WO2011085697A1 - 测量干扰的方法及装置 - Google Patents

测量干扰的方法及装置 Download PDF

Info

Publication number
WO2011085697A1
WO2011085697A1 PCT/CN2011/070333 CN2011070333W WO2011085697A1 WO 2011085697 A1 WO2011085697 A1 WO 2011085697A1 CN 2011070333 W CN2011070333 W CN 2011070333W WO 2011085697 A1 WO2011085697 A1 WO 2011085697A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency pattern
frequency
pattern
cell
Prior art date
Application number
PCT/CN2011/070333
Other languages
English (en)
French (fr)
Inventor
唐臻飞
汪凡
夏斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011085697A1 publication Critical patent/WO2011085697A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences

Definitions

  • a radio frame length is 10 ms in time, including 10 subframes, each subframe is lms, each subframe contains 2 time slots, and each slot contains 7 or 6 0FDM symbols.
  • each time slot includes one 0FDM symbol.
  • each time slot includes six 0FDM symbols.
  • the frequency is composed of multiple subcarriers, and one subcarrier under one OFDM symbol is called a resource element (Resource Element, RE), that is, one RE has one OFDM symbol and one subcarrier, and 12 subcarriers and One time slot constitutes a Resource Block (RB).
  • RE resource element
  • Control information, reference signals, and traffic data are transmitted on these time-frequency resources.
  • the terminal needs to measure the channel on the RB, and obtain a channel quality indicator (CQI) to report to the base station, so that the base station schedules the user according to the channel condition of the user, and adaptively modulates the user. Coding control.
  • CQI channel quality indicator
  • the base station schedules the user according to the channel condition of the user, and adaptively modulates the user. Coding control.
  • Coding control Generally, when the channel quality is good, the user is assigned a higher modulation coding order, so that the user can transmit more data; when the channel quality is poor, the user is assigned a lower modulation coding order, so that the user transmits the data.
  • the corresponding reduction Therefore, the accuracy of CQI measurements directly affects user throughput, and inaccurate CQI measurements can result in lower user throughput.
  • the CQI measurement measures the ratio of the signal on the common reference signal of the cell to the interference noise, and uses the CQI on the reference signal to indicate the CQI of the physical downlink shared channel.
  • the physical downlink shared channel is always occupied by the transmitted data, and the interference of the neighboring cell to the local cell is basically consistent on the reference signal and the physical downlink shared channel, so the CQI on the reference signal can be used to represent the physics.
  • CQI of the downlink shared channel is the network is under high load, the physical downlink shared channel is always occupied by the transmitted data, and the interference of the neighboring cell to the local cell is basically consistent on the reference signal and the physical downlink shared channel, so the CQI on the reference signal can be used to represent the physics. CQI of the downlink shared channel.
  • the physical downlink shared channel of the neighboring cell base station on some resource blocks is idle, the neighboring cell does not interfere with the local cell on the resource blocks, and the reference signal is always in the transmission.
  • Shape The reference signal of the neighboring cell is interfered with the reference signal of the local cell. Therefore, the interference on the reference signal that is always in the transmission state indicates that the interference on the physical downlink shared channel with the idle RE is inaccurate, that is, when the network is under low load, the physical downlink shared channel is represented by CQI on the reference signal.
  • the CQI is often inaccurate. In this way, the base station selects an inappropriate modulation and coding mode for the terminal according to the inaccurate CQI, which causes the user's throughput to be seriously degraded and affects system performance.
  • Embodiments of the present invention provide a method and apparatus for measuring interference, which can accurately measure interference received by a current cell.
  • An aspect of the present invention provides a method of measuring interference, including:
  • the signal power of the idle RE in the time-frequency pattern of the current cell of the UE is measured, and the signal power of the idle RE is used as the interference of the current cell of the UE.
  • Another aspect of the present invention also provides an apparatus for measuring interference, including:
  • a time-frequency pattern obtaining unit configured to acquire a time-frequency pattern of a current cell of the UE, where a time-frequency pattern of a current cell of the UE is orthogonal to a time-frequency pattern of other cells in a cell set in which the current cell of the UE is located, or Partially orthogonal;
  • the interference measurement unit is configured to measure signal power of the idle RE in the time-frequency pattern of the current cell of the UE, and use the signal power of the idle RE as the interference of the current cell of the UE.
  • FIG. 1 is a schematic flowchart of a method for measuring interference according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for measuring interference according to another embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for generating an orthogonal time-frequency pattern according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a method for generating an orthogonal time-frequency pattern according to another embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for generating a partially orthogonal time-frequency pattern according to another embodiment of the present invention
  • FIG. 7 is a schematic diagram of a time-frequency resource of a normal CP when the method shown in FIG. 6 is used according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of extending a time-frequency resource of a CP when the method shown in FIG. 6 is used according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of extending a time-frequency resource of a CP when the method shown in FIG. 6 is used according to an embodiment of the present
  • FIG. 9 is a schematic diagram of a time-frequency pattern generated by the method shown in FIG. 6 according to an embodiment of the present invention
  • FIG. 10 is an SDA diagram corresponding to a time-frequency pattern generated by using the method shown in FIG. 6 according to an embodiment of the present invention
  • FIG. 11 is a schematic flowchart of a method for generating a time-frequency pattern according to still another embodiment of the present invention
  • FIG. 12 is a schematic diagram of a time-frequency pattern generated by the method shown in FIG. 11 according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram of another time-frequency pattern generated by using the method shown in FIG. 11 according to an embodiment of the present invention
  • FIG. 14 is a schematic flowchart of a method for generating a time-frequency pattern according to another embodiment of the present invention.
  • FIG. 15 is a schematic diagram of time-frequency resources of a normal CP when the method shown in FIG. 14 is used according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of extending a time-frequency resource of a CP when the method shown in FIG. 14 is used according to an embodiment of the present invention
  • FIG. 17 is a schematic diagram of a time-frequency pattern generated by using the method shown in FIG. 14 according to an embodiment of the present invention
  • FIG. 18 is a schematic flowchart of a method for generating a time-frequency pattern according to another embodiment of the present invention
  • FIG. 19 is a schematic diagram of a time-frequency pattern generated by the method shown in FIG. 18 according to an embodiment of the present invention
  • FIG. 20 is a schematic diagram of a time-frequency pattern generated by using the method shown in FIG. 18 according to an embodiment of the present invention
  • FIG. 22 is another schematic diagram of a time-frequency resource of a normal CP when the method shown in FIG. 6 is used in the embodiment of the present invention
  • FIG. 23 is a schematic diagram of a time-frequency resource generated by the method shown in FIG. Another schematic diagram of extending the time-frequency resource of the CP when the method shown in FIG. 6 is used in the embodiment of the present invention
  • FIG. 24 is still another schematic diagram of a time-frequency pattern generated by using the method shown in FIG. 6 according to an embodiment of the present invention
  • 25 is an SDA diagram corresponding to the time-frequency pattern shown in FIG. 24 according to an embodiment of the present invention
  • FIG. 26 is a schematic structural diagram of an apparatus for measuring interference according to still another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The technical solutions of the present invention will be further described in detail below with reference to the drawings and specific embodiments.
  • FIG. 1 is a schematic flowchart of a method for measuring interference according to an embodiment of the present invention. As shown in FIG. 1, the method may include: Step 10: Obtain a time-frequency pattern of a current cell of the UE, where a time-frequency pattern of the current cell of the UE is orthogonal or partially orthogonal to a time-frequency pattern of other cells in the cell set in which the current cell of the UE is located.
  • each cell can be identified by a physical cell identity, and the physical cell identity is 504 from 0 to 503.
  • the current cell in this embodiment may be a cell corresponding to any one of the physical cell identifiers.
  • cells having different time-frequency patterns are referred to as a cell set.
  • 504 having different physical cell identities may be divided into one or more cell sets.
  • the time-frequency pattern may include an idle RE and a normal RE; an idle RE refers to an RE that does not transmit data, and a normal RE refers to an RE that transmits data.
  • Orthogonal means that the positions of the idle REs in the time-frequency pattern between the cells do not overlap at all, and the partial orthogonal means that the positions of the idle REs in the time-frequency pattern between the cells overlap but are not identical.
  • Step 12 Measure the signal power of the idle RE in the time-frequency pattern of the current cell of the UE, and use the signal power of the idle RE as the interference of the current cell of the UE.
  • the measured signal power at the idle RE can be used as interference to the cell.
  • the time-frequency patterns of the cells in the set of cells are at least partially orthogonal, which makes the measured interference more accurate.
  • FIG. 2 is a schematic flowchart of a method for measuring interference according to another embodiment of the present invention. As shown in Figure 2, the method can include:
  • Step 20 Obtain a physical cell identifier of a current cell of the UE.
  • the UE may acquire the physical cell identifier of the current cell in the process of performing synchronization with the base station.
  • Step 22 Acquire a time-frequency pattern of the current cell of the UE according to the physical cell identifier of the current cell of the UE.
  • each cell will bind or allocate a time-frequency pattern.
