WO2009139505A1 - 交流電圧制御装置 - Google Patents

交流電圧制御装置 Download PDF

Info

Publication number
WO2009139505A1
WO2009139505A1 PCT/JP2009/059392 JP2009059392W WO2009139505A1 WO 2009139505 A1 WO2009139505 A1 WO 2009139505A1 JP 2009059392 W JP2009059392 W JP 2009059392W WO 2009139505 A1 WO2009139505 A1 WO 2009139505A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor switch
voltage
reverse conducting
conducting semiconductor
capacitor
Prior art date
Application number
PCT/JP2009/059392
Other languages
English (en)
French (fr)
Inventor
嶋田隆一
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to CN2009801175481A priority Critical patent/CN102047546A/zh
Priority to JP2010512043A priority patent/JP4701332B2/ja
Priority to US12/992,752 priority patent/US8384333B2/en
Publication of WO2009139505A1 publication Critical patent/WO2009139505A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/425Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a high frequency AC output voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an AC voltage control device connected between an AC power supply and an inductive load, and the adjustment of the load voltage is controlled by a magnetic energy regeneration switch.
  • the present invention relates to an AC voltage control apparatus.
  • the power energy system is an important social infrastructure that cannot be stopped instantaneously, but the stability and control of the load voltage is important.
  • short-term overcurrent such as rush current when the incandescent lamp is lit, induction motor startup rush, and saturation inrush current during initial transformer inrush, etc.
  • the supply side supplies a high voltage because it may cause a failure in healthy operation.
  • the power supply system as a countermeasure against the voltage drop of the distribution line at the maximum load, there is a tendency to supply the voltage excessively by several%, but the frequency of the maximum load is usually not so high, so the voltage is rated. Often, the larger portion is consumed unnecessarily.
  • the power is converted from AC to DC, and then the voltage is controlled to be constant by the DC voltage regulator.
  • the technology to do the same thing on the AC side uses iron resonance.
  • the disadvantage of the AC voltage regulator by Siris Yu is that the current waveform is distorted, and that the voltage control results in the current having a delayed power factor (a state in which the current is behind the voltage).
  • a delay rate load such as an inductive load, a high voltage is generated when the voltage is interrupted, and the voltage noise is also a problem.
  • M E R S magnetic energy regenerative switch
  • MERS uses a switching circuit / semiconductor element that does not have reverse blocking capability, that is, reverse conduction type.
  • a reverse conduction switching circuit Z semiconductor element for example, a self-extinguishing element and a diode are connected, the positive side of the self-extinguishing element is connected to the negative side of the diode, and the negative side of the self-extinguishing element is connected to a diode.
  • Type switching circuit Z semiconductor element simply "reverse conduction type semiconductor switch"
  • MERS is the negative side of the self-extinguishing element constituting the first reverse conducting semiconductor switch (hereinafter simply referred to as “the negative side of the reverse conducting semiconductor switch”) and the second reverse conducting semiconductor switch.
  • the second reverse conducting semiconductor switch leg having the second AC terminal as the point connecting the negative side of the third reverse conducting semiconductor switch and the positive side of the fourth reverse conducting semiconductor switch is connected to the first reverse conducting semiconductor switch.
  • the first reverse-conducting semiconductor switch and the fourth reverse-conducting semiconductor switch are the first pair
  • the second reverse-conducting semiconductor switch and the third reverse-conducting semiconductor switch are the second pair
  • the self-extinguishing element that constitutes two reverse conducting semiconductor switches is blocked (hereinafter simply
  • the reverse conducting semiconductor switch is in an off state”.
  • the MERS When the capacitor is shut off, the capacitor absorbs the “snubber energy” stored in the entire full bridge circuit and the controlled circuit, It functions as a bidirectional current switch circuit that can be regenerated in the circuit to be controlled.
  • the direction of the current flowing in the circuit to be controlled can be switched between forward and reverse depending on the purpose and range of the control.
  • the capacitance of the capacitor is a capacitance that resonates with the inductance of the inductive load, and the capacitance is selected according to the control purpose-range.
  • the capacitance of the capacitor so that the resonance frequency determined by the capacitance of the capacitor and the inductance of the inductive load is equal to or higher than the switching frequency of the reverse-conducting semiconductor switch,
  • the self-extinguishing element constituting the reverse conducting semiconductor switch is substantially zero voltage and zero current, and when turned off, the self-extinguishing semiconductor switch constituting the reverse conducting semiconductor switch.
  • the element can be soft-switching, which is at almost zero voltage.
  • the ON / OFF state of the reverse conducting semiconductor switch is controlled so that the pair 2 is turned on.
  • the ON / OFF time ratio (duty ratio) of the reverse conducting semiconductor switch is 0.5, That is, the on time and the off time are equal.
  • the reverse conduction type semiconductor switch OFF state is expressed on the time axis as a control signal
  • the phase of the control signal is synchronized with the voltage phase of the AC power supply, and the phase of the control signal is advanced from the voltage phase of the AC power supply ( The control is such that the phase of the control signal changes temporally).
  • the AC power supplied to the inductive load can be controlled by changing the phase difference between the voltage phase of the control signal and the AC power supply in accordance with the purpose / range of control.
  • the supply voltage to the inductive load can be increased by advancing the current phase, and the supply voltage to the inductive load can be reduced by advancing the current phase significantly. is there.
  • AC voltage control device using phase advance current Proposed, published, and already publicly known (see Patent Document 3).
  • Patent Document 1 Japanese Patent No. 3 6 3 4 9 8 2
  • Patent Document 2 Japanese Patent No. 3 7 3 5 6 7 3
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 7-0 5 8 6 7 6 Summary of the Invention
  • the AC voltage controller using the phase advance current uses two power factor loads: a leading power factor load by the MERS circuit and another delayed power factor load that is not connected to the MERS circuit. Power factor can be improved by using.
  • the present invention has been made in view of the above-described problems, and reduces the voltage burden on the reverse conduction type semiconductor switch and the capacitor of the MERS circuit and reduces the phase advance amount of the current supplied to the inductive load.
  • An object of the present invention is to provide an AC voltage control device capable of controlling a voltage supplied to an inductive load. Means for solving the problem
  • the present invention relates to an AC voltage control device in which adjustment of a load voltage is controlled by a magnetic energy regenerative switch, and the object of the present invention is to insert in series between an AC power source and an inductive load.
  • An AC voltage control device for controlling a load voltage applied to an inductive load wherein the AC voltage control device includes a self-extinguishing element and a diode, a positive electrode side of the self-extinguishing element, and a negative electrode side of the diode.
  • a circuit in which the negative electrode side of the self-extinguishing element is connected to the positive electrode side of the diode, or an equivalent semiconductor element, is referred to as a reverse conducting semiconductor switch (hereinafter simply referred to as “reverse conducting semiconductor switch”).
  • the negative side of the self-extinguishing element constituting the first reverse conducting semiconductor switch (hereinafter simply referred to as the negative side of the reverse conducting semiconductor switch) and the second reverse conducting semiconductor
  • the positive electrode side of the self-turn-off elements constituting the Itchi (hereinafter, simply "reverse This is referred to as the positive electrode side of a conductive semiconductor switch. )
  • Connect the first reverse conducting semiconductor switch leg with the point connected to the first AC terminal, the negative side of the third reverse conducting semiconductor switch and the positive side of the fourth reverse conducting semiconductor switch Connect the positive side of the first reverse conducting semiconductor switch to the positive side of the third reverse conducting semiconductor switch by connecting the second reverse conducting type semiconductor switch leg with this point as the second AC terminal.
  • a full bridge circuit configured as a negative terminal by connecting the negative side of the second reverse conducting semiconductor switch and the negative side of the fourth reverse conducting semiconductor switch, and the positive terminal and the negative terminal of the full bridge circuit
  • Full bridge type magnetic energy regenerative switch (hereinafter referred to simply as “MERS”) circuit consisting of a capacitor connected between terminals and the first AC terminal of the full bridge type MERS circuit
  • a step-down transformer in which one end is connected to the AC power source, a primary side is connected to the AC power source, and one end on the secondary side is connected to the other end of the AC reactor, and control means.
  • the second AC terminal is connected to the inductive load, and the control means uses the first reverse conducting semiconductor switch and the fourth reverse conducting semiconductor switch as the first pair, and the second reverse conducting.
  • the second semiconductor switch and the third reverse conducting semiconductor switch are the second pair, and the self-extinguishing elements constituting the two reverse conducting semiconductor switches of the first pair are in the conducting state (hereinafter simply “reverse” When the conductive semiconductor switch is in the ON state, the self-extinguishing element that constitutes the two reverse conductive semiconductor switches in the second pair is blocked (hereinafter simply referred to as “reverse conductive semiconductor switch”). "Off state”) When the first pair is off, the on / off state of the reverse conducting semiconductor switch is controlled so that the second pair is on.
  • control means outputs a signal for controlling the ON / OFF state of the reverse conducting semiconductor switch as a gate control signal, and turns on the reverse conducting semiconductor switch.
  • the gate control signal phase should be controlled in synchronization with the AC power supply voltage phase.
  • the AC voltage control device is characterized in that a voltage that compensates the reactance voltage of the inductive load is generated in the capacitor and the voltage applied to the inductive load is controlled.
  • an AC voltage control device characterized in that the capacitor is a polar capacitor.
  • the above object of the present invention is such that the resonance frequency (fres) determined by the value of the capacitance (C) of the capacitor and the inductance (L) of the inductive load is equal to or higher than the frequency (fac) of the AC power supply.
  • This is also achieved by an AC voltage control device characterized in that the value of the capacitance (C) of the capacitor is set.
  • the above object of the present invention is to set the difference between the phase change of the gate control signal and the voltage phase of the AC power supply as the phase angle of the gate control signal, and the phase change of the gate control signal is greater than the voltage phase of the AC power supply.
  • a case that is ahead in time is expressed as a positive angle as “advance”, and a case where the phase change of the gate control signal is later than the voltage phase of the AC power supply is expressed as a “delay” and a negative angle.
  • the phase angle range of the gate control signal is set from 0 degrees to plus 90 degrees, or from 0 degrees to minus 180 degrees. Achieved.
  • the above object of the present invention is an AC voltage control device that is inserted in series between an AC power source and an inductive load and controls a load voltage applied to the inductive load.
  • the AC voltage control device includes: A reverse conducting semiconductor switch leg connecting the negative electrode side of the first reverse conducting semiconductor switch and the negative electrode side of the second reverse conducting semiconductor switch, and the first crossing, which is the positive side of the first reverse conducting semiconductor switch.
  • the on / off state of the body switch is controlled, and the control means provides a signal for controlling the on / off state of the reverse conducting semiconductor switch as a gate control signal, and the on / off state of the reverse conducting semiconductor switch. And the on-signal duration of the gate control signal When the duration of the Z-off signal matches, the reactance voltage of the inductive load is controlled by controlling the phase of the gate control signal in synchronization with the voltage phase of the AC power supply. This is achieved by an AC voltage control device that generates a voltage to compensate for the capacitor and controls the voltage applied to the inductive load.
  • an AC voltage controller characterized in that the connection polarities of the first reverse conducting semiconductor switch and the second reverse conducting semiconductor switch are reversed.
  • the above object of the present invention is such that the resonance frequency (fres) determined by the value of the capacitance (C) of the capacitor and the inductance (L) of the inductive load is equal to or higher than the frequency (fac) of the AC power supply.
  • an AC voltage control device characterized in that the value of the capacitance (C) of the capacitor is set.
  • the above object of the present invention is an AC voltage control device that is inserted in series between an AC power source and an inductive load and controls a load voltage applied to the inductive load.
  • the AC voltage control device includes: A reverse conducting semiconductor switch leg having a first AC terminal at a point where the negative electrode side of the first reverse conducting semiconductor switch is connected to the positive electrode side of the second reverse conducting semiconductor switch, the first diode and the first diode
  • the first capacitor clamp circuit with a capacitor connected in parallel and the second capacitor clamp circuit with a second diode and a second capacitor connected in parallel are connected to the positive electrode of the first diode.
  • Capacitor circuit with the second AC terminal at the point where the negative electrode side of the second diode is connected to the positive electrode side of the first reverse conduction type semiconductor switch and the negative electrode side of the first diode The point where is connected is the positive terminal, and the second reverse First half current of vertical half-bridge MERS circuit and vertical half-bridge MERS circuit, where the negative electrode terminal is the point connecting the negative side of the normal semiconductor switch and the positive side of the second diode
  • An AC reactor with one end connected to the terminal, a step-down transformer with the primary side connected to the AC power source and one end on the secondary side connected to the other end of the AC reactor, and control means.
  • the second AC terminal is connected to an inductive load, and the control means turns off the second reverse conducting semiconductor switch when the first reverse conducting semiconductor switch is on, When the first reverse conducting semiconductor switch is off, the second reverse conducting semiconductor switch is turned on, and the first reverse conducting semiconductor switch and the second reverse conducting semiconductor switch are simultaneously turned on.
  • the ON / OFF state of the reverse conducting semiconductor switch is controlled so that the reverse conducting semiconductor switch does not enter the gate state, and the control means outputs a signal for controlling the ON / OFF state of the reverse conducting semiconductor switch as a gate control signal.
  • the phase of the gate control signal is By controlling in synchronization with the voltage phase, the voltage that compensates the inductive load reactance voltage is generated in the first capacitor and the second capacitor, and the voltage applied to the inductive load is controlled. This is achieved by the characteristic AC voltage control device.
  • the above object of the present invention is an AC voltage control device that is inserted in series between an AC power source and an inductive load and controls a load voltage applied to the inductive load.
  • the AC voltage control device includes: A first capacitor short circuit in which the positive side of the reverse conducting semiconductor is a first AC terminal, the first reverse conducting semiconductor switch and the first capacitor are connected in parallel, and the second reverse conducting semiconductor
  • the second capacitor short circuit in which the positive side of the switch is the second AC terminal and the second reverse conducting semiconductor switch and the second capacitor are connected in parallel, is connected to the negative side of the first reverse conducting semiconductor switch.
  • a two-capacitor horizontal half-bridge MERS circuit connected to the negative electrode side of the second reverse conducting semiconductor switch, an AC reactor having one end connected to the first AC terminal of the two-capacitor horizontal half-bridge MERS circuit, Exchange Primary AC power source is connected to, and, together comprising a secondary step down transformer having one end connected to the other end of the AC Riaku torr, and a control unit, a
  • the second AC terminal is connected to an inductive load, and the control means turns off the second reverse conducting semiconductor switch when the first reverse conducting semiconductor switch is on, When the first reverse conducting semiconductor switch is off, the second reverse conducting semiconductor switch is turned on, and the first reverse conducting semiconductor switch and the second reverse conducting semiconductor switch are simultaneously turned on. Control the ON / OFF state of the reverse conducting semiconductor switch so that the
  • control means provides a signal for controlling the ON / OFF state of the reverse conducting semiconductor switch as a gate control signal, and turns on the reverse conducting semiconductor switch.
  • gate control signal phase is controlled in synchronism with the voltage phase of the AC power supply.
