WO2009139086A1 - Polyester-imide precursor and polyester-imide - Google Patents

Polyester-imide precursor and polyester-imide Download PDF

Info

Publication number
WO2009139086A1
WO2009139086A1 PCT/JP2008/066535 JP2008066535W WO2009139086A1 WO 2009139086 A1 WO2009139086 A1 WO 2009139086A1 JP 2008066535 W JP2008066535 W JP 2008066535W WO 2009139086 A1 WO2009139086 A1 WO 2009139086A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyesterimide
formula
polyesterimide precursor
precursor
film
Prior art date
Application number
PCT/JP2008/066535
Other languages
French (fr)
Japanese (ja)
Inventor
明宏 加藤
徹 小泉
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008130045A external-priority patent/JP2009275183A/en
Priority claimed from JP2008212101A external-priority patent/JP2010047674A/en
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to CN2008801292052A priority Critical patent/CN102027044A/en
Publication of WO2009139086A1 publication Critical patent/WO2009139086A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a polyesterimide precursor and a polyesterimide used for a laminated board such as a flexible printed wiring board.
  • Polyimide not only has excellent heat resistance, but also has properties such as chemical resistance, radiation resistance, electrical insulation, and excellent mechanical properties, so it is used for FPC (Flexible Printed Circuit) substrates and TAB (Tape Automated Bonding). Widely used in various electronic devices such as base materials, protective films for semiconductor elements, and interlayer insulating films for integrated circuits. In addition to these characteristics, polyimide has become increasingly important in recent years because of its simplicity of manufacturing method and extremely high film purity.
  • the composition of the copper clad laminate and FCCL which are the raw materials of FPC, are mainly classified into three types. That is, 1) a three-layer type in which a polyimide layer (hereinafter also referred to as “polyimide film”) and a copper foil are attached using an epoxy adhesive, etc., 2) a polyimide solution is applied to the copper foil, and then dried or a polyimide precursor After applying the body solution, dry, imidize, or form a copper layer on the polyimide layer by vapor deposition / sputtering, etc.
  • polyimide film a polyimide layer
  • a copper foil are attached using an epoxy adhesive, etc.
  • a polyimide solution is applied to the copper foil, and then dried or a polyimide precursor After applying the body solution, dry, imidize, or form a copper layer on the polyimide layer by vapor deposition / sputtering, etc.
  • Non-adhesive two-layer type, 3 Pseudo two-layer type using thermoplastic polyimide as the adhesive layer, It has been known. In applications where a high degree of dimensional stability is required for the polyimide layer, a two-layer FCCL without an adhesive is advantageous.
  • the polyimide as the FPC board undergoes dimensional changes when exposed to various thermal cycles in the mounting process.
  • Tg glass transition temperature
  • the coefficient of linear thermal expansion below the glass transition temperature is as low as possible, matching the coefficient of linear thermal expansion of the metal foil.
  • the control of the linear thermal expansion coefficient of the polyimide layer is important from the viewpoint of reducing the residual stress generated during the two-layer FCCL manufacturing process.
  • development of highly flame-retardant polyimide is desired from the viewpoint of safety.
  • polyimide generally includes an aromatic tetracarboxylic dianhydride such as pyromellitic anhydride (PMDA) and an aromatic diamine such as 4,4′-oxydianiline (ODA), and dimethylacetamide (DMAc).
  • PMDA pyromellitic anhydride
  • ODA 4,4′-oxydianiline
  • DMAc dimethylacetamide
  • Residual stress is generated in the process of cooling the metal / polyimide laminate to room temperature after the imidization reaction at a high temperature, and serious problems such as FCCL curling, peeling, and film cracking often occur. Even when the polyimide solution is used, the problem of residual stress occurs in the drying-cooling process, as in the case of using the polyimide precursor solution.
  • polyimide As a measure for reducing the residual stress, it is effective to reduce the coefficient of linear thermal expansion of the polyimide itself, which is an insulating film.
  • Most polyimides have a linear thermal expansion coefficient in the range of 40 ppm / ° C. to 100 ppm / ° C., which is much larger than that of metal foil, for example, copper foil, 17 ppm / ° C.
  • Non-Patent Document 1 a polyimide formed from 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and p-phenylenediamine is well known as a practical polyimide material.
  • this polyimide film shows a very low linear thermal expansion coefficient of 5 ppm / ° C. to 10 ppm / ° C., depending on the film thickness and production conditions, it does not show a low hygroscopic expansion coefficient (see Non-Patent Document 1).
  • polyimide Dimensional stability of polyimide is required not only for thermal cycling but also for moisture absorption.
  • Conventional polyimide absorbs 2 to 3% by mass of water.
  • Circuit misalignment due to dimensional changes due to moisture absorption of the insulating layer is a serious problem for high-density wiring and multilayer wiring.
  • a serious problem may be caused by deterioration of electrical characteristics such as corrosion at the polyimide / conductor interface, ion migration, and dielectric breakdown. Therefore, the polyimide layer as the insulating film is required to have a hygroscopic expansion coefficient as low as possible.
  • the polyesterimide film produced using the general formula (20) as the acid dianhydride and the formulas (21) to (23) as the diamine in order to realize a low hygroscopic expansion coefficient the diamine has a highly flexible structure. Therefore, it is considered that not only a high linear thermal expansion coefficient but also a polyesterimide film made of a combination thereof becomes a combustible film.
  • the coefficient of thermal expansion is low, but because of its rigidity, it has a high elastic modulus, which is not preferable in applications where low resilience is required. Further, it is presumed that the adhesion (peeling strength with the metal foil) is further lowered.
  • a general method for producing an acid dianhydride having an ester structure is a method of reacting trimellitic anhydride chloride with a diol in benzene or toluene (Patent Document 4), or a lower alkanoic acid ester of phenol and anhydrous.
  • a transesterification reaction with trimellitic acid (Patent Document 5) is known, and a TABP crude crystal can be obtained by these methods.
  • the obtained crude crystals are used for copolymerization with an aromatic diamine, the resulting polyimide precursor solution partially gels, and when a polyimide film is produced using the polyimide precursor solution, polyimide is obtained. There is a possibility that the mechanical properties of the film are significantly deteriorated.
  • the present invention has been made in view of such points, and has high flame retardancy, low hygroscopic expansion coefficient, low linear thermal expansion coefficient equivalent to copper foil, high glass transition temperature, high adhesion, low elastic modulus, and high tear strength. It aims at providing the polyesterimide which has both.
  • the polyesterimide precursor of the present invention has a repeating unit represented by the following formula (1).
  • Ar is a tetravalent aromatic group represented by the formula (2)
  • B 1 is a divalent fragrance selected from at least one of the formulas (3) to (9).
  • R 1 represents an alkyl group having 1 to 6 carbon atoms
  • R 2 to R 4 represent an alkyl group having 1 to 6 carbon atoms and a hydrogen atom, which are independent of each other, and may be the same or different
  • R 5 represents an alkyl group having 1 to 6 carbon atoms
  • R 6 to R 9 represent an alkyl group having 1 to 6 carbon atoms and a hydrogen atom.
  • B 1 in the formula (1) is preferably a repeating unit represented by the formula (3) or the formula (4). 4) is more preferable, and in Formula (4), R 2 to R 4 are particularly preferably Formula (10) in which a hydrogen atom is selected.
  • Ar is a tetravalent aromatic group represented by the formula (2).
  • B 2 is represented by the formulas (13) to (17). Is a divalent aromatic group selected from at least one, and R 10 to R 18 each represents an alkyl group having 1 to 6 carbon atoms or a hydrogen atom, and each is independent and may be the same or different Good.
  • B 2 in the formula (12) in the polyesterimide precursor is a repeating unit represented by the formula (16), the formula (17), or the formula (18).
  • Formula (16) is more preferable.
  • the weight average molecular weight Mw is preferably 30,000 to 400,000.
  • the ester group-containing tetracarboxylic dianhydride represented by the formula (19) used for obtaining the polyesterimide precursor is melted by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the polyesterimide of the present invention is obtained by imidizing the above polyesterimide precursor.
  • the method for producing a polyesterimide according to the present invention is characterized in that the polyesterimide precursor is heated or imidized using a dehydrating reagent to obtain a polyesterimide.
  • the laminate of the present invention has a polyesterimide layer and a metal layer, and the polyesterimide layer is composed of the polyesterimide.
  • the laminate of the present invention is obtained by applying the polyesterimide precursor on a metal foil, drying, and imidizing with heating or a dehydrating reagent.
  • the flexible printed wiring board of the present invention is characterized in that the metal layer of the laminated board is patterned into wiring.
  • the polyesterimide obtained from the polyesterimide precursor according to the present invention has high flame retardancy, low hygroscopic expansion coefficient, low linear thermal expansion coefficient equivalent to copper foil, high glass transition temperature, high adhesion, low elastic modulus, high tearing. It has the effect of having strength.
  • the ester structure focused on in the present invention has a higher internal rotation barrier than the ether structure, and the change in conformation is relatively hindered. Therefore, the ester structure behaves as a rigid structural unit and imparts some flexibility to the polyimide main chain. It is expected to give a flexible film.
  • the ester structure has a lower polarizability than the amide structure or imide structure, the introduction of the ester structure into the polyimide is advantageous for reducing the hygroscopic expansion coefficient.
  • a monomer having a specific aromatic skeleton and an ester structure is selected as the acid dianhydride and diamine, and the specific aromatic skeleton and the ester structure are introduced into the polyimide.
  • a polyesterimide precursor having a repeating unit can be obtained.
  • the polyesterimide precursor according to the present invention has high flame retardancy, low hygroscopic expansion coefficient, low linear thermal expansion coefficient equivalent to copper foil, high glass transition temperature, high adhesion, low elastic modulus, and high tear strength. Realized at the same time.
  • Ar is a tetravalent aromatic group represented by the formula (2)
  • B 1 is a divalent aromatic group selected from at least one of the formulas (3) to (9) It is a group.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms.
  • R 2 to R 4 each represent an alkyl group having 1 to 6 carbon atoms or a hydrogen atom, and are independent and may be the same or different.
  • R 5 represents an alkyl group having 1 to 6 carbon atoms.
  • R 6 to R 9 each represents an alkyl group having 1 to 6 carbon atoms or a hydrogen atom.
  • the polyesterimide precursor according to the present invention is produced by using an ester group-containing tetracarboxylic dianhydride monomer and an ester group-containing diamine monomer. Depending on the reaction position of the diamine and acid dianhydride, four types of isomers can be considered. Since the same product is obtained from the four types of isomers after imidation, the resulting polyesterimide precursor is represented by the general formula (1 ).
  • TABP tetracarboxylic dianhydride
  • R 1 represents an alkyl group having 1 to 6 carbon atoms.
  • R 2 to R 4 each represent an alkyl group having 1 to 6 carbon atoms or a hydrogen atom, and are independent and may be the same or different.
  • R 5 represents an alkyl group having 1 to 6 carbon atoms.
  • R 6 to R 9 each represents an alkyl group having 1 to 6 carbon atoms or a hydrogen atom.
  • Formula (26) and Formula (27) are preferable, Formula (27) is more preferable, and Formula (33) is particularly preferable.
  • a diamine having an ester structure represented by TABP and formula (33) (whereinafter, it is preferable to use BPIP) as an essential component and to use at least one diamine selected from the formulas (34) to (39).
  • Formula (37), Formula (38), and Formula (39) are more preferable, and Formula (37) is particularly preferable from the viewpoint of the tear strength of the resulting polyesterimide film.
  • R 10 to R 18 represent an alkyl group having 1 to 6 carbon atoms and a hydrogen atom, and are independent and may be the same or different.
  • TABP and the total diamine are mixed at a ratio of about 1: 1, Is 100 mol%, BPIP is used in a diamine molar ratio of 20 mol% to 80 mol%, and at least one diamine having an ester structure selected from the general formula (34) to the general formula (39) is used as the diamine molar ratio. Used at 20 mol% to 80 mol%.
  • TABP used as an essential component is preferably highly pure from the viewpoint of making a high molecular weight polyimide precursor solution having no gel component, adhesive strength of the metal / polyimide laminate, and tear strength of the polyimide film.
  • the melting heat peak temperature is (a) ° C.
  • a TABP satisfying 5 ° C. is preferred, and a TABP satisfying (a) ⁇ 325 ° C. and ⁇ T ⁇ 4 ° C. is more preferred.
  • the present inventor has focused on the process of purifying TABP in order to make TABP highly pure, and has found the following. That is, by recrystallization in a specific solvent, concentration, and temperature conditions, the 4,4′-biphenol derivative represented by the formula (40) mixed together and the 4,4′-form represented by the formula (41) are mixed. Oligomer bodies estimated to be obtained by ring-opening and reaction of biphenol and trimellitic anhydride chloride are efficiently removed, and then subjected to dehydration heat drying treatment, thereby adhering water adhering to the crystals and It was found that the water of crystallization was removed, and the tetracarboxylic acid that was partially opened during recrystallization was dehydrated to obtain high-purity TABP. (Where n is 1 to 5)
  • the temperature of the heat of fusion peak indicated by the differential scanning calorimeter (DSC) shifts to the high temperature side, and the temperature of the heat of fusion peak is (a) ° C.
  • the temperature difference between (a) and (b) when the temperature at the intersection of the virtual tangent with the temperature at which the start of the rise starts as a contact and the straight line along the substantially straight line portion of the melting heat peak is (b) ° C. Becomes smaller.
  • TABP uses a reaction product obtained by reaction between trimellitic anhydride chloride and diol in an organic solvent, or transesterification of a lower alkanoic acid ester of phenol with trimellitic acid or its anhydride in a specific solvent, concentration. It is obtained by recrystallization under temperature conditions, followed by dehydration heat drying treatment.
  • the solvent used for recrystallization to obtain high-purity TABP is preferably a lactone solvent having a cyclic ester structure, a solvent having a cyclic ketone structure, a cyclic carbonate structure, or a cyclic sulfone structure.
  • Examples include ⁇ -methylene- ⁇ -valerolactone, ⁇ -methylene- ⁇ -butyrolactone, ⁇ -methylene- ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -butyrolactone, cyclopentanone, propylene carbonate, ethylene carbonate, sulfolane. It is done. These can be used alone or in admixture of two or more. Of these, ⁇ -butyrolactone, ⁇ -valerolactone, and sulfolane are preferably used from the viewpoints of solubility, recrystallization yield, and economic efficiency.
  • the amount of the solvent used is 1 to 150 parts by weight, particularly 4 to 100 parts by weight, based on 1 part by weight of the product obtained by the reaction, considering the removal of impurities and the recrystallization yield. It is preferable that When the concentration of the ester group-containing tetracarboxylic dianhydride in the solution of the ester group-containing tetracarboxylic dianhydride and the solvent is defined as the solid content concentration, the solid content concentration is preferably 50% or less. From the viewpoint of rate, it is preferably 20% or less.