  • there are 504 cells (assuming their physical cell IDs are numbered from 0 to 503) and the time-frequency patterns of N idle REs (numbered from 0 to Nl), and the cell and time-frequency patterns can be bound by the following formula. :
  • Time-frequency pattern number (physical cell identification) Mod ( N)
  • Mod in the formula represents the remainder operation.
  • the UE can acquire the time-frequency pattern of the current cell according to the physical cell identifier. For example, when the UE obtains the physical cell identifier of the current cell as the number n, the number of the time-frequency pattern of the current cell can be obtained according to the above formula, and then the time-frequency pattern of the current cell is obtained. Since the CQI is generally for the physical downlink shared channel, in order to make the measured interference for the physical downlink shared channel more accurate, the idle REs in this embodiment may be distributed in the resource region in which the physical downlink shared channel is transmitted.
  • Step 24 Measure the signal power of the idle resource unit RE in the time-frequency pattern of the current cell of the UE, and use the signal power of the idle RE as the interference of the current cell of the UE.
  • step is similar to step 12 in the embodiment of FIG. 1, and is further described herein.
  • the time-frequency pattern of the current cell of the UE is orthogonal or partially orthogonal to the time-frequency pattern of other cells in the cell set in which the current cell is located, so that the measured interference can be more accurate.
  • the time-frequency pattern of the cell in the cell set may be generated according to an irregular sequence.
  • the irregular sequence comprises at least a Costas sequence, a Latin sequence or a Modular Sonar sequence.
  • the time-frequency pattern of the cells in the cell set is generated by the irregular pattern and the time domain of the irregular pattern is performed.
  • FIG. 3 is a schematic flowchart of generating an orthogonal time-frequency pattern according to an embodiment of the present invention.
  • the method can include:
  • Step 30 Generate a reference time-frequency pattern of size M xM according to the irregular sequence of length M.
  • the idle REs in the generated reference time-frequency pattern may also be in the same row (i.e., the same subcarrier) or the same column (i.e., the same OFDM symbol).
  • Step 32 After performing time domain shifting or frequency domain shifting on the reference time-frequency pattern, orthogonal M time-frequency patterns are obtained.
  • M orthogonal time-frequency patterns can be allocated for use by M cells.
  • the time-frequency patterns between the cells are orthogonal, which can improve the accuracy of interference measurement.
  • FIG. 4 is a schematic flow chart of a method for generating a partially orthogonal time-frequency pattern according to another embodiment of the present invention.
  • the method can include:
  • Step 40 Generate a reference time-frequency pattern of size M xM according to the irregular sequence of length M.
  • M is the number of free REs.
  • Step 42 Perform time domain shift and frequency domain shift on the reference time-frequency pattern to obtain partially orthogonal M xM blocks. Time-frequency pattern.
  • the M xM partially orthogonal time-frequency patterns can be allocated to the M xM cells for use, which not only improves the accuracy of the interference measurement, but also increases the number of time-frequency patterns allocated for use by the cell.
  • the generated orthogonal time-frequency pattern and the partially orthogonal pattern may be combined and allocated to the cell for use according to the methods shown in FIGS. 3 and 4. In this way, the number of time-frequency patterns allocated for use by the cell can be further increased.
  • FIG. 5 is a schematic flowchart of a method for generating a partially orthogonal time-frequency pattern according to an embodiment of the present invention.
  • the method can include:
  • Step 50 Generate a reference time-frequency pattern according to an irregular sequence of length N.
  • Step 52 Perform combining processing and/or intercepting processing on the reference time-frequency pattern, so that the number of REs in the processed time-frequency pattern is NxM.
  • NxM is the number of REs of the time-frequency pattern of each cell.
  • FIG. 6 is a schematic flow chart of a method for generating a partially orthogonal time-frequency pattern according to another embodiment of the present invention.
  • the method can include:
  • Step 60 Determine the number S of OFDM symbols occupied by the idle RE of all cells in one subframe.
  • Step 62 According to the number M of the idle REs of each cell and the S, all the cells are divided into K groups.
  • Step 64 In each group, a partially orthogonal M xM time-frequency pattern is generated according to an irregular sequence.
  • a reference time-frequency pattern of size M xM is generated according to an irregular sequence, and then the time-frequency shift and frequency domain shift of the reference time-frequency pattern are performed to obtain M xM time-frequency patterns.
  • a total of M xM x time-frequency patterns can be generated for K groups.
  • Step 66 Assign the generated M xM X time-frequency patterns to the M M xK cells for use.
  • the M xM X time-frequency patterns can be correspondingly assigned to the M M xK cells.
  • a total of 48 patterns are generated, which can be correspondingly allocated to 48 cells.
  • Each cell in the composed cell set has a different pattern.
  • the generated time-frequency pattern can be bound to the physical cell identifier, and the UE can obtain the time-frequency pattern of the current cell according to the physical cell identifier of the current cell. For example, there are 504 cells (numbered from 0 to 503) and 48 generated time-frequency patterns with idle REs (numbered from 0 to 47).
  • the binding of the time-frequency pattern to the physical cell identity can be achieved by the following formula:
  • Time-frequency pattern number physical cell identification Mod 48
  • Mod in the formula represents the remainder operation.
  • FIG. 7 is a schematic diagram of time-frequency resources of a normal CP when the method shown in FIG. 6 is adopted in the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of extending a time-frequency resource of a CP when the method shown in FIG. 6 is adopted in an embodiment of the present invention.
  • the padding in the figure indicates the RE occupied by the control information and the reference signal.
  • the idle REs of all the cells are divided into three groups.
  • the REs between the groups in this embodiment are orthogonal, and each group occupies 16 REs. Those skilled in the art will understand that they can also be grouped according to other methods.
  • the time-frequency pattern is described by taking two RBs in one subframe as an example. It can be understood that the time-frequency pattern in other embodiments may also include only one RB, BP: occupy one time slot and 12 sub-carriers. Alternatively, the time-frequency pattern may also only contain two RBs in the frequency domain, BP: occupies one time slot, 24 sub-carriers. Alternatively, the time-frequency pattern may also contain four RBs, BP: occupy one subframe, 24 subcarriers. Therefore, the RBs constituting the time-frequency pattern include, but are not limited to, the patterns shown in the respective drawings of the embodiments of the present invention.
  • the irregular sequence may include: a Costas sequence, a Latin sequence, or a Modular Sonar sequence.
  • a Costas sequence of length N can generate a Costas matrix of size NX N with one dot per row or column and the rest are spaces. Viewed from different lines, these points are located in different columns. From different columns, these points are located in different rows.
  • FIG. 9 is a schematic diagram of a time-frequency pattern generated by the method shown in FIG. 6 according to an embodiment of the present invention.
  • the generated reference time-frequency pattern is the pattern of the first row and the first column in FIG. 9, and the remaining patterns are sequentially performed on the reference pattern.
  • the RE filled in the time-frequency pattern is the position of the idle RE obtained by the domain shift and the frequency domain shift.
  • FIG. 10 is an SDA diagram corresponding to a time-frequency pattern generated by the method shown in FIG. 6 according to an embodiment of the present invention.
  • the number in Fig. 10 indicates the number of coincidences between the two time-frequency patterns.
  • "4" indicates the number of conflicting REs when the two patterns are the same
  • "0" in the fourth row and the second column indicates a
  • the pattern and the pattern after the time domain shift for example, the pattern of the first row and the first column in FIG. 9 and the first row and the second
  • the number of REs that conflict between the columns of the column, the "1" of the third row and the second column indicates a pattern in which a pattern is shifted by one bit in the time domain and shifted by one bit in the frequency domain (for example, the pattern in FIG. 9
  • the rest are analogous. It can be seen from the SDA diagram that the number of REs that overlap between different patterns is small, for example, there are only one or two coincidences, which makes measurement interference more accurate.
  • the time-frequency patterns of the cells can be completely misaligned, that is, orthogonal time-frequency patterns are used.
  • FIG. 11 is a schematic flowchart of a method for generating a time-frequency pattern according to another embodiment of the present invention, including: Step 110: Determine an OFDM symbol number S occupied by an idle RE of all cells in one subframe.
  • Step 114 In each group, orthogonal time-frequency patterns are generated according to an irregular sequence. In this embodiment, a total of M x orthogonal time-frequency patterns can be generated for each group.
  • a completely orthogonal time-frequency pattern can be generated in the following two ways:
  • Manner 1 A reference time-frequency pattern of size M xM is generated by using an irregular sequence, and then the reference time-frequency pattern is time-domain shifted or frequency-domain shifted to obtain orthogonal M time-frequency patterns.
  • FIG. 12 is a schematic diagram of a time-frequency pattern generated by the method shown in FIG. 11 according to an embodiment of the present invention.
  • a reference time-frequency pattern (the first pattern in Fig. 12) is first generated by using an irregular sequence, and then the time-frequency shift of the reference time-frequency pattern is performed to obtain the remaining time-frequency patterns.
  • the M (4 in this embodiment) time-frequency pattern is orthogonal (i.e., there is no conflicting RE between any two patterns).
  • FIG. 12 is a time-frequency shifting method for obtaining orthogonal time-frequency patterns. It can be understood that orthogonal time-frequency patterns can also be obtained by using frequency domain shifting (for example, obtaining the first in FIG. 9) 4 patterns of columns).
  • Manner 2 generating a reference time-frequency pattern of size M xM according to an irregular sequence, wherein the idle REs in the reference time-frequency pattern are located in the same row or the same column; then sequentially shifting the reference time-frequency pattern in time domain or After the frequency domain shift, orthogonal M time-frequency patterns are obtained.
