WO2018171805A1 - 一种信息配置方法、装置和计算机存储介质 - Google Patents

一种信息配置方法、装置和计算机存储介质 Download PDF

Info

Publication number
WO2018171805A1
WO2018171805A1 PCT/CN2018/080545 CN2018080545W WO2018171805A1 WO 2018171805 A1 WO2018171805 A1 WO 2018171805A1 CN 2018080545 W CN2018080545 W CN 2018080545W WO 2018171805 A1 WO2018171805 A1 WO 2018171805A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
resource
information
measurement reference
time domain
Prior art date
Application number
PCT/CN2018/080545
Other languages
English (en)
French (fr)
Inventor
张淑娟
鲁照华
蒋创新
弓宇宏
吴昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018171805A1 publication Critical patent/WO2018171805A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an information configuration method, apparatus, and computer storage medium.
  • CSI-RS Channel State Information Reference Signal
  • CSI-RS Channel State Information
  • beam management especially for high-frequency hybrid beam management, a significant difference from low-frequency beam training is that multiple beams corresponding to one RF link require time-division transmission, while low-frequency digital beams can generate many beams at a time.
  • the embodiment of the present application provides an information configuration method, apparatus, and computer storage medium, which are considered for designing a measurement reference signal in the NR, solving the measurement reference signal used in the NR for beam management, and measuring how the reference signal pattern is adapted to beam management. At the same time, it adapts to the problem of dynamic changes in the slot structure.
  • an embodiment of the present application provides an information configuration method, including:
  • M is a natural number greater than one
  • the resource is one or more of the following resources: measuring a reference signal resource, reporting a resource, and referring to a signal resource.
  • an information configuration method including:
  • M is a natural number greater than 1; the resource is one or more of the following resources: measuring reference signal resources, reporting resources, and reference signal resources.
  • an embodiment of the present application provides a method for configuring information, including:
  • the control information carries a pattern configuration parameter
  • the resource where the measurement reference signal configured by the pattern configuration parameter is located includes a resource where the second signal is located
  • the second signal includes at least one of the following: demodulation Reference signal, control channel signal, phase noise reference signal.
  • an information configuration method including:
  • the control information carries a pattern configuration parameter
  • the resource in which the measurement reference signal configured by the pattern configuration parameter is located includes a resource in which the second signal is located, and the second signal includes at least one of: demodulation Reference signal, control channel signal, phase noise reference signal.
  • an embodiment of the present application provides an information configuration method, including:
  • the information of the channel characteristic parameter area is agreed with the second communication node.
  • an embodiment of the present application provides a method for configuring information, including:
  • the information of the channel characteristic parameter area is agreed with the first communication node.
  • the embodiment of the present application provides an information configuration method, including:
  • configuration information of the resource includes at least one of the following parameters: a channel characteristic parameter, a transmit beam parameter, a receive beam parameter, a frequency domain resource, a dressing level, a dressing offset, and a subcarrier spacing.
  • a channel characteristic parameter e.g., a transmit beam parameter, a receive beam parameter, a frequency domain resource, a dressing level, a dressing offset, and a subcarrier spacing.
  • the resource is one or more of the following resources: measuring a reference signal resource, reporting a resource, and referring to a signal resource.
  • an information configuration method including:
  • configuration information of the resource sent by the first communication node includes at least one of the following parameters: channel characteristic parameter, transmission beam parameter, receiving beam parameter, frequency domain resource, dressing level, dressing offset, subcarrier Interval, measurement reference signal type, time domain symbol information, repeated transmission times in one cycle, multiple types of time domain parameters, measurement reference signal component index set, measurement multiplexing between reference signal components, measurement reference signal components and measurement Mapping relationship between reference signal ports, phase compensation reference signals, multiple sets of time domain transmission parameters, quasi-co-location reference channels, multiple sets of time domain transmission parameter selection information, time unit offset set, activation and deactivation information indication information ;
  • the resource is one or more of the following resources: measuring a reference signal resource, reporting a resource, and referring to a signal resource.
  • the embodiment of the present application provides an information configuration apparatus, which is applied to a first communication node, and includes:
  • a first transmission module configured to send information carrying a transmission parameter to the second communication node, where the transmission parameter is shared by M resources;
  • a first appointment module configured to agree with a second communication node a transmission parameter shared by the M resources
  • M is a natural number greater than 1; the resource is one or more of the following resources: measuring reference signal resources, reporting resources, and reference signal resources.
  • the embodiment of the present application provides an information configuration apparatus, which is applied to a second communication node, and includes:
  • a second transmission module configured to receive information that is sent by the first communication node and that carries the transmission parameter, where the transmission parameter is shared by the M resources;
  • a second appointment module configured to appoint, with the first communication node, a transmission parameter shared by the M resources
  • M is a natural number greater than 1; the resource is one or more of the following resources: measuring reference signal resources, reporting resources, and reference signal resources.
  • an embodiment of the present application provides an information configuration apparatus, including: a memory and a processor, wherein the memory stores a plurality of instructions, and when the plurality of instructions are executed by the processor, implementing the first The method of any of the eighth aspect.
  • the embodiment of the present application provides a computer storage readable medium storing a plurality of instructions, and implementing the first to eighth aspects when the plurality of instructions are executed by one or more processors The method described on the one hand.
  • the present application considers the measurement reference signal design in the NR, and solves the problem that the measurement reference signal in the NR is used for beam management, and how the reference signal pattern is adapted to the beam management while adapting to the dynamic change of the time slot structure.
  • the resource sharing transmission parameter saves signaling overhead while concealing other information, and is particularly convenient for management of resources for beam management.
  • the time-frequency resource region the resources falling in the same time-frequency region are quasi-co-located, simplifying the QCL (Quasi-Co-Location) relationship between resources.
  • the measurement reference signal pattern can be designed to occupy resources occupied by other signals.
  • FIG. 1 is a flowchart of an example of a method for configuring information provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram showing the structure of a CSI-RS of the current NR
  • 3 is a schematic diagram of multiple CSI-RS resource sharing frequency domain resources
  • FIG. 5 is a diagram showing that different measurement reference signal resource sets correspond to different transmission beams
  • FIG. 6 is a schematic diagram of a time domain symbol location where a CSI-RS resource is located
  • FIG. 7 is a schematic diagram of a time domain symbol including a plurality of second subcarrier intervals in a time domain symbol of a first carrier interval;
  • FIG. 8 is another schematic diagram of a first subcarrier time domain symbol and a second subcarrier time domain symbol
  • FIG. 10 is a schematic diagram of a frequency domain location where a CSI-RS resource is located
  • 11 is a schematic diagram of partitioning multiple resource sharing time domain regions
  • FIG. 12 is another schematic diagram of multiple resource sharing time domain area division
  • FIG. 13 is another schematic diagram of a first subcarrier time domain symbol and a second subcarrier time domain symbol
  • FIG. 14 is a different schematic diagram of a time domain symbol pattern after an IFFT corresponding to the same IFDMA symbol
  • 15 is a schematic diagram of a CSI-RS in LTE
  • 16 is a subcarrier in which a CSI-RS can occupy a DMRS
  • 17 is a diagram showing an example of establishing a QCL relationship between an SRS resource set and an SRS resource
  • Figure 18a is a refinement beam in which the second stage transmission beam is a first stage transmission beam
  • Figure 18b is a second stage transmission beam is a surrounding beam of the first stage transmission beam, the beam widths of the two stages are consistent;
  • 19 is a schematic diagram of a reference signal port to resource mapping relationship
  • 20 is a schematic diagram of another reference signal port to resource mapping relationship
  • 21 is a schematic diagram of a reference signal port to resource mapping relationship.
  • an embodiment of the present application provides an information configuration method, including:
  • M is a natural number greater than 1; the resource is one or more of the following resources: measuring reference signal resources, reporting resources, and reference signal resources.
  • the information configuration method of this embodiment may be applied to a first communication node; for example, the first communication node may be a base station, and the second communication node may be a terminal.
  • the transmission parameter may include at least one of the following parameters corresponding to the measurement reference signal resource and/or the measurement reference signal:
  • Channel characteristic parameters transmit beam parameters; receive beam parameters; frequency domain resources; dressing level (Level); dressing offset; subcarrier spacing; measurement reference signal type; time domain symbol information; repeated transmission times in one cycle; pattern configuration Parameter; second type time domain parameter; measurement reference signal component (Component) index set; measurement multiplexing mode between reference signal components; measurement mapping relationship between reference signal component and measurement reference signal port; power parameter; phase compensation Reference signal; quasi-common position reference signal; time unit offset set; activation and deactivation information indication information;
  • one measurement reference signal resource includes one or more measurement reference signals.
  • the number of repeated transmissions may also be referred to as a time domain density parameter or a density parameter.
  • the two measurement reference signal ports share a channel characteristic parameter, indicating that the two measurement reference signals are quasi-co-located with respect to the channel characteristic parameter.
  • the subcarrier spacing refers to a subcarrier spacing related parameter.
  • the channel characteristic parameter may include at least one of a delay spread, a Doppler spread, a Doppler shift, an average delay, an average gain, an average vertical transmission angle, and an average horizontal transmission. Angle, average vertical angle of arrival, average horizontal arrival angle, center vertical transmission angle, center horizontal transmission angle, center vertical arrival angle, center horizontal arrival angle.
  • the transmit beam parameter may be represented by at least one of: reference signal resource information, reference signal resource set information, reference signal port information, reference signal port set information, and time when the reference signal is located.
  • the reference signal may include at least one of the following: a synchronization signal, a previously transmitted measurement reference signal, and a demodulation reference signal of a common control channel.
  • the receive beam parameter may be represented by at least one of: reference signal resource information, reference signal resource set information, reference signal port information, reference signal port set information, and time when the reference signal is located Domain resource information, frequency domain resource information where the reference signal is located, precoding matrix information, and receive beam index information.
  • the reference signal may include at least one of the following: a synchronization signal, a previously transmitted measurement reference signal, a demodulation reference signal of a common control channel, and other reference signals used for channel measurement.
  • the frequency domain resource may satisfy at least one of the following:
  • the frequency domain resource is a set of physical resource blocks in which the reference signal is measured
  • the frequency domain resource is a system bandwidth allocated to the second communication node
  • the frequency domain resource is a set of physical resource blocks in a system bandwidth allocated to the second communication node
  • the frequency domain resources are discontinuous in the frequency domain.
  • the dressing level is a total frequency domain group corresponding to the IFDMA when the measurement reference signal is transmitted by using IFDMA (Interleaved Frequency Division Multiple Access); wherein, the frequency domain The number of groups can also be called Com number.
  • the dressing offset is a frequency domain group index occupied by the measurement reference signal when the measurement reference signal is transmitted by using IFDMA.
  • the dressing level and the dressing offset can satisfy at least one of the following:
  • the first type of dressing level is a measurement reference signal occupying one frequency domain carrier every carrier interval of the dressing level
  • the second type of dressing level indicates the number of time domain sample repetitions after IFFT
  • the second type of dressing level indicates IFFT.
  • the second type of dressing level is the number of bars 0 in the OFDM symbol, together with a plurality of measurement reference signals.
  • the measurement reference signal type may include a type determined according to at least one of the following:
  • the measurement reference signal is sent in full bandwidth, or the measurement reference signal is sent in part bandwidth;
  • the measurement reference signal is used for beam management, or the measurement reference signal is used for channel quality acquisition; wherein the channel quality may include at least one of the following information: CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indication), PTI (Payload Type Indicator)
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • PTI Payment Type Indicator
  • the number of times of repeated transmission in the time domain of the measurement reference signal in one cycle is greater than a predetermined threshold, or the number of times of repeated transmission in the time domain of the measurement reference signal is equal to or less than a predetermined threshold in one cycle;
  • the measurement reference signal has a repeating pattern in the time domain signal, or the measurement reference signal has no repeating pattern in the time domain signal;
  • the measurement reference signal is sent by means of IFDMA, or the measurement reference signal is sent by increasing the subcarrier spacing;
  • the measurement reference signal resource has a corresponding quasi-co-location reference signal, or the measurement reference signal resource does not have a corresponding quasi-co-location reference signal.
  • the time domain symbol information may satisfy at least one of the following:
  • the time domain symbol information includes any one or more time domain symbols in a time unit
  • the time domain symbol information includes any one or more time domain symbols in a time unit except the downlink control domain;
  • the time domain symbol information includes a two-level time domain symbol index, where the first level time domain symbol index is a time domain symbol index corresponding to the first subcarrier interval, and the second level time domain symbol index is a second subcarrier interval.
  • the time unit may be a slot or a subframe.
  • the pattern configuration parameter may satisfy at least one of the following features:
  • the pattern configuration parameter indicates at least one of a time domain resource, a frequency domain resource, and a code domain resource occupied by the measurement reference signal and/or the measurement reference signal resource;
  • the pattern configuration parameter indicates at least one of a frequency domain resource and a code domain resource of the measurement reference signal or the measurement reference signal resource in one time unit, wherein the measurement reference signal or the Measuring at least one of the frequency domain resource and the code domain resource occupied by the reference signal resource;
  • the frequency domain resource occupied by the measurement reference signal indicated in the pattern configuration parameter includes any one or more subcarrier resources in one physical resource block;
  • the first indication information and the second indication information in the pattern configuration parameter are independently indicated, wherein the first indication information indicates a frequency domain resource occupied by the measurement reference signal or the measurement reference signal resource, and the second indication information indicates the measurement reference The time domain resource that the signal or measurement reference signal resource occupies.
  • the code domain resource may also be a sequence resource.
  • the second type of time domain parameter may indicate information of a time domain region partitioning of a first time domain symbol set corresponding to the measurement reference signal and/or the measurement reference signal resource; At least one of the first transmission parameter and the reception parameter corresponding to the domain area is different.
  • time domain area may also be referred to as an equivalent name such as a time set, a time zone, and a time zone symbol zone.
  • the first time domain symbol set corresponding to the measurement reference signal and/or the measurement reference signal resource may be composed of time domain symbols included in one cycle; or, the measurement reference signal and/or the measurement reference signal resource correspond to The first set of time domain symbols may be composed of time domain symbols included in more than one cycle.
  • the first sending parameter may include at least one of the following information: a transmitting beam, a frequency domain resource occupied by the measurement reference signal, and a code domain resource occupied by the measurement reference signal;
  • the receiving parameter may include: a receiving beam
  • the second transmission parameter corresponding to the different time domains is the same, and the second transmission parameter may include at least one of the following: a frequency domain resource occupied by the measurement reference signal, and a code domain resource occupied by the measurement reference signal .
  • the transmission parameter may satisfy at least one of the following:
  • the transmission parameter is included in configuration information of a measurement reference signal resource set
  • the transmission parameter is included in configuration information of a reference signal set
  • the transmission parameter is included in configuration information of each measurement reference signal resource in the M measurement reference signal resources, and the transmission parameters corresponding to the M measurement reference signal resources are agreed to be the same;
  • the transmission parameter is determined according to a type of the measurement reference signal included in the measurement reference signal resource;
  • the transmission parameter is determined according to a feedback resource corresponding to the measurement reference signal resource
  • the reference signal set includes one or more measurement reference signal resource groups, and the M measurement reference signal resources belong to one or more measurement reference signal resource sets.
  • the transmission parameters may constitute one transmission parameter configuration information.
  • the transmission parameter configuration information may satisfy at least one of the following:
  • the configuration information of each of the M measurement reference signal resources includes index information of the transmission parameter configuration information
  • the configuration information of the measurement reference signal resource set includes index information of the transmission parameter configuration information
  • the configuration information of the reference signal set includes index information of the transmission parameter configuration information
  • the reference signal set includes one or more measurement reference signal resource groups, and the M measurement reference signal resources belong to one or more measurement reference signal resource sets.
  • the information carrying the transmission parameter may include at least one of the following: high layer control information, physical layer control information, proprietary control information, and common control information.
  • the time unit offset set information represents at least one of the following information:
  • the transmission time of the measurement reference signal belongs to a subset of the time set corresponding to the time unit offset set;
  • the sending time of the measurement reference signal is a time in which the first one of the time sets corresponding to the time unit offset set satisfies the sending condition
  • the set of time unit offsets is a time unit offset length, indicating that the time units included in the time unit offset set are continuous, or are time units that occur in the second period in one cycle.
  • the sending condition is that the resource allocated to the measurement reference signal in the time unit corresponding to the time unit offset is not occupied by the second signal, and/or the measurement unit is allocated to the measurement reference signal in the time unit.
  • the resource does not belong to the second transmission domain; and/or the resource allocated to the measurement reference signal in the time unit does not belong to the second domain and/or the resource allocated to the measurement reference signal in the time unit All of the resources may be used to transmit the measurement reference signal, and/or a portion of the resources allocated to the measurement reference signal in the time unit are used to transmit the measurement reference signal.
  • the second signal has a higher priority than the measurement reference signal, and the second transmission domain has a different transmission direction than the measurement reference signal, and the second domain is a protection domain between the uplink and the downlink.
  • the activation and deactivation information satisfies the following characteristics:
  • the activation and deactivation states are represented by the same indication value, the indication value being sent for the first time indicating activation, and the indication value being sent for the second time indicating deactivation;
  • changing the indicator value means activating a new resource and deactivating the old resource.
  • the activation may be to activate the M measurement reference signal resources, and the deactivation may be to deactivate the M measurement reference signal resources.
  • an embodiment of the present application further provides an information configuration method, including:
  • M is a natural number greater than 1; the resource is one or more of the following resources: measuring reference signal resources, reporting resources, and reference signal resources.
  • the information configuration method provided in this embodiment may be applied to a second communication node.
  • the second communication node may be a terminal
  • the first communication node may be a base station.
  • the transmission parameter may include at least one of the following parameters corresponding to the measurement reference signal resource and/or the measurement reference signal:
  • Channel characteristic parameters transmit beam parameters; receive beam parameters; frequency domain resources; dressing level; dressing offset; subcarrier spacing; measurement reference signal type; time domain symbol information; repeated transmission times in one cycle; pattern configuration parameters; The second type of time domain parameter; the measurement reference signal component index set; the multiplexing mode between the measurement reference signal components; the mapping relationship between the reference signal component and the measurement reference signal port; the power parameter; the phase compensation reference signal; the quasi-common position Reference signal; time unit offset set; activation and deactivation information indication information;
  • one measurement reference signal resource includes one or more measurement reference signals.
  • the transmission parameter may satisfy at least one of the following:
  • the transmission parameter is included in configuration information of a measurement reference signal resource set
  • the transmission parameter is included in configuration information of a reference signal set
  • the transmission parameter is included in configuration information of each measurement reference signal resource in the M measurement reference signal resources, and the transmission parameters corresponding to the M measurement reference signal resources are agreed to be the same;
  • the transmission parameter is determined according to a type of the measurement reference signal included in the measurement reference signal resource;
  • the transmission parameter is determined according to a feedback resource corresponding to the measurement reference signal resource
  • the reference signal set includes one or more measurement reference signal resource groups, and the M measurement reference signal resources belong to one or more measurement reference signal resource sets.
  • the transmission parameters may constitute one transmission parameter configuration information.
  • the transmission parameter configuration information may satisfy at least one of the following:
  • the configuration information of each of the M measurement reference signal resources includes index information of the transmission parameter configuration information
  • the index information of the transmission parameter configuration information is included in the configuration information of the measurement reference signal resource set;
  • the configuration information of the reference signal set includes index information of the transmission parameter configuration information
  • the reference signal set includes one or more measurement reference signal resource groups, and the M measurement reference signal resources belong to one or more measurement reference signal resource sets.
  • the information carrying the transmission parameter may include at least one of the following: high layer control information, physical layer control information, proprietary control information, and common control information.
  • the embodiment of the present application further provides an information configuration method, including:
  • the control information carries a pattern configuration parameter
  • the resource where the measurement reference signal configured by the pattern configuration parameter is located includes a resource where the second signal is located
  • the second signal includes at least one of the following: demodulation Reference signal, control channel signal, phase noise reference signal.
  • the information configuration method provided in this embodiment may be applied to the first communication node.
  • the second communication node may be a terminal
  • the first communication node may be a base station.
  • the measurement reference signal and the resource where the second signal are located are the same, the measurement reference signal and the second signal may satisfy at least one of the following:
  • the measurement reference signal and the second signal are sent to different communication nodes
  • the measurement reference signal and the second signal are from different communication nodes.
  • the pattern configuration parameter indicates an index (or a set of indexes) of a time domain symbol in which the measurement reference signal is located, wherein the time domain symbol satisfies at least one of the following:
  • the time domain symbol includes any one or more time domain symbols in a time unit
  • the time domain symbol includes any one or more time domain symbols in a time unit except the downlink control domain;
  • the index of the time domain symbol includes a two-level symbol index, the first-level symbol index is a time-domain symbol index corresponding to the first sub-carrier interval, and the second-level symbol index is multiple included in a first sub-carrier interval symbol.
  • the time domain symbol index of the second subcarrier spacing is a two-level symbol index, the first-level symbol index is a time-domain symbol index corresponding to the first sub-carrier interval, and the second-level symbol index is multiple included in a first sub-carrier interval symbol.
  • the pattern configuration parameter includes frequency domain resource indication information in which the measurement reference signal is located, where the frequency domain resource indication information includes a frequency domain resource that can send the second signal, or
  • the frequency domain resource includes any one or more of the one or more physical resource blocks.
  • one resource is one time domain symbol duration in the time domain and one subcarrier in the frequency domain.
  • the method further includes: determining whether a resource in which the measurement reference signal is located may include a resource in which the second signal is located, according to whether the measurement reference signal is a broadband transmission;
  • determining whether the resource where the measurement reference signal is located may include a resource where the second signal is located, according to whether a data signal included in the frequency domain bandwidth occupied by the measurement reference signal is included;
  • the data signal and the measurement reference signal are sent to the same second communication node, or the data signal and the measurement reference signal are sent to different second communication nodes.
  • the pattern configuration parameter satisfies at least one of the following characteristics:
  • the pattern configuration parameter indicates at least one of a time domain resource, a frequency domain resource, and a code domain resource occupied by the measurement reference signal and/or the measurement reference signal resource;
  • the frequency domain resource occupied by the measurement reference signal indicated in the pattern configuration parameter includes any one or more subcarrier resources in one physical resource block;
  • the first indication information and the second indication information in the pattern configuration parameter are independently indicated, wherein the first indication information indicates a frequency domain resource occupied by the measurement reference signal or the measurement reference signal resource, and the second indication information indicates the measurement reference The time domain resource that the signal or measurement reference signal resource occupies.
  • the embodiment of the present application further provides an information configuration method, including:
  • the control information carries a pattern configuration parameter
  • the resource in which the measurement reference signal configured by the pattern configuration parameter is located includes a resource in which the second signal is located, and the second signal includes at least one of: demodulation Reference signal, control channel signal, phase noise reference signal.
  • the information configuration method provided in this embodiment may be applied to a second communication node.
  • the second communication node may be a terminal
  • the first communication node may be a base station.
  • the measurement reference signal and the resource where the second signal are located are the same, the measurement reference signal and the second signal may satisfy at least one of the following:
  • the measurement reference signal and the second signal are sent to different communication nodes
  • the measurement reference signal and the second signal are from different communication nodes.
