WO2009139432A1 - 磁気探傷方法及び磁気探傷装置 - Google Patents

磁気探傷方法及び磁気探傷装置 Download PDF

Info

Publication number
WO2009139432A1
WO2009139432A1 PCT/JP2009/058969 JP2009058969W WO2009139432A1 WO 2009139432 A1 WO2009139432 A1 WO 2009139432A1 JP 2009058969 W JP2009058969 W JP 2009058969W WO 2009139432 A1 WO2009139432 A1 WO 2009139432A1
Authority
WO
WIPO (PCT)
Prior art keywords
flaw
signal
current
flaw detection
candidate
Prior art date
Application number
PCT/JP2009/058969
Other languages
English (en)
French (fr)
Inventor
俊之 鈴間
今西 憲治
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to CA2722844A priority Critical patent/CA2722844C/en
Priority to EP09746638.7A priority patent/EP2282199B1/en
Priority to US12/992,618 priority patent/US8466674B2/en
Priority to CN2009801173715A priority patent/CN102027364B/zh
Priority to BRPI0912722-4A priority patent/BRPI0912722B1/pt
Publication of WO2009139432A1 publication Critical patent/WO2009139432A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals

Definitions

  • magnetic flaw detection methods such as an eddy current flaw detection method and a leakage magnetic flux flaw detection method are known as methods for nondestructively detecting flaws existing in a material to be inspected such as a steel plate and a steel pipe.
  • the eddy current flaw detection method is a flaw detection method that utilizes the fact that an eddy current induced by applying an alternating magnetic field to a material to be inspected is disturbed by a flaw.
  • the leakage magnetic flux flaw detection method when a magnetic field is applied to a material to be inspected and magnetized, if there is a flaw that blocks the magnetic flux generated in the material to be inspected, the magnetic flux is generated at the site where the flaw is present. This is a flaw detection method that utilizes leakage into the surface space.
  • a flaw signal to be detected (of a flaw detection signal detected by a predetermined detection sensor, when the direction of the magnetic field to be applied and the direction in which the magnetic field is applied forms a specific angle
  • the amplitude of the signal obtained from the site where the flaw is present is maximized.
  • the amplitude of the flaw signal in the leakage magnetic flux flaw detection method is maximized when the direction of the applied magnetic field (the direction of the magnetic flux in the material to be inspected) and the direction in which the flaw extends are orthogonal, and the direction of the magnetic field is the direction in which the flaw extends. Decreases as the position deviates from the direction perpendicular to.
  • a rotating magnetic field in which the direction of the magnetic field changes from time to time is applied to the material to be inspected so that the direction in which the flaw extends can be detected (so that a flaw signal having a detectable amplitude can be obtained).
  • a magnetic flaw detection method for detecting flaws extending in various directions based on a flaw detection signal generated by the rotating magnetic field has been proposed (for example, see Japanese Patent Application Laid-Open No. 2002-131285).
  • an exciting coil as shown in FIG. 1 is used.
  • the exciting coil 10 shown in FIG. 1 includes two exciting coils (X) arranged such that the winding directions of the conducting wires are orthogonal to each other (therefore, the generated magnetic fields are orthogonal to each other) and the center positions coincide with each other.
  • a direction excitation coil 1 and a Y direction excitation coil 2) are provided. Then, the phase of the AC excitation current energized in each of the excitation coils 1 and 2 is shifted by 90 ° (for example, the X-direction excitation coil 1 is energized with a cosine wave excitation current, and the Y-direction excitation coil 2 is sinusoidal.
  • the flaw signal is synchronized with an alternating excitation current. For this reason, by detecting the flaw detection signal synchronously using the excitation current as a reference signal and extracting a signal synchronized with the excitation current, it is possible to extract a signal that cannot have a high S / N ratio from the flaw detection signal.
  • the AC signal extracted by the synchronous detection is smoothed by the low-pass filter in order to increase the ratio (S / N ratio) between the scratch signal and the noise generated randomly without being synchronized with the excitation current. Is common.
  • the AC signal extracted by synchronous detection is smoothed for each unit region corresponding to about two to three periods of the reference signal (excitation current).
  • FIG. 3 is a schematic diagram of a Lissajous waveform indicating that the flaw signal and the lift-off fluctuation noise have a phase difference.
  • the flaw signal phase ⁇ d and the lift-off fluctuation noise phase ⁇ l are generally different.
  • the XY coordinate system is rotated so that the lift-off fluctuation noise is along the X axis, and the signal component in the Y ′ axis direction in the rotated X′Y ′ coordinate system is used as the flaw detection signal.
  • the phase analysis method it can be expected that the influence of lift-off fluctuation noise on the flaw detection ability can be suppressed.
  • the phase analysis method is not limited to the method of rotating the XY coordinate system of the Lissajous waveform as described above, but only the amplitude of the signal component having a specific phase in the Lissajous waveform is evaluated and has other phases.
  • a method of removing the amplitude of the signal component from the evaluation target is also included.
  • the conventional magnetic flaw detection method using a rotating magnetic field has the following problems due to the use of a single-frequency excitation current. (1) Since the effect of synchronous detection cannot be obtained sufficiently, the flaw detection ability (S / N ratio) may be reduced. (2) It is impossible to estimate flaw angle information (in which direction it extends). (3) A general phase analysis method cannot be used as a technique for improving the flaw detection ability (S / N ratio) in the eddy current flaw detection method. (4) The continuity of the flaw cannot be accurately evaluated.
  • the amplitude of the flaw signal detected is maximized.
  • the amplitude of the flaw signal becomes zero when the deviation angle in the direction of the magnetic field from the direction in which the amplitude of the flaw signal is maximum exceeds ⁇ ⁇ °.
  • the direction of the magnetic field rotates 360 ° during one period of the exciting current.
  • 20.
  • the amplitude of the flaw signal in the leakage magnetic flux flaw detection method is maximized when the direction of the magnetic field to be applied and the extending direction are perpendicular to each other.
  • FIG. 4 is a graph showing a time-series relationship between the excitation current waveform and the signal waveform under the above assumption.
  • FIG. 5 shows a state in which a flaw detection signal including a flaw signal is synchronously detected using an excitation current as a reference signal, and a flaw signal extracted by the synchronous detection is smoothed for each unit region corresponding to two cycles of the reference signal.
  • FIG. 5A is a graph showing a flaw signal waveform
  • FIG. 5A shows a flaw signal waveform of flaw A
  • FIG. 5B shows a flaw signal waveform of flaw B; 4 and 5, the waveform of noise included in the flaw detection signal is not shown.
  • the excitation current supplied to the X-direction excitation coil 1 or the excitation current supplied to the Y-direction excitation coil 2 shown in FIG. 1 is used as a reference signal.
  • the flaw signal obtained from flaws A and B has a shorter cycle than any excitation current. That is, since the period of the flaw signal and the period of the reference signal do not coincide with each other, the effect of synchronous detection (extracting a high S / N ratio from the flaw detection signal) cannot be sufficiently obtained, and flaw detection is performed. There is a concern that the performance may be reduced (problem (1) described above).
  • the flaw signal extracted by the synchronous detection is smoothed for each unit region corresponding to two periods of the reference signal, as shown in FIG. 5, the phase information (flaw angle information of the flaw signal after smoothing) ) Will be lost, and for both flaws A and B, the flaw signal after smoothing will have the same DC signal waveform. That is, the angle information of the flaw cannot be estimated (problem (2) described above).
  • a method that evaluates flaw continuity by grasping the two-dimensional distribution state of flaws from flaw detection images.
  • a flaw detection signal (a grayscale image or a color image) obtained by imaging a flaw detection signal including a flaw signal or by imaging a signal obtained by binarizing the flaw detection signal with a predetermined threshold value.
  • Image and visual inspection of the flaw detection image, or by performing image processing using an appropriate image processing filter or the like on the flaw detection image, to grasp the two-dimensional distribution state of the flaw, Assessing sex.
  • the inspection object S includes two flaws A and B and a noise source N.
  • FIG. 6 the flaw detection image obtained by scanning the detection sensor on the inspection material S (flaw detection image obtained by imaging the signal obtained by binarizing the flaw detection signal with a predetermined threshold value)
  • FIG. the pixel group corresponding to the flaw candidate site in the material S to be inspected, which is discretized according to the A / D conversion speed, the scanning speed, etc. of the detection sensor, that is, the four pixel groups a1 corresponding to the flaw A
  • the flaw detection image is formed based only on the amplitude information of the flaw detection signal, it is based only on the distribution state of the pixel group corresponding to the flaw candidate site. Therefore, continuity must be evaluated. Therefore, according to the configuration of the image processing filter or the like for evaluating the continuity of the flaws, as shown in FIG. 8, the pixel groups a1 to a4 and b1 are one flaw A, and the pixel groups b2 and n are 1 There is a risk of accidental evaluation that the damage is B.
  • the length of flaw A is overestimated over the actual length, while the length of flaw B is underestimated over the actual length and corresponds to the noise source N.
  • the pixel n may be mistakenly recognized as a flaw. For this reason, there exists a possibility that the harmfulness of a flaw cannot be evaluated correctly.
  • the present invention is a magnetic flaw detection method for detecting a defect based on a flaw detection signal generated by a rotating magnetic field applied to a material to be inspected, for exciting the rotating magnetic field.
  • an exciting current an alternating current in which a first current and a second current having a frequency lower than that of the first current are superimposed is used, and after the flaw detection signal is synchronously detected using the first current as a reference signal, the second current Extracting a flaw candidate signal by performing synchronous detection using a reference signal as a reference signal, and a flaw detection image composed of a plurality of pixels corresponding to each part of the inspection object, each pixel being a flaw candidate in each part
  • an alternating current in which the first current and the second current having a frequency lower than that of the first current are superimposed is used. While the magnetic field generated by (and the eddy current induced by this magnetic field) predominantly acts on the material to be inspected, the second current having a low frequency mainly affects the direction of the generated magnetic field (and eddy current). It functions to rotate in the material to be inspected. This is because the induced electromotive force generated in the material to be inspected is proportional to the frequency of the excitation current.
  • the phase information of the flaw signal is easily retained, so that the phase analysis method can be applied when performing synchronous detection using the second current as a reference signal, and the flaw detection capability is improved. It is possible to suppress the influence of lift-off fluctuation noise and the like.
  • a flaw detection image composed of a plurality of pixels corresponding to each part of the material to be inspected, wherein each pixel is a flaw candidate signal (synchronous detection using the second current as a reference signal) in each part. (Including the case where the predetermined threshold value cannot be obtained and the candidate signal intensity is binarized), and the phase of the flaw candidate signal at each part can be identified.
  • the detected flaw detection image is displayed. Specifically, for example, each pixel is colored differently according to the phase of the scratch candidate signal obtained by applying the phase analysis method (the density of each pixel varies depending on the strength of the scratch candidate signal). ) One color image is displayed as a flaw detection image.
  • a plurality of grayscale images having different phases (phase ranges) of flaw candidate signals included in each image are displayed as flaw detection images. Become. For this reason, since not only the intensity
  • the present invention is a magnetic flaw detection method for detecting a defect based on a flaw detection signal generated by a rotating magnetic field applied to a material to be inspected, and exciting the rotating magnetic field.
  • an exciting current an alternating current obtained by superimposing a first current and a second current having a frequency lower than the first current is used, and after the flaw detection signal is synchronously detected using the first current as a reference signal, the first current
  • a flaw detection image each of which includes a plurality of pixels corresponding to each part of the material to be inspected, and in which the pixel corresponding to the detected defect candidate part has a density distinguishable from other pixels.