  • FIG. 13 is a schematic diagram of another time-frequency pattern generated by the method shown in FIG. 11 according to an embodiment of the present invention.
  • the idle REs in the reference time-frequency pattern (the first pattern in FIG. 13) are located on the same line, and then the frequency-domain shift of the reference time-frequency pattern is performed to obtain the remaining time-frequency patterns.
  • the M in this embodiment is 4
  • time-frequency patterns are orthogonal (i.e., there is no conflicting RE between any two patterns).
  • the idle REs in the reference time-frequency pattern of FIG. 13 are located on the same line. It can be understood that the reference time-frequency pattern in which the idle REs are located in the same column can also be generated. In this case, the time-frequency shift of the reference time-frequency pattern is required to obtain the rest. Time-frequency diagram Case.
  • Step 116 Assign the generated Mx time-frequency patterns to Mx cells.
  • 12 patterns can be generated, and the 12 patterns can be correspondingly allocated to 12 cells.
  • each cell has a different pattern.
  • the time-frequency pattern of the RE (numbered from 0 to 11), the binding of the time-frequency pattern and the physical cell identifier can be realized according to the following formula:
  • Time-frequency pattern number physical cell identifier
  • the UE can obtain the time-frequency pattern of the current cell according to the physical cell identifier of the current cell.
  • orthogonal time-frequency patterns are generated, so that the time-frequency patterns of the cells do not conflict with each other, so that the measurement interference is more accurate.
  • FIG. 14 is a schematic flow chart of a method for generating a time-frequency pattern according to still another embodiment of the present invention.
  • the method can include:
  • Step 142 According to the number M of the idle REs of each cell and the S, all the cells are divided into K groups.
  • M xM can be divided into 12 groups in this embodiment.
  • FIG. 15 is a schematic diagram of time-frequency resources of a normal CP when the method shown in FIG. 14 is adopted in the embodiment of the present invention.
  • FIG. 16 is a schematic diagram of extending a time-frequency resource of a CP when the method shown in FIG. 14 is adopted in an embodiment of the present invention. See Figure 15 or 16, divided into 12 groups, each group occupies 4 REs, and the padding part in the figure indicates the control information and the RE occupied by the reference signal.
  • Step 144 In each group, L time-frequency patterns are generated in at least two ways, and each of the M time-frequency patterns is generated in each manner to obtain M xJ time-frequency patterns.
  • K groups collectively generate M xJx time-frequency patterns.
  • three methods are assumed, which are: generating an orthogonal time-frequency pattern by using an irregular sequence, generating a time-frequency pattern in which the idle REs are located in the same row, and generating a time-frequency pattern in which the idle REs are located in the same column.
  • FIG. 17 is a schematic diagram of a time-frequency pattern generated by the method shown in FIG. 14 according to an embodiment of the present invention.
  • six time-frequency patterns can be generated.
  • the time-frequency patterns are completely orthogonal, in the time-frequency pattern.
  • the filled RE represents the location of the idle RE.
  • Step 146 Assign the M xJx time-frequency pattern correspondingly to the M xJx cells.
  • 72 time-frequency patterns can be generated, and the 72 time-frequency patterns can be correspondingly allocated to 72 cells.
  • each cell has a different time-frequency pattern.
  • the method of binding the 72 time-frequency patterns to the physical cell identity can be referred to the description in the embodiment shown in FIG. 6 or FIG.
  • orthogonal time-frequency patterns are generated in different manners, so that the number of generated time-frequency patterns can be as many as possible and do not conflict with each other as much as possible, so that the measurement interference is more accurate.
  • the size of the irregular sequence for generating the reference time-frequency pattern is the same as the number of idle REs for each cell (for example, both are 4 or both).
  • the method shown in Fig. 18 can be employed.
  • FIG. 18 is a schematic flowchart of a method for generating a time-frequency pattern according to still another embodiment of the present invention.
  • the method can include:
  • Step 180 Generate multiple reference time-frequency patterns according to multiple irregular sequences.
  • the irregular sequence is two Costas sequences of length 6 and are ⁇ 0, 5, 2, 1, 3, 4 ⁇ and ⁇ 0, 4, 2, 5, 1, 3 ⁇ .
  • FIG. 19 is a schematic diagram of a time-frequency pattern generated by using the method shown in FIG. 18 according to an embodiment of the present invention, and a sequence of ⁇ 0,
  • FIG. 20 is a schematic diagram of a time-frequency pattern generated by the method shown in FIG. 18 according to an embodiment of the present invention, corresponding to the sequence ⁇ 0, 4, 2, 5, 1, 3 ⁇ , and the RE filled in the time-frequency pattern represents an idle RE. position.
  • Step 182 Perform combining processing and/or intercepting processing on the plurality of reference time-frequency patterns, so that the number of REs in the processed time-frequency pattern is the same as the number of REs in each cell.
  • FIG. 21 is a schematic diagram of a time-frequency pattern generated by the method shown in FIG. 18 according to an embodiment of the present invention. Referring to FIG. 21, it is assumed that the REs occupied by each cell can form a 6 ⁇ 10 matrix, and the two reference time-frequency patterns generated above can be combined and then intercepted to obtain a time-frequency pattern with a size of 6 ⁇ 10. The RE filled in the time-frequency pattern represents the position of the idle RE.
  • Step 184 Allocate the time-frequency pattern obtained after the processing to the cell.
  • each group may generate a time-frequency pattern by using the above method.
  • the reference time-frequency pattern is processed by combining and/or intercepting, and a more flexible and diverse time-frequency pattern can be generated to adapt to different application scenarios.
  • Different numbers of time-frequency patterns can be generated by using different methods.
  • the number of conflicting REs and the number of repeated time-frequency patterns in the corresponding SDA map can be determined according to the required number of time-frequency patterns. Between the numbers Line break processing.
  • the number of idle REs and the number of occupied symbols selected in the method in the above embodiment are only examples, and do not limit the present invention.
  • FIG. 22 is another schematic diagram of time-frequency resources of a normal CP when the method shown in FIG. 6 is adopted in the embodiment of the present invention.
  • FIG. 23 is another schematic diagram of extending the time-frequency resource of the CP when the method shown in FIG. 6 is adopted in the embodiment of the present invention.
  • the idle RE occupies the sixth symbol of the first slot in the normal CP, and occupies the third and sixth symbols of the second slot; the first slot is occupied when the CP is extended.
  • the 5th symbol occupying the 2nd and 6th symbols of the second time slot.
  • S 4.
  • 4 groups, each group occupying 9 REs.
  • FIG. 24 is still another schematic diagram of a time-frequency pattern generated by the method shown in FIG. 6 according to an embodiment of the present invention.
  • the generated reference time-frequency pattern is the pattern of the first row and the first column in FIG. 24, and the time domain shift and frequency are performed by the method shown in FIG. 6. The remaining pattern is obtained after the domain is shifted.
  • the time-frequency pattern can also be generated by the method shown in FIG. 11 or the method shown in FIG. Figure 25 is a diagram showing an SDA corresponding to the time-frequency pattern shown in Figure 24 in the embodiment of the present invention.
  • the number of patterns colliding in the corresponding SDA is small at this time (most elements in the SDA map are 0). Therefore, considering the number of conflicting REs in the SDA, it can be known that the method of generating the time-frequency pattern shown in Fig. 6 is an ideal solution under the assumptions of S and M described above.
  • FIG. 26 is a schematic structural diagram of an apparatus for measuring interference according to still another embodiment of the present invention.
  • the device 26 includes a time-frequency pattern acquisition unit 260 and an interference measurement unit 262.
  • the time-frequency pattern obtaining unit 260 is configured to acquire a time-frequency pattern of the current cell of the UE, where a time-frequency pattern of the current cell of the UE is positive with a time-frequency pattern of other cells in the cell set where the current cell of the UE is located.
  • the interference measurement unit 262 is configured to measure the signal power of the idle RE in the time-frequency pattern of the current cell of the UE, and use the signal power of the idle RE as the interference of the current cell of the UE.
  • the time-frequency pattern of the measured idle RE is at least partially orthogonal to the time-frequency pattern of other cells in the cell set, so that the measured interference can be more accurate.
  • the time-frequency pattern obtaining unit 260 further includes: a cell identifier acquiring sub-unit 2601 and a time-frequency pattern acquiring sub-unit 2602.
  • the cell identifier acquisition sub-unit 2601 is configured to acquire the physical cell identifier of the current cell of the UE.
  • the time-frequency pattern acquisition sub-unit 2602 is configured to acquire the current cell of the UE according to the physical cell identifier of the current cell of the UE. Time-frequency pattern.
  • the idle RE is an RE that does not transmit data and is distributed in a resource region that transmits a physical downlink shared channel.
  • the time-frequency pattern of the cells in the cell set includes one or more time-frequency pattern groups, and the idle REs of the time-frequency patterns in each time-frequency pattern group occupy different sub-carriers.
  • a time-frequency pattern of the cells in the cell set is generated according to an irregular sequence. Specifically, when the number of idle REs is the same as the length of the irregular sequence, the time-frequency pattern in the set of cells is generated by the irregular pattern and the irregular pattern is performed.
  • the irregular pattern obtained by shifting the time domain and/or the frequency domain is composed; or, when the number of idle REs is different from the length of the irregular sequence, the time-frequency pattern in the set of cells is from the non-
  • the irregular pattern generated by the rule sequence is composed of an irregular pattern obtained by combining and/or intercepting.
  • the apparatus 27 for measuring interference provided by this embodiment may be a physical unit or a logical unit of the UE.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