  • the object of the present invention is that the self-extinguishing element constituting the reverse conducting semiconductor switch is a field effect transistor or a semiconductor element having an equivalent structure, and the control means constitutes the reverse conducting semiconductor switch.
  • This can also be achieved by an AC voltage control device that controls the reverse conducting semiconductor switch to be in an on state when the diode to be conducted becomes a conducting state in the forward direction.
  • each of the first capacitor and the second capacitor is a polarized capacitor.
  • an AC voltage control device characterized in that the connection polarities of the first reverse conducting semiconductor switch and the second reverse conducting semiconductor switch are reversed.
  • the above object of the present invention is to reverse the connection polarities of the first reverse conducting semiconductor switch and the second reverse conducting semiconductor switch, respectively, and to further change the connection polarities of the first capacitor and the second condenser, respectively.
  • This can also be achieved by an AC voltage controller characterized by the reverse.
  • the object of the present invention is to provide a first resonance frequency (fres 1) determined by the capacitance (C 1) of the first capacitor and the inductance (L) of the inductive load, and the second capacitor.
  • the second resonant frequency (fres 2) determined by the value of the capacitance (C 2) and the inductance (L) of the inductive load is
  • the AC voltage control device is characterized in that the capacitances (C l, C 2) of the first and second capacitors are set so as to be equal to or higher than the frequency (fac) of the AC power source, respectively. Achieved.
  • an AC voltage control device characterized in that the step-down transformer is removed and an AC power source is directly connected to the other end of the AC reactor.
  • an AC voltage control device further comprising a power factor compensation capacitor connected in parallel between terminals of the AC power supply.
  • the above object of the present invention is to set the difference between the phase change of the gate control signal and the voltage phase of the AC power supply as the phase angle of the gate control signal, and the phase change of the gate control signal is greater than the voltage phase of the AC power supply.
  • a case that is ahead in time is expressed as a positive angle as “advance”, and a case where the phase change of the gate control signal is later than the voltage phase of the AC power supply is expressed as a “delay” and a negative angle.
  • an AC voltage control device characterized in that the range of the phase angle of the gate control signal is set from 0 degree to 90 degrees or from 0 degrees to minus 90 degrees. Is done.
  • the voltage supplied to the load can be controlled without significantly advancing the phase of the current supplied to the load.
  • the voltage burden between the reverse conducting semiconductor switch and the capacitor of the MERS circuit can be reduced, leading to a reduction in the size of the AC voltage control device according to the present invention.
  • harmonics contained in the current waveform can be reduced.
  • FIG. 1 is a circuit block diagram showing the configuration of the first embodiment according to the present invention.
  • FIG. 2 is a circuit block diagram showing the configuration of the second embodiment according to the present invention.
  • FIG. 3 is a circuit block diagram showing a configuration in which the positive electrodes of two reverse conducting semiconductor switches are shared in the second embodiment according to the present invention.
  • FIG. 4 is a circuit block diagram showing the configuration of the third embodiment according to the present invention.
  • FIG. 5 is a circuit block diagram showing the configuration of the fourth embodiment according to the present invention.
  • FIG. 6 is a circuit block diagram showing a configuration in which the positive electrodes of two reverse conducting semiconductor switches are shared in the fourth embodiment according to the present invention.
  • FIG. 7 is an excerpt of a circuit block diagram showing a configuration in which the step-down transformer is removed and the AC power source and the AC reactor are directly connected in the configuration of the AC voltage control apparatus according to the present invention.
  • FIG. 8 is an excerpt of a circuit block diagram showing a configuration in which a power factor compensation capacitor is connected in the configuration of the AC voltage control apparatus according to the present invention.
  • FIG. 9 is an excerpt of a circuit block diagram showing a configuration using a power switch for complete current interruption in the second and fourth embodiments of the present invention. It is.
  • FIG. 10 is a circuit block diagram showing a configuration in which a power factor compensation capacitor is connected and a power switch is used for complete current interruption in the second and fourth embodiments according to the present invention. Excerpt.
  • FIG. 11 is a diagram showing the relationship between the voltage phase of the AC power supply and the phase angle ⁇ of the gate control signal.
  • FIG. 12 is a diagram showing the relationship between the phase angle ⁇ of the gate control signal and the load voltage.
  • FIG. 13 is a diagram showing a computer simulation result of the configuration of the first embodiment according to the present invention.
  • FIG. 14 is a diagram showing a computer simulation result of the configuration of the sixth embodiment according to the present invention.
  • FIG. 15 is a diagram showing a computer simulation result of the configuration of the seventh embodiment according to the present invention.
  • FIG. 16 is a diagram showing a computer simulation result when there is no configuration of the seventh embodiment according to the present invention. Explanation of symbols
  • a self-extinguishing element refers to an electronic component capable of controlling the forward conduction blocking state of the element by applying a control signal to the gate of the element.
  • the signal that controls the ON / OFF state of the reverse conducting semiconductor switch is the gate control signal, and the ON / OFF state of the reverse conducting semiconductor switch and the ON signal duration of the gate control signal Z OFF signal duration Shall match.
  • the reverse conducting semiconductor switch remains on and reverse conducting
  • the reverse conduction semiconductor switch continues to be turned off.
  • Fig. 11 shows the definition of the phase angle of the gate control signal.
  • the change in the phase of the gate control signal is the difference between the voltage phase of the AC power supply 3 and the phase angle ⁇ of the gate control signal, and the change in the phase of the gate control signal is The time that precedes the voltage phase is expressed as “advance” as a positive angle, and the case that the phase change of the gate control signal is later than the voltage phase of the AC power supply 3 is expressed as “lag”. Expressed with a negative angle.
  • FIG. 12 shows the relationship between the phase angle ⁇ of the gate control signal and the load voltage V 1 ⁇ a d.
  • the range of the phase angle of the gate control signal is “Region 1” for the range from 0 ° to 90 °, “Region 2” for the range from 90 ° to 180 °, — 1 8
  • the range from 0 ° to —90 ° is called “Region 3”
  • the range from —90 ° to 0 ° is called “Region 4”
  • the 0 ° point is called “0 ° Point”. Is used.
  • FIG. 1 is a circuit block diagram showing a configuration of an AC voltage control apparatus according to a first embodiment of the present invention.
  • the AC voltage control apparatus according to the first embodiment of the present invention is inserted in series between the AC power supply 3 and the inductive load 5 and supplied to the inductive load 5 (load voltage). It is the alternating voltage control apparatus which controls.
  • the AC voltage control device in Fig. 1 connects a self-extinguishing element and a diode, and connects the positive side of the self-extinguishing element and the negative side of the diode, and the negative side of the self-extinguishing element and the positive side of the diode.
  • Connected side hereinafter simply connected to "reverse parallel") Circuit
  • an equivalent semiconductor element is a reverse conduction type semiconductor switch.
  • reverse conducting semiconductor switch and the negative side of the self-extinguishing element constituting the first reverse conducting semiconductor switch SW 1 (hereinafter simply referred to as “reverse conducting semiconductor switch negative electrode”). And the positive electrode side of the self-extinguishing element constituting the second reverse conducting semiconductor switch SW2 (hereinafter simply referred to as “the positive electrode side of the reverse conducting semiconductor switch”).
  • the first reverse conducting semiconductor switch leg that is the first AC terminal AC 1 is connected to the negative side of the third reverse conducting semiconductor switch SW 3 and the positive side of the fourth reverse conducting semiconductor switch SW 4.
  • a full bridge circuit configured as a negative terminal DCN by connecting the negative side of the type 2 semiconductor switch SW 2 and the negative side of the fourth reverse conducting semiconductor switch SW4, and between the positive terminal DCP and the negative terminal D CN of the full bridge circuit
  • ME RS full-bridge magnetic energy regenerative switch
  • An AC reactor L a c having one end connected to the first AC terminal A C 1 of the full-bridge type ME R S circuit 10;
  • a step-down transformer 9 having a primary side connected to the AC power source 3 and one end of the secondary side connected to the other end of the AC reactor L ac;
  • the second AC terminal AC 2 is connected to the inductive load 5,
  • the control means 4 includes the first reverse conducting semiconductor switch SW1 and the fourth reverse conducting semiconductor switch SW4 as the first pair, and the second reverse conducting semiconductor switch SW2 and the third reverse conducting semiconductor switch SW4.
  • Semiconductor switch SW 3 is the second pair, When the self-extinguishing element constituting the two reverse conducting semiconductor switches of the first pair is in the conducting state (hereinafter simply referred to as “the reverse conducting semiconductor switch is turned on”), the second pair When the first pair is in the off state, the self-extinguishing element constituting the two reverse conducting semiconductor switches is set to the blocking state (hereinafter simply referred to as “the reverse conducting semiconductor switch is turned off”). Controls the on / off state of the reverse conducting semiconductor switch so that the second pair is on,
  • control means 4 provides a signal for controlling the on / off state of the reverse conducting semiconductor switch as a gate control signal, the on / off state of the reverse conducting semiconductor switch, and the continuation of the on signal of the gate control signal.
  • the voltage that compensates the reactance voltage of the inductive load 5 is controlled by controlling the phase of the gate control signal in synchronization with the voltage phase of the AC power supply 3. It is characterized in that the voltage applied to the inductive load 5 is controlled.
  • FIG. 13 is a circuit block diagram shown in FIG. 1, and shows the results of computer simulation when the following circuit constants are used.
  • FIG. 13 shows the current I in supplied from the AC power source 3, the current flowing through the inductive load 5 (load current) I load, the voltage V ac of the AC power source 3, and the voltage supplied to the inductive load (load Voltage) V 1 oad, AC power supply 3 voltage V ac and second reverse conduction type semiconductor switch SW2 gate control signal G 2 expanded, Capacitor C voltage across V C, AC power supply 3 Shows the waveform of the power factor PF ac (power factor PF ac is displayed at 100 0 times) measured by the AC power source 3 ing.
  • a step-down transformer 9 is inserted between the AC power source 3 and the AC voltage control device of the first embodiment according to the present invention, and the voltage of the AC power source 3 is changed from 20 0 V rms to 16 0 V rms. V ac is reduced by 20%.
  • the AC reactor L a c is selected to be 0.6 mH.
  • the phase angle ⁇ of the gate control signal is set to “advance”, the load voltage V I o a d is boosted from a voltage that is 20% lower than the voltage V ac of the AC power supply 3.
  • the control means 4 sets the phase angle ⁇ of the gate control signal to — 45 degrees (delayed), and then the phase angle of the gate control signal to 30 degrees (advance). As shown, the load voltage VI oad is boosted.
  • Capacitance (C) of capacitor C is only absorbed and discharged (capacitor is discharged) by absorbing magnetic energy of inductive load 5 by resonance with inductance (L) of inductive load 5.
  • Very small capacity PC leakage 59392 In other words, the capacity of the AC power source 3 of the inductive load 5 is sufficient for absorbing and releasing the half-cycle magnetic energy.
  • the capacitor is completely different from the large-capacity smoothing capacitor for stably supplying the DC voltage used in the conventional voltage-type PWM inverter circuit.
  • Capacitor C absorbs magnetic energy (1/2 (L (I load) "2)) as electrostatic energy (1/2 (C (Vc)-2)) every half cycle of AC power supply 3.
  • the voltage V c across the capacitor C is characterized by going from peak to almost zero [V] in synchronization with every half cycle of the AC power supply 3.
  • the resonance frequency (fres) determined by the capacitance (C) of the capacitor C and the inductance (L) of the inductive load 3 is set to be equal to or higher than the frequency (fac) of the AC power supply 3, so that
  • the self-extinguishing element constituting the conductive semiconductor switch has substantially zero voltage and zero current, and when turned off, the self-extinguishing element constituting the reverse conducting semiconductor switch has substantially zero voltage.
  • the capacitor C has a voltage range in a voltage range that compensates the reactance voltage of the inductive load 5, the shared voltage of the capacitor C can be lowered. From Fig.13, the voltage on the secondary side of the step-down transformer 9 is Although 1 60 V rms (maximum voltage is 2 2 6 V), it can be confirmed that the voltage V c across capacitor C is 1 50 V at maximum.
  • the range of the phase angle of the gate control signal ranges from 0 degrees to 90 degrees (area 1 in Fig. 12) and from 0 degrees to 1 180 degrees (area 3 in Fig. 12). By using the range 4), the distortion generated in the voltage waveform and current waveform applied to the inductive load 5 can be reduced.
  • FIG. 2 is a circuit block diagram showing the configuration of the AC voltage control apparatus according to the second embodiment of the present invention.
  • FIG. 2 shows an AC voltage control device that is inserted in series between the AC power source 3 and the inductive load 5 and controls the voltage (load voltage) supplied to the inductive load 5.
  • the AC voltage control device of FIG. 2 includes a reverse conducting semiconductor switch leg in which the negative side of the first reverse conducting semiconductor switch SW 1 and the negative side of the second reverse conducting semiconductor switch SW 2 are connected to each other. Connected between the first AC terminal AC 1 on the positive side of the reverse conducting semiconductor switch SW 1 and the second AC terminal AC 2 on the positive side of the second reverse conducting semiconductor switch SW 2 1 capacitor horizontal half bridge ME RS circuit 2 1 composed of capacitor C,
  • Capacitor horizontal half bridge MERS circuit 2 1st AC terminal AC reactor L ac with one end connected to AC 1 and
  • a step-down transformer 9 having a primary side connected to the AC power source 3 and one end of the secondary side connected to the other end of the AC reactor L a c;
  • the second AC terminal A C 2 is connected to the inductive load 5,
  • the control means 4 turns off the second reverse conducting semiconductor switch SW 2 and the first reverse conducting semiconductor switch SW 1 In the off state, the second reverse conducting semiconductor switch SW 2 is turned on, and the first reverse conducting semiconductor switch SW 1 and the second reverse conducting semiconductor switch SW 2 are simultaneously turned off.
  • the on / off state of the reverse conducting semiconductor switch is controlled so that the
  • control means 4 provides a signal for controlling the ON / OFF state of the reverse conducting semiconductor switch as the gate control signal, the ON / Z off state of the reverse conducting semiconductor switch, and the on / off state of the gate control signal.
  • Signal duration When the duration of the Z-off signal matches, the phase of the gate control signal is controlled in synchronism with the voltage phase of the AC power supply 3, thereby compensating the reactance voltage of the inductive load 5. Is generated in the capacitor C and the voltage applied to the inductive load 5 is controlled.
  • FIG. 3 is a circuit block diagram showing a configuration in which the positive electrode sides of two reverse conducting semiconductor switches are shared in the second embodiment of the present invention.
  • connection polarity of each of the first reverse conducting semiconductor switch SW 1 and the second reverse conducting semiconductor switch SW 2 is determined. This is a mode in which the positive electrode sides are connected to each other. Same as the AC voltage control device of the second embodiment according to the present invention 09 059392 Function ⁇ Action ⁇ Effective.
  • the same configuration can be used when using a reverse-conducting semiconductor switch such as a P-channel transistor M0 S F E T, or a circuit in which a transistor and a diode are connected in antiparallel.
  • a reverse-conducting semiconductor switch such as a P-channel transistor M0 S F E T, or a circuit in which a transistor and a diode are connected in antiparallel.
  • Capacitor C has a 1-capacitor horizontal half-bridge MERS circuit 2 1 because the positional relationship of the potential between the first AC terminal AC 1 and the second AC terminal AC 2 changes each time the voltage phase of AC power supply 3 changes. Use a nonpolar capacitor.
  • the resonance frequency (fres) determined by the capacitance (C) of the capacitor C and the inductance (L) of the inductive load 5 is set to be equal to or higher than the frequency (fac) of the AC power supply 3, so that When the self-extinguishing element constituting the conduction type semiconductor switch is turned on Z-off, the self-extinguishing element constituting the reverse conduction type semiconductor switch is to perform a soft switching operation of substantially zero voltage. Can do.
  • the switching loss is halved compared to the AC voltage control device of the first embodiment according to the present invention. Furthermore, the configuration of the AC voltage controller according to the second embodiment of the present invention can be simplified.
  • the AC voltage control apparatus is configured such that the reverse conduction type semiconductor switch is turned on / off with the electric charge remaining in the capacitor C.