  • a step of forming a plurality of sheets according to the phase of a flaw candidate signal in the candidate part, and a flaw candidate in a flaw candidate part existing in each flaw detection image by individually performing image processing on each of the plurality of flaw detection images As a magnetic flaw detection method comprising the steps of evaluating the continuity of the flaw candidate site in the direction according to the phase of the signal, and detecting a flaw based on the continuity of the flaw candidate site Is also provided.
  • the ratio between the frequency of the first current and the frequency of the second current may be determined as appropriate depending on the resolution at which the flaw angle information is estimated (the resolution increases as the ratio between the two increases). .
  • the frequencies of the first current and the second current satisfy the following formula (1).
  • the present invention provides a magnetizing unit that applies a rotating magnetic field to a material to be inspected, a detecting unit that detects a flaw detection signal generated by the rotating magnetic field, and a signal that performs signal processing on the flaw detection signal.
  • a magnetic flaw detection apparatus including a processing unit, wherein the magnetizing unit includes an exciting coil that energizes an alternating current obtained by superimposing a first current and a second current having a frequency lower than the first current as an exciting current.
  • the signal processing means includes first synchronous detection means for synchronously detecting the flaw detection signal detected by the detection means using the first current as a reference signal, and an output signal of the first synchronous detection means for the second current.
  • Second synchronous detection means for extracting a flaw candidate signal that is synchronously detected as a reference signal and binarizing the flaw candidate signal with a predetermined threshold value to detect a flaw candidate portion in the inspection object
  • a flaw detection image having a density at which each pixel corresponding to the detected defect candidate part has a density distinguishable from other pixels, each of which is composed of a candidate part detection means and a plurality of pixels corresponding to each part of the material to be inspected.
  • a flaw detection image forming means for forming a plurality of flaws according to the phase of a flaw candidate signal at the flaw candidate portion, and flaws present in each flaw detection image by individually performing image processing on each of the plurality of flaw detection images.
  • a continuity evaluating means for evaluating the continuity of the flaw candidate part in the direction corresponding to the phase of the flaw candidate signal in the candidate part, and a flaw detecting means for detecting a flaw based on the continuity of the flaw candidate part. It is provided as a magnetic flaw detector characterized by comprising.
  • the frequencies of the first current and the second current satisfy the following formula (1).
  • FIG. 1 is a plan view sectional view showing an example of an exciting coil for generating a rotating magnetic field.
  • FIG. 2 is a schematic diagram illustrating an example of a Lissajous waveform.
  • FIG. 3 is a schematic diagram of a Lissajous waveform indicating that the flaw signal and the lift-off fluctuation noise have a phase difference.
  • FIG. 4 is a graph showing a time-series relationship between an excitation current waveform and a signal waveform in a conventional magnetic flaw detection method using a rotating magnetic field.
  • FIG. 5 synchronously detects a flaw detection signal including a flaw signal using the excitation current shown in FIG.
  • FIG. 6 is a diagram schematically showing flaws and noise sources present in the material to be inspected.
  • FIG. 7 is a diagram schematically showing an example of a conventional flaw detection image obtained for the material to be inspected shown in FIG.
  • FIG. 8 is a diagram showing the result of evaluating the continuity of the flaws for the flaw detection image shown in FIG.
  • FIG. 9 is a block diagram showing a schematic configuration of a magnetic flaw detector according to an embodiment of the present invention.
  • FIG. 10 is a schematic external view of the flaw detection probe shown in FIG. FIG.
  • FIG. 11 is a graph showing signal waveforms generated by the magnetizing means shown in FIG.
  • FIG. 12 is a graph schematically showing an example of a flaw signal waveform detected by the detecting means shown in FIG.
  • FIG. 13 shows the first synchronous detection means shown in FIG. 9 that detects flaw detection signals including a flaw signal using the first current as a reference signal, and detects the flaw signal extracted by the synchronous detection for two cycles of the reference signal. It is a graph which shows typically an example of a flaw signal waveform after smoothing for every unit field to do.
  • 14 is a diagram schematically illustrating an example of a flaw detection image formed by the flaw detection image forming unit illustrated in FIG. 9 with respect to the inspection target material illustrated in FIG. FIG.
  • FIG. 15 is a diagram illustrating an evaluation method performed by the continuity evaluation unit shown in FIG. 9 for the flaw detection image shown in FIG.
  • FIGS. 16A and 16B are explanatory diagrams for explaining the outline of the flaw detection test according to the embodiment of the present invention.
  • FIG. 16A is a longitudinal sectional view and FIG. 16B is a plan view.
  • FIG. 17 shows a Lissajous waveform of a flaw signal obtained by the flaw detection test shown in FIG.
  • FIG. 9 is a block diagram showing a schematic configuration of a magnetic flaw detector according to one embodiment of the present invention.
  • FIG. 10 is a schematic external view of the flaw detection probe shown in FIG.
  • a magnetic flaw detector 100 according to this embodiment includes a magnetizing unit 1 that applies a rotating magnetic field to a material to be inspected, a detecting unit 2 that detects a flaw detection signal generated by the rotating magnetic field, and the flaw detection signal. And signal processing means 3 for performing signal processing.
  • the magnetizing means 1 includes an exciting coil 11 that energizes an exciting current for generating a rotating magnetic field.
  • the excitation coil 11 includes an X-direction excitation coil 111 and a Y-direction excitation coil 112 that are arranged so that the winding directions of the conducting wires are orthogonal to each other and the center positions coincide with each other.
  • an excitation current X direction excitation current
  • a magnetic field is generated in the X direction shown in FIG.
  • a magnetic field is generated in the Y direction shown in FIG. 10 by energizing the Y direction exciting coil 112 with an exciting current (Y direction exciting current).
  • the exciting coil 11 is characterized in that an alternating current in which a first current and a second current having a frequency lower than the first current are superimposed is energized as an exciting current.
  • the X direction excitation coil 111 is supplied with an X direction excitation current obtained by superimposing the first current and the second current
  • the Y direction excitation coil 112 is supplied with a first current and a second current.
  • a Y-direction excitation current that is superimposed and whose phase is shifted by 90 ° with respect to the X-direction excitation current is energized.
  • the characteristic portion will be described more specifically with reference to FIG. 11 as appropriate.
  • the predetermined ratio between the frequency of the first current and the frequency of the second current may be determined as appropriate depending on the resolution at which the flaw angle information is estimated.
  • the ratio of the frequency of the first current / It is determined so as to satisfy the frequency of the second current ⁇ 8.
  • the magnetizing means 1 has the first current and the first current having a frequency lower than that of the first current as the excitation current (X direction excitation current and Y direction excitation current) for exciting the rotating magnetic field. Since an alternating current superimposed with two currents is used, the magnetic field generated by the first current having a high frequency (and the eddy current induced by this magnetic field) predominantly acts on the material to be inspected, while the first having a low frequency.
  • the two currents mainly function to rotate the direction of the generated magnetic field (and eddy current) in the inspection object.
  • the detection means 2 is a detection coil for detecting a change in magnetic flux in the Z direction (see FIG. 10) that passes through the center of the excitation coil 11 and is orthogonal to the X direction and the Y direction.
  • the detection coil 2 detects a change in the magnetic flux in the Z direction and outputs it to the signal processing means 3 as a flaw detection signal.
  • the detection coil 2 is integrated with the X-direction excitation coil 111 and the Y-direction excitation coil 112 described above to form the flaw detection probe 4.
  • the signal processing means 3 is a flaw detection image composed of a plurality of pixels corresponding to each part of the material to be inspected, and each pixel has a density according to the intensity of the flaw candidate signal in each part,
  • a flaw detection image display means for displaying a flaw detection image in which the phase of the flaw candidate signal at each part can be identified.
  • the flaw detection image display means 34 is a flaw detection image composed of a plurality of pixels corresponding to each part of the inspection object detected by the sensor, and each pixel has a density corresponding to the amplitude A in each part. Then, the flaw detection image in which the phase ⁇ at each part can be identified is displayed. For example, the flaw detection image display means 34 displays one color image in which each pixel is colored differently according to the phase ⁇ (the density of each pixel varies according to the amplitude A) as a flaw detection image. Alternatively, the flaw detection image display means 34 displays, as flaw detection images, a plurality of grayscale images (the density of each pixel varies depending on the amplitude A) having different phases ⁇ (phase ⁇ range) included in each image.
  • the signal processing means 3 binarizes the flaw candidate signal with a predetermined threshold value, so that flaw candidate part detecting means 35 for detecting flaw candidate parts in the inspection material, and each part of the inspection material A plurality of flaw detection images each composed of a plurality of corresponding pixels and having a density at which the pixel corresponding to the detected flaw candidate part can be distinguished from other pixels according to the phase of the flaw candidate signal in the flaw candidate part
  • Continuity evaluation means 37 for evaluating the continuity of the flaw candidate site
  • flaw detection means 38 for detecting a flaw based on the continuity of the flaw candidate site.
  • a flaw detection image having for example, a pixel corresponding to the detected flaw candidate site has a density of 255 and another pixel has a density of 0) according to the phase ⁇ (phase range) in the flaw candidate site
  • the flaw detection image forming means 36 forms two flaw detection images in which the range of the phase ⁇ at the flaw candidate site is 0 ° ⁇ ⁇ ⁇ 45 ° and 135 ° ⁇ ⁇ ⁇ 180 °, respectively.
  • FIG. 14 is a diagram schematically showing an example of a flaw detection image formed by the flaw detection image forming means 36 for the inspection material S shown in FIG. 6, and FIG. 14 (a) shows the phase ⁇ at the flaw candidate site.
  • FIG. 14 is a diagram schematically showing an example of a flaw detection image formed by the flaw detection image forming means 36 for the inspection material S shown in FIG. 6, and FIG. 14 (a) shows the phase ⁇ at the flaw candidate site.
  • FIG. 14B shows a flaw detection image in which the range of the phase ⁇ at the flaw candidate site is 135 ° ⁇ ⁇ ⁇ 180 °.
  • the four pixel groups a1 to a4 corresponding to the flaw A are accurately included as flaw candidate sites, and the flaw detection image shown in FIG. 14B corresponds to the flaw B.
  • the two pixel groups b1 and b2 are accurately included as flaw candidate parts.
  • the flaw candidate portion corresponding to the noise source N has a phase ⁇ of 45 ° ⁇ ⁇ ⁇ 135 °, and therefore a flaw detection image is not formed.
  • the other pixels and the target pixel E1 are pixel regions for the same flaw candidate part.
  • the target pixel E1 and the other pixels E2 and E3 are determined to be pixel regions for the same flaw candidate part.
  • the continuity evaluation means 37 repeats the above processing using all pixels constituting the flaw candidate site in each flaw detection image as the target pixel, and as a result, the continuity evaluation means 37 Is calculated.
  • the phase ⁇ range (135 ° ⁇ ⁇ ⁇ 180 °) in the flaw detection image shown in FIG. 14B is the same as the phase ⁇ range (0 ° ⁇ ⁇ ⁇ 45 °) in the flaw detection image shown in FIG.
  • the neighboring pixel region shown in FIG. 15B (the hatched region S2 in the figure) is different from the neighboring pixel region shown in FIG.
  • a flaw detection test of a linear artificial flaw F formed on the steel sheet S was performed using the magnetic flaw detection apparatus 100 whose schematic configuration is shown in FIGS. 9 and 10.
  • Table 1 shows the outline of the flaw detection conditions
  • Table 2 shows the outline specifications of the material to be inspected.
  • the flaw detection probe 4 an X-direction and Y-direction excitation coil wound 50 times on each side of a core material that is a cube with a side of 6 mm, and a diameter of 5 mm attached to the bottom surface of the core material And a 100-turn detection coil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

