WO2009143709A1 - 双流波束赋型方法、装置及支持双流波束赋型传输的设备 - Google Patents

双流波束赋型方法、装置及支持双流波束赋型传输的设备 Download PDF

Info

Publication number
WO2009143709A1
WO2009143709A1 PCT/CN2009/000593 CN2009000593W WO2009143709A1 WO 2009143709 A1 WO2009143709 A1 WO 2009143709A1 CN 2009000593 W CN2009000593 W CN 2009000593W WO 2009143709 A1 WO2009143709 A1 WO 2009143709A1
Authority
WO
WIPO (PCT)
Prior art keywords
dual
stream
user
reference symbol
specific reference
Prior art date
Application number
PCT/CN2009/000593
Other languages
English (en)
French (fr)
Inventor
林亚男
索士强
丁昱
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2009143709A1 publication Critical patent/WO2009143709A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • Dual-flow beamforming method device and device supporting dual-flow beamforming transmission
  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for dual-stream beamforming and a device for supporting dual-stream beamforming transmission. Background technique
  • MIMO Multiple Input Multiple Output
  • LTE Long Time Evolution
  • BF beam forming
  • ercoding downlink precoding
  • the existing LTE system has the following provisions for downlink beamforming transmission:
  • the beamforming user demodulates the downlink shared physical channel (PDSCH, Physical Downlink Shared Channel) by using UE-specific reference signals; the user-specific reference symbol only
  • the mapping is in the resource block used by the prototype transmission; the user-specific reference symbol only occupies one antenna port (ie, antenna port 5) for mapping; the upper layer needs to inform the terminal whether the user-specific reference symbol is used (ie, whether to perform beamforming transmission)
  • the cell-specific reference signals on port 0, 1 are reserved, and the cell-specific reference symbols on ports 2, 3 are no longer available.
  • the cell-specific reference symbols are transmitted in each downlink subframe, covering the entire system bandwidth in the frequency domain, and spanning the entire downlink subframe in time, as shown in FIG. ⁇ Indicates the cell-specific reference symbols on antenna ports 0 to 3, respectively.
  • 1A is a common reference symbol mapping pattern under the condition of a normal cyclic prefix (normal CP, normal Cyclic Prefix)
  • FIG. 1B is a common reference symbol mapping pattern under the condition of extended CP (extended CP).
  • the user-specific reference symbol is only used in the data portion of the Physical Resource Block (PRB) assigned to the user for beamforming, when it is simultaneously with the cell-specific reference signal.
  • PRB Physical Resource Block
  • 2A is suitable for a dedicated reference signal mapping pattern under normal CP conditions
  • FIG. 2B is suitable for a dedicated reference signal mapping pattern under extended CP conditions.
  • the inventors have found through research that: In the existing LTE standard, only the mapping pattern of the user-specific reference symbols in the single stream shaping transmission is provided, and only the single stream transmission is supported for the beamforming. With the further evolution of the LTE standard, dual-stream beamforming may be considered in downlink transmission. If the existing user-specific reference symbol structure is used for multi-stream shaping transmission, that is, the reference symbol mapping structure on each data stream is the same, only in Shifting in the time-frequency domain, for example, the cell-specific reference symbols on ports 0 and 1, there is a phenomenon that the system overhead is too large, which will seriously affect the throughput of the system. Send content
  • Embodiments of the present invention provide a dual stream beamforming method and apparatus, and a device supporting dual stream beamforming transmission, which can significantly improve system efficiency without additionally adding a user-specific reference symbol mapping pattern.
  • Embodiments of the present invention provide a method for dual-stream beamforming, including:
  • resource mapping of user-specific reference symbols is performed for each data stream.
  • An embodiment of the present invention provides a dual-flow beamforming device, including:
  • An obtaining unit configured to obtain a user-specific reference symbol mapping structure used by the dual stream shaping transmission based on a reference symbol mapping structure used by the single stream shaping transmission;
  • mapping unit configured to perform resource mapping of the user-specific reference symbols for each data stream according to the user-specific reference symbol mapping structure acquired by the acquiring unit.
  • An embodiment of the present invention provides a device for supporting dual-stream beamforming transmission, including a user-specific reference symbol mapping module, where the module includes:
  • An obtaining unit configured to obtain a user-specific reference symbol mapping structure used by the dual stream shaping transmission based on a reference symbol mapping structure used by the single stream shaping transmission;
  • a mapping unit configured to perform resource mapping of the user-specific reference symbol for each data stream according to the user-specific reference symbol mapping structure acquired by the acquiring unit.
  • the embodiment of the present invention provides a mapping scheme of user-specific reference symbols when performing dual-stream beamforming transmission.
  • the solution is simple and easy to implement, and does not require additional user-specific reference symbol mapping to ensure system performance and significantly improve system efficiency.
  • 1A and 1B are common reference symbol mapping patterns in the conventional CP and extended CP conditions of the prior art
  • 2A and 2B are respectively dedicated reference symbol mapping patterns in the conventional CP and extended CP conditions of the prior art
  • FIG. 3 is a flowchart of a dual stream beamforming method according to an embodiment of the present invention.
  • 4A, 4B, and 4C are respectively three kinds of dedicated reference symbol mapping patterns under the normal CP condition of the embodiment of the present invention.
  • 5A and 5B are respectively two kinds of dedicated reference symbol mapping patterns under the extended CP condition in the embodiment of the present invention.