  • the pattern configuration parameter may indicate an index of a time domain symbol in which the measurement reference signal is located, wherein the time domain symbol may satisfy at least one of the following:
  • the time domain symbol includes any one or more time domain symbols in a time unit
  • the time domain symbol includes any one or more time domain symbols in a time unit except the downlink control domain;
  • the index of the time domain symbol includes a two-level symbol index, the first-level symbol index is a time-domain symbol index corresponding to the first sub-carrier interval, and the second-level symbol index is multiple included in a first sub-carrier interval symbol.
  • the time domain symbol index of the second subcarrier spacing is a two-level symbol index, the first-level symbol index is a time-domain symbol index corresponding to the first sub-carrier interval, and the second-level symbol index is multiple included in a first sub-carrier interval symbol.
  • the pattern configuration parameter may include frequency domain resource indication information in which the measurement reference signal is located, where the frequency domain resource indication information includes a frequency domain resource that can send the second signal, or The frequency domain resource includes any one or more of the one or more physical resource blocks.
  • determining whether a resource in which the measurement reference signal is located may include a resource in which the second signal is located according to whether the measurement reference signal is a broadband transmission;
  • determining whether the resource where the measurement reference signal is located may include a resource where the second signal is located, according to whether a data signal included in the frequency domain bandwidth occupied by the measurement reference signal is included;
  • the data signal is sent to the second communication node; or the data signal is sent to the third communication node, wherein the second communication node is a communication node that receives the control information.
  • the pattern configuration parameter satisfies at least one of the following characteristics:
  • the pattern configuration parameter indicates at least one of a time domain resource, a frequency domain resource, and a code domain resource occupied by the measurement reference signal and/or the measurement reference signal resource;
  • the frequency domain resource occupied by the measurement reference signal indicated in the pattern configuration parameter includes any one or more subcarrier resources in one physical resource block;
  • the first indication information and the second indication information in the pattern configuration parameter are independently indicated, wherein the first indication information indicates a frequency domain resource occupied by the measurement reference signal or the measurement reference signal resource, and the second indication information indicates the measurement reference The time domain resource that the signal or measurement reference signal resource occupies.
  • the embodiment of the present application further provides an information configuration method, including:
  • the information of the channel characteristic parameter area is agreed with the second communication node.
  • the information configuration method provided in this embodiment may be applied to the first communication node.
  • the second communication node may be a terminal
  • the first communication node may be a base station.
  • the channel characteristic parameter area is one of the following areas: a time domain area, a frequency domain area, and a time-frequency domain area.
  • the channel characteristic parameter region may satisfy at least one of the following features:
  • the channel characteristic parameter area is a time domain area
  • the channel characteristic parameter area is a frequency domain area
  • the channel characteristic parameter area is a time-frequency domain area
  • the time domain resources included in the channel characteristic parameter area are time-domain discontinuous
  • the frequency domain resources included in the channel characteristic parameter region are discontinuous in the frequency domain.
  • a plurality of reference signals or a plurality of reference signal resources falling within a channel characteristic parameter region are quasi-co-located with respect to the channel characteristic parameter.
  • the channel characteristic parameter region includes at least one of the following parameters: delay spread, Doppler spread, Doppler shift, average delay, average gain, average vertical transmission angle, average horizontal transmission Angle, average vertical angle of arrival, average horizontal arrival angle, center vertical transmission angle, center horizontal transmission angle, center vertical arrival angle, center horizontal arrival angle.
  • a QCL area is set, and resources falling in the QCL area are considered to be at least one of the channel characteristics being QCL.
  • the embodiment of the present application further provides an information configuration method, including at least one of the following:
  • the information of the channel characteristic parameter area is agreed with the first communication node
  • the information configuration method provided in this embodiment may be applied to a second communication node.
  • the second communication node may be a terminal
  • the first communication node may be a base station.
  • the channel characteristic parameter area is one of the following areas: a time domain area, a frequency domain area, and a time frequency domain area.
  • the channel characteristic parameter region may satisfy at least one of the following features:
  • the channel characteristic parameter area is a time domain area
  • the channel characteristic parameter area is a frequency domain area
  • the channel characteristic parameter area is a time-frequency domain area
  • the time domain resources included in the channel characteristic parameter area are time-domain discontinuous
  • the frequency domain resources included in the channel characteristic parameter region are discontinuous in the frequency domain.
  • a plurality of reference signals or a plurality of reference signal resources falling within a channel characteristic parameter region are quasi-co-located with respect to the channel characteristic parameter.
  • the embodiment of the present application further provides an information configuration method, including:
  • configuration information of the resource includes at least one of the following parameters: a channel characteristic parameter, a transmit beam parameter, a receive beam parameter, a frequency domain resource, a dress level (level), a dressing offset, Subcarrier spacing, measurement reference signal type, time domain symbol information, repeated transmission times in one cycle, multiple types of time domain parameters, measurement reference signal component index set, measurement multiplexing between reference signal components, measurement The mapping relationship between the reference signal component and the measurement reference signal port, the phase compensation reference signal, the multiple sets of time domain transmission parameters, the quasi-common position reference signal, the selection information of multiple sets of time domain transmission parameters, the time unit offset set, the activation and Deactivate the information indication information;
  • the resource is one or more of the following resources: measuring a reference signal resource, reporting a resource, and referring to a signal resource.
  • One measurement reference signal resource includes one or more measurement reference signals.
  • the plurality of types of time domain parameters include a first type of time domain parameter and a second type of time domain parameter, wherein the first type of time domain parameter indicates a periodic characteristic of the measured reference signal resource,
  • the period characteristic includes: a period, a half period, and an aperiod;
  • the second type of time domain parameter indicates that the time domain symbol set included in the measurement reference signal or the measurement reference signal resource is divided into multiple time domain regions, At least one of the first transmission parameter and the reception parameter of the measurement reference signal or the measurement reference signal resource corresponding to different time domain regions is different.
  • the first sending parameter includes at least one of the following parameters: a transmitting beam, a frequency domain resource occupied by the measurement reference signal, and a code domain resource occupied by the measurement reference signal;
  • the receiving parameter includes: a receiving beam
  • the second transmission parameter corresponding to the different time domain regions is the same, and the second transmission parameter includes at least one of the following: a frequency domain resource occupied by the measurement reference signal, and a code domain resource occupied by the measurement reference signal .
  • the configuration information is carried by at least two control information.
  • the time unit offset set information may represent at least one of the following information:
  • the transmission time of the measurement reference signal belongs to a subset of the time set corresponding to the time unit offset set;
  • the sending time of the measurement reference signal is a time in which the first one of the time sets corresponding to the time unit offset set satisfies the sending condition
  • the set of time unit offsets is a time unit offset length, indicating that the time units included in the time unit offset set are continuous, or are time units that occur in the second period in one cycle.
  • the sending condition is that the resource allocated to the measurement reference signal in the time unit in the time unit corresponding to the time unit offset is not occupied by the second signal, or the time unit is allocated to the time unit.
  • the resource for measuring the reference signal does not belong to the second transmission domain; the second signal has a higher priority than the measurement reference signal, and the transmission direction of the second transmission domain is different from the transmission direction of the measurement reference signal.
  • the different sets of transmission parameters of the plurality of sets of time domain transmission parameters are distinguished by at least one of the following characteristics:
  • the time domain is periodic, aperiodic or semi-periodic;
  • the measurement reference signal corresponds to a dressing level.
  • the activation and deactivation states are represented by the same indication value, the indication value being sent for the first time indicating activation, and the indication value being transmitted for the second time indicating deactivation;
  • changing the indicated value means activating the new resource and deactivating the old resource.
  • the time domain symbol information satisfies at least one of the following features:
  • the time domain symbol information includes any one or more time domain symbols in a time unit
  • the time domain symbol information includes any one or more time domain symbols in a time unit except the downlink control domain;
  • the time domain symbol information includes a two-level time domain symbol index, where the first level time domain symbol index is a time domain symbol index corresponding to the first subcarrier interval, and the second level time domain symbol index is a second subcarrier interval.
  • the frequency domain resource satisfies at least one of the following:
  • the frequency domain resource is a set of physical resource blocks in which the reference signal is measured
  • the frequency domain resource is a system bandwidth allocated to the second communication node
  • the frequency domain resource is a set of physical resource blocks in a system bandwidth allocated to the second communication node
  • the frequency domain resources are discontinuous in the frequency domain.
  • the system bandwidth may be a frequency domain bandwidth corresponding to a CC (Carrier component), or the system bandwidth is a frequency domain bandwidth corresponding to a BWP (Bandwidth Part), and the one PRB (Physical resource block) Block) corresponds to a predetermined number of subcarriers and/or a predetermined number of time domain symbols.
  • CC Carrier component
  • BWP Bandwidth Part
  • PRB Physical resource block
  • the transmit beam parameter is represented by at least one of: reference signal resource information, reference signal resource set information, reference signal port information, reference signal port set information, time domain in which the reference signal is located Resource information, frequency domain resource information where the reference signal is located, precoding matrix information, and transmit beam index information.
  • the receive beam parameter is represented by at least one of: reference signal resource information, reference signal resource set information, reference signal port information, reference signal port set information, and a time domain in which the reference signal is located Resource information, frequency domain resource information where the reference signal is located, precoding matrix information, and receive beam index information.
  • the method in this embodiment may also be used for other resources, such as measuring reference reporting resources and measuring reference signal measurement resources.
  • the embodiment of the present application further provides an information configuration method, including:
  • configuration information of the resource sent by the first communication node includes at least one of the following parameters: channel characteristic parameter, transmission beam parameter, receiving beam parameter, frequency domain resource, dressing level, dressing offset, subcarrier Interval, measurement reference signal type, time domain symbol information, repeated transmission times in one cycle, multiple types of time domain parameters, measurement reference signal component index set, measurement multiplexing between reference signal components, measurement reference signal components and measurement Mapping relationship between reference signal ports, phase compensation reference signals, multiple sets of time domain transmission parameters, quasi-co-location reference channels, multiple sets of time domain transmission parameter selection information, time unit offset set, activation and deactivation information indication information ;
  • the resource is one or more of the following resources: measuring a reference signal resource, reporting a resource, and referring to a signal resource.
  • the plurality of types of time domain parameters include a first type of time domain parameter and a second type of time domain parameter, wherein the first type of time domain parameter indicates a periodic characteristic of the measured reference signal resource,
  • the period characteristic includes: a period, a half period, and an aperiod;
  • the second type of time domain parameter indicates that the measurement reference signal or the time domain symbol set included in the measurement reference resource is divided into multiple time domain regions, and At least one of the first transmission parameter and the reception parameter of the measurement reference signal or the measurement reference signal resource corresponding to the domain region is different.
  • the first sending parameter includes at least one of the following parameters: a transmitting beam, a frequency domain resource occupied by the measurement reference signal, and a code domain resource occupied by the measurement reference signal;
  • the receiving parameter includes: a receiving beam
  • the second transmission parameter corresponding to the different time domain regions is the same, and the second transmission parameter includes at least one of the following: a frequency domain resource occupied by the measurement reference signal, and a code domain resource occupied by the measurement reference signal .
  • the configuration information may be carried by at least two control information.
  • the time domain symbol information satisfies at least one of the following features:
  • the time domain symbol information includes any one or more time domain symbols in a time unit
  • the time domain symbol information includes any one or more time domain symbols in a time unit except the downlink control domain;
  • the time domain symbol information includes a two-level time domain symbol index, where the first level time domain symbol index is a time domain symbol index corresponding to the first subcarrier interval, and the second level time domain symbol index is a second subcarrier interval.
  • the frequency domain resource satisfies at least one of the following:
  • the frequency domain resource is a set of physical resource blocks in which the reference signal is measured
  • the frequency domain resource is a system bandwidth allocated to the second communication node
  • the frequency domain resource is a set of physical resource blocks in a system bandwidth allocated to the second communication node
  • the frequency domain resources are discontinuous in the frequency domain.
  • the system bandwidth may be a frequency domain bandwidth corresponding to one CC, or the system bandwidth is a frequency domain bandwidth corresponding to one BWP, and the one PRB corresponds to a predetermined number of subcarriers and/or a predetermined number of time domain symbols.
  • the transmit beam parameter is represented by at least one of: reference signal resource information, reference signal resource set information, reference signal port information, reference signal port set information, time domain in which the reference signal is located Resource information, frequency domain resource information where the reference signal is located, precoding matrix information, and transmit beam index information.
  • the receive beam parameter is represented by at least one of: reference signal resource information, reference signal resource set information, reference signal port information, reference signal port set information, and a time domain in which the reference signal is located Resource information, frequency domain resource information where the reference signal is located, precoding matrix information, and receive beam index information.
  • This embodiment describes a sharing manner of multiple CSI-RS resource sharing transmission parameters.
  • a reference signal set (RS setting) includes S CSI-RS resource sets (corresponding to the above-mentioned measurement reference signal resource set), each CSI
  • the -RS resource set includes Ks CSI-RS resources (resource). Where S and Ks are both positive integers.
  • FIG. 5 shows that different measurement reference signal resource sets correspond to different transmission beams.
  • a first implementation manner of multiple CSI-RS resource sharing transmission parameters is that the transmission parameters are configured in the configuration information of the RS setting, and all CSI-RS resources included in the RS setting share the transmission parameters, so that the CSI-RS resource is used in the CSI-RS resource.
  • the configuration information may not have the configuration of the foregoing transmission parameters; for example, the transmission parameter may be a frequency domain resource, and the number of bits required for the frequency domain resource is 10 bits. If the eight CSI-RS resources share the above transmission parameters, only the RS needs to be in the RS.
  • the frequency domain resource is configured once, that is, only 10 bits are needed, and if the sharing mode is not used, the frequency domain resource is configured in the configuration information of each CSI-RS Resource, and 10 ⁇ 8 bits are needed.
  • the frequency domain resource occupied by the CSI-RS is a frequency domain PRB (Physical Resource Block) set occupied by the CSI-RS in the time domain symbol occupied by the CSI-RS, and the frequency domain PRB set is included in the frequency domain PRB set.
  • the frequency domain resources are continuous, or the frequency domain resources included in the frequency domain PRB set may also be discontinuous.
  • the indication information of the frequency domain resource whether the indication is broadband or partial bandwidth, the frequency domain resource corresponding to the broadband and the partial bandwidth is previously agreed.
  • the CSI-RS resource may be required to occupy all subcarriers in the frequency domain resource, or may only occupy part of the subcarriers.
  • the beneficial effects of other transmission parameters based on the shared mode may be referred to, and thus are not described herein.
  • a second implementation manner of multiple CSI-RS resource sharing transmission parameters is that the transmission parameters are configured in the configuration information of the CSI-RS resource set, and all CSI-RS resources included in the CSI-RS resource set share the transmission parameters.
  • a third implementation manner of multiple CSI-RS resource sharing transmission parameters is that the transmission parameter is included in configuration information of each CSI-RS resource in the M CSI-RS resources, and the M CSI-RS resources are agreed.
  • the transmission parameters are the same; where M is an integer greater than one.
  • a fourth implementation manner of multiple CSI-RS resource sharing transmission parameters is that the transmission parameter is determined according to the type of the measurement reference signal resource; for example, when the measurement reference signal belongs to type 1 (for example, type 1 is a measurement for beam management) Reference signal), whose transmission parameter is the first agreed value (for example, the frequency domain occupied by the measurement reference signal at this time is part of the bandwidth), when belonging to type 2 (for example, to obtain PMI (Precoding Matrix Indicator) And a measurement reference signal of information such as RI (rank indication), whose transmission parameter is a second agreed value.
  • type 1 for example, type 1 is a measurement for beam management
  • PMI Precoding Matrix Indicator
  • RI rank indication
  • the fifth implementation manner of the multiple CSI-RS resource sharing transmission parameters is that the transmission parameter is determined according to the feedback resource corresponding to the measurement reference signal resource; for example, when the feedback mode is different, or the PUCCH (Physical Uplink Control Channel, which is occupied by the feedback information, The physical uplink control channel)/PUSCH (Physical Uplink Shared Channel) resources are different, and the transmission parameters are different.
  • the PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • a sixth implementation manner of multiple CSI-RS resource sharing transmission parameters is to indicate in the RS setting whether the CSI-RS resource in the CSI-RS resource set needs to share the transmission parameter.
  • the relevant transmission parameters are set in the CSI-RS resource set.
  • the transmission parameters are not shared, the transmission parameters are set in each CSI-RS resource.
  • the relevant transmission parameters are set in the CSI-RS resource and the CSI-RS resource set, and the priorities of the CSI-RS resource and the CSI-RS resource set are set in the RS setting, and the priority of setting the CSI-RS resource is higher than
  • the priority of the CSI-RS resource set the transmission parameter of one CSI-RS resource is subject to the transmission parameter configured in the CSI-RS resource, otherwise the transmission parameter of one CSI-RS resource is transmitted in the CSI-RS resource set.
  • the parameters shall prevail.
  • a seventh implementation manner of multiple CSI-RS resource sharing transmission parameters is to set whether a plurality of CSI-RS resources included in a CSI-RS resource set share a transmission parameter in a CSI-RS resource set.
  • the transmission parameters are shared, the transmission parameters are configured in the CSI-RS resource set.
  • the transmission parameters are not shared, the transmission parameters are configured in the CSI-RS resource.
  • the relevant transmission parameters are set in the CSI-RS resource and the CSI-RS resource set, and the priorities of the CSI-RS resource and the CSI-RS resource set are set in the CSI-RS resource set, and the priority of the CSI-RS resource is set.
  • the transmission parameters of one CSI-RS resource shall be the transmission parameters configured in the CSI-RS resource. Otherwise, the transmission parameters of one CSI-RS resource shall be CSI-RS resource set.
  • the transmission parameters configured in the standard shall prevail.
  • the eighth mode of the multiple CSI-RS resource sharing transmission parameters is to establish a transmission parameter configuration information, and the index information of the foregoing transmission parameter configuration information may be included in at least one of the following configuration information: CSI-RS resource configuration information, CSI- Configuration information of RS resource set and configuration information of RS setting.
  • CSI-RS resource configuration information As shown in FIG. 4, a transmission parameter configuration information is established, and the configuration information of the multiple CSI-RS resources includes index information (for example, an ID) of the transmission parameter configuration information.
  • This embodiment illustrates transmission parameters of multiple CSI-RS resource sharing.
  • the first type of shared parameter is a time unit offset (or time unit offset, time unit offset), for example, multiple CSI-RS resource sharing period configuration parameters occupying the same time slot, and multiple CSI-RSs at this time
  • the time slot parameters corresponding to the resources are the same.
  • the multiple CSI-RS resources may be sent periodically or in a half cycle.
  • the transmission period of the CSI-RS resource is T
  • the time unit offset is ⁇ T
  • the second shared parameter is a time domain symbol position, and the CSI-RS resources occupying the same time domain symbol are grouped into one group.
  • both CSI-RS resource 0 and CSI-RS resource 1 occupy one slot.
  • the shared parameter of CSI-RS resource 0 and CSI-RS resource 1 is a time domain symbol position.
  • the CSI-RS resource 0 and the CSI-RS resource 1 occupy the same time domain symbol index, but the time slots are different.
  • this embodiment does not exclude CSI-RS resource 0 and CSI-RS resource 1 possession.
  • the time domain symbol index is the same and the time slot in which it is located is also the same.
  • the time domain symbol may include at least one of the following: a first subcarrier time domain symbol and a second subcarrier time domain symbol.
  • the subcarrier spacing of the CSI-RS is allowed to increase, and the parameter shared at this time may be the second subcarrier time domain symbol location.
  • the time domain symbol position includes at least one of the following: a first subcarrier time domain symbol position, and a second subcarrier time domain symbol position.
  • one slot includes a first carrier interval of 7 OFDM symbols, and CSI-RS resource 0 and CSI-RS resource 1 are located at a first subcarrier interval time domain symbol index position, but occupy a second subcarrier.
  • the time domain symbols have the same phase index in a second subcarrier time domain symbol, and both CSI-RS resource 0 and CSI-RS resource 1 occupy a second subcarrier spacing index position with an index of 2.
  • the first carrier interval time domain symbol includes four second carrier time domain symbols, where the shared parameter is the second subcarrier time domain symbol index, or the second subcarrier time domain symbol is in the first subcarrier.
  • the phase index in the time domain symbol is the shared parameter.
  • the third sharing parameter is the number of times of repeated transmission in the time domain in one cycle (or the density information of the measurement reference signal).
  • the CSI-RS resource occupies the frequency in each time domain. At least one of the domain resource and the code domain resource is the same.
  • CSI-RS resource 0 and CSI-RS resource 1 are repeatedly transmitted three times for the terminal to perform receive beam training.
  • the time domain symbols repeatedly transmitted in one CSI-RS resource in FIG. 9 are adjacent, however, the present embodiment does not exclude the case where it is not adjacent.
  • the repeated transmission may also be equivalent to the number of time domain symbols of the second carrier interval included in the time domain symbol of the first subcarrier interval, that is, the second carrier included in the time domain symbol of the repeated transmission and the first subcarrier interval.
  • the carrier spacing of the three time domains is the second subcarrier spacing
  • the time domain symbol of the first subcarrier spacing includes the time domain symbols of the three second subcarrier spacings. If the value is 6, the time domain symbol of the first subcarrier interval includes the time domain symbols of the 6 second subcarrier intervals.
  • the 6 corresponding second carrier intervals may be subcarriers including 3 times. Large interval).
  • the fourth shared parameter is the number of time domain symbols occupied by one CSI-RS resource in one cycle, wherein the number of occupied time domain symbols may be at least one of the following: the first subcarrier time domain symbol in FIG. The number, the number of time domain symbols of the second subcarrier in FIG.
  • the shared parameter may also be the number of time domain symbols occupied by one CSI-RS port in one cycle.
  • the fifth shared parameter is a pattern configuration parameter, and at least one of the following one of the measurement reference signal resource and the measurement reference signal may be obtained according to the pattern configuration parameter: a time domain resource, a frequency domain resource, and a code domain resource.
  • the CSI-RS resource 0 and the CSI-RS resource 1 occupy the same time domain resource (where the same time domain resource means that the number of time domain symbols occupied is the same), and the CSI-RS resource 0 and The CSI-RS resource 1 occupies at least one of the frequency domain resource and the code domain resource.
  • the sixth shared parameter is a second type of time domain parameter, and the second type of time domain parameter indicates that the first time domain symbol set corresponding to at least one of the measurement reference signal and the measurement reference signal resource is divided into N time domain regions (or It may also be referred to as a time zone, a time domain symbol unit, and the like, and at least one of the first transmission parameter and the reception parameter corresponding to different time domain units is different.
  • the first time domain symbol set corresponding to at least one of the measurement reference signal and the measurement reference signal resource is composed of time domain symbols included in one cycle corresponding to the measurement reference signal, as shown in FIG. 11, the CSI-RS resource 0 and Each period of the CSI-RS resource 1 includes six time domain symbols, and then the six time domain symbols are divided into three time domain regions.
  • the time domain regions of the two resources in FIG. 11 are completely divided. However, this embodiment does not exclude the same aspect of the two time domain area divisions, for example, the number of time domain areas divided into the same, but each time domain unit includes different numbers of time domain symbols.
  • CSI-RS resource 0 (corresponding to FIG. 10) is divided into three time domain regions
  • CSI-RS resource 1 (corresponding to FIG. 11) is divided into three time domain regions, but CSI-RS resources 0 and
  • Each time domain area of the CSI-RS resource 1 includes a different number of time domain symbols.