测量干扰的方法及装置 本申请要求于 2010年 01月 15日提交中国专利局、 申请号为 201010004813. X、 发 明名称为 "测量干扰的方法及装置"的中国专利申请的优先权, 其全部内容通过引用结 合在本申请中。 技术领域 本发明涉及无线通信技术, 特别涉及一种测量干扰的方法及装置。 背景技术 正交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM) 技术是长 期演进 (Long Term Evolution, LTE) 系统采用的关键技术之一。 采用 OFDM的系统中, 时间上一个无线帧长度为 10ms, 包含 10个子帧, 每个子帧 lms, 每个子帧包含 2个时 隙, 每个时隙包含 7个或者 6个 0FDM符号。 其中, 正常循环前缀(Cycl ic Prefix, CP) 时,每个时隙包括 Ί个 0FDM符号,扩展 CP时,每个时隙包括 6个 0FDM符号。采用 0FDM 的系统中, 频率上是由多个子载波构成, 一个 0FDM符号下的一个子载波叫做一个资源 单元 (Resource Element, RE), 即一个 RE具有一个 OFDM符号和一个子载波, 12个子 载波和一个时隙构成一个资源块 (Resource Block, RB)。 控制信息、 参考信号、 业务 数据在这些时频资源上进行传输。 在采用 0FDM的系统中, 终端需要对 RB上的信道进行 测量, 得到信道质量指示 (Channel Qual ity Indicator, CQI ) 上报给基站, 使基站根 据用户的信道情况调度用户, 并且对用户进行自适应调制编码控制。 通常, 信道质量好 的时候, 给用户分配较高的调制编码阶数, 这样用户可以传输更多的数据; 信道质量差 的时候, 给用户分配较低的调制编码阶数, 这样用户传输的数据就相应的减少。 因此, CQI测量的准确性直接影响到用户的吞吐量, 不准确的 CQI测量会导致用户吞吐量的下 降。
现有技术中, CQI的测量是测量小区公共参考信号上的信号与干扰噪声的比, g卩: 用参考信号上的 CQI表示物理下行共享信道的 CQI。 当网络处于高负载情况下, 物理下 行共享信道一直被占用发送数据,邻区对本小区的干扰在参考信号上和物理下行共享信 道上基本上是一致的, 因此可以用参考信号上的 CQI表示物理下行共享信道的 CQI。
但是, 现有技术中, 当网络处于低负载, 邻区的基站在某些资源块上的物理下行共 享信道是空闲的, 邻区对本小区在这些资源块上没有干扰, 而参考信号一直处于传输状 态, 邻区的参考信号对本小区的参考信号是存在干扰的。 因此, 用一直处于传输状态的 参考信号上的干扰表示存在空闲 RE的物理下行共享信道上的干扰是不准确的, 即: 当 网络处于低负载时,用参考信号上的 CQI表示物理下行共享信道的 CQI往往是不准确的。 这样, 就会导致基站根据不准确的 CQI为终端选取不合适的调制编码方式, 导致用户的 吞吐量严重下降, 影响系统性能。 发明内容
本发明实施例提供一种测量干扰的方法及装置, 可以准确测量当前小区受到的干 扰。
本发明的一方面提供了一种测量干扰的方法, 包括:
获取 UE的当前小区的时频图案, 所述 UE的当前小区的时频图案与所述 UE的当前 小区所在的小区集合内的其他小区的时频图案正交或者部分正交;
测量所述 UE的当前小区的时频图案中空闲 RE的信号功率, 将所述空闲 RE的信号 功率作为所述 UE的当前小区的干扰。
本发明的另一方面还提供了一种测量干扰的装置, 包括:
时频图案获取单元, 用于获取 UE的当前小区的时频图案, 所述 UE的当前小区的时 频图案与所述 UE的当前小区所在的小区集合内的其他小区的时频图案正交或者部分正 交;
干扰测量单元, 用于测量所述 UE的当前小区的时频图案中空闲 RE的信号功率, 将 所述空闲 RE的信号功率作为所述 UE的当前小区的干扰。
由本发明实施例提供的测量干扰的方法及装置可知, UE的当前小区的时频图案与其 所在的小区集合内的其他小区的时频图案正交或者部分正交,可以准确测量出当前小区 的干扰。 附图说明 图 1为本发明一个实施例提供的测量干扰的方法流程示意图;
图 2为本发明另一个实施例提供的测量干扰的方法流程示意图;
图 3为本发明一个实施例提供的生成正交的时频图案的方法流程示意图; 图 4为本发明另一个实施例提供的生成正交的时频图案的方法流程示意图; 图 5为本发明一个实施例提供的生成部分正交的时频图案的方法流程示意图; 图 6为本发明另一个实施例提供的生成部分正交的时频图案的方法流程示意图; 图 7为本发明实施例提供的采用图 6所示的方法时, 正常 CP的时频资源的示意图; 图 8为本发明实施例提供的采用图 6所示的的方法时, 扩展 CP的时频资源的示意 图;
图 9为本发明实施例提供的采用图 6所示的方法生成的时频图案的示意图; 图 10为本发明实施例提供的采用图 6所示的方法生成的时频图案对应的 SDA图; 图 11为本发明又一个实施例提供的生成时频图案的方法流程示意图;
图 12为本发明实施例提供的采用图 11所示的方法生成的一个时频图案的示意图; 图 13 为本发明实施例提供的采用图 11 所示的方法生成的另一个时频图案的示意 图;
图 14为本发明又一个实施例提供的生成时频图案的方法流程示意图;
图 15为本发明实施例提供的采用图 14所示的方法时, 正常 CP的时频资源的示意 图;
图 16为本发明实施例提供的采用图 14所示的方法时, 扩展 CP的时频资源的示意 图;
图 17为本发明实施例提供的采用图 14所示的方法生成的时频图案的示意图; 图 18为本发明又一个实施例提供的生成时频图案的方法流程示意图;
图 19为本发明实施例提供的采用图 18所示的方法生成的时频图案示意图; 图 20为本发明实施例提供的采用图 18所示的方法生成的时频图案示意图; 图 21为本发明实施例提供的采用图 18所示的方法生成的时频图案的示意图; 图 22为本发明实施例中采用图 6所示的方法时,正常 CP的时频资源的另一示意图; 图 23为本发明实施例中采用图 6所示的方法时,扩展 CP的时频资源的另一示意图; 图 24为本发明实施例中采用图 6所示的方法生成的时频图案的又一示意图; 图 25为本发明实施例中图 24所示的时频图案对应的 SDA图;
图 26为本发明又一个实施例提供的测量干扰的装置结构示意图。 具体实施方式 下面通过附图和和具体实施方式, 对本发明的技术方案做进一步的详细描述。 图 1为本发明一个实施例提供的测量干扰的方法流程示意图。 如图 1所示, 该方法 可以包括: 步骤 10 : 获取 UE的当前小区的时频图案, 所述 UE的当前小区的时频图案与所述 UE的当前小区所在的小区集合内的其他小区的时频图案正交或者部分正交。
一般而言,每个小区可以用物理小区标识来标识,物理小区标识从 0到 503共有 504 个。 本实施例所述的当前小区可以是任意一个物理小区标识对应的小区。 本实施例中, 将具有不同的时频图案的小区的称为一个小区集合。 504个具有不同物理小区标识可以 被划分成一个或者多个小区集合。
