WO2009141558A2 - Procede de synthese de materiaux supramoleculaires - Google Patents

Procede de synthese de materiaux supramoleculaires Download PDF

Info

Publication number
WO2009141558A2
WO2009141558A2 PCT/FR2009/050825 FR2009050825W WO2009141558A2 WO 2009141558 A2 WO2009141558 A2 WO 2009141558A2 FR 2009050825 W FR2009050825 W FR 2009050825W WO 2009141558 A2 WO2009141558 A2 WO 2009141558A2
Authority
WO
WIPO (PCT)
Prior art keywords
acid
ester
denotes
process according
polyamine
Prior art date
Application number
PCT/FR2009/050825
Other languages
English (en)
Other versions
WO2009141558A3 (fr
Inventor
Damien Montarnal
Ludwik Leibler
François-Genes TOURNILHAC
Manuel Hidalgo
Original Assignee
Arkema France
Centre National De La Recherche Scientifique - Cnrs -
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France, Centre National De La Recherche Scientifique - Cnrs - filed Critical Arkema France
Priority to EP09750039A priority Critical patent/EP2276790A2/fr
Priority to BRPI0910532A priority patent/BRPI0910532A2/pt
Priority to US12/991,181 priority patent/US8536281B2/en
Priority to JP2011507972A priority patent/JP5254431B2/ja
Priority to CN200980116272.5A priority patent/CN102131846B/zh
Publication of WO2009141558A2 publication Critical patent/WO2009141558A2/fr
Publication of WO2009141558A3 publication Critical patent/WO2009141558A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/34Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids using polymerised unsaturated fatty acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article