  • FIG. 6 is a structural diagram of a dual stream beamforming device according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a dual-stream beamforming transmission device according to an embodiment of the present invention
  • FIG. 8 is a flow chart of an application example supporting a dual-stream beamforming transmission method according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a dual stream beamforming method and apparatus, and a device supporting dual stream beamforming transmission, which can significantly improve system efficiency without additionally adding a user-specific reference symbol mapping pattern.
  • the present invention will be further described in detail below with reference to the accompanying drawings.
  • Dual stream assignment requires the use of two antenna ports to transmit user-specific reference symbols. Similar to the cell-specific reference symbols, user-specific reference symbols on different data streams need to occupy different resource elements (RE, Resource Element) to avoid aliasing and affect channel estimation performance on each data stream.
  • RE Resource Element
  • a flowchart of a dual-stream beamforming method according to an embodiment of the present invention includes the following process:
  • Step 301 Acquire a user-specific reference symbol mapping structure used by the dual stream type transmission.
  • Step 302 Perform resource mapping of the user-specific reference symbol for each data stream according to the user-specific reference symbol mapping structure.
  • the present invention proposes a reference symbol mapping structure to support dual stream shaping transmission.
  • the dedicated reference symbol mapping pattern under the condition of the conventional CP and the extended CP provided by the embodiment of the present invention respectively represent a user-specific reference symbol.
  • 4A, 4B, and 4C are three kinds of dedicated reference symbol mapping patterns under the normal CP condition of the embodiment of the present invention; for example, FIG. 4A is the original odd-numbered column in the reference symbol mapping structure used for single-stream shaping transmission. The reference symbols are grouped into one group, and the original even-numbered reference symbols are grouped into another group.
  • 5A and 5B are respectively two kinds of dedicated reference symbol mapping patterns under the extended CP condition of the embodiment of the present invention; for example, two sets of reference symbols are interleaved in time and frequency domain, that is, in each column (the same OFDM symbol). R6 and R7 are adjacently staggered; meanwhile, reference symbols in the same group on different columns do not occupy the same subcarrier.
  • FIG. 4 and FIG. 5 are only preferred embodiments provided by the present invention, and the present invention is not limited to the drawings shown in the embodiment in the implementation process.
  • two sets of reference symbols can be six in each group as shown in Figures 4 and 5; or four in one group and eight in another group.
  • the user-specific reference symbol mapping structure used in the dual-stream shaping transmission is completed in the system design process, and is fixed, that is, the base station and the terminal have already stored the partial information once it is produced, during communication. Just need to determine which structure to use, and then call the stored structure.
  • the system design divides the resource units occupied by the reference symbols into two groups.
  • the dual stream shaping transmission is performed based on the reference symbol mapping structure used for single stream shaping transmission. Among them, at least one of the following factors should be considered when grouping resource units occupied by reference symbols:
  • the reference symbols in each group have a more uniform distribution in the time-frequency domain.
  • the reference symbols in each group are distributed as much as possible in the edge portion of the resource block.
  • the resource elements occupied by the reference symbols need to be comprehensively considered but not limited to the above two factors.
  • the LTE standard can support up to 2 code words and 4 layers of precoding.
  • the cell-specific reference symbols can occupy 4 antenna ports for transmission, and each antenna port occupies different resource blocks to avoid interference.
  • all resource elements used for reference symbol mapping can no longer perform data resource mapping, that is, for any data stream, data symbols cannot be mapped to resources occupied by reference symbols on other data streams.
  • the user-specific reference symbols in the LTE standard only occupy port 5 for transmission.
  • the cell-specific reference symbols on ports 0 and 1 are also reserved for the demodulation transmission, in order to demodulate some non-emphasized control channels, such as the downlink control channel (PDCCH, Physical Downlink Control Channel), and the broadcast channel (PBCH, Physical Broadcast).
  • PDCH downlink control channel
  • PBCH Physical Broadcast
  • resource mapping of data may be performed on resource elements of each user-specific reference symbol used for mapping other streams. That is, the data may be mapped on any resource unit except the resource elements occupied by the PDCCH, the local reference symbol, and the cell-specific reference symbol, that is, the resources occupied by the user-specific reference symbols on other data streams need not be vacated. Unit, so the overhead of user-specific reference symbols in the system can be reduced by half.
  • a structural diagram of a dual-stream beamforming device includes: an obtaining unit 610 and a mapping unit 620;
  • the obtaining unit 610 is configured to obtain a user-specific reference symbol mapping structure used by the dual stream shaping transmission based on a reference symbol mapping structure used by the single stream shaping transmission;
  • the mapping unit 620 is configured to perform resource mapping of the user-specific reference symbols for each data stream according to the user-specific reference symbol mapping structure acquired by the acquiring unit 610.
  • the user-specific reference symbol mapping structure used in the dual-stream shaping transmission is completed in the system design process, and is fixed, that is, the base station and the terminal have already stored the once generated. Part of the information, communication only needs to determine which structure to use, and then call the stored structure.
  • the system design divides the resource units occupied by the reference symbols into two groups, and performs dual-stream shaping transmission based on the reference symbol mapping structure used in the single-stream shaping transmission. Among them, at least one of the following factors should be considered when grouping resource elements occupied by reference symbols:
  • the reference symbols in each group have a more evenly distributed distribution in the time-frequency domain.
  • the reference symbols in each group are distributed as much as possible in the edge portion of the resource block.