  • the division manner of dividing the first time domain symbol set into N time domain regions is only an example, and the other embodiments do not exclude other division manners.
  • the first time domain symbol set is composed of time domain symbols included in one cycle, and in another embodiment, the first time domain symbol set may also be composed of measurement reference signals and measurement reference signal resources. At least one of the corresponding time domain symbols included in more than one cycle is formed.
  • the first sending parameter may include at least one of the following parameters: a transmit beam, a frequency domain resource occupied by the measurement reference signal, and a code domain resource occupied by the measurement reference signal; and the first transmission parameter includes at least one of a channel characteristic parameter and a transmit beam.
  • the time domain area can also be referred to as a quasi-common location area.
  • the receiving parameter may include: a receiving beam.
  • the second transmission parameter corresponding to the different time domain regions may be the same.
  • the second transmission parameter may include at least one of the following: the frequency domain resource occupied by the measurement reference signal, and the code domain resource occupied by the measurement reference signal.
  • the seventh shared parameter is a phase compensation reference signal.
  • multiple CSI-RS resources correspond to different RF beams of the same panel, and the multiple CSI-RS resources can share the phase compensation reference signal.
  • the terminal may agree with the base station that multiple CSI-RS resources sharing the phase compensation reference signal correspond to the same panel, and multiple CSI-RS resources corresponding to different phase compensation parameters correspond to different panels, and the terminal may be based on these
  • the information selection panel is fed back, that is, there is a correlation between the configuration of the phase compensation reference signal and the configuration of the terminal feedback.
  • the shared transmission parameters in this embodiment may include at least one of the following parameters: channel characteristic parameters, transmit beam parameters, receive beam parameters, frequency domain resources, level of dressing, dressing offset, subcarrier spacing, measurement reference signal type Time domain symbol information, number of times of repeated transmission in time domain in one cycle, pattern configuration parameter, second type time domain parameter, measurement reference signal component (Component) index set, measurement multiplexing method between reference signals Component, measurement reference A mapping relationship between a signal Component and a measurement reference signal port, a power parameter, a phase compensation reference signal, a quasi-co-location reference signal, a periodic offset set, and an activation and deactivation information indication information.
  • channel characteristic parameters For example, transmit beam parameters, receive beam parameters, frequency domain resources, level of dressing, dressing offset, subcarrier spacing, measurement reference signal type Time domain symbol information, number of times of repeated transmission in time domain in one cycle, pattern configuration parameter, second type time domain parameter, measurement reference signal component (Component) index set, measurement multiplexing method between reference signals Component, measurement reference A mapping relationship between a signal Com
  • This embodiment also does not exclude other transmission parameters that can be shared.
  • the sharing mode may be the one described in the first embodiment, or other sharing modes may be used, which is not limited in this application.
  • This embodiment illustrates the configuration of time domain parameters in CSI-RS configuration information.
  • the time domain parameter may include at least one of the following: a time domain symbol position of a plurality of subcarrier intervals, and a plurality of time domain symbol numbers.
  • the subcarrier spacing sent by the CSI-RS is greater than the time domain symbol corresponding to other signals, and the time domain symbols of the plurality of large subcarrier spacings correspond to the time domain symbols of a small subcarrier spacing.
  • the time domain symbol of a first small subcarrier interval includes time domain symbols of 4 large subcarrier intervals.
  • the two-stage time domain information configuration is configured to configure at least one of a time domain symbol position and a number of the first subcarrier spacing corresponding to at least one of the measurement reference signal resource and the measurement reference signal, and then configure the measurement reference.
  • one measurement reference signal resource or measurement reference signal corresponds to multiple types of time domain parameters; in an exemplary embodiment, the first class indicates that the measurement reference signal resource or the measurement reference signal is a period and a half. Which of the cycle and the non-period.
  • the second type indicates that the first time domain symbol set corresponding to the measurement reference signal is divided into multiple time domain regions, and at least one of the first transmission parameter and the reception parameter corresponding to different time domain regions is different.
  • the first time domain symbol set corresponding to at least one of the measurement reference signal and the measurement reference signal resource is formed by a time domain symbol included in a period corresponding to the measurement reference signal, or the first time domain symbol set may be
  • the time domain symbol included in one cycle is configured, or when the measurement reference signal is a periodic, half-cycle measurement reference signal, the first time domain symbol set is used by the measurement reference signal and the measurement reference signal resource At least one of the corresponding time domain symbols included in more than one cycle is formed.
  • the first sending parameter includes at least one of the following parameters: a transmit beam, a frequency domain resource occupied by the measurement reference signal, and a code domain resource occupied by the measurement reference signal; and a first transmit parameter corresponding to a channel characteristic parameter and a transmit beam
  • the time domain area may also be referred to as a quasi-common location area.
  • the receiving parameter includes: a receiving beam.
  • the second transmission parameter corresponding to the different time domain regions is the same, and the second transmission parameter includes at least one of the following: a frequency domain resource occupied by the measurement reference signal, and a code domain resource occupied by the measurement reference signal.
  • This embodiment illustrates the process of transmitting using the IFDMA method.
  • a time domain repeating pattern may be formed in the time domain for receiving beam training at the receiving end.
  • the beam corresponding to the measurement reference signal of the transmitting end or the plurality of measurement reference signals are different for the IFFT (Inverse Fast Fourier Transform) unit, the same IFDMA structure, the time domain trainable reception The number of beams is different.
  • the measurement reference signal corresponds to four different dressing units, if the IFFT units that measure the reference signals ⁇ 1, 2, 3, 4 ⁇ are independent at this time (in this case, the IFFT unit corresponding to each port is When doing IFFT, the frequency domain resources occupied by other ports are filled with 0), then each measurement reference signal forms 4 repeated resources in the time domain, and the receiving port can perform 4 reception beams on one OFDM symbol. Train, as shown in the upper right of Figure 14, the signal transmission pattern in the time domain after IFFT.
  • each port can only generate one time domain sample in the time domain. There is no repetition phenomenon, and the receiving end cannot perform time domain repetition, such as the time domain transmission signal pattern after the IFFT shown in the lower right of FIG. 14 .
  • the same CSI-RS IFDMA pattern the number of receive beams can be different.
  • the measurement reference signal is CSI-RS
  • the base station needs to inform the IFDMA pattern type that it is the first type.
  • the real-time domain pattern is the upper right of Figure 14, or the different ports of the CSI-RS correspond to different IFFT units, or RF beam units
  • the second type the real-time domain pattern is the lower right of Figure 14, or the different ports of the CSI-RS correspond to the same IFFT) Unit, or the same RF beam unit.
  • the base station needs to notify the terminal (corresponding to the first type or the second type) of the multiplexing manner of the IFFT unit of the different SRS port, so that the terminal sends a signal to the base station by using a suitable beam, and the base station performs Receiving beam training, for example, when the notification is the first type, different SRS ports correspond to different sending panel groups, and when the notification is the second type, different SRS ports may correspond to the same sending panel group. Or the terminal informs the base station whether the IFDMA structure corresponds to the first type or the second type. It can be reported as a capability or as a request message.
  • This embodiment illustrates the case where the CSI-RS pattern includes the subcarrier position where the DMRS is located.
  • the pattern of the demodulation reference signal and the control channel signal can be excluded from the pattern of the CSI-RS in LTE, as shown in FIG.
  • the CSI-RS is allowed to be transmitted in part of the bandwidth.
  • the frequency domain resources that the reference signal can occupy can be seldom, and the CSI-RS can occupy the resources occupied by the second signal.
  • the second signal includes at least one of the following: a demodulation reference signal, a control channel signal, and a phase compensation reference signal.
  • the demodulation reference signal port 1 there may be overlap between the demodulation reference signal port 1 and the RE (Resource Element) occupied by the measurement reference signal, and the demodulation reference signal may be transmitted.
  • the REs are grouped together, and the REs without demodulation reference signals are grouped into another group, and the REs occupied by one measurement reference signal configuration belong to only one of them.
  • the two types of signals satisfy at least one of the following characteristics: the two types of signals are time-sharing; the two types of signals are sent to different communication nodes. (For example, when the downlink is CSI-RS and the terminal corresponding to the DMRS is different); the two types of signals are from different communication nodes (for example, the uplink CSI-RS and the DMRS correspond to different terminals).
  • the measurement reference signal resource may occupy a resource occupied by the second signal, and determine according to whether the measurement reference signal is a full bandwidth transmission; for example, when transmitting for full bandwidth, the measurement reference signal may not occupy the second
  • the resource occupied by the signal when transmitted for part of the bandwidth, the measurement reference signal can occupy the resource occupied by the second signal.
  • One method is to measure the number of reference signal configuration resources, as shown in Figure 16, which is 2 sets, but it is limited according to whether the whole system bandwidth is used. The other way is whether to send corresponding measurement reference signal configuration resources for the whole system bandwidth. The number is different.
  • the frequency domain resource and the time domain resource are respectively notified, instead of the joint notification.
  • a frequency domain resource can correspond to multiple time domain resources.
  • the same SRS resource corresponds to multiple sets of time domain parameters.
  • the difference parameter of the different sets of time domain parameters includes at least one of the following parameters: a first type of time domain parameters (period, aperiodic, and half cycle); and a second type of time domain parameters (repeated transmission times). Signaling indicates which set or set of time domain parameters are currently active.
  • the uplink beam training includes transmit beam and receive beam training (hereinafter referred to as U-1), uplink receive beam training (hereinafter referred to as U-2), and uplink transmit beam training (hereinafter referred to as U-3). .
  • U-1 transmit beam and receive beam training
  • U-2 uplink receive beam training
  • U-3 uplink transmit beam training
  • the first embodiment of the number of repeated transmissions is the number of time domain symbols included in one cycle, wherein the time domain symbols include the number of time domain symbols in the first subcarrier, and/or the number of time domain symbols in the second subcarrier.
  • a first subcarrier time domain symbol comprises a plurality of second subcarrier time domain symbols.
  • the second embodiment of the number of repeated transmissions is the level of the dressing structure included in the IFDMA.
  • the level of the dressing structure determines the number of time-domain repeating waveforms formed after the IFFT is completed. Similar to the fourth embodiment, the same dressing structure has different number of repetitions at the receiving end.
  • the third embodiment of the number of repeated transmissions is whether other signals are included in the SRS symbol, such as data signals, control channels, etc., when there are only SRS symbols on the SRS symbol, and each SRS port has its own independent IFFT unit, and the time domain is repeated.
  • the number of times is the interval between frequency domain subcarriers occupied by one measurement reference signal. Otherwise there may be no repeating features.
  • the fourth embodiment of the number of repeated transmissions is whether the SRS symbol is transmitted for full bandwidth, such as IFDMA transmission (ie, one SRS port uniformly occupies subcarriers), but if part of the bandwidth is even if IFDMA has a repetition number of 1, if full bandwidth is Determined according to its dressing level.
  • the number of repeated transmissions corresponding to the measurement reference signal may also be referred to as density information.
  • the root terminal requests to determine the number of repetitions, or determines the SRS, or the number of repeated transmissions corresponding to the CSI-RS, or density information, according to the capability reported by the terminal.
  • the activation and deactivation states are represented by the same indication value, the indication value being sent for the first time indicating activation, and the indication value being sent for the second time indicating deactivation;
  • changing the indicated value means activating the new resource and deactivating the old resource.
  • the control information may be at least one of the following: high-level control information (such as RRC control information, MAC CE control information), and physical layer dynamic control information.
  • the resource may be a measurement reference signal resource (such as a downlink CSI-RS reference signal resource, an uplink SRS resource), a report set resource, and a reference signal resource.
  • a set of periodic offsets of the measurement reference signal is set, for example, the period of the measurement reference signal is T, and the period offset set is ⁇ T 1 , ⁇ T 2 , . . . , ⁇ T K ⁇ , preferably 0 ⁇ ⁇ T i ⁇ T-1, then the time unit set in one cycle corresponding to the periodic offset set
  • the time unit for transmitting the measurement reference signal is a subset of the set of time units, and/or the time unit for transmitting the measurement reference signal is the first N time units in the set of time units that satisfy the transmission condition.
  • the sending condition is at least one of the following conditions: the time unit is not occupied by the second signal; the resource allocated to the measurement reference signal in the time unit does not belong to the second transmission domain; and the time unit is allocated to The resource of the measurement reference signal does not belong to the second domain; all resources in the resource allocated to the measurement reference signal in the time unit may be used to send the measurement reference signal; Some of the resources of the measurement reference signal may be used to transmit the measurement reference signal; the second signal has a higher priority than the measurement reference signal, the transmission direction of the second transmission domain, and the measurement reference The transmission direction of the signal is different, and the second domain is a protection domain between the uplink and the downlink.
  • the measurement reference signal is a periodic or aperiodic CSI-RS
  • the resource allocated to the CSI-RS is synchronized, or the URLLC service is occupied, or the resource allocated to the CSI-RS is allocated to the uplink transmission domain, or is allocated to the uplink transmission domain.
  • GP uplink and downlink guard interval
  • the measurement reference signal cannot be sent on this time unit, and it needs to fall to the first time unit in the set of time units that does not have the above situation, or does not have the above situation.
  • the first X time units are sent, where X is a natural number.
  • the measurement reference signal is moved to the next time unit to transmit the measurement reference signal.
  • a part of the resource that can transmit the measurement reference signal on the first time unit is first transmitted on the first time unit, and a part of the measurement reference signal that is not transmitted in the first time unit is moved to the second time unit for transmission.
  • a non-periodic measurement reference signal can also be similar to a set of time units.
  • the measurement reference signal may also be an uplink SRS reference signal.
  • whether the measured reference signal is in the form of increasing the subcarrier, whether the IFDMA is used, or the method of increasing the subcarrier spacing is performed according to whether the receiving beam training is performed or the beam training is performed.
  • the measurement reference signal is in an IFDMA manner or a subcarrier spacing is increased.
  • time domain symbols in which the measurement reference signal is located there are two types, one is that there is a CP for each OFDM symbol, and the other is that there is no CP for the partial OFDM symbol.
  • the information transmitted on two OFDM symbols is identical.
  • the time domain samples corresponding to the two OFDM symbols are the same, and the last bit of the previous time domain symbol can be used as the CP of the next time domain symbol, thereby Time domain overhead.
  • the last bit of the previous time domain symbol can be used as the rear.
  • the CP of a time domain symbol if there is only a reference signal on each OFDM symbol, and the frequency domain resources occupied by the reference signal on each OFDM time domain symbol are tested to be the same, and the sequence used by the reference signal is the same, the last bit of the previous time domain symbol can be used as the rear.
  • the CP of a time domain symbol if there is only a reference signal on each OFDM symbol, and the frequency domain resources occupied by the reference signal on each OFDM time domain symbol are tested to be the same, and the sequence used by the reference signal is the same, the last bit of the previous time domain symbol can be used as the rear.
  • the CP of a time domain symbol if there is only a reference signal on each OFDM symbol, and the frequency domain resources occupied by the reference signal on each OFDM time domain symbol are tested to be the same, and the sequence used by the reference signal is the same, the last bit of the previous time domain symbol can be used as the rear.
  • whether the received reference beam is subjected to receive beam training or transmit beam training is determined whether the measured reference signal has an OFDM symbol without a CP.
  • the measured reference signal has an OFDM symbol without a CP and a reporting type corresponding to the measurement reference signal.
  • a QCL relationship or a beam indication relationship is established between an SRS resource set and an SRS resource.
  • the reference signal and the SRS resource set in the SRS resource are as shown in FIG. 17.
  • the one SRS resource set includes one or more resources.
  • the beam supporting the terminal to transmit the SRS in the NR is transparent to the base station.
  • the first stage is a thick beam or an oversampled lower transmission beam training and reception
  • the second stage refers to the first stage for uplink transmit beam training or uplink receive beam training.
  • the second stage of the transmit beam is to increase the transmit beam refinement or Oversampling of the first stage.
  • an SRS Resource for example, a transmit beam corresponding to the first stage
  • a Resource Set corresponding to the second
  • the QCL relationship between one transmit beam group of the phase so that different resources in the Resource set correspond to different refinement beams of the first phase transmit beam, or different peripheral transmit beams corresponding to the first phase transmit beam.
  • the number of the resources included in a resource set in the foregoing QCL relationship may be obtained by at least one of the following methods: an obtaining method is indicated by the base station, and further, the base station allocates a resource set according to the capability reported by the terminal or the request of the terminal. The number of resources included.
  • the terminal determines the transmit beam according to the number of SRS resources allocated by the base station. Considering that the performance of different transmit beams arriving at the base station is different in the first stage, the SRS resource sets included in different SRS resource sets corresponding to different transmit beams in the first stage may be different or have the same restrictions.
  • the above mentioned transmission beam of the second stage may be a refinement of the first stage transmission beam, as described in FIG. 18a, or a search for the beam around the first stage transmission beam, as described in FIG. 18b, in FIGS. 18a-18b.
  • the dotted line indicates the transmission beam of the first stage
  • the solid line indicates the transmission beam of the second stage.
  • the CSI-RS level is determined according to the number of ports included in the CSI-RS resource.
  • the dressing interval between multiple ports is the same.
  • the number of time domain repetitions between multiple ports is the same.
  • the interval between the measurement reference signals is 5 subcarriers, that is, the number of 0s between the measurement reference signals is 5 .
  • the interval between the measurement reference signals is 2 subcarriers, that is, the number of 0s between the measurement reference signals is 2.
  • the mapping of the reference signal to the frequency domain resource is not sequentially mapped, but satisfies the characteristics of the nest.
  • the number of times of time domain repetition corresponding to the same IFDMA pattern needs to be indicated by the base station to the terminal.
  • the same IFDMA pattern is as shown in the left figure of FIG. 14.
  • each CSI-RS port corresponds to one analog beam, after the IFFT.
  • the pattern is shown in the upper right of the figure.
  • the domain repeats features so that receive beam training can be performed or beam training can be sent.
  • the IFFT units of different CSI-RS ports are not independent, for example, if each CSI-RS port corresponds to a hybrid beam, the pattern after the IFFT is as shown in the lower right.
  • the same IFDMA pattern the number of receive beams that can be made is variable.
  • the time domain repeating beam after the IFFT in the IFDMA mode is as follows:
  • the number of repetitions is the number of subcarriers according to the interval between the same ports (for example, each port in FIG. 21, each port per port)
  • the interval of 4 subcarriers occupies one subcarrier)
  • the other is the number of 0s in the middle of all ports (that is, the port ⁇ 1, 2, 3, 4 ⁇ is integrated at this time, there is no gap between the ports, that is, at this time No heavy yang).
  • each port sees one subcarrier every four, and when the port ⁇ 1, 2 ⁇ is comprehensively viewed, it occupies one subcarrier every two.
  • the number of repetitions of an IFDMA is based on the above two types, and the base station is required to indicate to the terminal.
  • the terminal can also apply to the base station.
  • the measurement reference signal (including SRS, or CSI-RS) is one in which the measurement reference signal has no quasi-co-location relationship reference signal, and the other is a quasi-common position reference signal.
  • the control information may be at least one of the following: high-level control information (such as RRC control information, MAC CE control information), and physical layer dynamic control information.
  • the resource may be a measurement reference signal resource (such as a downlink CSI-RS reference signal resource, an uplink SRS resource), a report set resource, and a reference signal resource.
  • a time unit offset set of the measurement reference signal is set, for example, the period of the measurement reference signal is T, and the time unit offset set is ⁇ T 1 , ⁇ T 2 , . . . , ⁇ T K ⁇ , for example, 0 ⁇ ⁇ T i ⁇ T-1, then the time unit set in one cycle corresponding to the time unit offset set
  • the time unit for transmitting the measurement reference signal is a subset of the set of time units, and/or the time unit for transmitting the measurement reference signal is the first N time units in the set of time units that satisfy the transmission condition.
  • the sending condition is at least one of the following conditions: the time unit is not occupied by the second signal; the resource allocated to the measurement reference signal in the time unit does not belong to the second transmission domain; and the time unit is allocated to The resource of the measurement reference signal does not belong to the second domain; all resources in the resource allocated to the measurement reference signal in the time unit may be used to send the measurement reference signal; Some of the resources of the measurement reference signal may be used to transmit the measurement reference signal; the second signal has a higher priority than the measurement reference signal, the transmission direction of the second transmission domain, and the measurement reference The transmission direction of the signal is different, and the second domain is a protection domain between the uplink and the downlink.
  • the measurement reference signal is a periodic or aperiodic CSI-RS
  • the resource allocated to the CSI-RS is synchronized, or the URLLC service is occupied, or the resource allocated to the CSI-RS is allocated to the uplink transmission domain, or is allocated to the uplink transmission domain.
  • GP uplink and downlink guard interval
  • a non-periodic measurement reference signal can also be similar to a set of time units.
  • the embodiment of the present application further provides an information configuration apparatus, which is applied to the first communication node, and includes:
  • a first transmission module configured to send information carrying a transmission parameter to the second communication node, where the transmission parameter is shared by M resources;
  • the first appointment module is configured to, with the second communication node, a transmission parameter shared by the M resources; wherein, M is a natural number greater than 1; the resource is one or more of the following resources: measuring a reference signal resource, Report resources, reference signal resources.
  • the transmission parameter includes at least one of the following parameters corresponding to the measurement reference signal resource and/or the measurement reference signal:
  • Channel characteristic parameters transmit beam parameters; receive beam parameters; frequency domain resources; dressing level; dressing offset; subcarrier spacing; measurement reference signal type; time domain symbol information; repeated transmission times in one cycle; pattern configuration parameters; The second type of time domain parameter; the measurement reference signal component index set; the multiplexing mode between the measurement reference signal components; the mapping relationship between the reference signal component and the measurement reference signal port; the power parameter; the phase compensation reference signal; the quasi-common position Reference signal; time unit offset set; activation and deactivation information indication information; wherein one measurement reference signal resource includes one or more measurement reference signals.
  • the embodiment of the present invention further provides an information configuration apparatus, which is applied to a second communication node, and includes:
  • a second transmission module configured to receive information that is sent by the first communication node and that carries the transmission parameter, where the transmission parameter is shared by the M resources;
  • a second appointment module configured to: agree with the first communication node, a transmission parameter shared by the M resources; wherein, M is a natural number greater than 1; the resource is one or more of the following resources: measuring a reference signal resource, Report resources, reference signal resources.
  • the transmission parameter includes at least one of the following parameters corresponding to the measurement reference signal resource and/or the measurement reference signal:
  • Channel characteristic parameters transmit beam parameters; receive beam parameters; frequency domain resources; dressing level; dressing offset; subcarrier spacing; measurement reference signal type; time domain symbol information; repeated transmission times in one cycle; pattern configuration parameters; The second type of time domain parameter; the measurement reference signal component index set; the multiplexing mode between the measurement reference signal components; the mapping relationship between the reference signal component and the measurement reference signal port; the power parameter; the phase compensation reference signal; the quasi-common position Reference signal; time unit offset set; activation and deactivation information indication information;
  • one measurement reference signal resource includes one or more measurement reference signals.
  • the embodiment of the present invention further provides an information configuration apparatus, which is applied to the first communication node, and includes:
  • the third transmission module is configured to send control information, where the control information carries a pattern configuration parameter, where the resource where the measurement reference signal configured by the pattern configuration parameter is located includes a resource where the second signal is located, and the second signal includes At least one of the following: a demodulation reference signal, a control channel signal, and a phase noise reference signal.