 磁気探傷装置100は、被検査材に回転磁界を作用させる磁化手段1と、探傷信号を検出する検出手段2と、探傷信号に信号処理を施す信号処理手段3とを備える。磁化手段は、第1電流と第1電流よりも周波数の低い第2電流とを重畳した交流電流を励磁電流として通電する。信号処理手段は、探傷信号を第1電流を参照信号として同期検波する第1同期検波手段31と、第1同期検波手段の出力信号を第2電流を参照信号として同期検波してきず候補信号を抽出する第2同期検波手段32と、各画素が被検査材の各部位におけるきず候補信号の強度に応じた濃度を有し、当該各部位におけるきず候補信号の位相を識別可能とされた探傷画像を表示する探傷画像表示手段34とを具備する。

Description

磁気探傷方法及び磁気探傷装置
 本発明は、回転磁界を用いて被検査材に存在する種々の方向に延びるきずを高精度に探傷可能な磁気探傷方法及び磁気探傷装置に関する。
 従来より、鋼板や鋼管等の被検査材に存在するきずを非破壊的に検出する方法として、渦流探傷法や漏洩磁束探傷法などの磁気探傷方法が知られている。渦流探傷法は、被検査材に交流磁界を作用させることにより誘起される渦電流が、きずによって乱れることを利用する探傷方法である。また、漏洩磁束探傷法は、磁性体からなる被検査材に磁界を作用させて磁化した場合に、被検査材に生ずる磁束を遮るようなきずが存在すると、このきずが存在する部位で磁束が表面空間に漏洩することを利用する探傷方法である。
 斯かる磁気探傷方法では、一般的に、作用させる磁界の方向ときずの延びる方向とが特定の角度を成す場合に、検出されるきず信号(所定の検出センサで検出される探傷信号の内、きずが存在する部位から得られる信号)の振幅が最大となる。例えば、漏洩磁束探傷法におけるきず信号の振幅は、作用させる磁界の方向(被検査材中の磁束の方向)ときずの延びる方向とが直交する場合に最大となり、磁界の方向がきずの延びる方向に対して直交する方向からずれるに従って低下する。
 このため、きずの延びる方向が如何なる方向であっても検出できるように(検出可能な振幅のきず信号が得られるように)、被検査材に磁界の方向が時々刻々変化する回転磁界を作用させ、該回転磁界によって生じる探傷信号に基づいて、種々の方向に延びるきずを検出する磁気探傷方法が提案されている(例えば、日本国特開2002-131285号公報参照)。
 斯かる回転磁界を生成するには、例えば、図1に示すような励磁コイルが用いられる。すなわち、図1に示す励磁コイル10は、導線の巻回方向が互いに直交(従って、生成される磁界が互いに直交)すると共に、中心位置が互いに一致するように配置された2つの励磁コイル(X方向励磁コイル1及びY方向励磁コイル2)を備える。そして、各励磁コイル1、2に通電する交流の励磁電流の位相を90°ずらす(例えば、X方向励磁コイル1には余弦波の励磁電流を通電し、Y方向励磁コイル2には正弦波の励磁電流を通電する)ことにより、各励磁コイル1、2で生成された磁界の合成磁界が、各励磁コイル1、2の中心位置を中心として360°回転(図1に示す角度φが0~360°に変化)することになる。これにより、種々の方向(図1に示す角度θが0~360°)に延びるきずを検出することが可能である。
 ところで、一般的に、ノイズを含む種々の周波数成分からなる信号に対して、検出したい信号(磁気探傷方法の場合にはきず信号)が特定の周波数成分を有する場合、その周波数成分を有する信号を抽出するために同期検波が用いられることが多い。
 回転磁界を利用しない従来の磁気探傷方法では、きず信号が交流の励磁電流に同期する。このため、励磁電流を参照信号として探傷信号を同期検波し、励磁電流に同期する信号を抽出することにより、探傷信号から高いS/N比できず信号を抽出することが可能である。そして、同期検波により抽出された交流信号は、きず信号と、励磁電流に同期せずにランダムに発生するノイズとの比率(S/N比)を高くするため、ローパスフィルタによって平滑化されるのが一般的である。好ましくは、ローパスフィルタの時定数を調整することにより、同期検波により抽出された交流信号は、参照信号(励磁電流)の2~3周期分程度に相当する単位領域毎に平滑化される。
 また、渦流探傷法では、探傷信号を同期検波した信号を用いてきず検出能を向上させる手法として、位相解析法が一般的に用いられる。この位相解析法では、参照信号で探傷信号を同期検波したものをX信号とし、参照信号の位相を90°遅らせて探傷信号を同期検波したものをY信号とする。そして、X信号をX軸成分とし、Y信号をY軸成分として、XY座標系の2次元平面上に信号をベクトル表示する(ベクトル先端の軌跡をリサージュ波形と称する)ことにより、探傷信号が参照信号に対してどの程度の位相遅れがあるのかを測定する方法である。例えば、参照信号と同位相の探傷信号を同期検波した場合には、位相遅れがないため、図2(a)に示すようなX軸に沿ったリサージュ波形が得られる。より具体的には、きず信号の場合、検出センサがきずの直上を通過する際に位相が180°反転するため、0°方向(X軸の正の方向)及び180°方向(X軸の負の方向)に沿ったリサージュ波形が得られることになる。同様にして、参照信号に対して位相が45°遅れた探傷信号については、図2(b)に示すような45°方向及び225°方向に沿ったリサージュ波形が得られ、位相が90°遅れた探傷信号については、図2(c)に示すような90°方向及び270°方向に沿ったリサージュ波形が得られる。
 ここで、磁気探傷方法によって検出されるきず信号(すなわち、きずによる渦電流の乱れに起因した信号や、きずによる漏洩磁束に対応した信号)の位相と、探傷時の主なノイズの一種であるリフトオフ変動ノイズ(検出センサと被検査材との離間距離を変動させた場合に生じる探傷信号の変動)の位相とは、全く同一になることは希であり、一般的には位相差を有する。図3は、きず信号とリフトオフ変動ノイズとが位相差を有することを示すリサージュ波形の模式図である。図3(a)に示すように、きず信号の位相φdと、リフトオフ変動ノイズの位相φlとは、異なるのが一般的である。そして、図3(a)に示すように、きず信号の振幅をAd、リフトオフ変動ノイズの振幅をAlとすると、この例ではS/N比(=Ad/Al)が約1.5となる。しかしながら、図3(b)に示すように、リフトオフ変動ノイズがX軸に沿うようにXY座標系を回転させ、回転後のX’Y’座標系におけるY’軸方向の信号成分を探傷信号とすることにより、この例ではS/N比(=Sd/Sl)が10より大きくなるため、振幅でS/N比を評価する場合(図3(a))に比べてS/N比が大幅に向上する。このように、位相解析法を適用すれば、きず検出能に対するリフトオフ変動ノイズの影響を抑制し得ることが期待できる。
 また、位相解析法には、上記のようにリサージュ波形のXY座標系を回転させる方法だけではなく、リサージュ波形の内、特定の位相を有する信号成分の振幅のみを評価し、その他の位相を有する信号成分の振幅を評価対象から外す方法も含まれる。
 しかしながら、従来の回転磁界を利用した磁気探傷方法には、単一周波数の励磁電流を用いていることに起因して、以下のような問題がある。
 (1)同期検波の効果を十分に得ることができないため、きず検出能(S/N比)が低下する虞がある。
 (2)きずの角度情報(何れの方向に延びているのか)を推定できない。
 (3)渦流探傷法におけるきず検出能(S/N比)を向上させる手法として一般的な位相解析法を用いることができない。
 (4)きずの連続性を正確に評価することができない。
 従って、従来の回転磁界を利用した磁気探傷方法によれば、理論的には種々の方向に延びるきずを検出可能であるものの、実用的にはきず検出能が十分とはいえない。また、きずの角度情報を推定できないため、きずの発生原因等を判断することも困難である。以下、上記(1)~(4)の問題点について、具体的に説明する。
 前述のように、磁気探傷方法では、一般的に、作用させる磁界の方向ときずの延びる方向とが特定の角度を成す場合に、検出されるきず信号の振幅が最大となる。ここで、きず信号の振幅が最大となる方向からの磁界の方向のずれ角が±α°を超えると、きず信号の振幅が0になると仮定する。図1に示すような励磁コイル10を用いた従来の単一周波数の励磁電流による回転磁界を利用した磁気探傷方法では、励磁電流の1周期の間に磁界の方向が360°回転するため、上記仮定の下で、きず信号が出現する(きず信号の振幅が0より大きくなる)のは、励磁電流1周期の内の特定の範囲(きず信号の振幅が最大となる方向を基準として-α°~+α°の磁界の方向が得られる範囲)に限定される。
 ここで、被検査材に、延びる方向の異なる2種類のきずA、B(きずAの角度θ(図1参照)=20°、きずBの角度θ=70°)が存在し、α=20°であると仮定する。前述のように、漏洩磁束探傷法におけるきず信号の振幅は、作用させる磁界の方向ときずの延びる方向とが直交する場合に最大となるため、漏洩磁束探傷法の場合、上記仮定の下で、きずAのきず信号は、磁界の方向φ(図1参照)が、φ=20°+90°+180°×n(nは整数)のときに最大となり、φ±20°の範囲を超えると振幅が0となる。同様にして、きずBのきず信号は、磁界の方向φが、φ=70°+90°+180°×n(nは整数)のときに最大となり、φ±20°の範囲を超えると振幅が0となる。
 図4は、上記仮定の下での、励磁電流波形ときず信号波形との時系列的な関係を示すグラフである。また、図5は、励磁電流を参照信号としてきず信号を含む探傷信号を同期検波し、同期検波により抽出されたきず信号を参照信号の2周期分に相当する単位領域毎に平滑化した後のきず信号波形を示すグラフであり、図5(a)はきずAのきず信号波形を、図5(b)はきずBのきず信号波形を示す。なお、図4及び図5において、探傷信号に含まれるノイズの波形は図示を省略している。
 探傷信号を同期検波する場合、図1に示すX方向励磁コイル1に通電する励磁電流、又はY方向励磁コイル2に通電する励磁電流を参照信号として用いることになるが、図4からも分かるように、きずA、Bから得られるきず信号は、いずれの励磁電流よりも周期が短い。すなわち、きず信号の周期と参照信号の周期とが一致していないため、同期検波の効果(探傷信号から高いS/N比できず信号を抽出する)を十分に得ることができず、きず検出能が低下する虞がある(前述した(1)の問題点)。
 また、同期検波により抽出されたきず信号を参照信号の2周期分に相当する単位領域毎に平滑化する場合、図5に示すように、平滑化後のきず信号の位相情報(きずの角度情報)は失われることになり、きずA及びBの双方について、平滑化後のきず信号は同様の直流信号波形となる。つまり、きずの角度情報を推定できないことになる(前述した(2)の問題点)。
 また、上記のように平滑化後のきず信号の位相情報が失われ、励磁電流の1周期の内、きず信号が何れの位置に存在するかを特定することができないため、きず検出能(S/N比)を評価する際には、図3(a)を参照して前述したように、常にきず信号の振幅とノイズの振幅との比で評価する必要が生じる。つまり、きず検出能を向上させる手法として一般的な位相解析法を用いることができない(前述した(3)の問題点)。