  • the acquiring unit 610 needs to comprehensively consider but not limited to the above two factors when grouping the resource units occupied by the reference symbols.
  • the mapping unit 620 may also need to free the resource units occupied by the user-specific reference symbols on other data streams when the resource mapping of other data streams is performed, thereby enabling users in the system.
  • the overhead of the proprietary reference symbol is reduced by half.
  • the user-specific reference symbol mapping structure of the extended CP condition may further be included.
  • a structural diagram of a dual-stream beamforming transmission device includes: a user-specific reference symbol mapping module 700, a beamforming processing module 710, and a resource mapping module 720;
  • the user-specific reference symbol mapping module 700 is configured to separately perform resource mapping of user-specific reference symbols for each data stream, and the mapping is performed according to the acquired structure of the user-specific reference symbol mapping;
  • the beamforming processing module 710 is configured to perform beamforming processing, that is, multiplying a weighting value on each physical antenna for each data stream;
  • the resource mapping module 720 is configured to separately perform resource mapping of data and cell-specific reference symbols for each layer, and the mapping is performed according to the structure of the acquired cell-specific reference symbol mapping.
  • the user-specific reference symbol mapping module 700 may include: an obtaining unit 610, a mapping unit 620;
  • the obtaining unit 610 is configured to obtain a user-specific reference symbol mapping structure used by the dual stream shaping transmission based on a reference symbol mapping structure used by the single stream shaping transmission;
  • the mapping unit 620 is configured to perform resource mapping of data and user-specific reference symbols for each data stream according to the user-specific reference symbol mapping structure acquired by the acquiring unit 610.
  • the user-specific reference symbol mapping structure used in the dual-stream shaping transmission is completed in the system design process, and is fixed, that is, the base station and the terminal have already stored the partial information once it is produced, during communication. Just need to determine which structure to use, and then call the stored structure.
  • the system design divides the resource units occupied by the reference symbols into two groups, and performs dual-stream shaping transmission based on the reference symbol mapping structure used in the single-stream shaping transmission. At least one of the following factors should be considered when grouping the resource elements occupied by the reference symbol:
  • the reference symbols in each group have a more evenly distributed distribution in the time-frequency domain.
  • the reference symbols in each group are distributed as much as possible in the edge portion of the resource block.
  • the acquiring unit 610 needs to comprehensively consider but not limited to the above two factors when grouping the resource units occupied by the reference symbols.
  • the resource mapping for the data may be performed by the mapping unit 620 on the resource unit for mapping the user-specific reference symbols of the other streams in each data stream, that is, when the resource mapping of the data is performed, the other data streams need not be vacated.
  • the resource unit occupied by the user-specific reference symbol can reduce the overhead of the user-specific reference symbol in the system by half.
  • the user-specific reference symbol mapping module 700 may further include: and a user-specific reference symbol mapping structure that extends the CP condition.
  • the device supporting the dual stream beamforming transmission may specifically be a base station, and the data flow thereof is shown by an arrow in FIG. 7.
  • the device supporting the dual-stream beamforming transmission may also be a terminal, and the actual process is similar to the base station.
  • Step 801 Determine whether the format of the transmission frame is a regular CP or an extended CP.
  • the transmission frame format information is transmitted in the broadcast channel, and after completing the PBCH demodulation, the terminal can learn the specifically used transmission frame format.
  • the terminal can learn the specifically used transmission frame format.
  • any one of the structures shown in Fig. 4 can be used; for the extended CP, any one of the structures shown in Fig. 5 can be used.
  • Step 802 Determine whether the number of data streams is a single stream or a dual stream.
  • the upper layer may indicate, by signaling, the number of data streams used by the terminal for the current type of transmission.
  • the indication bit identifier 0 indicates a single stream
  • the identifier 1 indicates a dual stream.
  • Step 803 Perform resource mapping on data and user-specific reference symbols for each data stream, and perform mapping according to the obtained structure of the user-specific reference symbol mapping;
  • Step 804 beam shaping processing, that is, multiplying a weight value on each physical antenna for each data stream;
  • Step 805 Perform resource mapping of data and cell-specific reference symbols for each layer separately, and perform mapping according to the structure of the acquired cell-specific reference symbol mapping.
  • the resource mapping of the single-stream shaped data and the user-specific reference symbol may be mapped according to the user-specific reference symbol structure on the existing antenna port in the current LTE standard, that is, according to the structure shown in FIG. 2, The mapping is performed by using the foregoing process.
  • the antenna port or the user-specific reference symbol structure may be mapped according to the foregoing embodiment of the present invention, that is, according to the structure shown in FIG. 4 and FIG. 5, the single stream shaping data is regarded as a dual stream shaping type. A stream in the transport is mapped using the above process.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment of the present invention provides a mapping scheme of user-specific reference symbols when performing dual-stream beamforming transmission based on the existing user-specific reference symbol structure.