  • the embodiment of the present invention further provides an information configuration apparatus, which is applied to a second communication node, and includes:
  • a fourth transmission module configured to receive control information, where the control information carries a pattern configuration parameter, where the resource of the measurement reference signal configured by the pattern configuration parameter includes a resource where the second signal is located, and the second signal includes At least one of the following: a demodulation reference signal, a control channel signal, and a phase noise reference signal.
  • the embodiment of the present invention further provides an information configuration apparatus, which is applied to the first communication node, and includes:
  • a fifth transmission module configured to send configuration information to the second communication node, where the configuration information includes information of a channel characteristic parameter area;
  • And/or a third appointment module configured to agree with the second communication node with information of a channel characteristic parameter region.
  • the embodiment of the present invention further provides an information configuration apparatus, which is applied to a second communication node, and includes:
  • a sixth transmission module configured to receive configuration information sent by the first communication node, where the configuration information includes information of a channel characteristic parameter area;
  • And/or a fourth appointment module configured to appoint information of the channel characteristic parameter area with the first communication node.
  • the embodiment of the present invention further provides an information configuration apparatus, which is applied to the first communication node, and includes:
  • the seventh transmission module is configured to send configuration information of the resource to the second communication node, where the configuration information includes at least one of the following parameters: a channel characteristic parameter, a transmission beam parameter, a reception beam parameter, a frequency domain resource, a dressing level, Dressing offset, subcarrier spacing, measurement reference signal type, time domain symbol information, repeated transmission times in one cycle, multiple types of time domain parameters, measurement reference signal component index set, measurement multiplexing between reference signal components, Measuring mapping relationship between reference signal component and measurement reference signal port, phase compensation reference signal, multiple sets of time domain transmission parameters, quasi-common position reference signal, multiple sets of time domain transmission parameter selection information, time unit offset set, activation And deactivation information; wherein the resource is one or more of the following: measuring a reference signal resource, reporting a resource, and referring to a signal resource.
  • the configuration information includes at least one of the following parameters: a channel characteristic parameter, a transmission beam parameter, a reception beam parameter, a frequency domain resource, a dressing level, Dressing offset, subcarrier
  • the embodiment of the present invention further provides an information configuration apparatus, which is applied to a second communication node, and includes:
  • the eighth transmission module is configured to receive configuration information of the resource sent by the first communication node, where the configuration information includes at least one of the following parameters: a channel characteristic parameter, a transmission beam parameter, a reception beam parameter, a frequency domain resource, and a dressing level.
  • the resource is one or more of the following: measuring a reference signal resource, reporting a resource, and referring to a signal resource.
  • the embodiment of the present invention further provides an information configuration apparatus, which is applied to a first communication node, including: a memory and a processor, wherein the memory stores a plurality of instructions when The information configuration method of any aspect of the first communication node side described above is implemented when a plurality of instructions are executed by the processor.
  • the embodiment of the present invention further provides an information configuration apparatus, which is applied to a second communication node, including: a memory and a processor, wherein the memory stores a plurality of instructions when The information configuration method of any aspect of the second communication node side described above is implemented when a plurality of instructions are executed by the processor.
  • the embodiment of the present application further provides a computer storage medium, where a plurality of instructions are stored, and when a plurality of instructions are executed by one or more processors, the information configuration method of any aspect of the first communication node side is implemented.
  • the embodiment of the present application further provides a computer storage medium storing a plurality of instructions, and implementing an information configuration method of any aspect of the second communication node side when a plurality of instructions are executed by one or more processors.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage device includes the following steps: the foregoing storage medium includes: a mobile storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk.
  • optical disk A medium that can store program code.
  • the above-described integrated unit of the present invention may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a mobile storage device, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the technical solution of the embodiment of the present invention considers the measurement reference signal design in the NR, solves the measurement reference signal used in the NR for beam management, and measures how the reference signal pattern adapts to the beam management while adapting to the dynamic change of the slot structure.
  • the resource sharing transmission parameter saves signaling overhead while concealing other information, and is particularly convenient for management of resources for beam management.
  • the time-frequency resource region by setting the time-frequency resource region, the resources falling in the same time-frequency region are quasi-co-located, simplifying the QCL relationship setting between resources.
  • the measurement reference signal pattern can be designed to occupy resources occupied by other signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种信息配置方法、装置和计算机存储介质;上述信息配置方法包括:向第二通信节点发送携带传输参数的信息,其中,所述传输参数是M个资源所共享的;或者,与第二通信节点约定M个资源所共享的传输参数;其中,M为大于1的自然数;所述资源为如下资源中的一种或者多种:测量参考信号资源、上报资源、参考信号资源。

Description

一种信息配置方法、装置和计算机存储介质
相关申请的交叉引用
本申请基于申请号为201710184523.X、申请日为2017年03月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本发明涉及通信技术领域,尤其涉及一种信息配置方法、装置和计算机存储介质。
背景技术
在NR(New Radio,新型空口)的讨论中,需要支持高频通信,而高频通信的一个显著特点就是需要基于波束传输。目前,CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)既可用于类似于低频的CSI(Channel State Information,信道状态信息)获取,也可以用于波束管理;当CSI-RS用于波束管理时,特别是高频的混合波束管理时,其和低频波束训练的一个显著差别是一个射频链路对应的多个波束需要时分发送,而低频的数字波束可以在一个时刻产生很多波束。因此,如何设计CSI-RS图样,使得其既可以支持低频波束训练以及CSI获取,也可以支持高频波束训练以及CSI-RS获取是需要解决的问题。另外,目前同样支持部分带宽的CSI-RS,因此需要考虑此功能对于CSI-RS图样设计的影响。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要 求的保护范围。
本申请实施例提供一种信息配置方法、装置和计算机存储介质,对于NR中的测量参考信号设计进行了考虑,解决NR中测量参考信号用于波束管理,以及测量参考信号图样如何适应波束管理的同时适应时隙结构的动态变化的问题。
第一方面,本申请实施例提供一种信息配置方法,包括:
向第二通信节点发送携带传输参数的信息,其中,所述传输参数是M个资源所共享的;
或者,与第二通信节点约定M个资源所共享的传输参数;
其中,M为大于1的自然数;
其中,所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
第二方面,本申请实施例提供一种信息配置方法,包括:
接收第一通信节点发送的携带传输参数的信息,其中,所述传输参数是M个资源所共享的;
或者,与第一通信节点约定M个资源所共享的传输参数;
其中,M为大于1的自然数;所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
第三方面,本申请实施例提供一种信息配置方法,包括:
发送控制信息,其中,所述控制信息携带图样配置参数,由所述图样配置参数配置的测量参考信号所在的资源包括第二信号所在的资源,所述第二信号包括如下至少之一:解调参考信号、控制信道信号、相位噪声参考信号。
第四方面,本申请实施例提供一种信息配置方法,包括:
接收控制信息,其中,所述控制信息携带图样配置参数,由所述图样 配置参数配置的测量参考信号所在的资源包括第二信号所在的资源,所述第二信号包括如下至少之一:解调参考信号、控制信道信号、相位噪声参考信号。
第五方面,本申请实施例提供一种信息配置方法,包括:
向第二通信节点发送配置信息,所述配置信息中包括信道特性参数区域的信息;
和/或,与所述第二通信节点约定信道特性参数区域的信息。
第六方面,本申请实施例提供一种信息配置方法,包括:
接收第一通信节点发送的配置信息,所述配置信息中包括信道特性参数区域的信息;
和/或,与第一通信节点约定信道特性参数区域的信息。
第七方面,本申请实施例提供一种信息配置方法,包括:
向第二通信节点发送资源的配置信息,其中,所述配置信息包括如下参数至少之一:信道特性参数,发送波束参数,接收波束参数,频域资源,梳妆等级,梳妆偏移,子载波间隔,测量参考信号类型,时域符号信息,在一个周期中重复发送次数,多类时域参数,测量参考信号组件索引集合,测量参考信号组件之间的复用方式,测量参考信号组件和测量参考信号端口之间的映射关系,相位补偿参考信号,多套时域传输参数,准共位置参考信号,多套时域传输参数的选择信息,时间单元偏置集合,激活与去激活信息指示信息;
其中,所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
第八方面,本申请实施例提供一种信息配置方法,包括:
接收第一通信节点发送的资源的配置信息,其中,所述配置信息包括如下参数至少之一:信道特性参数,发送波束参数,接收波束参数,频域 资源,梳妆等级,梳妆偏移,子载波间隔,测量参考信号类型,时域符号信息,在一个周期中重复发送次数,多类时域参数,测量参考信号组件索引集合,测量参考信号组件之间的复用方式,测量参考信号组件和测量参考信号端口之间的映射关系,相位补偿参考信号,多套时域传输参数,准共位置参考信道,多套时域传输参数的选择信息,时间单元偏置集合,激活与去激活信息指示信息;
其中,所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
第九方面,本申请实施例提供一种信息配置装置,应用于第一通信节点,包括:
第一传输模块,配置为向第二通信节点发送携带传输参数的信息,其中,所述传输参数是M个资源所共享的;或者,
第一约定模块,配置为与第二通信节点约定M个资源所共享的传输参数;
其中,M为大于1的自然数;所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
第十方面,本申请实施例提供一种信息配置装置,应用于第二通信节点,包括:
第二传输模块,配置为接收第一通信节点发送的携带传输参数的信息,其中,所述传输参数是M个资源所共享的;或者,
第二约定模块,配置为与第一通信节点约定M个资源所共享的传输参数;
其中,M为大于1的自然数;所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
第十一方面,本申请实施例提供一种信息配置装置,包括:存储器以 及处理器,其中,所述存储器存储多个指令,当所述多个指令被所述处理器执行时实现上述第一方面至第八方面中任一方面所述的方法。
第十二方面,本申请实施例提供一种计算机存储可读介质,存储有多个指令,当所述多个指令被一个或多个处理器执行时实现上述第一方面至第八方面中任一方面所述的方法。
本申请对于NR中的测量参考信号设计进行了考虑,解决NR中测量参考信号用于波束管理,以及测量参考信号图样如何适应波束管理的同时适应时隙结构的动态变化。其中,通过资源共享传输参数,节省信令开销的同时,可以隐含其他信息,特别便于用于波束管理的资源的管理。另一方面通过设置时频资源区域,使得落在相同时频区域的资源之间是准共位置关系的,简化资源之间的QCL(Quasi-Co-Location准共位置)关系设置。另一方面,考虑到NR中部分带宽的测量参考信号的发送,使得测量参考信号图样设计的时候可以占有其他信号占有的资源。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请实施例提供的信息配置方法的示例流程图;
图2为现在NR的CSI-RS结构示意图;
图3为多个CSI-RS资源共享频域资源的示意图;
图4为传输参数配置信息的示意图;
图5为不同的测量参考信号资源set对应不同的发送波束;
图6为CSI-RS资源所在的时域符号位置的一种示意图;
图7为一个第一载波间隔的时域符号中包括多个第二子载波间隔的时域符号示意图;
图8为第一子载波时域符号和第二子载波时域符号的另一种示意图;
图9为CSI-RS资源重复发送的示意图;
图10为CSI-RS资源所在频域位置的示意图;
图11为多个资源共享时域区域划分的一种示意图;
图12为多个资源共享时域区域划分的另一种示意图;
图13为第一子载波时域符号和第二子载波时域符号的另一种示意图;
图14为同一个IFDMA符号对应的IFFT之后的时域符号图样不同示意图;
图15为LTE中CSI-RS的图样示意图;
图16为CSI-RS可以占有DMRS所在的子载波;
图17为建立一个SRS resource set和一个SRS resource之间的QCL关系示例图;
图18a是第二阶段发送波束是第一阶段发送波束的细化波束;
图18b是第二阶段发送波束是第一阶段发送波束的周围波束,两个阶段的波束宽度一致;
图19为一种参考信号端口到资源的映射关系的示意图;
图20为另一种参考信号端口到资源的映射关系的示意图;
图21为一种参考信号端口到资源的映射关系的示意图。
具体实施方式
以下结合附图对本申请实施例进行详细说明,应当理解,以下所说明的实施例仅用于说明和解释本申请,并不用于限定本申请。需要说明的是, 在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
如图1所示,本申请实施例提供一种信息配置方法,包括:
向第二通信节点发送携带传输参数的信息,其中,所述传输参数是M个资源所共享的;或者,
与第二通信节点约定M个资源所共享的传输参数;
其中,M为大于1的自然数;所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
在示例性实施方式中,本实施例的信息配置方法可以应用于第一通信节点;比如,第一通信节点可以为基站,第二通信节点可以为终端。
在示例性实施方式中,传输参数可以包括所述测量参考信号资源和/或测量参考信号对应的如下参数中的至少之一:
信道特性参数;发送波束参数;接收波束参数;频域资源;梳妆等级(Level);梳妆偏移;子载波间隔;测量参考信号类型;时域符号信息;在一个周期中重复发送次数;图样配置参数;第二类时域参数;测量参考信号组件(Component)索引集合;测量参考信号组件之间的复用方式;测量参考信号组件和测量参考信号端口之间的映射关系;功率参数;相位补偿参考信号;准共位置参考信号;时间单元偏置集合;激活和去激活信息指示信息;
其中,一个测量参考信号资源中包括一个或多个测量参考信号。
其中,上述重复发送次数也可以称为时域密度参数或者密度参数。
其中,两个测量参考信号端口共享信道特性参数,表示两个测量参考 信号关于所述信道特性参数是准共位置的。
其中,上述子载波间隔指子载波间隔相关参数。
在示例性实施方式中,所述信道特性参数可以包括如下参数中的至少之一:延迟扩展、多普勒扩展、多普勒偏移、平均延迟、平均增益、平均垂直发送角、平均水平发送角、平均垂直到达角、平均水平到达角、中心垂直发送角、中心水平发送角、中心垂直到达角、中心水平到达角。
在示例性实施方式中,所述发送波束参数可以通过如下信息中的至少之一表示:参考信号资源信息、参考信号资源集合信息、参考信号端口信息、参考信号端口集合信息、参考信号所在的时域资源信息、参考信号所在的频域资源信息、预编码矩阵信息、发送波束索引信息。其中,参考信号可以包括以下至少之一:同步信号、之前发送的测量参考信号、公共控制信道的解调参考信号。