  • the precipitate obtained by filtration is heated at a rate of temperature increase of 1 ° C./min to 20 ° C./min, 200 ° C. to 300 ° C. under an inert atmosphere such as nitrogen, helium, argon, etc. in atmospheric pressure or under reduced pressure.
  • an inert atmosphere such as nitrogen, helium, argon, etc. in atmospheric pressure or under reduced pressure.
  • the rate of temperature rise is preferably 20 ° C./min or less from the viewpoint that the heating of the crystal is made uniform and the crystal is locally heated to avoid a decomposition reaction such as decarboxylation.
  • the melting heat peak temperature (a) ° C. indicated by the differential scanning calorimeter (DSC) is the melting point (mp) of the substance, shifts to a higher temperature side than 322 ° C., preferably 325 ° C., and rises to the melting heat peak.
  • the temperature difference between (a) and (b) is 5 ° C., where (b) ° C. is the temperature at which the hypothetical tangent line with the temperature starting from the point of contact as the contact point and the straight line along the substantially straight line portion of the melting heat peak Preferably it becomes narrower than 4 degreeC, and there exists a correlation with the improvement of the purity of TABP.
  • an appropriate flexibility is blended in a balanced manner.
  • High flame retardancy, low hygroscopic expansion coefficient, low linear thermal expansion coefficient equivalent to copper foil, high glass transition temperature, flexibility, high adhesion, low elastic modulus when used as an imide laminate and polyesterimide film it is possible to obtain a material having physical properties that cannot be obtained by a conventional material and has both high tear strength.
  • the method for producing the polyesterimide precursor according to the present invention is not particularly limited, and a known method can be applied. More specifically, it is obtained by the following method.
  • a diamine is dissolved in a reaction solvent, tetracarboxylic dianhydride powder is gradually added thereto, and a mechanical stirrer is used at 0 ° C. to 100 ° C., preferably 20 ° C. to 90 ° C., for 0.5 hour to 100 hours. Preferably, stirring is performed for 1 hour to 24 hours.
  • the monomer concentration is preferably 5% by mass to 50% by mass, more preferably 10% by mass to 40% by mass, and particularly preferably 10% by mass to 40% by mass from the viewpoint of the degree of polymerization and the solubility of the monomer and the polymer to be formed. 25 mass% is preferable.
  • the weight average molecular weight (Mw) of the polyesterimide film is preferably 30,000 to 400,000, more preferably 30,000 to 300,000. Particularly preferred is 50,000 to 200,000.
  • 30,000 or more is preferable, and 50,000 or more is more preferable.
  • the weight average molecular weight (Mw) is preferably 400,000 or less, more preferably 300,000 or less, and particularly preferably 200,000 or less.
  • Aromatic tetracarboxylic dianhydrides that can be used in combination with TABP within the range that does not impair the required characteristics of the polyesterimide film and the polymerization reactivity of the polyesterimide precursor include 3,3 ′, 4,4′-biphenyltetracarboxylic acid.
  • the aliphatic tetracarboxylic dianhydride that can be used in combination with TABP is not particularly limited as long as the required properties of the polyesterimide film and the polymerization reactivity of the polyesterimide precursor are not impaired, but bicyclo [2.2.2].
  • Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride 5- (dioxotetrahydrofuryl-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 4- (2 , 5-Dioxotetrahydrofuran-3-yl) -tetralin-1,2-dicarboxylic anhydride, tetrahydrofuran-2,3,4,5-tetracarboxylic dianhydride, bicyclo-3,3 ′, 4,4 '-Tetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid Such anhydrides. It is also possible to use two or more of these.
  • Fragrance that can be used in combination with a diamine having an ester structure represented by the general formula (26) to the general formula (39) as long as the polymerization reactivity of the polyesterimide precursor according to the present invention and the required properties of the polyesterimide are not significantly impaired.
  • the group diamine is not particularly limited, but p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, 2,4-diaminodurene, 4,4 '-Diaminodiphenylmethane, 4,4'-methylenebis (2-methylaniline), 4,4'-methylenebis (2-ethylaniline), 4,4'-methylenebis (2,6-dimethylaniline), 4,4' -Methylenebis (2,6-diethylaniline), 4,4'-diaminodiphenyl ether, 3,4'-diamy Diphenyl ether, 3,3'-diaminodiphenyl ether, 2,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl
  • Fat that can be used in combination with a diamine having an ester structure represented by the general formula (26) to the general formula (39) as long as the polymerization reactivity of the polyesterimide precursor according to the present invention and the required properties of the polyesterimide are not significantly impaired.
  • the group diamine is not particularly limited.
  • the solvent used in the polymerization reaction is not a problem as long as the raw material monomer and the generated polyesterimide precursor are dissolved, and the structure is not particularly limited.
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone; ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, Cyclic ester solvents such as ⁇ -caprolactone and ⁇ -methyl- ⁇ -butyrolactone; carbonate solvents such as ethylene carbonate and propylene carbonate; glycol solvents such as triethylene glycol; m-cresol, p-cresol, 3-chlorophenol And phenol solvents such as 4-chlorophenol; acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like.
  • aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone are used. preferable.
  • the polyesterimide precursor according to the present invention can be isolated as a powder by dropping, filtering and drying the solution in a large amount of poor solvent such as water or methanol.
  • the polyesterimide according to the present invention can be produced by subjecting the polyesterimide precursor obtained by the above method to a dehydration ring-closing reaction (imidation reaction). At this time, usable forms of polyesterimide are a film, a metal foil / polyesterimide laminate, a powder, a molded product, and a solution.
  • the polyesterimide precursor solution is cast on a metal foil such as a copper foil or an aluminum foil and dried in an oven at 40 ° C. to 180 ° C., preferably 50 ° C. to 150 ° C.
  • the obtained metal / polyesterimide precursor laminate was fixed to a SUS metal plate with a tape and fixed in a vacuum, in an inert gas such as nitrogen, or in air, 200 ° C. to 430 ° C., preferably 250 ° C.
  • a metal / polyimide laminate is obtained by heating at ⁇ 400 ° C.
  • the polyesterimide film according to the present invention can be produced by etching and removing the metal layer of the laminate.
  • polyesterimide precursor solution is cast on a silicon substrate on which a metal layer is deposited, dried and heated by the above method, and a silicon / polyesterimide layer laminate on which the metal layer is deposited is obtained. . Thereafter, the metal layer of the laminate is etched and the polyesterimide layer (polyesterimide film) is peeled off from the silicon substrate, whereby the target product can be obtained.
  • polyesterimide precursor solution is cast on a glass substrate and dried in an oven at 40 ° C. to 180 ° C., preferably 50 ° C. to 150 ° C., to obtain a laminate of a glass substrate / polyesterimide precursor layer. Thereafter, the polyesterimide precursor layer (polyesterimide precursor film) is peeled off from the laminate, the polyesterimide precursor film is fixed to a metal frame using a tape, and heated by the method described above. Can be obtained.
  • the imidization is desirably performed in a vacuum or in an inert gas, but may be performed in air if the imidization temperature is not too high.
  • the imidization reaction is carried out by adding a tertiary amine such as pyridine or triethylamine to the polyesterimide precursor solution instead of heat treatment to prepare a polyesterimide precursor film, and heating the chemical imide while heating at 200 ° C to 300 ° C. It is also possible to carry out by immersing the polyesterimide precursor film in a solution containing a dehydrating reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine.
  • a dehydrating reagent such as acetic anhydride
  • polyesterimide film from the polyesterimide precursor solution was described, it is not limited to this,
  • the heat-dried polyesterimide precursor film and the isolated polyesterimide precursor are heated,
  • a polyesterimide may be produced by cyclization using a dehydrating reagent.
  • a crystalline polyesterimide powder can be obtained as a precipitate.
  • a polyesterimide molded body can be produced by heating and compressing the polyesterimide powder at 200 ° C. to 450 ° C., preferably 250 ° C. to 430 ° C.
  • the mixture is reacted at 0 ° C. to 100 ° C., preferably 0 ° C. to 60 ° C.
  • a dehydrating reagent such as N, N′-dicyclohexylcarbodiimide or trifluoroacetic anhydride
  • the mixture is reacted at 0 ° C. to 100 ° C., preferably 0 ° C. to 60 ° C.
  • Polyisoimide which is an isomer of polyesterimide, is produced.
  • the polyisoimide solution can be easily converted into a polyesterimide by heat-treating at 250 ° C. to 450 ° C., preferably 270 ° C. to 400 ° C., after forming a film by the same procedure as described above.
  • the isoimidization reaction can also be performed by immersing the polyesterimide precursor film in a solution containing the dehydrating reagent.
  • the polyesterimide solution can be easily produced by heating the polyesterimide precursor solution as it is or after appropriately diluting with the same solvent to 150 ° C. to 200 ° C. At this time, toluene, xylene, or the like may be added in order to azeotropically distill off water which is a by-product of imidization.
  • a base such as ⁇ -picoline can be added as a catalyst.
  • polyesterimide it is also possible to isolate the polyesterimide as a powder by dropping and filtering the obtained polyesterimide solution in a large amount of poor solvent such as water or methanol. Further, the polyesterimide powder can be redissolved in the above solvent to obtain a polyesterimide solution.
  • the polyesterimide of the present invention can be obtained by imidizing the polyesterimide precursor of the present invention.
  • the molecular weight and terminal structure of the produced polyesterimide can be adjusted by adjusting the ratio of the tetracarboxylic dianhydride and the diamine compound used in the production.
  • the preferred molar ratio of total tetracarboxylic dianhydride to total diamine is 0.90 to 1.10.
  • the terminal structure of the resulting polyesterimide is an amine or acid anhydride structure depending on the molar charge ratio of all tetracarboxylic dianhydrides and all diamines at the time of production.
  • the terminal structure When the terminal structure is an amine, the terminal structure may be capped with a carboxylic acid anhydride. Examples of these include phthalic anhydride, 4-phenylphthalic anhydride, 4-phenoxyphthalic anhydride, 4-phenylcarbonylphthalic anhydride, 4-phenylsulfonylphthalic anhydride, etc. It is not limited to. You may use these carboxylic anhydrides individually or in mixture of 2 or more types.
  • the terminal structure when the terminal structure is an acid anhydride, the terminal structure may be capped with a monoamine.
  • a monoamine include aniline, toluidine, aminophenol, aminobiphenyl, aminobenzophenone, naphthylamine and the like. You may use these monoamines individually or in mixture of 2 or more types.
  • the addition polymerization conditions can be carried out in accordance with the conventional polyamic acid addition polymerization conditions. Specifically, first, an aromatic diamine is dissolved in a solvent at 0 ° C. to 80 ° C. under an inert atmosphere such as nitrogen, helium, argon, etc., and then tetracarboxylic acid at 40 ° C. to 100 ° C. The dianhydride is allowed to undergo addition polymerization for 4 to 8 hours while being quickly added. Thereby, a polyesterimide precursor is obtained.
  • a polyesterimide film can also be formed by applying the above polyesterimide solution on a substrate and drying at 40 ° C to 400 ° C, preferably 100 ° C to 300 ° C.
  • a polyester imide precursor solution is applied onto a metal foil, for example, a copper foil, dried, and then imidized under the above-described conditions, whereby a metal plate and a polyester imide layer laminate (FCCL) which is an original fabric of an FPC board are obtained.
  • FCCL polyester imide layer laminate
  • a copper foil is used as the metal foil, and a non-adhesive two-layer type composed of a copper foil and a polyesterimide layer can be obtained by directly applying a polyesterimide precursor solution.
  • a three-layer and pseudo two-layer type in which a polyesterimide layer and a copper foil are bonded using an epoxy adhesive or a thermoplastic polyimide as an adhesive are also generally known as FCCL configurations.
  • the adhesive since it is essential for the adhesive to be thermoplastic, it is essential to contain a bending component in the constituent unit of the adhesive, and the high hygroscopic expansion coefficient, glass transition temperature, and heat resistance are lowered. For this reason, in a three-layer or pseudo-two-layer type laminate, a high hygroscopic expansion coefficient, a low glass transition temperature, and a low heat resistance are inevitably caused by the thermoplastic adhesive layer.
  • the polyesterimide of the present invention since the polyesterimide of the present invention has high adhesiveness, it is possible to obtain a two-layer laminate without using an adhesive layer, and the polyesterimide itself is also non-thermoplastic. Therefore, it is possible to simultaneously have high glass transition temperature heat resistance and low hygroscopic expansion coefficient.
  • metal foil of the FPC board various metal foils can be used, but aluminum foil, copper foil, and stainless steel foil are preferable, and copper foil is particularly preferable. These metal foils may be subjected to surface treatment such as mat treatment, plating treatment, chromate treatment, aluminum alcoholate treatment, aluminum chelate treatment, silane coupling agent treatment, and the like.
  • the thickness of the metal foil is not particularly limited, but is preferably 35 ⁇ m or less, more preferably 18 ⁇ m or less.
  • FCCL can be manufactured as follows, for example. First, the polyesterimide precursor solution is coated on a metal foil using a blade coater, a lip coater, a gravure coater or the like. Then, it is dried to form a polyesterimide precursor layer (hereinafter also referred to as “polyesterimide precursor film”). The coating thickness is affected by the solid content concentration of the polyesterimide precursor solution, but the polyesterimide precursor layer is heated at 200 ° C. to 400 ° C. in an inert atmosphere such as nitrogen, helium, or argon. A polyesterimide layer can be formed by making it. The thickness of the polyesterimide layer is 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the peel strength from the metal foil is preferably 0.8 N / mm or more, and more preferably 1.0 N / mm or more. Warpage is preferably 10 mm or less, and more preferably 3 mm or less.
  • FCCL ferric chloride aqueous solution (manufactured by Tsurumi Soda Co., Ltd., 40 Baume, ferric chloride 37% or more) at room temperature or under 50 ° C. heating condition, By etching the metal layer into a desired circuit shape, an adhesive-free flexible printed wiring board can be manufactured.
  • the tear strength of the polyimide film is preferably 50 mN or more, more preferably 60 mN or more, and particularly preferably 80 mN or more in the polyimide film 26 ⁇ m.
  • the elastic modulus is preferably 4.0 GPa to 6.5 GPa.
  • the hygroscopic expansion coefficient is preferably 7 ppm /% RH or less, the linear thermal expansion coefficient is preferably 16 ppm / ° C. to 25 ppm / ° C., and the glass transition temperature is preferably 350 ° C. or higher.
  • additives such as an oxidation stabilizer, a filler, an adhesion promoter, a silane coupling agent, a photosensitizer, a photopolymerization initiator, and a sensitizer to the polyesterimide of the present invention and its precursor solution as necessary. Can do.
  • the polyesterimide of the present invention has high flame retardancy, low hygroscopic expansion coefficient, low linear thermal expansion coefficient equivalent to copper foil, high glass transition temperature, high adhesive strength, low elastic modulus, and high tear strength. It can be used for an electrical insulating film, a flexible printed wiring board, a display substrate, an electronic paper substrate, a solar cell substrate, etc. in a device, and is particularly useful as a substrate for a flexible printed wiring board.