  • the program is simple and easy to implement
  • the application does not require additional user-specific reference symbol mapping to ensure system performance and significantly improve system efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

双流波束赋型方法、 装置及支持双流波束赋型传输的设备
本发明涉及通信技术领域, 尤其涉及一种双流波束赋型的方法、 装置及支 持双流波束赋型传输的设备。 背景技术
多输入多输出 (MIMO, Multiple Input Multiple Output) )技术作为重要的 提高传输质量和效率的物理层多天线技术, 在新一代通信系统中扮演着重要的 角色。 目前, 长期演进项目 (LTE, Long Time Evolution )系统就支持发射分集, 空间复用技术以及波束赋型( BF, Beam forming )等多种 MIMO技术。现有 LTE 系统中, 下行预编码 ( ercoding )可以同时处理多个码字( codewords, 多个码 字可能来自同一用户的同一个数据源, 也可能来自同一用户的不同的数据源), 用以提高在较好传输条件下系统的吞吐量; 对于波束赋型则仅支持单数据流 ( stream, 一个数据流对应一个数据源)传输。
现有 LTE系统对下行波束赋型传输有如下规定: 波束赋型用户使用用户专 属参考符号 ( UE-specific reference signals )解调下行共享物理信道 ( PDSCH, Physical Downlink Shared Channel ); 用户专属参考符号只映射在赋型传输所使 用的资源块中; 用户专属参考符号只占用一个天线端口 (即天线端口 5 )进行 映射; 高层需要通知终端是否使用了用户专属参考符号 (即是否进行波束赋型 传输);进行波束赋型传输时,保留端口 0, 1上的小区专属参考符号( Cell-specific reference signals ), 端口 2, 3上的小区专属参考符号不再可用。
其中, 小区专属参考符号在每一个下行子帧中发送, 在频域上覆盖整个系 统带宽, 在时间上横跨整个下行子帧, 如图 1 所示, w。〜 分别表示天线端口 0〜3上的小区专属参考符号。 其中, 图 1A为常规循环前缀(normal CP, normal Cyclic Prefix )条件下的公共参考符号映射图样,图 1B为扩展 CP ( extended CP ) 条件下的公共参考符号映射图样。
用户专属参考符号只在分配给用户进行波束赋形的物理资源块 ( PRB , Physical Resource Block ) 中的数据部分使用, 当其与小区专属参考信号同时在 一个子帧中存在时, 按照图 2所示方式进行复用, ^表示用户专属参考符号。 其中, 图 2A适用于常规 CP条件下的专用参考信号映射图样, 图 2B适用于扩 展 CP条件下的专用参考信号映射图样。
在实现本发明的过程中, 发明人经过研究发现: 现有 LTE标准中, 仅提供 了支持单流赋型传输时用户专属参考符号的映射图样, 对于波束赋型只支持单 流传输。 随着 LTE标准的进一步演进, 下行传输中可能会考虑使用双流波束赋 型, 若使用现有的用户专属参考符号结构进行多流赋型传输, 即各数据流上参 考符号映射结构相同, 只在时频域上进行移位, 例如端口 0、 1上的小区专属参 考符号, 则存在系统开销过大的现象, 这将严重影响系统的吞吐量。 发^内容
本发明实施例提供一种双流波束赋型的方法、 装置及支持双流波束赋型传 输的设备, 能够在不额外增加用户专属参考符号映射图样的前提下, 显著提高 系统效率。
本发明实施例提供以下技术方案:
本发明实施例提供一种双流波束赋型的方法, 包括:
基于单流赋型传输所使用的参考符号映射结构, 获取双流赋型传输所使用 的用户专属参考符号映射结构;
根据所述用户专属参考符号映射结构 , 分别对每个数据流进行用户专属参 考符号的资源映射。
本发明实施例提供一种双流波束赋型的装置, 包括:
获取单元, 用于基于单流赋型传输所使用的参考符号映射结构, 获取双流 赋型传输所使用的用户专属参考符号映射结构;
映射单元, 用于根据所述获取单元获取的用户专属参考符号映射结构, 分 别对每个数据流进行用户专属参考符号的资源映射。
本发明实施例提供一种支持双流波束赋型传输的设备, 包括用户专属参考 符号映射模块, 其中, 所述模块包括:
获取单元, 用于基于单流赋型传输所使用的参考符号映射结构, 获取双流 赋型传输所使用的用户专属参考符号映射结构; 映射单元, 用于根据所述获取单元获取的用户专属参考符号映射结构, 分 别对每个数据流进行用户专属参考符号的资源映射。
基于现有的用户专属参考符号结构, 本发明实施例给出了进行双流波束赋 型传输时, 用户专属参考符号的映射方案。 该方案简单、 易于实施, 无需额外 增加用户专属参考符号映射图样,可以保证系统检测性能,显著提高系统效率。 附图说明
图 1A、 IB分别是现有技术常规 CP、 扩展 CP条件下的公共参考符号映射 图样;
图 2A、 2B分别是现有技术常规 CP、 扩展 CP条件下的专用参考符号映射 图样;
图 3是本发明实施例提供的双流波束赋型方法的流程图;
图 4A、 4B、 4C分别是本发明实施例常规 CP条件下的三种专用参考符号 映射图样;
图 5A、 5B分别是本发明实施例扩展 CP条件下的两种专用参考符号映射 图样;
图 6是本发明实施例提供的双流波束赋型装置的结构图;
图 7是本发明实施例提供的支持双流波束赋型传输设备的结构图; 图 8是本发明实施例提供的支持双流波束赋型传输方法的应用实例流程 图。 具体实施方式
本发明实施例提供一种双流波束赋型的方法、 装置及支持双流波束赋型传 输的设备, 能够在不额外增加用户专属参考符号映射图样的前提下, 显著提高 系统效率。 为使本发明的目的、 技术方案及优点更加清楚明白, 下面参照附图 并举实施例, 对本发明进一步详细说明。
