | 2014-02-28 | 2015-10-08 | 株式会社東芝 | 画像処理装置およびx線診断装置 |
US10453184B2 (en) | 2014-02-28 | 2019-10-22 | Canon Medical Systems Corporation | Image processing apparatus and X-ray diagnosis apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP5367704B2 (ja) | 2013-12-11 |
US8326013B2 (en) | 2012-12-04 |
US20110069875A1 (en) | 2011-03-24 |
JPWO2009145076A1 (ja) | 2011-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5367704B2 (ja) | 画像処理装置、画像処理方法、及び画像処理プログラム | |
US20210133231A1 (en) | Control method and non-transitory computer-readable recording medium for comparing medical images | |
US10610203B2 (en) | Methods, systems, and media for determining carotid intima-media thickness | |
US8107700B2 (en) | System and method for efficient workflow in reading medical image data | |
EP1635295A1 (en) | User interface for CT scan analysis | |
US20080008371A1 (en) | Considerations when colon segmentation differs between CAD processing and visualization | |
JP2009018048A (ja) | 医用画像表示装置、方法及びプログラム | |
US9824189B2 (en) | Image processing apparatus, image processing method, image display system, and storage medium | |
US8705821B2 (en) | Method and apparatus for multimodal visualization of volume data sets | |
JP5492024B2 (ja) | 領域分割結果修正装置、方法、及びプログラム | |
US8175364B2 (en) | Medical image display device and program that generates marker and changes shape of region of interest to contact marker | |
WO2012073769A1 (ja) | 画像処理装置及び画像処理方法 | |
JP2007151645A (ja) | 医用画像診断支援システム | |
WO2014038428A1 (ja) | 画像処理装置及び画像処理方法 | |
US9792261B2 (en) | Medical image display apparatus, medical image display method, and recording medium | |
JP4596579B2 (ja) | 画像処理方法及び装置 | |
JP6276529B2 (ja) | 読影支援装置、その方法、及びプログラム | |
EP2199976B1 (en) | Image processing method, image processing apparatus and image processing program | |
US10324582B2 (en) | Medical image display apparatus, method for controlling the same | |
KR20070083645A (ko) | Ct 스캔 분석을 위한 사용자 인터페이스 | |
JP6085435B2 (ja) | 画像処理装置及び関心領域設定方法 | |
US20130332868A1 (en) | Facilitating user-interactive navigation of medical image data | |
JP6327966B2 (ja) | 医用画像表示装置、表示制御装置および表示制御方法、プログラム | |
Gao et al. | Medical image zooming algorithm based on bivariate rational interpolation | |
JPH0956706A (ja) | 画像表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09754584 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010514442 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12993337 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09754584 Country of ref document: EP Kind code of ref document: A1 |