在示例性实施方式中,所述接收波束参数可以通过如下信息中的至少之一表示:参考信号资源信息、参考信号资源集合信息、参考信号端口信息、参考信号端口集合信息、参考信号所在的时域资源信息、参考信号所在的频域资源信息、预编码矩阵信息、接收波束索引信息。其中,参考信号可以包括以下至少之一:同步信号、之前发送的测量参考信号、公共控制信道的解调参考信号、其他用于信道测量的参考信号。
在示例性实施方式中,所述频域资源可以满足以下至少一项:
所述频域资源是测量参考信号所在的物理资源块集合;
所述频域资源为分配给第二通信节点的系统带宽;
所述频域资源为分配给第二通信节点的系统带宽中的一个物理资源块集合;
所述频域资源在频域上是非连续的。
在示例性实施方式中,梳妆等级是当测量参考信号采用IFDMA (Interleaved Frequency Division Multiple Access,交织频分多址)的方式发送时,所述IFDMA对应的总频域组个数;其中,频域组个数也可以称为Com个数。所述梳妆偏移是当测量参考信号采用IFDMA的方式发送时,所述测量参考信号占有的频域组索引。
其中,所述梳妆等级和所述梳妆偏移可以满足以下至少一项:
根据所述梳妆等级和/或所述梳妆偏移,确定测量参考信号占有的频域资源、时域资源以及码域资源中的至少一项;
所述梳妆等级和可训练的接收波束个数之间有关联;
存在多类梳妆等级。
比如,第一类梳妆等级是一个测量参考信号每隔所述梳妆等级个载波间隔占有一个频域载波,第二类梳妆等级表示IFFT之后时域样本重复次数,或者,第二类梳妆等级表示IFFT之后时域样本重复次数的因子。或者,第二类梳妆等级是OFDM符号上,多个测量参考信号一起来看,其中间条0的个数。
在示例性实施方式中,所述测量参考信号类型可以包括根据以下至少之一方式确定的类型:
所述测量参考信号是全带宽发送的,或者,所述测量参考信号是部分带宽发送的;
所述测量参考信号是用于波束管理的,或者,所述测量参考信号是用于信道质量获取的;其中,信道质量可以至少包括如下信息之一:CQI(Channel Quality Indicator,信道质量指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)、RI(Rank Indication,秩指示)、PTI(Payload Type Indicator,净负荷类型指示);
所述测量参考信号在一个周期中的时域重复发送次数大于预定阀值,或者,所述测量参考信号在一个周期中的时域重复发送次数等于或者小于 预定阀值;
所述测量参考信号所在的时域符号上仅有测量参考信号,或者,所述测量参考信号所在的时域符号上有测量参考信号之外的信号;
所述测量参考信号在时域的信号有重复图样,或者,所述测量参考信号在时域的信号没有重复图样;
所述测量参考信号采用IFDMA的方式发送,或者,所述测量参考信号采用增大子载波间隔的方式发送;
所述测量参考信号资源有对应的准共位置参考信号,或者,所述测量参考信号资源没有对应的准共位置参考信号。
在示例性实施方式中,所述时域符号信息可以满足以下至少之一:
包括时域符号的个数信息;
包括占有的第一子载波间隔的时域符号的索引集合;
包括占有的第二子载波间隔的时域符号的索引集合;
包括占有的第一子载波间隔的时域符号的个数信息;
包括占有的第二子载波间隔的时域符号的个数信息;
所述时域符号信息中包括一个时间单元中的任意一个或者多个时域符号;
所述时域符号信息中包括一个时间单元中除下行控制域之外的任意一个或者多个时域符号;
所述时域符号信息中包括两级时域符号索引,第一级时域符号索引是第一子载波间隔对应的时域符号索引,第二级时域符号索引是第二子载波间隔的时域符号在一个第一子载波间隔的时域符号中的索引,其中,所述一个第一子载波间隔的时域符号的时长中包括一个或者多个第二子载波间隔的时域符号。
其中,上述时间单元可以是一个时隙(slot)或者一个子帧。
在示例性实施方式中,所述图样配置参数可以满足如下特征至少之一:
所述图样配置参数指示测量参考信号和/或测量参考信号资源所占的时域资源、频域资源以及码域资源中的至少一项;
所述图样配置参数指示测量参考信号或测量参考信号资源在一个时间单元中的频域资源和码域资源中的至少一项,其中,所述多个时间单元中所述测量参考信号或所述测量参考信号资源所占的频域资源和码域资源中的至少一项相同;
所述图样配置参数中指示的测量参考信号占有的频域资源包括一个物理资源块中任意一个或者多个子载波资源;
所述图样配置参数中第一指示信息和第二指示信息独立指示,其中,所述第一指示信息指示测量参考信号或者测量参考信号资源占有的频域资源,所述第二指示信息指示测量参考信号或者测量参考信号资源占有的时域资源。
其中,上述码域资源也可以是序列资源。
在示例性实施方式中,所述第二类时域参数可以指示如下信息:对测量参考信号和/或测量参考信号资源对应的第一时域符号集合的时域区域划分情况;其中,不同时域区域对应的第一发送参数和接收参数中至少一项不同。
需要说明的是,时域区域也可以称为时间集合、时间区域、时域符号区域等等效名称。
其中,所述测量参考信号和/或测量参考信号资源对应的第一时域符号集合可以由一个周期中包括的时域符号构成;或者,所述测量参考信号和/或测量参考信号资源对应的第一时域符号集合可以由多于一个周期中包括的时域符号构成。
其中,所述第一发送参数可以包括如下信息中的至少之一:发送波束、 所述测量参考信号占有的频域资源、所述测量参考信号占有的码域资源;
所述接收参数可以包括:接收波束;
所述不同时域对应的第二发送参数相同,所述第二发送参数可以包括如下信息中的至少之一:所述测量参考信号占有的频域资源、所述测量参考信号占有的码域资源。
在示例性实施方式中,所述传输参数可以满足以下至少之一:
所述传输参数包括在测量参考信号资源集合的配置信息中;
所述传输参数包括在参考信号集合的配置信息中;
所述传输参数包括在所述M个测量参考信号资源中每个测量参考信号资源的配置信息中,且约定所述M个测量参考信号资源对应的所述传输参数是相同的;
所述传输参数根据所述测量参考信号资源中包括的测量参考信号的类型确定;
所述传输参数根据所述测量参考信号资源对应的反馈资源确定;
在所述参考信号集合的配置信息中指示所述参考信号集合中包括的一个或多个参考信号资源集合中的测量参考信号资源是否共享所述传输参数;
在所述测量参考信号资源集合的配置信息中指示所述测量参考信号资源集合中的测量参考信号资源是否共享所述传输参数;
其中,所述参考信号集合中包括一个或者多个测量参考信号资源集合,所述M个测量参考信号资源属于一个或者多个测量参考信号资源集合。
在示例性实施方式中,所述传输参数可以构成一个传输参数配置信息。
其中,所述传输参数配置信息可以满足以下至少之一:
所述M个测量参考信号资源中的每个测量参考信号资源的配置信息中包括所述传输参数配置信息的索引信息;
测量参考信号资源集合的配置信息中包括所述传输参数配置信息的索引信息;
参考信号集合的配置信息中包括所述传输参数配置信息的索引信息;
所述测量参考信号资源中包括的测量参考信号的类型和所述传输参数配置信息之间有对应关系;
所述测量参考信号资源对应的反馈资源和所述传输参数配置信息之间有对应关系;
其中,所述参考信号集合中包括一个或者多个测量参考信号资源集合,所述M个测量参考信号资源属于一个或者多个测量参考信号资源集合。
在示例性实施方式中,所述携带传输参数的信息可以包括以下至少之一:高层控制信息、物理层控制信息、专有控制信息、公共控制信息。
在示例性实施方式中,所述时间单元偏置集合信息表示如下信息至少之一:
所述测量参考信号的发送时间属于所述时间单元偏置集合对应的时间集合的子集;
所述测量参考信号的发送时间是所述时间单元偏置集合对应的时间集合中第一个满足发送条件的时间;
所述时间单元偏置集合是时间单元偏置长度,表示时间单元偏置集合中包括的时间单元是连续的,或者是在一个周期中第二周期出现的时间单元。
其中,所述发送条件为所述时间单元偏置对应的时间单元中分配给所述测量参考信号的资源没有被第二信号占有,和/或,所述时间单元中分配给所述测量参考信号的资源不属于第二传输域;和/或,所述时间单元中分配给所述测量参考信号的资源不属于第二域和/或所述时间单元中分配给所述测量参考信号的资源中的全部资源都可以用于发送所述测量参考信号, 和/或,所述时间单元中分配给所述测量参考信号的资源中的部分资源用于发送所述测量参考信号。
所述第二信号的优先级高于所述测量参考信号,所述第二传输域的传输方向和所述测量参考信号的传输方向不同,所述第二域为上下行之间的保护域。
在示例性实施方式中,所述激活与去激活信息满足如下特征:
用相同指示值表示所述激活与去激活两个状态,所述指示值第一次发送表示激活,所述指示值第二次发送表示去激活;
或者,用指示值发生变化表示激活新资源,去激活旧资源
其中,所述激活可以为激活所述M个测量参考信号资源,所述去激活可以是去激活所述M个测量参考信号资源。
如图1所示,本申请实施例还提供一种信息配置方法,包括:
接收第一通信节点发送的携带传输参数的信息,其中,所述传输参数是M个资源所共享的;或者,
与第一通信节点约定M个资源所共享的传输参数;
其中,M为大于1的自然数;所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
本实施例提供的信息配置方法可以应用于第二通信节点,比如,第二通信节点可以为终端,第一通信节点可以为基站。
在示例性实施方式中,所述传输参数可以包括所述测量参考信号资源和/或测量参考信号对应的如下参数中的至少之一:
信道特性参数;发送波束参数;接收波束参数;频域资源;梳妆等级;梳妆偏移;子载波间隔;测量参考信号类型;时域符号信息;在一个周期中重复发送次数;图样配置参数;第二类时域参数;测量参考信号组件索引集合;测量参考信号组件之间的复用方式;测量参考信号组件和测量参 考信号端口之间的映射关系;功率参数;相位补偿参考信号;准共位置参考信号;时间单元偏置集合;激活和去激活信息指示信息;
其中,一个测量参考信号资源中包括一个或多个测量参考信号。
其中,关于传输参数包括的每种参数的具体说明可以参照上一实施例的说明,故于此不再赘述。
在示例性实施方式中,所述传输参数可以满足以下至少之一:
所述传输参数包括在测量参考信号资源集合的配置信息中;
所述传输参数包括在参考信号集合的配置信息中;
所述传输参数包括在所述M个测量参考信号资源中每个测量参考信号资源的配置信息中,且约定所述M个测量参考信号资源对应的所述传输参数是相同的;
所述传输参数根据所述测量参考信号资源中包括的测量参考信号的类型确定;
所述传输参数根据所述测量参考信号资源对应的反馈资源确定;
在所述参考信号集合的配置信息中指示所述参考信号集合包括的一个或多个参考信号资源集合中的测量参考信号资源是否共享所述传输参数;
在所述测量参考信号资源集合的配置信息中指示所述测量参考信号资源集合中的测量参考信号资源是否共享所述传输参数;
其中,所述参考信号集合中包括一个或者多个测量参考信号资源集合,所述M个测量参考信号资源属于一个或者多个测量参考信号资源集合。
在示例性实施方式中,所述传输参数可以构成一个传输参数配置信息。
其中,所述传输参数配置信息可以满足以下至少之一:
所述M个测量参考信号资源中的每个测量参考信号资源的配置信息中包括所述传输参数配置信息的索引信息;
测量参考信号资源集合的配置信息中包括所述传输参数配置信息的索 引信息;
参考信号集合的配置信息中包括所述传输参数配置信息的索引信息;
所述测量参考信号资源中包括的测量参考信号的类型和所述传输参数配置信息之间有对应关系;
所述测量参考信号资源对应的反馈资源和所述传输参数配置信息之间有对应关系;
其中,所述参考信号集合中包括一个或者多个测量参考信号资源集合,所述M个测量参考信号资源属于一个或者多个测量参考信号资源集合。
在示例性实施方式中,所述携带传输参数的信息可以包括以下至少之一:高层控制信息、物理层控制信息、专有控制信息、公共控制信息。
本申请实施例还提供一种信息配置方法,包括:
发送控制信息,其中,所述控制信息携带图样配置参数,由所述图样配置参数配置的测量参考信号所在的资源包括第二信号所在的资源,所述第二信号包括如下至少之一:解调参考信号、控制信道信号、相位噪声参考信号。
本实施例提供的信息配置方法可以应用于第一通信节点,比如,第二通信节点可以为终端,第一通信节点可以为基站。
在示例性实施方式中,所述测量参考信号和所述第二信号所在的资源相同时,所述测量参考信号和所述第二信号可以满足如下至少之一:
所述测量参考信号和所述第二信号分时发送;
所述测量参考信号和所述第二信号是发送给不同通信节点的;
所述测量参考信号和所述第二信号是来自不同通信节点的。
在示例性实施方式中,所述图样配置参数指示所述测量参考信号所在的时域符号的索引(或者,索引集合),其中,所述时域符号满足如下至少之一:
所述时域符号包括一个时间单元中的任意一个或者多个时域符号;
所述时域符号包括一个时间单元中除下行控制域之外的任意一个或者多个时域符号;
所述时域符号的索引包括两级符号索引,第一级符号索引是第一子载波间隔对应的时域符号索引,第二级符号索引是在一个第一子载波间隔符号中包括的多个第二子载波间隔的时域符号索引。
在示例性实施方式中,所述图样配置参数包括所述测量参考信号所在的频域资源指示信息,其中,所述频域资源指示信息包括可以发送所述第二信号的频域资源,或者,所述频域资源包括一个或者多个物理资源块中任意一个或者多个频域资源。
在示例性实施方式中,一个资源在时域为一个时域符号时长,在频域为一个子载波。
在示例性实施方式中,所述方法还包括:根据所述测量参考信号是否是宽带发送确定所述测量参考信号所在的资源是否可以包括所述第二信号所在的资源;
或者,根据测量参考信号占有的频域带宽中是否包括数据信号确定所述测量参考信号所在的资源是否可以包括所述第二信号所在的资源;
其中,所述数据信号和所述测量参考信号是发送给相同的第二通信节点的,或者,所述数据信号和所述测量参考信号是发送给不同的第二通信节点的。
在示例性实施方式中,所述图样配置参数满足如下特征至少之一:
所述图样配置参数指示测量参考信号和/或测量参考信号资源所占的时域资源、频域资源以及码域资源中的至少一项;
所述图样配置参数中指示的测量参考信号占有的频域资源包括一个物理资源块中任意一个或者多个子载波资源;
所述图样配置参数中第一指示信息和第二指示信息独立指示,其中,所述第一指示信息指示测量参考信号或者测量参考信号资源占有的频域资源,所述第二指示信息指示测量参考信号或者测量参考信号资源占有的时域资源。
本申请实施例还提供一种信息配置方法,包括:
接收控制信息,其中,所述控制信息携带图样配置参数,由所述图样配置参数配置的测量参考信号所在的资源包括第二信号所在的资源,所述第二信号包括如下至少之一:解调参考信号、控制信道信号、相位噪声参考信号。
本实施例提供的信息配置方法可以应用于第二通信节点,比如,第二通信节点可以为终端,第一通信节点可以为基站。
在示例性实施方式中,所述测量参考信号和所述第二信号所在的资源相同时,所述测量参考信号和所述第二信号可以满足如下至少之一:
所述测量参考信号和所述第二信号分时发送;
所述测量参考信号和所述第二信号是发送给不同通信节点的;
所述测量参考信号和所述第二信号是来自不同通信节点的。
在示例性实施方式中,所述图样配置参数可以指示所述测量参考信号所在的时域符号的索引,其中,所述时域符号可以满足如下至少之一:
所述时域符号包括一个时间单元中的任意一个或者多个时域符号;
所述时域符号包括一个时间单元中除下行控制域之外的任意一个或者多个时域符号;
所述时域符号的索引包括两级符号索引,第一级符号索引是第一子载波间隔对应的时域符号索引,第二级符号索引是在一个第一子载波间隔符号中包括的多个第二子载波间隔的时域符号索引。
在示例性实施方式中,所述图样配置参数可以包括所述测量参考信号 所在的频域资源指示信息,其中,所述频域资源指示信息包括可以发送所述第二信号的频域资源,或者,所述频域资源包括一个或者多个物理资源块中任意一个或者多个频域资源。
在示例性实施方式中,根据所述测量参考信号是否是宽带发送确定所述测量参考信号所在的资源是否可以包括所述第二信号所在的资源;
或者,根据测量参考信号占有的频域带宽中是否包括数据信号确定所述测量参考信号所在的资源是否可以包括所述第二信号所在的资源;
其中,所述数据信号是发送给第二通信节点的;或者,所述数据信号是发送给第三通信节点的,其中,所述第二通信节点是接收所述控制信息的通信节点。
在示例性实施方式中,所述图样配置参数满足如下特征至少之一:
所述图样配置参数指示测量参考信号和/或测量参考信号资源所占的时域资源、频域资源以及码域资源中的至少一项;
所述图样配置参数中指示的测量参考信号占有的频域资源包括一个物理资源块中任意一个或者多个子载波资源;
所述图样配置参数中第一指示信息和第二指示信息独立指示,其中,所述第一指示信息指示测量参考信号或者测量参考信号资源占有的频域资源,所述第二指示信息指示测量参考信号或者测量参考信号资源占有的时域资源。
本申请实施例还提供一种信息配置方法,包括:
向第二通信节点发送配置信息,其中,配置信息中包括信道特性参数区域的信息;
和/或,与第二通信节点约定信道特性参数区域的信息。
本实施例提供的信息配置方法可以应用于第一通信节点,比如,第二通信节点可以为终端,第一通信节点可以为基站。
在示例性实施方式中,所述信道特性参数区域为如下区域之一:时域区域、频域区域、时频域区域。
在示例性实施方式中,所述信道特性参数区域可以满足如下特征至少之一:
所述信道特性参数区域为时域区域;
所述信道特性参数区域为频域区域;
所述信道特性参数区域为时频域区域;
所述信道特性参数区域中包括的时域资源是时域非连续的;
所述信道特性参数区域中包括的频域资源是频域非连续的。
在示例性实施方式中,落在一个信道特性参数区域中的多个参考信号或者多个参考信号资源关于所述信道特性参数是准共位置的。
在示例性实施方式中,所述信道特性参数区域包括如下参数中的至少之一:延迟扩展、多普勒扩展、多普勒偏移、平均延迟、平均增益、平均垂直发送角、平均水平发送角、平均垂直到达角、平均水平到达角、中心垂直发送角、中心水平发送角、中心垂直到达角、中心水平到达角。
本实施例中,设置一个QCL区域,落在这个QCL区域中的资源认为是关于信道特性至少之一是QCL的。
本申请实施例还提供一种信息配置方法,包括以下至少之一:
接收第一通信节点发送的配置信息,其中,所述配置信息中包括信道特性参数区域的信息;
和/或,与第一通信节点约定信道特性参数区域的信息;
本实施例提供的信息配置方法可以应用于第二通信节点,比如,第二通信节点可以为终端,第一通信节点可以为基站。
其中,所述信道特性参数区域为如下区域之一:时域区域、频域区域、时频域区域。
在示例性实施方式中,所述信道特性参数区域可以满足如下特征至少之一:
所述信道特性参数区域为时域区域;
所述信道特性参数区域为频域区域;
所述信道特性参数区域为时频域区域;
所述信道特性参数区域中包括的时域资源是时域非连续的;
所述信道特性参数区域中包括的频域资源是频域非连续的。
在示例性实施方式中,落在一个信道特性参数区域中的多个参考信号或者多个参考信号资源关于所述信道特性参数是准共位置的。
本申请实施例还提供一种信息配置方法,包括:
向第二通信节点发送资源的配置信息,其中,所述配置信息包括如下参数至少之一:信道特性参数,发送波束参数,接收波束参数,频域资源,梳妆等级(Level),梳妆偏移,子载波间隔,测量参考信号类型,时域符号信息,在一个周期中重复发送次数,多类时域参数,测量参考信号组件索引集合,测量参考信号组件(Component)之间的复用方式,测量参考信号组件和测量参考信号端口之间的映射关系,相位补偿参考信号,多套时域传输参数,准共位置参考信号,多套时域传输参数的选择信息,时间单元偏置集合,激活与去激活信息指示信息;
其中,所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
一个测量参考信号资源中包括一个或者多个测量参考信号。
在示例性实施方式中,所述多类时域参数包括第一类时域参数和第二类时域参数,其中,所述第一类时域参数指示所述测量参考信号资源的周期特性,所述周期特性包括:周期、半周期、非周期;所述第二类时域参数指示将所述测量参考信号或者所述测量参考信号资源包括的时域符号集 合划分为多个时域区域,不同时域区域对应的所述测量参考信号或者所述测量参考信号资源的第一发送参数和接收参数中至少一项不同。
其中,所述第一发送参数包括如下参数至少之一:发送波束、所述测量参考信号占有的频域资源、所述测量参考信号占有的码域资源;
所述接收参数包括:接收波束;
所述不同时域区域对应的第二发送参数相同,所述第二发送参数包括如下信息中的至少之一:所述测量参考信号占有的频域资源、所述测量参考信号占有的码域资源。
在示例性实施方式中,所述配置信息通过至少两个控制信息携带。
在示例性实施方式中,所述时间单元偏置集合信息可以表示如下信息至少之一:
所述测量参考信号的发送时间属于所述时间单元偏置集合对应的时间集合的子集;
所述测量参考信号的发送时间是所述时间单元偏置集合对应的时间集合中第一个满足发送条件的时间;
所述时间单元偏置集合是时间单元偏置长度,表示时间单元偏置集合中包括的时间单元是连续的,或者是在一个周期中第二周期出现的时间单元。
其中,所述发送条件为所述时间单元偏置对应的时间单元中所述时间单元中分配给所述测量参考信号的资源没有被第二信号占有,或者,所述时间单元中分配给所述测量参考信号的资源不属于第二传输域;所述第二信号的优先级高于所述测量参考信号,所述第二传输域的传输方向和所述测量参考信号的传输方向不同。
在示例性实施方式中,所述多套时域传输参数中的不同套传输参数通过如下特征中的至少之一区分:
时域是周期的、非周期的或半周期的;
所述时域的一个周期内包括的时域符号个数;
所述测量参考信号在一个周期中的重复发送次数;
所述测量参考信号对应的梳妆等级。
在示例性实施方式中,用相同指示值表示所述激活与去激活两个状态,所述指示值第一次发送表示激活,所述指示值第二次发送表示去激活;
和/或,用指示值发生变化表示激活新资源,去激活旧资源。
在示例性实施方式中,所述时域符号信息满足以下特征至少之一:
包括时域符号的个数信息;
包括占有的第一子载波间隔的时域符号的索引集合;
包括占有的第二子载波间隔的时域符号的索引集合;
包括占有的第一子载波间隔的时域符号的个数信息;
包括占有的第二子载波间隔的时域符号的个数信息;
所述时域符号信息中包括一个时间单元中的任意一个或者多个时域符号;
所述时域符号信息中包括一个时间单元中除下行控制域之外的任意一个或者多个时域符号;
所述时域符号信息中包括两级时域符号索引,第一级时域符号索引是第一子载波间隔对应的时域符号索引,第二级时域符号索引是第二子载波间隔的时域符号在一个第一子载波间隔的时域符号中的索引,其中,所述一个第一子载波间隔的时域符号的时长中包括一个或者多个第二子载波间隔的时域符号。
在示例性实施方式中,所述频域资源满足以下至少一项:
所述频域资源是测量参考信号所在的物理资源块集合;
所述频域资源为分配给第二通信节点的系统带宽;
所述频域资源为分配给第二通信节点的系统带宽中的一个物理资源块集合;
所述频域资源在频域上是非连续的。
其中,所述系统带宽可以是一个CC(Carrier component)对应的频域带宽,或者系统带宽是一个BWP(Bandwidth Part,带宽部分)对应的频域带宽,所述一个PRB(Physical resource block,物理资源块)对应预定数目的子载波和/或预定数目的时域符号数。
在示例性实施方式中,所述发送波束参数通过如下信息中的至少之一表示:参考信号资源信息、参考信号资源集合信息、参考信号端口信息、参考信号端口集合信息、参考信号所在的时域资源信息、参考信号所在的频域资源信息、预编码矩阵信息、发送波束索引信息。
在示例性实施方式中,所述接收波束参数通过如下信息中的至少之一表示:参考信号资源信息、参考信号资源集合信息、参考信号端口信息、参考信号端口集合信息、参考信号所在的时域资源信息、参考信号所在的频域资源信息、预编码矩阵信息、接收波束索引信息。
需要说明的是,本实施例的方法也可以用于其他资源,比如测量参考上报资源、测量参考信号测量资源。
本申请实施例还提供一种信息配置方法,包括:
接收第一通信节点发送的资源的配置信息,其中,所述配置信息包括如下参数至少之一:信道特性参数,发送波束参数,接收波束参数,频域资源,梳妆等级,梳妆偏移,子载波间隔,测量参考信号类型,时域符号信息,在一个周期中重复发送次数,多类时域参数,测量参考信号组件索引集合,测量参考信号组件之间的复用方式,测量参考信号组件和测量参考信号端口之间的映射关系,相位补偿参考信号,多套时域传输参数,准共位置参考信道,多套时域传输参数的选择信息,时间单元偏置集合,激 活与去激活信息指示信息;
其中,所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
在示例性实施方式中,所述多类时域参数包括第一类时域参数和第二类时域参数,其中,所述第一类时域参数指示所述测量参考信号资源的周期特性,所述周期特性包括:周期、半周期、非周期;所述第二类时域参数指示将所述测量参考信号或者所述测量参考资源包括的时域符号集合划分为多个时域区域,不同时域区域对应的所述测量参考信号或者所述测量参考信号资源的第一发送参数和接收参数中至少一项不同。
其中,所述第一发送参数包括如下参数至少之一:发送波束、所述测量参考信号占有的频域资源、所述测量参考信号占有的码域资源;
所述接收参数包括:接收波束;
所述不同时域区域对应的第二发送参数相同,所述第二发送参数包括如下信息中的至少之一:所述测量参考信号占有的频域资源、所述测量参考信号占有的码域资源。
在示例性实施方式中,所述配置信息可以由至少两个控制信息携带。
在示例性实施方式中,所述时域符号信息满足以下特征至少之一:
包括时域符号的个数信息;
包括占有的第一子载波间隔的时域符号的索引集合;
包括占有的第二子载波间隔的时域符号的索引集合;
包括占有的第一子载波间隔的时域符号的个数信息;
包括占有的第二子载波间隔的时域符号的个数信息;
所述时域符号信息中包括一个时间单元中的任意一个或者多个时域符号;
所述时域符号信息中包括一个时间单元中除下行控制域之外的任意一 个或者多个时域符号;
所述时域符号信息中包括两级时域符号索引,第一级时域符号索引是第一子载波间隔对应的时域符号索引,第二级时域符号索引是第二子载波间隔的时域符号在一个第一子载波间隔的时域符号中的索引,其中,所述一个第一子载波间隔的时域符号的时长中包括一个或者多个第二子载波间隔的时域符号。
在示例性实施方式中,所述频域资源满足以下至少一项:
所述频域资源是测量参考信号所在的物理资源块集合;
所述频域资源为分配给第二通信节点的系统带宽;
所述频域资源为分配给第二通信节点的系统带宽中的一个物理资源块集合;
所述频域资源在频域上是非连续的。
其中,所述系统带宽可以是一个CC对应的频域带宽,或者系统带宽是一个BWP对应的频域带宽,所述一个PRB对应预定数目的子载波和/或预定数目的时域符号数。
在示例性实施方式中,所述发送波束参数通过如下信息中的至少之一表示:参考信号资源信息、参考信号资源集合信息、参考信号端口信息、参考信号端口集合信息、参考信号所在的时域资源信息、参考信号所在的频域资源信息、预编码矩阵信息、发送波束索引信息。