本领域技术人员可以理解, 基站与终端进行通信时, 传输的数据或者信令需要承载 在对应的时频资源上, 这些时频资源组成时频图案; 并且不同的小区可以采用不同的时 频图案。 其中, 时频图案中可以包括空闲 RE和正常 RE; 空闲 RE是指不传输数据的 RE, 正常 RE是指传输数据的 RE。 正交是指小区间的时频图案中空闲 RE的位置完全不重叠, 部分正交是指小区间的时频图案中空闲 RE的位置存在重叠但不是完全相同。
步骤 12 : 测量所述 UE的当前小区的时频图案中空闲 RE的信号功率, 将所述空闲 RE的信号功率作为所述 UE的当前小区的干扰。
由于空闲 RE处不传输数据,所以测量得到的空闲 RE处的信号功率可以作为对本小 区的干扰。 小区集合中各个小区的时频图案之间至少部分正交, 可以使测量的干扰更为 准确。
图 2为本发明另一个实施例提供的测量干扰的方法流程示意图。 如图 2所示, 该方 法可以包括:
步骤 20: 获取 UE的当前小区的物理小区标识。
其中, UE可以在与基站进行同步的过程中获取该当前小区的物理小区标识。
步骤 22 :根据所述 UE的当前小区的物理小区标识获取所述 UE的当前小区的时频图 案。
本领域技术人员可以理解, 每个小区都会绑定或分配一个时频图案。 例如, 有 504 个小区(假设其物理小区标识的编号从 0到 503 )以及 N个空闲 RE的时频图案(编号从 0到 N-l ), 可以通过下述公式实现小区与时频图案的绑定:
时频图案编号 = (物理小区标识) Mod ( N)
其中, 公式中 Mod表示取余运算。
相应地, UE就可以根据物理小区标识获取当前小区的时频图案。 例如, 当 UE获取 当前小区的物理小区标识为的编号为 n时, 则可以根据上述公式获知当前小区的时频图 案的编号, 进而获知当前小区的时频图案。 由于 CQI通常是针对物理下行共享信道的, 因此为了使测量的针对物理下行共享信 道的干扰更加准确, 本实施例中的空闲 RE可以分布在传输物理下行共享信道的资源区 域。
步骤 24:测量所述 UE的当前小区的时频图案中空闲资源单元 RE的信号功率,将所 述空闲 RE的信号功率作为所述 UE的当前小区的干扰。
本实施例中, 该步骤与图 1所实施例中的步骤 12类似, 在此再赘述。
本实施例提供的方法中, UE当前小区的时频图案与所述当前小区所在的小区集合中 的其他小区的时频图案正交或部分正交, 可以使测量的干扰更为准确。
本发明实施例中, 小区集合中小区的时频图案可以根据非规则序列生成。 其中, 所 述非规则序列至少括 Costas序列、 Latin序列或 Modular Sonar序列。
本发明实施例中, 当空闲 RE的个数与非规则序列的长度与相同时, 小区集合中小 区的时频图案由非规则序列生成的非规则图案及对该非规则图案进行时域和 /或频域移 位后得到的非规则图案组成; 或者, 当空闲 RE的个数与非规则序列的长度不相同时, 小区集合中小区的时频图案由该非规则序列生成的非规则图案进行组合和 /或截取后得 到的非规则图案组成。
以下举几个具体示例说明如何根据非规则序列生成时频图案。
图 3为本发明一个实施例提供的生成正交的时频图案的的流程示意图。该方法可以 包括:
步骤 30: 根据长度为 M的非规则序列生成大小为 M xM的基准时频图案。
其中, M为空闲 RE的个数。 在其他实施例中, 生成的基准时频图案中空闲 RE还可 以位于同一行 (即: 相同子载波) 或者同一列 (即: 相同 OFDM符号)。
步骤 32:对所述基准时频图案进行时域移位或者频域移位后,得到正交的 M个时频 图案。
这样, M个正交的时频图案可以分配给 M个小区使用。 M个小区组成的小区集合中, 各个小区间的时频图案正交, 可以提高干扰测量的准确性。
图 4为本发明另一个实施例提供的生成部分正交的时频图案的方法流程示意图。该 方法可以包括:
步骤 40: 根据长度为 M的非规则序列生成大小为 M xM的基准时频图案。
其中, M为空闲 RE的个数。
步骤 42:对所述基准时频图案进行时域移位和频域移位,得到部分正交的 M xM个 时频图案。
这样, 这 M xM个部分正交的时频图案可以分配给 M xM个小区使用, 不仅可以 提高干扰测量的准确性, 还可以增加分配给小区使用的时频图案的数量。
本发明其他实施例中,还可以根据图 3和图 4所示的方法将生成的正交的时频图案 和部分正交的图案组合在一起分配给小区使用。 这样, 可以进一步增加分配给小区使用 的时频图案的数量。
图 5为本发明一个实施例提供的生成部分正交的时频图案的方法流程示意图。该方 法可以包括:
步骤 50 : 根据长度为 N的非规则序列生成基准时频图案。
步骤 52 : 对所述基准时频图案进行组合处理和 /或截取处理, 以使处理后的时频图 案中 RE的个数为 NxM。 其中, NxM为每个小区的时频图案的 RE个数。
为了得到更多的正交的时频图案, 可以对所有的小区进行分组后, 在每个组中采用 上述生成方法得到时频图案。 以下示例说明:
图 6为本发明另一个实施例提供的生成部分正交的时频图案的方法流程示意图。该 方法可以包括:
步骤 60 : 确定所有小区的空闲 RE在一个子帧中占用的 OFDM符号数 S。
假设空闲 RE占用每一个时隙的最后两个 OFDM符号,即正常 CP时占用第 5、6个 OFDM 符号 (本发明实施例中, OFDM符号从 0开始编号), 扩展 CP时占用第 4、 5个符号。 可 以理解的是, 空闲 RE也可以占用其余的 0FDM符号。 由于一个子帧包括两个时隙, 当空 闲 RE在每一个时隙中占用两个符号时, S=4。
步骤 62 : 根据每个小区的空闲 RE的个数 M和所述 S, 将所有小区分为 K个组。
K的计算公式可以为: K = ^_。 假设 Μ=4, 按照这一公式得到 Κ=3。
MxM
步骤 64: 每个组中, 分别根据一个非规则序列生成部分正交的 M xM个时频图案。 例如, 在每个组中, 根据非规则序列生成大小为 M xM的基准时频图案, 然后对该 基准时频图案进行时域移位和频域移位, 得到 M xM个时频图案。 K 个组共可以生成 M xM x 个时频图案。 在每个组中, 具体生成时频图案的方法可以参见图 4所示的方 法, 在此不再赘述。
步骤 66: 将生成的 M xM X 个时频图案分配给 M M xK个小区使用。
如上所述, 可以将所述 M xM X 个时频图案对应分配给 M M xK个小区。
本实施例中, 共生成 48个图案, 可以对应分配给 48个小区。 这样, 在 48个小区 组成的小区集合里每个小区具有不同的图案。 具体的, 可以将生成的时频图案与物理小 区标识绑定, UE就可以根据当前小区的物理小区标识获得当前小区的时频图案。 例如, 共有 504个小区 (编号从 0到 503 ) 以及 48个生成的具有空闲 RE的时频图案 (编号从 0到 47), 可以通过下述公式实现时频图案和物理小区标识的绑定:
时频图案编号 =物理小区标识 Mod 48
其中, 公式中 Mod表示取余运算。
图 7为本发明实施例中采用图 6所示的方法时, 正常 CP的时频资源的示意图。图 8 为本发明实施例中采用图 6所示的方法时, 扩展 CP的时频资源的示意图。