双流赋型传输需要使用两个天线端口, 以传输用户专属参考符号。 与小区 专属参考符号相同, 不同数据流上的用户专属参考符号需要占用不同资源单元 ( RE, Resource Element ), 以避免混叠, 影响各数据流上的信道估计性能。
更正页(细则第 91条) 如图 3所示, 为本发明实施例提供的双流波束赋型方法的流程图, 包括如 下过程:
步骤 301、 获取双流赋型传输所使用的用户专属参考符号映射结构; 步骤 302、 根据所述用户专属参考符号映射结构, 分别对每个数据流进行 用户专属参考符号的资源映射。
由于目前标准中所使用的用户专属参考符号其密度较高, 若进行双流赋型 时,各数据流上仍然使用现有参考符号结构,将会使得每个数据流上开销过大, 严重影响系统的吞吐量性能。 虽然使用较多参考符号进行信道估计可以在较低 信噪比条件下得到较好的检测性能, 但同时考虑到开销的问题, 则系统总的吞 吐量增益将会变小, 最严重的是系统的最大峰值吞吐量也将显著减小。 在进行 双流赋型传输时, 各数据流会经历不同的加权处理及物理信道, 每个数据流需 要使用特有的用户专属参考符号进行信道估计。 因此, 综合考虑开销、 检测性 能及实际应用等问题, 本发明提出了如下参考符号映射结构用以支持双流赋型 传输。
如图 4和图 5所示, 分别是本发明实施例提供的常规 CP条件下和扩展 CP 条件下的专用参考符号映射图样, 表示用户专属参考符号。其中, 图 4 A、 4B、 4C分别是本发明实施例常规 CP条件下的三种专用参考符号映射图样; 例如, 图 4A中是将单流赋型传输所使用的参考符号映射结构中原奇数列参考符号分 为一组, 原偶数列参考符号分为另一组。 图 5 A、 5B分别是本发明实施例扩展 CP条件下的两种专用参考符号映射图样; 例如, 将两组参考符号在时、 频域上 交错设置, 即每一列 (同一个 OFDM符号) 中 R6和 R7相邻交错分布; 同时, 不同列上同一组中的参考符号不占用相同的子载波。 需要说明的是, 图 4和图 5 所示的图样仅为本发明提供的较优的实施例, 其在实现过程中, 本发明并不 局限于该实施例所示的图样。 例如, 两组参考符号可以如图 4和图 5所示每组 均为 6个; 也可以一组为 4个, 另一组为 8个。
优选的, 所述双流赋型传输所使用的用户专属参考符号映射结构是在系统 设计过程中完成的, 并固定不变的, 即基站和终端一旦生产出来就已经存储了 该部分信息, 通信时只需要判断具体使用哪种结构, 然后调用存储的结构就可 以了。具体而言, 系统设计时是将其中的参考符号所占用的资源单元分为两组, 基于单流赋型传输所使用的参考符号映射结构进行双流赋型传输。 其中, 将参 考符号所占用的资源单元进行分组时至少要考虑如下因素之一:
1 )参考符号在整个时频域上的分布情况:
即每组中的参考符号在时频域上尽可能有较为均勾的分布。
2 ) 资源块边缘信道估计的性能:
即每组中的参考符号尽可能在资源块的边缘部分有所分布。
优选的, 将参考符号所占用的资源单元进行分组时需要综合考虑但不限于 上述两个因素。
目前 LTE标准中最多可支持 2码字 4层的预编码, 小区专属参考符号可占 用 4个天线端口进行传输, 各天线端口占用不同的资源块, 以避免干扰。 同时 还要求所有用于参考符号映射的资源单元上不能再进行数据资源映射, 即对于 任意数据流来说, 数据符号不能映射到其他数据流上参考符号占用的资源上。 目前 LTE标准中用户专属参考符号只占用端口 5进行传输。进行赋型传输时还 要保留端口 0、 1上的小区专属参考符号, 是为了解调部分非赋型控制信道, 如 下行控制信道( PDCCH, Physical Downlink Control Channel ),广播信道( PBCH, Physical Broadcast Channel ), 动态广播信道(DBCH, Dynamic BCH )等。 而如 本发明实施例所示的映射结构, 在每个数据流用于映射其他流的用户专属参考 符号的资源单元上还可以进行数据的资源映射。 也就是说, 数据可以在除 PDCCH、本层参考符号及小区专属参考符号所占用资源单元以外的任意资源单 元上进行资源映射, 即不需要空出其他数据流上用户专属参考符号所占用的资 源单元, 这样系统中用户专属参考符号的开销可以减小一半。
如图 6所示, 为本发明实施例提供的双流波束赋型装置的结构图, 包括: 获取单元 610、 映射单元 620; 其中:
所述的获取单元 610,用于基于单流赋型传输所使用的参考符号映射结构, 获取双流赋型传输所使用的用户专属参考符号映射结构;
所述的映射单元 620, 用于根据所述获取单元 610获取的用户专属参考符 号映射结构, 分别对每个数据流进行用户专属参考符号的资源映射。
其中, 所述双流赋型传输所使用的用户专属参考符号映射结构是在系统设 计过程中完成的, 并固定不变的, 即基站和终端一旦生产出来就已经存储了该 部分信息, 通信时只需要判断具体使用哪种结构, 然后调用存储的结构就可以 了。 具体而言, 系统设计时是将其中的参考符号所占用的资源单元分为两组, 基于单流赋型传输所使用的参考符号映射结构进行双流赋型传输。 其中, 将参 考符号所占用资源单元进行分组时至少要考虑如下因素之一:
1 )参考符号在整个时频域上的分布情况:
即每组中的参考符号在时频域上尽可能有较为均勾分的分布。
2 ) 资源块边缘信道估计的性能:
即每组中的参考符号尽可能在资源块的边缘部分有所分布。
优选的, 所述获取单元 610将参考符号所占用的资源单元进行分组时需要 综合考虑但不限于上述两个因素。
对于两个数据流中的任意数据流, 所述映射单元 620也可以在其他数据流 的资源映射时不需要空出其他数据流上用户专属参考符号所占用的资源单元, 从而可以使系统中用户专属参考符号的开销减小一半。
此外, 在本发明实施例的上述结构基础上还可以进一步包括: 及扩展 CP条件的用户专属参考符号映射结构。
如图 7所示,为本发明实施例提供的支持双流波束赋型传输设备的结构图, 包括: 用户专属参考符号映射模块 700、 波束赋型处理模块 710、 资源映射模块 720; 其中:
所述的用户专属参考符号映射模块 700, 用于分别对每个数据流进行用户 专属参考符号的资源映射, 映射需按照获取的用户专属参考符号映射的结构进 行;
所述的波束赋型处理模块 710, 用于波束赋型处理, 即针对每个数据流, 在每个物理天线上乘加权值;
所述的资源映射模块 720, 用于分别对每层进行数据与小区专属参考符号 的资源映射, 映射需按照获取的小区专属参考符号映射的结构进行。
优选的, 所述的用户专属参考符号映射模块 700可以包括: 获取单元 610、 映射单元 620; 其中, 所述的获取单元 610,用于基于单流赋型传输所使用的参考符号映射结构, 获取双流赋型传输所使用的用户专属参考符号映射结构;
所述的映射单元 620, 用于根据所述获取单元 610获取的用户专属参考符 号映射结构, 分别对每个数据流进行数据及用户专属参考符号的资源映射。
优选的, 所述双流赋型传输所使用的用户专属参考符号映射结构是在系统 设计过程中完成的, 并固定不变的, 即基站和终端一旦生产出来就已经存储了 该部分信息, 通信时只需要判断具体使用哪种结构, 然后调用存储的结构就可 以了。具体而言, 系统设计时是将其中的参考符号所占用的资源单元分为两组, 基于单流赋型传输所使用的参考符号映射结构进行双流赋型传输。 其中, 将参 考符号所占用资源单元进行分组时至少要考虑如下因素之一:
1 )参考符号在整个时频域上的分布情况:
即每组中的参考符号在时频域上尽可能有较为均勾分的分布。
2 ) 资源块边缘信道估计的性能:
即每组中的参考符号尽可能在资源块的边缘部分有所分布。
优选的, 所述获取单元 610将参考符号所占用的资源单元进行分组时需要 综合考虑但不限于上述两个因素。
其中, 对于数据的资源映射可以通过所述映射单元 620在每个数据流用于 映射其他流的用户专属参考符号的资源单元上进行, 即在进行数据的资源映射 时不需要空出其他数据流上用户专属参考符号所占用的资源单元, 从而可以使 系统中用户专属参考符号的开销减小一半。
此外, 所述用户专属参考符号映射模块 700还可以进一步包括: 及扩展 CP条件的用户专属参考符号映射结构。
所述的支持双流波束赋型传输的设备具体可以为基站, 其数据流向如图 7 的箭头所示。 当然, 所述的支持双流波束赋型传输的设备还可以为终端, 其实 现过程与基站类似。
下面, 通过一个具体的应用实例对本发明技术方案作进一步说明。
如图 8所示, 为本发明实施例提供的支持双流波束赋型传输方法的应用实 例流程图, 包括以下过程: 步骤 801、 判断传输帧的格式是常规 CP还是扩展 CP;
其中, 传输帧格式信息在广播信道中传输, 终端在完成 PBCH解调后, 即 可获知所具体使用的传输帧格式。对于常规 CP,可以釆用如图 4所示的任意一 种结构; 对于扩展 CP, 可以釆用如图 5所示的任意一种结构。
步骤 802、 判断数据流的数目是单流还是双流;
其中, 高层可以通过信令指示终端当前赋型传输使用的数据流数目。 例如 指示位标识 0表示单流, 标识 1表示双流。
步骤 803、 分别对每个数据流进行数据及用户专属参考符号的资源映射, 映射需按照获取的用户专属参考符号映射的结构进行;
步骤 804、 波束赋型处理, 即针对每个数据流, 在每个物理天线上乘加权 值;
步骤 805、 分别对每层进行数据与小区专属参考符号的资源映射, 映射需 按照获取的小区专属参考符号映射的结构进行。
其中, 对单流波赋型数据及用户专属参考符号进行资源映射时, 既可以按 照目前 LTE标准中现有天线端口 上用户专属参考符号结构进行映射, 即按照 如图 2所示的结构, 釆用上述流程进行映射; 也可以按照上述本发明实施例的 天线端口 或 上用户专属参考符号结构进行映射,即按照如图 4、5所示的结构, 将单流赋型数据看作双流赋型传输中的一个流, 釆用上述流程进行映射。
本领域普通技术人员可以理解实现上述实施例方法携带的全部或部分 步骤是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算 机可读存储介质中, 该程序在执行时, 包括方法实施例的步骤之一或其组合。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理模块 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个 模块中。 上述集成的模块既可以釆用硬件的形式实现, 也可以釆用软件功能模 块的形式实现。 所述集成的模块如果以软件功能模块的形式实现并作为独立的 产品销售或使用时, 也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
由上可知, 本发明实施例基于现有的用户专属参考符号结构, 给出了进 行双流波束赋型传输时, 用户专属参考符号的映射方案。 该方案简单、 易于实 施, 无需额外增加用户专属参考符号映射图样, 可以保证系统检测性能, 显著 提高系统效率。
以上对本发明所提供的双流波束赋型的方法、 装置及支持双流波束赋型传 进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方案; 同时, 对于 本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用范围上均 会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权利要求书
1、 一种双流波束赋型的方法, 其特征在于, 包括:
基于单流赋型传输所使用的参考符号映射结构, 获取双流赋型传输所使用 的用户专属参考符号映射结构;
根据所述用户专属参考符号映射结构 , 分别对每个数据流进行用户专属参 考符号的资源映射。
2、根据权利要求 1所述的双流波束赋型的方法, 其特征在于, 所述获取的 用户专属参考符号映射结构包括两种,分别适用于常规 cp条件及扩展 CP条件。
3、根据权利要求 2所述的双流波束赋型的方法, 其特征在于, 所述双流赋 型传输所使用的用户专属参考符号映射结构是系统预先设定的, 具体为:
将其中的参考符号所占用的资源单元分为两组, 基于单流赋型传输所使用 的参考符号映射结构进行双流赋型传输。