 さらに、従来より、きずの連続性を正確に評価して探傷精度を向上させることを目的として、探傷画像により、きずの2次元分布状態を把握して、きずの連続性を評価する手法が提案されている。具体的には、この手法では、きず信号を含む探傷信号を画像化した、或いは、この探傷信号を所定のしきい値で2値化して得られる信号を画像化した探傷画像(濃淡画像やカラー画像)を形成し、この探傷画像を目視することにより、或いは、探傷画像に適宜の画像処理フィルタ等を用いた画像処理を施すことにより、きずの2次元分布状態を把握して、きずの連続性を評価している。これは、きずの有害度を評価する際に、分断されて検出された個々のきずの深さや長さを評価する以外に、同じ方向に延びる複数のきず(群集欠陥)を1つのきずとして、この群集欠陥全体の長さを有害度の評価指標とすることがあるためである。この指標は、たとえ複数に分断されて検出されたきずであったとしても、実際には連続した1つのきずである場合には、実際に分断されているきずに比べて、有害度を高く評価するために設けられている。従って、群集欠陥全体の長さ、すなわち、きずの連続性を正確に評価することは重要である。
 しかしながら、従来の回転磁界を利用した磁気探傷方法では、前述のように、きずの角度情報を推定できないため、探傷信号の振幅情報のみに基づいて探傷画像を形成するしかない。このため、実際には連続した単一のきずであっても、例えば部分的にきずの深さが浅いために分断されて検出され、探傷画像においては分断されて表示されるようなきずについては、きずの連続性を正確に評価することは困難である(前述した(4)の問題点)。特に、きずの寸法と比較して十分に小さな検出センサの走査間隔を設定できないため、探傷画像の位置分解能が低下せざるを得ない場合(被検査材を高速搬送するラインでは検査能率の制約からよくあるケース)には、探傷画像自体から、きずがどの方向に延びているかの正確な情報が得られないため、きずの連続性を正確に評価することは困難である。以下、図6~図8を参照して、より具体的に説明する。
 図6に示すように、被検査材Sに、2つのきずA、Bとノイズ源Nとが存在する場合を想定する。そして、この被検査材S上で検出センサを走査して得られる探傷画像(探傷信号を所定のしきい値で2値化して得られる信号を画像化した探傷画像)内には、図7に示すように、検出センサのA/D変換速度や走査速度等に応じて離散化された、被検査材Sにおけるきず候補部位に対応する画素群、すなわち、きずAに対応する4つの画素群a1~a4と、きずBに対応する2つの画素群b1、b2と、ノイズ源Nに対応する画素nとが存在すると想定する。
 図7に示す探傷画像に対してきずの連続性を評価する場合、探傷信号の振幅情報のみに基づいて探傷画像が形成されているため、きず候補部位に対応する画素群の分布状態のみに基づいて連続性を評価せざるを得ない。従って、きずの連続性を評価するための画像処理フィルタ等の構成に応じて、図8に示すように、画素群a1~a4、b1が1つのきずAであり、画素群b2、nが1つのきずBであると間違って評価してしまう虞がある。換言すれば、きずAについては、その長さを実際の長さよりも過大に評価する一方、きずBについては、その長さを実際の長さよりも過少に評価すると共に、ノイズ源Nに対応する画素nをもきずと誤認識してしまう虞がある。このため、きずの有害度を正確に評価できない虞がある。
 本発明は、斯かる従来技術の問題点を解決するべくなされたものであり、回転磁界を用いて被検査材に存在する種々の方向に延びるきずを高精度に探傷可能な磁気探傷方法及び磁気探傷装置を提供することを課題とする。
 前記課題を解決するべく、本発明は、被検査材に回転磁界を作用させ、該回転磁界によって生じる探傷信号に基づいてきずを検出する磁気探傷方法であって、前記回転磁界を励磁するための励磁電流として、第1電流と該第1電流よりも周波数の低い第2電流とを重畳した交流電流を用い、前記探傷信号を前記第1電流を参照信号として同期検波した後、前記第2電流を参照信号として同期検波することにより、きず候補信号を抽出するステップと、被検査材の各部位に対応する複数の画素で構成された探傷画像であって、各画素が前記各部位におけるきず候補信号の強度に応じた濃度を有し、当該各部位におけるきず候補信号の位相を識別可能とされた探傷画像を表示するステップと、前記表示された探傷画像に基づいてきずを検出するステップとを含むことを特徴とする磁気探傷方法を提供するものである。
 斯かる発明によれば、回転磁界を励磁するための励磁電流として、第1電流と該第1電流よりも周波数の低い第2電流とを重畳した交流電流を用いるため、周波数の高い第1電流によって生成される磁界(及びこの磁界によって誘起される渦電流)が支配的に被検査材に作用する一方、周波数の低い第2電流は、主として前記生成された磁界(及び渦電流)の方向を被検査材において回転させるために機能する。これは、被検査材に生じる誘導起電力が励磁電流の周波数に比例するからである。
 そして、本発明によれば、探傷信号を第1電流を参照信号として同期検波した後、第2電流を参照信号として同期検波することにより、きず候補信号を抽出することになる。すなわち、先ず最初に、磁界の回転周波数(第2電流の周波数に相当)よりも高い周波数の第1電流を参照信号として探傷信号を同期検波するため、従来のように磁界の回転周波数と同一の周波数の参照信号で同期検波する場合に比べて、実際にきずが存在する部位から得られるきず信号の有する周期成分と参照信号の周期とを一致させ易く、同期検波の効果(探傷信号から高いS/N比できず信号を抽出する)を十分に得られることが期待できる。また、上記第1電流を参照信号として同期検波することにより抽出された探傷信号を、当該参照信号の2~3周期分程度に相当する単位領域毎に平滑化しても、平滑化後の探傷信号に含まれるきず信号の位相情報は保持され易いため、きずの角度情報(何れの方向に延びているのか)を推定可能である。さらに、上記のように平滑化しても、きず信号の位相情報が保持され易いため、引き続いて第2電流を参照信号として同期検波する際に位相解析法を適用することができ、きず検出能に対するリフトオフ変動ノイズの影響等を抑制することが可能である。
 さらに、本発明によれば、被検査材の各部位に対応する複数の画素で構成された探傷画像であって、各画素が前記各部位におけるきず候補信号(第2電流を参照信号として同期検波した後の探傷信号)の強度に応じた濃度を有し(所定のしきい値できず候補信号の強度が2値化された場合を含む)、当該各部位におけるきず候補信号の位相を識別可能とされた探傷画像が表示されることになる。具体的には、例えば、位相解析法を適用することによって得られたきず候補信号の位相に応じて各画素が異なる色に色付けされた(各画素の濃度はきず候補信号の強度に応じて異なる)1枚のカラー画像が探傷画像として表示されることになる。或いは、各画像中に含まれるきず候補信号の位相(位相の範囲)が異なる複数枚の濃淡画像(各画素の濃度はきず候補信号の強度に応じて異なる)が探傷画像として表示されることになる。このため、探傷画像におけるきず候補信号の強度のみならず位相(角度情報)を目視することができるので、きずの連続性を正確に評価可能である。
 また、前記課題を解決するべく、本発明は、被検査材に回転磁界を作用させ、該回転磁界によって生じる探傷信号に基づいてきずを検出する磁気探傷方法であって、前記回転磁界を励磁するための励磁電流として、第1電流と該第1電流よりも周波数の低い第2電流とを重畳した交流電流を用い、前記探傷信号を前記第1電流を参照信号として同期検波した後、前記第2電流を参照信号として同期検波することにより、きず候補信号を抽出するステップと、前記きず候補信号を所定のしきい値で2値化することにより、被検査材におけるきず候補部位を検出するステップと、被検査材の各部位に対応する複数の画素でそれぞれ構成され、前記検出されたきず候補部位に対応する画素が他の画素と識別可能な濃度を有する探傷画像を、前記きず候補部位におけるきず候補信号の位相に応じて複数枚形成するステップと、前記複数枚の探傷画像のそれぞれに対して個別に画像処理を施すことにより、各探傷画像に存在するきず候補部位におけるきず候補信号の位相に応じた方向についての当該きず候補部位の連続性を評価するステップと、前記きず候補部位の連続性に基づいて、きずを検出するステップとを含むことを特徴とする磁気探傷方法としても提供される。
 斯かる発明によれば、前述した発明と同様に、同期検波の効果が十分に得られることが期待でき、きずの角度情報を推定可能であり、きず検出能に対するリフトオフ変動ノイズの影響等を抑制することが可能である。そして、きずの連続性を画像処理によって自動的に正確に評価可能である。
 なお、第1電流の周波数と第2電流の周波数との比は、きずの角度情報を如何なる分解能で推定するか等によって適宜決定すればよい(両者の比が大きくなればなるほど分解能は大きくなる)。例えば、少なくとも45°ピッチの分解能で推定するためには、両者の比を8(360°/45°=8)以上に設定する必要がある。
 従って、好ましくは、前記磁気探傷方法において、前記第1電流及び前記第2電流の周波数が下記式(1)を満足するものとされる。
 第1電流の周波数/第2電流の周波数≧8 ・・・(1)
 また、前記課題を解決するべく、本発明は、被検査材に回転磁界を作用させる磁化手段と、前記回転磁界によって生じる探傷信号を検出する検出手段と、前記探傷信号に信号処理を施す信号処理手段とを備えた磁気探傷装置であって、前記磁化手段は、第1電流と該第1電流よりも周波数の低い第2電流とを重畳した交流電流を励磁電流として通電する励磁コイルを具備し、前記信号処理手段は、前記検出手段によって検出した探傷信号を前記第1電流を参照信号として同期検波する第1同期検波手段と、該第1同期検波手段の出力信号を前記第2電流を参照信号として同期検波してきず候補信号を抽出する第2同期検波手段と、被検査材の各部位に対応する複数の画素で構成された探傷画像であって、各画素が前記各部位におけるきず候補信号の強度に応じた濃度を有し、当該各部位におけるきず候補信号の位相を識別可能とされた探傷画像を表示する探傷画像表示手段とを具備することを特徴とする磁気探傷装置としても提供される。
 さらには、前記課題を解決するべく、本発明は、被検査材に回転磁界を作用させる磁化手段と、前記回転磁界によって生じる探傷信号を検出する検出手段と、前記探傷信号に信号処理を施す信号処理手段とを備えた磁気探傷装置であって、前記磁化手段は、第1電流と該第1電流よりも周波数の低い第2電流とを重畳した交流電流を励磁電流として通電する励磁コイルを具備し、前記信号処理手段は、前記検出手段によって検出した探傷信号を前記第1電流を参照信号として同期検波する第1同期検波手段と、該第1同期検波手段の出力信号を前記第2電流を参照信号として同期検波してきず候補信号を抽出する第2同期検波手段と、前記きず候補信号を所定のしきい値で2値化することにより、被検査材におけるきず候補部位を検出するきず候補部位検出手段と、被検査材の各部位に対応する複数の画素でそれぞれ構成され、前記検出されたきず候補部位に対応する画素が他の画素と識別可能な濃度を有する探傷画像を、前記きず候補部位におけるきず候補信号の位相に応じて複数枚形成する探傷画像形成手段と、前記複数枚の探傷画像のそれぞれに対して個別に画像処理を施すことにより、各探傷画像に存在するきず候補部位におけるきず候補信号の位相に応じた方向についての当該きず候補部位の連続性を評価する連続性評価手段と、前記きず候補部位の連続性に基づいて、きずを検出するきず検出手段とを具備することを特徴とする磁気探傷装置としても提供される。
 好ましくは、前記磁気探傷装置において、前記第1電流及び前記第2電流の周波数が下記式(1)を満足するものとされる。