  • ⁇ Polyesterimide precursor solution> a diamine containing an ester structure is dissolved in N-methyl-2-pyrrolidone, and tetracarboxylic dianhydride powder containing an ester structure is gradually added thereto, and then heated at 80 ° C. using a mechanical stirrer. For 3 to 5 hours. At this time, polymerization was performed in a monomer concentration range of 10% by mass to 20% by mass of the monomer to obtain a polyesterimide precursor solution having a uniform and high polymerization degree.
  • a copper foil / polyesterimide precursor laminate was fixed on a SUS metal plate with a tape and fixed at 30 ° C. at 150 ° C. at a temperature rising rate of 5 ° C./min in a hot air drier in a nitrogen atmosphere. Minutes, imidization was carried out at 200 ° C. for 1 hour and at 400 ° C. for 1 hour. Then, the metal plate made from SUS was removed, and the laminated board of copper foil / polyesterimide was obtained.
  • ⁇ Polyesterimide film> The copper foil of the copper foil / polyesterimide laminate obtained above was heated to a ferric chloride solution (Tsurumi Soda Co., Ltd., 40 Baume, ferric chloride 37% or more) at room temperature or 50 ° C. or less. By etching under, polyester imide films with film thicknesses of 26 ⁇ m and 12 ⁇ m were obtained.
  • a ferric chloride solution Tesurumi Soda Co., Ltd., 40 Baume, ferric chloride 37% or more
  • ⁇ Weight average molecular weight Mw> 0.01 g of a polyesterimide precursor solution was measured with a precision balance and dissolved in 10 g of a developing solvent.
  • the developing solvent is 2.61 g of lithium bromide (Aldrich), 1 L of dimethylformamide (Wako Pure Chemical Industries, for liquid chromatography), phosphoric acid aqueous solution (Wako Pure Chemical Industries, purity 85%) 5 .88 g was dissolved. This solution was filtered through a 10 ⁇ m filter.
  • TPC guard Column Super HH (trade name, manufactured by Tosoh Corporation) is used as a guard column
  • TSK-GEL SUPER HM-H (trade name, manufactured by Tosoh Corporation) is connected in series as a preparative column.
  • the molecular weight was measured at a flow rate of 0.5 ml / min using the above developing solvent. The molecular weight was converted using polystyrene.
  • thermomechanical analyzer TMA-50 manufactured by Shimadzu Corporation
  • a polyesterimide film having a width of 3 mm, a length of 18 mm (length between chucks of 15 mm) and a thickness of 26 ⁇ m was measured by thermomechanical analysis. Measure the elongation in the range of 50 ° C to 450 ° C under a nitrogen atmosphere (flow rate 20 ml / min) at a temperature of 50 ° C / min, and determine the glass transition temperature of the polyesterimide film (26 ⁇ m thickness) from the inflection point of the obtained curve. Asked.
  • thermomechanical analyzer TMA-50
  • a polyesterimide film having a width of 3 mm, a length of 18 mm (length between chucks of 15 mm) and a thickness of 26 ⁇ m was measured by thermomechanical analysis. Measure the elongation at a temperature of 50 ° C to 450 ° C under a nitrogen atmosphere (flow rate of 20 ml / min) at a temperature of 50 ° C / min. Polyesterimide film (thickness 26 ⁇ m) ) was determined.
  • ⁇ Hygroscopic expansion coefficient CHE> A polyester imide film having a width of 3 mm, a length of 30 mm (length between chucks of 15 mm), and a thickness of 26 ⁇ m was obtained using a thermal mechanical analyzer (TM-9400) and a humidity atmosphere adjustment device (HC-1) manufactured by ULVAC-RIKO. Measure the elongation when the humidity is changed from 30% RH to 70% RH at 23 ° C and a load of 5g, and obtain the hygroscopic expansion coefficient of the polyesterimide film as the average elongation value of the film at 30% RH to 70% RH. It was.
  • ⁇ Solder heat resistance evaluation> Cut the copper foil / polyesterimide laminate to a size of 3 cm in length x 3 cm in width, mask the 2.5 cm x 2.5 cm center using a masking tape, under the same conditions as above, The copper foil was etched using a ferric chloride solution (Tsurumi Soda Co., Ltd., 40 Baume, ferric chloride 37% or more) to obtain a test piece. The obtained test piece was allowed to stand for 1 hour or longer in a dryer 105 ° C. and dried, and then left in the solder bath surface set at 300 ° C. for 2 minutes so that the copper foil side was in contact with the copper. The appearance of the foil and the polyesterimide film, such as blistering and wrinkle generation, was evaluated by visual observation, and a case where no change in the appearance was observed was taken as a good result ( ⁇ ).
  • ⁇ Adhesive strength between copper foil and polyesterimide layer> About the measuring method of the test piece, it carried out according to JIS C6471 standard.
  • a copper foil / polyesterimide laminate was cut into a size of 15 cm long ⁇ 1 cm wide, masked with a 1 cm center width of 3 mm using a masking tape, and chlorinated under the same conditions as above.
  • the copper foil was etched using a ferric solution.
  • the obtained test piece was left to dry at 105 ° C. for 1 hour or longer and then attached to a FR-4 substrate having a thickness of 3 mm with a double-sided adhesive tape.
  • a conductor having a width of 3 mm was peeled off at the interface with the polyesterimide film and attached to an aluminum tape as a grip allowance to prepare a sample.
  • the obtained sample was fixed to a Shimadzu tensile tester (Autograph AG-10KNI).
  • a jig was attached in order to surely peel off in the direction of 90 °, and the load at the time of peeling 50 mm at a speed of about 50 mm / min was measured and calculated as the adhesive strength per 1 cm.
  • ⁇ Trouser tear strength> A polyester imide film is cut out into 50 mm ⁇ 150 mm as a sample, and the RTG-1210 type tensile tester (Orientec Co., Ltd. equipped with UR-50ND type load cell) is used, and the method described in JIS K7128-1 Measured at a test speed of 50 mm / min.
  • TABP tetracarboxylic dianhydride
  • DSC-60 differential scanning calorimeter
  • the peak temperature of the heat of fusion is (a) ° C., and the temperature that is the intersection of the virtual tangent with the contact temperature being the temperature at which the rise to the heat of fusion peak starts, and the straight line along the substantially linear portion of the heat of fusion peak is (b)
  • the temperature range ⁇ T ((b) ⁇ (a)) ° C. was calculated. The calibration of temperature and heat flow was performed with an indium standard material.
  • Example 1 Synthesis of TABP
  • 100 ml of an N, N-dimethylformamide solution and 200 mmol of trimellitic anhydride chloride manufactured by Tokyo Chemical Industry Co., Ltd.
  • 100 ml of an N, N-dimethylformamide solution and 200 mmol of trimellitic anhydride chloride manufactured by Tokyo Chemical Industry Co., Ltd.
  • a solution of 4,4′-biphenol dissolved in 50 ml of N, N-dimethylformamide and 50 ml of pyridine was dropped at a stirring speed of 100 rpm over 2 hours so as to be 10 ° C. or less, and then at room temperature. Stir for 6 hours.
  • the solution turned red when the dripping was started, and a yellow precipitate was formed as the dripping was completed.
  • the precipitate was filtered, washed with N, N-dimethylformamide, further washed with water and then filtered twice, and the filtered product was dried to obtain yellowish white crystals containing TABP. Thereafter, the mixture was heat-dried at 130 ° C. for 2 hours at a rate of temperature increase of 10 ° C./min while reducing the pressure in a vacuum dryer to obtain yellow crystals which were unpurified TABP.
  • This polyesterimide precursor solution did not precipitate or gel at all even when allowed to stand at room temperature and 20 ° C. for one month, and showed high solution storage stability.
  • a 12 ⁇ m-thick copper foil (NIPPON ELECTRIC CO., LTD. USLP foil) was allowed to stand on a metal coating table so that the matte surface was the surface.
  • the surface temperature of the coating table was set to 90 ° C., and the polyesterimide precursor solution was applied to the copper foil mat surface with a doctor blade. Then, after leaving still for 30 minutes on a coating table, and further leaving still in a dryer at 100 ° C. for 30 minutes, a laminate of a copper foil / polyesterimide precursor without tackiness (the thickness of the polyesterimide precursor layer is 47 ⁇ m and 24 ⁇ m) was obtained.
  • the laminate of the copper foil / polyesterimide precursor was fixed with a tape on a SUS metal plate, and 30 ° C. at 150 ° C. at a temperature rising rate of 5 ° C./min in a hot air drier in a nitrogen atmosphere. Minutes, imidization was performed at 200 ° C. for 1 hour and at 400 ° C. for 1 hour. Thereafter, the SUS metal plate was removed, and a copper foil / polyesterimide laminate without curling was obtained.
  • the polyesterimide film having a film thickness of 26 ⁇ m was not broken by a 180 ° bending test and showed flexibility. It was not soluble in organic solvents such as N-methyl-2-pyrrolidone and dimethylacetamide. Also, TMA measurement showed a low linear thermal expansion coefficient equivalent to 22 ppm / ° C. (average value between 50 ° C. and 200 ° C.) and copper foil. When the hygroscopic expansion coefficient was measured, an extremely low hygroscopic expansion coefficient of 5.0 ppm /% RH (average value between 30% RH and 70% RH) was shown. Evaluation of the flame retardancy of a polyesterimide film having a thickness of 12 ⁇ m showed the performance of UL94VTM-0. Moreover, it showed good solder heat resistance and boiling solder heat resistance. The elastic modulus was as low as 5.1 GPa, and the trouser tear strength was 62 mN and a high tear strength in a 26 ⁇ m polyesterimide film.
  • Example 2 In a well-dried sealed reaction vessel equipped with a stirrer, 6.42 mmol of BPIP and 6.42 mmol of a diamine having an ester structure represented by the formula (37) (hereinafter referred to as APAB) were added, and 61 mL of N-methyl-2-pyrrolidone was added. Was dissolved by heating to 80 ° C. After dissolution, 13.38 mmol of TABP powder obtained in Example 1 was gradually added to this solution. By stirring for 30 minutes, the solution viscosity increased rapidly.
  • APAB a diamine having an ester structure represented by the formula (37)
  • Example 1 film formation and imidization were performed to produce a polyesterimide film, and physical properties were similarly evaluated.
  • the physical property values are shown in Table 1.
  • the warpage also showed a good value of 1 mm.
  • Example 3 BPIP 8.99 mmol and APAB 3.85 mmol were placed in a well-closed sealed reaction vessel equipped with a stirrer, N-methyl-2-pyrrolidone 63 mL was added, and the solution was heated to 80 ° C. to dissolve. After dissolution, 13.38 mmol of TABP obtained in Example 1 was gradually added to this solution. By stirring for 30 minutes, the solution viscosity increased rapidly.
  • B 2 is a divalent aromatic group represented by Formula (16).
  • Example 4 In a well-dried sealed reaction vessel equipped with a stirrer, BPIP 6.88 mmol and diamine having an amide structure represented by formula (38) (hereinafter referred to as DABA) 6.88 mmol were added, and 65 ml of N-methyl-2-pyrrolidone was added, Was dissolved by heating to 80 ° C. After dissolution, 14.33 mmol of TABP powder obtained in Example 1 was gradually added to this solution. By stirring for 30 minutes, the solution viscosity increased rapidly.
  • DABA diamine having an amide structure represented by formula (38)
  • B 2 is a divalent aromatic group represented by Formula (17).
  • Example 1 film formation and imidization were performed to produce a polyesterimide film, and physical properties were similarly evaluated.
  • the physical property values are shown in Table 1.
  • the warpage also showed a good value of 1 mm.
  • Example 5 In a well-closed closed reaction vessel with a stirrer, BPIP 9.63 mmol and diamine having an ester structure represented by the formula (39) (hereinafter referred to as BPTP) 4.13 mmol were added, and 71 mL of N-methyl-2-pyrrolidone was added to the solution. Was dissolved by heating to 80 ° C. After dissolution, 14.79 mmol of TABP powder obtained in Example 1 was gradually added to this solution. By stirring for 30 minutes, the solution viscosity increased rapidly.
  • BPTP diamine having an ester structure represented by the formula (39)
  • B 2 is a divalent aromatic group represented by Formula (18).
  • Example 1 film formation and imidization were performed to produce a polyesterimide film, and physical properties were similarly evaluated.
  • the physical property values are shown in Table 1.
  • the warpage was as good as -3 mm.
  • ⁇ 3 mm means warping to the copper foil side.
  • Example 6 In a well-dried sealed reaction vessel with a stirrer, 50 mmol of BPIP was placed and dissolved in 191 mL of N-methyl-2-pyrrolidone, and then 50 mmol of TABP powder obtained in Example 1 was gradually added thereto. After 30 minutes, the solution viscosity increased rapidly. Furthermore, it stirred at 80 degreeC for 4 hours, and obtained the transparent, uniform and viscous polyesterimide precursor. The obtained polyesterimide precursor did not precipitate or gel at all even after being allowed to stand at room temperature and ⁇ 20 ° C. for one month, and showed high solution storage stability.
  • the intrinsic viscosity of the polyesterimide precursor measured with an Ostwald viscometer in N-methyl-2-pyrrolidone at a concentration of 0.5% by mass at 30 ° C. was 2.8 dL / g.
  • This polyesterimide precursor was filtered with a 5 ⁇ m membrane filter under a pressure condition of nitrogen 3 kg / cm 2 to obtain a target polyesterimide precursor.
  • Example 2 a light brown polyesterimide film having a film thickness of 25 ⁇ m and 12 ⁇ m was obtained by film formation and imidization, and physical properties were similarly evaluated. Table 3 shows the physical property values. This polyesterimide film did not break even in the 180 ° bending test and showed flexibility. Moreover, it did not show any solubility in any organic solvent.
  • the polyesterimide precursor obtained above was spin-coated on a 6-inch silicon wafer with a spin coater (MS-250, manufactured by Mikasa Co., Ltd.) and allowed to stand at 100 ° C. for 30 minutes in a dryer.
  • a polyesterimide precursor / silicon wafer laminate (polyesterimide precursor layer thickness 17 ⁇ m) having no tackiness was obtained. Thereafter, the laminate was imidized in a hot air drier in a nitrogen atmosphere at a heating rate of 5 ° C./min, 150 ° C. for 30 minutes, 200 ° C. for 1 hour, and 400 ° C. for 1 hour. It was.
  • the intrinsic viscosity ( ⁇ ) was measured at 30 ° C. using a Ostwald viscometer for a 0.5% by mass polyesterimide precursor.
  • the intrinsic viscosity of the polyesterimide precursor obtained with the preparation ratio of 0.99 was 2.4 dL / g.
  • film formation and imidization were performed to produce a polyesterimide film, and physical properties were similarly evaluated.
  • Table 3 shows the physical property values.
  • Example 2 Comparative Example 2
  • ODA 4,4′-diaminodiphenyl ether
  • the hygroscopic expansion coefficient was relatively high at 8.3 ppm /% RH, the elastic modulus was high at 7.9 GPa, and the adhesive strength Is as low as 0.3 N / mm, and the tear strength is as low as 42 mN in a 26 ⁇ m polyesterimide film. Further, the flame resistance performance was low with a film having a thickness of 12 ⁇ m, and the performance of UL94VTM-0 was not obtained.
  • Comparative Example 3 a polyesterimide precursor was polymerized according to the method described in Comparative Example 1 except that the diamine represented by the formula (23) (hereinafter referred to as BAPB) was used as the diamine.
  • BAPB diamine represented by the formula (23)
  • a polyesterimide film was prepared and similarly evaluated for physical properties. The physical property values are shown in Table 1.
  • High glass transition temperature, high adhesiveness, and elastic modulus showed a low value of 5.2 GPa, but the linear thermal expansion coefficient showed a high value of 32 ppm / ° C., and the hygroscopic expansion coefficient was as high as 13.2 ppm /% RH.
  • the tear strength is as low as 45 mN in a 26 ⁇ m polyesterimide film.
  • blistering was observed in the solder heat resistance test, and the flame resistance performance was low with the film having a thickness of 12 ⁇ m, and the performance of UL94VTM-0 was not obtained.
  • Comparative Example 4 In Comparative Example 1, a polyester imide precursor was polymerized according to the method described in Comparative Example 1 except that TABP obtained in Example 1 was used instead of TAHQ, and APAB was used as a diamine. A polyesterimide film was prepared and similarly evaluated for physical properties. The physical property values are shown in Table 1. Evaluation of flame retardancy of polyimide film with high thermal stability and flexibility, low hygroscopic expansion coefficient, high tear strength and film thickness of 12 ⁇ m showed the performance of UL94VTM-0, but the linear thermal expansion coefficient was 13ppm. The coefficient of linear thermal expansion was lower than that of copper foil at / ° C., the adhesive strength was as low as 0.4 N / mm, and the elastic modulus was as high as 7.7 GPa.
  • the polyesterimide of the present invention can be suitably used as an electrical insulating film, a flexible printed wiring board, a display substrate, an electronic paper substrate, a solar cell substrate, particularly a flexible printed wiring board substrate in various electronic devices.