  • capacitor C is short-circuited. Therefore, the range of the phase angle a; of the gate control signal is from 0 degrees to 90 degrees (area 1 in Fig. 12) and from 0 degrees to 90 degrees (area 4 in Fig. 12). It is possible to cope with a short circuit of the capacitor C.
  • the range of the phase angle ⁇ is set to the above-described range, there is an effect that the energization loss of the AC voltage control device according to the second embodiment of the present invention is reduced.
  • the capacitor C is connected in series between the AC power source 3 and the inductive load 5, so that the load current I 1 oad is completely reduced. It cannot be blocked. If it is necessary to completely cut off the load current I 1 oad, it can be handled by installing a power switch PSW between the AC power source 3 and the AC voltage control device of the second embodiment according to the present invention. .
  • FIG. 9 (A) and FIG. 9 (B) show a mode in which the power switch P SW described above is installed. (The mode of Fig. 9 (B) will be described later.)
  • FIG. 4 is a circuit block diagram showing the configuration of the AC voltage control apparatus according to the third embodiment of the present invention.
  • FIG. 4 shows an AC voltage control device that is inserted in series between the AC power source 3 and the inductive load 5 and controls the voltage (load voltage) supplied to the inductive load 5.
  • the AC voltage control device in FIG. 4 is connected to the first AC terminal AC 1 by connecting the negative side of the first reverse conducting semiconductor switch SW 1 to the positive side of the second reverse conducting semiconductor switch SW 2.
  • a capacitor circuit in which the second capacitor clamp circuit connected in parallel is connected to the positive side of the first diode D 1 and the negative side of the second diode D 2 as the second AC terminal AC 2 is used.
  • the vertical half-bridge ME RS circuit 30 configured as the negative terminal DCN is the point where the positive side of the diode D2 is connected.
  • a step-down transformer 9 having a primary side connected to the AC power source 3 and one end of the secondary side connected to the other end of the AC reactor L ac;
  • the second AC terminal A C 2 is connected to the inductive load 5,
  • the control means 4 turns off the second reverse conducting semiconductor switch SW 2 and the first reverse conducting semiconductor switch SW 1 In the off state, the second reverse conducting semiconductor switch SW 2 is turned on, and the first reverse conducting semiconductor switch SW 1 and the second reverse conducting semiconductor switch SW 2 are turned on simultaneously.
  • the on / off state of the reverse conducting semiconductor switch is controlled so that the
  • control means 4 provides a signal for controlling the ON / OFF state of the reverse conducting semiconductor switch as a gate control signal, the on / off state of the reverse conducting semiconductor switch, and the continuation of the ON signal of the gate control signal.
  • the duration of the time-off signal matches, the voltage that compensates the reactance voltage of the inductive load 5 is controlled by controlling the phase of the gate control signal in synchronization with the voltage phase of the AC power supply 3. 1 and second capacitor C 2 It is characterized by controlling the voltage applied to the inductive load 5.
  • the basic operation and characteristics of the AC voltage control device according to the third embodiment of the present invention are the same as those of the AC voltage control device according to the first embodiment of the present invention.
  • items specific to the AC voltage control apparatus according to the third embodiment of the present invention will be described.
  • the capacitance (C 1) of the first capacitor C 1 and the capacitance (C 2) of the second capacitor C 2 are the same as the inductive load 5 due to resonance with the inductance (L) of the inductive load 5.
  • a very small capacity is sufficient to absorb the magnetic energy (capacitor is charged) and discharge (capacitor is discharged).
  • the first capacitor C 1 and the second capacitor C 2 are a large-capacity smoothing capacitor that stably supplies the DC voltage used in the conventional voltage-type P WM The purpose is completely different.
  • first capacitor C 1 and the second capacitor C 2 alternately absorb magnetic energy (1 Z 2 (L (I 1 oad) "2)) in synchronization with each half cycle of the AC power supply 3. It is absorbed and released as electric energy (1 2 (C 1 (V c 1) ⁇ 2)), (1/2 (C 2 (V c 2) 2))
  • the voltage V across the first capacitor C 1 Cl and the voltage V c 2 across the second capacitor C 2 are characterized by alternating from the peak to approximately zero [V] in synchronization with each half cycle of the AC power supply 3.
  • the capacitance (C 1) of the first capacitor C 1 the first resonance frequency (fres 1) determined by the value of the inductance (L) of the inductive load 5, and the static of the second capacitor C 2
  • the second resonance frequency (ires 2) determined by the capacitance (C 2) and the inductance (L) value of the inductive load 5 is close to the frequency (fac) of the AC power source 3, respectively.
  • the generation of harmonics of voltage and current by the AC voltage control device of the third embodiment according to the present invention can be reduced.
  • the second resonant frequency (fres 2) determined by the capacitance (C 2) and the inductance (L) value of the inductive load 5 should be equal to or higher than the frequency (fac) of the AC power supply 3, respectively.
  • the AC voltage control device since the first capacitor C 1 and the second capacitor C 2 have a voltage range that compensates for the reactance voltage of the inductive load 5, the shared voltage of each capacitor can be lowered. it can. Since the first capacitor C 1 and the second capacitor C 2 are alternately charged and discharged in synchronization with each half cycle of the AC power supply 3, the AC voltage control device according to the first embodiment of the present invention is used. Compared with, current duty per capacitor is halved.
  • the present invention Compared with the AC voltage control apparatus of the first embodiment, the switching loss is halved. Furthermore, the configuration of the AC voltage controller according to the third embodiment of the present invention can be simplified.
  • the range of the phase angle ⁇ of the gate control signal is from 0 degrees to 90 degrees (range 1 in FIG. 12), as in the first embodiment according to the present invention, and from 0 degrees. It can be up to 1800 degrees (range of area 3 and area 4 in Fig. 12). However, if the phase angle ⁇ of the gate control signal is –90 degrees to 1180 degrees (range 4 in Fig. 12), the first capacitor C 1 and the second capacitor C 2 Charges remain in each of them, and the shared voltage of each capacitor increases.
  • the range of the phase angle Q! Of the gate control signal is
  • the shared voltage of each capacitor can be lowered. Further, distortion generated in the voltage waveform and the current waveform applied to the inductive load 5 can be reduced.
  • FIG. 5 is a circuit block diagram showing the configuration of the AC voltage control apparatus according to the fourth embodiment of the present invention.
  • FIG. 5 shows an AC voltage control device that is inserted in series between the AC power source 3 and the inductive load 5 and controls the voltage (load voltage) supplied to the inductive load 5.
  • the positive side of the first reverse conducting semiconductor SW 1 is the first AC terminal AC 1
  • the first reverse conducting semiconductor switch SW 1 and the first capacitor C 1 are connected.
  • the first capacitor short-circuit connected in parallel and the positive side of the second reverse conducting semiconductor switch SW 2 is the second AC terminal AC 2
  • the second reverse conducting semiconductor switch SW 2 and the second capacitor C 2 Connect the second capacitor short circuit connected in parallel to the negative side of the first reverse conducting semiconductor switch SW 1 and the negative side of the second reverse conducting semiconductor switch SW 2 2 capacitor horizontal half bridge ME RS Circuit 1 1 and
  • a step-down transformer 9 having a primary side connected to the AC power source 3 and one end of the secondary side connected to the other end of the AC reactor L ac;
  • the second AC terminal A C 2 is connected to the inductive load 5,
  • the control means 4 turns off the second reverse conducting semiconductor switch SW2, and the first reverse conducting semiconductor switch SW1 is In the off state, the second reverse conducting semiconductor switch SW 2 is turned on, and the first reverse conducting semiconductor switch SW 1 and the second reverse conducting semiconductor switch SW 2 are turned on simultaneously.
  • the ON / OFF state of the reverse conducting semiconductor switch is controlled so that the
  • control means 4 provides a signal for controlling the ON / OFF state of the reverse conducting semiconductor switch as the gate control signal, the ON / Z off state of the reverse conducting semiconductor switch, and the on / off state of the gate control signal.
  • Signal duration When the duration of the Z-off signal matches, the phase of the gate control signal is controlled in synchronism with the voltage phase of the AC power supply 3, thereby compensating the reactance voltage of the inductive load 5. Is generated in the first capacitor C 1 and the second capacitor C 2, and the voltage applied to the inductive load 5 is controlled.
  • FIG. 6 is a circuit block diagram showing a configuration in which the positive electrode sides of two reverse conducting semiconductor switches are shared in the fourth embodiment according to the present invention.
  • connection polarity of each of the first reverse conducting semiconductor switch SW 1 and the second reverse conducting semiconductor switch SW 2 is determined. This is a mode in which the positive electrode sides are connected to each other. It has the same functions, operations and effects as the AC voltage control apparatus of the fourth embodiment according to the present invention.
  • the AC voltage control device is a reverse conducting semiconductor switch in a state where electric charge remains in at least one of the first capacitor C1 and the second capacitor C2. Switching the on / off state of the capacitor shorts out the remaining charge. Therefore, the range of the phase angle ⁇ of the gate control signal is 0 degrees to 90 degrees (range 1 in Fig. 12) and 0 to –90 degrees (range 4 in Fig. 12). It is possible to respond by controlling between When the range of the phase angle is set as described above, there is an effect that the conduction loss of the AC voltage control device according to the fourth embodiment of the present invention is reduced.
  • FIG. 9 (A) and FIG. 9 (B) show a mode in which the above-described power switch PSW is installed. (The mode of Fig.
  • control means 4 is a synchronous rectification system that reduces conduction loss by controlling the reverse conducting semiconductor switch to be on when the diodes that make up the reverse conducting semiconductor switch are conducting in the forward direction. You can also.
  • FIG. 7 (B) is a circuit block diagram showing a part of the configuration of the AC voltage control apparatus of the fifth embodiment according to the present invention.
  • FIG. 7 (B) shows the voltage of the AC power source 3 of the step-down transformer 9 by increasing the AC inductance of the AC voltage control device according to the present invention and increasing the ac inductance.
  • the feature is that the AC power supply 3 is directly connected to the other end of the AC reactor Lac.
  • the shared voltage of the AC reactor L a c is characterized by a voltage width in the range of the voltage that compensates the reactance voltage of the inductive load 5.
  • AC reactor L ac needs to have a large inductance capacity.
  • the AC voltage control device according to the present invention has a large power capacity and the AC reactor L ac is designed according to the power factor of the inductive load 5, the waveform of the load current I load is made the fundamental wave. It can be a big advantage.
  • FIG. 8 (A) and FIG. 8 (B) are circuit block diagrams showing a part of the configuration of the AC voltage control apparatus of the sixth embodiment according to the present invention.
  • FIGS. 8 (A) and 8 (B) further include a power factor compensation capacitor C comm connected in parallel between the terminals of the AC power supply 3, and the current voltage control device according to the present invention.
  • the characteristic is that the power factor is approximately 1 in the entire voltage control range.
  • FIG. 14 (A) shows a computer simulation when the circuit constants shown in FIG. 13 are used in the AC voltage controller according to the first embodiment of the present invention. Results are shown.
  • FIG. 14 (B) shows an AC voltage control apparatus according to the first embodiment of the present invention, using the circuit constants shown in FIG. 13 and the capacitance of the power factor compensation capacitor C com as 1 Shows the results of computer simulation with 20 micro F.
  • Figures 14 (A) and 14 (B) show the apparent power VA ac measured with AC power supply 3, active power W ac measured with AC power supply 3, and power factor measured with AC power supply 3, respectively. This shows the waveform of PF ac (power factor PF ac is displayed in 100-fold magnification).
  • the power factor compensation capacitor The power factor must be approximately 1 even if the phase angle ⁇ of the gate control signal of the AC voltage controller connected to C comm is changed from -4 5 degrees (delay) to 30 degrees (advance). Can be confirmed.
  • FIG. 15 is a diagram showing a computer simulation result of the configuration of the seventh embodiment according to the present invention.
  • FIG. 16 is a diagram showing a computer simulation result when the AC power source 3 and the inductive load 5 are directly connected. In both cases, it is assumed that the load voltage V 1 o ad drops when the impedance of the AC power source 3 is high and the load current I 1 o a d is large. More specifically, FIG. 15 is a circuit block diagram shown in FIG. 1, and shows the results of computer simulation when the following circuit constants are used.
  • FIG. 15 shows the current flowing through the inductive load 5 (load current) I 1 oad, the voltage V c across the capacitor C, the voltage V in supplied to the full bridge type ME RS circuit 10 and the full bridge type MERS Effective voltage V inillerrms supplied to circuit 10 and voltage supplied to inductive load 5 (load voltage) V 1 oad and effective voltage supplied to inductive load 5 V 1 oad—rms, apparent power measured at AC power supply 3 VA ac, gate control signal G 1 of first reverse conducting semiconductor switch SW 1, second The waveform of the gate control signal G2 of the reverse conduction type semiconductor switch SW2 is shown.
  • Fig. 16 shows the current flowing through the inductive load 5 (load current) I load, the voltage V ac of the AC voltage 3, the effective voltage V ac-rms of the AC power source 3, and the inductive load 5
  • the waveform of the apparent power VA ac measured with the AC voltage 3 (load voltage) V 1 oad, the effective voltage V 1 oad—rms supplied to the inductive load 5 and the AC power supply 3 is shown.
  • a step-down transformer 9 is inserted between the AC power source 3 and the AC voltage control device of the seventh embodiment according to the present invention, and the AC voltage is changed from 110 V rms to 88 V rms.
  • the voltage V ac of power supply 3 is reduced by 20%.
  • the AC reactor L a c is 6.2 mH.
  • the inductive load 5 is similar to two inductive loads connected in parallel, and consists of a first inductive load and a second inductive load.
  • the first inductive load is 20 mH, 20 ohms
  • the second inductive load is 30 mH, 5 ohms.
  • the first inductive load is always connected from time 0, but the second inductive load is connected only from time 0.1 seconds to time 0.2 seconds.
  • the control means 4 always sets the phase angle of the gain control signal to 0 degree (the 0 degree point in Fig. 12). That is, the gate signal control signal G 1 of the reverse conducting semiconductor switch SW 1 and the gate of the reverse conducting semiconductor switch SW 2 are synchronized with the time when the voltage V ac of the AC power supply 3 becomes substantially zero voltage. It only changes the phase of the signal control signal G2.
  • the basic operation and characteristics of the AC voltage control device of the seventh embodiment according to the present invention are the same as those of the AC voltage control device of the first embodiment according to the present invention. Items specific to the AC voltage control apparatus of the seventh embodiment will be described.
  • the phase angle ⁇ of the gate control signal is always set to 0 degree (the 0 degree point in Fig. 12). That is, the gate signal control signal G 1 of the reverse conducting semiconductor switch SW 1 and the gate signal of the reverse conducting semiconductor switch SW 2 are synchronized with the time when the voltage V ac of the AC power supply 3 becomes substantially zero voltage. Only the phase of control signal G2 is switched. In other AC voltage control devices according to the embodiments of the present invention, the phase angle ⁇ of the gate control signal is positively controlled. In the AC voltage control apparatus of the seventh embodiment according to the present invention, the phase angle ⁇ of the gate control signal is always 0 degree (the 0 degree point in FIG. 12), so that the inductive load 5 The voltage (load voltage) VI oad supplied to can be kept constant. The method of always setting the phase angle ⁇ of the gate control signal to 0 degree (the 0 degree point in FIG. 12) also works effectively in other AC power supply control apparatuses according to the embodiments of the present invention.
  • discharge lamps As the inductive load 5 connected to the AC voltage control device described above, one or a plurality of discharge lamps having an inductive load (hereinafter simply referred to as “discharge lamps”). By connecting 009 to 92 and changing the load voltage V 1 oad, it is possible to provide a discharge lamp dimming system characterized by dimming the brightness of the discharge lamp according to the purpose.
  • the circuit constants shown in Fig. 13 are values assuming a low power factor fluorescent lamp with a power factor of 0.7 and a reactor ballast mercury lamp with an AC input of 20 V rms. It can be confirmed that the AC voltage control device according to the present invention works effectively.
  • induction motors As the inductive load 5 connected to the AC voltage control device described above, one or a plurality of induction motors (hereinafter simply referred to as “induction motors”) are connected, and the control means 4 is a steady operation of the induction motor.
  • the phase angle ⁇ of the gate control signal that does not generate voltage is set in the capacitor C (or the first capacitor C 1 and the second capacitor C 2), the load voltage V load is lowered from the rating of the induction motor.
  • the iron loss in the induction motor is reduced, and the control means 4 is connected to the capacitor C (or the first capacitor C 1 and the second capacitor C 2) when starting the induction motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)
  • Inverter Devices (AREA)