参见图 7或 8, 图中填充部分表示控制信息和参考信号占用的 RE。 本实施例中, 将 所有小区的空闲 RE分为 3组, 为了使测量干扰时更准确, 本实施例中各组之间的 RE是 正交的, 每组占用 16个 RE。本领域技术人员可以理解地是, 也可以根据其他方式分组。
上述实施例中, 时频图案以一个子帧中的两个 RB为例进行了说明。 可以理解的是, 在其他实施例中的时频图案也可以只包含一个 RB, BP : 占用一个时隙及 12个子载波。 或者, 时频图案也可以只包含频域上的两个 RB, BP : 占有一个时隙, 24个子载波。 或 者, 时频图案也可以包含四个 RB, BP : 占用一个子帧, 24个子载波。 因此, 组成时频 图案的 RB包括但不限于本发明实施例的各个附图所示的图案。
本领域技术人员可以理解, 非规则序列可以包括: Costas 序列、 Latin 序列或 Modular Sonar序列。 以 Costas序列为例, 长度为 N的 Costas序列可以生成一个大小 为 NX N的 Costas 矩阵, 该矩阵的每一行或者每一列有一个点, 其余都是空格。 从不 同的行看, 这些点都位于不同的列, 从不同的列看, 这些点都位于不同的行。
图 9为本发明实施例提供的采用图 6所示的方法生成的时频图案的示意图。参见图 9, 以 Costas序列为 {0, 3, 1, 2}为例, 生成的基准时频图案为图 9中第一行第一列的 图案, 其余的图案是对该基准图案依次进行时域移位和频域移位得到的, 时频图案中填 充的 RE表示空闲 RE的位置。
图 9中所示的各个时频图案互不相同, 但不同的时频图案之间空闲 RE的位置还是 有重合的, 旁瓣分布阵列图 ( Side-lobe Di stribution Array , SDA ) 可以用于考察和 判断两个时频图案之间的重合数 (也为冲突数)。 图 10为本发明实施例提供的采用图 6 所示的方法生成的时频图案对应的 SDA图。 图 10中的数字表示两两时频图案之间的重 合的个数, 例如, " 4 "表示两个图案相同时, 冲突的 RE的个数, 第 4行第 2列的 " 0 " 表示一个图案与其时域移位后的图案(例如图 9中的第一行第一列的图案与第一行第二 列的图案)之间冲突的 RE的个数, 第 3行第 2列的 " 1 "表示一图案与其时域移位一位 及频域移位一位后的图案 (例如图 9中的第一行第一列的图案与第二行第二列的图案) 之间冲突的 RE的个数。 其余类推。 从 SDA图可以看出, 不同图案之间重合的 RE的个数 均较小, 例如, 只存在 1个或 2个重合的情况, 使得测量干扰较为准确。
为了使测量干扰更为准确, 可以使各小区的时频图案完全不重合, 即使用正交的时 频图案。
图 11为本发明又一个实施例提供的生成时频图案的方法流程示意图, 包括: 步骤 110: 确定所有小区的空闲 RE在一个子帧中占用的 OFDM符号数 S。
步骤 112: 根据每个小区的空闲 RE的个数 M和所述 S, 将所有小区分为 K个组。 本实施例中, 假设 M=4, S=4, K=3。
步骤 114: 在每个组中, 分别根据一个非规则序列生成正交的 Μ个时频图案。 本实 施例中, Κ个组共可以生成 M x 个正交的时频图案。
具体地, 可以采用如下两种方式生成完全正交的时频图案:
方式一: 采用一个非规则序列生成大小为 M xM的基准时频图案, 然后对所述基准 时频图案进行时域移位或者频域移位, 得到正交的 M个时频图案。
图 12为本发明实施例中采用图 11所示的方法生成的一个时频图案的示意图。参见 图 12, 首先采用非规则序列生成一个基准时频图案(图 12中的第一个图案), 然后对该 基准时频图案进行时域移位后, 得到其余的时频图案。从图 12中可以看出该 M (本实施 例中 M为 4) 个时频图案是正交的 (即任意两个图案之间不存在相互冲突的 RE)。 图 12 是采用时域移位的方式得到正交的各时频图案, 可以理解的是, 也可以采用频域移位的 方式得到正交的各时频图案 (例如得到图 9中的第一列的 4个图案)。
方式二: 根据一个非规则序列生成大小为 M xM的基准时频图案, 所述基准时频图 案中空闲 RE位于同一行或者同一列; 然后对所述基准时频图案依次进行时域移位或者 频域移位后, 得到正交的 M个时频图案。
图 13为本发明实施例中采用图 11所示的方法生成的另一个时频图案的示意图。参 见图 13, 该方式下基准时频图案 (图 13中的第一个图案) 中空闲 RE是位于同一行的, 然后对该基准时频图案进行频域移位后,得到其余的时频图案。从图 13中可以看出该 M (本实施例中 M为 4)个时频图案是正交的(即任意两个图案之间不存在相互冲突的 RE)。 图 13的基准时频图案中的空闲 RE位于同一行, 可以理解的是, 也可以生成空闲 RE位 于同一列的基准时频图案, 此时, 需要对基准时频图案进行时域移位得到其余的时频图 案。
步骤 116 : 将生成的 Mx 个时频图案分配给 Mx 个小区。
本实施例中, 可以生成 12个图案, 该 12个图案可以对应分配给 12个小区。 由 12 个小区组成的小区集合中, 每个小区具有不同的图案。
本实施例中, 假如共有 504个小区 (编号从 0到 503 ) 以及 12个生成的具有空闲
RE的时频图案(编号从 0到 11 ), 可以根据下述公式实现时频图案和物理小区标识的绑 定:
时频图案编号 =物理小区标识 Mod 12
相应地, UE就可以根据当前小区的物理小区标识获得当前小区的时频图案。
本实施例中, 生成正交的时频图案, 可以使各小区的时频图案互不冲突, 使测量的 干扰更为准确。
图 14为本发明又一个实施例中提供的生成时频图案的方法流程示意图。 该方法可 以包括:
步骤 140 : 确定所有小区的空闲 RE在一个子帧中占用的 OFDM符号数 S。 本实施例 中, 设 S=4。
步骤 142 : 根据每个小区的空闲 RE的个数 M和所述 S, 将所有小区分为 K个组。 本实施例中设 M=2, 采用的 Costas序列为 {0, 1}。 因此, 按照公式 = ^^,
M xM 本实施例中可以划分为 12个组。
图 15为本发明实施例中采用图 14所示的方法时, 正常 CP的时频资源的示意图。 图 16为本发明实施例中采用图 14所示的方法时, 扩展 CP的时频资源的示意图。 参见 图 15或 16, 划分为了 12个组, 每个组占用 4个 RE, 图中填充部分表示控制信息和参 考信号占用的 RE。
步骤 144: 在每个组中, 采用至少两种方式生成 L种时频图案, 每种方式下生成正 交的 M个时频图案, 得到 M xJ个时频图案。
本实施例中, K个组共生成 M xJx 个时频图案。
本实施例中假设采用 3种方式, 分别为: 采用非规则序列生成正交的时频图案、 生 成空闲 RE位于同一行的时频图案和生成空闲 RE位于同一列的时频图案。
图 17为本发明实施例中采用图 14所示的方法生成的时频图案的示意图。参见图 17, 采用上述 3种方式, 可以生成 6种时频图案, 在每种方式下 (图 17中位于同行的两个 时频图案) 的时频图案是完全正交的, 时频图案中填充的 RE表示空闲 RE的位置。 步骤 146: 将所述 M xJx 个时频图案对应分配给 M xJx 个小区。