Abstract

A polyester-imide precursor characterized by having repeating units represented by the following formula (1). (In the formula (1), Ar is the tetravalent aromatic group represented by the formula (2) and B1 is an ester structure having a specific structure.)

Description

ポリエステルイミド前駆体及びポリエステルイミドPolyesterimide precursor and polyesterimide
 本発明は、フレキシブルプリント配線板などの積層板に使用するポリエステルイミド前駆体及びポリエステルイミドに関する。 The present invention relates to a polyesterimide precursor and a polyesterimide used for a laminated board such as a flexible printed wiring board.
 ポリイミドは優れた耐熱性のみならず、耐薬品性、耐放射線性、電気絶縁性、優れた機械的性質などの特性を併せ持つことから、FPC(Flexible Printed Circuit)基板、TAB(Tape Automated Bonding)用基材、半導体素子の保護膜、集積回路の層間絶縁膜など、様々な電子デバイスに広く利用されている。また、ポリイミドはこれらの特性以外にも、製造方法の簡便さ、極めて高い膜純度、といったことから、近年、益々その重要性が高まっている。 Polyimide not only has excellent heat resistance, but also has properties such as chemical resistance, radiation resistance, electrical insulation, and excellent mechanical properties, so it is used for FPC (Flexible Printed Circuit) substrates and TAB (Tape Automated Bonding). Widely used in various electronic devices such as base materials, protective films for semiconductor elements, and interlayer insulating films for integrated circuits. In addition to these characteristics, polyimide has become increasingly important in recent years because of its simplicity of manufacturing method and extremely high film purity.
 電子機器の軽薄短小化が進むにつれて、ポリイミドへの要求特性も年々厳しさを増し、ハンダ耐熱性だけに留まらず、熱サイクルや吸湿に対するポリイミドフィルムの寸法安定性、透明性、金属基板との接着強度、成型加工性、スルーホール等の微細加工性など、複数の特性を同時に満足する多機能性ポリイミド材料が求められるようになってきている。 As electronic devices become lighter, thinner, and more demanding, the demands on polyimide have become stricter year by year. Not only solder heat resistance, but also the dimensional stability of polyimide film against thermal cycling and moisture absorption, transparency, and adhesion to metal substrates There has been a demand for multifunctional polyimide materials that simultaneously satisfy a plurality of characteristics such as strength, moldability, and fine workability such as through holes.
 近年、FPC基板としてのポリイミドの需要が飛躍的に増加している。FPCの原反である銅張積層板及びFCCL(Flexible Copper Clad Laminate)の構成は主に3つの様式に分類される。すなわち、1)ポリイミド層(以下「ポリイミドフィルム」ともいう)と銅箔とをエポキシ系接着剤などを用いて貼り付ける3層タイプ、2)銅箔にポリイミド溶液を塗布後、乾燥又は、ポリイミド前駆体溶液を塗布後、乾燥、イミド化するか、あるいは蒸着・スパッタリングなどによりポリイミド層上に銅層を形成する無接着剤2層タイプ、3)接着層として熱可塑性ポリイミドを用いる擬似2層タイプ、が知られている。ポリイミド層に高度な寸法安定性が要求される用途では、接着剤を使用しない2層FCCLが有利である。 In recent years, the demand for polyimide as an FPC substrate has increased dramatically. The composition of the copper clad laminate and FCCL (Flexible Copper Clad Laminate), which are the raw materials of FPC, are mainly classified into three types. That is, 1) a three-layer type in which a polyimide layer (hereinafter also referred to as “polyimide film”) and a copper foil are attached using an epoxy adhesive, etc., 2) a polyimide solution is applied to the copper foil, and then dried or a polyimide precursor After applying the body solution, dry, imidize, or form a copper layer on the polyimide layer by vapor deposition / sputtering, etc. Non-adhesive two-layer type, 3) Pseudo two-layer type using thermoplastic polyimide as the adhesive layer, It has been known. In applications where a high degree of dimensional stability is required for the polyimide layer, a two-layer FCCL without an adhesive is advantageous.
 FPC基板としてのポリイミドは、実装工程における様々な熱サイクルに曝されて寸法変化が起こる。これをできるだけ抑えるためには、ポリイミドのガラス転移温度(Tg)が工程温度よりも高いことに加えて、ガラス転移温度以下での線熱膨張係数ができるだけ低く、金属箔の線熱膨張係数と整合していることが望ましい。後述するように、ポリイミド層の線熱膨張係数の制御は、2層FCCL製造工程中に発生する残留応力の低減の観点からも、重要である。また、FPC基板では安全性の観点から、高難燃性のポリイミドの開発が望まれている。 The polyimide as the FPC board undergoes dimensional changes when exposed to various thermal cycles in the mounting process. In order to suppress this as much as possible, in addition to the glass transition temperature (Tg) of the polyimide being higher than the process temperature, the coefficient of linear thermal expansion below the glass transition temperature is as low as possible, matching the coefficient of linear thermal expansion of the metal foil. It is desirable that As will be described later, the control of the linear thermal expansion coefficient of the polyimide layer is important from the viewpoint of reducing the residual stress generated during the two-layer FCCL manufacturing process. In addition, for FPC boards, development of highly flame-retardant polyimide is desired from the viewpoint of safety.
 多くのポリイミドは、有機溶媒に不溶で、ガラス転移温度以上でも溶融しないため、ポリイミドそのものを成型加工することは通常容易ではない。そのため、ポリイミドは一般に、無水ピロメリット酸(PMDA)などの芳香族テトラカルボン酸二無水物と4,4’-オキシジアニリン(ODA)などの芳香族ジアミンとを、ジメチルアセトアミド(DMAc)などの非プロトン性極性有機溶媒中で等モル反応させて、先ず高重合度のポリイミド前駆体溶液を重合し、このポリイミド前駆体溶液を金属箔、例えば銅箔上に塗布し、250℃~400℃で加熱し、脱水閉環(イミド化)して製膜される。 Many polyimides are insoluble in organic solvents and do not melt above the glass transition temperature, so it is usually not easy to mold the polyimide itself. Therefore, polyimide generally includes an aromatic tetracarboxylic dianhydride such as pyromellitic anhydride (PMDA) and an aromatic diamine such as 4,4′-oxydianiline (ODA), and dimethylacetamide (DMAc). First, a polyimide precursor solution having a high degree of polymerization is polymerized in an aprotic polar organic solvent to polymerize the polyimide precursor solution, and this polyimide precursor solution is applied onto a metal foil, for example, a copper foil. The film is formed by heating and dehydration ring closure (imidization).
 残留応力は、高温でのイミド化反応後に、金属/ポリイミド積層板を室温へ冷却する過程で発生し、FCCLのカーリング、剥離、膜の割れなど、深刻な問題がしばしば起こる。また、ポリイミド溶液を用いた場合においても、乾燥-冷却工程において、ポリイミド前駆体溶液を用いた場合と同様に、残留応力の問題が生じる。 Residual stress is generated in the process of cooling the metal / polyimide laminate to room temperature after the imidization reaction at a high temperature, and serious problems such as FCCL curling, peeling, and film cracking often occur. Even when the polyimide solution is used, the problem of residual stress occurs in the drying-cooling process, as in the case of using the polyimide precursor solution.
 残留応力低減の方策として、絶縁膜であるポリイミド自身を低線熱膨張係数化することが有効である。殆どのポリイミドでは、線熱膨張係数が40ppm/℃~100ppm/℃の範囲にあり、金属箔、例えば、銅箔の線熱膨張係数17ppm/℃よりもはるかに大きいため、銅箔の値に近い、およそ20ppm/℃以下の線熱膨張係数を示す、ポリイミドの研究開発が行われている。 As a measure for reducing the residual stress, it is effective to reduce the coefficient of linear thermal expansion of the polyimide itself, which is an insulating film. Most polyimides have a linear thermal expansion coefficient in the range of 40 ppm / ° C. to 100 ppm / ° C., which is much larger than that of metal foil, for example, copper foil, 17 ppm / ° C. The research and development of polyimide, which exhibits a coefficient of linear thermal expansion of about 20 ppm / ° C. or less, has been conducted.
 現在、実用的なポリイミド材料としては3,3’,4,4’-ビフェニルテトラカルボン酸二無水物とp-フェニレンジアミンから形成されるポリイミドがよく知られている。このポリイミドフィルムは、膜厚や作製条件にもよるが、5ppm/℃~10ppm/℃と非常に低い線熱膨張係数を示すが、低吸湿膨張係数は示さない(非特許文献1参照)。 Currently, a polyimide formed from 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and p-phenylenediamine is well known as a practical polyimide material. Although this polyimide film shows a very low linear thermal expansion coefficient of 5 ppm / ° C. to 10 ppm / ° C., depending on the film thickness and production conditions, it does not show a low hygroscopic expansion coefficient (see Non-Patent Document 1).
 ポリイミドの寸法安定性は、熱サイクルだけでなく吸湿に対しても要求される。従来のポリイミドでは2質量%~3質量%も水を吸湿する。絶縁層の吸湿による寸法変化に伴う回路の位置ずれは、高密度配線や多層配線にとって深刻な問題である。ポリイミド/導体界面でのコロージョン、イオンマイグレーション、絶縁破壊など、電気特性の低下によって更に深刻な問題を引き起こす恐れがある。そのため、絶縁膜としてのポリイミド層はできるだけ吸湿膨張係数が低いことが求められている。 Dimensional stability of polyimide is required not only for thermal cycling but also for moisture absorption. Conventional polyimide absorbs 2 to 3% by mass of water. Circuit misalignment due to dimensional changes due to moisture absorption of the insulating layer is a serious problem for high-density wiring and multilayer wiring. A serious problem may be caused by deterioration of electrical characteristics such as corrosion at the polyimide / conductor interface, ion migration, and dielectric breakdown. Therefore, the polyimide layer as the insulating film is required to have a hygroscopic expansion coefficient as low as possible.
 低吸湿膨張係数を実現するため、例えば式(20)で表される骨格中にエステル構造を有する酸二無水物を用いたポリエステルイミドが有効であると報告されている(特許文献1参照)。
Figure JPOXMLDOC01-appb-C000020
In order to realize a low hygroscopic expansion coefficient, for example, it has been reported that a polyesterimide using an acid dianhydride having an ester structure in the skeleton represented by the formula (20) is effective (see Patent Document 1).
Figure JPOXMLDOC01-appb-C000020
 しかしながら、低吸湿膨張係数を実現するために酸二無水物として一般式(20)、ジアミンとして式(21)~式(23)を用いて作製したポリエステルイミドフィルムは、ジアミンが高屈曲構造を有するため高線熱膨張係数となるだけでなく、それらの組み合わせからなるポリエステルイミドフィルムは可燃性フィルムとなると考えられる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
However, the polyesterimide film produced using the general formula (20) as the acid dianhydride and the formulas (21) to (23) as the diamine in order to realize a low hygroscopic expansion coefficient, the diamine has a highly flexible structure. Therefore, it is considered that not only a high linear thermal expansion coefficient but also a polyesterimide film made of a combination thereof becomes a combustible film.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 ここで、ジアミンとして式(24)のような剛直な構造を有するジアミンを用いると低線熱膨張係数となるが、その剛直性のため高弾性率となり、低反発性が求められる用途において好ましくなく、さらに接着性(金属箔との引き剥がし強さ)が低下すると推測される。
Figure JPOXMLDOC01-appb-C000024
Here, when a diamine having a rigid structure such as formula (24) is used as the diamine, the coefficient of thermal expansion is low, but because of its rigidity, it has a high elastic modulus, which is not preferable in applications where low resilience is required. Further, it is presumed that the adhesion (peeling strength with the metal foil) is further lowered.
Figure JPOXMLDOC01-appb-C000024
 そこでさらに、式(19)で表される酸二無水物(以下、TABP)を使用したポリエステルイミドも報告されている(特許文献2参照)。
Figure JPOXMLDOC01-appb-C000025
Therefore, a polyesterimide using an acid dianhydride (hereinafter referred to as TABP) represented by the formula (19) has also been reported (see Patent Document 2).
Figure JPOXMLDOC01-appb-C000025
 特許文献2中に開示されているジアミンと上記酸二無水物により得られるポリエステルイミドは、低熱膨張係数と低吸水性(1.2%~1.9%)を同時に達成することの記載はある。しかし、吸水率1.2%のポリエステルイミドフィルムにおいては、低吸湿膨張係数(8ppm/%RH以下、30%RH-70%RH)を満足することは難しいと考えられる。また、薄膜ポリイミドフィルムからなるFPC基板の加工工程において、ポリイミドフィルム裂けによる歩留まりの低下を避けるために、ポリイミドフィルムが高引裂き強度であることが求められている中で、上記文献は、引裂き強度については開示されていない。また、記載されているポリエステルイミドの組成では高引裂き強度を達成することができないと考えられる。また、式(21)や式(25)のような屈曲性分子を用いているためガラス転移温度も低いと考えられる。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
There is a description that the polyesterimide obtained from the diamine and the acid dianhydride disclosed in Patent Document 2 achieves a low thermal expansion coefficient and a low water absorption (1.2% to 1.9%) at the same time. . However, it is considered difficult for a polyesterimide film having a water absorption rate of 1.2% to satisfy a low hygroscopic expansion coefficient (8 ppm /% RH or less, 30% RH-70% RH). Moreover, in the processing process of the FPC board which consists of a thin film polyimide film, in order to avoid the fall of the yield by a polyimide film tear, it is calculated | required that a polyimide film is high tear strength, The said literature is about tear strength. Is not disclosed. Also, it is believed that high tear strength cannot be achieved with the described polyesterimide composition. Moreover, since the flexible molecule | numerator like Formula (21) and Formula (25) is used, it is thought that a glass transition temperature is also low.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 一方、ジアミンにエステル構造を有する化合物を使用するポリエステルイミドも報告されている(特許文献3参照)。しかし、やはりこの場合も上記と同様に高引裂き強度を得ることができないと考えられる。 On the other hand, a polyesterimide using a compound having an ester structure as a diamine has also been reported (see Patent Document 3). However, in this case as well, it is considered that high tear strength cannot be obtained in the same manner as described above.
 また、TABPを用いることによる不具合が生じる可能性もある。エステル構造を有する酸二無水物を製造する一般的な方法は、ベンゼンやトルエン中、無水トリメリット酸クロリドとジオールとを反応させる方法(特許文献4)や、フェノール類の低級アルカン酸エステルと無水トリメリット酸とのエステル交換反応(特許文献5)が知られており、これらの方法により、TABPの粗結晶が得られる。しかしながら、得られた粗結晶を用いて芳香族ジアミンと共重合させると、得られるポリイミド前駆体溶液は、一部ゲル化が生じ、またそのポリイミド前駆体溶液を用いてポリイミドフィルムを作製すると、ポリイミドフィルムの機械物性が著しく低下するという不具合が生じる可能性がある。 In addition, there is a possibility that problems may occur due to the use of TABP. A general method for producing an acid dianhydride having an ester structure is a method of reacting trimellitic anhydride chloride with a diol in benzene or toluene (Patent Document 4), or a lower alkanoic acid ester of phenol and anhydrous. A transesterification reaction with trimellitic acid (Patent Document 5) is known, and a TABP crude crystal can be obtained by these methods. However, when the obtained crude crystals are used for copolymerization with an aromatic diamine, the resulting polyimide precursor solution partially gels, and when a polyimide film is produced using the polyimide precursor solution, polyimide is obtained. There is a possibility that the mechanical properties of the film are significantly deteriorated.
 このように、重合反応性や製膜加工性を保持したまま銅箔同等の低線熱膨張係数、高難燃性、低吸湿膨張係数(8ppm/%RH以下、30%RH-70%RH)、可撓性、ハンダ耐熱性、高ガラス転移温度、高接着性、低弾性率を併せ持つ上に、高引裂き強度を達成するポリイミドを得ることは分子設計上容易ではなく、このような要求特性を満足する実用的な材料は今のところ知られていないのが現状である。
特開平10-70157号公報 特開2006-336011号公報 特許第3712164号公報 特公昭43-5911号公報 特開平07-41472号公報 Macromolecules,29,7897(1996)
Thus, while maintaining the polymerization reactivity and film forming processability, it has the same low linear thermal expansion coefficient, high flame retardancy, and low hygroscopic expansion coefficient (8 ppm /% RH or less, 30% RH-70% RH) as copper foil. In addition to flexibility, solder heat resistance, high glass transition temperature, high adhesion, and low elastic modulus, it is not easy in terms of molecular design to obtain a polyimide that achieves high tear strength. At present, no satisfactory practical materials are known.
Japanese Patent Laid-Open No. 10-70157 JP 2006-336011 A Japanese Patent No. 3712164 Japanese Patent Publication No. 43-5911 JP 07-41472 A Macromolecules, 29, 7897 (1996).
 本発明はかかる点に鑑みてなされたものであり、高い難燃性、低吸湿膨張係数、銅箔同等の低線熱膨張係数、高ガラス転移温度、高接着性、低弾性率、高引裂き強度を併せ持つポリエステルイミドを提供することを目的とする。 The present invention has been made in view of such points, and has high flame retardancy, low hygroscopic expansion coefficient, low linear thermal expansion coefficient equivalent to copper foil, high glass transition temperature, high adhesion, low elastic modulus, and high tear strength. It aims at providing the polyesterimide which has both.
 本発明のポリエステルイミド前駆体は、下記式(1)で表される反復単位を有することを特徴とする。
Figure JPOXMLDOC01-appb-C000028
(式(1)中、Arは式(2)で表される4価の芳香族基であり、Bは式(3)~式(9)の少なくとも1つより選択される2価の芳香族基である。Rは炭素数1~6のアルキル基を表す。R~Rは炭素数1~6のアルキル基、水素原子を表し、それぞれ独立であり、同じであっても異なっていてもよい。Rは炭素数1~6のアルキル基を表す。R~Rは炭素数1~6のアルキル基、水素原子を表す。)
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000036
 
The polyesterimide precursor of the present invention has a repeating unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000028
(In the formula (1), Ar is a tetravalent aromatic group represented by the formula (2), and B 1 is a divalent fragrance selected from at least one of the formulas (3) to (9). R 1 represents an alkyl group having 1 to 6 carbon atoms, R 2 to R 4 represent an alkyl group having 1 to 6 carbon atoms and a hydrogen atom, which are independent of each other, and may be the same or different R 5 represents an alkyl group having 1 to 6 carbon atoms, and R 6 to R 9 represent an alkyl group having 1 to 6 carbon atoms and a hydrogen atom.)
Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-C000030