 第1電流の周波数/第2電流の周波数≧8 ・・・(1)
 本発明によれば、前述した(1)~(4)の問題点を解決することができ、回転磁界を用いて被検査材に存在する種々の方向に延びるきずを高精度に探傷可能である。
図1は、回転磁界を生成するための励磁コイルの一例を示す平面視断面図である。 図2は、リサージュ波形の例を示す模式図である。 図3は、きず信号とリフトオフ変動ノイズとが位相差を有することを示すリサージュ波形の模式図である。 図4は、従来の回転磁界を利用した磁気探傷方法における、励磁電流波形ときず信号波形との時系列的な関係を示すグラフである。 図5は、図4に示す励磁電流を参照信号としてきず信号を含む探傷信号を同期検波し、同期検波により抽出されたきず信号を参照信号の2周期分に相当する単位領域毎に平滑化した後のきず信号波形を示すグラフである。 図6は、被検査材に存在するきず及びノイズ源を模式的に示す図である。 図7は、図6に示す被検査材について得られる従来の探傷画像の一例を模式的に示す図である。 図8は、図7に示す探傷画像に対してきずの連続性を評価した結果を示す図である。 図9は、本発明の一実施形態に係る磁気探傷装置の概略構成を示すブロック線図である。 図10は、図9に示す探傷プローブの模式的な外観図を示す。 図11は、図9に示す磁化手段によって生成される信号波形を示すグラフである。 図12は、図9に示す検出手段によって検出されるきず信号波形の一例を模式的に示すグラフである。 図13は、図9に示す第1同期検波手段において、第1電流を参照信号としてきず信号を含む探傷信号を同期検波し、同期検波により抽出されたきず信号を参照信号の2周期分に相当する単位領域毎に平滑化した後のきず信号波形の一例を模式的に示すグラフである。 図14は、図6に示す被検査材について、図9に示す探傷画像形成手段によって形成される探傷画像の一例を模式的に示す図である。 図15は、図14に示す探傷画像について、図9に示す連続性評価手段が行う評価方法を説明する図である。 図16は、本発明の実施例に係る探傷試験の概要を説明する説明図であり、図16(a)は縦断面図を、図16(b)は平面図を示す。 図17は、図16に示す探傷試験によって得られたきず信号のリサージュ波形を示す。
 以下、添付図面を適宜参照しつつ、本発明の一実施形態について説明する。
 図9は、本発明の一実施形態に係る磁気探傷装置の概略構成を示すブロック線図である。図10は、図9に示す探傷プローブの模式的な外観図を示す。図9に示すように、本実施形態に係る磁気探傷装置100は、被検査材に回転磁界を作用させる磁化手段1と、前記回転磁界によって生じる探傷信号を検出する検出手段2と、前記探傷信号に信号処理を施す信号処理手段3とを備えている。
 磁化手段1は、回転磁界を生じさせるための励磁電流を通電する励磁コイル11を具備する。図10に示すように、励磁コイル11は、導線の巻回方向が互いに直交すると共に、中心位置が互いに一致するように配置されたX方向励磁コイル111及びY方向励磁コイル112を備える。X方向励磁コイル111に励磁電流(X方向励磁電流)を通電することにより、図10に示すX方向に磁界が生成される。一方、Y方向励磁コイル112に励磁電流(Y方向励磁電流)を通電することにより、図10に示すY方向に磁界が生成される。そして、各励磁コイル111、112に通電する交流の励磁電流の位相を90°ずらすことにより、各励磁コイル111、112で生成された磁界の合成磁界が、各励磁コイル111、112の中心位置を中心として360°回転することになる。
 本実施形態に係る励磁コイル11は、第1電流と該第1電流よりも周波数の低い第2電流とを重畳した交流電流を励磁電流として通電する点に特徴を有する。具体的には、X方向励磁コイル111には、第1電流と第2電流とを重畳したX方向励磁電流が通電する一方、Y方向励磁コイル112には、第1電流と第2電流とが重畳すると共にX方向励磁電流に対して位相が90°ずれたY方向励磁電流が通電する。以下、図11も適宜参照しつつ、上記の特徴部分について、より具体的に説明する。
 本実施形態に係る磁化手段1は、第1電流の電圧波形を生成する第1発信器12と、第2電流の電圧波形を生成する第2発信器13とを具備する。すなわち、図11(a)に示すように、第1発信器12からは、予め決定した第1電流の周波数と同一周波数の電圧波形(以下、第1電圧波形という)が出力され、第2発信器13からは、予め決定した第2電流の周波数と同一周波数の電圧波形(以下、第2電圧波形という)が出力される。第2電圧波形の周波数は、第1電圧波形の周波数よりも低周波である。なお、予め決定する第1電流の周波数と第2電流の周波数との比は、きずの角度情報を如何なる分解能で推定するか等によって適宜決定すればよいが、好ましくは、第1電流の周波数/第2電流の周波数≧8を満足するように決定される。
 また、磁化手段1は、乗算器14と、パワーアンプ15とを具備する。第1発信器12から出力された第1電圧波形と、第2発信器13から出力された第2電圧波形とは、乗算器14によって乗算(重畳)され、パワーアンプ15によって電流に変換される。パワーアンプ15から出力される電流は、図11(b)に示すように、X方向励磁コイル111に通電するX方向励磁電流として用いられる。
 一方、磁化手段1は、90°移相器16と、乗算器17と、パワーアンプ18とを具備する。第2発信器13から出力された第2電圧波形は、その位相が90°移相器16によって90°だけ移相される。例えば、図11(a)に示すように、第2発信器13から出力される第2電圧波形が余弦波である場合、90°移相器16から出力される電圧波形は、第2電圧波形と同一周波数の正弦波となる。そして、第1発信器12から出力された第1電圧波形と、90°移相器16から出力された電圧波形とは、乗算器17によって乗算(重畳)され、パワーアンプ18によって電流に変換される。パワーアンプ18から出力される電流は、図11(b)に示すように、Y方向励磁コイル112に通電するY方向励磁電流として用いられる。
 以上の構成により、図11(b)に示すように、X方向励磁コイル111には、第1電流と第2電流とを重畳したX方向励磁電流が通電する一方、Y方向励磁コイル112には、第1電流と第2電流とが重畳すると共にX方向励磁電流に対して位相が90°ずれたY方向励磁電流が通電することになる。
 このように、本実施形態に係る磁化手段1は、回転磁界を励磁するための励磁電流(X方向励磁電流及びY方向励磁電流)として、第1電流と該第1電流よりも周波数の低い第2電流とを重畳した交流電流を用いるため、周波数の高い第1電流によって生成される磁界(及びこの磁界によって誘起される渦電流)が支配的に被検査材に作用する一方、周波数の低い第2電流は、主として前記生成された磁界(及び渦電流)の方向を被検査材において回転させるために機能する。
 本実施形態に係る検出手段2は、励磁コイル11の中心を通り、X方向及びY方向に直交するZ方向(図10参照)の磁束の変化を検出するための検出コイルとされている。検出コイル2は、Z方向の磁束の変化を検出し、探傷信号として信号処理手段3に出力する。なお、検出コイル2は、前述したX方向励磁コイル111及びY方向励磁コイル112と一体化されて、探傷プローブ4を形成している。
 信号処理手段3は、検出手段2によって検出した探傷信号を前記第1電流を参照信号として同期検波する第1同期検波手段31を具備する。具体的には、第1同期検波手段31は、第1発信器12から出力される第1電圧波形(第1電流の電圧波形)を参照信号として、検出手段2から出力される探傷信号を同期検波する。さらに、第1同期検波手段31は、同期検波により抽出された交流信号を、参照信号(第1電流の電圧波形)の2~3周期分程度に相当する単位領域毎に平滑化して出力する。
 ここで、従来技術について前述したのと同様に、被検査材に、延びる方向の異なる2種類のきずA、B(きずAの角度θ(図1参照)=20°、きずBの角度θ=70°)が存在し、α=20°であると仮定する。本発明においても、漏洩磁束探傷法の場合、上記仮定の下で、きずAのきず信号は、磁界の方向φ(図1参照)が、φ=20°+90°+180°×n(nは整数)のときに最大となり、φ±20°の範囲を超えると振幅が0となる。同様にして、きずBのきず信号は、磁界の方向φが、φ=70°+90°+180°×n(nは整数)のときに最大となり、φ±20°の範囲を超えると振幅が0となる。
 図12は、上記仮定の下での、きずA、Bのきず信号波形を模式的に示すグラフである。また、図13は、第1同期検波手段において、第1電流を参照信号としてきず信号を含む探傷信号を同期検波し、同期検波により抽出されたきず信号を参照信号の2周期分に相当する単位領域毎に平滑化した後のきず信号波形を示すグラフである。なお、図12及び図13において、探傷信号に含まれるノイズの波形は図示を省略している。
 図12及び前述した図11を参照すれば分かるように、きずA、Bから得られるきず信号には、第1電流の周期と一致する周期成分が含まれるため、第1電流を参照信号として同期検波すれば、従来のように磁界の回転周波数と同一の周波数の参照信号(本発明の第2電流に相当)で同期検波する場合に比べて、探傷信号から高いS/N比できず信号を抽出することが可能である。
 また、図13に示すように、第1電流を参照信号として同期検波することにより抽出されたきず信号を、当該参照信号の2周期分に相当する単位領域毎に平滑化しても、平滑化後のきず信号の位相情報は保持されるため、きずA、Bの角度情報(何れの方向に延びているのか)を推定可能である。
 信号処理手段3は、第1同期検波手段31の出力信号を前記第2電流を参照信号として同期検波してきず候補信号を抽出する第2同期検波手段32を具備する。また、信号処理手段3は、第2同期検波手段32の出力信号に基づいてリサージュ波形を表示するリサージュ波形表示手段33を具備する。
 具体的には、第2同期検波手段32は、第1同期検波手段31の出力信号を互いに同一の2つの信号に分岐する。そして、第2同期検波手段32は、第2発信器13から出力される第2電圧波形(第2電流の電圧波形)を参照信号として、前記分岐した一方の信号を同期検波する。この同期検波された信号(X信号)は、リサージュ波形表示手段33に出力される。また、第2同期検波手段32は、90°移相器16から出力される電圧波形(第2電流の電圧波形と位相が90°異なる電圧波形)を参照信号として、前記分岐した他方の信号を同期検波する。この同期検波された信号(Y信号)は、リサージュ波形表示手段33に出力される。
 リサージュ波形表示手段33は、第2同期検波手段32から出力されたX信号をX軸成分とし、Y信号をY軸成分としたリサージュ波形を表示する。この際、必要に応じて、検出コイル2のリフトオフ変動ノイズがX軸に沿うようにXY座標系を回転させれば、S/N比を向上させることが可能である。前述のように、第1同期検波手段31での平滑化後のきず信号の位相情報は保持されるため、第2同期検波手段32及びリサージュ波形表示手段33によって、上記のような位相解析法を適用することができ、きず検出能に対するリフトオフ変動ノイズの影響等を抑制することが可能である。
 また、信号処理手段3は、被検査材の各部位に対応する複数の画素で構成された探傷画像であって、各画素が前記各部位におけるきず候補信号の強度に応じた濃度を有し、当該各部位におけるきず候補信号の位相を識別可能とされた探傷画像を表示する探傷画像表示手段34を具備する。