本实施例中, 可以生成 72个时频图案, 该 72个时频图案可以对应分配给 72个小 区。 由 72个小区组成的小区集合中, 每个小区具有不同的时频图案。 将 72个时频图案 与物理小区标识绑定的方法可以参见图 6或图 11所示实施例中的描述。
本实施例中, 采用不同的方式生成正交的时频图案, 可以使生成的时频图案的个数 尽量多并且尽量互不冲突, 使测量的干扰较为准确。
上述生成时频图案的方法中,用于生成基准时频图案的非规则序列的大小与每个小 区的空闲 RE的个数是相同的 (例如, 均为 4或者均为 2)。 当两者不相同时, 可以采用 图 18所示的方法。
图 18为本发明又一个实施例提供的生成时频图案的方法流程示意图。 该方法可以 包括:
步骤 180: 根据多个非规则序列生成多个基准时频图案。
假设采用的非规则序列为大小为长度为 6的两个 Costas序列, 分别为 {0, 5, 2, 1, 3, 4}和 {0, 4, 2, 5, 1, 3}。
图 19为本发明实施例中采用图 18所示的方法生成的时频图案示意图, 与序列 {0,
5, 2, 1, 3, 4}对应, 时频图案中填充的 RE表示空闲 RE的位置。 图 20为本发明实施 例中采用图 18所示的方法生成的时频图案示意图, 与序列 {0, 4, 2, 5, 1, 3}对应, 时频图案中填充的 RE表示空闲 RE的位置。
步骤 182:对所述多个基准时频图案进行组合处理和 /或截取处理, 以使处理后的时 频图案中 RE的个数与每个小区的 RE的个数相同。
图 21为本发明实施例提供的采用图 18所示的方法生成的时频图案的示意图。参见 图 21,假设每个小区占用的 RE可以形成一个 6x 10的矩阵,则可以将上述生成的两个基 准时频图案进行组合处理之后再进行截取处理, 得到大小为 6x 10的时频图案, 时频图 案中填充的 RE表示空闲 RE的位置。
步骤 184: 将处理后得到的时频图案分配给小区。
本实施例中, 如果小区经过分组, 每个组可以采用上述方法生成时频图案。
本实施例采用组合和 /或截取的方式对基准时频图案进行处理, 可以生成更加灵活 多样的时频图案, 适应不同应用场景。
上述采用不同的方法可以产生不同个数的时频图案, 在具体实施中, 可以根据需要 的时频图案的个数与对应的 SDA图中冲突的 RE的个数及重复的时频图案的个数之间进 行折中处理。上述实施例中方法中选用的空闲 RE的个数及占用的符号数只是作为示例, 并不对本发明造成限制。
图 22为本发明实施例中采用图 6所示的方法时,正常 CP的时频资源的另一示意图。 图 23为本发明实施例中采用图 6所示的方法时, 扩展 CP的时频资源的另一示意图。 参 见图 22或 23, 例如, 假设空闲 RE在正常 CP时占用第一个时隙的第 6个符号, 占用第 二个时隙的第 3、 6个符号; 扩展 CP时占用第一个时隙的第 5个符号, 占用第二个时隙 的第 2、 6个符号,。 此时, S=4。 每个小区的空闲 RE的个数 M=3。 采用图 6所示的的方法, 可以划分为 = ^^ =4个组, 每个组占用 9个 RE。
M xM
图 24为本发明实施例中采用图 6所示的方法生成的时频图案的又一示意图。 参见 图 24, 假设采用 Costas序列为 {0, 2, 1}, 生成的基准时频图案为图 24中第一行第一 列的图案, 采用图 6所示的方法进行时域移位和频域移位后得到其余的图案。
当然, 在上述 S、 M的假设条件下, 还可以采用图 11所示的方法或者图 14所示的 方法生成时频图案。 图 25为本发明实施例中图 24所示时频图案对应的 SDA图。 参见图 24及图 25, 虽然在图 24中存在相同的图案, 但是此时对应的 SDA中冲突的图案数较少 ( SDA图中大部分元素为 0)。 因此, 综合考虑 SDA中冲突的 RE的个数, 可以获知在上 述的 S、 M的假设条件下, 采用图 6所示的生成时频图案的方法是较为理想的方案。
图 26为本发明又一个实施例提供的测量干扰的装置结构示意图。 该装置 26, 包括 时频图案获取单元 260和干扰测量单元 262。 其中, 时频图案获取单元 260用于获取 UE 的当前小区的时频图案,所述 UE的当前小区的时频图案与所述 UE的当前小区所在的小 区集合内的其他小区的时频图案正交或者部分正交;干扰测量单元 262用于测量所述 UE 的当前小区的时频图案中空闲 RE的信号功率, 将所述空闲 RE的信号功率作为所述 UE 的当前小区的干扰。
本实施例提供的装置 26, 测量的空闲 RE的时频图案与小区集合中的其他小区的时 频图案之间至少部分正交, 可以使测量的干扰更为准确。
进一步地, 本发明其他实施例中, 时频图案获取单元 260进一步包括: 小区标识获 取子单元 2601和时频图案获取子单元 2602。其中, 小区标识获取子单元 2601用于获取 所述 UE的当前小区的物理小区标识; 时频图案获取子单元 2602用于根据所述 UE的当 前小区的物理小区标识获取所述 UE的当前小区的时频图案。 其中, 小区标识获取子单 元 2601获取所述 UE的当前小区的物理小区标识的具体过程和时频图案获取子单元 2602 获取所述 UE的当前小区的时频图案的具体过程可以参见图 2所示实施例中的描述, 在 此不再赘述。
进一步地,空闲 RE为不传输数据的 RE且分布在传输物理下行共享信道的资源区域。 进一步地, 小区集合中小区的时频图案包含一个或多个时频图案组, 每个时频图案 组中的时频图案的空闲 RE占用不同的子载波。
进一步地, 所述小区集合中小区的时频图案根据非规则序列生成。 具体而言, 当空 闲 RE的个数与所述非规则序列的长度与相同时, 所述小区集合中的时频图案由所述非 规则序列生成的非规则图案及对所述非规则图案进行时域和 /或频域移位后得到的非规 则图案组成; 或者, 当空闲 RE的个数与所述非规则序列的长度不相同时, 所述小区集 合中的时频图案由所述非规则序列生成的非规则图案进行组合和 /或截取后得到的非规 则图案组成。
其中,小区集合中的时频图案根据非规则序列生成的具体示例可以参见图 3至图 25 所示实施例的描述, 在此不再赘述。 本实施例提供的测量干扰的装置 27可以为 UE的一 个物理单元或逻辑单元。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤可以通过程 序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读取存储介质中, 该程序 在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: R0M、 RAM, 磁碟 或者光盘等各种可以存储程序代码的介质。 以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例 对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其依然可以对本发明的 技术方案进行修改或者等同替换, 而这些修改或者等同替换亦不能使修改后的技术方案 脱离本发明技术方案的范围。