Abstract

要 約 書 交流電源と誘導性負荷との間に直列に挿入され、誘導性負荷の負荷電圧の調整を、磁気エネルギー回生スイッチによって制御するようにし た交流電圧制御装置であって、磁気エネルギー回生スイッチ内の逆導通型半導体スイッチとコンデンサの電圧負担を軽減し、誘導性負荷に 供給する電流の位相を小さな進み量により、誘導性負荷に供給される電圧の制御を行う。

Description

交流電圧制御装置
技術分野 本発明は、 交流電源と誘導性負荷との間に接続される交流電圧制御装 置に関し、 負荷電圧の調整を磁気エネルギー回生スィツチによって制御 明
するようにした交流電圧制御装置に関するものである。
背景技術 書 現在、 電力エネルギ一システムは瞬時も停止できない重要な社会ィン フラとなっているが、 負荷電圧の安定とその制御は重要である。 電力システムにおいては、 白熱ランプの点灯時のラッシュ電流など短 時間の過電流、 誘導電動機の起動時ラッシュや、 トランスの初期励磁突 入時の飽和突入電流などによる短時間の電圧低下は、 機器の健全な運転 に障害を起こす可能性があるため、 供給側は高い電圧を供給している。 電力供給システムでは、 最大負荷時の配電線の電圧ド口ップに対する 対策として、 電圧を数%過大に供給する傾向があるが、 最大負荷となる 頻度が通常はそれほど多くないため、 電圧が定格より大きい分を不必要 に消費している場合が多い。 その結果、 インバ一タ化されていない蛍光 灯、 水銀灯、 ナトリウム灯などの照明では、 必要以上に明るくなつてお り、 これら放電灯だけでも、 入力電圧を連続的に適宜下げることで省ェ ネ調光する事が出来る。 また、汎用誘導電動機では、鉄損の増加により、 電力効率が落ちている。 小型誘導電動機において、 7 0 %程度以下の負 荷率で運転されている場合は、 負荷電圧を定格より若干低減した方が、 電動機効率が上がるのは周知のことである。 従来、 交流電圧を適切に調整するには、 トランスのタップ切換えで行 うことが一般的である。 しかしながらが、 機械式の場合、 切換えによつ て出力される電圧がステップ的であるのと、 動作に時間遅れが生じる点 が問題であった。 また、 スライ ド , トランス (スライダック) は高価な 上、 耐久性に問題がある。 インバ一タ · コンバータのバック · トウ ' バ ック方式では、 周波数を変える必要も無いので、 その適用はコスト高で 電力損失も大きいと考えられる。
また、 直流回路においては、 電力を交流から直流に変換してから、 直 流電圧調整回路により電圧を一定に制御しているが、 交流側で同じこと を行う技術は、 かって、 鉄共振を利用した磁気増幅器が存在したが、 そ の後、 ほとんど発展していない。 サイリス夕による交流電圧調整器は、 電流波形が歪み、 また、 電圧制御の結果、 電流が遅れ力率 (電圧より電 流が遅れている状態) となることが欠点である。 誘導性負荷のように遅 れカ率負荷では、 電圧遮断時に高電圧が発生し、 電圧ノイズが大きいの も問題である。
また、 もう一方で回路技術として、 磁気エネルギー回生スィッチ (以 下 「M E R S」 という。 ) と呼ばれるものが提案され、 既に特許として 成立している (特許文献 1参照) 。
M E R Sは、 逆阻止能力を持たない、 すなわち逆導通型のスィッチン グ回路/半導体素子を用いる。 逆導通型のスイッチング回路 Z半導体素 子として、 たとえば自己消弧形素子とダイオードを、 自己消弧形素子の 正極側とダイオードの負極側を接続し、 かつ自己消弧形素子の負極側と ダイオードの正極側を接続 (以下、 単に 「逆並列」 に接続という。 ) し たものからなる回路、 または製造時に寄生ダイォードを内蔵したパワー M O S F E Tなどの半導体素子などがある (以下、,これらの逆導通型の スイッチング回路 Z半導体素子を、 単に、 「逆導通型半導体スィッチ」 という) 。
M E R Sは、 第 1の逆導通型半導体スィツチを構成する自己消弧形素 子の負極側 (以下、 単に 「逆導通型半導体スィッチの負極側」 という。 ) と、 第 2の逆導通型半導体スィツチを構成する自己消弧形素子の正極側 (以下、 単に 「逆導通型半導体スィッチの正極側」 という。 ) を接続し た点を第 1の交流端子とした第 1の逆導通型半導体スィツチレグと第 3 の逆導通型半導体スィツチの負極側と第 4の逆導通型半導体スィツチの 正極側を接続した点を第 2の交流端子とした第 2の逆導通型半導体スィ ツチレグを、 第 1の逆導通型半導体スィツチと第 3の逆導通型半導体ス イッチの正極同士を接続して正極端子とし、 かつ第 2の逆導通型半導体 スィツチと第 4の逆導通型半導体スィツチの負極同士を接続して負極端 子として構成されるフルブリ ッジ回路と、 フルブリッジ回路の正極端子 と負極端子間に接続されたコンデンサとからなる。
フルブリッジ回路の第 1の交流端子と第 2の交流端子間に、 M E R S の.制御対象の回路を接続する。
第 1の逆導通型半導体スィツチと第 4の逆導通型半導体スィツチを第 1のペアとし、 第 2の逆導通型半導体スィツチと第 3の逆導通型半導体 スィッチを第 2のペアとし、 第 1のペアの 2つの逆導通型半導体スィッ チを構成する自己消弧形素子を導通状態 (以下、 単に 「逆導通型半導体 スィッチをオンの状態」 という。 ) のときは、 第 2のペアの 2つの逆導 通型半導体スィッチを構成する自己消弧形素子を阻止状態 (以下、 単に
「逆導通型半導体スィッチをオフの状態」 という。 ) とし、 第 1のペア がオフの状態のときは、 第 2のペアをオンの状態とするように逆導通型 半導体スィッチのオン オフの状態を制御することで、 M E R Sは、 回 路の電流が遮断されたときに、 コンデンサが、 フルブリ ッジ回路と制御 対象の回路の全体に蓄積されている 「スナバ一エネルギー」 を吸収し、 制御対象の回路に回生することのできる電流双方向のスィッチ回路とし て機能する。 制御対象の回路に流れる電流の向きを制御の目的 ·範囲に 応じて、 順方向 · 逆方向と切り替えることができる。
M E R Sの第 1の交流端子と第 2の交流端子間に、 制御対象の回路と して誘導性負荷と交流電源を直列に接続した回路を用いると、 誘導性負 荷に供給する交流電力を制御することができる。 コンデンサと誘導性負 荷のインダクタンス成分との共振により、 コンデンサが、 誘導性負荷の インダクタンス成分に蓄積されている 「磁気エネルギー」 を吸収 (コン デンサは充電) し、 誘導性負荷に回生 (コンデンサは放電) することで 実現している。 これは、 M E R Sを用いた交流電源装置として提案され、 既に特許として成立している (特許文献 2参照) 。
M E R Sを用いた交流電源装置において、 コンデンサの静電容量は、 誘導性負荷のインダクタンスと共振状態となる容量であって、 制御の目 的-範囲に応じてその容量を選択する。 特に、 コンデンサの静電容量を、 コンデンザの静電容量と誘導性負荷のィンダク夕ンスで決まる共振周波 数が逆導通型半導体スィツチのスィツチング周波数以上となるように選 択することで、 逆導通型半導体スィッチをオンにするとき、 逆導通型半 導体スィツチを構成する自己消弧形素子は、 略ゼロ電圧かつゼロ電流で、 また、 オフにするとき、 逆導通型半導体スィッチを構成する自己消弧形 素子は、 略ゼロ電圧であるソフ トスイ ッチング動作とすることができ る。
M E R Sを用いた交流電源装置において、 逆導通型半導体スィツチの 第 1のペアがオンの状態のときは、 第 2のペアをオフの状態に、 第 1の ペアがオフの状態のときは、 第 2のペアをオンの状態とするように逆導 通型半導体スィッチのオン Zオフの状態を制御する。 逆導通型半導体ス イッチのオンの時間とオフの時間の時間比 (デューティ比) は 0 . 5、 すなわち、 オンの時間とオフの時間は等しい。 逆導通型半導体スィッチ オフの状態を時間軸で表現したものを制御信号とすると、 制御 信号の位相は、 交流電源の電圧位相に同期させ、 かつ制御信号の位相を 交流電源の電圧位相から進み (時間的に制御信号の位相の変化が先とな る状態) となる制御を行う。 制御信号と交流電源の電圧位相の位相差を、 制御の目的 · 範囲に応じて変化させることで、 誘導性負荷に供給する交 流電力を制御することができる。 さらに、 電流位相を進ませることで誘 導性負荷への供給電圧を高くでき、 また、 電流位相を大幅に進ませるこ とで誘導性負荷への供給電圧を低くすることもできるのが特徴である。
M E R Sを用いた交流電源装置において、 誘導性負荷のように遅れ力 率の負荷の場合、 M E R Sで力率を改善すると、 誘導性負荷への供給電 圧が高くなつて過電圧となり、 誘導性負荷を損傷する虞があった。 これ に対処するため、 本発明者は、 誘導性負荷への電流の位相をさらに大幅 に進めることによって、 交流電源の電圧よりも低い電圧を誘導性負荷に 供給するようにし、 M E R Sが接続されていない別の誘導性負荷の遅れ 力率の電流と合わせることで、 全体の電源電流の力率を 1 とする交流電 圧制御装置 (以下、 単に 「進相電流による交流電圧制御装置」 という。 ) を提案し、 公開され、 既に公知となっている (特許文献 3参照) 。
[特許文献 1 ] 日本国特許第 3 6 3 4 9 8 2号公報
[特許文献 2 ] 日本国特許第 3 7 3 5 6 7 3号公報
[特許文献 3 ] 特開 2 0 0 7— 0 5 8 6 7 6号公報 発明の概要
発明が解決しょうとする課題
進相電流による交流電圧制御装置では、 M E R S回路による進み力率 負荷と、 M E R S回路が接続されていない別の遅れ力率負荷の 2つを使 用することで力率を改善できる。
しかしながら、 誘導性負荷に供給する電流の位相を大幅に進めること により、 誘導性負荷に供給する電圧を減少させたとしても、 M E R S回 路内には交流電源の電圧と同等か、 より大きな電圧が発生する。 またコ ンデンサの電圧負担も大きい。- このため、 逆導通型半導体スィッチとコ ンデンサは、 耐電圧の大きなものを使用することが必要となり、 装置の 小型化の阻害要因となる虞がある。 また、 電流の位相を大幅に進めると、 電流波形に含まれる高調波が多くなるという事象もあった。
本発明は、 上述の問題に鑑み為されたものであり、 M E R S回路の逆 導通型半導体スィッチとコンデンサの電圧負担を軽減し、 誘導性負荷に 供給する電流の位相の進み量を小さく しても、 誘導性負荷に供給される 電圧の制御を行う ことができる交流電圧制御装置を提供することを目的 とする。 課題を解決するための手段
本発明は、 負荷電圧の調整を磁気エネルギ一回生スィツチによって制 御するようにした交流電圧制御装置に関するものであり、 本発明の上記 目的は、 交流電源と誘導性負荷との間に直列に挿入され、 誘導性負荷に かかる負荷電圧を制御する交流電圧制御装置であって、 交流電圧制御装 置は、 自己消弧形素子とダイオードを、 自己消弧形素子の正極側とダイ ォードの負極側を接続し、 かつ自己消弧形素子の負極側とダイォ一ドの 正極側を接続した回路、 または等価の半導体素子を逆導通型半導体スィ ツチ (以下、 単に 「逆導通型半導体スィッチ」 という。 ) となし、 第 1 の逆導通型半導体スィツチを構成する自己消弧形素子の負極側 (以下、 単に 「逆導通型半導体スィッチの負極側」 という。 ) と、 第 2の逆導通 型半導体スィッチを構成する自己消弧形素子の正極側 (以下、 単に 「逆 導通型半導体スィッチの正極側」 という。 ) を接続した点を第 1の交流 端子とした第 1の逆導通型半導体スィツチレグと、 第 3の逆導通型半導 体スィッチの負極側と第 4の逆導通型半導体スィツチの正極側を接続し た点を第 2の交流端子とした第 2の逆導通型半導体スィツチレグを、 第 1の逆導通型半導体スィツチの正極側と第 3の逆導通型半導体スィツチ の正極側を接続して正極端子とし、 かつ第 2の逆導通型半導体スィツチ の負極側と第 4の逆導通型半導体スィツチの負極側を接続して負極端子 として構成されるフルブリ ッジ回路と、 フルブリッジ回路の正極端子と 負極端子間に接続されたコンデンサとからなるフルブリツジ型磁気エネ ルギ一回生スィッチ (以下、 磁気エネルギ一回生スィッチを、 単に 「M E R S」 という。 ) 回路と、 フルブリッジ型 M E R S回路の第 1の交流 端子に一端が接続された交流リァク トルと、 交流電源に 1次側が接続さ れ、 かつ、 2次側の一端が交流リアク トルの他端に接続されたステップ ダウン変圧器と、 制御手段と、 を備えるとともに、 第 2の交流端子は、 誘導性負荷に接続され、 制御手段は、 第 1の逆導通型半導体スィッチと 第 4の逆導通型半導体スィツチを第 1のペアとし、 第 2の逆導通型半導 体スィッチと第 3の逆導通型半導体スィツチを第 2のペアとし、 第 1の ペアの 2つの逆導通型半導体スィツチを構成する自己消弧形素子が導通 状態 (以下、 単に 「逆導通型半導体スィッチがオンの状態」 という。 ) のときは、 第 2のペアの 2つの逆導通型半導体スィッチを構成する自己 消弧形素子を阻止状態 (以下、 単に 「逆導通型半導体スィッチをオフの 状態」 という。 ) とし、 第 1のペアがオフの状態のときは、 第 2のペア をオンの状態とするように逆導通型半導体スィツチのオン/オフの状態 を制御し、
さらに、 制御手段は、 逆導通型半導体スィッチのオン Zオフの状態を 制御する信号をゲート制御信号となし、 逆導通型半導体スィツチのオン zオフの状態と、 ゲート制御信号のオン信号の継続時間/オフ信号の継 続時間が一致するとしたとき、 ゲ一ト制御信号の位相を、 交流電源の電 圧位相に同期して制御することで、 誘導性負荷のリアクタンス電圧を補 償する電圧をコンデンサに発生させ、 誘導性負荷に印加される電圧を制 御することを特徴とする交流電圧制御装置によって達成される。
また、 本発明の上記目的は コンデンサが有極性のコンデンサである ことを特徴とする交流電圧制御装置によっても達成される。
さらに、 本発明の上記目的は、 コンデンサの静電容量 (C ) と誘導性 負荷のインダクタンス (L ) の値で決まる共振周波数 ( f r e s ) が、 交流電源の周波数 ( f a c ) 以上となるように、 コンデンサの静電容量 ( C ) の値が設定されていることを特徴とする交流電圧制御装置によつ ても達成される。
さらに、 本発明の上記目的は、 ゲート制御信号の位相の変化と交流電 源の電圧位相との差をゲ一ト制御信号の位相角とし、 ゲート制御信号の 位相の変化が交流電源の電圧位相より時間的に先となる場合を 「進み」 としてプラスの角度で表現し、 また、 ゲート制御信号の位相の変化が交 流電源の電圧位相より時間的に後になる場合を 「遅れ」 としてマイナス の角度で表現したとき、 ゲート制御信号の位相角の範囲を、 0度からプ ラス 9 0度まで、 または、 0度からマイナス 1 8 0度までに設定したこ とを特徴とする交流電圧制御装置によって達成される。
さらに、 本発明の上記目的は、 交流電源と誘導性負荷との間に直列に 揷入され、 誘導性負荷にかかる負荷電圧を制御する交流電圧制御装置で あって、 交流電圧制御装置は、 第 1の逆導通型半導体スィッチの負極側 と第 2の逆導通型半導体スィツチの負極側を接続した逆導通型半導体ス イッチレグと、 第 1の逆導通型半導体スィッチの正極側である第 1の交 流端子と、 第 2の逆導通型半導体スィツチの正極側である第 2の交流端 子との間に接続されたコンデンサと、 を備えた 1コンデンサ横型ハーフ プリ ッジ M E R S回路と、 1 コンデンサ横型ハーフブリ ッジ M E R S回 路の第 1の交流端子に一端が接続された交流リァク トルと、 交流電源に 1次側が接続され、 かつ、 2次側の一端が交流リアク トルの他端に接続 されたステップダウン変圧器と、 制御手段と、 を備えるとともに、 第 2 の交流端子は、 誘導性負荷に接続され、 制御手段は、 第 1 の逆導通型半 導体スィッチがオンの状態のときは、 第 2の逆導通型半導体スィツチを オフの状態とし、 第 1の逆導通型半導体スィツチがオフの状態のときは、 第 2の逆導通型半導体スィツチをオンの状態として、 第 1の逆導通型半 導体スィツチと第 2の逆導通型半導体スィツチが同時にオフの状態にな らないように逆導通型半導体スィツチのオン Zオフの状態を制御し、 さらに、 制御手段は、 逆導通型半導体スィッチのオンノオフの状態を 制御する信号をゲ一ト制御信号となし、 逆導通型半導体スィツチのオン ノオフの状態と、 ゲート制御信号のオン信号の継続時間 Zオフ信号の継 続時間が一致するとしたとき、 ゲート制御信号の位相を交流電源の電圧 位相に同期して制御することで、 誘導性負荷のリアクタンス電圧を補償 する電圧を、 コンデンサに発生させ、 誘導性負荷に印加される電圧を制 御することを特徴とする交流電圧制御装置によつて達成される。
さらに、 本発明の上記目的は、 第 1の逆導通型半導体スィッチと、 第 2の逆導通型半導体スィツチの接続極性をそれぞれ逆にしたことを特徴 とする交流電圧制御装置によっても達成される。
さらに、 本発明の上記目的は、 コンデンサの静電容量 (C ) と誘導性 負荷のインダクタンス (L ) の値で決まる共振周波数 ( f r e s ) が、 交流電源の周波数 ( f a c ) 以上となるように、 コンデンサの静電容量 ( C ) の値が設定されていることを特徴とする交流電圧制御装置によつ て達成される。 さらに、 本発明の上記目的は、 交流電源と誘導性負荷との間に直列に 揷入され、 誘導性負荷にかかる負荷電圧を制御する交流電圧制御装置で あって、 交流電圧制御装置は、 第 1の逆導通型半導体スィッチの負極側 と第 2の逆導通型半導体スィツチの正極側を接続した点を第 1の交流端 子とした逆導通型半導体スィッチレグと、 第 1のダイオードと第 1のコ ンデンサを並列に接続した第 1のコンデンサクランプ回路と、 第 2のダ ィォ一ドと第 2のコンデンサを並列に接続した第 2のコンデンサクラン プ回路を、 第 1のダイォ一ドの正極側と第 2のダイォ一ドの負極側を接 続した点を第 2の交流端子としたコンデンサ回路を、 第 1の逆導通型半 導体スィツチの正極側と第 1のダイォ一ドの負極側を接続した点を正極 端子とし、 かつ、 第 2の逆導通型半導体スィッチの負極側と第 2のダイ ォードの正極側を接続した点を負極端子として構成される、 縦型ハーフ ブリ ッジ M E R S回路と、 縦型ハーフブリッジ M E R S回路の第 1の交 流端子に一端が接続された交流リァク トルと、 交流電源に 1次側が接続 され、 かつ、 2次側の一端が交流リアク トルの他端に接続されたステツ プダウン変圧器と、 制御手段と、 を備えるとともに、