 具体的には、探傷画像表示手段34は、第2同期検波手段32から出力されるX信号の強度X及びY信号の強度Yに基づき、以下の式(2)で表される振幅Aと、式(3)で表される位相θを算出する。
 A=(X+Y1/2  ・・・(2)
 θ=tan-1(Y/X) ・・・(3)
 そして、適宜のセンサ(図示せず)で検出された探傷プローブ4と被検査材との相対位置関係(すなわち、探傷プローブ4で探傷を行っている被検査材の部位)が探傷画像表示手段34に入力される。探傷画像表示手段34は、前記センサで検出した被検査材の各部位に対応する複数の画素で構成された探傷画像であって、各画素が前記各部位における振幅Aに応じた濃度を有し、当該各部位における位相θを識別可能とされた探傷画像を表示する。例えば、探傷画像表示手段34は、位相θに応じて各画素が異なる色に色付けされた(各画素の濃度は振幅Aに応じて異なる)1枚のカラー画像を探傷画像として表示する。或いは、探傷画像表示手段34は、各画像中に含まれる位相θ(位相θの範囲)が異なる複数枚の濃淡画像(各画素の濃度は振幅Aに応じて異なる)を探傷画像として表示する。
 信号処理手段3は、上記構成の探傷画像表示手段34を具備するため、探傷画像における振幅Aのみならず位相(角度情報)を目視することができるので、きずの連続性を正確に評価可能である。
 本実施形態では、探傷画像表示手段34によって表示される探傷画像の各画素が被検査材の各部位における振幅Aに応じた濃度を有する構成について説明した。しかしながら、本発明はこれに限るものではなく、探傷画像表示手段34によって表示される探傷画像の各画素が、被検査材の各部位におけるX信号の強度X、又は、Y信号の強度Yに応じた濃度を有する構成を採用することも可能である。また、探傷画像表示手段34によって表示される探傷画像の各画素が、検出コイル2のリフトオフ変動ノイズがX軸に沿うようにXY座標系を回転させた後のX’Y’座標系におけるY’軸方向の信号成分の強度に応じた濃度を有する構成を採用しても良い。さらに、探傷画像表示手段34によって表示される探傷画像の各画素が、振幅A、X信号の強度、Y信号の強度、又は、Y’軸方向の信号成分の強度の何れかを所定のしきい値で2値化した濃度を有する構成を採用することも可能である。
 さらに、信号処理手段3は、きず候補信号を所定のしきい値で2値化することにより、被検査材におけるきず候補部位を検出するきず候補部位検出手段35と、被検査材の各部位に対応する複数の画素でそれぞれ構成され、前記検出されたきず候補部位に対応する画素が他の画素と識別可能な濃度を有する探傷画像を、前記きず候補部位におけるきず候補信号の位相に応じて複数枚形成する探傷画像形成手段36と、前記複数枚の探傷画像のそれぞれに対して個別に画像処理を施すことにより、各探傷画像に存在するきず候補部位におけるきず候補信号の位相に応じた方向についての当該きず候補部位の連続性を評価する連続性評価手段37と、前記きず候補部位の連続性に基づいて、きずを検出するきず検出手段38とを具備する。
 具体的には、きず候補部位検出手段35は、第2同期検波手段32から出力されるX信号の強度X及びY信号の強度Yに基づき、以下の式(2)で表される振幅Aと、式(3)で表される位相θを算出する。
 A=(X+Y1/2  ・・・(2)
 θ=tan-1(Y/X) ・・・(3)
 きず候補部位検出手段35は、振幅Aを所定のしきい値で2値化することにより、被検査材におけるきず候補部位を検出し、きず候補部位検出信号として、探傷画像形成手段36に出力する。また、きず候補部位検出手段35は、きず候補部位検出信号に対応する位相θも探傷画像形成手段36に出力する。
 探傷画像形成手段36には、きず候補部位検出手段35から出力されたきず候補部位検出信号と、適宜のセンサ(図示せず)で検出された探傷プローブ4と被検査材との相対位置関係(すなわち、探傷プローブ4で探傷を行っている被検査材の部位)が入力される。探傷画像形成手段36は、前記センサで検出した被検査材の各部位に対応する複数の画素でそれぞれ構成され、前記検出されたきず候補部位に対応する画素が他の画素と識別可能な濃度を有する(例えば、検出されたきず候補部位に対応する画素が255の濃度を有し、他の画素が0の濃度を有する)探傷画像を、前記きず候補部位における位相θ(位相の範囲)に応じて複数枚形成する。例えば、探傷画像形成手段36は、きず候補部位における位相θの範囲がそれぞれ0°≦θ<45°、135°≦θ<180°である2枚の探傷画像を形成する。図14は、前述した図6に示す被検査材Sについて、探傷画像形成手段36によって形成される探傷画像の一例を模式的に示す図であり、図14(a)はきず候補部位における位相θの範囲が0°≦θ<45°である探傷画像を、図14(b)はきず候補部位における位相θの範囲が135°≦θ<180°である探傷画像を示す。図14(a)に示す探傷画像には、きずAに対応する4つの画素群a1~a4がきず候補部位として正確に含まれ、図14(b)に示す探傷画像には、きずBに対応する2つの画素群b1、b2がきず候補部位として正確に含まれる。なお、ノイズ源Nに対応するきず候補部位は、45°≦θ<135°の位相θを有するため、探傷画像は形成されない。しかし、本発明はこれに限るものではなく、45°≦θ<135°の位相θを有するきず候補部位についても、1枚の又は位相θの範囲が異なる複数枚の探傷画像を形成し、後述のように、連続性評価手段37による画像処理によって算出したきず長さの大小に応じて、きずであるか否かの判断を行うことも可能である。
 連続性評価手段37は、例えば、図14(a)、(b)に示す2枚の探傷画像のそれぞれに対して個別に画像処理を施すことにより、各探傷画像に存在するきず候補部位における位相θに応じた方向についての当該きず候補部位の連続性を評価する。この連続性の評価には、適宜の画像処理フィルタが用いられる。例えば、図14(a)に示す探傷画像については、図15(a)に示すように、きず候補部位を構成する一つの注目画素E1について、位相θの範囲(0°≦θ<45°)に応じた近傍画素領域(図中、ハッチを施した領域S1)内に、きず候補部位を構成する他の画素が存在するか否かを判断する。他の画素が存在する場合、当該他の画素と注目画素E1とは、同じきず候補部位についての画素領域であると判断する。図15(a)に示す例では、注目画素E1と他の画素E2、E3とは、同じきず候補部位についての画素領域であると判断される。連続性評価手段37は、各探傷画像内のきず候補部位を構成する全ての画素を注目画素として、上記の処理を繰り返し行い、その結果、同一のきず候補部位と判断されたものについて、その長さを算出する。図15に示す例では、きず候補部位を構成する全ての画素が同一のきず候補部位であると判断され、その長さL1(同一のきず候補部位を構成する両端画素の距離)が算出される。図14(b)に示す探傷画像についても、図15(b)に示すように、同様の処理が施されて、きず候補部位の長さL2が算出される。ただし、図14(b)に示す探傷画像における位相θの範囲(135°≦θ<180°)は図14(a)に示す探傷画像における位相θの範囲(0°≦θ<45°)と異なるため、図15(b)に示す近傍画素領域(図中、ハッチを施した領域S2)は、図15(a)に示す近傍画素領域とは異なる。
 きず検出手段38は、きず候補部位の連続性に基づいて、きずを検出する。すなわち、例えば、連続性評価手段37によって算出したきず候補部位の長さが、予め定めた長さより長い場合にはきずであると判断し、予め定めた長さ以下である場合にはきずでないと判断する。図15(a)に示すきず候補部位の長さL1、及び、図15(b)に示すきず候補部位の長さL2が、予め定めた長さより長い場合には、双方共に、きずとして検出されることになる。そして、探傷画像が形成されない位相θの範囲に存在するきず候補部位については、ノイズ源に対応する部位であると判断されることになる。
 信号処理手段3は、上記構成のきず候補部位検出手段35、探傷画像形成手段36、連続性評価手段37及びきず検出手段38を具備するため、探傷画像における振幅Aのみならず位相(角度情報)を利用して、きずの連続性を自動的に正確に評価可能である。
 本実施形態では、きず候補部位検出手段35が、振幅Aを所定のしきい値で2値化することにより、被検査材におけるきず候補部位を検出し、きず候補部位検出信号として、探傷画像形成手段36に出力する構成について説明した。しかしながら、本発明はこれに限るものではなく、きず候補部位検出手段35が、X信号の強度X、又は、Y信号の強度Yを所定のしきい値で2値化することにより、被検査材におけるきず候補部位を検出し、きず候補部位検出信号として、探傷画像形成手段36に出力する構成を採用することも可能である。また、きず候補部位検出手段35が、検出コイル2のリフトオフ変動ノイズがX軸に沿うようにXY座標系を回転させた後のX’Y’座標系におけるY’軸方向の信号成分の強度を所定のしきい値で2値化することにより、被検査材におけるきず候補部位を検出し、きず候補部位検出信号として、探傷画像形成手段36に出力する構成を採用しても良い。
 以上に説明したように、本実施形態に係る磁気探傷装置100によれば、単一周波数の励磁電流を用いることに起因する従来の回転磁界を利用した磁気探傷方法の問題点を解決することができ、回転磁界を用いて被検査材に存在する種々の方向に延びるきずを高精度に探傷可能である。
 以下、実施例を示すことにより、本発明の特徴をより一層明らかにする。
 図9及び図10に概略構成を示す磁気探傷装置100を用いて、図16に示すように、鋼板Sに形成した線状の人工きずFの探傷試験を実施した。表1に探傷条件の概要を、表2に被検査材の概略仕様を示す。表1に示すように、探傷プローブ4として、一辺が6mmの立方体である芯材の側面にそれぞれ50回巻きされたX方向及びY方向励磁コイルと、前記芯材の底面に取り付けられた直径5mmの100回巻きの検出コイルとを具備するものを作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 そして、図16に示すように、作製した探傷プローブ4を鋼板Sの直上で且つ人工きずFの直上を通るように一定方向(図16に示すY方向)に走査して探傷信号を検出した。この際、人工きずの延びる方向と探傷プローブ4の走査方向との相対的な角度を順次変化させ、各角度毎に探傷信号を検出した。具体的には、図16に示すX方向と人工きずFの延びる方向との成す角度をθとした場合に、θ=0°~75°の範囲を15°ピッチで変化させ、各角度θでの探傷信号を検出した。
 図17は、上記の探傷試験によって得られたきず信号のリサージュ波形を示す。図17に示すように、各角度(θ=0°、15°、30°、45°、60°、75°)のきず信号のリサージュ波形は、互いに異なる位相を有することが識別可能である。また、きず信号のリサージュ波形は、どの角度のきずについても全て十分に大きな振幅を有する。この結果より、本発明によれば、同期検波の効果を十分に得ることができると共に、きずの角度情報を推定可能であることが分かる。従って、探傷画像を用いたきずの連続性評価も正確に行うことが可能である。
 なお、図11に示す例では、リフトオフ変動ノイズが生じていないが、生じている場合には、リフトオフ変動ノイズがX軸に沿うようにXY座標系を回転させ、回転後のX’Y’座標系におけるY’軸方向の信号成分をきず候補信号とすることにより、きず検出能に対するリフトオフ変動ノイズの影響を抑制することが可能である。