Figure JPOXMLDOC01-appb-C000031

Figure JPOXMLDOC01-appb-C000032

Figure JPOXMLDOC01-appb-C000033

Figure JPOXMLDOC01-appb-C000034

Figure JPOXMLDOC01-appb-C000035

Figure JPOXMLDOC01-appb-C000036
 本発明のポリエステルイミド前駆体においては、前記ポリエステルイミド前駆体中、式(1)中のBが式(3)または式(4)で表される反復単位であることが好ましく、さらに式(4)であることがより好ましく、式(4)においてR~Rは水素原子を選択した式(10)が特に好ましい。
Figure JPOXMLDOC01-appb-C000037
In the polyesterimide precursor of the present invention, in the polyesterimide precursor, B 1 in the formula (1) is preferably a repeating unit represented by the formula (3) or the formula (4). 4) is more preferable, and in Formula (4), R 2 to R 4 are particularly preferably Formula (10) in which a hydrogen atom is selected.
Figure JPOXMLDOC01-appb-C000037
 本発明のポリエステルイミド前駆体は、下記式(11)及び式(12)で表される反復単位を有し、式(11)及び式(12)のモル比が式(11)/式(12)=20/80~80/20の割合であることを特徴とする。
Figure JPOXMLDOC01-appb-C000038
(式(11)及び式(12)中、Arは式(2)で表される4価の芳香族基である。式(12)中、Bは式(13)から式(17)の少なくとも1つより選択される2価の芳香族基であり、R10~R18は炭素数1~6のアルキル基、水素原子を表し、それぞれ独立であり、同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
The polyesterimide precursor of the present invention has repeating units represented by the following formula (11) and formula (12), and the molar ratio of formula (11) and formula (12) is formula (11) / formula (12 ) = 20/80 to 80/20.
Figure JPOXMLDOC01-appb-C000038
(In the formula (11) and the formula (12), Ar is a tetravalent aromatic group represented by the formula (2). In the formula (12), B 2 is represented by the formulas (13) to (17). Is a divalent aromatic group selected from at least one, and R 10 to R 18 each represents an alkyl group having 1 to 6 carbon atoms or a hydrogen atom, and each is independent and may be the same or different Good.)
Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 本発明のポリエステルイミド前駆体においては、前記ポリエステルイミド前駆体中、式(12)中のBが式(16)、式(17)または式(18)で表される反復単位であることが好ましく、式(16)がより好ましい。
Figure JPOXMLDOC01-appb-C000045
In the polyesterimide precursor of the present invention, B 2 in the formula (12) in the polyesterimide precursor is a repeating unit represented by the formula (16), the formula (17), or the formula (18). Preferably, Formula (16) is more preferable.
Figure JPOXMLDOC01-appb-C000045
 本発明のポリエステルイミド前駆体においては、重量平均分子量Mwが3万以上40万以下であることが好ましい。 In the polyesterimide precursor of the present invention, the weight average molecular weight Mw is preferably 30,000 to 400,000.
 本発明のポリエステルイミド前駆体において、該ポリエステルイミド前駆体を得る際に用いる式(19)で表されるエステル基含有テトラカルボン酸二無水物が、示差走査熱量計(DSC)にて示される融解熱ピーク温度(a)℃、融解熱ピークへの立ち上がり開始温度とピーク傾きが一定に落ち着いた温度を接点とする接線の交点となる温度を(b)℃とし、温度幅ΔT=((b)-(a))℃とするとき、(a)≧322℃及びΔT≦5℃を満たすことを特徴とする。
Figure JPOXMLDOC01-appb-C000046
In the polyesterimide precursor of the present invention, the ester group-containing tetracarboxylic dianhydride represented by the formula (19) used for obtaining the polyesterimide precursor is melted by a differential scanning calorimeter (DSC). Thermal peak temperature (a) ° C, temperature at the intersection of tangents with the temperature at which the rise to the melting heat peak starts and the temperature at which the peak slope settles constant is (b) ° C, and the temperature range ΔT = ((b) -(A)) When it is set to ° C, (a) ≥ 322 ° C and ΔT ≤ 5 ° C are satisfied.
Figure JPOXMLDOC01-appb-C000046
 本発明のポリエステルイミドは、上記ポリエステルイミド前駆体をイミド化して得られることを特徴とする。 The polyesterimide of the present invention is obtained by imidizing the above polyesterimide precursor.
 本発明のポリエステルイミドの製造方法は、上記ポリエステルイミド前駆体を加熱あるいは脱水試薬を用いてイミド化させてポリエステルイミドを得ることを特徴とする。 The method for producing a polyesterimide according to the present invention is characterized in that the polyesterimide precursor is heated or imidized using a dehydrating reagent to obtain a polyesterimide.
 本発明の積層板は、ポリエステルイミド層と金属層を有し、該ポリエステルイミド層が上記ポリエステルイミドから構成されることを特徴とする。 The laminate of the present invention has a polyesterimide layer and a metal layer, and the polyesterimide layer is composed of the polyesterimide.
 本発明の積層板は、上記ポリエステルイミド前駆体を金属箔上に塗布し、乾燥後、加熱あるいは脱水試薬を用いてイミド化することによって得られることを特徴とする。 The laminate of the present invention is obtained by applying the polyesterimide precursor on a metal foil, drying, and imidizing with heating or a dehydrating reagent.
 本発明のフレキシブルプリント配線板は、上記積層板の金属層が配線にパターニングされてなることを特徴とする。 The flexible printed wiring board of the present invention is characterized in that the metal layer of the laminated board is patterned into wiring.
 本発明に係るポリエステルイミド前駆体より得られるポリエステルイミドは、高い難燃性、低吸湿膨張係数、銅箔同等の低線熱膨張係数、高ガラス転移温度、高接着性、低弾性率、高引裂き強度を併せ持つという効果を有する。 The polyesterimide obtained from the polyesterimide precursor according to the present invention has high flame retardancy, low hygroscopic expansion coefficient, low linear thermal expansion coefficient equivalent to copper foil, high glass transition temperature, high adhesion, low elastic modulus, high tearing. It has the effect of having strength.
示差走査熱量計にて示されるプロファイルを示す図である。It is a figure which shows the profile shown with a differential scanning calorimeter.
 ポリイミドを低線熱膨張化するための分子設計として、主鎖骨格をできるだけ直線状で剛直に(内部回転により多様なコンホメーションをとりにくく)する必要がある。しかし一方で、これによりポリマー鎖の絡み合いが減少し、フィルムが脆弱化する恐れがある。また、ポリイミド骨格へのエーテル構造などの屈曲性単位の過大な導入は、膜靭性の向上や金属箔との接着強度の向上には大きく寄与するが、低線熱膨張特性の発現を妨げることが予想される。 As a molecular design for low linear thermal expansion of polyimide, it is necessary to make the main chain skeleton as straight and rigid as possible (various conformations are difficult to take due to internal rotation). However, on the other hand, this reduces the entanglement of the polymer chains and may cause the film to become brittle. In addition, excessive introduction of a flexible unit such as an ether structure into the polyimide skeleton greatly contributes to improvement in film toughness and adhesion strength with metal foil, but it hinders the expression of low linear thermal expansion characteristics. is expected.
 本発明において着目したエステル構造は、エーテル構造に比べて内部回転障壁が高く、コンホメーション変化が比較的妨げられているため、剛直構造単位として振舞い、且つポリイミド主鎖にある程度の柔軟さも付与し、可撓性のフィルムを与えることが期待される。 The ester structure focused on in the present invention has a higher internal rotation barrier than the ether structure, and the change in conformation is relatively hindered. Therefore, the ester structure behaves as a rigid structural unit and imparts some flexibility to the polyimide main chain. It is expected to give a flexible film.
 また、エステル構造はアミド構造やイミド構造よりも分極率が低いため、ポリイミドへのエステル構造の導入は低吸湿膨張係数化にも有利である。 Also, since the ester structure has a lower polarizability than the amide structure or imide structure, the introduction of the ester structure into the polyimide is advantageous for reducing the hygroscopic expansion coefficient.
 本発明においては、酸二無水物及びジアミンとして特定の芳香族骨格及びエステル構造を有するモノマーを選定し、ポリイミドへ特定の芳香族骨格及びエステル構造を導入することで、下記式(1)で表される反復単位を有するポリエステルイミド前駆体を得ることができる。これにより、本発明に係るポリエステルイミド前駆体は、高難燃性、低吸湿膨張係数、銅箔同等の低線熱膨張係数、高ガラス転移温度、高接着性、低弾性率、及び高引裂き強度を同時に実現した。
Figure JPOXMLDOC01-appb-C000047
式(1)中、Arは式(2)で表される4価の芳香族基であり、Bは式(3)~式(9)の少なくとも1つより選択される2価の芳香族基である。Rは炭素数1~6のアルキル基を表す。R~Rは炭素数1~6のアルキル基、水素原子を表し、それぞれ独立であり、同じであっても異なっていてもよい。Rは炭素数1~6のアルキル基を表す。R~Rは炭素数1~6のアルキル基、水素原子を表す。
Figure JPOXMLDOC01-appb-C000048
 
Figure JPOXMLDOC01-appb-C000049
 
Figure JPOXMLDOC01-appb-C000050
 
Figure JPOXMLDOC01-appb-C000051
 
Figure JPOXMLDOC01-appb-C000052
 
Figure JPOXMLDOC01-appb-C000053
 
Figure JPOXMLDOC01-appb-C000054
 
Figure JPOXMLDOC01-appb-C000055
 
In the present invention, a monomer having a specific aromatic skeleton and an ester structure is selected as the acid dianhydride and diamine, and the specific aromatic skeleton and the ester structure are introduced into the polyimide. A polyesterimide precursor having a repeating unit can be obtained. Thereby, the polyesterimide precursor according to the present invention has high flame retardancy, low hygroscopic expansion coefficient, low linear thermal expansion coefficient equivalent to copper foil, high glass transition temperature, high adhesion, low elastic modulus, and high tear strength. Realized at the same time.
Figure JPOXMLDOC01-appb-C000047
In the formula (1), Ar is a tetravalent aromatic group represented by the formula (2), and B 1 is a divalent aromatic group selected from at least one of the formulas (3) to (9) It is a group. R 1 represents an alkyl group having 1 to 6 carbon atoms. R 2 to R 4 each represent an alkyl group having 1 to 6 carbon atoms or a hydrogen atom, and are independent and may be the same or different. R 5 represents an alkyl group having 1 to 6 carbon atoms. R 6 to R 9 each represents an alkyl group having 1 to 6 carbon atoms or a hydrogen atom.
Figure JPOXMLDOC01-appb-C000048

Figure JPOXMLDOC01-appb-C000049

Figure JPOXMLDOC01-appb-C000050

Figure JPOXMLDOC01-appb-C000051

Figure JPOXMLDOC01-appb-C000052

Figure JPOXMLDOC01-appb-C000053

Figure JPOXMLDOC01-appb-C000054

Figure JPOXMLDOC01-appb-C000055
 本発明に係るポリエステルイミド前駆体は、エステル基含有テトラカルボン酸二無水物モノマー及びエステル基含有ジアミンモノマーを用いることにより製造される。ジアミンと酸二無水物の反応位置により4種類の異性体が考えられるが、イミド化後は、4種類の異性体から同じ生成物が得られるため、得られるポリエステルイミド前駆体は一般式(1)で表される。 The polyesterimide precursor according to the present invention is produced by using an ester group-containing tetracarboxylic dianhydride monomer and an ester group-containing diamine monomer. Depending on the reaction position of the diamine and acid dianhydride, four types of isomers can be considered. Since the same product is obtained from the four types of isomers after imidation, the resulting polyesterimide precursor is represented by the general formula (1 ).
 本発明のポリエステルイミド前駆体を重合する際、エステル基を有するモノマーとして式(19)で表されるエステル構造を有するテトラカルボン酸二無水物(以下、TABP)を必須成分として用い、式(26)~式(33)より選択されるジアミンのうち少なくとも1種類が用いられる。Rは炭素数1~6のアルキル基を表す。R~Rは炭素数1~6のアルキル基、水素原子を表し、それぞれ独立であり、同じであっても異なっていてもよい。Rは炭素数1~6のアルキル基を表す。R~Rは炭素数1~6のアルキル基、水素原子を表す。ここで、低弾性率、接着性の観点から、式(26)、式(27)が好ましく、さらに式(27)がより好ましく、特に式(33)が好ましい。
Figure JPOXMLDOC01-appb-C000056
 
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
 
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
When polymerizing the polyesterimide precursor of the present invention, a tetracarboxylic dianhydride (hereinafter referred to as TABP) having an ester structure represented by the formula (19) is used as an essential component as a monomer having an ester group. ) To at least one of diamines selected from the formula (33) is used. R 1 represents an alkyl group having 1 to 6 carbon atoms. R 2 to R 4 each represent an alkyl group having 1 to 6 carbon atoms or a hydrogen atom, and are independent and may be the same or different. R 5 represents an alkyl group having 1 to 6 carbon atoms. R 6 to R 9 each represents an alkyl group having 1 to 6 carbon atoms or a hydrogen atom. Here, from the viewpoint of low elastic modulus and adhesiveness, Formula (26) and Formula (27) are preferable, Formula (27) is more preferable, and Formula (33) is particularly preferable.
Figure JPOXMLDOC01-appb-C000056

Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060

Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
 さらに、キュア後の積層板の反り、得られるポリエステルイミドフィルムの引裂き強度の観点から、本発明のポリエステルイミド前駆体を重合する際、TABPと式(33)で表されるエステル構造を有するジアミン(以下、BPIP)を必須成分として用い、さらに、式(34)~式(39)より選択されるジアミンのうち少なくとも1種類を用いることが好ましい。また、式(37)、式(38)、式(39)がより好ましく、得られるポリエステルイミドフィルムの引裂き強度の観点から特に式(37)が好ましい。ここで、R10~R18は炭素数1~6のアルキル基、水素原子を表し、それぞれ独立であり、同じであっても異なっていてもよい。 Furthermore, from the viewpoint of the warp of the laminated board after curing and the tear strength of the resulting polyesterimide film, when polymerizing the polyesterimide precursor of the present invention, a diamine having an ester structure represented by TABP and formula (33) ( Hereinafter, it is preferable to use BPIP) as an essential component and to use at least one diamine selected from the formulas (34) to (39). Moreover, Formula (37), Formula (38), and Formula (39) are more preferable, and Formula (37) is particularly preferable from the viewpoint of the tear strength of the resulting polyesterimide film. Here, R 10 to R 18 represent an alkyl group having 1 to 6 carbon atoms and a hydrogen atom, and are independent and may be the same or different.
 一般的に、銅箔と同等の線熱膨張係数を有しているポリエステルイミドフィルムは、キュア後の反りが少ないことが知られているが、キュア後の反りを一概に線熱膨張係数のみで判断できないという知見を得ており、銅箔と同等の線熱膨張係数を有し、かつ反りが少ないものがFPC基板の加工工程においてより好ましい。
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
In general, it is known that a polyesterimide film having a linear thermal expansion coefficient equivalent to that of copper foil is less warped after curing. The knowledge that it cannot be determined has been obtained, and the one having a linear thermal expansion coefficient equivalent to that of the copper foil and less warping is more preferable in the processing step of the FPC board.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
 ここで、モル比を一般式(11)/一般式(12)=20/80~80/20の割合とするためには、TABPと全ジアミンを約1:1の比率で混合し、全ジアミンを100mol%としたとき、BPIPを、ジアミンモル比20mol%~80mol%用い、さらに、一般式(34)~一般式(39)より選択されるエステル構造を有するジアミンのうち少なくとも1種類を、ジアミンモル比20mol%~80mol%で用いる。 Here, in order to obtain a molar ratio of the general formula (11) / general formula (12) = 20/80 to 80/20, TABP and the total diamine are mixed at a ratio of about 1: 1, Is 100 mol%, BPIP is used in a diamine molar ratio of 20 mol% to 80 mol%, and at least one diamine having an ester structure selected from the general formula (34) to the general formula (39) is used as the diamine molar ratio. Used at 20 mol% to 80 mol%.
 ここで、線熱膨張係数、キュア後の積層板の反り、得られるフィルムの引裂き強度の観点から、該モル比は一般式(11)/一般式(12)=20/80~80/20の割合であることが好ましく、一般式(11)/一般式(12)=30/70~70/30の割合であることがさらに好ましい。 Here, from the viewpoint of the linear thermal expansion coefficient, the warp of the laminated plate after curing, and the tear strength of the obtained film, the molar ratio is represented by the general formula (11) / general formula (12) = 20/80 to 80/20. A ratio is preferable, and a ratio of the general formula (11) / general formula (12) = 30/70 to 70/30 is more preferable.
 また、必須成分として用いるTABPは、ゲル成分のない高分子量体のポリイミド前駆体溶液を作ること、金属/ポリイミド積層体の接着強度、ポリイミドフィルムの引裂き強度の観点から、高純度であることが好ましい。具体的には、示差走査熱量計にて示される図1のプロファイルにおいて、融解熱のピーク温度を(a)℃とし、融解熱ピークへの立ち上がりが開始する温度を接点とする仮想接線と、融解熱ピークの略直線部分に沿う直線との交点となる温度を(b)℃とし、温度幅△T=((b)-(a))℃とするとき、(a)≧322℃及びΔT≦5℃を満足するTABPであることが好ましく、(a)≧325℃及びΔT≦4℃を満足するTABPであることがより好ましい。 Further, TABP used as an essential component is preferably highly pure from the viewpoint of making a high molecular weight polyimide precursor solution having no gel component, adhesive strength of the metal / polyimide laminate, and tear strength of the polyimide film. . Specifically, in the profile of FIG. 1 shown by the differential scanning calorimeter, the melting heat peak temperature is (a) ° C., the virtual tangent line with the temperature at which the rise to the melting heat peak starts and the melting point When the temperature at which the thermal peak intersects with the straight line along the substantially straight line portion is (b) ° C. and the temperature range ΔT = ((b) − (a)) ° C., (a) ≧ 322 ° C. and ΔT ≦ A TABP satisfying 5 ° C. is preferred, and a TABP satisfying (a) ≧ 325 ° C. and ΔT ≦ 4 ° C. is more preferred.
 本発明者は、TABPを高純度にする為に、TABPを精製する過程に着目し、下記を見出すに至った。すなわち、特定の溶媒、濃度、温度条件にて再結晶することにより、混在する式(40)で表される4,4’-ビフェノール誘導体や、式(41)で表される4,4’-ビフェノールと無水トリメリット酸クロリドが開環して反応して得られると推定されるオリゴマー体などが効率よく除去され、その後無水化加熱乾燥処理することにより、結晶中に付着している付着水及び結晶水が除去され、一部再結晶時に開環したテトラカルボン酸が無水化されて高純度のTABPが得られることを見出した。
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
(ここで、nは1~5である。)
The present inventor has focused on the process of purifying TABP in order to make TABP highly pure, and has found the following. That is, by recrystallization in a specific solvent, concentration, and temperature conditions, the 4,4′-biphenol derivative represented by the formula (40) mixed together and the 4,4′-form represented by the formula (41) are mixed. Oligomer bodies estimated to be obtained by ring-opening and reaction of biphenol and trimellitic anhydride chloride are efficiently removed, and then subjected to dehydration heat drying treatment, thereby adhering water adhering to the crystals and It was found that the water of crystallization was removed, and the tetracarboxylic acid that was partially opened during recrystallization was dehydrated to obtain high-purity TABP.
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
(Where n is 1 to 5)
 TABPは、純度の向上に伴い、示差走査熱量計(DSC)にて示される融解熱ピークの温度が高温側にシフトするとともに、融解熱ピークの温度を(a)℃とし、前記融解熱ピークへの立ち上がりが開始する温度を接点とする仮想接線と、前記融解熱ピークの略直線部分に沿う直線との交点となる温度を(b)℃としたときの(a)と(b)の温度差が小さくなる。 With TABP, as the purity increases, the temperature of the heat of fusion peak indicated by the differential scanning calorimeter (DSC) shifts to the high temperature side, and the temperature of the heat of fusion peak is (a) ° C. The temperature difference between (a) and (b) when the temperature at the intersection of the virtual tangent with the temperature at which the start of the rise starts as a contact and the straight line along the substantially straight line portion of the melting heat peak is (b) ° C. Becomes smaller.
 TABPは、有機溶媒中、無水トリメリット酸クロリドとジオールとの反応や、フェノール類の低級アルカン酸エステルとトリメリット酸又はその無水物とのエステル交換により得られる反応生成物を特定の溶媒、濃度、温度条件にて再結晶化し、その後無水化加熱乾燥処理することによって得られる。 TABP uses a reaction product obtained by reaction between trimellitic anhydride chloride and diol in an organic solvent, or transesterification of a lower alkanoic acid ester of phenol with trimellitic acid or its anhydride in a specific solvent, concentration. It is obtained by recrystallization under temperature conditions, followed by dehydration heat drying treatment.
 高純度のTABPを得るための再結晶に用いる溶媒としては、環状エステル構造を有するラクトン系溶媒、環状ケトン構造や環状カーボネート構造や環状スルホン構造を有する溶媒であることが好ましい。例として、α-メチレン-γ-バレロラクトン、α-メチレン-γ-ブチロラクトン、γ-メチレン-γ-ブチロラクトン、γ-バレロラクトン、γ-ブチロラクトン、シクロペンタノン、プロピレンカーボネート、エチレンカーボネート、スルホランが挙げられる。これらは単独、または2種以上を混合して用いることができる。これらの中で、γ-ブチロラクトン、γ-バレロラクトン、スルホランを使用することが、溶解性、再結晶収率や経済性の観点から好ましい。 The solvent used for recrystallization to obtain high-purity TABP is preferably a lactone solvent having a cyclic ester structure, a solvent having a cyclic ketone structure, a cyclic carbonate structure, or a cyclic sulfone structure. Examples include α-methylene-γ-valerolactone, α-methylene-γ-butyrolactone, γ-methylene-γ-butyrolactone, γ-valerolactone, γ-butyrolactone, cyclopentanone, propylene carbonate, ethylene carbonate, sulfolane. It is done. These can be used alone or in admixture of two or more. Of these, γ-butyrolactone, γ-valerolactone, and sulfolane are preferably used from the viewpoints of solubility, recrystallization yield, and economic efficiency.
 溶媒の使用量としては、不純物の除去、再結晶収率を考慮すると、反応によって得られた生成物1質量部に対して1質量部~150質量部であり、特に4質量部~100質量部であることが好ましい。エステル基含有テトラカルボン酸二無水物と溶媒との溶液中におけるエステル基含有テトラカルボン酸二無水物の濃度を固形分濃度とした場合、固形分濃度は、50%以下となることが好ましく、収率の点からさらに20%以下であることが好ましい。 The amount of the solvent used is 1 to 150 parts by weight, particularly 4 to 100 parts by weight, based on 1 part by weight of the product obtained by the reaction, considering the removal of impurities and the recrystallization yield. It is preferable that When the concentration of the ester group-containing tetracarboxylic dianhydride in the solution of the ester group-containing tetracarboxylic dianhydride and the solvent is defined as the solid content concentration, the solid content concentration is preferably 50% or less. From the viewpoint of rate, it is preferably 20% or less.
 再結晶を行う際には、上述の濃度となるように所定量の溶媒と混合し、150℃~300℃まで加熱し、完全に溶解させる。その後、系を室温まで放置することにより得られる析出物を濾別する。この工程により、反応時に生成した式(40)で表される4,4‘-ビフェノール誘導体や式(41)で表される4,4‘-ビフェノールと無水トリメリット酸クロリドが開環して反応して得られると推定されるオリゴマー体などが濾液中に残存することにより効率よく除去される。
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
(ここで、nは1~5である。)
At the time of recrystallization, it is mixed with a predetermined amount of solvent so as to have the above-mentioned concentration, heated to 150 ° C. to 300 ° C., and completely dissolved. Thereafter, the precipitate obtained by allowing the system to stand at room temperature is filtered off. By this step, the 4,4′-biphenol derivative represented by the formula (40) generated during the reaction or the 4,4′-biphenol represented by the formula (41) and trimellitic anhydride chloride are opened to react. Oligomer bodies estimated to be obtained in this manner are efficiently removed by remaining in the filtrate.
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
(Where n is 1 to 5)
 濾別により得られた析出物を、窒素、ヘリウム、アルゴン等の不活性雰囲気下にて大気圧中もしくは、減圧下にて、昇温速度1℃/分~20℃/分、200℃~300℃の温度にて3時間以上無水化加熱処理することにより、結晶に付着している付着水及び結晶水の除去、一部再結晶時に開環したテトラカルボン酸の無水化が行われる。結晶中に付着している付着水及び結晶水の除去を効率よく行うには、100℃~130℃の温度にて30分~1時間保持した後に、200℃~300℃の温度にて3時間以上無水化加熱(脱水閉環反応)することが、より好ましい。また、昇温速度は、結晶物の加熱を均一にし、局所的に結晶物が高温になり脱炭酸などの分解反応が進行することを避けるという点から20℃/分以下であることが好ましい。 The precipitate obtained by filtration is heated at a rate of temperature increase of 1 ° C./min to 20 ° C./min, 200 ° C. to 300 ° C. under an inert atmosphere such as nitrogen, helium, argon, etc. in atmospheric pressure or under reduced pressure. By carrying out the dehydration heat treatment at a temperature of 3 ° C. for 3 hours or more, the adhering water adhering to the crystal and the water of crystallization are removed, and the tetracarboxylic acid that has been ring-opened at the time of recrystallization is dehydrated. In order to efficiently remove the adhering water and water of crystallization adhering to the crystal, it is held at a temperature of 100 ° C. to 130 ° C. for 30 minutes to 1 hour, and then at a temperature of 200 ° C. to 300 ° C. for 3 hours. It is more preferable to carry out dehydration heating (dehydration ring closure reaction) as described above. Further, the rate of temperature rise is preferably 20 ° C./min or less from the viewpoint that the heating of the crystal is made uniform and the crystal is locally heated to avoid a decomposition reaction such as decarboxylation.
 示差走査熱量計(DSC)にて示される融解熱ピーク温度(a)℃は、その物質の融点(mp)であり、322℃好ましくは325℃より高温側にシフトし、融解熱ピークへの立ち上がりが開始する温度を接点とする仮想接線と、融解熱ピークの略直線部分に沿う直線との交点となる温度を(b)℃としたときの(a)と(b)の温度差が5℃好ましくは4℃より狭くなることは、TABPの純度の向上と相関がある。これらの条件を満足することにより、高分子量であり、ゲル成分のないポリエステルイミド前駆体の重合が可能となる。 The melting heat peak temperature (a) ° C. indicated by the differential scanning calorimeter (DSC) is the melting point (mp) of the substance, shifts to a higher temperature side than 322 ° C., preferably 325 ° C., and rises to the melting heat peak. The temperature difference between (a) and (b) is 5 ° C., where (b) ° C. is the temperature at which the hypothetical tangent line with the temperature starting from the point of contact as the contact point and the straight line along the substantially straight line portion of the melting heat peak Preferably it becomes narrower than 4 degreeC, and there exists a correlation with the improvement of the purity of TABP. By satisfying these conditions, it is possible to polymerize a polyesterimide precursor having a high molecular weight and no gel component.
 また、低吸湿膨張係数を得るためにフッ素化モノマー(フッ素原子を含有するモノマー)などの高価なモノマーを使用せずに、上記のような特性を併せ持つポリイミドを低コストで製造することができる。 Also, it is possible to produce a polyimide having the above characteristics at a low cost without using an expensive monomer such as a fluorinated monomer (a monomer containing a fluorine atom) in order to obtain a low hygroscopic expansion coefficient.
 以下に本発明の実施の形態について詳細に説明するが、これらは本発明の実施形態の一例であり、これらの内容に限定されない。 Embodiments of the present invention will be described in detail below, but these are examples of the embodiments of the present invention and are not limited to these contents.
 本発明においては、エステル構造を有し、かつ特定の芳香族構造を有するモノマーの剛直性、疎水性という構造上の特徴に加え、適度な屈曲性をバランスよく配合したことから、銅箔/ポリエステルイミドの積層板、及びポリエステルイミドフィルムとした際に高難燃性、低吸湿膨張係数、銅箔同等の低線熱膨張係数、高ガラス転移温度、可撓性、高接着性、低弾性率、及び高引裂き強度を併せ持つ、従来の材料では得ることのできなかった物性を有する材料とすることができる。 In the present invention, in addition to the structural characteristics such as rigidity and hydrophobicity of a monomer having an ester structure and a specific aromatic structure, an appropriate flexibility is blended in a balanced manner. High flame retardancy, low hygroscopic expansion coefficient, low linear thermal expansion coefficient equivalent to copper foil, high glass transition temperature, flexibility, high adhesion, low elastic modulus when used as an imide laminate and polyesterimide film In addition, it is possible to obtain a material having physical properties that cannot be obtained by a conventional material and has both high tear strength.
<ポリエステルイミド前駆体の製造方法>
 本発明に係るポリエステルイミド前駆体を製造する方法は特に限定されず、公知の方法を適用することができる。より具体的には、以下の方法により得られる。
<Method for producing polyesterimide precursor>
The method for producing the polyesterimide precursor according to the present invention is not particularly limited, and a known method can be applied. More specifically, it is obtained by the following method.
 まずジアミンを反応溶媒に溶解し、これにテトラカルボン酸二無水物粉末を徐々に添加し、メカニカルスターラーを用い、0℃~100℃、好ましくは20℃~90℃で0.5時間~100時間好ましくは1時間~24時間攪拌する。この際、モノマー濃度は重合度の観点や、モノマーや生成するポリマーの溶解性の観点から、5質量%~50質量%が好ましく、10質量%~40質量%がより好ましく、特に10質量%~25質量%が好ましい。このモノマー濃度範囲で重合を行うことにより、均一で高重合度のポリエステルイミド前駆体溶液を得ることができる。ここで、得られるポリエステルイミド前駆体溶液は、請求項中に記載のポリエステルイミド前駆体と同一のものである。 First, a diamine is dissolved in a reaction solvent, tetracarboxylic dianhydride powder is gradually added thereto, and a mechanical stirrer is used at 0 ° C. to 100 ° C., preferably 20 ° C. to 90 ° C., for 0.5 hour to 100 hours. Preferably, stirring is performed for 1 hour to 24 hours. At this time, the monomer concentration is preferably 5% by mass to 50% by mass, more preferably 10% by mass to 40% by mass, and particularly preferably 10% by mass to 40% by mass from the viewpoint of the degree of polymerization and the solubility of the monomer and the polymer to be formed. 25 mass% is preferable. By carrying out polymerization in this monomer concentration range, a polyesterimide precursor solution having a uniform and high degree of polymerization can be obtained. Here, the obtained polyesterimide precursor solution is the same as the polyesterimide precursor described in the claims.
 ポリエステルイミドフィルムの重量平均分子量(Mw)は3万~40万が好ましく、3万~30万がより好ましい。また特に5万~20万が好ましい。ここで、靭性の観点から、3万以上が好ましく、5万以上がより好ましい。また、接着性、塗工性の観点から重量平均分子量(Mw)は40万以下が好ましく、30万以下がより好ましく、20万以下が特に好ましい。 The weight average molecular weight (Mw) of the polyesterimide film is preferably 30,000 to 400,000, more preferably 30,000 to 300,000. Particularly preferred is 50,000 to 200,000. Here, from the viewpoint of toughness, 30,000 or more is preferable, and 50,000 or more is more preferable. Further, from the viewpoint of adhesiveness and coating property, the weight average molecular weight (Mw) is preferably 400,000 or less, more preferably 300,000 or less, and particularly preferably 200,000 or less.