第 2の交流端子は、 誘導性負荷に接続され、 制御手段は、 第 1の逆導 通型半導体スィツチがオンの状態のときは、 第 2の逆導通型半導体スィ ツチをオフの状態とし、 第 1の逆導通型半導体スィツチがオフの状態の ときは、 第 2の逆導通型半導体スィッチをオンの状態として、 第 1の逆 導通型半導体スィツチと第 2の逆導通型半導体スィツチが同時にオンの 状態にならないように逆導通型半導体スィツチのオン/オフの状態を制 御し、 さらに、 制御手段は、 逆導通型半導体スィッチのオン Zオフの状 態を制御する信号をゲ一ト制御信号となし、 逆導通型半導体スィツチの オン/オフの状態と、 ゲ一卜制御信号のオン信号の継続時間/オフ信号 の継続時間が一致するとしたとき、 ゲート制御信号の位相を交流電源の 電圧位相に同期して制御することで、 誘導性負荷のリァクタンス電圧を 補償する電圧を、 第 1のコンデンサと第 2のコンデンサに発生させ、 誘 導性負荷に印加される電圧を制御することを特徴とする交流電圧制御装 置によって達成される。
さらに、 本発明の上記目的は、 交流電源と誘導性負荷との間に直列に 挿入され、 誘導性負荷にかかる負荷電圧を制御する交流電圧制御装置で あって、 交流電圧制御装置は、 第 1の逆導通型半導体の正極側を第 1 の 交流端子とし、 第 1の逆導通型半導体スィツチと第 1のコンデンサを並 列に接続した第 1のコンデンサ短絡回路と、 第 2の逆導通型半導体スィ ツチの正極側を第 2の交流端子とし、 第 2の逆導通型半導体スィッチと 第 2のコンデンサを並列に接続した第 2のコンデンサ短絡回路を、 第 1 の逆導通型半導体スィツチの負極側と第 2の逆導通型半導体スィツチの 負極側を接続した 2コンデンサ横型ハ一フブリッジ M E R S回路と、 2コンデンサ横型ハーフブリッジ M E R S回路の第 1の交流端子に一 端が接続された交流リァク トルと、交流電源に 1次側が接続され、かつ、 2次側の一端が交流リァク トルの他端に接続されたステツプダウン変圧 器と、 制御手段と、 を備えるとともに、
第 2の交流端子は、 誘導性負荷に接続され、 制御手段は、 第 1の逆導 通型半導体スィツチがオンの状態のときは、 第 2の逆導通型半導体スィ ツチをオフの状態とし、 第 1の逆導通型半導体スィッチがオフの状態の ときは、 第 2の逆導通型半導体スィッチをオンの状態として、 第 1の逆 導通型半導体スィツチと第 2の逆導通型半導体スィツチが同時にオンの 状態にならないように逆導通型半導体スィツチのオン Zオフの状態を制 御し、
さらに、 制御手段は、 逆導通型半導体スィッチのオン Zオフの状態を 制御する信号をゲ一ト制御信号となし、 逆導通型半導体スィツチのオン オフの状態と、 ゲート制御信号のオン信号の継続時間 オフ信号の継 続時間が一致するとしたとき、 ゲ一ト制御信号の位相を交流電源の電圧 位相に同期して制御することで、 誘導性負荷のリァク夕ンス電圧を補償 する電圧を、 第 1のコンデンサと第 2のコンデンサに発生させ、 誘導性 負荷に印加される電圧を制御することを特徴とする交流電圧制御装置に よつて達成される。
さらに、 本発明の上記目的は、 逆導通型半導体スィッチを構成する自 己消弧形素子が電界効果トランジスタ、 または同等の構造をもつ半導体 素子であり、 制御手段は、 逆導通型半導体スィッチを構成するダイォ一 ドが順方向で導通状態となるときに、 逆導通型半導体スィッチをオンの 状態とするように制御することを特徴とする交流電圧制御装置によって も達成される。
さらに、 本発明の上記目的は、 第 1のコンデンサおよび第 2のコンデ ンサがそれぞれ有極性のコンデンサであることを特徴とする交流電圧制 御装置によっても達成される。
さらに、 本発明の上記目的は、 第 1の逆導通型半導体スィッチと第 2 の逆導通型半導体スィツチの接続極性をそれぞれ逆にしたことを特徴と する交流電圧制御装置によっても達成される。
さらに、 本発明の上記目的は、 第 1の逆導通型半導体スィッチと第 2 の逆導通型半導体スィッチの接続極性をそれぞれ逆にし、 さらに、 第 1 のコンデンサと第 2のコンデンザの接続極性をそれぞれ逆にしたことを 特徴とする交流電圧制御装置によっても達成される。
さらに、 本発明の上記目的は、 第 1のコンデンサの静電容量 (C 1 ) と誘導性負荷のィンダクタンス(L )の値で決まる第 1の共振周波数( f r e s 1 ) と、 第 2のコンデンサの静電容量 (C 2 ) と誘導性負荷のィ ンダク夕ンス (L ) の値で決まる第 2の共振周波数 ( f r e s 2 ) が、 それぞれ交流電源の周波数 ( f a c ) 以上となるように、 第 1および第 2のコンデンサの静電容量 (C l 、 C 2 ) の値がそれぞれ設定されてい ることを特徴とする交流電圧制御装置によって達成される。
さらに、 本発明の上記目的は、 ステップダウン変圧器を除去し、 交流 電源を交流リアク トルの他端に直結したことを特徴とする交流電圧制御 装置によっても達成される。
さらに、 本発明の上記目的は、 交流電源の端子間に並列に接続される 力率補償コンデンサをさらに備えたことを特徴とする交流電圧制御装置 によっても達成される。
さらに、 本発明の上記目的は、 ゲート制御信号の位相の変化と交流電 源の電圧位相との差をゲ一ト制御信号の位相角とし、 ゲート制御信号の 位相の変化が交流電源の電圧位相より時間的に先となる場合を 「進み」 としてプラスの角度で表現し、 また、 ゲート制御信号の位相の変化が交 流電源の電圧位相より時間的に後になる場合を 「遅れ」 としてマイナス の角度で表現したとき、 ゲート制御信号の位相角の範囲を、 0度からプ ラス 9 0度まで、 または、 0度からマイナス 9 0度までに設定したこと を特徴とする交流電圧制御装置によっても達成される。
さらに、 本発明の上記目的は、 ゲート制御信号の位相角の範囲を、 常 に 0度のままとしたことを特徴とする交流電圧制御装置によっても達成 される。 発明の効果
本発明に係る交流電圧制御装置によれば、 負荷に供給する電流の位相 を大幅に進めることなく、負荷に供給する電圧を制御することができる。
また、 M E R S回路の逆導通型半導体スィッチとコンデンサの電圧負 担を軽減でき、 本発明にかかる交流電圧制御装置の小型化につながる。 また、 電流の位相を大幅に進めないため、 電流波形に含まれる高調波 も低減できる。
さらに、 交流電源の電圧が過大な場合には、 負荷に供給する電圧を低 減し、 また、 交流電源の電圧が低下した場合には、 負荷に供給する電圧 を適切に維持することができるという多くの効果がある。 図面の簡単な説明
第 1図は、 本発明に係る第 1の実施形態の構成を示す回路プロック図 である。
第 2図は、 本発明に係る第 2の実施形態の構成を示す回路ブロック図 である。
第 3図は、 本発明に係る第 2の実施形態で、 2つの逆導通型半導体ス イッチの正極同士を共通とした構成を示す回路ブロック図である。
第 4図は、 本発明に係る第 3の実施形態の構成を示す回路ブロック図 である。
第 5図は、 本発明に係る第 4の実施形態の構成を示す回路プロック図 である。
第 6図は、 本発明に係る第 4の実施形態で、 2つの逆導通型半導体ス イッチの正極同士を共通とした構成を示す回路ブロック図である。
第 7図は、 本発明に係る交流電圧制御装置の構成において、 ステップ ダウン変圧器を除去し、 交流電源と交流リアク トルを直結した構成を示 す回路ブロック図の抜粋である。
第 8図は、 本発明に係る交流電圧制御装置の構成において、 力率補償 コンデンサを接続した構成を示す回路プロック図の抜粋である。
第 9図は、 本発明に係る第 2、 および第 4の実施形態で、 完全な電流 遮断のために電源スィツチを使用した構成を示す回路ブロック図の抜粋 である。
第 1 0図は、 本発明に係る第 2、 および第 4の実施形態で、 力率補償 コンデンサを接続し、 さらに、 完全な電流遮断のために電源スィッチを 使用した構成を示す回路ブロック図の抜粋である。
第 1 1図は、 交流電源の電圧位相とゲート制御信号の位相角 αとの関 係を示す図である。
第 1 2図は、 ゲート制御信号の位相角 αと、 負荷電圧の関係を示す図 である。
第 1 3図は、 本発明に係る第 1の実施形態の構成の計算機シミュレ一 シヨン結果を示す図である。
第 1 4図は、 本発明に係る第 6の実施形態の構成の計算機シミユレ一 ション結果を示す図である。
第 1 5図は、 本発明に係る第 7の実施形態の構成の計算機シミュレ一 ション結果を示す図である。
第 1 6図は、 本発明に係る第 7の実施形態の構成がない場合の、 計算 機シミュレーション結果を示す図である。 符号の説明
3 交流電源
4 制御手段
5 誘導性負荷
9 ステップダウン変圧器 フルブリッジ型 M E R S回路
2コンデンサ横型ハーフブリッジ M E R S回路
2コンデンサ横型ハーフブリ ッジ M E R S回路の別の態様 2 1 1 コンデンサ横型ハーフブリッジ M E R S回路
2 2 1コンデンサ横型ハーフブリッジ M E R S回路の別の態様
3 0 縦型ハーフブリッジ M E R S回路
A C 1 第 1 の交流端子
A C 2 第 2の交流端子
D C P 正極端子
D C N 負極端子
G 1 第 1 の逆導通型半導体スィツチのゲ -卜制御信号
G 2 第 2の逆導通型半導体スィツチのゲ- -卜制御信号
G 3 第 3の逆導通型半導体スィ ツチのゲ- -卜制御信号
G 4 第 4の逆導通型半導体スィツチのゲ- -卜制御信号
S W 1 第 1 の逆導通型半導体スィ ッナ
S W 2 第 2の逆導通型半導体スィッチ
S W 3 第 3の逆導通型半導体スィッチ
S W 4 第 4の逆導通型半導体スィッチ
C コンデンサ
C 1 第 1のコンデンサ
C 2 第 2のコンデンサ
C c o m 力率補償コンデンサ
D 1 第 1 のダイォード
D 2 第 2のダイオード L 誘導性負荷のィンダクタンス成分
L a c 交流リァク トル
R 誘導性負荷の抵抗成分
P S W 電源スィッチ
I s w 1 第 1の逆導通型半導体スィッチを通過する電流 I s w 2 第 2の逆導通型半導体スィッチを通過する電流 I 1 o a d 誘導性負荷を流れる電流 (負荷電流)
I i n 交流電源から供給される電流
V a c 交流電源の電圧
V a c — r m s 交流電源の実効電圧
V c コンデンサの両端電圧
V c 1 第 1のコンデンサの両端電圧
V c 2 第 2のコンデンサの両端電圧
V i n ブリッジ回路に供給される電圧
V i n r m s ブリッジ回路に供給される実効電圧
V 1 o a d 誘導性負荷に供給される電圧 (負荷電圧)
V 1 o a d — r m s 誘導性負荷に供給される実効電圧
V A a c 交流電源で測定した皮相電力
W a c 交流電源で測定した有効電力
P F a c 交流電源で測定した力率 a ゲート制御信号の位相角 2009/059392
( f a c ) 交流電源の周波数
( f s w) 逆導通型半導体スィッチのスイッチング周波数
( f r e s ) ( f r e s 1 ) , ( f r e s 2 ) 共振周波数
(C) コンデンサの静電容量
(C I ) 第 1のコンデンサの静電容量
(C 2 ) 第 2のコンデンサの静電容量
(L) 誘導性負荷のィンダクタンス
(R) 誘導性負荷の等価抵抗
(L a c ) 交流リアク トルのインダク夕ンス 発明を実施するための形態
以下、 本発明に係る実施の形態について、 図面を参照しながら説明す る。 各図面に示される同一の構成要素、 部材、 処理には同一の符号を付 与するものとし、 適宜重複した説明は省略する。 また、 実施の形態は、 発明を限定するものではなく例示であって、 実施の形態に記述されるす ベての特徴やその組合せは、 必ずしも発明の本質的なものであるとは限 らない。
以下の説明で、 自己消弧形素子とは、 素子のゲートに制御信号を印加 することにより、 素子の順方向の導通状態 阻止状態を制御できる能力 のある電子部品を指し示している。
また、 逆導通型半導体スィツチのオン Zオフの状態を制御する信号を ゲート制御信号とし、 逆導通型半導体スィツチのオン オフの状態と、 ゲート制御信号のオン信号の継続時間 Zオフ信号の継続時間は一致する ものとする。
すなわち、 逆導通型半導体スィッチをオンにするゲート制御信号が継 続するときは、 逆導通型半導体スィッチはオンの状態を継続し、 逆導通 型半導体スィツチをオフにするゲー卜制御信号が継続するときは、 逆導 通型半導体スィツチはオフの状態を継続するということである。
また、 第 1 1図は、 ゲート制御信号の位相角の定義について示してい る。
より詳しくは、 ゲート制御信号の位相の変化は、 交流電源 3の電圧位 相との差をゲ一ト制御信号の位相角 αとし、 ゲ一ト制御信号の位相の変 化が交流電源 3の電圧位相より時間的に先となる場合を 「進み」 として プラスの角度で表現し、 また、 ゲート制御信号の位相の変化が交流電源 3の電圧位相より時間的に後になる場合を 「遅れ」 としてマイナスの角 度で表現している。
さらに、 第 1 2図は、 ゲ一ト制御信号の位相角 αと、 負荷電圧 V 1 ο a dの関係を示している。
より詳しくは、 ゲート制御信号の位相角ひの範囲を、 0度から 9 0度 までの範囲を 「領域 1」 、 9 0度から 1 8 0度までの範囲を 「領域 2」 、 — 1 8 0度から— 9 0度までの範囲を 「領域 3」 、 — 9 0度から 0度ま での範囲を 「領域 4」 、 0度の点を 「 0度点」 と呼び、 適宜この呼び方 を使用する。
[実施例 1 ] フルブリッジ型 M E R Sを用いた交流電圧制御装置 第 1図は、 本発明に係る第 1の実施形態の交流電圧制御装置の構成を 示す回路ブロック図である。
より詳しくは、 本発明に係る第 1の実施形態の交流電圧制御装置は、 交流電源 3 と誘導性負荷 5 との間に直列に挿入され、 誘導性負荷 5に供 給する電圧 (負荷電圧) を制御する交流電圧制御装置である。
第 1図の交流電圧制御装置は、 自己消弧形素子とダイオードを、 自己 消弧形素子の正極側とダイオードの負極側を接続し、 かつ自己消弧形素 子の負極側とダイオードの正極側を接続 (以下、 単に 「逆並列」 に接続 という) した回路、 または等価の半導体素子を逆導通型半導体スィッチ
(以下、 単に 「逆導通型半導体スィッチ」 という。 ) となし、 第 1の逆 導通型半導体スィツチ SW 1を構成する自己消弧形素子の負極側(以下、 単に 「逆導通型半導体スィッチの負極側」 という。 ) と、 第 2の逆導通 型半導体スィッチ SW2を構成する自己消弧形素子の正極側 (以下、 単 に 「逆導通型半導体スィッチの正極側」 という。 ) を接続した点を第 1 の交流端子 A C 1 とした第 1の逆導通型半導体スィツチレグと、 第 3の 逆導通型半導体スィツチ S W 3の負極側と第 4の逆導通型半導体スィッ チ S W 4の正極側を接続した点を第 2の交流端子 A C 2 とした第 2の逆 導通型半導体スィッチレグを、 第 1の逆導通型半導体スィッチ S W 1の 正極側と第 3の逆導通型半導体スィツチ S W 3の正極側を接続して正極 端子 D C Pとし、 かつ第 2の逆導通型半導体スィツチ S W 2の負極側と 第 4の逆導通型半導体スィツチ SW4の負極側を接続して負極端子 D C Nとして構成されるフルブリッジ回路と、 フルブリツジ回路の正極端子 D C Pと負極端子 D CN間に接続されたコンデンサ Cとからなるフルブ リッジ型磁気エネルギー回生スィッチ (以下、 磁気エネルギー回生スィ ツチを、 単に 「ME R S」 という。 ) 回路 1 0と、
フルブリ ッジ型 ME R S回路 1 0の第 1の交流端子 A C 1 に一端が接 続された交流リアク トル L a c と、
交流電源 3に 1次側が接続され、 かつ、 2次側の一端が交流リアク ト ル L a cの他端に接続されたステツプダウン変圧器 9 と、
制御手段 4と、 を備えるとともに、
第 2の交流端子 AC 2は、 誘導性負荷 5に接続され、
制御手段 4は、 第 1の逆導通型半導体スィツチ SW 1 と第 4の逆導通 型半導体スィッチ SW4を第 1のペアとし、 第 2の逆導通型半導体スィ ツチ SW 2 と第 3の逆導通型半導体スィツチ SW 3を第 2のペアとし、 第 1のペアの 2つの逆導通型半導体スィツチを構成する自己消弧形素子 が導通状態 (以下、 単に 「逆導通型半導体スィッチをオンの状態」 とい う。 ) のときは、 第 2のペアの 2つの逆導通型半導体スィッチを構成す る自己消弧形素子を阻止状態 (以下、 単に 「逆導通型半導体スィッチを オフの状態」 という。 ) とし、 第 1のペアがオフの状態のときは、 第 2 のペアをオンの状態とするように逆導通型半導体スィツチのオン Zオフ の状態を制御し、
さらに、 制御手段 4は、 逆導通型半導体スィッチのオンノオフの状態 を制御する信号をゲート制御信号となし、 逆導通型半導体スィツチのォ ン オフの状態と、 ゲ一卜制御信号のオン信号の継続時間 Zオフ信号の 継続時間が一致するとしたとき、 ゲート制御信号の位相を、 交流電源 3 の電圧位相に同期して制御することで、 誘導性負荷 5のリアクタンス電 圧を補償する電圧をコンデンサ Cに発生させ、 誘導性負荷 5に印加され る電圧を制御することが特徴である。
次に、 本発明に係る第 1の実施形態の交流電圧制御装置の動作の状態 を、 第 1 3図に基づいて説明する。
より詳しくは、 第 1 3図は、 第 1図で示した回路ブロック図で、 以下 の回路定数を用いたときの、 計算機シミュレーション結果を示す。