Definitions

  • the present invention relates to a new method of synthesis of supramolecular materials, as well as the materials obtained and their applications.
  • the so-called supramolecular materials are materials consisting of compounds associated by non-covalent bonds, such as hydrogen, ionic and / or hydrophobic bonds.
  • An advantage of these materials is that these physical bonds are reversible, especially under the influence of temperature or by the action of a selective solvent. It is thus possible to envisage using them in fields of application such as coatings (paints, cosmetics, etc.), adhesives, hot melt adhesives and powder coatings or as an additive in thermoplastics or in bitumens. .
  • these materials also have elastomeric properties. Unlike conventional elastomers, these materials have the advantage of being able to be fluidized above a certain temperature, which facilitates their implementation, in particular the good filling of the molds, as well as their recycling. Although they are not composed of crosslinked polymers but small molecules, these materials, like elastomers, are capable of exhibiting dimensional stability over very long times and recovering their initial shape after large deformations. They can be used to make seals, thermal or acoustic insulators, tires, cables, sheaths, shoes, packaging, patches (cosmetics or dermo-pharmaceuticals), dressings, elastic hose clamps, vacuum tubes, or tubes and hoses for transporting fluids.
  • polyamines in particular diethylene triamine, DETA, triethylene tetramine, TETA or tetraethylene pentamine, TEPA
  • polyamines in particular diethylene triamine, DETA, triethylene tetramine, TETA or tetraethylene pentamine, TEPA
  • associative groups for example imidazolidone functional groups
  • DETA or TETA DETA or TETA with a polyacid such as dimers and trimers of fatty acids or polyacrylic acid.
  • This material does not have elastomeric properties.
  • a self-healing elastomeric supramolecular material is further disclosed in WO 2006/087475. It comprises molecules containing at least three associative functional groups, such as imidazolidone groups, capable of forming several physical bonds and which can be obtained by reacting urea on the product of the reaction of a polyamine with triacids. It is stated that this Alternatively, the product can be obtained by reaction of the triacids with the condensation product of urea with a polyamine such as diethyl triamine (DETA).
  • DETA diethyl triamine
  • This method also makes it possible to easily adjust the architecture of the materials obtained, and consequently their properties, by modifying the quantity and the nature of the reagents involved. It is thus possible in particular to obtain a material having the properties of a thermoplastic elastomer, or even such an elastomer self-healing, that is to say capable, once cut, torn or scratched, to repair by simply bringing the fractured surfaces into contact without the need to heat up or apply significant pressure or to carry out any reaction chemical, the repaired material retaining elastomeric properties.
  • the subject of the present invention is a process for synthesizing a supramolecular material comprising:
  • the subject of the invention is also the material that can be obtained by this method.
  • the dicarboxylic acid used in the first step of the process according to the invention advantageously comprises from 5 to 100, preferably from 12 to 100 and more preferably from 24 to 90 carbon atoms. It can be a linear alkyldicarboxylic acid such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, thapsic acid, octadecanedioic or branched acid such as 3,3-dimethylglutaric acid.
  • a linear alkyldicarboxylic acid such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid,
  • the diacid may also be mixed with other compounds such as mono- or tri-carboxylic acids. It is thus possible to use a mixture of mono-, di- and trimeric fatty acids.
  • dimers oligomers of 2 identical or different monomers
  • mixtures of dimers and trimers of fatty acids of vegetable origin are preferred.
  • Oligomerization of unsaturated fatty acids such as undecylenic, myristoleic, palmitoleic, oleic, linoleic, linolenic, ricinoleic, eicosenoic and docosenoic acids, which are commonly found in pine oils (TaIl oil fatty acids), rapeseed, corn, sunflower, soy, grape seeds, linseed, jojoba, as well as the eicosapentaenoic and docosahexaenoic acids found in fish oils.
  • unsaturated fatty acids such as undecylenic, myristoleic, palmitoleic, oleic, linoleic, linolenic, ricinoleic, eicosenoic and docosenoic acids, which are commonly found in pine oils (TaIl oil fatty acids), rapeseed, corn, sunflower, soy, grape seeds, lins
  • fatty acid oligomers containing dimers, trimers and monomers of linear or cyclic Cis fatty acids, said mixture being predominant in dimers and trimers and containing a small percentage (usually less than 5% ) of monomers.
  • said mixture comprises:
  • 0.1 to 40% by weight preferably 0.1 to 5% by weight of identical or different fatty acid monomers, 0.1 to 99% by weight, preferably 18 to 85% by weight of dimers of the same or different fatty acids, and
  • dimeric / trimeric mixtures of fatty acids are:
  • Pripol® 1017 from Uniqema, a mixture of 75-80% of dimers and 18-22% of trimers with about 1-3% of monomeric fatty acids
  • Arizona Chemical Unidyme® 14 a mixture of 94% of dimers and less than 5% of trimers and other higher oligomers with about 1% of monomeric fatty acids
  • Empol® 1008 from Cognis, a mixture of 92% of dimers and 3% of higher oligomers, essentially trimers, with about 5% of monomeric fatty acids,
  • Empol® 1016 from Cognis, a mixture of 80% dimers, 4% monomers and 16% fatty acid trimers
  • Empol® 1018 from Cognis, a mixture of 81% dimer and 14% d higher oligomers, including essentially trimers, with about 5% of monomeric fatty acids.
  • Pripol® products, Unidyme®, Empol® and Radiacid® comprise fatty acid monomers Cis and oligomers of fatty acids corresponding to multiples of C 8.
  • the dicarboxylic acid may be partially or completely replaced by a diacid derivative (s), this diacid derivative being chosen from an acid ester and an acid chloride.
  • an ester As an example of an ester, mention may be made of a methyl, ethyl or isopropyl ester of a fatty acid as defined above.
  • a preferred fatty acid ester is a fatty acid methyl ester, and particularly a fatty acid dimer methyl ester or a mixture of fatty acid oligomers as defined above.
  • fatty acid chloride mention may be made of sebacoyl chloride.
  • the dicarboxylic acid or the ester derivative or acid chloride is reacted with a modifying compound bearing both associative groups and reactive functions capable of reacting with the carboxylic acid functions.
  • the acid ester or acid chloride of the dicarboxylic acid or derivative used in a molar ratio of reactive functions to carboxylic acid functions (respectively ester or acid chloride) of between 0.10 and 0.50, preferably between 0.10 and 0.30.
  • associative groups groups capable of associating with each other by hydrogen bonds, advantageously by 1 to 6 hydrogen bonds.
  • examples of associative groups that can be used according to the invention are the imidazolidonyl, triazolyl, triazinyl, bis-ureyl and ureido-pyrimidyl groups.
  • the imidazolidonyl group is preferred.
  • the reactive functions can in particular be chosen from primary or secondary amine functions or alcohol.
  • the modifying compound carries at least one primary amine function.
  • the modifying compound can thus satisfy any one of the formulas (B1) to (B5):
  • R denotes a unit containing at least one reactive function
  • R 'de notes a hydrogen atom
  • R ", Ri and R2 denote any groups
  • A denotes an oxygen or sulfur atom or an -NH group, preferably an oxygen atom.
  • Preferred examples of modifying compounds are 2-aminoethylimidazolidone (UDETA), 1- (2 - [(2-aminoethyl) amino] ethyl) imidazolidone (UTETA), 1- (2-
  • UDETA [(2-aminoethylamino] ethyl] amino) ethyl] imidazolidone (UTEPA), N- (6-aminohexyl) -N '- (6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl) urea ( UPy), 3-amino-1,2,4-triazole and 4-amino-1,2,4-triazole.
  • UDETA is preferred for use in the present invention.
  • UDETA, UTETA and UTEPA can be respectively prepared by reacting urea with diethylene triamine (DETA), triethylene tetramine (TETA) and tetraethylene pentamine (TEPA).
  • DETA diethylene triamine
  • TETA triethylene tetramine
  • TEPA tetraethylene pentamine
  • the reaction of the modifying compound with the dicarboxylic acid may, for example, be carried out at a temperature of between 20 and 200 ° C., preferably between 130 and 170 ° C., for a period ranging from 1 to 15 hours, for example from 3 to 9 hours. h, advantageously with stirring and under an inert atmosphere.
  • the dicarboxylic acid or its ester derivative or acid chloride is also reacted, in the first step of the process according to the invention, with at least one polyamine, for example in a molar ratio of the amine functions to the acid functions of the dicarboxylic acid of between 0.90 and 0.50, in particular between 0, 90 and 0.70.
  • the polyamine may be any compound carrying at least two amine functions, preferably primary amine, and preferably a compound of formula (I):
  • Ri, R 2, R 3 and R 4 independently denote a hydrogen atom or an alkyl group C x -C 6 such as methyl group, m, n, p and q independently denote an integer ranging from 1 to 3, x denotes an integer ranging from 1 to 6, y denotes an integer ranging from 0 to 2.
  • M + n is 2, 3 or 6, preferably 2,
  • P + q is 2, 3 or 6, preferably 2,
  • X denotes an integer ranging from 2 to 4,
  • y is 0 or 1, preferably 0.
  • polyamines of formula (I) are DETA (diethylene triamine), TETA (triethylene tetramine), TEPA (tetraethylene pentamine) and dihexylene triamine.