 ポリエステルイミドフィルムの要求特性及びポリエステルイミド前駆体の重合反応性を損なわない範囲で、TABPと併用可能な芳香族テトラカルボン酸二無水物としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、p-メチルフェニレンビス(トリメリット酸モノエステル酸無水物)、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、2,2’-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン酸二無水物、2,2’-ビス(3,4-ジカルボキシフェニル)プロパン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物などが挙げられる。また、これらを2種類以上併用することもできる。 Aromatic tetracarboxylic dianhydrides that can be used in combination with TABP within the range that does not impair the required characteristics of the polyesterimide film and the polymerization reactivity of the polyesterimide precursor include 3,3 ′, 4,4′-biphenyltetracarboxylic acid. Acid dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′ , 4,4'-biphenyl ether tetracarboxylic dianhydride, p-phenylenebis (trimellitic acid monoester acid anhydride), p-methylphenylenebis (trimellitic acid monoester acid anhydride), 3,3 ' , 4,4′-biphenylsulfonetetracarboxylic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropa Acid dianhydride, 2,2'-bis (3,4-carboxyphenyl) propanoic acid dianhydride, and the like 1,4,5,8-naphthalene tetracarboxylic dianhydride. Two or more of these may be used in combination.
 ポリエステルイミドフィルムの要求特性及びポリエステルイミド前駆体の重合反応性を損なわない範囲で、TABPと併用可能な脂肪族テトラカルボン酸二無水物としては、特に限定されないが、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、5-(ジオキソテトラヒドロフリル-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-テトラリン-1,2-ジカルボン酸無水物、テトラヒドロフラン-2,3,4,5-テトラカルボン酸二無水物、ビシクロ-3,3’,4,4’-テトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物などが挙げられる。また、これらを2種類以上併用することもできる。 The aliphatic tetracarboxylic dianhydride that can be used in combination with TABP is not particularly limited as long as the required properties of the polyesterimide film and the polymerization reactivity of the polyesterimide precursor are not impaired, but bicyclo [2.2.2]. Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 5- (dioxotetrahydrofuryl-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 4- (2 , 5-Dioxotetrahydrofuran-3-yl) -tetralin-1,2-dicarboxylic anhydride, tetrahydrofuran-2,3,4,5-tetracarboxylic dianhydride, bicyclo-3,3 ′, 4,4 '-Tetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid Such anhydrides. It is also possible to use two or more of these.
 本発明に係るポリエステルイミド前駆体の重合反応性、ポリエステルイミドの要求特性を著しく損なわない範囲で、一般式(26)~一般式(39)で表されるエステル構造を有するジアミンと併用可能な芳香族ジアミンとして、特に限定されないが、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,4-ジアミノキシレン、2,4-ジアミノデュレン、4,4’-ジアミノジフェニルメタン、4,4’-メチレンビス(2-メチルアニリン)、4,4’-メチレンビス(2-エチルアニリン)、4,4’-メチレンビス(2,6-ジメチルアニリン)、4,4’-メチレンビス(2,6-ジエチルアニリン)、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、2,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンズアニリド、ベンジジン、3,3’-ジヒドロキシベンジジン、3,3’-ジメトキシベンジジン、o-トリジン、m-トリジン、2,2’-ビス(トリフルオロメチル)ベンジジン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、p-ターフェニレンジアミンなどが挙げられる。また、これらを2種類以上併用することもできる。 Fragrance that can be used in combination with a diamine having an ester structure represented by the general formula (26) to the general formula (39) as long as the polymerization reactivity of the polyesterimide precursor according to the present invention and the required properties of the polyesterimide are not significantly impaired. The group diamine is not particularly limited, but p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, 2,4-diaminodurene, 4,4 '-Diaminodiphenylmethane, 4,4'-methylenebis (2-methylaniline), 4,4'-methylenebis (2-ethylaniline), 4,4'-methylenebis (2,6-dimethylaniline), 4,4' -Methylenebis (2,6-diethylaniline), 4,4'-diaminodiphenyl ether, 3,4'-diamy Diphenyl ether, 3,3'-diaminodiphenyl ether, 2,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminobenzophenone, 3,3'-diamino Benzophenone, 4,4′-diaminobenzanilide, benzidine, 3,3′-dihydroxybenzidine, 3,3′-dimethoxybenzidine, o-tolidine, m-tolidine, 2,2′-bis (trifluoromethyl) benzidine, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) ) Biphenyl, bis (4- (3-aminophenoxy) phenyl) sulfur , Bis (4- (4-aminophenoxy) phenyl) sulfone, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) Examples include hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, and p-terphenylenediamine. Two or more of these may be used in combination.
 本発明に係るポリエステルイミド前駆体の重合反応性、ポリエステルイミドの要求特性を著しく損なわない範囲で、一般式(26)~一般式(39)で表されるエステル構造を有するジアミンと併用可能な脂肪族ジアミンとしては特に限定されないが、例えば、4,4’-メチレンビス(シクロヘキシルアミン)、イソホロンジアミン、トランス-1,4-ジアミノシクロヘキサン、シス-1,4-ジアミノシクロヘキサン、1,4-シクロヘキサンビス(メチルアミン)、2,5-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、2,6-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、3,8-ビス(アミノメチル)トリシクロ[5.2.1.0]デカン、1,3-ジアミノアダマンタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、2,2-ビス(4-アミノシクロヘキシル)ヘキサフルオロプロパン、1,3-プロパンジアミン、1,4-テトラメチレンジアミン、1,5-ペンタメチレンジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミンが挙げられる。また、これらを2種類以上併用することもできる。 Fat that can be used in combination with a diamine having an ester structure represented by the general formula (26) to the general formula (39) as long as the polymerization reactivity of the polyesterimide precursor according to the present invention and the required properties of the polyesterimide are not significantly impaired. The group diamine is not particularly limited. For example, 4,4′-methylenebis (cyclohexylamine), isophoronediamine, trans-1,4-diaminocyclohexane, cis-1,4-diaminocyclohexane, 1,4-cyclohexanebis ( Methylamine), 2,5-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,6-bis (aminomethyl) bicyclo [2.2.1] heptane, 3,8-bis (aminomethyl) ) Tricyclo [5.2.1.0] decane, 1,3-diaminoadamantane, 2,2-bis (4-amino) Cyclohexyl) propane, 2,2-bis (4-aminocyclohexyl) hexafluoropropane, 1,3-propanediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, Examples include 1,7-heptamethylenediamine, 1,8-octamethylenediamine, and 1,9-nonamethylenediamine. Two or more of these may be used in combination.
 重合反応の際使用される溶媒としては、原料モノマーと生成するポリエステルイミド前駆体が溶解すれば問題はなく、特にその構造は限定されない。具体的に例示するならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンなどのアミド系溶媒;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトンなどの環状エステル系溶媒;エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒;トリエチレングリコールなどのグリコール系溶媒;m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフエノールなどのフェノール系溶媒;アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが挙げられる。溶解性の観点から、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンなどの非プロトン性極性溶媒が好ましい。 The solvent used in the polymerization reaction is not a problem as long as the raw material monomer and the generated polyesterimide precursor are dissolved, and the structure is not particularly limited. Specifically, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone; γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, Cyclic ester solvents such as ε-caprolactone and α-methyl-γ-butyrolactone; carbonate solvents such as ethylene carbonate and propylene carbonate; glycol solvents such as triethylene glycol; m-cresol, p-cresol, 3-chlorophenol And phenol solvents such as 4-chlorophenol; acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like. From the viewpoint of solubility, aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone are used. preferable.
 また、その他の一般的な有機溶剤、即ちフェノール、o-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロロベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども添加して使用できる。 Other common organic solvents such as phenol, o-cresol, butyl acetate, ethyl acetate, isobutyl acetate, propylene glycol monomethyl ether acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, Tetrahydrofuran, dimethoxyethane, diethoxyethane, dibutyl ether, diethylene glycol dimethyl ether, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, methyl ethyl ketone, acetone, butanol, ethanol, xylene, toluene, chlorobenzene, terpene, mineral spirit, petroleum naphtha solvents, etc. Can also be used.
 本発明に係るポリエステルイミド前駆体は、その溶液を大量の水やメタノールなどの貧溶媒中に滴下・濾過・乾燥し、粉末として単離することもできる。 The polyesterimide precursor according to the present invention can be isolated as a powder by dropping, filtering and drying the solution in a large amount of poor solvent such as water or methanol.
<ポリエステルイミドの製造方法>
 本発明に係るポリエステルイミドは、上記の方法で得られたポリエステルイミド前駆体を脱水閉環反応(イミド化反応)することで製造することができる。この際、ポリエステルイミドの使用可能な形態は、フィルム、金属箔/ポリエステルイミドの積層板、粉末、成型体及び溶液である。
<Method for producing polyesterimide>
The polyesterimide according to the present invention can be produced by subjecting the polyesterimide precursor obtained by the above method to a dehydration ring-closing reaction (imidation reaction). At this time, usable forms of polyesterimide are a film, a metal foil / polyesterimide laminate, a powder, a molded product, and a solution.
 ポリエステルイミド前駆体溶液を銅箔、アルミニウム箔などの金属箔に流延し、オーブン中40℃~180℃、好ましくは50℃~150℃で乾燥する。得られた金属/ポリエステルイミド前駆体の積層板をSUS製金属板上にテープではりつけ固定し、真空中、窒素などの不活性ガス中、あるいは空気中、200℃~430℃、好ましくは250℃~400℃で加熱することで金属/ポリイミド積層板を得る。その積層板の金属層をエッチングし除去することで、本発明に係るポリエステルイミドフィルムを製造することができる。また、金属を蒸着させたシリコン基板を用いてポリエステルイミドフィルムを得る方法もある。この場合は、ポリエステルイミド前駆体溶液を、金属層を蒸着させたシリコン基板上に流延し、上記方法で乾燥、加熱を行い、金属層を蒸着させたシリコン/ポリエステルイミド層の積層板を得る。その後該積層体の金属層をエッチングし、シリコン基板上からポリエステルイミド層(ポリエステルイミドフィルム)を引き剥がすことで、目的物を得ることができる。 The polyesterimide precursor solution is cast on a metal foil such as a copper foil or an aluminum foil and dried in an oven at 40 ° C. to 180 ° C., preferably 50 ° C. to 150 ° C. The obtained metal / polyesterimide precursor laminate was fixed to a SUS metal plate with a tape and fixed in a vacuum, in an inert gas such as nitrogen, or in air, 200 ° C. to 430 ° C., preferably 250 ° C. A metal / polyimide laminate is obtained by heating at ˜400 ° C. The polyesterimide film according to the present invention can be produced by etching and removing the metal layer of the laminate. There is also a method of obtaining a polyesterimide film using a silicon substrate on which a metal is deposited. In this case, the polyesterimide precursor solution is cast on a silicon substrate on which a metal layer is deposited, dried and heated by the above method, and a silicon / polyesterimide layer laminate on which the metal layer is deposited is obtained. . Thereafter, the metal layer of the laminate is etched and the polyesterimide layer (polyesterimide film) is peeled off from the silicon substrate, whereby the target product can be obtained.
 またさらに、ガラス基板を用いてポリエステルイミドフィルムを得る方法もある。ガラス基板上にポリエステルイミド前駆体溶液に流延し、オーブン中40℃~180℃、好ましくは50℃~150℃で乾燥し、ガラス基板/ポリエステルイミド前駆体層の積層板を得る。その後、該積層板からポリエステルイミド前駆体層(ポリエステルイミド前駆体フィルム)を引き剥がし、該ポリエステルイミド前駆体フィルムをテープを使い金属枠に固定し、上記の方法にて加熱を行い、ポリエステルイミドフィルムを得ることができる。 There is also a method for obtaining a polyesterimide film using a glass substrate. The polyesterimide precursor solution is cast on a glass substrate and dried in an oven at 40 ° C. to 180 ° C., preferably 50 ° C. to 150 ° C., to obtain a laminate of a glass substrate / polyesterimide precursor layer. Thereafter, the polyesterimide precursor layer (polyesterimide precursor film) is peeled off from the laminate, the polyesterimide precursor film is fixed to a metal frame using a tape, and heated by the method described above. Can be obtained.
 イミド化の閉環反応の観点から、200℃以上が好ましく、生成したポリエステルイミドフィルムの熱安定性の観点から、430℃以下が好ましい。イミド化は真空中あるいは不活性ガス中で行うことが望ましいが、イミド化温度が高すぎなければ空気中で行っても、差し支えない。 From the viewpoint of the ring-closing reaction of imidization, 200 ° C. or higher is preferable, and from the viewpoint of thermal stability of the produced polyesterimide film, 430 ° C. or lower is preferable. The imidization is desirably performed in a vacuum or in an inert gas, but may be performed in air if the imidization temperature is not too high.
 また、イミド化反応は、熱処理に代えて、ポリエステルイミド前駆体溶液中にピリジンやトリエチルアミンなどの3級アミンを添加しポリエステルイミド前駆体フィルムを作製し、200℃~300℃で加熱しながら化学イミド化することや、ポリエステルイミド前駆体フィルムをピリジンやトリエチルアミンなどの3級アミン存在下、無水酢酸などの脱水試薬を含有する溶液に浸漬することによって行うことも可能である。 In addition, the imidization reaction is carried out by adding a tertiary amine such as pyridine or triethylamine to the polyesterimide precursor solution instead of heat treatment to prepare a polyesterimide precursor film, and heating the chemical imide while heating at 200 ° C to 300 ° C. It is also possible to carry out by immersing the polyesterimide precursor film in a solution containing a dehydrating reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine.
 ここでは、ポリエステルイミド前駆体溶液からのポリエステルイミドフィルムの製造方法について述べたが、これに限定されず、熱乾燥させたポリエステルイミド前駆体フィルムや、単離したポリエステルイミド前駆体を、加熱により、あるいは脱水試薬を用いて環化反応させることなどによりポリエステルイミドを製造してもよい。ポリエステルイミドが溶媒に不溶な場合は、結晶性のポリエステルイミド粉末を沈殿物として得ることができる。ポリエステルイミド粉末を200℃~450℃、好ましくは250℃~430℃で加熱圧縮することでポリエステルイミドの成型体を作製することができる。 Here, although the manufacturing method of the polyesterimide film from the polyesterimide precursor solution was described, it is not limited to this, The heat-dried polyesterimide precursor film and the isolated polyesterimide precursor are heated, Alternatively, a polyesterimide may be produced by cyclization using a dehydrating reagent. When the polyesterimide is insoluble in a solvent, a crystalline polyesterimide powder can be obtained as a precipitate. A polyesterimide molded body can be produced by heating and compressing the polyesterimide powder at 200 ° C. to 450 ° C., preferably 250 ° C. to 430 ° C.
 また、ポリエステルイミド前駆体溶液中にN,N’-ジシクロヘキシルカルボジイミドやトリフルオロ無水酢酸などの脱水試薬を添加・撹拌して、0℃~100℃、好ましくは0℃~60℃で反応させることにより、ポリエステルイミドの異性体であるポリイソイミドが生成する。ポリイソイミド溶液を上記と同様の手順で製膜した後、250℃~450℃、好ましくは270℃~400℃で熱処理することにより、ポリエステルイミドへ容易に変換することができる。イソイミド化反応は、上記脱水試薬を含有する溶液中にポリエステルイミド前駆体フィルムを浸漬することでも可能である。 Further, by adding and stirring a dehydrating reagent such as N, N′-dicyclohexylcarbodiimide or trifluoroacetic anhydride to the polyesterimide precursor solution, the mixture is reacted at 0 ° C. to 100 ° C., preferably 0 ° C. to 60 ° C. Polyisoimide, which is an isomer of polyesterimide, is produced. The polyisoimide solution can be easily converted into a polyesterimide by heat-treating at 250 ° C. to 450 ° C., preferably 270 ° C. to 400 ° C., after forming a film by the same procedure as described above. The isoimidization reaction can also be performed by immersing the polyesterimide precursor film in a solution containing the dehydrating reagent.
 ポリエステルイミドが溶媒に溶解する場合、ポリエステルイミド前駆体溶液をそのままあるいは同一の溶媒で適度に希釈した後150℃~200℃に加熱することで、ポリエステルイミド溶液を容易に製造することができる。この際、イミド化の副生成物である水などを共沸留去するために、トルエンやキシレンなどを添加しても差し支えない。また触媒としてγ-ピコリンなどの塩基を添加することができる。 When the polyesterimide is dissolved in a solvent, the polyesterimide solution can be easily produced by heating the polyesterimide precursor solution as it is or after appropriately diluting with the same solvent to 150 ° C. to 200 ° C. At this time, toluene, xylene, or the like may be added in order to azeotropically distill off water which is a by-product of imidization. A base such as γ-picoline can be added as a catalyst.
 得られたポリエステルイミド溶液を大量の水やメタノールなどの貧溶媒中に滴下・濾過しポリエステルイミドを粉末として単離することもできる。またポリエステルイミド粉末を上記溶媒に再溶解してポリエステルイミド溶液とすることができる。 It is also possible to isolate the polyesterimide as a powder by dropping and filtering the obtained polyesterimide solution in a large amount of poor solvent such as water or methanol. Further, the polyesterimide powder can be redissolved in the above solvent to obtain a polyesterimide solution.
 本発明のポリエステルイミドは、本発明のポリエステルイミド前駆体をイミド化することにより得られる。通常、製造にあたったテトラカルボン酸二無水物とジアミン化合物との仕込み比を調節することによって、生成するポリエステルイミドの分子量や末端構造を調節することができる。好ましい全テトラカルボン酸二無水物と全ジアミンのモル比は、0.90~1.10である。 The polyesterimide of the present invention can be obtained by imidizing the polyesterimide precursor of the present invention. Usually, the molecular weight and terminal structure of the produced polyesterimide can be adjusted by adjusting the ratio of the tetracarboxylic dianhydride and the diamine compound used in the production. The preferred molar ratio of total tetracarboxylic dianhydride to total diamine is 0.90 to 1.10.
 得られるポリエステルイミドの末端構造は、製造時における全テトラカルボン酸二無水物と全ジアミンとのモル仕込み比によって、アミンもしくは酸無水物構造となる。末端構造がアミンの場合は、カルボン酸無水物にて末端封止しても良い。これらの例としては、無水フタル酸、4-フェニルフタル酸無水物、4-フェノキシフタル酸無水物、4-フェニルカルボニルフタル酸無水物、4-フェニルスルホニルフタル酸無水物等が挙げられるが、これに限るものではない。これらのカルボン酸無水物を単独もしくは2種以上を混合して用いてもよい。 The terminal structure of the resulting polyesterimide is an amine or acid anhydride structure depending on the molar charge ratio of all tetracarboxylic dianhydrides and all diamines at the time of production. When the terminal structure is an amine, the terminal structure may be capped with a carboxylic acid anhydride. Examples of these include phthalic anhydride, 4-phenylphthalic anhydride, 4-phenoxyphthalic anhydride, 4-phenylcarbonylphthalic anhydride, 4-phenylsulfonylphthalic anhydride, etc. It is not limited to. You may use these carboxylic anhydrides individually or in mixture of 2 or more types.