在示例性实施方式中,所述接收波束参数通过如下信息中的至少之一表示:参考信号资源信息、参考信号资源集合信息、参考信号端口信息、参考信号端口集合信息、参考信号所在的时域资源信息、参考信号所在的频域资源信息、预编码矩阵信息、接收波束索引信息。
下面通过多个实施例对本申请的方案进行说明。
实施例一
本实施例说明多个CSI-RS资源共享传输参数的共享方式。
参照现在NR的CSI-RS结构,如图2所示,一个参考信号集合(RS setting)中包括S个CSI-RS资源集合(resource set)(对应上述的测量参考信号资源集合),每个CSI-RS resource set中包括Ks个CSI-RS资源(resource)。其中,S和Ks均为正整数。图5为不同的测量参考信号资源set对应不同的发送波束。
多个CSI-RS资源共享传输参数的第一种实施方式是,传输参数配置在RS setting的配置信息中,RS setting包含的所有CSI-RS resource共享所述传输参数,这样在CSI-RS resource的配置信息中就可以没有上述传输参数的配置;比如,传输参数可以是频域资源,频域资源需要的比特数是10比特,若8个CSI-RS resource共享上述传输参数,则只需要在RS setting的配置信息中配置一次频域资源,即只需要10比特,而如果不采用共享方式,则每个CSI-RS Resource的配置信息中都要配置频域资源,就需要10×8比特。
如图3所示,多个CSI-RS资源共享频域资源,在图3中,不同CSI-RS资源是时分的;然而,本实施例也不排除部分或者全部CSI-RS资源的时域有重叠。其中,CSI-RS占有的频域资源是CSI-RS在其所占的时域符号上占有的频域PRB(Physical Resource Block,物理资源块)集合,此时所述频域PRB集合中包括的频域资源是连续的,或者,所述频域PRB集合中包括的频域资源也可以是非连续的。或者,此时频域资源的指示信息中指示是宽带的,还是部分带宽的,宽带和部分带宽所对应的频域资源是之前约定的。需要所述CSI-RS资源可以占有频域资源中的全部子载波,也可以只占有部分子载波。
对于其他传输参数基于共享方式发送带来的有益效果可以参照频域资源基于共享方式带来的有益效果,故此处不再赘述。
多个CSI-RS资源共享传输参数的第二种实施方式是,传输参数配置在CSI-RS resource set的配置信息中,CSI-RS resource set包含的所有CSI-RS resource共享所述传输参数。
多个CSI-RS资源共享传输参数的第三种实施方式是,传输参数包括在M个CSI-RS resource中的每个CSI-RS resource的配置信息中,并约定M个CSI-RS resource对应的传输参数是相同的;其中,M为大于1的整数。
多个CSI-RS资源共享传输参数的第四种实施方式是,传输参数根据测量参考信号资源的类型确定;比如,当测量参考信号属于类型1时(比如,类型1是用于波束管理的测量参考信号),其传输参数是第一约定值(比如,此时测量参考信号占有的频域是部分带宽的),当属于类型2时(比如,为获取PMI(Precoding Matrix Indicator,预编码矩阵指示)、RI(rank indication,秩指示)等信息的测量参考信号),其传输参数是第二约定值。
多个CSI-RS资源共享传输参数的第五种实施方式是,传输参数根据测量参考信号资源对应的反馈资源确定;比如,当反馈方式不同,或者反馈信息所占有的PUCCH(Physical Uplink Control Channel,物理上行控制信道)/PUSCH(Physical Uplink Shared Channel,物理上行共享信道)资源不同,则传输参数不同。
多个CSI-RS资源共享传输参数的第六种实施方式是,在RS setting中指示,CSI-RS resource set中的CSI-RS资源是否需要共享传输参数。当共享传输参数时,CSI-RS resource set中设置相关传输参数,当不共享传输参数时,传输参数在每个CSI-RS resource中设置。或者,CSI-RS resource和CSI-RS resource set中都会设置相关传输参数,RS setting中配置CSI-RS resource和CSI-RS resource set两者的优先级,当设置CSI-RS resource的优先级高于CSI-RS resource set的优先级,则一个CSI-RS resource的传输参数以CSI-RS resource中配置的传输参数为准,否则一个CSI-RS resource的传 输参数以CSI-RS resource set中配置的传输参数为准。
多个CSI-RS资源共享传输参数的第七种实施方式是,CSI-RS resource set中设置CSI-RS resource set中包括的多个CSI-RS resource是否共享传输参数。当共享传输参数时,传输参数在CSI-RS resource set中配置,当不共享传输参数时,传输参数在CSI-RS resource中配置。或者,CSI-RS resource和CSI-RS resource set中都会设置相关传输参数,CSI-RS resource set中配置CSI-RS resource和CSI-RS resource set两者的优先级,当设置CSI-RS resource的优先级高于CSI-RS resource set的优先级,则一个CSI-RS resource的传输参数以CSI-RS resource中配置的传输参数为准,否则,一个CSI-RS resource的传输参数以CSI-RS resource set中配置的传输参数为准。
多个CSI-RS资源共享传输参数第八种方式是,建立一个传输参数配置信息,可以在以下至少一个配置信息中包括上述传输参数配置信息的索引信息:CSI-RS resource的配置信息、CSI-RS resource set的配置信息、RS setting的配置信息。如图4所示,建立一个传输参数配置信息,让多个CSI-RS resource的配置信息中都包括这个传输参数配置信息的索引信息(比如,ID)。
实施例二
本实施例说明多个CSI-RS资源共享的传输参数。
第一种共享参数是时间单元偏置(或者称为时间单元偏置,时间单元offset),比如,将占有相同时隙的多个CSI-RS资源共享周期配置参数,此时多个CSI-RS资源对应的时隙参数相同。其中,多个CSI-RS资源可以为周期发送或者半周期发送。比如,CSI-RS资源的发送周期是T,时间单元偏置为ΔT,此时CSI-RS资源占有的时隙集合为{n,mod(n+ΔT,T)=0},其中,n为大于或等于0的整数,ΔT为小于T的整数,其中n,ΔT,T的单位相同,是一个时间单元,比如一个slot,或者一个时域OFDM符号等。
第二种共享参数是时域符号位置,将占有相同时域符号的CSI-RS资源分为一组,如图6所示,CSI-RS资源0和CSI-RS资源1都是占有一个时隙(slot)的第2个时域符号,虽然他们占有的slot不同,但是在slot中占有的时域符号位置相同。此时CSI-RS资源0和CSI-RS资源1的共享参数是时域符号位置。在图6中CSI-RS资源0和CSI-RS资源1占有的时域符号索引相同,但是所在的时隙不同,然而,本实施例也不排除CSI-RS资源0和CSI-RS资源1占有的时域符号索引相同且所在的时隙也相同的情况。
在另一种实施方式中,如图7所示,时域符号可以包括以下至少之一:第一子载波时域符号、第二子载波时域符号。比如,允许将CSI-RS的子载波间隔增大,此时共享的参数可能是第二子载波时域符号位置。其中,时域符号位置包括以下至少之一:第一子载波时域符号位置、第二子载波时域符号位置。如图8所示,一个时隙包括第一载波间隔7个OFDM符号,CSI-RS资源0和CSI-RS资源1所在第一子载波间隔时域符号索引位置不同,但是占有的第二子载波时域符号在一个第二子载波时域符号中的相位索引相同,CSI-RS资源0和CSI-RS资源1都是占有索引为2的第二子载波间隔索引位置。其中,一个第一载波间隔时域符号中包括4个第二载波时域符号,此时共享的参数就是第二子载波时域符号索引,或者是第二子载波时域符号在第一子载波时域符号中的相位索引。
第三种共享参数是在一个周期中时域重复发送次数(或者测量参考信号的密度信息),在示例性实施方式中,时域重复发送时,CSI-RS资源在各个时域上占有的频域资源和码域资源中至少一项相同。如图9所示,CSI-RS资源0和CSI-RS资源1都重复发送了3次,用于终端进行接收波束训练。图9中一个CSI-RS资源中重复发送的时域符号是相邻的,然而,本实施例也不排除是不相邻的情况。其中,重复发送也可以等效为第一子载波间隔的时域符号包括的第二载波间隔的时域符号的个数,即重复发送和第一子 载波间隔的时域符号包括的第二载波间隔的时域符号的个数之间有关联。如图9所示,假设3个时域的载波间隔为第二子载波间隔,1个第一子载波间隔的时域符号包括3个第二子载波间隔的时域符号,当设置重复发送次数为6,则此时1个第一子载波间隔的时域符号包括6个第二子载波间隔的时域符号(此时6个对应的第二载波间隔可以是比包括3个时的子载波间隔大)。
第四种共享参数是一个CSI-RS资源在一个周期中占有的时域符号个数,其中,占有的时域符号个数可以是以下至少之一:图8中第一子载波时域符号个数、图8中第二子载波时域符号个数。其中,共享参数也可是一个CSI-RS端口在一个周期中占有的时域符号个数。
第五种共享参数是图样配置参数,根据所述图样配置参数可以得到测量参考信号资源和测量参考信号中至少一项所占的以下至少之一:时域资源、频域资源、码域资源。如图10所示,CSI-RS资源0和CSI-RS资源1占有的时域资源相同(其中,时域资源相同是指占有的时域符号个数相同),此时CSI-RS资源0和CSI-RS资源1占有的频域资源和码域资源中至少一项相同。
第六种共享参数是第二类时域参数,第二类时域参数表示将测量参考信号和测量参考信号资源中至少一项对应的第一时域符号集合划分成N个时域区域(或者,也可以称为时间区域、时域符号单元等名称),不同时域单元对应的第一发送参数和接收参数中至少一项不同。其中,测量参考信号和测量参考信号资源中至少一项对应的第一时域符号集合由测量参考信号对应的一个周期中包括的时域符号构成,如图11所示,CSI-RS资源0和CSI-RS资源1的每个周期都包括6个时域符号,然后将这6个时域符号分成3个时域区域,图11中两个资源的时域区域的划分方式完全相同。然而,本实施例也不排除两个时域区域划分的一个方面相同,比如划分成的 时域区域个数相同,但是每个时域单元包括的时域符号个数不同。如图11和图12所示,CSI-RS资源0(对应图10)分成3个时域区域,CSI-RS资源1(对应图11)分成3个时域区域,但是CSI-RS资源0和CSI-RS资源1的每个时域区域包括的时域符号个数不同。图11和图12中,将第一时域符号集合划分成N个时域区域的划分方式只是举例,本实施例并不排除其他的划分方式。在图11和图12中第一时域符号集合是由一个周期中包括的时域符号构成,在另一种实施方式中,第一时域符号集合也可以由测量参考信号和测量参考信号资源中至少一项对应的多于一个周期中包括的时域符号构成。
其中,第一发送参数可以包括如下参数至少之一:发送波束、测量参考信号占有的频域资源、测量参考信号占有的码域资源;当第一发送参数包括信道特性参数和发送波束中至少一项时,时域区域也可以称为一个准共位置区域。
其中,接收参数可以包括:接收波束。
其中,不同时域区域对应的第二发送参数可以相同,第二发送参数可以包括如下信息至少之一:测量参考信号占有的频域资源、测量参考信号占有的码域资源。
第七种共享参数是相位补偿参考信号,比如多个CSI-RS资源对应同一个panel的不同射频波束,这多个CSI-RS资源就可以共享相位补偿参考信号。在示例性实施方式中,终端可以和基站约定共享相位补偿参考信号的多个CSI-RS资源对应同一个panel,对应不同相位补偿参数的多个CSI-RS资源对应不同的panel,终端可以基于这些信息选择panel进行反馈,即此时相位补偿参考信号的配置和终端反馈的配置之间有关联。
本实施例中共享的传输参数可以包括如下参数至少之一:信道特性参数,发送波束参数,接收波束参数,频域资源,梳妆等级(Level),梳妆偏 移,子载波间隔,测量参考信号类型,时域符号信息,在一个周期中时域重复发送次数,图样配置参数,第二类时域参数,测量参考信号组件(Component)索引集合,测量参考信号Component之间的复用方式,测量参考信号Component和测量参考信号端口之间的映射关系,功率参数,相位补偿参考信号;准共位置参考信号;周期偏置集合;激活和去激活信息指示信息。
本实施例也不排除其他可以共享的传输参数。其中,共享方式可以采用实施例一所述的方式,或者,也可以采用其他共享方式,本申请对此并不限定。
实施例三
本实施例说明对于CSI-RS配置信息中的时域参数的配置。
本实施例的第一种配置信息中,时域参数可以包括以下至少之一:多种子载波间隔的时域符号位置、多种时域符号个数。如图13所示,CSI-RS发送的子载波间隔大于其他信号所对应的时域符号,而且多个大子载波间隔的时域符号对应一个小子载波间隔的时域符号。如图13所示,一个第一小的子载波间隔的时域符号包括4个大子载波间隔的时域符号。此时,时域符号配置中需要配置CSI-RS资源占有的第一时域符号的位置和个数中的至少一项、第二子载波时域符号的位置和个数中至少一项。或者,此时是两级时域信息配置,配置测量参考信号资源和测量参考信号中至少一项对应的第一子载波间隔的时域符号位置和个数中的至少一项,然后配置测量参考信号资源和测量参考信号中至少一项在每个占有的第一子载波间隔时域符号中占有的第二载波间隔的时域符号的相对位置。
本实施例的第二种配置信息中,一个测量参考信号资源或者测量参考信号对应多类时域参数;在示例性实施方式中,第一类表示测量参考信号资源或者测量参考信号是周期、半周期、非周期中的哪一种。第二类表示 将所述测量参考信号对应的第一时域符号集合划分成多个时域区域,不同时域区域对应的第一发送参数和接收参数中至少一项不同。所述测量参考信号和测量参考信号资源中至少一项对应的第一时域符号集合由所述测量参考信号对应的一个周期中包括的时域符号构成,或者,第一时域符号集合可以是由一个周期中包括的时域符号构成,或者,当所述测量参考信号为周期、半周期测量参考信号时,所述第一时域符号集合由所述测量参考信号和所述测量参考信号资源中至少一项对应的多于一个周期中包括的时域符号构成。
所述第一发送参数包括如下参数至少之一:发送波束、所述测量参考信号占有的频域资源、所述测量参考信号占有的码域资源;当第一发送参数对应信道特性参数和发送波束信息中至少一项时,所述时域区域也可以称为一个准共位置区域。
所述接收参数包括:接收波束。所述不同时域区域对应的第二发送参数相同,所述第二发送参数包括如下信息至少之一:所述测量参考信号占有的频域资源、所述测量参考信号占有的码域资源。
实施例四
本实施例说明采用IFDMA方式进行发送过程。
在本实施例中,当测量参考信号采用IFDMA的方式发送时,在时域可以形成时域重复的图样,用于接收端进行接收波束训练。但是由于发送端的测量参考信号对应的波束或者多个测量参考信号对于IFFT(Inverse Fast Fourier Transform,快速傅里叶反变换)单元的复用方式不同,同样的IFDMA结构,其时域可训练的接收波束个数不同。
如图14所示,测量参考信号对应4个不同的梳妆单元,如果此时测量参考信号{1,2,3,4}的IFFT单元是各自独立的(此时每个端口对应的IFFT单元在做IFFT的时候,对于其他端口占有的频域资源是填0的),那么此时 每个测量参考信号在时域形成4份重复的资源,接收端口可以在一个OFDM符号上进行4次接收波束训练,如图14中右上所示的IFFT之后的时域发送信号图样。当{1,2,3,4}对应的时域单元不是独立的(此时每个端口对应的IFFT单元在做IFFT的时候,对于其他端口占有的频域资源是填其他端口信号的),此时每个端口在时域只能产生一份时域样本,没有重复的现象,接收端不能进行时域重复,如图14中右下所示的IFFT之后的时域发送信号图样。
总之,同样一个CSI-RS IFDMA图样,可做的接收波束个数不同,如果所述测量参考信号为CSI-RS,当终端需要做接收波束切换,此时基站需要告知IFDMA图样类型是第一类型(即时域图样是图14右上,或者CSI-RS不同端口对应不同的IFFT单元,或者射频波束单元)还是第二类型(即时域图样是图14右下,或者CSI-RS不同端口对应相同的IFFT单元,或者相同射频波束单元)。当所述测量参考信号是SRS,基站需要将终端对于不同SRS端口的IFFT单元的复用方式告知终端(对应第一类型还是第二类型),使得终端采用合适的波束给基站发送信号,基站进行接收波束训练,比如当通知为第一类型,不同SRS端口对应不同的发送panel组,通知为第二类型时,不同SRS端口可以对应相同的发送panel组。或者终端对于IFDMA结构对应的是第一类型还是第二类型告知基站。可以是作为能力上报,或者作为请求消息上报。
实施例五
本实施例说明CSI-RS图样包括DMRS所在的子载波位置的情况。
在LTE中CSI-RS的图样中不包括解调参考信号、控制信道信号可占有的符号,如图15所示。但是NR中允许CSI-RS是部分带宽发送的,特别是进行波束训练时,测量参考信号可占用的频域资源是可以很少,此时就可以让CSI-RS占有第二信号占有的资源,其中,第二信号包括如下信号至 少之一:解调参考信号、控制信道信号、相位补偿参考信号。
如图16所示,在相同的时域符号3上,解调参考信号端口1和测量参考信号占有的RE(Resource Element,资源单元)之间可以有重叠,可以将可发送解调参考信号的RE归为一组,没有解调参考信号的RE归为另一组,一个测量参考信号配置占有的RE只归于其中一组。
所述测量参考信号和所述第二信号所在的资源相同时,所述两类信号满足如下特征至少之一:所述两类信号分时发送;所述两类信号是发送给不同通信节点的(比如下行时CSI-RS和DMRS对应的终端不同);所述两类信号是来自不同通信节点的(比如上行时CSI-RS和DMRS对应的终端不同)。
在示例性实施方式中,测量参考信号资源可以占有第二信号占有的资源,根据所述测量参考信号是否是全带宽发送确定;比如,当为全带宽发送时,测量参考信号不可以占有第二信号占有的资源,当为部分带宽发送时,测量参考信号可以占有第二信号占有的资源。一种方式是测量参考信号配置资源数相同,如图16所示,为2套,但是根据是否全系统带宽而有所限制,另一种方式为是否全系统带宽发送对应的测量参考信号配置资源数不同,如图16所示,当为全系统带宽时,频域资源和时域资源分别通知,而不是联合通知。一个频域资源可以对应多个时域资源。
实施例六
在实施例中,同一个SRS资源对应多套时域参数。其中,不同套的时域参数的区别参数包括如下参数至少之一:第一类时域参数(周期、非周期、半周期);第二类时域参数(重复发送次数)。通过信令指示当前激活的是哪一套还是哪几套时域参数。
在示例性实施方式中,上行波束训练有发送波束和接收波束训练(以下称为U-1),上行接收波束训练(以下称为U-2),上行发送波束训练(以 下简称U-3)。
当U-2的时候,其发送波束是取自于U-1和/或U-3中的发送波束,U-2和U-1/U-3的差别是其重复发送次数不同。
重复发送次数的第一种体现方式是一个周期包括的时域符号个数,其中,所述时域符号包括第一子载波时域符号个数,和/或第二子载波时域符号个数,其中,一个第一子载波时域符号包括多个第二子载波时域符号。
重复发送次数的第二种体现方式是IFDMA所包含的梳妆结构的Level,梳妆结构的Level决定了做完IFFT之后形成的时域重复波形的次数。和实施例四类似,同样的梳妆结构,对应的接收端重复次数不同。
重复发送次数的第三种体现方式是SRS符号上是否还包括其他信号,比如数据信号、控制信道等,当SRS符号上仅有SRS符号,而且各个SRS端口有各自独立的IFFT单元,时域重复次数为一个测量参考信号占有的频域子载波之间的间隔。否则可能没有重复特性。
重复发送次数的第四种体现方式是SRS符号是否为全带宽发送的,比如IFDMA方式发送(即一个SRS端口均匀占有子载波),但是如果部分带宽即使IFDMA其重复次数为1,如果全带宽才根据其梳妆Level确定。
测量参考信号对应的重复发送次数也可以称为密度信息。一种情况是根终端请求确定所述重复次数,或者根据终端上报的能力确定SRS,或者CSI-RS对应的重复发送次数,或者密度信息。
实施例七
在本实施例中,在控制信息中:
用相同指示值表示所述激活与去激活两个状态,所述指示值第一次发送表示激活,所述指示值第二次发送表示去激活;
和/或,用指示值发生变化表示激活新资源,去激活旧资源。
比如,所述资源有4个,用2比特选择这4个资源其中之一,相同值 的不同发送时间表示激活和去激活,指示值发生变化表示激活新资源,去激活旧资源。其中,资源和指示值之间的对应关系如表1所示,当控制信息第一次发送“00”表示激活资源0,当控制信息中第二次发送“00”表示去激活资源0;或者,当控制信息第一次发送“00”表示激活资源0,当控制信息中第二次发送“01”表示去激活资源0,激活资源1。
表1
指示比特值 资源
00 资源0
01 资源1
10 资源2
11 资源3
所述控制信息可以为如下控制信息至少之一:高层控制信息(比如RRC控制信息,MAC CE控制信息),物理层动态控制信息。所述资源可以是测量参考信号资源(比如下行CSI-RS参考信号资源,上行SRS资源),上报集合资源,参考信号资源。
实施例八
在本实施例中,设置测量参考信号的周期偏置集合,比如测量参考信号的周期为T,其周期偏置集合为{ΔT 1,ΔT 2,...,ΔT K},优选地0≤ΔT i≤T-1,则所述周期偏置集合对应的一个周期中时间单元集合
{n i,mod(n i,T+ΔT i)=0,i=1,...,K}。
其中,测量参考信号发送的时间单元是所述时间单元集合的子集,和/或测量参考信号发送的时间单元是所述时间单元集合中前N个满足发送条件的时间单元。
其中,发送条件为如下条件至少之一:所述时间单元没有被第二信号占有;所述时间单元中分配给所述测量参考信号的资源不属于第二传输域;所述时间单元中分配给所述测量参考信号的资源不属于第二域;所述时间 单元中分配给所述测量参考信号的资源中的全部资源都可以用于发送所述测量参考信号;所述时间单元中分配给所述测量参考信号的资源中的部分资源可以用于发送所述测量参考信号;所述第二信号的优先级高于所述测量参考信号,所述第二传输域的传输方向和所述测量参考信号的传输方向不同,所述第二域为上下行之间的保护域。
比如,所述测量参考信号为周期或者非周期CSI-RS,分配给CSI-RS的资源被同步信号,或者URLLC业务占有,或者分配给CSI-RS的资源分配给了上行传输域,或者分配给了GP(上下行保护间隔),此时在此时间单元上就不能发送测量参考信号,需要落到所述时间单元集合中第一个没有如上情况的第一个时间单元,或者没有如上情况的前X个时间单元上发送,其中,X为自然数。注意到,如果分配给测量参考信号的资源上部分资源被其他信号占有或者不能发送所述测量参考信号,则所述测量参考信号就移到下一个时间单元上发送所述测量参考信号。或者,在第一时间单元上可以发送测量参考信号的部分资源先在所述第一时间单元上发送,在第一时间单元中没有发送的部分测量参考信号移到第二时间单元发送。
对于非周期的测量参考信号也可以类似有一个时间单元集合。
所述测量参考信号也可以是上行SRS参考信号。
实施例九
在本实施例中,根据是进行接收波束训练,还是发送波束训练,确定所测量参考信号是采用增长子载波的方式,还是采用IFDMA的方式,还是增大子载波间隔的方式。
或者,根据控制信息指示测量参考信号是采用IFDMA的方式还是增大子载波间隔的方式。
或者,测量参考信号所用的时域符号类型和所述测量参考信号对应的上报类型之间有关联。
实施例十
在本实施例中,测量参考信号所在的时域符号存在两种,一种是每个OFDM符号存在CP,另一种是部分OFDM符号不存在CP。比如,两个OFDM符号上发送的信息完全相同,作完IFFT之后,两个OFDM符号对应的时域样本相同,则前一个时域符号的末位可以作为后一个时域符号的CP,从而节身时域开销。
具体地,比如每个OFDM符号上仅有参考信号,测试每个OFDM时域符号上参考信号占有的频域资源相同,参考信号所用的序列相同,则前一个时域符号的末位可以作为后一个时域符号的CP。
在本实施例中,根据是进行接收波束训练,还是发送波束训练,确定所测量参考信号是否存在没有CP的OFDM符号。
或者,根据控制信息指示所测量参考信号是否存在没有CP的OFDM符号。
或者,所测量参考信号是否存在没有CP的OFDM符号和所述测量参考信号对应的上报类型之间有关联。
实施例十一
在本实施例中,一个SRS resource set和一个SRS resource之间建立QCL关系或者波束指示关系。其中,SRS resource中的参考信号和SRS resource set,如图17所示。所述一个SRS resource set中包括一个或者多个Resource。
现在NR中支持终端发送SRS的波束对于基站是透明的,在这种透明方式下,如果上行波束训练分为多个阶段,第一阶段为粗波束或者Oversample比较低的发送波束训练和接收,第二阶段参照第一阶段进行上行发送波束训练,或者上行接收波束训练。
比如第二阶段的发送波束是对第一阶段的发送波束细化或者 Oversampling的增加,如图17所示,建立一个SRS Resource(比如对应第一阶段的一个发送波束)和Resource Set(对应第二阶段的一个发送波束组)之间的QCL关系,从而使得Resource set中的不同Resource对应第一阶段发送波束的不同细化波束,或者对应第一阶段发送波束的不同周边发送波束。
上述QCL关系中的一个Resource set中包括的Resource的个数可以通过如下方式至少之一获取:一种获取方法是基站指示,进一步地基站根据终端上报的能力或者终端的请求,分配一个Resource set中包括的Resource个数。终端根据基站分配的SRS资源个数,确定发送波束。考虑到第一阶段不同发送波束到达基站的性能不同,第一阶段的不同发送波束对应的不同SRS resource set包含的SRS resource数允许不同,或者限制相同。
上述提到第二阶段的发送波束可能是第一阶段发送波束的细化,如图18a所述,或者是对于第一阶段发送波束周围波束的搜索,如图18b所述,在图18a~18b中,虚线表示的是第一阶段的发送波束,实线表示的是第二阶段的发送波束。当建立图17所示的QCL关系之后,如果此时第二阶段的发送波束对于基站还是透明的,基站和终端需要统一理解,第二阶段的发送波束是图18a~18b中的哪一个,使得终端对于发送波束的选择有参照,也使得基站对于后面的测量以及数据/控制的调度有参照。为此可以通过功率等参数隐含指示究竟是哪一种,或者QCL关系中指示两阶段发送波束的中心角之间的偏移量是否大于0,或者终端请求是图18a~18b中的哪一种,或者基站直接指示。