  • the polyamine according to the invention may be a linear alkylene diamine containing 3 to 20 carbon atoms such as cadaverine, putrescine, Hexamethylene diamine or 1,12-diaminododecane or a cyclic alkylene diamine such as isophorone diamine.
  • reaction of the polyamine with the dicarboxylic acid or the ester or acid chloride derivative used may, for example, be carried out at a temperature of between 20 and 200 ° C., preferably between 140 and
  • the first step of the process according to the invention comprises the reaction of the dicarboxylic acid or its ester derivative or acid chloride, both with the modifying compound and with the polyamine described above. These two reactions can be performed simultaneously or successively. In the case where these reactions are conducted successively, the reaction with the modifier compound will preferably be carried out first but the reverse order is also possible. They may also be carried out either in separate reactors or in the same reactor, without it being necessary to provide a washing or purification step after the first of these reactions.
  • the polycondensate obtained at the end of the first step can be semi-crystalline with a melting temperature (Tf) most often between 30 and 150 ° C. and it has a glass transition temperature (T g ) most often between -50 0 C and 20 0 C.
  • Tf melting temperature
  • T g glass transition temperature
  • the product resulting from this first stage is then reacted, in a second stage, with urea, without it being necessary to carry out a washing or a prior purification thereof.
  • the reaction may for example be carried out at a temperature of 130 to 170 ° C., preferably 130 to 160 ° C., by carrying out a temperature ramp, for a period ranging from 30 minutes to 8 hours, preferably for a period of 1 hour. at 6 hours, under an inert atmosphere and, advantageously, with stirring.
  • this reaction can be carried out in a reactor separate from that or those used in the first stage, or in the same reactor. It is therefore understood that all the steps of the process according to the invention can be implemented in the same reactor, by successive addition of reagents, which makes the process particularly simple and economical.
  • the function of urea is to create additional associative groups, for example according to the following reaction schemes:
  • the reagents (dicarboxylic acid or derivative, modifying compound, polyamine and urea) described above can be introduced, in the process according to the invention, in the molten state, in the pulverulent state, or by solvent, for example in aqueous solution. However, it is preferred that they be introduced in powder form or in the molten state to avoid the use of solvents which need to be subsequently removed.
  • This material consists of a set of molecules of different lengths, containing a portion soluble in an alcohol and optionally an insoluble part, ie a fraction representing from 0.1 to 90% of the weight of the material and which is not soluble in any solvent.
  • the number-average molecular weight of the soluble fraction is preferably from 300 to 300,000 g / mol, as measured by GPC.
  • the average number of associative groups per molecule is at least 1.2, preferably at least 2 or even at least 2.2.
  • this material comprises molecules containing binding bridges, preferably amide, formed in the first step of its synthesis process, by reaction of the reactive groups (advantageously primary amine) of the modifying compound with a part of the dicarboxylic acid and by reacting the amine functions of the polyamine with another part (preferably the remainder) of the dicarboxylic acid.
  • This material also contains hydrogen bonds between the associative groups carried by the molecules which constitute it, and which are provided by the modifier compound and by the reaction of urea on the polyamine.
  • this material also contains intermolecular hydrophobic bonds, advantageously due to interactions between pendant alkyl groups provided by the dicarboxylic acid. Such groups are especially present in fatty acid dimers.
  • thermoplastic elastomer properties that is to say the property of being able to be subjected to uniaxial deformation at ambient temperature, possibly at least 20% for 15 minutes, and to recover, once this stress released, its initial dimension, with a remanent deformation less than 5% of its initial dimension, and which can be put and reformed at high temperature.
  • It can also be capable of self-healing after a cut and present, after contacting the edges of the cut, elastomeric properties allowing it to undergo, for example, a tensile deformation of at least 100% or at least 200% before breaking and recovering its initial dimensions once the stress is released, with a remanent deformation of less than 10% of its initial dimension.
  • a material is generally obtained in the form of a soft solid, which can be extruded or cold ground, for example in a hammer mill, ball mill, ball mill or grinding mill. or knives and then washed, for example with water, and finally shaped, in particular by hot pressing, calendering, thermoforming or any other method.
  • the material according to the invention can in particular be used to manufacture gaskets, thermal or acoustic insulators, tires, cables, sheaths, shoe soles, packaging, coatings (paints, films, cosmetic products ), patches (cosmetics or dermopharmaceuticals) or other asset trapping and release systems, dressings, elastic hose clamps, vacuum tubes, fluid tubes and hoses, and in a manner general parts having good resistance to tearing and / or fatigue, rheological additives, additives for bitumen or additives for hot melt adhesives and adhesives.
  • the invention therefore also relates to the use of the material according to the invention for the aforementioned purposes.
  • the material according to the invention can be used as such or in single-phase or multiphase mixtures with one or more compounds such as petroleum fractions, solvents, mineral and organic fillers, plasticizers, resins and the like.
  • tackifiers, antioxidants, pigments and / or dyes for example, in emulsions, suspensions or solutions.
  • this material can be used for the manufacture of a cosmetic composition usually comprising a physiologically acceptable medium, that is to say compatible with keratin materials, containing for example at least one oil and / or water and / or an alcohol.
  • This cosmetic composition can be used for the care and / or makeup of the skin and / or its integuments (such as eyelashes and nails) and / or lips or for washing, conditioning and / or putting in the form of hair.
  • integuments such as eyelashes and nails
  • Sub-step a In a reactor with a diameter of 60 mm and a nominal volume of 500 ml equipped with a bottom valve, a thermal fluid temperature regulation, a mechanical stirrer, a dropping funnel, a Dean-Stark and a gas inlet, preheated to 40 0 C, is introduced 76 g of Empol ® 1016 [acid number 194, monomer level (4%), dimer (80%), trimer (16%)] and 6.7g of purified UDETA (52 mmol), which is a ratio [HN 2 ] / [COOH] of 0.2. The bath temperature is brought to 150 ° C. for 8 hours under a flow of nitrogen of 500 ml / minute and stirring of 280 rpm.
  • the product of the reaction is stored at 50 ° C. in the reactor.
  • the reactor body is heated to 160 ° C. and the amine is slowly added dropwise intermittently over a total period of 3 hours.
  • the reaction is allowed to continue for another 4 hours at 160 ° C.
  • the same type of evolution is observed by infrared spectroscopy as previously.
  • the end of The release of water vapor, again observed, is used as a criterion for stopping the reaction.
  • the product is collected by the bottom valve (86 g are collected) and stored at room temperature. It is a highly adhesive viscoelastic liquid on many substrates including glass, metal and paper.
  • the glass transition temperature measured by DSC (Differential Scanning Calorimetry) is -11 ° C. Rheological measurements made in plane parallel geometry with an imposed deformation of 1% provided, at the loading frequency of 1 rad / s, the following results:
  • the stopping criterion is this time that the product is solid and clings to the axis of the agitator. As soon as this is the case, the product is collected on the stirring rod.
  • the pieces obtained are placed in a plastic bag and cold-milled with a hammer. Fragments of size 1 to 2 mm are washed by immersion in water for 72 hours. In the water, the washed fragments tend to stick to each other.
  • the sample, previously drained, is redécoupe into pieces of approximately 5 mm in size which is placed in a mold consisting of a 1.6 mm thick brass plate pierced with a rectangular hole, placed between two sheets of release paper. After a first pressing at 120 ° C. for 10 minutes (applied pressure 10 MPa), the film obtained has irregularities in thickness which are corrected by adding material and repressing until a satisfactory appearance is obtained.
  • Example 2 Traction test
  • 60 mm is cut in half in the middle, left to rest for five minutes, repaired by contacting the rupture surfaces and then left to rest for two hours.
  • a tensile test is carried out on the cicatrized ribbon after having drawn two marks 4 cm apart, on each side of the scar. The ribbon is stretched until it reaches 350% of deformation without breaking.
  • the ribbon is then left standing at room temperature. After 40 minutes, we see that it has returned to its original size.
  • This example shows that the process according to the invention makes it possible, under simple and economical conditions, to obtain materials having the rubber-elastic property and capable of self-repairing in the event of a break.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