Claims (6)

  1.  被検査材に回転磁界を作用させ、該回転磁界によって生じる探傷信号に基づいてきずを検出する磁気探傷方法であって、
     前記回転磁界を励磁するための励磁電流として、第1電流と該第1電流よりも周波数の低い第2電流とを重畳した交流電流を用い、前記探傷信号を前記第1電流を参照信号として同期検波した後、前記第2電流を参照信号として同期検波することにより、きず候補信号を抽出するステップと、
     被検査材の各部位に対応する複数の画素で構成された探傷画像であって、各画素が前記各部位におけるきず候補信号の強度に応じた濃度を有し、当該各部位におけるきず候補信号の位相を識別可能とされた探傷画像を表示するステップと、
     前記表示された探傷画像に基づいてきずを検出するステップとを含むことを特徴とする磁気探傷方法。
  2.  被検査材に回転磁界を作用させ、該回転磁界によって生じる探傷信号に基づいてきずを検出する磁気探傷方法であって、
     前記回転磁界を励磁するための励磁電流として、第1電流と該第1電流よりも周波数の低い第2電流とを重畳した交流電流を用い、前記探傷信号を前記第1電流を参照信号として同期検波した後、前記第2電流を参照信号として同期検波することにより、きず候補信号を抽出するステップと、
     前記きず候補信号を所定のしきい値で2値化することにより、被検査材におけるきず候補部位を検出するステップと、
     被検査材の各部位に対応する複数の画素でそれぞれ構成され、前記検出されたきず候補部位に対応する画素が他の画素と識別可能な濃度を有する探傷画像を、前記きず候補部位におけるきず候補信号の位相に応じて複数枚形成するステップと、
     前記複数枚の探傷画像のそれぞれに対して個別に画像処理を施すことにより、各探傷画像に存在するきず候補部位におけるきず候補信号の位相に応じた方向についての当該きず候補部位の連続性を評価するステップと、
     前記きず候補部位の連続性に基づいて、きずを検出するステップとを含むことを特徴とする磁気探傷方法。
  3.  前記第1電流及び前記第2電流の周波数が下記式(1)を満足することを特徴とする請求項1又は2に記載の磁気探傷方法。
     第1電流の周波数/第2電流の周波数≧8 ・・・(1)
  4.  被検査材に回転磁界を作用させる磁化手段と、
     前記回転磁界によって生じる探傷信号を検出する検出手段と、
     前記探傷信号に信号処理を施す信号処理手段とを備えた磁気探傷装置であって、
     前記磁化手段は、第1電流と該第1電流よりも周波数の低い第2電流とを重畳した交流電流を励磁電流として通電する励磁コイルを具備し、
     前記信号処理手段は、
     前記検出手段によって検出した探傷信号を前記第1電流を参照信号として同期検波する第1同期検波手段と、
     該第1同期検波手段の出力信号を前記第2電流を参照信号として同期検波してきず候補信号を抽出する第2同期検波手段と、
     被検査材の各部位に対応する複数の画素で構成された探傷画像であって、各画素が前記各部位におけるきず候補信号の強度に応じた濃度を有し、当該各部位におけるきず候補信号の位相を識別可能とされた探傷画像を表示する探傷画像表示手段とを具備することを特徴とする磁気探傷装置。
  5.  被検査材に回転磁界を作用させる磁化手段と、
     前記回転磁界によって生じる探傷信号を検出する検出手段と、
     前記探傷信号に信号処理を施す信号処理手段とを備えた磁気探傷装置であって、
     前記磁化手段は、第1電流と該第1電流よりも周波数の低い第2電流とを重畳した交流電流を励磁電流として通電する励磁コイルを具備し、
     前記信号処理手段は、
     前記検出手段によって検出した探傷信号を前記第1電流を参照信号として同期検波する第1同期検波手段と、
     該第1同期検波手段の出力信号を前記第2電流を参照信号として同期検波してきず候補信号を抽出する第2同期検波手段と、
     前記きず候補信号を所定のしきい値で2値化することにより、被検査材におけるきず候補部位を検出するきず候補部位検出手段と、
     被検査材の各部位に対応する複数の画素でそれぞれ構成され、前記検出されたきず候補部位に対応する画素が他の画素と識別可能な濃度を有する探傷画像を、前記きず候補部位におけるきず候補信号の位相に応じて複数枚形成する探傷画像形成手段と、
     前記複数枚の探傷画像のそれぞれに対して個別に画像処理を施すことにより、各探傷画像に存在するきず候補部位におけるきず候補信号の位相に応じた方向についての当該きず候補部位の連続性を評価する連続性評価手段と、
     前記きず候補部位の連続性に基づいて、きずを検出するきず検出手段とを具備することを特徴とする磁気探傷装置。
  6.  前記第1電流及び前記第2電流の周波数が下記式(1)を満足することを特徴とする請求項4又は5に記載の磁気探傷装置。
     第1電流の周波数/第2電流の周波数≧8 ・・・(1)
PCT/JP2009/058969 2008-05-15 2009-05-14 磁気探傷方法及び磁気探傷装置 WO2009139432A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2722844A CA2722844C (en) 2008-05-15 2009-05-14 Magnetic testing method and magnetic testing apparatus
EP09746638.7A EP2282199B1 (en) 2008-05-15 2009-05-14 Magnetic flaw detecting method and magnetic flaw detection device
US12/992,618 US8466674B2 (en) 2008-05-15 2009-05-14 Magnetic testing method and magnetic testing apparatus
CN2009801173715A CN102027364B (zh) 2008-05-15 2009-05-14 磁探伤方法以及磁探伤装置
BRPI0912722-4A BRPI0912722B1 (pt) 2008-05-15 2009-05-14 Método de ensaio magnético e aparelhagem de ensaio magnético