<第 1 3図の回路定数 >
交流電源 3の実効電圧 ( V a c— r m s ) : 2 0 0 V r m s、 交流電源 3の周波数 ( f a c ) : 5 0 H z、
ステツプダウン変圧器 9の巻き線比: 1次側: 2時側 = 2 0 0 : 4 0、 交流リアク トル L a cのインダクタンス (L a c ) : 0. l mH、 コンデンサ Cの静電容量 (C) : 2 0 0マイクロ F、
誘導性負荷 5のインダクタンス (L) : 3 0 mH、
誘導性負荷 5の等価抵抗 (R) : 1 0オーム。 第 1 3図は、 交流電源 3から供給される電流 I i n、 誘導性負荷 5を 流れる電流 (負荷電流) I l o a d、 交流電源 3の電圧 V a c、 誘導性 負荷に供給される電庄 (負荷電圧) V 1 o a d、 交流電源 3の電圧 V a c と第 2の逆導通型半導体スィツチ S W2のゲ一ト制御信号 G 2を拡大 したもの、 コンデンサ Cの両端電圧 V c、 交流電源 3で測定した皮相電 力 VA a c、 交流電源 3で測定した有効電力" W a c、 交流電源 3で測定 した力率 P F a c (力率 P F a cは 1 0 0 0倍に表示している) の波形 を示している。
交流電源 3 と本発明に係る第 1の実施形態の交流電圧制御装置との間 に、 ステップダウン変圧器 9が挿入され、 2 0 0 V r m sから 1 6 0 V r m s と、 交流電源 3の電圧 V a cを 2 0 %降圧している。 交流リアク トル L a cは、 0. 6 mHを選択している。 交流電源 3の電圧 V a cよ り高い負荷電圧 V I o a dを供給させるためには、 それに応じてインダ クタンス容量のより小さいものを選択する。 負荷電圧 V I o a dは、 ゲ —ト制御信号の位相角 αを 「進み」 とすると、 交流電源 3の電圧 V a c から 2 0 %降圧した電圧から昇圧していく。
制御手段 4は、 時刻 0から時刻 0. 1秒までは、 ゲート制御信号の位 相角 αを、 — 4 5度 (遅れ) 、 その後は、 ゲート制御信号の位相角 を 3 0度 (進み) として、 負荷電圧 V I o a dを昇圧させている。
第 1 3図より、 負荷電圧 V l o a dが、 1 6 0 ¥ 111 3から 2 0 0 ¥ r m s に昇圧されていることが確認できる。
次に、 本発明に係る第 1の実施形態の交流電圧制御装置の特徴を説明 する。
コンデンサ Cの静電容量(C)は、誘導性負荷 5のインダクタンス(L) との共振により、 誘導性負荷 5の磁気エネルギーを吸収 (コンデンサは 充電) 、 放出 (コンデンサは放電) するだけの、 極めて小さな容量でよ PC漏画 59392 レ すなわち、 誘導性負荷 5の交流電源 3の半周期分の磁気エネルギー を吸収、 放出だけに見合う容量でよい。 コンデンサじが、 従来の電圧型 P WMィンバ一タ一回路で使用されている直流電圧を安定して供給する ための大容量の平滑コンデンサと、 その容量 · 目的が全く異なる点であ る。
また、 コンデンサ Cは、 交流電源 3の半周期毎に磁気エネルギー ( 1 / 2 ( L ( I l o a d) " 2 ) ) を静電エネルギー ( 1 / 2 ( C ( V c ) ― 2 ) ) として吸収、 放出する。 コンデンサ Cの両端電圧 V cは、 交流 電源 3の半周期毎に同期して、 ピ一クから略ゼロ [V] になる特徴があ る。
また、 フルブリ ッジ型 ME R S回路 1 0の正極端子 D C Pと負極端子 D C N間の電位の位置関係が変わらない。 そのため、 コンデンサ Cに有 極性コンデンサを使用することができる。
また、 コンデンサ Cの静電容量 (C) と、 誘導性負荷 5のインダクタ ンス (L) の値で決まる共振周波数 ( f r e s ) を、 交流電源 3の周波 数 ( f a c ) の近傍とすることで、 本発明に係る第 1の実施形態の交流 電圧制御装置による電圧と電流の高調波の発生を低減することができる。
また、 コンデンサ Cの静電容量 (C) と、 誘導性負荷 3のインダクタ ンス (L) の値で決まる共振周波数 ( f r e s ) を、 交流電源 3の周波 数 ( f a c ) 以上とすることで、 逆導通型半導体スィツチを構成する自 己消弧形素子は、 略ゼロ電圧かつゼロ電流で、 また、 オフにするとき、 逆導通型半導体スィツチを構成する自己消弧形素子は、 略ゼロ電圧であ るソフ トスイッチング動作とすることができる。
また、 コンデンサ Cは、 誘導性負荷 5のリアクタンス電圧を補償する 電圧の範囲の電圧幅であるため、 コンデンサ Cの分担電圧を低くするこ とができる。 第 1 3図より、 ステツプダウン変圧器 9の 2次側の電圧は 1 6 0 V r m s (最大電圧は 2 2 6 V) であるが、 コンデンサ Cの両端 電圧 V cは、 最大で 1 5 0 Vであることが確認できる。
また、 ゲート制御信号の位相角 の範囲を、 0度から 9 0度まで (第 1 2図の領域 1の範囲) と、 0度から一 1 8 0度まで (第 1 2図の領域 3 と領域 4の範囲) とすることで、 誘導性負荷 5に印加される電圧波形 と電流波形に発生する歪を低減することができる。
さらに、 交流リアク トル L a c を揷入することで、 逆導通型半導体ス イッチのスイッチングの際の電流の立ち上がりを緩やかにすることがで き、 安定したソフトスイッチング動作とすることができる。 交流リアク トル L a cのインダクタンス (L a c ) が極めて小さくて済む特徴もあ る。
[実施例 2 ] 1コンデンサ横型ハーフブリッジ M E R Sを用いた交流電 圧制御装置
第 2図は、 本発明に係る第 2の実施形態の交流電圧制御装置の構成を 示す回路ブロック図である。
より詳しくは、 第 2図は、 交流電源 3 と誘導性負荷 5 との間に直列に 挿入され、 誘導性負荷 5に供給する電圧 (負荷電圧) を制御する交流電 圧制御装置である。
第 2図の交流電圧制御装置は、 第 1の逆導通型半導体スィツチ S W 1 の負極側と第 2の逆導通型半導体スィツチ S W2の負極側を接続した逆 導通型半導体スィッチレグと、 第 1の逆導通型半導体スィツチ SW 1の 正極側である第 1の交流端子 AC 1 と、 第 2の逆導通型半導体スィツチ S W 2の正極側である第 2の交流端子 AC 2 との間に接続されたコンデ ンサ Cで構成される 1コンデンサ横型ハーフブリ ッジ ME R S回路 2 1 と、
1コンデンサ横型ハーフブリ ッジ M E R S回路 2 1の第 1の交流端子 A C 1 に一端が接続された交流リァク トル L a c と、
交流電源 3に 1次側が接続され、 かつ、 2次側の一端が交流リアク ト ル L a cの他端に接続されたステップダウン変圧器 9 と、
制御手段 4と、 を備えるとともに、
第 2の交流端子 A C 2は、 誘導性負荷 5に接続され、
制御手段 4は、 第 1の逆導通型半導体スィツチ S W 1がオンの状態の ときは、 第 2の逆導通型半導体スィッチ S W 2をオフの状態とし、 第 1 の逆導通型半導体スィツチ S W 1がオフの状態のときは、 第 2の逆導通 型半導体スィッチ S W 2をオンの状態として、 第 1の逆導通型半導体ス イッチ S W 1 と第 2の逆導通型半導体スィツチ S W 2が同時にオフの状 態にならないように逆導通型半導体スィツチのオン /オフの状態を制御 し、
さらに、 制御手段 4は、 逆導通型半導体スィッチのオン Zオフの状態 を制御する信号をゲ一ト制御信号となし、 逆導通型半導体スィツチのォ ン Zオフの状態と、 ゲート制御信号のオン信号の継続時間 Zオフ信号の 継続時間が一致するとしたとき、 ゲート制御信号の位相は、 交流電源 3 の電圧位相に同期して制御することで、 誘導性負荷 5のリアクタンス電 圧を補償する電圧を、 コンデンサ Cに発生させ、 誘導性負荷 5に印加さ れる電圧を制御することが特徴である。
第 3図は、 本発明に係る第 2の実施形態において、 2つの逆導通型半 導体スィツチの正極側同士を共通とした構成を示す回路プロック図であ る。
より詳しくは、 本発明に係る第 2の実施形態の交流電圧制御装置にお いて、 第 1の逆導通型半導体スィツチ S W 1 と第 2の逆導通型半導体ス イッチ S W 2のそれぞれの接続極性を入れ替え、 正極側同士を接続した 態様である。 本発明に係る第 2の実施形態の交流電圧制御装置と同一の 09 059392 機能 · 作用 · 効果をもつ。
逆導通型半導体スィッチに、 Pチャンネルパヮ一M〇 S F E T、 Ρ Ν Ρ トランジスタとダイォードを逆並列に接続した回路などを用いたとき も、 同様の構成により対応することができる。
次に、 本発明に係る第 2の実施形態の交流電圧制御装置の特徴を説明 する。
本発明に係る第 2の実施形態の交流電圧制御装置の基本的な動作、 特 徴は、 本発明に係る第 1の実施形態の交流電圧制御装置と同様である。 以下、 本発明に係る第 2の実施形態の交流電圧制御装置に特有の事項を 説明する。 .
コンデンサ Cは、 1コンデンサ横型ハーフブリッジ M E R S回路 2 1 の第 1の交流端子 A C 1 と第 2の交流端子 A C 2間の電位の位置関係が、 交流電源 3の電圧位相の変化に伴い毎回入れ替わるため、 無極性コンデ ンサを使用する。
また、 コンデンサ Cの静電容量 (C ) と、 誘導性負荷 5のインダクタ ンス (L ) の値で決まる共振周波数 ( f r e s ) を、 交流電源 3の周波 数 ( f a c ) 以上とすることで、 逆導通型半導体スィツチを構成する自 己消弧形素子は、 オン Zオフにするとき、 逆導通型半導体スィッチを構 成する自己消弧形素子は、 略ゼロ電圧であるソフトスィツチング動作と することができる。
また、 使用する逆導通型半導体スィッチが 2つで済むため、 本発明に 係る第 1の実施形態の交流電圧制御装置と比べて、 スィツチング損失が 半減するという特徴がある。 さらに、 本発明に係る第 2の実施形態の交 流電圧制御装置の構成を簡素とすることができる。
また、 本発明に係る第 2の実施形態の交流電圧制御装置は、 コンデン サ Cに電荷が残った状態で、 逆導通型半導体スィツチのオン オフの状 態を切り替えると、 コンデンサ Cが短絡する。 そこで、 ゲート制御信号 の位相角 a;の範囲を、 0度から 9 0度まで (第 1 2図の領域 1の範囲) と、 0度から一 9 0度まで (第 1 2図の領域 4の範囲) の間で制御する ことで、 コンデンサ Cの短絡に対応できる。 位相角 αの範囲を上述の通 りの範囲とすると、 本発明に係る第 2の実施形態の交流電圧制御装置の 通電損失が減少する効果もある。
さらに、 2つの逆導通型半導体スィッチをオフ状態としても、 コンデ ンサ Cが交流電源 3 と誘導性負荷 5 との間に直列に接続された状態とな るため、 負荷電流 I 1 o a dを完全に遮断することができない。 負荷電 流 I 1 o a dを完全に遮断する必要がある場合は、 交流電源 3 と本発明 に係る第 2の実施形態の交流電圧制御装置の間に、 電源スィツチ P S W を設置することで、 対応できる。
第 9図 (A ) と第 9図 (B ) は、 上述の電源スィッチ P S Wを設置し た態様を示している。 (第 9図 (B ) の態様は後述する。 )
[実施例 3 ] 縦型ハーフブリッジ M E R S回路を用いた交流電圧制御装 置
第 4図は、 本発明に係る第 3の実施形態の交流電圧制御装置の構成を 示す回路プロック図である。
より詳しくは、 第 4図は、 交流電源 3 と誘導性負荷 5 との間に直列に 挿入され、 誘導性負荷 5に供給する電圧 (負荷電圧) を制御する交流電 圧制御装置である。
第 4図の交流電圧制御装置は、 第 1の逆導通型半導体スィツチ S W 1 の負極側と第 2の逆導通型半導体スィツチ S W 2の正極側を接続した点 を第 1の交流端子 A C 1 とした逆導通型半導体スィツチレグと、 第 1の ダイオード D 1 と第 1のコンデンサ C 1を並列に接続した第 1のコンデ ンサクランプ回路と、 第 2のダイオード D 2 と第 2のコンデンサ C 2を 並列に接続した第 2のコンデンサクランプ回路を、 第 1のダイオード D 1の正極側と第 2のダイォード D 2の負極側を接続した点を第 2の交流 端子 A C 2としたコンデンサ回路を、 第 1の逆導通型半導体スィツチ S W 1の正極側と第 1のダイォード D 1の負極側を接続した点を正極端子 D C Pとし、 かつ、 第 2の逆導通型半導体スィッチ S W 2の負極側と第 2のダイオード D 2の正極側を接続した点を負極端子 D C Nとして構成 される、 縦型ハ一フブリ ッジ ME R S回路 3 0と、
縦型ハ一フブリッジ ME R S回路 3 0の第 1の交流端子 A C 1に一端 が接続された交流リァク トル L a c と、
交流電源 3に 1次側が接続され、 かつ、 2次側の一端が交流リアク ト ル L a cの他端に接続されたステツプダウン変圧器 9 と、
制御手段 4と、 を備えるとともに、
第 2の交流端子 A C 2は、 誘導性負荷 5に接続され、
制御手段 4は、 第 1の逆導通型半導体スィツチ SW 1がオンの状態の ときは、 第 2の逆導通型半導体スィッチ SW 2をオフの状態とし、 第 1 の逆導通型半導体スィツチ SW 1がオフの状態のときは、 第 2の逆導通 型半導体スィツチ S W 2をオンの状態として、 第 1の逆導通型半導体ス イッチ S W 1 と第 2の逆導通型半導体スィツチ S W 2が同時にオンの状 態にならないように逆導通型半導体スィツチのオンノオフの状態を制御 し、
さらに、 制御手段 4は、 逆導通型半導体スィッチのオン Zオフの状態 を制御する信号をゲート制御信号となし、 逆導通型半導体スィツチのォ ンノオフの状態と、 ゲー卜制御信号のオン信号の継続時間 オフ信号の 継続時間が一致するとしたとき、 ゲート制御信号 位相を交流電源 3の 電圧位相に同期して制御することで、 誘導性負荷 5のリアクタンス電圧 を補償する電圧を、 第 1のコンデンサ C 1 と第 2のコンデンサ C 2に発 生させ、 誘導性負荷 5に印加される電圧を制御することが特徴である。 次に、 本発明に係る第 3の実施形態の交流電圧制御装置の特徴を説明 する。
本発明に係る第 3の実施形態の交流電圧制御装置の基本的な動作、 特 徴は、 本発明に係る第 1の実施形態の交流電圧制御装置と同様である。 以下、 本発明に係る第 3の実施形態の交流電圧制御装置に特有の事項を 説明する。
第 1 のコンデンサ C 1の静電容量 (C 1 ) と第 2のコンデンサ C 2の 静電容量 (C 2 ) は、 誘導性負荷 5のインダクタンス (L) との共振に より、 誘導性負荷 5の磁気エネルギーを吸収 (コンデンサは充電) 、 放 出 (コンデンサは放電) するだけの、 極めて小さな容量でよい。 すなわ ち、 誘導性負荷 5の交流電源 3の半周期分の磁気エネルギーを吸収、 放 出だけに見合う容量でよい。 第 1のコンデンサ C 1 と第 2のコンデンサ C 2が、 従来の電圧型 P WMィンバ一夕回路で使用されている直流電圧 を安定して供給するための大容量の平滑コンデンサと、 その容量 · 目的 が全く異なる点である。
また、 第 1のコンデンサ C 1 と第 2のコンデンサ C 2は、 交流電源 3 の半周期毎に同期して、 交互に磁気エネルギー ( 1 Z 2 (L ( I 1 o a d) " 2 ) ) を静電エネルギー ( 1 2 (C 1 ( V c 1 ) ~ 2 ) ) 、 ( 1 / 2 ( C 2 (V c 2 ) 2 ) ) として吸収、 放出する。 第 1のコンデン サ C 1の両端電圧 V c l と第 2のコンデンサ C 2の両端電圧 V c 2は、 交流電源 3の半周期毎に同期して、 交互にピークから略ゼロ [V] にな る特徴がある。
また、 縦型ハーフブリッジ ME R S回路 3 0の正極端子 D C Pと負極 端子 D C N間の電位の位置関係が変わらない。 そのため、 第 1のコンデ ンサ C 1 と第 2のコンデンサ C 2に、 有極性コンデンサを使用すること ができる。
また、 第 1のコンデンサ C 1の静電容量 (C 1 ) と、 誘導性負荷 5の インダクタンス (L) の値で決まる第 1の共振周波数( f r e s 1 ) と、 第 2のコンデンサ C 2の静電容量 (C 2 ) と、 誘導性負荷 5のインダク タンス (L) の値で決まる第 2の共振周波数 ( i r e s 2 ) が、 それぞ れ交流電源 3の周波数 ( f a c ) の近傍とすることで、 本発明に係る第 3の実施形態の交流電圧制御装置による電圧と電流の高調波の発生を低 減することができる。
また、 第 1のコンデンサ C 1の静電容量 (C 1 ) と、 誘導性負荷 5の インダク夕ンス (L) の値で決まる第 1の共振周波数( f r e s l ) と、 第 2のコンデンサ C 2の静電容量 (C 2 ) と、 誘導性負荷 5のインダク タンス (L) の値で決まる第 2の共振周波数 ( f r e s 2 ) が、 それぞ れ交流電源 3の周波数 ( f a c ) 以上となるように、 第 1および第 2の コンデンサの静電容量 (C l、 C 2 ) の値を設定することで、 逆導通型 半導体スィッチを構成する自己消弧形素子は、 略ゼロ電圧かつゼロ電流 で、 また、 オフにするとき、 逆導通型半導体スィッチを構成する自己消 弧形素子は、 略ゼロ電圧であるソフ トスイッチング動作とすることがで さる。
また、 第 1のコンデンサ C 1 と第 2のコンデンサ C 2は、 誘導性負荷 5のリアクタンス電圧を補償する電圧の範囲の電圧幅であるため、 それ ぞれのコンデンサの分担電圧を低くすることができる。 第 1のコンデン サ C 1 と第 2のコンデンサ C 2は、 交流電源 3の半周期毎に同期して、 交互に充放電をするため、 本発明に係る第 1の実施形態の交流電圧制御 装置と比べて、 コンデンサ 1つあたりの電流責務が半分になる特徴もあ る。