La présente invention se rapporte à un procédé de synthèse d'un matériau supramoléculaire comprenant : 1- la réaction d'au moins un diacide carboxylique, ou ester ou chlorure d'un tel diacide, avec, d'une part, au moins un composé modificateur portant à la fois des fonctions réactives susceptibles de réagir avec les fonctions acide carboxylique, ester ou chlorure d'acide et des groupes associatifs susceptibles de s'associer les uns aux autres par des liaisons hydrogène, dans un rapport molaire des fonctions réactives aux fonctions acide carboxylique, ester ou chlorure d'acide compris entre 0,10 et 0,50, et, d'autre part, au moins une polyamine, lesdites réactions étant effectuées successivement ou simultanément, et 2- la réaction du polyamide obtenu à l'issue de l'étape 1 avec de l'urée. Elle se rapporte également au matériau ainsi obtenu, ainsi qu'à ses utilisations.

Description

Procédé de synthèse de matériaux supramoléculaires
La présente invention concerne un nouveau procédé de synthèse de matériaux supramoléculaires, ainsi que les matériaux obtenus et leurs applications.
Les matériaux dits supramoléculaires sont des matériaux constitués de composés associés par des liaisons non covalentes, telles que des liaisons hydrogène, ioniques et/ou hydrophobes. Un avantage de ces matériaux est que ces liaisons physiques sont réversibles, notamment sous l'influence de la température ou par l'action d'un solvant sélectif. Il est ainsi possible d'envisager de les utiliser dans des domaines d'application tels que les revêtements (peintures, cosmétiques...), les adhésifs, les colles thermofusibles et les peintures en poudre ou comme additif dans les thermoplastiques ou dans les bitumes.
Certains d'entre eux possèdent en outre des propriétés élastomères. Contrairement aux élastomères classiques, ces matériaux ont l'avantage de pouvoir se fluidifier au-dessus d'une certaine température, ce qui facilite leur mise en oeuvre, notamment le bon remplissage des moules, ainsi que leur recyclage. Bien qu'ils ne soient pas constitués de polymères réticulés mais de petites molécules, ces matériaux sont, comme les élastomères, capables de présenter une stabilité dimensionnelle sur des temps très longs et de recouvrer leur forme initiale après de grandes déformations. Ils peuvent être utilisés pour fabriquer des joints d ' étanchéité, des isolants thermiques ou acoustiques, des pneumatiques, des câbles, des gaines, des semelles de chaussures, des emballages, des patchs (cosmétiques ou dermo-pharmaceutiques) , des pansements, des colliers de serrage élastiques, des tubes à vide, ou encore des tubes et flexibles de transport de fluides.
Des matériaux supramoléculaires ont déjà été décrits par la Demanderesse.
Ainsi, le document WO 03/059964 décrit un matériau supramoléculaire obtenu :
- soit en faisant réagir de l'urée sur des polyamines (notamment la diéthylène triamine, DETA, la triéthylène tétramine, TETA ou la tétraéthylène pentamine, TEPA) renfermant plus de deux fonctions aminé primaire ou secondaire, pour former des composés portant des groupes associatifs (par exemple des fonctions imidazolidone) et susceptibles de réagir ensuite avec un halogénure d'alkyle ou un polyacide,
- soit en faisant réagir de l'urée sur un polyamide, obtenu lui-même par réaction d'une polyamine (notamment
DETA ou TETA) avec un polyacide tel que des dimères et trimères d'acides gras ou de l'acide polyacrylique .
Ce matériau ne présente pas de propriétés élastomères .
Un matériau supramoléculaire élastomère autocicatrisant est par ailleurs divulgué dans le document WO 2006/087475. Il comprend des molécules renfermant au moins trois groupes fonctionnels associatifs, tels que des groupes imidazolidone, susceptibles de former plusieurs liaisons physiques et qui peuvent être obtenus en faisant réagir de l'urée sur le produit de la réaction d'une polyamine avec des triacides. Il est indiqué que ce produit peut en variante être obtenu par réaction des triacides avec le produit de condensation de l'urée sur une polyamine telle que la diéthyl triamine (DETA) .
Les matériaux obtenus suivant les enseignements des documents WO 03/059964 et WO 2006/087475 renferment des triacides reliés de façon covalente, via des fonctions amide, à des jonctions intermédiaires et/ou à des terminaisons, constituées du produit de la réaction de la polyamine avec l'urée et qui contiennent donc de nombreux groupes associatifs, c'est-à-dire renfermant des fonctions N-H et C=O susceptibles de s'associer les unes aux autres par des liaisons hydrogène. Précisément, la publication de P. CORDIER et al, Nature, 451, 977 (2008) mentionne qu'un élastomère synthétisé selon le mode opératoire décrit dans le document WO 2006/087475 comporte des terminaisons amidoéthyl-imidazolidone et des jonctions di (amidoéthyl) urée et diamidotétraéthyl triurée. On comprend qu'en raison du procédé de synthèse de ces matériaux, les natures chimiques des jonctions et terminaisons précitées sont interdépendantes, en ce sens qu'il n'est pas possible de faire varier la nature de la terminaison amidoéthyl-imidazolidone sans affecter celle des deux jonctions.
Or, il serait souhaitable de pouvoir faire varier non seulement le nombre, mais également la nature des terminaisons et jonctions précitées de manière à obtenir un éventail plus large de propriétés mécaniques pour ces matériaux.
En outre, les procédés ci-dessus dont la première étape consiste à faire réagir une polyamine sur un polyacide utilisent, pour contrôler le degré de polymérisation du polyamide résultant, un excès d'aminé qu'il conviendra d'éliminer à l'issue de cette première étape en effectuant plusieurs lavages. D'autres lavages sont également nécessaires pour éliminer l'urée en excès utilisée dans la seconde étape du procédé, ainsi que l'ammoniac dégagé lors de la réaction de l'urée avec le polyamide et les imidazolidones formées par réaction secondaire de l'urée avec la polyamine résiduelle. On comprend que ces lavages affectent négativement l'économie du procédé, ce qui n'est pas souhaitable.
Il serait donc utile de disposer d'un nouveau procédé de synthèse de matériaux supramoléculaires, y compris de matériaux élastomères auto-cicatrisants, qui ne présente pas les inconvénients de l'art antérieur.
Or, à l'issue de nombreuses recherches, les Demanderesses ont eu le mérite de mettre au point un procédé permettant de s'affranchir des inconvénients des procédés connus et en particulier des étapes de lavage et de l'utilisation de solvants. Par ailleurs, le procédé selon l'invention ne nécessite pas d'avoir recours à des réactifs particulièrement purs. Sa mise en oeuvre est donc plus aisée et moins onéreuse que celle des procédés de l'art antérieur.
Ce procédé permet en outre d'ajuster aisément l'architecture des matériaux obtenus, et par conséquent leurs propriétés, en modifiant la quantité et la nature des réactifs mis en jeu. Il est ainsi notamment possible d'obtenir un matériau ayant les propriétés d'un élastomère thermoplastique, voire d'un tel élastomère auto-cicatrisant, c'est-à-dire capable, une fois coupé, déchiré ou rayé, de se réparer par simple remise en contact des surfaces fracturées sans nécessité de chauffer ni d'appliquer une pression importante ni d'effectuer une quelconque réaction chimique, le matériau ainsi réparé conservant des propriétés élastomères.
Plus précisément, la présente invention a pour objet un procédé de synthèse d'un matériau supramoléculaire comprenant :
1- la réaction d'au moins un diacide carboxylique, ou un ester ou chlorure d'un tel diacide, avec, d'une part, au moins un composé modificateur portant à la fois des fonctions réactives susceptibles de réagir avec les fonctions acide carboxylique, ester ou chlorure d'acide et des groupes associatifs susceptibles de s'associer les uns aux autres par des liaisons hydrogène, dans un rapport molaire des fonctions réactives aux fonctions acide carboxylique, ester ou chlorure d'acide compris entre 0,10 et 0,50, et, d'autre part, au moins une polyamine, lesdites réactions étant effectuées successivement ou simultanément, et
2- la réaction du polyamide obtenu à l'issue de l'étape 1 avec de l'urée.
L'invention a également pour objet le matériau susceptible d'être obtenu suivant ce procédé.
A titre de préambule, on notera que l'expression "compris entre" doit être interprétée, dans la présente description, comme incluant les bornes citées. Les réactifs utilisés dans le procédé selon l'invention seront maintenant décrits plus en détail.
Diacide carboxylique
Le diacide carboxylique mis en oeuvre dans la première étape du procédé selon 1 ' invention comprend avantageusement de 5 à 100, de préférence de 12 à 100 et plus préférentiellement de 24 à 90 atomes de carbone. Il peut s'agir d'un acide alkyldicarboxylique linéaire tel que l'acide glutarique, l'acide adipique, l'acide pimélique, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradécanedioïque, l'acide pentadecanedioïque, l'acide thapsique, l'acide octadécanedioïque ou ramifié comme l'acide 3,3-diméthyl glutarique.
Le diacide peut par ailleurs être mélangé à d'autres composés tels que des mono- ou triacides carboxyliques . On peut ainsi utiliser un mélange de mono-, di et trimères d'acides gras.
On préfère utiliser selon l'invention les dimères (oligomères de 2 monomères identiques ou différents) et les mélanges de dimères et trimères d'acides gras d'origine végétale. Ces composés résultent de
1 ' oligomérisation d'acides gras insaturés tels que les acides undécylénique, myristoléique, palmitoléique, oléique, linoléique, linolénique, ricinoléique, eicosénoïque et docosénoïque, que l'on trouve habituellement dans les huiles de pin (TaIl oil fatty acids) , colza, maïs, tournesol, soja, pépins de raisin, lin, jojoba, ainsi que les acides eicosapentaénoïque et docosahexaénoïque que l'on trouve dans les huiles de poissons .