Claims

权利要求
1、 一种测量干扰的方法, 其特征在于, 包括:
获取用户设备 UE的当前小区的时频图案,所述 UE的当前小区的时频图案与所述 UE 的当前小区所在的小区集合内的其他小区的时频图案正交或者部分正交;
测量所述 UE的当前小区的时频图案中空闲资源单元 RE的信号功率,将所述空闲 RE 的信号功率作为所述 UE的当前小区的干扰。
2、 根据权利要求 1所述的方法, 其特征在于, 获取所述 UE的当前小区的时频图案 包括:
获取所述 UE的当前小区的物理小区标识;
根据所述 UE的当前小区的物理小区标识获取所述 UE的当前小区的时频图案。
3、 根据权利要求 2所述的方法, 其特征在于,
所述小区集合中小区的时频图案包含一个或多个时频图案组, 每个时频图案组中的 时频图案的空闲 RE占用不同的子载波。
4、 根据权利要求 1-3任意一项所述的方法, 其特征在于, 所述空闲 RE为不传输数 据的 RE且分布在传输物理下行共享信道的资源区域。
5、 根据权利要求 1-3任意一项所述的方法, 其特征在于,
所述小区集合中小区的时频图案根据非规则序列生成。
6、 根据权利要求 5所述的方法, 其特征在于, 所述小区集合中小区的时频图案根 据非规则序列生成包括:
当空闲 RE的个数与所述非规则序列的长度与相同时, 所述小区集合中小区的时频 图案由所述非规则序列生成的非规则图案及对所述非规则图案进行时域和 /或频域移位 后得到的非规则图案组成; 或者,
当空闲 RE的个数与所述非规则序列的长度不相同时, 所述小区集合中小区的时频 图案由所述非规则序列生成的非规则图案进行组合和 /或截取后得到的非规则图案组 成。
7、 一种测量干扰的装置, 其特征在于, 包括:
时频图案获取单元, 用于获取用户设备 UE的当前小区的时频图案, 所述 UE的当前 小区的时频图案与所述 UE的当前小区所在的小区集合内的其他小区的时频图案正交或 者部分正交;
干扰测量单元,用于测量所述 UE的当前小区的时频图案中空闲资源单元 RE的信号 功率,将所述空闲 RE的信号功率作为所述 UE的当前小区的干扰。
8、 根据权利要求 7所述的装置,其特征在于,所述时频图案获取单元包括: 小区标识获取子单元, 用于获取所述 UE的当前小区的物理小区标识;
时频图案获取子单元,用于根据所述 UE的当前小区的物理小区标识获取所述 UE的 当前小区的时频图案。
9、 根据权利要求 8所述的装置, 其特征在于,
所述小区集合中小区的时频图案包含一个或多个时频图案组, 每个时频图案组中的 时频图案的空闲 RE占用不同的子载波。
10、 根据权利要求 7-9任意一项所述的装置, 其特征在于, 所述空闲 RE为不传输 数据的 RE且分布在传输物理下行共享信道的资源区域。
11、 根据权利要求 7-9任意一项所述的装置, 其特征在于,
所述小区集合中小区的时频图案根据非规则序列生成。
12、 根据权利要求 11所述的装置, 其特征在于, 所述小区集合中小区的时频图案 根据非规则序列生成包括:
当空闲 RE的个数与所述非规则序列的长度与相同时, 所述小区集合中小区的时频 图案由所述非规则序列生成的非规则图案及对所述非规则图案进行时域和 /或频域移位 后得到的非规则图案组成; 或者,
当空闲 RE的个数与所述非规则序列的长度不相同时, 所述小区集合中小区的时频 图案由所述非规则序列生成的非规则图案进行组合和 /或截取后得到的非规则图案组 成。
PCT/CN2011/070333 2010-01-15 2011-01-17 测量干扰的方法及装置 WO2011085697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010004813.X 2010-01-15
CN 201010004813 CN102130870B (zh) 2010-01-15 2010-01-15 测量干扰的方法及装置

Publications (1)

Publication Number Publication Date
WO2011085697A1 true WO2011085697A1 (zh) 2011-07-21

Family

ID=44268762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070333 WO2011085697A1 (zh) 2010-01-15 2011-01-17 测量干扰的方法及装置

Country Status (2)

Country Link
CN (1) CN102130870B (zh)
WO (1) WO2011085697A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002587B (zh) * 2011-09-09 2017-08-08 中兴通讯股份有限公司 功率确定方法及装置
CN103843386B (zh) * 2013-11-22 2018-02-02 华为技术有限公司 提高测量稳定性的方法和装置
CN108737049B (zh) * 2017-04-24 2020-11-06 中国移动通信有限公司研究院 辅助参考信号的发送、接收方法、网络侧设备及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1694558A (zh) * 2004-05-04 2005-11-09 阿尔卡特公司 用于ofdm移动通信系统中的无线服务和抗干扰的方法
CN1823485A (zh) * 2003-05-14 2006-08-23 高通股份有限公司 Ofdm系统中的干扰和噪声估计
CN1881853A (zh) * 2005-06-15 2006-12-20 华为技术有限公司 一种无线通信系统时频资源的分配方法
WO2009045076A2 (en) * 2007-10-02 2009-04-09 Samsung Electronics Co., Ltd. Method and apparatus for allocating resources of a control channel in a mobile communication system using orthogonal frequency division multiplexing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1823485A (zh) * 2003-05-14 2006-08-23 高通股份有限公司 Ofdm系统中的干扰和噪声估计
CN1694558A (zh) * 2004-05-04 2005-11-09 阿尔卡特公司 用于ofdm移动通信系统中的无线服务和抗干扰的方法
CN1881853A (zh) * 2005-06-15 2006-12-20 华为技术有限公司 一种无线通信系统时频资源的分配方法
WO2009045076A2 (en) * 2007-10-02 2009-04-09 Samsung Electronics Co., Ltd. Method and apparatus for allocating resources of a control channel in a mobile communication system using orthogonal frequency division multiplexing

Also Published As

Publication number Publication date
CN102130870A (zh) 2011-07-20
CN102130870B (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
US11849433B2 (en) Method and device for determining transmission parameters and storage medium
US11128510B2 (en) Data transmission method, user equipment, and network side device
US8761116B2 (en) Method and system for transmitting position reference signal
US8811331B2 (en) Pilot design using costas arrays
US10623156B2 (en) Methods for transmitting and receiving control channel, base station, and user equipment
WO2018228335A1 (zh) 导频信号发送、接收方法及装置、设备、存储介质
TWI401983B (zh) 基地台與中置碼通道分配方法
JP5266261B2 (ja) Fdmaシステムにおけるアップリンクアクセス用送信スキーム
WO2018171805A1 (zh) 一种信息配置方法、装置和计算机存储介质
WO2015172364A1 (zh) 一种基站、用户设备及通信信号的发送、接收方法
WO2014205699A1 (zh) 参考信号的传输方法及装置
WO2008049358A1 (fr) Procédé de distribution de séquences, procédé de traitement de séquences et appareil dans un système de communication
JP2020509715A (ja) ランダムアクセス送信方法、受信方法および装置、送信端および受信端
CN103843382A (zh) 传输广播消息的方法、基站和用户设备
KR20190099038A (ko) 데이터 송신을 수행하기 위한 방법 및 장치
JP2018207520A (ja) データを伝送するための方法およびデバイス
AU2012373944A1 (en) Method, base station, and user equipment for transmitting control channel
CN107733617B (zh) 参考信号映射方法及装置
WO2009143709A1 (zh) 双流波束赋型方法、装置及支持双流波束赋型传输的设备
WO2017132969A1 (zh) 传输参考信号的方法和装置
WO2011085697A1 (zh) 测量干扰的方法及装置
KR20240071353A (ko) 무선 통신을 위한 참조 시그널링을 위한 시스템 및 방법
WO2013120408A1 (zh) 传输和检测控制信令的方法、网络设备以及用户设备
WO2010115300A1 (zh) 定位导频信号的传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11732687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11732687

Country of ref document: EP

Kind code of ref document: A1