实施例十二
在本实施例中,IFDMA方式下,CSI-RS level根据CSI-RS资源包括的端口数而确定。
IFDMA方式下,一个CSI-RS资源包括多个端口时,多个端口之间的 梳妆间隔相同。多个端口之间的时域重复次数相同。
具体地,如图19~20所示,当所述时域符号上只有两个端口时,测量参考信号之间的间隔为5个子载波,即测量参考信号之间填0的个数为5个。当所述时域符号上4个端口时,测量参考信号之间的间隔为2个子载波,即测量参考信号之间填0的个数为2个。
如图19~图20所示,IFDMA方式下或者非IFDAM方式下,测量参考信号到频域资源的映射不是顺序映射的,而是满足nest的特性。
实施例十三:
在本实施例中,同一个IFDMA图样对应的时域重复次数,需要基站指示给终端。
具体地,如图21所示,同一个IFDMA图样如图14中左图所示,不同CSI-RS端口的IFFT单元相互独立时,比如每个CSI-RS端口对应一个模拟波束时,其IFFT之后的图样如图中右上所示,有时域重复特征,从而可以进行接收波束训练,或者发送波束训练。如果不同CSI-RS端口的IFFT单元不独立,比如每个CSI-RS端口对应一个混合波束时,其IFFT之后的图样如图右下所示。总之同一个IFDMA pattern,其可以做的接收波束个数可变。
即此时,IFDMA方式下IFFT之后的时域重复波束,为如下两种:一种是重复次数是根据同一端口之间间隔的子载波个数(比如图21中每个端口,每个端口每间隔4个子载波占有一个子载波),一种是所有端口来看中间填0的个数(即此时端口{1,2,3,4}综合来看,端口之间没有间隔,即此时没有重阳)。如图21所示,此时每个端口来看每隔4个占有一个子载波,端口{1,2}综合看时,是每隔2个占有一个子载波。一个IFDMA的重复次数究竟是以上述两一种为准,需要基站指示给终端。
SRS测量参考信号的时候,也可以终端向基站申请。
实施例十四
在本实施例中,测量参考信号(包括SRS,或者CSI-RS)一种是此测量参考信号没有准共位置关系参考信号,一种是准共位置参考信号。
所述控制信息可以为如下控制信息至少之一:高层控制信息(比如RRC控制信息,MAC CE控制信息),物理层动态控制信息。所述资源可以是测量参考信号资源(比如下行CSI-RS参考信号资源,上行SRS资源),上报集合资源,参考信号资源。
在本实施例中,设置测量参考信号的时间单元偏置集合,比如测量参考信号的周期为T,其时间单元偏置集合为{ΔT 1,ΔT 2,...,ΔT K},比如,0≤ΔT i≤T-1,则所述时间单元偏置集合对应的一个周期中时间单元集合
{n i,mod(n i,T+ΔT i)=0,i=1,...,K},
其中,测量参考信号发送的时间单元是所述时间单元集合的子集,和/或测量参考信号发送的时间单元是所述时间单元集合中前N个满足发送条件的时间单元。
其中,发送条件为如下条件至少之一:所述时间单元没有被第二信号占有;所述时间单元中分配给所述测量参考信号的资源不属于第二传输域;所述时间单元中分配给所述测量参考信号的资源不属于第二域;所述时间单元中分配给所述测量参考信号的资源中的全部资源都可以用于发送所述测量参考信号;所述时间单元中分配给所述测量参考信号的资源中的部分资源可以用于发送所述测量参考信号;所述第二信号的优先级高于所述测量参考信号,所述第二传输域的传输方向和所述测量参考信号的传输方向不同,所述第二域为上下行之间的保护域。
比如,所述测量参考信号为周期或者非周期CSI-RS,分配给CSI-RS的资源被同步信号,或者URLLC业务占有,或者分配给CSI-RS的资源分配给了上行传输域,或者分配给了GP(上下行保护间隔)。
对于非周期的测量参考信号也可以类似有一个时间单元集合。
基于与上述实施例相同或相似的构思,本申请实施例还提供一种信息配置装置,应用于第一通信节点,包括:
第一传输模块,配置为向第二通信节点发送携带传输参数的信息,其中,所述传输参数是M个资源所共享的;或者,
第一约定模块,配置为与第二通信节点约定M个资源所共享的传输参数;其中,M为大于1的自然数;所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
在示例性实施方式中,所述传输参数包括所述测量参考信号资源和/或测量参考信号对应的如下参数至少之一:
信道特性参数;发送波束参数;接收波束参数;频域资源;梳妆等级;梳妆偏移;子载波间隔;测量参考信号类型;时域符号信息;在一个周期中重复发送次数;图样配置参数;第二类时域参数;测量参考信号组件索引集合;测量参考信号组件之间的复用方式;测量参考信号组件和测量参考信号端口之间的映射关系;功率参数;相位补偿参考信号;准共位置参考信号;时间单元偏置集合;激活和去激活信息指示信息;其中,一个测量参考信号资源中包括一个或者多个测量参考信号。
基于与上述实施例相同或相似的构思,本发明实施例还提供一种信息配置装置,应用于第二通信节点,包括:
第二传输模块,配置为接收第一通信节点发送的携带传输参数的信息,其中,所述传输参数是M个资源所共享的;或者,
第二约定模块,配置为与第一通信节点约定M个资源所共享的传输参数;其中,M为大于1的自然数;所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
在示例性实施方式中,所述传输参数包括所述测量参考信号资源和/或 测量参考信号对应的如下参数至少之一:
信道特性参数;发送波束参数;接收波束参数;频域资源;梳妆等级;梳妆偏移;子载波间隔;测量参考信号类型;时域符号信息;在一个周期中重复发送次数;图样配置参数;第二类时域参数;测量参考信号组件索引集合;测量参考信号组件之间的复用方式;测量参考信号组件和测量参考信号端口之间的映射关系;功率参数;相位补偿参考信号;准共位置参考信号;时间单元偏置集合;激活和去激活信息指示信息;
其中,一个测量参考信号资源中包括一个或者多个测量参考信号。
基于与上述实施例相同或相似的构思,本发明实施例还提供一种信息配置装置,应用于第一通信节点,包括:
第三传输模块,配置为发送控制信息,其中,所述控制信息携带图样配置参数,由所述图样配置参数配置的测量参考信号所在的资源包括第二信号所在的资源,所述第二信号包括如下至少之一:解调参考信号、控制信道信号、相位噪声参考信号。
基于与上述实施例相同或相似的构思,本发明实施例还提供一种信息配置装置,应用于第二通信节点,包括:
第四传输模块,配置为接收控制信息,其中,所述控制信息携带图样配置参数,由所述图样配置参数配置的测量参考信号所在的资源包括第二信号所在的资源,所述第二信号包括如下至少之一:解调参考信号、控制信道信号、相位噪声参考信号。
基于与上述实施例相同或相似的构思,本发明实施例还提供一种信息配置装置,应用于第一通信节点,包括:
第五传输模块,配置为向第二通信节点发送配置信息,其中,所述配置信息中包括信道特性参数区域的信息;
和/或,第三约定模块,配置为与所述第二通信节点约定信道特性参数 区域的信息。
基于与上述实施例相同或相似的构思,本发明实施例还提供一种信息配置装置,应用于第二通信节点,包括:
第六传输模块,配置为接收第一通信节点发送的配置信息,其中,所述配置信息中包括信道特性参数区域的信息;
和/或,第四约定模块,配置为与第一通信节点约定信道特性参数区域的信息。
基于与上述实施例相同或相似的构思,本发明实施例还提供一种信息配置装置,应用于第一通信节点,包括:
第七传输模块,配置为向第二通信节点发送资源的配置信息,其中,所述配置信息包括如下参数至少之一:信道特性参数,发送波束参数,接收波束参数,频域资源,梳妆等级,梳妆偏移,子载波间隔,测量参考信号类型,时域符号信息,在一个周期中重复发送次数,多类时域参数,测量参考信号组件索引集合,测量参考信号组件之间的复用方式,测量参考信号组件和测量参考信号端口之间的映射关系,相位补偿参考信号,多套时域传输参数,准共位置参考信号,多套时域传输参数的选择信息,时间单元偏置集合,激活与去激活信息;其中,所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
基于与上述实施例相同或相似的构思,本发明实施例还提供一种信息配置装置,应用于第二通信节点,包括:
第八传输模块,配置为接收第一通信节点发送的资源的配置信息,其中,所述配置信息包括如下参数至少之一:信道特性参数,发送波束参数,接收波束参数,频域资源,梳妆等级,梳妆偏移,子载波间隔,测量参考信号类型,时域符号信息,在一个周期中重复发送次数,多类时域参数,测量参考信号组件索引集合,测量参考信号组件之间的复用方式,测量参 考信号组件和测量参考信号端口之间的映射关系,相位补偿参考信号,多套时域传输参数,准共位置参考信道,多套时域传输参数的选择信息,时间单元偏置集合,激活与去激活信息指示信息;其中,所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
基于与上述实施例相同或相似的构思,本发明实施例还提供一种信息配置装置,应用于第一通信节点,包括:存储器以及处理器,其中,所述存储器存储多个指令,当所述多个指令被所述处理器执行时实现上述第一通信节点侧的任一方面的信息配置方法。
基于与上述实施例相同或相似的构思,本发明实施例还提供一种信息配置装置,应用于第二通信节点,包括:存储器以及处理器,其中,所述存储器存储多个指令,当所述多个指令被所述处理器执行时实现上述第二通信节点侧的任一方面的信息配置方法。
此外,本申请实施例还提供一种计算机存储介质,存储有多个指令,在多个指令被一个或多个处理器执行时实现上述第一通信节点侧的任一方面的信息配置方法。
本申请实施例还提供一种计算机存储介质,存储有多个指令,在多个指令被一个或多个处理器执行时实现上述第二通信节点侧的任一方面的信息配置方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明 的保护范围应以所述权利要求的保护范围为准。
工业实用性
本发明实施例的技术方案对于NR中的测量参考信号设计进行了考虑,解决NR中测量参考信号用于波束管理,以及测量参考信号图样如何适应波束管理的同时适应时隙结构的动态变化。其中,通过资源共享传输参数,节省信令开销的同时,可以隐含其他信息,特别便于用于波束管理的资源的管理。另一方面通过设置时频资源区域,使得落在相同时频区域的资源之间是准共位置关系的,简化资源之间的QCL关系设置。另一方面,考虑到NR中部分带宽的测量参考信号的发送,使得测量参考信号图样设计的时候可以占有其他信号占有的资源。

Claims (68)

  1. 一种信息配置方法,包括:
    向第二通信节点发送携带传输参数的信息,其中,所述传输参数是M个资源所共享的;
    或者,与第二通信节点约定M个资源所共享的传输参数;
    其中,M为大于1的自然数;
    其中,所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
  2. 根据权利要求1所述的方法,其中,所述传输参数包括所述测量参考信号资源和/或测量参考信号对应的如下参数中的至少之一:
    信道特性参数;发送波束参数;接收波束参数;频域资源;梳妆等级;梳妆偏移;子载波间隔;测量参考信号类型;时域符号信息;在一个周期中重复发送次数;图样配置参数;第二类时域参数;测量参考信号组件索引集合;测量参考信号组件之间的复用方式;测量参考信号组件和测量参考信号端口之间的映射关系;功率参数;相位补偿参考信号;准共位置参考信号;时间单元偏置集合;激活和去激活信息指示信息;
    其中,所述一个测量参考信号资源中包括一个或者多个测量参考信号。
  3. 根据权利要求2所述的方法,其中,两个测量参考信号端口共享信道特性参数,表示两个测量参考信号关于所述信道特性参数是准共位置的。
  4. 根据权利要求2或3所述的方法,其中,所述信道特性参数包括如下参数中的至少之一:延迟扩展、多普勒扩展、多普勒偏移、平均延迟、平均增益、平均垂直发送角、平均水平发送角、平均垂直到达角、平均水平到达角、中心垂直发送角、中心水平发送角、中心垂直到达角、中心水平到达角。
  5. 根据权利要求2所述的方法,其中,所述发送波束参数通过如下信 息中的至少之一表示:参考信号资源信息、参考信号资源集合信息、参考信号端口信息、参考信号端口集合信息、参考信号所在的时域资源信息、参考信号所在的频域资源信息、预编码矩阵信息、发送波束索引信息。
  6. 根据权利要求2所述的方法,其中,所述接收波束参数通过如下信息中的至少之一表示:参考信号资源信息、参考信号资源集合信息、参考信号端口信息、参考信号端口集合信息、参考信号所在的时域资源信息、参考信号所在的频域资源信息、预编码矩阵信息、接收波束索引信息。
  7. 根据权利要求2所述的方法,其中,所述频域资源满足以下至少一项:
    所述频域资源是测量参考信号所在的物理资源块集合;
    所述频域资源为分配给第二通信节点的系统带宽;
    所述频域资源为分配给第二通信节点的系统带宽中的一个物理资源块集合;
    所述频域资源在频域上是非连续的。
  8. 根据权利要求2所述的方法,其中,所述梳妆等级和所述梳妆偏移满足以下至少一项:
    根据所述梳妆等级和/或所述梳妆偏移,确定测量参考信号占有的频域资源、时域资源以及码域资源中的至少一项;
    所述梳妆等级和可训练的接收波束个数之间有关联;
    存在多类梳妆等级。
  9. 根据权利要求2所述的方法,其中,所述测量参考信号类型包括根据以下至少之一方式确定的类型:
    所述测量参考信号是全带宽发送的,或者,所述测量参考信号是部分带宽发送的;
    所述测量参考信号是用于波束管理的,或者,所述测量参考信号是用 于信道质量获取的;
    所述测量参考信号在一个周期中的时域重复发送次数大于预定阀值,或者,所述测量参考信号在一个周期中的时域重复发送次数等于或者小于预定阀值;
    所述测量参考信号所在的时域符号上仅有测量参考信号,或者,所述测量参考信号所在的时域符号上有测量参考信号之外的信号;
    所述测量参考信号在时域的信号有重复图样,或者,所述测量参考信号在时域的信号没有重复图样;
    所述测量参考信号采用交织频分多址IFDMA的方式发送,或者,所述测量参考信号采用增大子载波间隔的方式发送;
    所述测量参考信号资源有对应的准共位置参考信号,或者,所述测量参考信号资源没有对应的准共位置参考信号。
  10. 根据权利要求2所述的方法,其中,所述时域符号信息满足以下至少之一:
    包括时域符号的个数信息;
    包括占有的第一子载波间隔的时域符号的索引集合;
    包括占有的第二子载波间隔的时域符号的索引集合;
    包括占有的第一子载波间隔的时域符号的个数信息;
    包括占有的第二子载波间隔的时域符号的个数信息;
    所述时域符号信息中包括一个时间单元中的任意一个或者多个时域符号;
    所述时域符号信息中包括一个时间单元中除下行控制域之外的任意一个或者多个时域符号;
    所述时域符号信息中包括两级时域符号索引,第一级时域符号索引是第一子载波间隔对应的时域符号索引,第二级时域符号索引是第二子载波 间隔的时域符号在一个第一子载波间隔的时域符号中的索引,其中,所述一个第一子载波间隔的时域符号的时长中包括一个或者多个第二子载波间隔的时域符号。
  11. 根据权利要求2所述的方法,其中,所述图样配置参数满足如下特征至少之一:
    所述图样配置参数指示测量参考信号和/或测量参考信号资源所占的时域资源、频域资源以及码域资源中的至少一项;
    所述图样配置参数指示测量参考信号或测量参考信号资源在一个时间单元中的频域资源和码域资源中的至少一项,其中,所述多个时间单元中所述测量参考信号或所述测量参考信号资源所占的频域资源和码域资源中的至少一项相同;
    所述图样配置参数中指示的测量参考信号占有的频域资源包括一个物理资源块中任意一个或者多个子载波资源;
    所述图样配置参数中第一指示信息和第二指示信息独立指示,其中,所述第一指示信息指示测量参考信号或者测量参考信号资源占有的频域资源,所述第二指示信息指示测量参考信号或者测量参考信号资源占有的时域资源。
  12. 根据权利要求2所述的方法,其中,
    所述第二类时域参数指示如下信息:对测量参考信号和/或测量参考信号资源对应的第一时域符号集合的时域区域划分情况,其中,不同时域区域对应的第一发送参数和接收参数中至少一项不同。
  13. 根据权利要求12所述的方法,其中,
    所述测量参考信号和/或测量参考信号资源对应的第一时域符号集合由一个周期中包括的时域符号构成;或者,
    所述测量参考信号和/或测量参考信号资源对应的第一时域符号集合由 多于一个周期中包括的时域符号构成。
  14. 根据权利要求12所述的方法,其中,所述第一发送参数包括如下信息中的至少之一:发送波束、所述测量参考信号占有的频域资源、所述测量参考信号占有的码域资源;
    所述接收参数包括:接收波束;
    所述不同时域区域对应的第二发送参数相同,所述第二发送参数包括如下信息中的至少之一:所述测量参考信号占有的频域资源、所述测量参考信号占有的码域资源。
  15. 根据权利要求1所述的方法,其中,所述传输参数满足以下至少之一:
    所述传输参数包括在测量参考信号资源集合的配置信息中;
    所述传输参数包括在参考信号集合的配置信息中;
    所述传输参数包括在所述M个测量参考信号资源中每个测量参考信号资源的配置信息中,且约定所述M个测量参考信号资源对应的所述传输参数是相同的;
    所述传输参数根据所述测量参考信号资源中包括的测量参考信号的类型确定;
    所述传输参数根据所述测量参考信号资源对应的反馈资源确定;
    在所述参考信号集合的配置信息中指示所述参考信号集合包括的一个或多个参考信号资源集合中的测量参考信号资源是否共享所述传输参数;
    在所述测量参考信号资源集合的配置信息中指示所述测量参考信号资源集合中的测量参考信号资源是否共享所述传输参数;
    其中,所述参考信号集合中包括一个或者多个测量参考信号资源集合,所述M个测量参考信号资源属于一个或者多个测量参考信号资源集合。
  16. 根据权利要求1所述的方法,其中,
    所述传输参数构成一个传输参数配置信息。
  17. 根据权利要求16所述的方法,其中,所述传输参数配置信息满足以下至少之一:
    所述M个测量参考信号资源中的每个测量参考信号资源的配置信息中包括所述传输参数配置信息的索引信息;
    测量参考信号资源集合的配置信息中包括所述传输参数配置信息的索引信息;
    参考信号集合的配置信息中包括所述传输参数配置信息的索引信息;
    所述测量参考信号资源中包括的测量参考信号的类型和所述传输参数配置信息之间有对应关系;
    所述测量参考信号资源对应的反馈资源和所述传输参数配置信息之间有对应关系;
    其中,所述参考信号集合中包括一个或者多个测量参考信号资源集合,所述M个测量参考信号资源属于一个或者多个测量参考信号资源集合。
  18. 根据权利要求1所述的方法,其中,
    所述携带传输参数的信息包括以下至少之一:高层控制信息、物理层控制信息、专有控制信息、公共控制信息。
  19. 根据权利要求2所述的方法,其中,所述时间单元偏置集合信息表示如下信息至少之一:
    所述测量参考信号的发送时间属于所述时间单元偏置集合对应的时间集合的子集;
    所述测量参考信号的发送时间是所述时间单元偏置集合对应的时间集合中第一个满足发送条件的时间;
    所述时间单元偏置集合是时间单元偏置长度,表示时间单元偏置集合中包括的时间单元是连续的,或者是在一个周期中第二周期出现的时间单 元。
  20. 根据权利要求2所述的方法,其中,所述激活与去激活信息满足如下特征:
    用相同指示值表示所述激活与去激活两个状态,所述指示值第一次发送表示激活,所述指示值第二次发送表示去激活;
    和/或,用指示值发生变化表示激活新资源,去激活旧资源。
  21. 一种信息配置方法,包括:
    接收第一通信节点发送的携带传输参数的信息,其中,所述传输参数是M个资源所共享的;
    或者,与第一通信节点约定M个资源所共享的传输参数;
    其中,M为大于1的自然数;所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
  22. 根据权利要求21所述的方法,其中,所述传输参数包括所述测量参考信号资源和/或测量参考信号对应的如下参数中的至少之一:
    信道特性参数;发送波束参数;接收波束参数;频域资源;梳妆等级;梳妆偏移;子载波间隔;测量参考信号类型;时域符号信息;在一个周期中重复发送次数;图样配置参数;第二类时域参数;测量参考信号组件索引集合;测量参考信号组件之间的复用方式;测量参考信号组件和测量参考信号端口之间的映射关系;功率参数;相位补偿参考信号;准共位置参考信号;时间单元偏置集合;激活和去激活信息指示信息;
    其中,所述一个测量参考信号资源中包括一个或多个测量参考信号。
  23. 一种信息配置方法,包括:
    发送控制信息,其中,所述控制信息携带图样配置参数,由所述图样配置参数配置的测量参考信号所在的资源包括第二信号所在的资源,所述第二信号包括如下至少之一:解调参考信号、控制信道信号、相位噪声参 考信号。
  24. 根据权利要求23所述的方法,其中,所述测量参考信号和所述第二信号所在的资源相同时,所述测量参考信号和所述第二信号满足如下至少之一:
    所述测量参考信号和所述第二信号分时发送;
    所述测量参考信号和所述第二信号是发送给不同通信节点的;
    所述测量参考信号和所述第二信号是来自不同通信节点的。
  25. 根据权利要求23所述的方法,其中,所述图样配置参数指示所述测量参考信号所在的时域符号的索引,其中,所述时域符号满足如下至少之一:
    所述时域符号包括一个时间单元中的任意一个或者多个时域符号;
    所述时域符号包括一个时间单元中除下行控制域之外的任意一个或者多个时域符号;
    所述时域符号的索引包括两级符号索引,第一级符号索引是第一子载波间隔对应的时域符号索引,第二级符号索引是在一个第一子载波间隔符号中包括的多个第二子载波间隔的时域符号索引。
  26. 根据权利要求23所述的方法,其中,所述图样配置参数包括所述测量参考信号所在的频域资源指示信息,其中,所述频域资源指示信息包括可以发送所述第二信号的频域资源,或者,所述频域资源包括一个或者多个物理资源块中任意一个或者多个频域资源。
  27. 根据权利要求23所述的方法,其中,一个资源在时域为一个时域符号时长,在频域为一个子载波。
  28. 根据权利要求23所述的方法,其中,所述方法还包括:根据所述测量参考信号是否是宽带发送确定所述测量参考信号所在的资源是否可以包括所述第二信号所在的资源;
    或者,根据测量参考信号占有的频域带宽中是否包括数据信号确定所述测量参考信号所在的资源是否可以包括所述第二信号所在的资源;
    其中,所述数据信号和所述测量参考信号是发送给相同的第二通信节点的,或者,所述数据信号和所述测量参考信号是发送给不同的第二通信节点的。
  29. 根据权利要求23所述的方法,其中,所述图样配置参数满足如下特征至少之一:
    所述图样配置参数指示测量参考信号和/或测量参考信号资源所占的时域资源、频域资源以及码域资源中的至少一项;
    所述图样配置参数中指示的测量参考信号占有的频域资源包括一个物理资源块中任意一个或者多个子载波资源;
    所述图样配置参数中第一指示信息和第二指示信息独立指示,其中,所述第一指示信息指示测量参考信号或者测量参考信号资源占有的频域资源,所述第二指示信息指示测量参考信号或者测量参考信号资源占有的时域资源。
  30. 一种信息配置方法,包括:
    接收控制信息,其中,所述控制信息携带图样配置参数,由所述图样配置参数配置的测量参考信号所在的资源包括第二信号所在的资源,所述第二信号包括如下至少之一:解调参考信号、控制信道信号、相位噪声参考信号。
  31. 根据权利要求30所述的方法,其中,所述测量参考信号和所述第二信号所在的资源相同时,所述测量参考信号和所述第二信号满足如下至少之一:
    所述测量参考信号和所述第二信号分时发送;
    所述测量参考信号和所述第二信号是发送给不同通信节点的;
    所述测量参考信号和所述第二信号是来自不同通信节点的。
  32. 根据权利要求30所述的方法,其中,所述图样配置参数指示所述测量参考信号所在的时域符号的索引,其中,所述时域符号满足如下至少之一:
    所述时域符号包括一个时间单元中的任意一个或者多个时域符号;
    所述时域符号包括一个时间单元中除下行控制域之外的任意一个或者多个时域符号;
    所述时域符号的索引包括两级符号索引,第一级符号索引是第一子载波间隔对应的时域符号索引,第二级符号索引是在一个第一子载波间隔符号中包括的多个第二子载波间隔的时域符号索引。
  33. 根据权利要求30所述的方法,其中,所述图样配置参数包括所述测量参考信号所在的频域资源指示信息,其中,所述频域资源指示信息包括可以发送所述第二信号的频域资源,或者,所述频域资源包括一个或者多个物理资源块中任意一个或者多个频域资源。
  34. 根据权利要求30所述的方法,其中,
    根据所述测量参考信号是否是宽带发送确定所述测量参考信号所在的资源是否可以包括所述第二信号所在的资源;
    或者,根据测量参考信号占有的频域带宽中是否包括数据信号确定所述测量参考信号所在的资源是否可以包括所述第二信号所在的资源;
    其中,所述数据信号是发送给第二通信节点的;或者,所述数据信号是发送给第三通信节点的,其中,所述第二通信节点是接收所述控制信息的通信节点。
  35. 根据权利要求30所述的方法,其中,所述图样配置参数满足如下特征至少之一:
    所述图样配置参数指示测量参考信号和/或测量参考信号资源所占的时 域资源、频域资源以及码域资源中的至少一项;
    所述图样配置参数中指示的测量参考信号占有的频域资源包括一个物理资源块中任意一个或者多个子载波资源;
    所述图样配置参数中第一指示信息和第二指示信息独立指示,其中,所述第一指示信息指示测量参考信号或者测量参考信号资源占有的频域资源,所述第二指示信息指示测量参考信号或者测量参考信号资源占有的时域资源。
  36. 一种信息配置方法,包括:
    向第二通信节点发送配置信息,所述配置信息中包括信道特性参数区域的信息;
    和/或,与所述第二通信节点约定信道特性参数区域的信息。
  37. 根据权利要求36所述的方法,其中,所述信道特性参数区域为如下区域之一:时域区域、频域区域、时频域区域。
  38. 根据权利要求36所述的方法,其中,所述信道特性参数区域满足如下特征至少之一:
    所述信道特性参数区域为时域区域;
    所述信道特性参数区域为频域区域;
    所述信道特性参数区域为时频域区域;所述信道特性参数区域中包括的时域资源是时域非连续的;