On peut ainsi utiliser un mélange d' oligomères d'acides gras contenant des dimères, trimères et monomères d'acides gras en Cis linéaires ou cycliques, ledit mélange étant majoritaire en dimères et trimères et contenant un faible pourcentage (habituellement, moins de 5%) de monomères. De manière préférée, ledit mélange comprend :
• 0,1 à 40% en poids, de préférence 0,1 à 5% en poids de monomères d'acides gras identiques ou différents, • 0,1 à 99% en poids, de préférence 18 à 85% en poids de dimères d'acides gras identiques ou différents, et
• 0,1 à 90% en poids, de préférence 5 à 85% en poids, de trimères d'acides gras identiques ou différents.
On peut citer, comme exemples de mélanges dimères/trimères d'acides gras (% en poids) :
• le Pripol® 1017 d'Uniqema, mélange de 75-80% de dimères et 18-22% de trimères avec de l'ordre de 1-3 % d'acides gras monomères,
• le Pripol® 1013 d'Uniqema, mélange de 95-98% de dimères et de 2-4% de trimères avec 0,2 % maximum d'acides gras monomères, • le Pripol® 1006 d'Uniqema, mélange de 92-98% de dimères et d'un maximum de 4% de trimères avec 0,4 % maximum d'acides gras monomères, • l'Unidyme® 40 d'Arizona Chemicals, mélange de 65% de dimères et de 35% de trimères avec moins de 1% d'acides gras monomères,
• l'Unidyme® 14 d'Arizona Chemicals, mélange de 94% de dimères et de moins de 5% de trimères et autres oligomères supérieurs avec de l'ordre de 1% d'acides gras monomères,
• l'Empol® 1008 de Cognis, mélange de 92% de dimères et de 3% d' oligomères supérieurs, essentiellement des trimères, avec de l'ordre de 5% d'acides gras monomères,
• l'Empol® 1016 de Cognis, mélange de 80% de dimères, 4% de monomères et 16% de trimères d'acides gras, • l'Empol® 1018 de Cognis, mélange de 81 % de dimères et de 14% d' oligomères supérieurs, dont essentiellement des trimères, avec de l'ordre de 5 % d'acides gras monomères.
Les produits Pripol®, Unidyme®, Empol®, et Radiacid® comprennent des monomères d'acides gras en Cis et des oligomères d'acides gras correspondant à des multiples de Ci8.
Selon un mode de réalisation particulier de l'invention, le diacide carboxylique peut être partiellement ou totalement remplacé par un dérivé de diacide (s), ce dérivé de diacide étant choisi parmi un ester d'acide et un chlorure d'acide.
A titre d'exemple d'ester, on peut citer un ester méthylique, éthylique, ou isopropylique d'un acide gras tel que défini ci-dessus. Un ester d'acide gras préféré est un ester méthylique d'acide gras, et en particulier un ester méthylique de dimère d'acide gras ou d'un mélange d' oligomères d'acide gras tels que défini ci-dessus.
A titre d'exemple de chlorure d'acide gras, on peut citer le chlorure de sébacoyle.
Composé modificateur
Dans la première étape du procédé selon l'invention, le diacide carboxylique ou le dérivé ester ou chlorure d'acide est mis à réagir avec un composé modificateur portant à la fois des groupes associatifs et des fonctions réactives susceptibles de réagir avec les fonctions acide carboxylique, ester ou chlorure d'acide de l'acide dicarboxylique ou du dérivé utilisé, dans un rapport molaire des fonctions réactives aux fonctions acide carboxylique (resp. ester ou chlorure d'acide) compris entre 0,10 et 0,50, de préférence entre 0,10 et 0,30.
Par "groupes associatifs", on entend des groupes susceptibles de s'associer les uns aux autres par des liaisons hydrogène, avantageusement par 1 à 6 liaisons hydrogène. Des exemples de groupes associatifs utilisables selon l'invention sont les groupes imidazolidonyle, triazolyle, triazinyle, bis-uréyle, uréido-pyrimidyle . Le groupe imidazolidonyle est préféré.
De son côté, les fonctions réactives peuvent notamment être choisies parmi les fonctions aminé primaire ou secondaire ou alcool. On préfère selon l'invention que le composé modificateur porte au moins une fonction aminé primaire.
Le composé modificateur peut ainsi répondre à l'une quelconque des formules (Bl) à (B5) :
Figure imgf000011_0001
(Bl)
Figure imgf000011_0002
(B2:
Figure imgf000011_0003
(B3
Figure imgf000011_0004
(B5) où :
R désigne un motif contenant au moins une fonction réactive,
R' désigne un atome d'hydrogène, R", Ri et R2 désignent des groupes quelconques,
A désigne un atome d'oxygène ou de soufre ou un groupement -NH, de préférence un atome d'oxygène. Des exemples préférés de composés modificateurs sont la 2-aminoéthylimidazolidone (UDETA), la 1- (2- [ (2- aminoéthyl) amino] éthyl) imidazolidone (UTETA), la l-(2-{2-
[ (2-aminoéthylamino] éthyl } amino) éthyl ] imidazolidone (UTEPA), la N- ( 6-aminohexyl) -N ' - ( 6-méthyl-4-oxo-l , 4- dihydropyrimidin-2-yl) urée (UPy), le 3-amino-l, 2, 4- triazole et le 4-amino-l, 2, 4-triazole . L'UDETA est préférée pour une utilisation dans la présente invention.
Ces composés peuvent être obtenus par réaction de l'urée avec une polyamine. Par exemple, l' UDETA, 1 ' UTETA et l' UTEPA peuvent respectivement être préparées en faisant réagir de l'urée sur la diéthylène triamine (DETA) , la triéthylène tétramine (TETA) et la tétraéthylène pentamine (TEPA) .
La réaction du composé modificateur avec le diacide carboxylique peut par exemple être effectuée à une température comprise entre 20 et 2000C, de préférence entre 130 et 1700C, pendant une durée allant de 1 à 15 h, par exemple de 3 à 9 h, avantageusement sous agitation et sous atmosphère inerte.
Polyamine
Le diacide carboxylique ou son dérivé ester ou chlorure d'acide est également mis à réagir, dans la première étape du procédé selon l'invention, avec au moins une polyamine, par exemple dans un rapport molaire des fonctions aminé aux fonctions acide de l'acide dicarboxylique compris entre 0,90 et 0,50, notamment entre 0, 90 et 0, 70. La polyamine peut être tout composé portant au moins deux fonctions aminé, de préférence aminé primaire, et de préférence un composé de formule (I) :
H2N- (CHRi) m- (CHR2) n- [NH- (CH2) X]y-NH- (CHR3) p- (CHR4) q-NH2
(D
dans laquelle :
Ri, R2, R3 et R4 désignent indépendamment un atome d'hydrogène ou un groupe alkyle en Cx-C6 tel qu'un groupe méthyle, m, n, p et q désignent indépendamment un nombre entier allant de 1 à 3, x désigne un nombre entier allant de 1 à 6, y désigne un nombre entier allant de 0 à 2.
Dans la formule (I) ci-dessus, au moins l'une, et de préférence toutes, les conditions ci-dessous sont satisfaites : • Ri, R2, R3 et R4 désignent un atome d'hydrogène,
• m + n est égal à 2, 3 ou 6, de préférence à 2,
• p + q est égal à 2, 3 ou 6, de préférence à 2,
• x désigne un nombre entier allant de 2 à 4,
• y est égal à 0 ou 1, de préférence à 0.
Des exemples préférés de polyamines de formule (I) sont la DETA (diéthylène triamine) , la TETA (triéthylène tétramine) , la TEPA (tétraéthylène pentamine) et la dihexylène triamine.
En variante, la polyamine selon l'invention peut être une alkylène diamine linéaire contenant 3 à 20 atomes de carbone telle que la cadavérine, la putrescine, 1 ' hexaméthylène diamine ou le 1, 12-diaminododécane ou une alkylène diamine cyclique telle que l'isophorone diamine.
La réaction de la polyamine avec le diacide carboxylique ou le dérivé ester ou chlorure d'acide utilisé peut par exemple être effectuée à une température comprise entre 20 et 2000C, de préférence entre 140 et
1800C, pendant une durée allant de 1 à 24 h, par exemple de 6 à 8 h, avantageusement sous agitation et sous atmosphère inerte.
La première étape du procédé selon 1 ' invention comprend la réaction du diacide carboxylique ou de son dérivé ester ou chlorure d'acide, à la fois avec le composé modificateur et avec la polyamine décrits précédemment. Ces deux réactions peuvent être effectuées simultanément ou successivement. Dans le cas où ces réactions sont conduites successivement, la réaction avec le composé modificateur sera réalisée de préférence en premier mais l'ordre inverse est également possible. Elles peuvent en outre être effectuées soit dans des réacteurs distincts, soit dans le même réacteur, sans qu'il ne soit nécessaire de prévoir une étape de lavage ou de purification après la première de ces réactions.
Le polycondensat obtenu à l'issue de la première étape peut être semi-cristallin avec une température de fusion (Tf) le plus souvent comprise entre 30 et 1500C et et il a une température de transition vitreuse (Tg) le plus souvent comprise entre -50 0C et 200C.
Le produit issu de cette première étape est ensuite mis à réagir, dans une seconde étape, avec de l'urée, sans qu'il ne soit nécessaire de procéder à un lavage ou une purification préalable de celui-ci. La réaction peut par exemple être conduite à une température de 130 à 1700C, de préférence de 130 à 1600C en réalisant une rampe de température, pendant une durée allant de 30 minutes à 8 h, de préférence pendant une durée de 1 à 6 heures, sous atmosphère inerte et, avantageusement, sous agitation. Là encore, cette réaction peut être effectuée dans un réacteur séparé de celui ou ceux utilisés dans la première étape, ou dans le même réacteur. On comprend donc que toutes les étapes du procédé selon 1 ' invention peuvent être mises en œuvre dans le même réacteur, par addition successive des réactifs, ce qui rend le procédé particulièrement simple et économique.
L'urée a, dans cette étape, pour fonction de créer des groupes associatifs supplémentaires, par exemple selon les schémas réactionnels suivants :
N ( RA ) ( H) - ( CH2 ) m-N (RB) ( H) + NH2-CO-NH2 - ->
Figure imgf000015_0001
R0-N ( H) (RD) + NH2-CO-NH2 -->
Figure imgf000015_0002
Les réactifs (acide dicarboxylique ou dérivé, composé modificateur, polyamine et urée) décrits précédemment peuvent être introduits, dans le procédé selon l'invention, à l'état fondu, à l'état pulvérulent, ou par voie solvant, par exemple en solution aqueuse. On préfère toutefois qu'ils soient introduits à l'état pulvérulent ou à l'état fondu pour éviter le recours à des solvants nécessitant d'être ultérieurement éliminés.
La nature et les proportions de ces réactifs déterminent les caractéristiques mécaniques du matériau obtenu selon l'invention.