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008128523A JP4863127B2 (ja) 2008-05-15 2008-05-15 磁気探傷方法及び磁気探傷装置
JP2008-128523 2008-05-15

Publications (1)

Publication Number Publication Date
WO2009139432A1 true WO2009139432A1 (ja) 2009-11-19

Family

ID=41318796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058969 WO2009139432A1 (ja) 2008-05-15 2009-05-14 磁気探傷方法及び磁気探傷装置

Country Status (8)

Country Link
US (1) US8466674B2 (ja)
EP (1) EP2282199B1 (ja)
JP (1) JP4863127B2 (ja)
CN (1) CN102027364B (ja)
AR (1) AR071797A1 (ja)
BR (1) BRPI0912722B1 (ja)
CA (1) CA2722844C (ja)
WO (1) WO2009139432A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158098A1 (en) * 2010-06-17 2011-12-22 Toyota Jidosha Kabushiki Kaisha Eddy current sensor and eddy current measurement method
CN105548350A (zh) * 2016-01-26 2016-05-04 江苏理工学院 基于圆角矩形阵列探头的脉冲涡流缺陷检测成像系统
CN110646507A (zh) * 2019-09-26 2020-01-03 东北大学 基于锁相放大的多频旋转磁场的金属缺陷检测装置及方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5660911B2 (ja) * 2011-01-28 2015-01-28 三菱航空機株式会社 雷電流検出センサ
US9291599B2 (en) * 2011-08-18 2016-03-22 Nippon Steel & Sumitomo Metal Corporation Magnetic testing method and apparatus
EP2762875B1 (en) * 2011-09-26 2019-07-17 Kabushiki Kaisha Toshiba Eddy current flaw detector
US9267921B2 (en) * 2012-06-29 2016-02-23 Zetec, Inc. Axial and circumferential flaw sensing eddy current probe
CN102768238A (zh) * 2012-08-01 2012-11-07 上海海事大学 一种多激励高灵敏度的电磁探伤传感装置
US10101301B2 (en) * 2015-03-24 2018-10-16 Board Of Trustees Of Michigan State University Rotating field transceiver nondestructive inspection probe
JP6506122B2 (ja) 2015-07-09 2019-04-24 株式会社日立ハイテクノロジーズ レール検査装置、および、レール検査システム
JP6601226B2 (ja) * 2016-01-12 2019-11-06 日本製鉄株式会社 漏洩磁束探傷装置
JP6697302B2 (ja) * 2016-03-25 2020-05-20 マークテック株式会社 探傷装置、及び探傷装置による欠陥検出方法
US11460442B2 (en) * 2019-04-11 2022-10-04 Tdw Delaware, Inc. Pipeline tool with composite magnetic field for inline inspection
KR102589404B1 (ko) * 2019-04-24 2023-10-16 제이에프이 스틸 가부시키가이샤 누설 자속 탐상 장치
CN110889830B (zh) * 2019-11-13 2023-03-24 河南科技大学 基于三维漏磁彩色成像的钢丝绳损伤检测方法及检测系统
CN112345629A (zh) * 2020-10-23 2021-02-09 新疆大学 一种新型h结构脉冲涡流聚焦探头
CN113311061B (zh) * 2021-04-20 2024-07-16 中国神华能源股份有限公司国华电力分公司 检测探头、受热面管的裂纹检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145162A (ja) * 1985-12-19 1987-06-29 Nippon Steel Corp 分割型回転磁界渦流探傷装置
JPH0266446A (ja) * 1988-08-31 1990-03-06 Sumitomo Metal Ind Ltd 表面欠陥検査方法
JP2002131285A (ja) 2000-10-26 2002-05-09 Univ Nihon 溶接線、溶接突合せ部の位置・方向の検知用プローブ、検知装置、及び検知方法
JP2005164516A (ja) * 2003-12-05 2005-06-23 Mitsubishi Heavy Ind Ltd 欠陥検知方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000287A1 (en) * 1985-07-03 1987-01-15 Nippon Steel Corporation Method and apparatus for non-destructively inspecting flaw of metal materials utilizing magnetic field
JP4911489B2 (ja) * 2005-01-07 2012-04-04 財団法人電力中央研究所 探傷装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145162A (ja) * 1985-12-19 1987-06-29 Nippon Steel Corp 分割型回転磁界渦流探傷装置
JPH0266446A (ja) * 1988-08-31 1990-03-06 Sumitomo Metal Ind Ltd 表面欠陥検査方法
JP2002131285A (ja) 2000-10-26 2002-05-09 Univ Nihon 溶接線、溶接突合せ部の位置・方向の検知用プローブ、検知装置、及び検知方法
JP2005164516A (ja) * 2003-12-05 2005-06-23 Mitsubishi Heavy Ind Ltd 欠陥検知方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158098A1 (en) * 2010-06-17 2011-12-22 Toyota Jidosha Kabushiki Kaisha Eddy current sensor and eddy current measurement method
US8593137B2 (en) 2010-06-17 2013-11-26 Toyota Jidosha Kabushiki Kaisha Eddy current sensor and eddy current measurement method
CN105548350A (zh) * 2016-01-26 2016-05-04 江苏理工学院 基于圆角矩形阵列探头的脉冲涡流缺陷检测成像系统
CN105548350B (zh) * 2016-01-26 2018-12-25 江苏理工学院 基于圆角矩形阵列探头的脉冲涡流缺陷检测成像系统
CN110646507A (zh) * 2019-09-26 2020-01-03 东北大学 基于锁相放大的多频旋转磁场的金属缺陷检测装置及方法
CN110646507B (zh) * 2019-09-26 2022-11-08 东北大学 基于锁相放大的多频旋转磁场的金属缺陷检测装置及方法

Also Published As

Publication number Publication date
JP4863127B2 (ja) 2012-01-25
CA2722844A1 (en) 2009-11-19
US20110163741A1 (en) 2011-07-07
AR071797A1 (es) 2010-07-14
BRPI0912722A2 (pt) 2015-10-13
JP2009276232A (ja) 2009-11-26
EP2282199A4 (en) 2013-07-17
US8466674B2 (en) 2013-06-18
CN102027364B (zh) 2012-05-30
EP2282199A1 (en) 2011-02-09
BRPI0912722B1 (pt) 2019-05-07
CA2722844C (en) 2013-11-12
CN102027364A (zh) 2011-04-20
EP2282199B1 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JP4863127B2 (ja) 磁気探傷方法及び磁気探傷装置
Wu et al. Composite magnetic flux leakage detection method for pipelines using alternating magnetic field excitation
JP4998821B2 (ja) 渦流検査方法及び該渦流検査方法を実施するための渦流検査装置
JP5522699B2 (ja) パルス磁気を用いた非破壊検査装置及び非破壊検査方法
WO2011001771A1 (ja) 漏洩磁束探傷方法及び装置
JP4835995B2 (ja) 漏洩磁束探傷法及び漏洩磁束探傷装置
JP2011133268A (ja) 探傷装置及び探傷方法
JP2006177952A (ja) 渦電流プローブ、検査システム及び検査方法
JP4766472B1 (ja) 非破壊検査装置及び非破壊検査方法
JP2003240761A (ja) 磁性金属被検体の表層欠陥又は表面欠陥の検出方法及び装置
EP2818856B1 (en) Eddy-current inspection method and device
Zhang et al. Mechanism study for directivity of TR probe when applying Eddy current testing to ferro-magnetic structural materials
JP2011069623A (ja) 渦電流探傷方法
JP2017067743A (ja) 非破壊検査装置及び非破壊検査方法
JPH0335624B2 (ja)
Peng et al. A novel differential excitation capacitive sensing for hydrogen pipeline inspection
EP1877767A2 (en) Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers
Zheng et al. Processing methods of the pipeline crack detection signal by a balanced field electromagnetic technique based on phase characteristics
JP5611863B2 (ja) 渦電流探傷装置、方法、及びプログラム
JP6776676B2 (ja) 信号処理装置及び信号処理方法
JP6170005B2 (ja) 渦電流探傷方法及び渦電流探傷装置
RU2548944C1 (ru) Способ неразрушающего контроля изделий
KR101138359B1 (ko) 경사진 전자기장을 발생시키는 비파괴 검사 장치
JP2009287981A (ja) 渦電流探傷装置と渦電流探傷方法
JP2005164298A (ja) 渦流探傷方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980117371.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746638

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2722844

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 4277/KOLNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009746638

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12992618

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0912722

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101112