    所述信道特性参数区域中包括的频域资源是频域非连续的。
  39. 根据权利要求36所述的方法,其中,落在一个信道特性参数区域中的多个参考信号或者多个参考信号资源关于所述信道特性参数是准共位置的。
  40. 根据权利要求36所述的方法,其中,所述信道特性参数区域包括如下参数中的至少之一:延迟扩展、多普勒扩展、多普勒偏移、平均延迟、 平均增益、平均垂直发送角、平均水平发送角、平均垂直到达角、平均水平到达角、中心垂直发送角、中心水平发送角、中心垂直到达角、中心水平到达角。
  41. 一种信息配置方法,包括:
    接收第一通信节点发送的配置信息,所述配置信息中包括信道特性参数区域的信息;
    和/或,与第一通信节点约定信道特性参数区域的信息。
  42. 根据权利要求41所述的方法,其中,所述信道特性参数区域为如下区域之一:时域区域、频域区域、时频域区域。
  43. 根据权利要求41所述的方法,其中,所述信道特性参数区域满足如下特征至少之一:
    所述信道特性参数区域为时域区域;
    所述信道特性参数区域为频域区域;
    所述信道特性参数区域为时频域区域;
    所述信道特性参数区域中包括的时域资源是时域非连续的;
    所述信道特性参数区域中包括的频域资源是频域非连续的。
  44. 根据权利要求41所述的方法,其中,落在一个信道特性参数区域中的多个参考信号或者多个参考信号资源关于所述信道特性参数是准共位置的。
  45. 一种信息配置方法,包括:
    向第二通信节点发送资源的配置信息,其中,所述配置信息包括如下参数至少之一:信道特性参数,发送波束参数,接收波束参数,频域资源,梳妆等级,梳妆偏移,子载波间隔,测量参考信号类型,时域符号信息,在一个周期中重复发送次数,多类时域参数,测量参考信号组件索引集合,测量参考信号组件之间的复用方式,测量参考信号组件和测量参考信号端 口之间的映射关系,相位补偿参考信号,多套时域传输参数,准共位置参考信号,多套时域传输参数的选择信息,时间单元偏置集合,激活与去激活信息指示信息;
    其中,所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
  46. 根据权利要求45所述的方法,其中,所述多类时域参数包括第一类时域参数和第二类时域参数,其中,
    所述第一类时域参数指示所述测量参考信号资源的周期特性,所述周期特性包括:周期、半周期、非周期;
    所述第二类时域参数指示将所述测量参考信号或者所述测量参考信号资源包括的时域符号集合划分为多个时域区域,不同时域区域对应的所述测量参考信号或者所述测量参考信号资源的第一发送参数和接收参数中至少一项不同。
  47. 根据权利要求46所述的方法,其中,所述第一发送参数包括如下参数至少之一:发送波束、所述测量参考信号占有的频域资源、所述测量参考信号占有的码域资源;
    所述接收参数包括:接收波束;
    所述不同时域区域对应的第二发送参数相同,所述第二发送参数包括如下信息中的至少之一:所述测量参考信号占有的频域资源、所述测量参考信号占有的码域资源。
  48. 根据权利要求45所述的方法,其中,所述配置信息通过至少两个控制信息携带。
  49. 根据权利要求45所述的方法,其中,所述时间单元偏置集合信息表示如下信息至少之一:
    所述测量参考信号的发送时间属于所述时间单元偏置集合对应的时 间集合的子集;
    所述测量参考信号的发送时间是所述时间单元偏置集合对应的时间集合中第一个满足发送条件的时间;
    所述时间单元偏置集合是时间单元偏置长度,表示时间单元偏置集合中包括的时间单元是连续的,或者是在一个周期中第二周期出现的时间单元。
  50. 根据权利要求45所述的方法,其中,所述多套时域传输参数中的不同套传输参数通过如下特征中的至少之一区分:
    时域是周期的、非周期的或半周期的;
    所述时域的一个周期内包括的时域符号个数;
    所述测量参考信号在一个周期中的重复发送次数;
    所述测量参考信号对应的梳妆等级。
  51. 根据权利要求45所述的方法,其中,
    用相同指示值表示所述激活与去激活两个状态,所述指示值第一次发送表示激活,所述指示值第二次发送表示去激活;
    和/或,用指示值发生变化表示激活新资源,去激活旧资源。
  52. 根据权利要求45所述的方法,其中,所述时域符号信息满足以下特征至少之一:
    包括时域符号的个数信息;
    包括占有的第一子载波间隔的时域符号的索引集合;
    包括占有的第二子载波间隔的时域符号的索引集合;
    包括占有的第一子载波间隔的时域符号的个数信息;
    包括占有的第二子载波间隔的时域符号的个数信息;
    所述时域符号信息中包括一个时间单元中的任意一个或者多个时域符号;
    所述时域符号信息中包括一个时间单元中除下行控制域之外的任意一个或者多个时域符号;
    所述时域符号信息中包括两级时域符号索引,第一级时域符号索引是第一子载波间隔对应的时域符号索引,第二级时域符号索引是第二子载波间隔的时域符号在一个第一子载波间隔的时域符号中的索引,其中,所述一个第一子载波间隔的时域符号的时长中包括一个或者多个第二子载波间隔的时域符号。
  53. 根据权利要求45所述的方法,其中,所述频域资源满足以下至少一项:
    所述频域资源是测量参考信号所在的物理资源块集合;
    所述频域资源为分配给第二通信节点的系统带宽;
    所述频域资源为分配给第二通信节点的系统带宽中的一个物理资源块集合;
    所述频域资源在频域上是非连续的。
  54. 根据权利要求45所述的方法,其中,所述发送波束参数通过如下信息中的至少之一表示:参考信号资源信息、参考信号资源集合信息、参考信号端口信息、参考信号端口集合信息、参考信号所在的时域资源信息、参考信号所在的频域资源信息、预编码矩阵信息、发送波束索引信息。
  55. 根据权利要求45所述的方法,其中,所述接收波束参数通过如下信息中的至少之一表示:参考信号资源信息、参考信号资源集合信息、参考信号端口信息、参考信号端口集合信息、参考信号所在的时域资源信息、参考信号所在的频域资源信息、预编码矩阵信息、接收波束索引信息。
  56. 一种信息配置方法,包括:
    接收第一通信节点发送的资源的配置信息,其中,所述配置信息包括如下参数至少之一:信道特性参数,发送波束参数,接收波束参数,频域 资源,梳妆等级,梳妆偏移,子载波间隔,测量参考信号类型,时域符号信息,在一个周期中重复发送次数,多类时域参数,测量参考信号组件索引集合,测量参考信号组件之间的复用方式,测量参考信号组件和测量参考信号端口之间的映射关系,相位补偿参考信号,多套时域传输参数,准共位置参考信道,多套时域传输参数的选择信息,时间单元偏置集合,激活与去激活信息指示信息;
    其中,所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
  57. 根据权利要求56所述的方法,其中,所述多类时域参数包括第一类时域参数和第二类时域参数,其中,所述第一类时域参数指示所述测量参考信号资源的周期特性,所述周期特性包括:周期、半周期、非周期;所述第二类时域参数指示将所述测量参考信号或者所述测量参考资源包括的时域符号集合划分为多个时域区域,不同时域区域对应的所述测量参考信号或者所述测量参考信号资源的第一发送参数和接收参数中至少一项不同。
  58. 根据权利要求57所述的方法,其中,所述第一发送参数包括如下参数至少之一:发送波束、所述测量参考信号占有的频域资源、所述测量参考信号占有的码域资源;
    所述接收参数包括:接收波束;
    所述不同时域区域对应的第二发送参数相同,所述第二发送参数包括如下信息中的至少之一:所述测量参考信号占有的频域资源、所述测量参考信号占有的码域资源。
  59. 根据权利要求56所述的方法,其中,所述时域符号信息满足以下特征至少之一:
    包括时域符号的个数信息;
    包括占有的第一子载波间隔的时域符号的索引集合;
    包括占有的第二子载波间隔的时域符号的索引集合;
    包括占有的第一子载波间隔的时域符号的个数信息;
    包括占有的第二子载波间隔的时域符号的个数信息;
    所述时域符号信息中包括一个时间单元中的任意一个或者多个时域符号;
    所述时域符号信息中包括一个时间单元中除下行控制域之外的任意一个或者多个时域符号;
    所述时域符号信息中包括两级时域符号索引,第一级时域符号索引是第一子载波间隔对应的时域符号索引,第二级时域符号索引是第二子载波间隔的时域符号在一个第一子载波间隔的时域符号中的索引,其中,所述一个第一子载波间隔的时域符号的时长中包括一个或者多个第二子载波间隔的时域符号。
  60. 根据权利要求56所述的方法,其中,所述频域资源满足以下至少一项:
    所述频域资源是测量参考信号所在的物理资源块集合;
    所述频域资源为分配给第二通信节点的系统带宽;
    所述频域资源为分配给第二通信节点的系统带宽中的一个物理资源块集合;
    所述频域资源在频域上是非连续的。
  61. 根据权利要求56所述的方法,其中,所述发送波束参数通过如下信息中的至少之一表示:参考信号资源信息、参考信号资源集合信息、参考信号端口信息、参考信号端口集合信息、参考信号所在的时域资源信息、参考信号所在的频域资源信息、预编码矩阵信息、发送波束索引信息。
  62. 根据权利要求56所述的方法,其中,所述接收波束参数通过如下 信息中的至少之一表示:参考信号资源信息、参考信号资源集合信息、参考信号端口信息、参考信号端口集合信息、参考信号所在的时域资源信息、参考信号所在的频域资源信息、预编码矩阵信息、接收波束索引信息。
  63. 一种信息配置装置,应用于第一通信节点,包括:
    第一传输模块,配置为向第二通信节点发送携带传输参数的信息,其中,所述传输参数是M个资源所共享的;或者,
    第一约定模块,配置为与第二通信节点约定M个资源所共享的传输参数;
    其中,M为大于1的自然数;所述资源为如下资源中的一种或者多种:测量参考信号资源,上报资源,参考信号资源。
  64. 根据权利要求63所述的装置,其中,所述传输参数包括所述测量参考信号资源和/或测量参考信号对应的如下参数至少之一:
    信道特性参数;发送波束参数;接收波束参数;频域资源;梳妆等级;梳妆偏移;子载波间隔;测量参考信号类型;时域符号信息;在一个周期中重复发送次数;图样配置参数;第二类时域参数;测量参考信号组件索引集合;测量参考信号组件之间的复用方式;测量参考信号组件和测量参考信号端口之间的映射关系;功率参数;相位补偿参考信号;准共位置参考信号;时间单元偏置集合;激活和去激活信息指示信息;
    其中,一个测量参考信号资源中包括一个或者多个测量参考信号。
  65. 一种信息配置装置,应用于第二通信节点,包括:
    第二传输模块,配置为接收第一通信节点发送的携带传输参数的信息,其中,所述传输参数是M个资源所共享的;或者,
    第二约定模块,配置为与第一通信节点约定M个资源所共享的传输参数;
    其中,M为大于1的自然数;所述资源为如下资源中的一种或者多种: 测量参考信号资源,上报资源,参考信号资源。
  66. 根据权利要求65所述的装置,其中,所述传输参数包括所述测量参考信号资源和/或测量参考信号对应的如下参数至少之一:
    信道特性参数;发送波束参数;接收波束参数;频域资源;梳妆等级;梳妆偏移;子载波间隔;测量参考信号类型;时域符号信息;在一个周期中重复发送次数;图样配置参数;第二类时域参数;测量参考信号组件索引集合;测量参考信号组件之间的复用方式;测量参考信号组件和测量参考信号端口之间的映射关系;功率参数;相位补偿参考信号;准共位置参考信号;时间单元偏置集合;激活和去激活信息指示信息;
    其中,一个测量参考信号资源中包括一个或者多个测量参考信号。
  67. 一种信息配置装置,包括:存储器以及处理器,其中,所述存储器存储多个指令,当所述多个指令被所述处理器执行时实现权利要求1至20中任一项所述的信息配置方法;
    或者,当所述多个指令被所述处理器执行时实现权利要求21或22所述的信息配置方法;
    或者,当所述多个指令被所述处理器执行时实现权利要求23至29中任一项所述的信息配置方法;
    或者,当所述多个指令被所述处理器执行时实现权利要求30至35中任一项所述的信息配置方法;
    或者,当所述多个指令被所述处理器执行时实现权利要求36至40中任一项所述的信息配置方法;
    或者,当所述多个指令被所述处理器执行时实现权利要求41至44中任一项所述的信息配置方法;
    或者,当所述多个指令被所述处理器执行时实现权利要求45至55中任一项所述的信息配置方法;
    或者,当所述多个指令被所述处理器执行时实现权利要求56至62中任一项所述的信息配置方法。
  68. 一种计算机存储介质,存储有多个指令,当所述多个指令被一个或多个处理器执行时实现权利要求1至20中任一项所述的方法;
    或者,当所述多个指令被一个或多个处理器执行时实现权利要求21或22所述的信息配置方法;
    或者,当所述多个指令被一个或多个处理器执行时实现权利要求23至29中任一项所述的信息配置方法;
    或者,当所述多个指令被一个或多个处理器执行时实现权利要求30至35中任一项所述的信息配置方法;
    或者,当所述多个指令被一个或多个处理器执行时实现权利要求36至40中任一项所述的信息配置方法;
    或者,当所述多个指令被一个或多个处理器执行时实现权利要求41至44中任一项所述的信息配置方法;
    或者,当所述多个指令被一个或多个处理器执行时实现权利要求45至55中任一项所述的信息配置方法;
    或者,当所述多个指令被一个或多个处理器执行时实现权利要求56至62中任一项所述的信息配置方法。
PCT/CN2018/080545 2017-03-24 2018-03-26 一种信息配置方法、装置和计算机存储介质 WO2018171805A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184523.XA CN108631984B (zh) 2017-03-24 2017-03-24 一种信息配置方法及装置
CN201710184523.X 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018171805A1 true WO2018171805A1 (zh) 2018-09-27

Family

ID=63584948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080545 WO2018171805A1 (zh) 2017-03-24 2018-03-26 一种信息配置方法、装置和计算机存储介质

Country Status (2)

Country Link
CN (1) CN108631984B (zh)
WO (1) WO2018171805A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603824A (zh) * 2019-08-05 2019-12-20 北京小米移动软件有限公司 天线面板选择方法、装置及存储介质
CN111342938A (zh) * 2019-12-31 2020-06-26 中兴通讯股份有限公司 物理信道传输方法、装置、节点和存储介质
US20220006589A1 (en) * 2018-11-09 2022-01-06 Telefonaktiebolaget Lm Ericsson (Publ) System and method for phase noise-based signal design for positioning in a communication system
CN116114194A (zh) * 2020-09-25 2023-05-12 华为技术有限公司 一种通信方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082907B (zh) 2018-10-22 2021-06-01 成都华为技术有限公司 一种确定参考信号的测量值的方法及装置
WO2020087483A1 (en) 2018-11-02 2020-05-07 Qualcomm Incorporated Csi measurement with different qcl configuration for a same csi-rs resource
CN111278116B (zh) * 2018-12-28 2022-09-16 维沃移动通信有限公司 上行信号发送方法及装置
CN111435887B (zh) * 2019-01-11 2022-02-08 大唐移动通信设备有限公司 一种定位处理方法、装置及设备
CN114124333A (zh) * 2019-04-02 2022-03-01 上海朗桦通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113325373A (zh) * 2020-02-29 2021-08-31 华为技术有限公司 信号发送方法及相关装置
CN115664474A (zh) * 2020-09-25 2023-01-31 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN117835145A (zh) * 2022-09-28 2024-04-05 中兴通讯股份有限公司 信道探测参考信号srs的到达角度估计方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140135027A1 (en) * 2012-11-09 2014-05-15 Apple Inc. Reducing scheduling requests by a wireless communication device transmitting voice data over dynamically scheduled resources
CN103945447A (zh) * 2013-01-18 2014-07-23 北京三星通信技术研究有限公司 一种进行下行信道特性参数测量的方法及用户设备
CN104081846A (zh) * 2012-10-30 2014-10-01 华为技术有限公司 增强物理下行控制信道的处理方法、网络侧设备和用户设备
CN105471559A (zh) * 2014-09-05 2016-04-06 中兴通讯股份有限公司 准共位置的配置、确定方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595514B (zh) * 2011-01-12 2015-03-18 上海贝尔股份有限公司 非周期性探测参考信号的配置方法
CN103428778B (zh) * 2012-05-18 2016-08-03 华为技术有限公司 上行传输参数选择方法和设备
CN103491637B (zh) * 2012-06-12 2017-03-29 电信科学技术研究院 一种pdsch传输资源的确定方法及装置
CN105580297B (zh) * 2013-09-27 2018-10-23 三星电子株式会社 用于先进lte的发现信号的方法和装置
CN110545133B (zh) * 2013-12-20 2022-12-06 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置
CN105743625A (zh) * 2014-12-10 2016-07-06 中兴通讯股份有限公司 一种实现下行协同多点传输的方法和装置
CN105991231B (zh) * 2015-02-28 2021-07-30 中兴通讯股份有限公司 获取信道状态信息csi的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081846A (zh) * 2012-10-30 2014-10-01 华为技术有限公司 增强物理下行控制信道的处理方法、网络侧设备和用户设备
US20140135027A1 (en) * 2012-11-09 2014-05-15 Apple Inc. Reducing scheduling requests by a wireless communication device transmitting voice data over dynamically scheduled resources
CN103945447A (zh) * 2013-01-18 2014-07-23 北京三星通信技术研究有限公司 一种进行下行信道特性参数测量的方法及用户设备
CN105471559A (zh) * 2014-09-05 2016-04-06 中兴通讯股份有限公司 准共位置的配置、确定方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220006589A1 (en) * 2018-11-09 2022-01-06 Telefonaktiebolaget Lm Ericsson (Publ) System and method for phase noise-based signal design for positioning in a communication system
US11949621B2 (en) * 2018-11-09 2024-04-02 Telefonaktiebolaget Lm Ericsson (Publ) System and method for phase noise-based signal design for positioning in a communication system
CN110603824A (zh) * 2019-08-05 2019-12-20 北京小米移动软件有限公司 天线面板选择方法、装置及存储介质
CN110603824B (zh) * 2019-08-05 2023-04-18 北京小米移动软件有限公司 天线面板选择方法、装置及存储介质
CN111342938A (zh) * 2019-12-31 2020-06-26 中兴通讯股份有限公司 物理信道传输方法、装置、节点和存储介质
CN116114194A (zh) * 2020-09-25 2023-05-12 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN108631984B (zh) 2022-11-15
CN108631984A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
WO2018171805A1 (zh) 一种信息配置方法、装置和计算机存储介质
US11665695B2 (en) Method and apparatus for transmitting and receiving reference signal
US11323908B2 (en) Method of allocating CSI-RS for beam management
US10819488B2 (en) Interference measurement indication method, interference measurement method, related device, and communication system
US11128510B2 (en) Data transmission method, user equipment, and network side device
CN108633061B9 (zh) 传输参数确定方法及装置
WO2020015757A1 (zh) 信号传输方法、装置、设备及计算机存储介质
CN102246429B (zh) 使用多个天线发送探测参考信号序列的方法
CN101695191B (zh) 一种分配测量参考信号资源的系统及方法
JP2020529797A (ja) 基準信号構成情報を示すための方法、基地局、及び端末
US9866410B2 (en) Method and apparatus for channel estimation and equalization in QAM-FBMC system
US8588762B2 (en) Method and apparatus for performing channel measurement for cell
KR20130122572A (ko) 단말 대 단말 통신을 위한 송수신 방법
JP2021500779A (ja) 時間周波数リソースを決定するための方法およびデバイス
KR20100138261A (ko) 무선통신 시스템에서 참조신호의 할당방법 및 그 장치, 그 장치를 이용한 송수신장치
US20210235428A1 (en) Resource allocation method, measurement method, frequency domain resource determination method, transmission method and corresponding devices, equipment and storage media
CN107615834A (zh) 自适应导频分配的系统和方法
US11083002B2 (en) Channel state information-reference signal transmission method and device
JP2020504976A (ja) 基準信号、端末デバイス、およびベースステーションのパラメータを決定および送信する方法および装置
JP2015526044A (ja) 制御チャネルを送受信するための方法、基地局、およびユーザ機器
US10177938B2 (en) Device and method for adaptive channel estimation
CN111435887B (zh) 一种定位处理方法、装置及设备
WO2019030894A1 (ja) 送信装置
WO2017190361A1 (zh) 一种参考信号传输方法及装置
KR20160094321A (ko) 하향링크 참조 신호를 전송하는 방법 및 장치, 그리고 다중 셀 협력 통신 시스템에서 제어 정보를 전송하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771550

Country of ref document: EP

Kind code of ref document: A1