Ce matériau est constitué d'un ensemble de molécules de différentes longueurs, renfermant une partie soluble dans un alcool ainsi qu'éventuellement une partie insoluble, c'est à dire une fraction représentant de 0,1 à 90% du poids du matériau et qui n'est soluble dans aucun solvant. La masse moléculaire moyenne en nombre de la fraction soluble est de préférence comprise entre 300 et 300.000 g/mol, telle que mesurée par GPC.
Selon un mode de réalisation de l'invention, le nombre moyen de groupes associatifs par molécule est d'au moins 1,2, de préférence d'au moins 2 voire d'au moins 2,2.
On comprend que ce matériau comprend des molécules renfermant des ponts de liaison, de préférence amide, formés dans la première étape de son procédé de synthèse, par réaction des groupes réactifs (avantageusement aminé primaire) du composé modificateur avec une partie du diacide carboxylique et par réaction des fonctions aminés de la polyamine avec une autre partie (de préférence le reste) du diacide carboxylique. Ce matériau renferme également des liaisons hydrogène entre les groupements associatifs portés par les molécules qui le constituent, et qui sont apportés par le composé modificateur et par la réaction de l'urée sur la polyamine. La présence de ces liaisons hydrogène réversibles, susceptibles d'être rompues par une élévation de température et de se reformer à température ambiante, permet au matériau selon l'invention de présenter une faible viscosité à l'état fondu, facilitant sa mise en oeuvre, et éventuellement un grand allongement à la rupture à température ambiante, sans pour autant qu'il présente une masse moléculaire élevée.
On préfère par ailleurs que ce matériau renferme également des liaisons hydrophobes intermoléculaires, avantageusement dues à des interactions entre des groupes alkyle pendants apportés par le diacide carboxylique . De tels groupes sont notamment présents dans les dimères d'acides gras.
Ce matériau présente avantageusement des propriétés d'élastomère thermoplastique, c'est-à-dire la propriété de pouvoir être soumis à une déformation uniaxiale à température ambiante, éventuellement d'au moins 20% pendant 15 minutes, et de recouvrer, une fois cette contrainte relâchée, sa dimension initiale, avec une déformation rémanente inférieure à 5% de sa dimension initiale, et qui peut être mis et remis en forme à haute température .
Il peut par ailleurs être capable d'auto- cicatrisation après une coupure et présenter, après remise en contact des bords de la découpe, des propriétés élastomériques lui permettant de subir, par exemple, une déformation en traction d'au moins 100%, voire d'au moins 200% avant rupture et de recouvrer ses dimensions initiales une fois la contrainte relâchée, avec une déformation rémanente inférieure à 10% de sa dimension initiale .
A l'issue du procédé selon l'invention, on obtient généralement un matériau sous la forme d'un solide mou, qui peut être extrudé ou broyé à froid, par exemple dans un broyeur à marteaux, à billes, à boules, à meules ou à couteaux puis lavé, par exemple à l'eau, et finalement mis en forme, notamment par pressage à chaud, calandrage, thermoformage ou toute autre méthode.
Le matériau selon 1 ' invention peut notamment être utilisé pour fabriquer des joints d' étanchéité, des isolants thermiques ou acoustiques, des pneumatiques, de câbles, des gaines, des semelles de chaussures, des emballages, des revêtements (peintures, films, produits cosmétiques) , des patchs (cosmétiques ou dermo- pharmaceutiques) ou autres systèmes de piégeage et relarguage d'actifs, des pansements, des colliers de serrage élastiques, des tubes à vide, des tubes et flexibles de transport de fluides, et d'une manière générale les pièces devant présenter de bonnes résistance à la déchirure et/ou à la fatigue, des additifs rhéologiques, des additifs pour le bitume ou des additifs pour colles thermofusibles et adhésifs.
L'invention a donc également pour objet l'utilisation du matériau selon l'invention aux fins précitées . Dans ces applications, le matériau selon l'invention peut être utilisé en tant que tel ou dans des mélanges monophasiques ou polyphasiques, avec un ou plusieurs composés tels que les coupes pétrolières, les solvants, les charges minérales et organiques, les plastifiants, les résines tackifiantes, les anti-oxydants, les pigments et/ou les colorants, par exemple, dans des émulsions, des suspensions ou des solutions.
En variante, ce matériau peut être utilisé pour la fabrication d'une composition cosmétique comportant habituellement un milieu physiologiquement acceptable, c'est-à-dire compatible avec les matières kératiniques, renfermant par exemple au moins une huile et/ou de l'eau et/ou un alcool.
Cette composition cosmétique peut être utilisée pour le soin et/ou le maquillage de la peau et/ou de ses phanères (tels que les cils et les ongles) et/ou des lèvres ou encore pour le lavage, le conditionnement et/ou la mise en forme des cheveux.
L'invention sera mieux comprise à la lumière des exemples suivants, donnés à des fins d'illustration seulement et qui n'ont pas pour but de restreindre la portée de l'invention, définie par les revendications annexées .
EXEMPLES
Exemple 1 : Préparation d'un matériau selon 1 ' invention Première étape:
- Sous-étape a: Dans un réacteur de diamètre 60 mm et de volume nominal 500 ml équipé d'une vanne de fond, d'une régulation de température par fluide caloporteur, d'une agitation mécanique, d'une ampoule de coulée, d'un Dean-Stark et d'une entrée de gaz, préchauffé à 400C, on introduit 76g d'Empol® 1016 [indice d'acide 194, taux de monomère (4%), dimère (80%), trimère (16%)] et 6,7g d'UDETA purifiée (52 mmol) soit un rapport [HN2] / [COOH] de 0.2. La température du bain est portée à 1500C pendant 8 heures sous un flux d'azote de 500 ml/minute et une agitation de 280 tours/min. Durant cette étape, on constate par spectroscopie infrarouge la diminution du signal du δNH2 (1505 cm"1), l'augmentation du signal vc=o (1648 cm"1) et le dégagement de vapeur d'eau. L'arrêt de la réaction est décidé lorsque cesse le dégagement de vapeur d'eau (8 heures dans l'exemple présent) .
Après cette sous-étape, le produit de la réaction est stocké à 500C dans le réacteur.
- Sous-étape b: On utilise le même montage et les mêmes conditions (azote, agitation) que précédemment. 10.7 g (104 mmol) de diéthylène triamine (pureté 98 %) sont placés dans l'ampoule de coulée.
Le corps du réacteur est chauffé à 1600C et l'aminé est ajoutée lentement au goutte à goutte par intermittence sur une durée totale de 3h. On laisse la réaction se poursuivre encore 4h à 1600C. Durant cette deuxième étape on constate par spectroscopie infrarouge le même type d'évolution que précédemment. La fin du dégagement de vapeur d'eau, là encore constaté, est utilisée comme critère d'arrêt de la réaction.
Après cette étape, le produit est recueilli par la vanne de fond (on recueille 86g) et stocké à température ambiante. Il se présente comme un liquide viscoélastique fortement adhésif sur de nombreux substrats notamment sur le verre, sur le métal et sur le papier. La température de transition vitreuse mesurée par DSC (calorimétrie différentielle à balayage) est de -11°C. Des mesures rhéologiques réalisées en géométrie plans parallèle avec une déformation imposée de 1% ont fourni, à la fréquence de sollicitation de 1 rad/s les résultats suivants:
Figure imgf000021_0001
Deuxième étape:
Dans un réacteur large (diamètre 100 mm) de volume nominal 500 ml équipé d'une régulation de température par fluide caloporteur, d'une agitation mécanique et d'une entrée de gaz préchauffé à 800C, on introduit 67g du produit précédent et 6,1g d'urée. L'agitation est réglée à 50 tours/min et la température est portée à 135°C. Au bout d'une demi-heure à cette température et dans toute la suite du processus, on constate à l'aide d'un papier indicateur de pH un dégagement conséquent d'ammoniac. Durant toute cette étape, le suivi de la réaction par spectroscopie infrarouge révèle la diminution du signal de l'urée vc=o 1675 cm -1 La température est maintenue au total deux heures à 135°C, puis 1 heure à 1400C, puis une heure à 145°C. A ce stade, on constate que le mélange réactionnel initialement trouble tend à devenir transparent. On ajoute un gramme d'eau et la solution redevient trouble. Le mélange est porté à 1500C pendant encore environ Ih, pendant laquelle on constate une diminution du dégagement d' ammoniac .
Le critère d'arrêt est cette fois que le produit prend en masse et s'accroche à l'axe de l'agitateur. Dès que c'est le cas, on recueille le produit sur la tige d' agitation .
Mise en forme:
Les morceaux obtenus sont placés dans un sac en plastique et broyés à froid au marteau. Les fragments de taille 1 à 2 mm sont lavés par immersion dans l'eau pendant 72h. Dans l'eau, les fragments mis au lavage ont tendance à se coller les uns aux autres. On redécoupe l'échantillon, préalablement égoutté, en morceaux de taille 5 mm environ qu'on place dans un moule constitué d'une plaque de laiton d'épaisseur 1.6 mm percée d'un trou rectangulaire, placée entre deux feuilles de papier antiadhésif. Après un premier pressage à 1200C pendant 10 minutes (pression appliquée 10 MPa) , le film obtenu présente des irrégularités d'épaisseur qu'on corrige par ajout de matière et repressage jusqu'à obtention d'un aspect satisfaisant. Exemple 2 : Essai de traction
Un échantillon rectangulaire de dimensions 3 x 1.2 x
60 mm est coupé en deux en son milieu, laissé au repos pendant cinq minutes, réparé par remise en contact des surfaces de rupture puis, de nouveau laissé au repos pendant deux heures.
On réalise un essai de traction sur le ruban cicatrisé après avoir tracé deux marques distantes de 4 cm, de part et d'autre de la cicatrice. On étire le ruban jusqu'à atteindre 350% de déformation sans rupture.
Le ruban est ensuite laissé au repos à température ambiante. Au bout de 40 minutes, on constate qu'il a repris ses dimensions initiales.
Cet exemple montre que le procédé selon 1 ' invention permet d'obtenir, dans des conditions simples et économiques, des matériaux ayant la propriété d'élasticité caoutchoutique et capables de s ' autoréparer en cas de coupure.