4、根据权利要求 3所述的双流波束赋型的方法, 其特征在于, 将参考符号 所占用的资源单元进行分组时, 将单流赋型传输所使用的参考符号映射结构中 原奇数列参考符号分为一组, 原偶数列参考符号分为另一组。
5、根据权利要求 3所述的双流波束赋型的方法, 其特征在于, 将参考符号 所占用的资源单元进行分组时, 将两组参考符号在时、 频域上交错设置。
6、根据权利要求 3所述的双流波束赋型的方法, 其特征在于, 将参考符号 所占用的资源单元进行分组时至少要考虑如下因素之一:
参考符号在整个时频域上的分布情况;
资源块边缘信道估计的性能。
7、根据权利要求 3所述的双流波束赋型的方法, 其特征在于, 对于两个数 据流中的任意数据流, 在其他数据流中用户专属参考符号所占用的资源单元上 也可以进行数据的资源映射。
8、 一种双流波束赋型的装置, 其特征在于, 包括:
获取单元, 用于基于单流赋型传输所使用的参考符号映射结构, 获取双流 赋型传输所使用的用户专属参考符号映射结构;
映射单元, 用于根据所述获取单元获取的用户专属参考符号映射结构, 分 别对每个数据流进行用户专属参考符号的资源映射。
9、根据权利要求 8所述的双流波束赋型的装置, 其特征在于, 所述获取双 流赋型传输所使用的用户专属参考符号映射结构系统预先设定的 , 具体是将其 中的参考符号所占用的资源单元分为两组, 基于单流赋型传输所使用的参考符 号映射结构进行双流赋型传输。
10、 根据权利要求 9所述的双流波束赋型的装置, 其特征在于, 所述将参 考符号所占用资源单元进行分组时至少要考虑如下因素之一:
参考符号在整个时频域上的分布情况;
资源块边缘信道估计的性能。
11、 根据权利要求 8所述的双流波束赋型的装置, 其特征在于, 对于两个 数据流中的任意数据流, 所述映射单元还可以在其他数据流中用户专属参考符 号所占用的资源单元上进行数据的资源映射。
12、 根据权利要求 8所述的双流波束赋型的装置, 其特征在于, 还包括: 存储单元, 用于存储所述获取单元获取的分别适用于常规 CP条件及扩展
CP条件的用户专属参考符号映射结构。
13、 一种支持双流波束赋型传输的设备, 其特征在于, 包括用户专属参考 符号映射模块, 其中, 所述模块包括:
获取单元, 用于基于单流赋型传输所使用的参考符号映射结构, 获取双流 赋型传输所使用的用户专属参考符号映射结构;
映射单元, 用于根据所述获取单元获取的用户专属参考符号映射结构, 分 别对每个数据流进行用户专属参考符号的资源映射。
14、 根据权利要求 13所述的支持双流波束赋型传输的设备, 其特征在于, 所述获取双流赋型传输所使用的用户专属参考符号映射结构系统预先设定的, 具体是将其中的参考符号所占用的资源单元分为两组, 基于单流赋型传输所使 用的参考符号映射结构进行双流赋型传输。
15、 根据权利要求 14所述的支持双流波束赋型传输的设备, 其特征在于, 所述将参考符号所占用资源单元进行分组时至少要考虑如下因素之一:
参考符号在整个时频域上的分布情况;
资源块边缘信道估计的性能。
16、 根据权利要求 13所述的支持双流波束赋型传输的设备, 其特征在于, 对于两个数据流中的任意数据流, 所述映射单元还可以在其他数据流中用户专
17、 根据权利要求 13所述的支持双流波束赋型传输的设备, 其特征在于, 所述模块还包括:
存储单元, 用于存储所述获取单元获取的分别适用于常规 CP条件及扩展 CP条件的用户专属参考符号映射结构。
18、 根据权利要求 13所述的支持双流波束赋型传输的设备, 其特征在于, 所述设备具体为基站或终端。
PCT/CN2009/000593 2008-05-27 2009-05-26 双流波束赋型方法、装置及支持双流波束赋型传输的设备 WO2009143709A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810113059.6 2008-05-27
CN200810113059A CN101594176B (zh) 2008-05-27 2008-05-27 双流波束赋型方法、装置及支持双流波束赋型传输的设备

Publications (1)

Publication Number Publication Date
WO2009143709A1 true WO2009143709A1 (zh) 2009-12-03

Family

ID=41376575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000593 WO2009143709A1 (zh) 2008-05-27 2009-05-26 双流波束赋型方法、装置及支持双流波束赋型传输的设备

Country Status (2)

Country Link
CN (1) CN101594176B (zh)
WO (1) WO2009143709A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102413090B (zh) * 2011-11-04 2014-10-22 电信科学技术研究院 一种传输信息的方法、系统和设备
CN103326765B (zh) * 2012-03-20 2016-08-03 电信科学技术研究院 一种双流波束赋形方法及装置
CN103220707B (zh) * 2013-04-28 2016-08-03 重庆邮电大学 一种用于lte系统中天线端口数的检测方法
CN103368628B (zh) * 2013-07-18 2017-05-03 西安科技大学 一种td‑lte系统中基于码本的双流波束赋形方法
WO2016041197A1 (zh) * 2014-09-19 2016-03-24 华为技术有限公司 双流发射方法和发射机
CN107925459B (zh) * 2015-06-26 2021-09-03 瑞典爱立信有限公司 用于无线通信的方法和设备