また、 使用する逆導通型半導体スィッチが 2つで済むため、 本発明に 係る第 1の実施形態の交流電圧制御装置と比べて、 スィツチング損失が 半減するという特徴がある。 さらに、 本発明に係る第 3の実施形態の交 流電圧制御装置の構成を簡素とすることができる。
さらに、 ゲート制御信号の位相角 αの範囲は、 本発明にかかる第 1 の 実施形態と同様に、 0度から 9 0度まで(第 1 2図の領域 1の範囲) と、 0度から— 1 8 0度まで (第 1 2図の領域 3 と領域 4の範囲) とするこ とができる。 しかしながら、 ゲート制御信号の位相角 αを— 9 0度から 一 1 8 0度まで (第 1 2図の領域 4の範囲) とすると、 第 1のコンデン サ C 1 と第 2のコンデンサ C 2のそれぞれに電荷が残り、 それぞれのコ ンデンサの分担電圧が高くなる。 ゲート制御信号の位相角 Q!の範囲は、
0度から 9 0度まで (第 1 2図の領域 1の範囲) と、 0度から一 9 0度 まで (第 1 2図の領域 4の範囲) とすることで、 それぞれのコンデンサ の分担電圧を低くすることができる。 また、 誘導性負荷 5に印加される 電圧波形と電流波形に発生する歪を低減することができる。
[実施例 4 ] 2コンデンサ横型ハーフブリッジ M E R Sを用いた交流電 圧制御装置
第 5図は、 本発明に係る第 4の実施形態の交流電圧制御装置の構成を 示す回路ブロック図である。
より詳しくは、 第 5図は、 交流電源 3 と誘導性負荷 5 との間に直列に 挿入され、 誘導性負荷 5に供給する電圧 (負荷電圧) を制御する交流電 圧制御装置である。
第 5図の交流電圧制御装置は、 第 1の逆導通型半導体 S W 1の正極側 を第 1の交流端子 A C 1 とし、 第 1の逆導通型半導体スィツチ S W 1 と 第 1のコンデンサ C 1 を並列に接続した第 1のコンデンサ短絡回路と、 第 2の逆導通型半導体スィツチ S W 2の正極側を第 2の交流端子 A C 2 とし、 第 2の逆導通型半導体スィツチ S W 2 と第 2のコンデンサ C 2を 並列に接続した第 2のコンデンサ短絡回路を、 第 1 の逆導通型半導体ス イッチ SW 1の負極側と第 2の逆導通型半導体スィツチ SW 2の負極側 を接続した 2コンデンサ横型ハーフブリッジ ME R S回路 1 1 と、
2コンデンサ横型ハ一フブリ ッジ ME R S回路 1 1の第 1の交流端子 A C 1に一端が接続された交流リァク トル L a c と、
交流電源 3に 1次側が接続され、 かつ、 2次側の一端が交流リアク ト ル L a cの他端に接続されたステツプダウン変圧器 9 と、
制御手段 4と、 を備えるとともに、
第 2の交流端子 A C 2は、 誘導性負荷 5に接続され、
制御手段 4は、 第 1の逆導通型半導体スィッチ SW 1がオンの状態の ときは、 第 2の逆導通型半導体スィッチ S W 2をオフの状態とし、 第 1 の逆導通型半導体スィツチ SW 1がオフの状態のときは、 第 2の逆導通 型半導体スィツチ SW 2をオンの状態として、 第 1の逆導通型半導体ス イッチ SW 1 と第 2の逆導通型半導体スィツチ SW 2が同時にオンの状 態にならないように逆導通型半導体スィツチのオン Zオフの状態を制御 し、
さらに、 制御手段 4は、 逆導通型半導体スィッチのオン Zオフの状態 を制御する信号をゲ一ト制御信号となし、 逆導通型半導体スィツチのォ ン Zオフの状態と、 ゲート制御信号のオン信号の継続時間 Zオフ信号の 継続時間が一致するとしたとき、 ゲート制御信号の位相は、 交流電源 3 の電圧位相に同期して制御することで、 誘導性負荷 5のリアクタンス電 圧を補償する電圧を、 第 1のコンデンサ C 1 と第 2のコンデンサ C 2に 発生させ、誘導性負荷 5に印加される電圧を制御することが特徴である。 第 6図は、 本発明に係る第 4の実施形態において、 2つの逆導通型半 導体スィツチの正極側同士を共通とした構成を示す回路ブロック図であ る。 より詳しくは、 本発明に係る第 4の実施形態の交流電圧制御装置にお いて、 第 1の逆導通型半導体スィツチ S W 1 と第 2の逆導通型半導体ス イッチ S W 2のそれぞれの接続極性を入れ替え、 正極側同士を接続した 態様である。 本発明に係る第 4の実施形態の交流電圧制御装置と同一の 機能 · 作用 · 効果をもつ。
逆導通型半導体スィッチに、 Pチャンネルパヮ一 M〇 S F E T、 Ρ Ν Ρ トランジスタとダイォ一ドの逆並列に接続した回路などを用いたとき も、 同様の構成により対応することができる。
本発明に係る第 4の実施形態の交流電圧制御装置の基本的な動作、 特 徴は、 本発明に係る第 3の実施形態の交流電圧制御装置と同様である。 以下、 本発明に係る第 4の実施形態の交流電圧制御装置に特有の事項を 説明する。
第 1のコンデンサ短絡回路の端子間と、 第 2のコンデンサ短絡回路の 端子間のそれぞれの電位の位置関係が変わらない。 そのため、 第 1のコ ンデンサ C 1 と第 2のコンデンサ C 2に、 有極性コンデンサを使用する ことができる。
また、 本発明に係る第 4の実施形態の交流電圧制御装置は、 第 1のコ ンデンサ C l、 または第 2のコンデンサ C 2の少なく とも一方に電荷が 残った状態で、 逆導通型半導体スィツチのオン/オフの状態を切り替え ると、 電荷が残っているコンデンサが短絡する。 そこで、 ゲート制御信 号の位相角 αの範囲を、 0度から 9 0度まで (第 1 2図の領域 1の範囲) と、 0度から— 9 0度まで (第 1 2図の領域 4の範囲) の間で制御する ことで、 対応できる。 位相角ひの範囲を上述の通りの範囲とすると、 本 発明に係る第 4の実施形態の交流電圧制御装置の通電損失が減少する効 果もある。
また、 2つの逆導通型半導体スィッチを同時オフ状態としても、 第 1 のコンデンサ C 1 と第 2のコンデンサ C 2の直列回路が、 交流電源 3 と 誘導性負荷 5 との間に直列に接続された状態となるため、 負荷電流 I 1 o a dを完全に遮断することができない。 負荷電流 I 1 o a dを完全に 遮断する必要がある場合は、 交流電源 3 と本発明に係る第 4の実施形態 の交流電圧制御装置の間に、 電源スィッチ P S Wを設置することで、 対 応できる。 第 9図 (A ) と第 9図 (B ) は、 上述の電源スィッチ P S W を設置した態様を示している。 (第 9図 (B ) の態様は後述する。 ) さらに、 逆導通型半導体スィツチを構成する自己消弧形素子が電界効 果トランジスタ、 または同等の構造をもつ半導体素子を使用したとき、 制御手段 4は、 逆導通型半導体スィッチを構成するダイオードが順方向 で導通状態となるときに、 逆導通型半導体スィツチをオンの状態とする ように制御すると、 同期整流方式となって導通損失を減らすこともでき る。
[実施例 5 ] ステップダウン変圧器を省略した場合
第 7図 (B ) は、 本発明に係る第 5の実施形態の交流電圧制御装置の 構成の一部を示す回路ブロック図である。
より詳しくは、 第 7図 (B ) は、 本発明に係る交流電圧制御装置の交 流リアク トルし a cのインダクタンスの容量を大きくすることで、 ステ ップダウン変圧器 9のもつ交流電源 3の電圧を下げる機能を代替させて 除去し、 交流電源 3を交流リアク 卜ル L a cの他端に直結したことが特 徵である。
次に、 本発明に係る第 5の実施形態の交流電圧制御装置の特徴を説明 する。
交流リアク トル L a cの分担電圧は、 誘導性負荷 5のリアクタンス電 圧を補償する電圧の範囲の電圧幅程度でよい特徴がある。
また、ゲート制御信号の位相角 αがゼロ度近傍での制御を行い、かつ、 交流電圧 3の電圧を下げるには、 交流リアク トル L a cは、 インダク夕 ンス容量の大きなものが必要になる。 しかしながら、 本発明に係る交流 電圧制御装置の電力容量が大きく、 誘導性負荷 5の力率に応じて交流リ ァク トル L a cの設計をする場合は、 負荷電流 I l o a dの波形を基本 波に近くできるなど、 かえって大きな利点となり得る。
[実施例 6 ] 力率補償コンデンサを使用した例
第 8図 (A) と第 8図 (B) は、 本発明に係る第 6の実施形態の交流 電圧制御装置の構成の一部を示す回路ブロック図である。
より詳しくは、 第 8図 (A) と第 8図 (B) は、 交流電源 3の端子間 に並列に接続される力率補償コンデンサ C c omをさらに備え、 本発明 に係る流電圧制御装置による電圧制御の全範囲において力率を略 1にす ることが特徴である。
次に、 本発明に係る第 6の実施形態の交流電圧制御装置の動作の状態 を、 第 1 4図 (A) と第 1 4図 (B) に基づいて説明する。
より詳しくは、 第 1 4図 (A) は、 本発明に係る第 1の実施形態の交 流電圧制御装置において、 第 1 3図での回路定数を用いたときの、 計算 機シミュレ一ショ ン結果を示す。
第 1 4図 (B) は、 本発明に係る第 1の実施形態の交流電圧制御装置 において、 第 1 3図での回路定数を用い、 さらに、 力率補償コンデンサ C c o mの静電容量を 1 2 0マイクロ Fとしたときの、 計算機シミュレ ーショ ン結果を示す。
第 1 4図 (A) と第 1 4図 (B) のそれぞれは、 交流電源 3で測定し た皮相電力 VA a c、 交流電源 3で測定した有効電力 W a c、 交流電源 3で測定した力率 P F a c (力率 P F a c は 1 0 0 0倍に表示してい る) の波形を示している。
第 1 4図 (A) と第 1 4図 (B) を比較すると、 力率補償コンデンサ C c omを接続した交流電圧制御装置のゲート制御信号の位相角 αを、 — 4 5度 (遅れ) から 3 0度 (進み) に変化させても、 力率が略 1 にな つていることが確認できる。
[実施例 7 ] ゲー卜制御信号の位相角を常に 0度にした場合
第 1 5図は、 本発明に係る第 7の実施形態の構成の計算機シミュレ一 ション結果を示す図である。 また、 第 1 6図は、 交流電源 3 と誘導性負 荷 5を直接接続した場合の計算機シミュレーション結果を示す図である。 また、 どちらの場合も、 交流電源 3のインピー夕ンスが高く、 負荷電流 I 1 o a dが大きいと、負荷電圧 V 1 o a dが降下するものとしている。 より詳しくは、 第 1 5図は、 第 1図で示した回路ブロック図で、 以下 の回路定数を用いたときの、 計算機シミユレーション結果を示す。
ぐ第 1 5図の回路定数 >
交流電源 3の実効電圧 ( V a c— r m s ) : 1 1 0 V r m s、 交流電源 3の周波数 ( f a c ) : 5 0 H z、
ステツプダウン変圧器 9の巻き線比: 1次側: 2時側 = 1 1 0 : 2 2、 交流リアク トル L a cのインダク夕ンス (L a c ) : 6. 2 mH、 コンデンサ Cの静電容量 (C) : 5 0 0マイクロ F、
時刻 0秒から時刻 0. 1秒までと、 時刻 0. 2秒後以降の、 誘導性負荷 5のインダク夕ンス (L) : 2 O mH、誘導性負荷 5の等価抵抗(R) : 2 0オーム、
時刻 0. 1秒から時刻 0. 2秒までの間の、 誘導性負荷 5のインダク夕 ンス (L) : 1 2 mH、 誘導性負荷 5の等価抵抗 (R) : 4オーム。 第 1 5図は、 誘導性負荷 5を流れる電流 (負荷電流) I 1 o a d、 コ ンデンサ Cの両端電圧 V c、 フルブリッジ型 ME R S回路 1 0に供給さ れる電圧 V i n、 フルブリッジ型 M E R S回路 1 0に供給される実効電 圧 V i n„ r m s と、 誘導性負荷 5に供給される電圧 (負荷電圧) V 1 o a dと、 誘導性負荷 5に供給される実効電圧 V 1 o a d— r m s、 交 流電源 3で測定した皮相電力 V A a c、 第 1の逆導通型半導体スィツチ S W 1のゲート制御信号 G 1、 第 2の逆導通型半導体スィツチ S W 2の ゲート制御信号 G 2の波形を示している。
第 1 6図は、 誘導性負荷 5を流れる電流 (負荷電流) I l o a d、 交 流電圧 3の電圧 V a c と、 交流電源 3の実効電圧 V a c— r m s と、 誘 導性負荷 5に供給される電圧 (負荷電圧) V 1 o a dと、 誘導性負荷 5 に供給される実効電圧 V 1 o a d— r m s、 交流電源 3で測定した皮相 電力 VA a cの波形を示している。
第 1 5図では、 交流電源 3 と本発明に係る第 7の実施形態の交流電圧 制御装置との間にステツプダウン変圧器 9が挿入され、 1 1 0 V r m s から 8 8 V r m s と、 交流電源 3の電圧 V a c を 2 0 %降圧している。 交流リァク トル L a cは、 6. 2 mHを選択している。誘導性負荷 5は、 2つの誘導性負荷を並列に接続したものを模しており、 第 1の誘導性負 荷と第 2の誘導性負荷からなる。 第 1の誘導性負荷は、 2 0 mH、 2 0 オーム、 第 2の誘導性負荷は、 3 0 mH、 5オームとしている。 第 1の 誘導性負荷は、時刻 0から常に接続されているが、第 2の誘導性負荷は、 時刻 0. 1秒から時刻 0. 2秒までの間のみ接続されるようにしている。 制御手段 4は、 ゲ一卜制御信号の位相角ひを、 常に 0度 (第 1 2図の 0度点) としている。 すなわち、 交流電源 3の電圧 V a cが、 略 0電圧 になる時点に同期して、 逆導通型半導体スィツチ S W 1のゲ一ト信号制 御信号 G 1 と、 逆導通型半導体スィツチ S W 2のゲート信号制御信号 G 2の位相を入れ替えているだけである。
第 1 5図より、 時刻 0. 1秒から時刻 0. 2秒までの間、 約 1 7 Aの ラッシュ電流が流れているが、 誘導性負荷 5に供給される実効電圧 V 1 o a d— r m sが 1 0 0 Vのままに維持できているのが確認できる。 ま た、 コンデンサ Cの両端電圧 V cは、 ラッシュ電流分を吸収 (コンデン サ Cは充電) し、 放出 (コンデンサ Cは放電) することが自動的に行わ れている。 これに比べ、 第 1 6図では、 約 1 7 Aのラッシュ電流が流れ ている間、 誘導性負荷 5に供給される実効電圧 V 1 o a d— r m sが 8 8 Vにまで降下しているのが確認できる。
次に、 本発明に係る第 7の実施形態の交流電圧制御装置の特徴を説明 する。
本発明に係る第 7の実施形態の交流電圧制御装置の基本的な動作、 特 徴は、本発明にかかる第 1の実施形態の交流電圧制御装置と同様である、 以下、 本発明にかかる第 7の実施形態の交流電圧制御装置に特有の事項 を説明する。
ゲ一ト制御信号の位相角 αを、 常に 0度 (第 1 2図の 0度点) として いる。 すなわち、 交流電源 3の電圧 V a cが、 略 0電圧になる時点に同 期して、 逆導通型半導体スィツチ S W 1のゲート信号制御信号 G 1 と、 逆導通型半導体スィツチ S W 2のゲ一ト信号制御信号 G 2の位相を入れ 替えているだけである。 その他の本発明に係る実施形態の交流電圧制御 装置では、 積極的にゲート制御信号の位相角 αを制御していた。 本発明 にかかる第 7の実施形態の交流電圧制御装置では、 ゲ一ト制御信号の位 相角 αを、 常に 0度 (第 1 2図の 0度点) とすることで、 誘導性負荷 5 に供給される電圧 (負荷電圧) V I o a dを一定とすることができる。 ゲート制御信号の位相角 αを、 常に 0度 (第 1 2図の 0度点) とする方 法は、 その他の本発明に係る実施形態の交流電源制御装置においても、 有効に作用する。
[実施例 8 ] 放電灯調光システム
上述の交流電圧制御装置に接続される誘導性負荷 5 として、 誘導性負 荷を有する単数、 または複数の放電灯 (以下、 単に 「放電灯」 という。 ) 009麵 92 を接続し、 負荷電圧 V 1 o a dを変化させることで、 放電灯の輝度を目 的に応じて調光することを特徴とする放電灯調光システムを提供するこ とができる。
なお、 第 1 3図で示した回路定数は、 交流 2 0 0 V r m s入力で、 力 率が 0 . 7の低力率型の蛍光灯や、 リアク トル安定器型水銀灯を想定し た値であり、 本発明に係る交流電圧制御装置が有効に作用す.ることが確 認できる。
[実施例 9 ] 誘導電動機制御システム
上述の交流電圧制御装置に接続される誘導性負荷 5 として、 単数、 ま たは複数の誘導電動機 (以下、 単に 「誘導電動機」 という。 ) を接続し、 制御手段 4は、 誘導電動機の定常運転時は、 コンデンサ C (または第 1 のコンデンサ C 1 と第 2のコンデンサ C 2 ) に電圧の発生しないゲート 制御信号の位相角 αを設定して、 負荷電圧 V l o a dを誘導電動機の定 格より下げて供給することで、 誘導電動機での鉄損を低減し、 さらに、 制御手段 4は、 誘導電動機の始動時は、 コンデンサ C (または第 1のコ ンデンサ C 1 と第 2のコンデンサ C 2 ) に電圧が発生するように、 ゲ一 卜制御信号の位相角 αを設定して、 負荷電圧 V l o a dを、 誘導電動機 の定格、 またはそれ以上に供給することで、 始動トルクを増大させるた り、 ゲート制御信号の位相角ひを 0度とすることで、 複数の誘導電動機 を起動する際の、 負荷電圧 V 1 o a dの電圧降下を防止することを特徴 とする誘導電動機制御システムを提供することができる。
[実施例 1 0 ] 三相交流回路での使用
交流電源 3 として三相交流を用いる場合、 三相交流の各相に上述の交 流電圧制御装置をそれぞれ接続し、 各相のそれぞれの交流電圧制御装置 の制御手段 4の間を通信手段で接続した 1つの交流電圧制御装置とし、 それぞれの制御手段 4は、 通信手段によって取得した各相の負荷電圧 V 1 o a dが互いに平衡するように調整することで、 三相の不平衡電圧の 対応が可能であることを特徴とする交流電源装置を提供することができ る。