Claims

REVENDICATIONS
1. Procédé de synthèse d'un matériau supramoléculaire comprenant :
1- la réaction d'au moins un diacide carboxylique, ou ester ou chlorure d'un tel diacide, avec, d'une part, au moins un composé modificateur portant à la fois des fonctions réactives susceptibles de réagir avec les fonctions acide carboxylique, ester ou chlorure d'acide et des groupes associatifs susceptibles de s'associer les uns aux autres par des liaisons hydrogène, dans un rapport molaire des fonctions réactives aux fonctions acide carboxylique, ester ou chlorure d'acide compris entre 0,10 et 0,50, et, d'autre part, au moins une polyamine, lesdites réactions étant effectuées successivement ou simultanément, et
2- la réaction du polyamide obtenu à l'issue de l'étape 1 avec de l'urée.
2. Procédé selon la revendication 1, caractérisé en ce que le diacide carboxylique comprend de 5 à 100, de préférence de 12 à 100 et plus préférentiellement de 24 à 90 atomes de carbone.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le diacide carboxylique est un dimère d'acide gras d'origine végétale.
4. Procédé selon la revendication 3, caractérisé en ce que le diacide carboxylique est un dimère de l'un au moins des acides suivants : l'acide undécylénique, l'acide myristoléique, l'acide palmitoléique, l'acide oléique, l'acide linoléique, l'acide linolénique, l'acide ricinoléique, l'acide eicosénoïque, l'acide docosénoïque, l'acide eicosapentaénoïque et l'acide docosahexaénoïque .
5. Procédé selon la revendication 1 ou 2, caractérisé en ce que le diacide carboxylique est choisi parmi : un acide alkyldicarboxylique linéaire tel que l'acide glutarique, l'acide adipique, l'acide pimélique, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradécanedioïque, l'acide pentadecanedioïque, l'acide thapsique, l'acide octadécanedioïque ou ramifié comme l'acide 3,3-diméthyl glutarique .
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'ester est un ester méthylique d'un acide selon l'une des revendications 3 à 5.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le composé modificateur répond à l'une des formules (Bl) à (B5) :
Figure imgf000025_0001
(Bl
R-N I
(B2)
Figure imgf000026_0001
(B5)
où :
R désigne un motif contenant au moins une fonction réactive,
R' désigne un atome d'hydrogène, R", Ri et R2 désignent un groupe quelconque, A désigne un atome d'oxygène ou de soufre ou un groupement -NH, de préférence un atome d'oxygène.
8. Procédé selon la revendication 7, caractérisé en ce que le composé modificateur est choisi parmi : la 2- aminoéthylimidazolidone (UDETA) , 1- (2- [ (2- aminoéthyl) amino] éthyl) imidazolidone (UTETA) , la l- (2-{2- [ (2-aminoéthylamino] éthyl } amino) éthyl] imidazolidone (UTEPA) , la N- (6-aminohexyl) -N'- (6-méthyl-4-oxo-l, 4- dihydropyrimidin-2-yl) urée (UPy) , le 3-amino-l, 2, 4- triazole et le 4-amino-l, 2, 4-triazole .
9. Procédé selon l'une quelconque des revendications
1 à 8, caractérisé en ce que le rapport molaire des fonctions réactives aux fonctions acide carboxylique, ester ou chlorure d'acide est compris entre 0,10 et 0,30.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la polyamine répond à la formule (I) :
H2N- (CHR1) m- (CHR2)n-[NH- (CH2) X]y-NH- (CHR3) p- (CHR4) q-NH2
(D
dans laquelle :
Ri, R2, R3 et R4 désignent indépendamment un atome d'hydrogène ou un groupe alkyle en Ci-C6 tel qu'un groupe méthyle, m, n, p et q désignent indépendamment un nombre entier allant de 1 à 3, x désigne un nombre entier allant de 1 à 6, y désigne un nombre entier allant de 0 à 2.
11. Procédé selon la revendication 10, caractérisé en ce que, dans la formule (I), au moins l'une, et de préférence toutes, les conditions ci-dessous sont satisfaites :
• Ri, R2, R3 et R4 désignent un atome d'hydrogène, • m + n est égal à 2, 3, ou 6 de préférence à 2,
• p + q est égal à 2, 3, ou 6 de préférence à 2,
• x désigne un nombre entier allant de 2 à 4,
• y est égal à 0 ou 1, de préférence à 0.
12. Procédé selon la revendication 1, caractérisé en ce que la polyamine est choisie parmi : la DETA (diéthylène triamine) , la TETA (triéthylène tétramine) , la TEPA (tétraéthylène pentamine) , la dihexylène triamine, la cadavérine, la putrescine, 1 ' hexaméthylène diamine ou le 1, 12-diaminododécane ou une alkylène diamine cyclique telle que l'isophorone diamine.
13. Matériau susceptible d'être obtenu suivant le procédé selon l'une quelconque des revendications 1 à 12.
14. Utilisation du matériau selon la revendication 13 pour fabriquer des joints d' étanchéité, des isolants thermiques ou acoustiques, des pneumatiques, des câbles, des gaines, des semelles de chaussures, des emballages, des revêtements, des patchs, des pansements, des colliers de serrage élastiques, des tubes à vide, des tubes et flexibles de transport de fluides, des additifs rhéologiques, des additifs pour le bitume ou des additifs pour colles thermofusibles et adhésifs.
PCT/FR2009/050825 2008-05-05 2009-05-05 Procede de synthese de materiaux supramoleculaires WO2009141558A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09750039A EP2276790A2 (fr) 2008-05-05 2009-05-05 Procede de synthese de materiaux supramoleculaires
BRPI0910532A BRPI0910532A2 (pt) 2008-05-05 2009-05-05 processo de síntese de materiais supramoleculares
US12/991,181 US8536281B2 (en) 2008-05-05 2009-05-05 Method for synthesizing supramolecular materials
JP2011507972A JP5254431B2 (ja) 2008-05-05 2009-05-05 超分子材料の合成方法
CN200980116272.5A CN102131846B (zh) 2008-05-05 2009-05-05 合成超分子材料的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0852981 2008-05-05
FR0852981A FR2930777B1 (fr) 2008-05-05 2008-05-05 Procede de synthese de materiaux supramoleculaires

Publications (2)