CN109391405B (zh) * 2017-08-10 2021-01-22 电信科学技术研究院 波束失败的恢复方法、装置、终端及网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094165A (en) * 1997-07-31 2000-07-25 Nortel Networks Corporation Combined multi-beam and sector coverage antenna array
US20060104382A1 (en) * 2004-10-27 2006-05-18 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving signals in multiple input multiple output wireless communication system employing beam forming scheme
CN1972268A (zh) * 2005-11-25 2007-05-30 北京三星通信技术研究有限公司 在基于ofdm的系统中添加扰码的方法
CN101132255A (zh) * 2006-08-23 2008-02-27 大唐移动通信设备有限公司 一种在ofdm系统中处理参考符号的方法及系统
CN101159488A (zh) * 2007-11-12 2008-04-09 中兴通讯股份有限公司 一种时分双工系统物理广播信道的发送方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094165A (en) * 1997-07-31 2000-07-25 Nortel Networks Corporation Combined multi-beam and sector coverage antenna array
US20060104382A1 (en) * 2004-10-27 2006-05-18 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving signals in multiple input multiple output wireless communication system employing beam forming scheme
CN1972268A (zh) * 2005-11-25 2007-05-30 北京三星通信技术研究有限公司 在基于ofdm的系统中添加扰码的方法
CN101132255A (zh) * 2006-08-23 2008-02-27 大唐移动通信设备有限公司 一种在ofdm系统中处理参考符号的方法及系统
CN101159488A (zh) * 2007-11-12 2008-04-09 中兴通讯股份有限公司 一种时分双工系统物理广播信道的发送方法

Also Published As

Publication number Publication date
CN101594176A (zh) 2009-12-02
CN101594176B (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
KR101700003B1 (ko) 복조 기준신호를 위한 안테나 포트 맵핑방법 및 장치
US8811331B2 (en) Pilot design using costas arrays
JP5567017B2 (ja) 多元入力多元出力(mimo)技術を採用するシステムおよび方法
KR101210246B1 (ko) 빔 포밍 전송 방법, 시스템, 장치
JP5468606B2 (ja) 反復重複のあるシンボルのリソース・ブロック・マッピング
JP5906532B2 (ja) 基地局装置、端末装置、通信方法および集積回路
JP5404622B2 (ja) 無線通信基地局装置および参照信号割当方法
WO2009143709A1 (zh) 双流波束赋型方法、装置及支持双流波束赋型传输的设备
KR101690851B1 (ko) 기지국 장치, 단말 장치, 통신 방법, 집적 회로 및 통신 시스템
JP6143153B2 (ja) 基地局、端末、通信方法および集積回路
WO2014205699A1 (zh) 参考信号的传输方法及装置
CN106411486B (zh) 一种上行解调导频的发送接收方法及装置
WO2013141055A1 (ja) 無線送信装置、無線受信装置、無線通信システムおよび集積回路
WO2011015065A1 (zh) 一种参考信号的发送方法
JP6027685B2 (ja) Epdcchのためのアンテナポート干渉を低減する方法、及び関連するシステム、装置及びネットワーク
JPWO2019030894A1 (ja) 送信装置
JP2019518343A (ja) 低減密度チャネル状態情報参照信号
JP2020516158A (ja) 復調参照信号のオーバーヘッドを低減するためのシステムおよび方法
US8687728B2 (en) Cubic-metric based frequency selective precoding for uplink in MIMO communication system
JPWO2014087775A1 (ja) 基地局装置、無線通信システム、無線通信方法および集積回路
CN102638432A (zh) 空频块状编码的资源映射方法和装置
WO2011085697A1 (zh) 测量干扰的方法及装置
WO2018201830A1 (zh) 资源配置方法、装置、存储介质及处理器
JP2014033327A (ja) 基地局、端末、通信システム、通信方法および集積回路
WO2011124097A1 (zh) 一种信道测量导频映射方法及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09753427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09753427

Country of ref document: EP

Kind code of ref document: A1