Claims

請 求 の 範 囲
1 交流電源と誘導性負荷との間に直列に挿入され、 前記誘導性負荷に かかる負荷電圧を制御する交流電圧制御装置であって、 該交流電圧制御 装置は、
自己消弧形素子とダイォ一ドを、 前記自己消弧形素子の正極側と前記 ダイォ一ドの負極側を接続し、 かつ前記自己消弧形素子の負極側と前記 ダイォ一ドの正極側を接続した回路、 または等価の半導体素子を逆導通 型半導体スィッチ (以下、 単に 「逆導通型半導体スィッチ」 という。 ) となし、 第 1の逆導通型半導体スィッチを構成する前記自己消弧形素子 の負極側 (以下、 単に 「逆導通型半導体スィッチの負極側」 という。 ) と、 第 2の逆導通型半導体スィツチを構成する前記自己消弧形素子の正 極側 (以下、 単に 「逆導通型半導体スィッチの正極側」 という。 ) を接 続した点を第 1の交流端子とした第 1の逆導通型半導体スィツチレグと、 第 3の逆導通型半導体スィツチの負極側と第 4の逆導通型半導体スィッ チの正極側を接続した点を第 2の交流端子とした第 2の逆導通型半導体 スィッチレグを、 前記第 1の逆導通型半導体スィツチの正極側と前記第 3の逆導通型半導体スィツチの正極側を接続して正極端子とし、 かつ前 記第 2の逆導通型半導体スィツチの負極側と前記第 4の逆導通型半導体 スィツチの負極側を接続して負極端子として構成されるフルブリッジ回 路と、 前記フルブリツジ回路の前記正極端子と前記負極端子間に接続さ れたコンデンサとからなるフルブリ ッジ型磁気エネルギー回生スィッチ
(以下、 磁気エネルギー回生スィッチを、 単に 「M E R S」 という。 ) 回路と、
前記フルプリッジ型 M E R S回路の前記第 1の交流端子に一端が接続 された交流リァク トルと、 前記交流電源に 1次側が接続され、 かつ、 2次側の一端が前記交流リ ァク トルの他端に接続されたステツプダウン変圧器と、
制御手段と、 を備えるとともに、
前記第 2の交流端子は、 前記誘導性負荷に接続され、
前記制御手段は、 前記第 1の逆導通型半導体スィッチと前記第 4の逆 導通型半導体スィツチを第 1 のペアとし、 前記第 2の逆導通型半導体ス イッチと前記第 3の逆導通型半導体スィツチを第 2のペアとし、 前記第 1のペアの 2つの前記逆導通型半導体スィツチを構成する前記自己消弧 形素子が導通状態 (以下、 単に 「逆導通型半導体スィッチがオンの状態」 という。 ) のときは、 前記第 2のペアの 2つの前記逆導通型半導体スィ ツチを構成する前記自己消弧形素子を阻止状態 (以下、 単に 「逆導通型 半導体スィッチをオフの状態」 という。 ) とし、 前記第 1のペアがオフ の状態のときは、 前記第 2のペアをオンの状態とするように前記逆導通 型半導体スィツチのオン オフの状態を制御し、
さらに、 前記制御手段は、 前記逆導通型半導体スィッチのオン Zオフ の状態を制御する信号をゲート制御信号となし、 前記逆導通型半導体ス イッチのオン オフの状態と、 前記ゲー卜制御信号のオン信号の継続時 間 Zオフ信号の継続時間が一致するとしたとき、 前記ゲート制御信号の 位相を、 前記交流電源の電圧位相に同期して制御することで、 前記誘導 性負荷のリアクタンス電圧を補償する電圧を前記コンデンサに発生させ、 前記誘導性負荷に印加される電圧を制御することを特徴とする交流電圧 制御装置。
2 前記コンデンサが有極性のコンデンサであることを特徴とする請求 の範囲第 1項に記載の交流電圧制御装置。 3 前記コンデンサの静電容量と前記誘導性負荷のィンダク夕ンスの値 で決まる共振周波数が、 前記交流電源の周波数以上となるように、 前記 コンデンサの静電容量の値が設定されていることを特徴とする請求の範 囲第 1項または第 2項に記載の交流電圧制御装置。
4 前記ゲ一ト制御信号の位相の変化と前記交流電源の電圧位相との差 を前記ゲート制御信号の位相角とし、 前記ゲート制御信号の位相の変化 が前記交流電源の電圧位相より時間的に先となる場合を 「進み」 として プラスの角度で表現し、 また、 前記ゲート制御信号の位相の変化が前記 交流電源の電圧位相より時間的に後になる場合を 「遅れ」 としてマイナ スの角度で表現したとき、 前記ゲート制御信号の位相角の範囲を、 0度 からプラス 9 0度まで、 または、 0度からマイナス 1 8 0度までに設定 したことを特徴とする請求の範囲第 1項乃至第 3項のいずれか 1項に記 載の交流電圧制御装置。
5 交流電源と誘導性負荷との間に直列に挿入され、 前記誘導性負荷に かかる負荷電圧を制御する交流電圧制御装置であって、 該交流電圧制御 装置は、
第 1の逆導通型半導体スィツチの負極側と第 2の逆導通型半導体スィ ツチの負極側を接続した逆導通型半導体スィツチレグと、
前記第 1の逆導通型半導体スィツチの正極側である第 1の交流端子と、 前記第 2の逆導通型半導体スィツチの正極側である第 2の交流端子との 間に接続されたコンデンサと、 を備えた 1コンデンサ横型ハ一フブリッ ジ M E R S回路と、
前記 1コンデンサ横型ハーフブリッジ M E S回路の前記第 1の交流 端子に一端が接続された交流リァク トルと、 前記交流電源に 1次側が接続され、 かつ、 2次側の一端が前記交流リ ァク トルの他端に接続されたステップダウン変圧器と、
制御手段と、 を備えるとともに、
前記第 2の交流端子は、 前記誘導性負荷に接続され、
前記制御手段は、 前記第 1の逆導通型半導体スィッチがオンの状態の ときは、 前記第 2の逆導通型半導体スィッチをオフの状態とし、 前記第 1の逆導通型半導体スィツチがオフの状態のときは、 前記第 2の逆導通 型半導体スィッチをオンの状態として、 前記第 1の逆導通型半導体スィ ツチと前記第 2の逆導通型半導体スィツチが同時にオフの状態にならな いように前記逆導通型半導体スィツチのオン オフの状態を制御し、 さらに、 前記制御手段は、 前記逆導通型半導体スィッチのオン オフ の状態を制御する信号をゲ一ト制御信号となし、 前記逆導通型半導体ス イッチのオンノオフの状態と、 前記ゲ一ト制御信号のオン信号の継続時 間 Zオフ信号の継続時間が一致するとしたとき、 前記ゲート制御信号の 位相を前記交流電源の電圧位相に同期して制御することで、 前記誘導性 負荷のリアクタンス電圧を補償する電圧を、前記コンデンサに発生させ、 前記誘導性負荷に印加される電圧を制御することを特徴とする交流電圧 制御装置。 6 前記第 1の逆導通型半導体スィッチと、 前記第 2の逆導通型半導体 スィツチの接続極性をそれぞれ逆にしたことを特徴とする請求の範囲第 5項に記載の交流電圧制御装置。
7 前記コンデンサの静電容量と前記誘導性負荷のィンダク夕ンスの値 で決まる共振周波数が、 前記交流電源の周波数以上となるように、 前記 コンデンサの静電容量の値が設定されていることを特徴とする請求の範 囲第 5項または第 6項に記載の交流電圧制御装置
8 交流電源と誘導性負荷との間に直列に揷入され、 前記誘導性負荷に かかる負荷電圧を制御する交流電圧制御装置であって、 該交流電圧制御 装置は、
第 1 の逆導通型半導体スィツチの負極側と第 2の逆導通型半導体スィ ツチの正極側を接続した点を第 1の交流端子とした逆導通型半導体スィ ツチレグと、 第 1のダイオードと第 1のコンデンサを並列に接続した第 1のコンデンサクランプ回路と、 第 2のダイオードと第 2のコンデンサ を並列に接続した第 2のコンデンサクランプ回路を、 前記第 1のダイォ 一ドの正極側と前記第 2のダイオードの負極側を接続した点を第 2の交 流端子としたコンデンサ回路を、 前記第 1の逆導通型半導体スィツチの 正極側と前記第 1のダイォードの負極側を接続した点を正極端子とし、 かつ、 前記第 2の逆導通型半導体スィツチの負極側と前記第 2のダイォ —ドの正極側を接続した点を負極端子として構成される、 縦型ハーフブ リッジ M E R S回路と、
前記縦型ハーフブリッジ M E R S回路の前記第 1の交流端子に一端が 接続された交流リァク トルと、
前記交流電源に 1次側が接続され、 かつ、 2次側の一端が前記交流リ ァク トルの他端に接続されたステップダウン変圧器と、
制御手段と、 を備えるとともに、
前記第 2の交流端子は、 前記誘導性負荷に接続され、
前記制御手段は、 前記第 1の逆導通型半導体スィツチがオンの状態の ときは、 前記第 2の逆導通型半導体スィッチをオフの状態とし、 前記第 1の逆導通型半導体スィッチがオフの状態のときは、 前記第 2の逆導通 型半導体スィツチをオンの状態として、 前記第 1の逆導通型半導体スィ ツチと前記第 2の逆導通型半導体スィツチが同時にオンの状態にならな いように前記逆導通型半導体スィツチのオンノオフの状態を制御し、 さらに、 前記制御手段は、 前記逆導通型半導体スィッチのオン Zオフ の状態を制御する信号をゲート制御信号となし、 前記逆導通型半導体ス イッチのオン オフの状態と、 前記ゲート制御信号のオン信号の継続時 間 Zオフ信号の継続時間が一致するとしたとき、 前記ゲ一ト制御信号の 位相を前記交流電源の電圧位相に同期して制御することで、 前記誘導性 負荷のリァクタンス電圧を補償する電圧を、 前記第 1のコンデンサと前 記第 2のコンデンサに発生させ、 前記誘導性負荷に印加される電圧を制 御することを特徴とする交流電圧制御装置。
9 交流電源と誘導性負荷との間に直列に揷入され、 前記誘導性負荷に かかる負荷電圧を制御する交流電圧制御装置であって、 該交流電圧制御 装置は、
第 1の逆導通型半導体の正極側を第 1の交流端子とし、 前記第 1の逆 導通型半導体スィツチと第 1のコンデンサを並列に接続した第 1のコン デンサ短絡回路と、 第 2の逆導通型半導体スィツチの正極側を第 2の交 流端子とし、 前記第 2の逆導通型半導体スィツチと第 2のコンデンサを 並列に接続した第 2のコンデンサ短絡回路を、 前記第 1の逆導通型半導 体スィツチの負極側と前記第 2の逆導通型半導体スィツチの負極側を接 続した 2コンデンサ横型ハーフブリ ッジ M E R S回路と、
前記 2コンデンサ横型ハーフブリッジ M E R S回路の前記第 1の交流 端子に一端が接続された交流リァク トルと、
前記交流電源に 1次側が接続され、 かつ、 2次側の一端が前記交流リ ァク トルの他端に接続されたステツプダウン変圧器と、
制御手段と、 を備えるとともに、 前記第 2の交流端子は、 前記誘導性負荷に接続され、
前記制御手段は、 前記第 1の逆導通型半導体スィツチがオンの状態の ときは、 前記第 2の逆導通型半導体スィッチをオフの状態とし、 前記第 1の逆導通型半導体スィツチがオフの状態のときは、 前記第 2の逆導通 型半導体スィッチをオンの状態として、 前記第 1の逆導通型半導体スィ ツチと前記第 2の逆導通型半導体スィツチが同時にオンの状態にならな いように前記逆導通型半導体スィツチのオン Zオフの状態を制御し、 さらに、 前記制御手段は、 前記逆導通型半導体スィッチのオン Zオフ の状態を制御する信号をゲート制御信号となし、 前記逆導通型半導体ス イッチのオン Zオフの状態と、 前記ゲート制御信号のオン信号の継続時 間/オフ信号の継続時間が一致するとしたとき、 前記ゲート制御信号の 位相を前記交流電源の電圧位相に同期して制御することで、 前記誘導性 負荷のリアクタンス電圧を補償する電圧を、 前記第 1のコンデンサと前 記第 2のコンデンサに発生させ、 前記誘導性負荷に印加される電圧を制 御することを特徴とする交流電圧制御装置。
1 0 前記逆導通型半導体スィツチを構成する前記自己消弧形素子^!電 界効果トランジスタ、 または同等の構造をもつ半導体素子であり、 前記制御手段は、 前記逆導通型半導体スィツチを構成する前記ダイォ —ドが順方向で導通状態となるときに、 前記逆導通型半導体スィッチを オンの状態とするように制御することを特徴とする請求の範囲第 9項に 記載の交流電圧制御装置。
1 1 前記第 1のコンデンサおよび前記第 2のコンデンサがそれぞれ有 極性のコンデンサであることを特徴とする請求の範囲第 8項乃至第 1 0 項のいずれか 1項に記載の交流電圧制御装置。 1 2 前記第 1の逆導通型半導体スィッチと前記第 2の逆導通型半導体 スィツチの接続極性をそれぞれ逆にしたことを特徴とする請求の範囲第 9または第 1 0項に記載の交流電圧制御装置。
1 3 前記第 1の逆導通型半導体スィッチと前記第 2の逆導通型半導体 スィッチの接続極性をそれぞれ逆にし、 さらに、 前記第 1のコンデンサ と前記第 2のコンデンサの接続極性をそれぞれ逆にしたことを特徴とす る請求の範囲第 1 1項に記載の交流電圧制御装置。
1 4 前記第 1のコンデンサの静電容量と前記誘導性負荷のィンダクタ ンスの値で決まる第 1の共振周波数と、 前記第 2のコンデンサの静電容 量と前記誘導性負荷のィンダク夕ンスの値で決まる第 2の共振周波数が、 それぞれ前記交流電源の周波数以上となるように、 前記第 1および第 2 のコンデンサの静電容量の値がそれぞれ設定されていることを特徴とす る請求の範囲第 8項乃至第 1 3項のいずれか 1項に記載の交流電圧制御 装置。
1 5 前記ステップダウン変圧器を除去し、 前記交流電源を前記交流リ ァク トルの前記他端に直結したことを特徴とする請求の範囲第 1項乃至 第 1 4項のいずれか 1項に記載の交流電圧制御装置。
1 6 前記交流電源の端子間に並列に接続される力率補償コンデンサを さらに備えたことを特徴とする請求の範囲第 1項乃至第 1 5項のいずれ か 1項に記載の交流電圧制御装置。 1 7 前記ゲート制御信号の位相の変化と前記交流電源の電圧位相との 差を前記ゲ一ト制御信号の位相角とし、 前記ゲー卜制御信号の位相の変 化が前記交流電源の電圧位相より時間的に先となる場合を 「進み」 とし てプラスの角度で表現し、 また、 前記ゲート制御信号の位相の変化が前 記交流電源の電圧位相より時間的に後になる場合を 「遅れ」 としてマイ ナスの角度で表現したとき、 前記ゲート制御信号の位相角の範囲を、 0 度からプラス 9 0度まで、 または、 0度からマイナス 9 0度までに設定 したことを特徴とする請求の範囲第 5項乃至第 1 6項のいずれか 1項に 記載の交流電圧制御装置。
1 8 前記ゲ一ト制御信号の位相角の範囲を、 常に 0度のままとしたこ とを特徴とする請求の範囲第 1項乃至 1 6項 (第 4項を除く。 ) のいず れか 1項に記載の交流電圧制御装置。 1 9 請求の範囲第 5項乃至第 7項、 および、 第 9項乃至第 1 4項のい ずれか 1項に記載の交流電圧制御装置と、 前記交流電源との間に、 前記 交流電源を完全に遮断するための電源スィツチを設置したことを特徴と する交流電圧制御システム。 2 0 請求の範囲第 1項乃至第 1 8項のいずれか 1項に記載の交流電圧 制御装置に、 前記誘導性負荷を有する、 一または複数の放電灯を接続し た放電灯調光システムであって、
前記交流電圧制御装置の前記制御手段が、 前記負荷電圧を制御するこ とで、 前記放電灯の輝度を目的に応じて調光することを特徴とする放電 灯調光システム。 2 1 請求の範囲第 1項乃至第 1 8項のいずれか 1項に記載の交流電圧 制御装置に、 前記誘導性負荷を有する、 一または複数の誘導電動機を接 続した誘導電動機制御システムであって、
前記交流電圧制御装置の前記制御手段が、 前記誘導電動機の定常運転 時は、 前記コンデンサ、 または前記第 1のコンデンサと前記第 2のコン デンサに、 電圧の発生しない前記ゲート制御信号の位相角を設定して、 前記負荷電圧を前記誘導電動機の定格よりも下げて供給することで、 前 記誘導電動機で発生する鉄損を低減し、
さらに、 前記制御手段は、 前記誘導電動機の始動時は、 前記コンデン サ、 または前記第 1のコンデンサと前記第 2のコンデンサに、 電圧が発 生する前記ゲート制御信号の位相角を設定して、 前記負荷電圧を定格、 またはそれ以上に供給することで、 始動トルクを増大させることを特徴 とする誘導電動機制御システム。 2 2 三相交流電源の各相に、 請求の範囲第 1項乃至第 1 8項のいずれ か 1項に記載の交流電圧制御装置をそれぞれ接続し、 前記各相のそれぞ れの前記交流電圧制御装置の前記制御手段間を通信手段で接続した交流 電源装置であって、
それぞれの前記制御手段は、 前記通信手段によって取得した各相の前 記負荷電圧が互いに平衡するように調整することを特徴とする交流電源 装置。
PCT/JP2009/059392 2008-05-15 2009-05-15 交流電圧制御装置 WO2009139505A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801175481A CN102047546A (zh) 2008-05-15 2009-05-15 交流电压控制装置
JP2010512043A JP4701332B2 (ja) 2008-05-15 2009-05-15 交流電圧制御装置
US12/992,752 US8384333B2 (en) 2008-05-15 2009-05-15 Alternating voltage control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2008/059397 2008-05-15
PCT/JP2008/059397 WO2009139077A1 (ja) 2008-05-15 2008-05-15 交流電圧制御装置

Publications (1)

Publication Number Publication Date
WO2009139505A1 true WO2009139505A1 (ja) 2009-11-19

Family

ID=41318458

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2008/059397 WO2009139077A1 (ja) 2008-05-15 2008-05-15 交流電圧制御装置
PCT/JP2009/059392 WO2009139505A1 (ja) 2008-05-15 2009-05-15 交流電圧制御装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/059397 WO2009139077A1 (ja) 2008-05-15 2008-05-15 交流電圧制御装置

Country Status (3)

Country Link
US (1) US8384333B2 (ja)
CN (1) CN102047546A (ja)
WO (2) WO2009139077A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012085475A (ja) * 2010-10-13 2012-04-26 Merstech Inc 誘導電動機制御装置及び誘導電動機制御方法
JP2013009462A (ja) * 2011-06-22 2013-01-10 Easymore Industrial Co Ltd 位相制御型交流電圧安定化回路
TWI490093B (zh) * 2010-02-10 2015-07-01 Maeda Metal Ind electrical tools

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528886B2 (ja) * 2008-07-03 2010-08-25 株式会社MERSTech 電力制御装置
NO330333B1 (no) * 2009-07-07 2011-03-28 A T Holding Da Styring for induktive laster
CN103250340B (zh) * 2010-10-15 2016-09-14 Abb技术有限公司 用于在dc电力线与ac电力线之间传输电力的装置
JP5831275B2 (ja) * 2012-02-10 2015-12-09 日産自動車株式会社 電力変換装置及びその駆動方法
JP5953077B2 (ja) * 2012-03-13 2016-07-13 東芝三菱電機産業システム株式会社 インバータ試験装置
CN103428954B (zh) * 2012-05-25 2017-03-01 欧司朗股份有限公司 负载驱动器及包括该负载驱动器的灯具
JP5984916B2 (ja) * 2012-08-20 2016-09-06 東芝三菱電機産業システム株式会社 電力変換器
US9130470B2 (en) * 2012-09-14 2015-09-08 General Electric Company Power converter control system and method with separate primary and secondary controllers
US9500182B2 (en) * 2012-12-06 2016-11-22 Vestas Wind Systems A/S Three-phase AC electrical system, and a method for compensating an inductance imbalance in such a system
CN103338545B (zh) * 2013-01-12 2016-03-02 华南理工大学 一种日光灯调光电路及其工作方法
WO2015015910A1 (ja) * 2013-07-29 2015-02-05 株式会社村田製作所 印加交流電圧を考慮したコンデンサの静電容量値決定方法およびプログラム
CN103490425B (zh) * 2013-09-18 2015-08-26 华南理工大学 一种异步发电机组并联运行稳压系统及方法
JP6260329B2 (ja) * 2014-02-17 2018-01-17 オムロン株式会社 電流測定装置、その制御方法、制御プログラム、並びに記録媒体、および電力測定装置
US10075096B2 (en) * 2016-05-24 2018-09-11 Nippon Steel & Sumitomo Metal Corporation Power supply system
JP6653452B2 (ja) * 2016-09-20 2020-02-26 パナソニックIpマネジメント株式会社 調光装置の保護回路、及び調光装置
DE102017117888A1 (de) * 2017-08-07 2019-02-07 Infineon Technologies Austria Ag Elektronische Schaltung mit einer Halbbrückenschaltung und einem Spannungsklemmelement
US10890932B2 (en) 2018-08-20 2021-01-12 Eaton Intelligent Power Limited Electrical network configured to magnetically couple to a winding and to control magnetic saturation in a magnetic core
CN109343647B (zh) * 2018-09-18 2021-05-25 江苏大学 一种动态无线充电最大效率跟踪系统及方法
CN109660138B (zh) * 2019-01-30 2020-06-16 成都芯进电子有限公司 一种有源全桥整流器
DE102019127798A1 (de) * 2019-10-15 2021-04-15 Infineon Technologies Ag Elektronische schaltung mit zwei spannungsversorgungsschaltungen
US11735923B2 (en) 2020-07-28 2023-08-22 Eaton Intelligent Power Limited Voltage regulation device that includes a converter for harmonic current compensation and reactive power management
CN116826761B (zh) * 2023-08-28 2023-11-28 武汉中楚柏泰智能科技有限公司 电磁式电能质量统一控制器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260991A (ja) * 2003-02-05 2004-09-16 Rikogaku Shinkokai 磁気エネルギーを回生する交流電源装置
JP2007058676A (ja) * 2005-08-25 2007-03-08 Tokyo Institute Of Technology 進相電流による交流電圧制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283726A (en) * 1991-12-20 1994-02-01 Wilkerson A W AC line current controller utilizing line connected inductance and DC voltage component
US5657212A (en) * 1995-08-14 1997-08-12 Poon; Franki N. K. Capacitor coupled converter
CN1954482A (zh) * 2004-05-12 2007-04-25 财团法人理工学振兴会 使磁能量再生的交流电源装置
JP5048920B2 (ja) * 2004-11-01 2012-10-17 昌和 牛嶋 電流共振型インバータ回路と電力制御手段
KR20070004152A (ko) * 2005-07-04 2007-01-09 민준기 단상 전력용 능동 필터를 이용한 3상 4선식 전력회로의중선선 전류 저감

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260991A (ja) * 2003-02-05 2004-09-16 Rikogaku Shinkokai 磁気エネルギーを回生する交流電源装置
JP2007058676A (ja) * 2005-08-25 2007-03-08 Tokyo Institute Of Technology 進相電流による交流電圧制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490093B (zh) * 2010-02-10 2015-07-01 Maeda Metal Ind electrical tools
JP2012085475A (ja) * 2010-10-13 2012-04-26 Merstech Inc 誘導電動機制御装置及び誘導電動機制御方法
JP2013009462A (ja) * 2011-06-22 2013-01-10 Easymore Industrial Co Ltd 位相制御型交流電圧安定化回路

Also Published As

Publication number Publication date
US8384333B2 (en) 2013-02-26
WO2009139077A1 (ja) 2009-11-19
CN102047546A (zh) 2011-05-04
US20110121774A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
WO2009139505A1 (ja) 交流電圧制御装置
US7286373B1 (en) Full-resonant power circuit device for receiving a variable input voltage
JP5135359B2 (ja) 低い入力電圧で使用されるチャージポンプ電子安定器
JP2007058676A (ja) 進相電流による交流電圧制御装置
CN106560987A (zh) 用于功率因子校正的电路和操作方法
US6031739A (en) Two-stage, three-phase split boost converter with reduced total harmonic distortion
US6271633B1 (en) High power factor electronic ballast with fully differential circuit topology
JP2009247132A (ja) スナバ回路
US20210159812A1 (en) Power apparatus applied in sst structure and three-phase power source system having the same
Endres et al. 6 kW bidirectional, insulated on-board charger with normally-off GaN gate injection transistors
US6940188B2 (en) Electric power converting device
JP2014522231A (ja) 結合インダクタンスを備えるインバータ
US7432664B2 (en) Circuit for powering a high intensity discharge lamp
JP2022011002A (ja) 電力回生スナバ回路および電源装置
KR20150044333A (ko) 브리지리스 역률 개선 회로 및 이의 구동 방법
US8736189B2 (en) Electronic ballasts with high-frequency-current blocking component or positive current feedback
US6961250B2 (en) Non-isolated AC power supply device and method for controlling the same
JP4701332B2 (ja) 交流電圧制御装置
US7733031B2 (en) Starting fluorescent lamps with a voltage fed inverter
JP2005304289A (ja) Dc−dcコンバータ
WO2023197208A1 (en) Voltage regulation circuit and control method thereof
US20120013263A1 (en) Electronic Operating Device for Gas Discharge Lamps with Reduced Power Loss and Method for Operating the Operating Device
JP4443995B2 (ja) 放電点灯装置
Nayak et al. Soft-switched Single-stage Isolated AC-DC Converter for High Power Applications
Dums et al. Single stage charge pump voltage-source electronic ballast for a 70W HPS lamp

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980117548.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010512043

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8910/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12992752

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09746711

Country of ref document: EP

Kind code of ref document: A1