Publication Number Publication Date
WO2009141558A2 true WO2009141558A2 (fr) 2009-11-26
WO2009141558A3 WO2009141558A3 (fr) 2010-04-22

Family

ID=40011199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050825 WO2009141558A2 (fr) 2008-05-05 2009-05-05 Procede de synthese de materiaux supramoleculaires

Country Status (7)

Country Link
US (1) US8536281B2 (fr)
EP (1) EP2276790A2 (fr)
JP (1) JP5254431B2 (fr)
CN (1) CN102131846B (fr)
BR (1) BRPI0910532A2 (fr)
FR (1) FR2930777B1 (fr)
WO (1) WO2009141558A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110281045A1 (en) * 2010-05-11 2011-11-17 Bostick S.A. HMPSA for debondable self-adhesive label
WO2014128426A1 (fr) 2013-02-25 2014-08-28 Arkema France Matériaux supramoléculaires à base d'oligo-amides
US9084735B2 (en) 2013-08-01 2015-07-21 International Business Machines Corporation Self-assembling bis-urea compounds for drug delivery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944025B1 (fr) * 2009-04-02 2011-04-01 Arkema France Utilisation en tant qu'absorbeur de chocs, d'un materiau forme de molecules arborescentes comportant des groupes associatifs
FR2965408A1 (fr) * 2010-09-23 2012-03-30 Arkema France Materiau composite et utilisation pour la fabrication d'une electrode
FR2966465B1 (fr) * 2010-10-21 2012-11-02 Arkema France Composition comprenant un melange de polycondensat thermoplastique et de polymere supramoleculaire, et procede de fabrication
GB201215100D0 (en) 2012-08-24 2012-10-10 Croda Int Plc Polymide composition
EP3473672A4 (fr) * 2016-06-16 2019-08-14 Bridgestone Corporation Additif pour caoutchouc
CN108865046B (zh) * 2017-05-16 2021-05-14 天津大学 自愈合性超分子聚酰胺类粘合剂及其制备方法和应用
CN107099137B (zh) * 2017-05-30 2019-08-20 华南理工大学 一种自愈合弹性体材料及其制备方法
DE102017125179A1 (de) 2017-10-26 2019-05-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Modifizierte Härterkomponente für ein Polymer und insbesondere für 2K-Formulierungen mit selbstheilenden Eigenschaften
DE102017125178B4 (de) 2017-10-26 2022-12-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Elektrisches Bauteil mit selbstheilender Lackeschichtung, Verfahren zu dessen Herstellung, Verfahren zur Selbstheilung des elektrischen Bauteils nach elektrischem Durchschlag sowie Verwendung einer Lackbeschichtung als selbstheilende Beschichtung
CN110061238B (zh) * 2018-03-20 2021-12-07 南方科技大学 水溶性自愈合粘结剂及其制备方法和锂离子电池
KR102228539B1 (ko) 2018-10-23 2021-03-15 주식회사 엘지화학 반도체 회로 접속용 접착제 조성물 및 이를 포함한 접착 필름

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059964A2 (fr) 2002-01-17 2003-07-24 Atofina Polymeres supramoleculaires
WO2006087475A1 (fr) 2005-02-15 2006-08-24 Arkema France Materiaux elastiques

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2992195A (en) 1957-11-29 1961-07-11 Swift & Co Preparing modified polyamide resins
DE3723941A1 (de) * 1987-07-20 1989-02-02 Henkel Kgaa Neue polyamide aus dimerisierten fettsaeuren und polyetherharnstoffdiaminen sowie deren verwendung als klebstoffe
KR0171994B1 (ko) * 1995-07-13 1999-03-30 구광시 방향족 폴리아미드, 광학적 이방성 도우프와 성형물, 및 이들의 제조방법
JP3345877B2 (ja) 1997-07-10 2002-11-18 日本ピー・エム・シー株式会社 紙塗工用樹脂及び紙塗工用組成物
US6008313A (en) * 1997-11-19 1999-12-28 Air Products And Chemicals, Inc. Polyamide curing agents based on mixtures of polyethyleneamines and piperazine derivatives
JP3551050B2 (ja) 1998-12-04 2004-08-04 住友化学工業株式会社 熱硬化性樹脂水溶液の製造方法
EP1778741B1 (fr) * 2004-07-08 2010-01-13 Arkema France Materiau polymere contenant des chaines portant des fonctions imidazolidone
JP2006159636A (ja) * 2004-12-07 2006-06-22 Toyobo Co Ltd リン酸カルシウム系化合物層含有複合材料およびその製造法
FR2905698B1 (fr) * 2006-09-08 2012-08-31 Arkema France Polymeres supramoleculaires semi-cristallins

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059964A2 (fr) 2002-01-17 2003-07-24 Atofina Polymeres supramoleculaires
WO2006087475A1 (fr) 2005-02-15 2006-08-24 Arkema France Materiaux elastiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. CORDIER ET AL., NATURE, vol. 451, 2008, pages 977

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110281045A1 (en) * 2010-05-11 2011-11-17 Bostick S.A. HMPSA for debondable self-adhesive label
US9242437B2 (en) * 2010-05-11 2016-01-26 Bostik S.A. HMPSA for debondable self-adhesive label
WO2014128426A1 (fr) 2013-02-25 2014-08-28 Arkema France Matériaux supramoléculaires à base d'oligo-amides
FR3002538A1 (fr) * 2013-02-25 2014-08-29 Arkema France Materiaux supramoleculaires a base d'oligo-amides
US20160009656A1 (en) * 2013-02-25 2016-01-14 Arkema France Supramolecular materials made of oligoamides
US9084735B2 (en) 2013-08-01 2015-07-21 International Business Machines Corporation Self-assembling bis-urea compounds for drug delivery

Also Published As

Publication number Publication date
WO2009141558A3 (fr) 2010-04-22
JP5254431B2 (ja) 2013-08-07
US8536281B2 (en) 2013-09-17
CN102131846B (zh) 2014-01-15
CN102131846A (zh) 2011-07-20
BRPI0910532A2 (pt) 2015-09-29
JP2011522909A (ja) 2011-08-04
FR2930777B1 (fr) 2011-07-01
US20110059280A1 (en) 2011-03-10
FR2930777A1 (fr) 2009-11-06
EP2276790A2 (fr) 2011-01-26

Similar Documents

Publication Publication Date Title
WO2009141558A2 (fr) Procede de synthese de materiaux supramoleculaires
EP2483326B1 (fr) Composition comprenant un melange d'elastomere et de polymere supramoleculaire
EP1848776B1 (fr) Materiaux elastiques
EP1778741B1 (fr) Materiau polymere contenant des chaines portant des fonctions imidazolidone
EP1984424B1 (fr) Copolymeres comportant des blocs polyamide et des blocs polyether, ayant des proprietes mecaniques ameliorees
FR2924715A1 (fr) Materiau forme de molecules arborescentes comportant des groupes associatifs
WO2003059964A2 (fr) Polymeres supramoleculaires
FR2846332A1 (fr) Copolymeres transparents a blocs polyamides et blocs polyethers
EP2462180B1 (fr) Polymeres supramoleculaires et compositions a base desdits polymeres
EP2225312A2 (fr) Procède de préparation d'un matériau forme de molécules arborescentes comportant des groupes associatifs
EP2563854A1 (fr) Utilisation de molecules porteuses de groupes associatifs comme plastifiant
EP3164445A1 (fr) Polyamides a base d'aminoalkyl- ou aminoaryl- piperazine pour adhesifs thermofusibles
EP2958953B1 (fr) Matériaux supramoléculaires à base d'oligo-amides
Montarnal Use of reversible covalent and non-covalent bonds in new recyclable and reprocessable polymer materials.
WO2008012480A2 (fr) Procede de fabrication de poudre de polyamide a basse masse moleculaire et son utilisation
WO2023002122A1 (fr) Composition polyamide
FR2904322A1 (fr) Procede de fabrication de poudre polyamide a basse masse moleculaire et son utilisation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116272.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750039

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009750039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7328/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011507972

Country of ref document: JP

Ref document number: 12991181

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0910532

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101028