 また、末端構造が酸無水物の場合は、モノアミン類にて末端封止してもよい。具体的には、アニリン、トルイジン、アミノフェノール、アミノビフェニル、アミノベンゾフェノン、ナフチルアミン等が挙げられる。これらのモノアミンを単独もしくは2種以上を混合して用いても良い。 Further, when the terminal structure is an acid anhydride, the terminal structure may be capped with a monoamine. Specific examples include aniline, toluidine, aminophenol, aminobiphenyl, aminobenzophenone, naphthylamine and the like. You may use these monoamines individually or in mixture of 2 or more types.
 付加重合条件については、従来より行われているポリアミド酸の付加重合条件に準じて行うことができる。具体的には、まず、窒素、ヘリウム、アルゴン等の不活性雰囲気下、大気圧中で芳香族ジアミン類を溶媒に0℃~80℃にて溶解させ、40℃~100℃にてテトラカルボン酸二無水物を、すみやかに加えながら、4時間~8時間付加重合させる。これによりポリエステルイミド前駆体が得られる。 The addition polymerization conditions can be carried out in accordance with the conventional polyamic acid addition polymerization conditions. Specifically, first, an aromatic diamine is dissolved in a solvent at 0 ° C. to 80 ° C. under an inert atmosphere such as nitrogen, helium, argon, etc., and then tetracarboxylic acid at 40 ° C. to 100 ° C. The dianhydride is allowed to undergo addition polymerization for 4 to 8 hours while being quickly added. Thereby, a polyesterimide precursor is obtained.
 上記ポリエステルイミド溶液を基板上に塗布し、40℃~400℃、好ましくは100℃~300℃で乾燥することによってもポリエステルイミドフィルムを形成することができる。 A polyesterimide film can also be formed by applying the above polyesterimide solution on a substrate and drying at 40 ° C to 400 ° C, preferably 100 ° C to 300 ° C.
 ポリエステルイミド前駆体溶液を、金属箔、例えば銅箔上に塗布、乾燥後、上記の条件によりイミド化することで、FPC基板の原反である金属層とポリエステルイミド層の積層板(FCCL)を得ることができる。ここで、金属箔として銅箔を用い、ポリエステルイミド前駆体溶液を直接塗布することで、銅箔とポリエステルイミド層よりなる無接着剤2層タイプを得ることができる。これに対し、ポリエステルイミド層と銅箔とをエポキシ系接着剤や熱可塑性ポリイミドを接着剤として用いて貼り付ける3層、擬似2層タイプもFCCLの構成として一般的に知られているが、この場合接着剤は熱可塑性であることが必須となるために、接着剤の構成単位の中に屈曲成分を含有することが必須となり、高吸湿膨張係数、ガラス転移温度、及び耐熱性が低くなる。そのため、3層、擬似2層タイプの積層板においては、熱可塑性接着層を介するために、必然的に高吸湿膨張係数、低ガラス転移温度、及び低耐熱性となる。一方本発明のポリエステルイミドは高接着性を有することから、接着層を介することなく2層タイプの積層板を得ることが可能であり、かつポリエステルイミド自身も非熱可塑性である。従って、高ガラス転移温度耐熱性及び低吸湿膨張係数をも同時に兼ね備えることが可能となる。 A polyester imide precursor solution is applied onto a metal foil, for example, a copper foil, dried, and then imidized under the above-described conditions, whereby a metal plate and a polyester imide layer laminate (FCCL) which is an original fabric of an FPC board are obtained. Obtainable. Here, a copper foil is used as the metal foil, and a non-adhesive two-layer type composed of a copper foil and a polyesterimide layer can be obtained by directly applying a polyesterimide precursor solution. On the other hand, a three-layer and pseudo two-layer type in which a polyesterimide layer and a copper foil are bonded using an epoxy adhesive or a thermoplastic polyimide as an adhesive are also generally known as FCCL configurations. In this case, since it is essential for the adhesive to be thermoplastic, it is essential to contain a bending component in the constituent unit of the adhesive, and the high hygroscopic expansion coefficient, glass transition temperature, and heat resistance are lowered. For this reason, in a three-layer or pseudo-two-layer type laminate, a high hygroscopic expansion coefficient, a low glass transition temperature, and a low heat resistance are inevitably caused by the thermoplastic adhesive layer. On the other hand, since the polyesterimide of the present invention has high adhesiveness, it is possible to obtain a two-layer laminate without using an adhesive layer, and the polyesterimide itself is also non-thermoplastic. Therefore, it is possible to simultaneously have high glass transition temperature heat resistance and low hygroscopic expansion coefficient.
 FPC基板の金属箔としては、種々の金属箔を使用することができるが、アルミニウム箔、銅箔、ステンレス箔が好ましく、特に銅箔が好ましい。これらの金属箔には、マット処理、メッキ処理、クロメート処理、アルミニウムアルコラート処理、アルミニウムキレート処理、シランカップリング剤処理などの表面処理を行ってもよい。 As the metal foil of the FPC board, various metal foils can be used, but aluminum foil, copper foil, and stainless steel foil are preferable, and copper foil is particularly preferable. These metal foils may be subjected to surface treatment such as mat treatment, plating treatment, chromate treatment, aluminum alcoholate treatment, aluminum chelate treatment, silane coupling agent treatment, and the like.
 金属箔の厚みは特に限定されないが、好ましくは35μm以下、さらに好ましくは18μm以下である。 The thickness of the metal foil is not particularly limited, but is preferably 35 μm or less, more preferably 18 μm or less.
 FCCLは、例えば以下の様にして製造することができる。
 まず、ポリエステルイミド前駆体溶液を金属箔上にブレードコーターや、リップコーター、グラビアコーターなどを用いて塗工する。その後、乾燥させてポリエステルイミド前駆体層(以下「ポリエステルイミド前駆体フィルム」ともいう)を形成する。塗工厚は、ポリエステルイミド前駆体溶液の固形分濃度に影響されるが、ポリエステルイミド前駆体層を、窒素、ヘリウム、アルゴンなどの不活性雰囲気下にて、200℃~400℃にて熱イミド化させることによりポリエステルイミド層を形成することができる。ポリエステルイミド層の厚みは、100μm以下、好ましくは50μm以下、さらに好ましくは30μm以下である。
FCCL can be manufactured as follows, for example.
First, the polyesterimide precursor solution is coated on a metal foil using a blade coater, a lip coater, a gravure coater or the like. Then, it is dried to form a polyesterimide precursor layer (hereinafter also referred to as “polyesterimide precursor film”). The coating thickness is affected by the solid content concentration of the polyesterimide precursor solution, but the polyesterimide precursor layer is heated at 200 ° C. to 400 ° C. in an inert atmosphere such as nitrogen, helium, or argon. A polyesterimide layer can be formed by making it. The thickness of the polyesterimide layer is 100 μm or less, preferably 50 μm or less, more preferably 30 μm or less.
 またここで、金属箔との引き剥がし強度は、0.8N/mm以上が好ましく、1.0N/mm以上がより好ましい。反りは、10mm以下が好ましく、3mm以下がより好ましい。 Here, the peel strength from the metal foil is preferably 0.8 N / mm or more, and more preferably 1.0 N / mm or more. Warpage is preferably 10 mm or less, and more preferably 3 mm or less.
 上記のFCCLを塩化第二鉄水溶液(鶴見曹達株式会社製、40ボーメ、塩化第二鉄37%以上)を室温、もしくは50℃以下の加熱条件下にてエッチング溶液として用いることにより、積層板の金属層を所望する回路状にエッチングすることで、無接着剤型フレキシブルプリント配線板を製造することができる。 By using the above FCCL as an etching solution using ferric chloride aqueous solution (manufactured by Tsurumi Soda Co., Ltd., 40 Baume, ferric chloride 37% or more) at room temperature or under 50 ° C. heating condition, By etching the metal layer into a desired circuit shape, an adhesive-free flexible printed wiring board can be manufactured.
 またここで、ポリイミドフィルムの引裂き強度は、ポリイミドフィルム26μmにおいて50mN以上が好ましく、60mN以上がより好ましく、特に80mN以上が好ましい。弾性率は、4.0GPa~6.5GPaが好ましい。吸湿膨張係数は、7ppm/%RH以下、線熱膨張係数は、16ppm/℃~25ppm/℃、ガラス転移温度は350℃以上が好ましい。 Here, the tear strength of the polyimide film is preferably 50 mN or more, more preferably 60 mN or more, and particularly preferably 80 mN or more in the polyimide film 26 μm. The elastic modulus is preferably 4.0 GPa to 6.5 GPa. The hygroscopic expansion coefficient is preferably 7 ppm /% RH or less, the linear thermal expansion coefficient is preferably 16 ppm / ° C. to 25 ppm / ° C., and the glass transition temperature is preferably 350 ° C. or higher.
 本発明のポリエステルイミド及びその前駆体溶液中に、必要に応じて酸化安定剤、フィラー、接着促進剤、シランカップリング剤、感光剤、光重合開始剤及び増感剤などの添加物を加えることができる。 Add additives such as an oxidation stabilizer, a filler, an adhesion promoter, a silane coupling agent, a photosensitizer, a photopolymerization initiator, and a sensitizer to the polyesterimide of the present invention and its precursor solution as necessary. Can do.
 本発明のポリエステルイミドは、高難燃性、低吸湿膨張係数、銅箔同等の低線熱膨張係数、高ガラス転移温度、高接着強度、低弾性率、及び高引裂き強度を有するため、各種電子デバイスにおける電気絶縁膜、フレキシブルプリント配線板、ディスプレー用基板、電子ペーパー用基板、太陽電池用基板などに利用でき、特にフレキシブルプリント配線板用基材として有用である。 The polyesterimide of the present invention has high flame retardancy, low hygroscopic expansion coefficient, low linear thermal expansion coefficient equivalent to copper foil, high glass transition temperature, high adhesive strength, low elastic modulus, and high tear strength. It can be used for an electrical insulating film, a flexible printed wiring board, a display substrate, an electronic paper substrate, a solar cell substrate, etc. in a device, and is particularly useful as a substrate for a flexible printed wiring board.
 以下、本発明を実施例により具体的に説明するが、これら実施例に限定されるものではない。なお、以下の例における物性値は、下記に示す方法により測定した。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. In addition, the physical-property value in the following examples was measured by the method shown below.
<ポリエステルイミド前駆体溶液>
 まずエステル構造を含有するジアミンをN-メチル-2-ピロリドンに溶解し、これにエステル構造を含有するテトラカルボン酸二無水物粉末を徐々に添加し、メカニカルスターラーを用い、80℃の加熱条件下にて、3~5時間攪拌する。この際、モノマー濃度は10質量%~20質量%のモノマー濃度範囲で重合を行うことにより、均一で高重合度のポリエステルイミド前駆体溶液を得た。
<Polyesterimide precursor solution>
First, a diamine containing an ester structure is dissolved in N-methyl-2-pyrrolidone, and tetracarboxylic dianhydride powder containing an ester structure is gradually added thereto, and then heated at 80 ° C. using a mechanical stirrer. For 3 to 5 hours. At this time, polymerization was performed in a monomer concentration range of 10% by mass to 20% by mass of the monomer to obtain a polyesterimide precursor solution having a uniform and high polymerization degree.
<銅箔/ポリエステルイミド積層板>
 金属製の塗工台に、12μm厚の銅箔(日本電解株式会社 USLP箔)を、マット面側が表面になるように静置した。塗工台の表面温度を90℃に設定し、上述で得られたポリエステルイミド前駆体溶液をドクターブレードにて銅箔マット面に塗布した。その後、塗工台で30分静置、さらに乾燥器中、100℃で30分間静置の後、タック性のない銅箔/ポリエステルイミド前駆体の積層板(ポリエステルイミド前駆体層の厚み47μm及び24μm)を得た。次いで、SUS製金属板上に銅箔/ポリエステルイミド前駆体の積層板をテープではりつけ固定し、窒素雰囲気下、熱風乾燥器中にて、昇温速度5℃/分にて、150℃で30分、200℃で1時間、400℃で1時間にてイミド化を行った。その後、SUS製金属板を取り外し、銅箔/ポリエステルイミドの積層板を得た。
<Copper foil / polyesterimide laminate>
A 12 μm-thick copper foil (NIPPON ELECTRIC CO., LTD. USLP foil) was placed on a metal coating table so that the matte surface was the surface. The surface temperature of the coating table was set to 90 ° C., and the polyesterimide precursor solution obtained above was applied to the copper foil mat surface with a doctor blade. Then, after leaving still for 30 minutes on a coating table, and further leaving still in a dryer at 100 ° C. for 30 minutes, a copper foil / polyesterimide precursor laminate without tackiness (polyesterimide precursor layer thickness 47 μm and 24 μm) was obtained. Next, a copper foil / polyesterimide precursor laminate was fixed on a SUS metal plate with a tape and fixed at 30 ° C. at 150 ° C. at a temperature rising rate of 5 ° C./min in a hot air drier in a nitrogen atmosphere. Minutes, imidization was carried out at 200 ° C. for 1 hour and at 400 ° C. for 1 hour. Then, the metal plate made from SUS was removed, and the laminated board of copper foil / polyesterimide was obtained.
<ポリエステルイミドフィルム>
 上述で得られた銅箔/ポリエステルイミドの積層板の銅箔を塩化第二鉄溶液(鶴見曹達株式会社製、40ボーメ、塩化第二鉄37%以上)を室温、もしくは50℃以下の加熱条件下にてエッチングすることにより、膜厚26μm及び12μmのポリエステルイミドフィルムを得た。
<Polyesterimide film>
The copper foil of the copper foil / polyesterimide laminate obtained above was heated to a ferric chloride solution (Tsurumi Soda Co., Ltd., 40 Baume, ferric chloride 37% or more) at room temperature or 50 ° C. or less. By etching under, polyester imide films with film thicknesses of 26 μm and 12 μm were obtained.
<重量平均分子量:Mw>
 ポリエステルイミド前駆体溶液0.01gを精密天秤により計測し、10gの展開溶媒に溶解させた。展開溶媒は、ジメチルホルムアミド(和光純薬工業社製、液体クロマトグラフィー用)1Lに対し、リチウムブロマイド(アルドリッチ社製)2.61g、リン酸水溶液(和光純薬工業社製、純度85%)5.88gを溶解させ作製した。この溶液を10μmのフィルターを通してろ過した。その後、ガードカラムとして、TSK guard Column Super H-H(商品名 東ソー社製)、分取カラムとしてTSK-GEL SUPER HM-H(商品名 東ソー社製)を2本直列に繋いだGPC(日本分光社製)により、上記展開溶媒を用いて、流速0.5ml/分にて分子量を測定した。分子量は、ポリスチレンを用いて換算した。
<Weight average molecular weight: Mw>
0.01 g of a polyesterimide precursor solution was measured with a precision balance and dissolved in 10 g of a developing solvent. The developing solvent is 2.61 g of lithium bromide (Aldrich), 1 L of dimethylformamide (Wako Pure Chemical Industries, for liquid chromatography), phosphoric acid aqueous solution (Wako Pure Chemical Industries, purity 85%) 5 .88 g was dissolved. This solution was filtered through a 10 μm filter. Then, TPC guard Column Super HH (trade name, manufactured by Tosoh Corporation) is used as a guard column, and TSK-GEL SUPER HM-H (trade name, manufactured by Tosoh Corporation) is connected in series as a preparative column. The molecular weight was measured at a flow rate of 0.5 ml / min using the above developing solvent. The molecular weight was converted using polystyrene.
<ガラス転移温度:Tg>
 島津製作所製熱機械分析装置(TMA-50)を用いて、熱機械分析により、幅3mm、長さ18mm(チャック間長さ15mm)、厚み26μmのポリエステルイミドフィルムを、荷重5g、昇温速度10℃/分、窒素雰囲気下(流量20ml/分)、温度50℃~450℃の範囲における伸びの測定を行い、得られた曲線の変曲点からポリエステルイミドフィルム(26μm厚)のガラス転移温度を求めた。
<Glass transition temperature: Tg>
Using a thermomechanical analyzer (TMA-50) manufactured by Shimadzu Corporation, a polyesterimide film having a width of 3 mm, a length of 18 mm (length between chucks of 15 mm) and a thickness of 26 μm was measured by thermomechanical analysis. Measure the elongation in the range of 50 ° C to 450 ° C under a nitrogen atmosphere (flow rate 20 ml / min) at a temperature of 50 ° C / min, and determine the glass transition temperature of the polyesterimide film (26 µm thickness) from the inflection point of the obtained curve. Asked.
<線熱膨張係数:CTE>
 島津製作所製熱機械分析装置(TMA-50)を用いて、熱機械分析により、幅3mm、長さ18mm(チャック間長さ15mm)、厚み26μmのポリエステルイミドフィルムを、荷重5g、昇温速度10℃/分、窒素雰囲気下(流量20ml/分)、温度50℃~450℃の範囲における伸びの測定を行い、50℃~200℃の範囲でのフィルム伸びの平均値としてポリエステルイミドフィルム(26μm厚)の線熱膨張係数を求めた。
<Linear thermal expansion coefficient: CTE>
Using a thermomechanical analyzer (TMA-50) manufactured by Shimadzu Corporation, a polyesterimide film having a width of 3 mm, a length of 18 mm (length between chucks of 15 mm) and a thickness of 26 μm was measured by thermomechanical analysis. Measure the elongation at a temperature of 50 ° C to 450 ° C under a nitrogen atmosphere (flow rate of 20 ml / min) at a temperature of 50 ° C / min. Polyesterimide film (thickness 26 µm) ) Was determined.
<吸湿膨張係数:CHE>
 アルバック理工株式会社製熱機械分析装置(TM-9400)及び湿度雰囲気調整装置(HC-1)を用いて、幅3mm、長さ30mm(チャック間長さ15mm)、厚み26μmのポリエステルイミドフィルムを、23℃、荷重5gにて湿度30%RHから70%RHに変化させた際の伸びの測定を行い、30%RH~70%RHにおけるフィルムの伸び平均値としてポリエステルイミドフィルムの吸湿膨張係数を求めた。
<Hygroscopic expansion coefficient: CHE>
A polyester imide film having a width of 3 mm, a length of 30 mm (length between chucks of 15 mm), and a thickness of 26 μm was obtained using a thermal mechanical analyzer (TM-9400) and a humidity atmosphere adjustment device (HC-1) manufactured by ULVAC-RIKO. Measure the elongation when the humidity is changed from 30% RH to 70% RH at 23 ° C and a load of 5g, and obtain the hygroscopic expansion coefficient of the polyesterimide film as the average elongation value of the film at 30% RH to 70% RH. It was.
<難燃性>
 厚さ12μmからなるポリエステルイミドフィルムを長さ20cm×幅5cmの大きさとなるように40枚作製し試験片とした。40枚の試験片中、20枚を23℃、相対湿度50%の雰囲気下に48時間以上放置(受理状態)し、残り20枚を温度70℃、168時間エージング後、温度23℃、相対湿度20%以下のデシケーター中にて4時間冷却した。各々のポリエステルイミドフィルム各5枚を用いて、UL94VTM試験に基づく評価方法にて23℃、相対湿度55%の雰囲気下にて燃焼性試験によりVTM-0評価を行った。(なお、このとき評価に使用した炎は、20mmの大きさの青色炎で、銅スラグの100℃~700℃までの昇温時間が42.9秒であった。)
<Flame retardance>
Forty test pieces of polyesterimide film having a thickness of 12 μm were prepared so as to be 20 cm long × 5 cm wide. Among the 40 test pieces, 20 pieces were left in an atmosphere of 23 ° C. and 50% relative humidity for 48 hours or longer (accepted state), and the remaining 20 pieces were aged at 70 ° C. for 168 hours, then at 23 ° C. and relative humidity. It cooled in the desiccator below 20% for 4 hours. VTM-0 evaluation was performed by a flammability test in an atmosphere of 23 ° C. and a relative humidity of 55% using an evaluation method based on the UL94VTM test, using each of five polyesterimide films. (The flame used for the evaluation at this time was a blue flame having a size of 20 mm, and the temperature rise time of copper slag from 100 ° C. to 700 ° C. was 42.9 seconds.)
<ハンダ耐熱性評価>
 銅箔/ポリエステルイミドの積層板を長さ3cm×幅3cmの大きさに切断し、マスキングテープを用いて中心部2.5cm×2.5cmのマスキングを行い、上記と同様の条件下にて、塩化第二鉄溶液(鶴見曹達株式会社製、40ボーメ、塩化第二鉄37%以上)を用いて銅箔をエッチングし、試験片を得た。得られた試験片を乾燥器105℃にて1時間以上放置し乾燥させた後、300℃に設定されたハンダ浴中に、銅箔側が接するようにハンダ浴表面に2分間静置し、銅箔とポリエステルイミドフィルム中のふくれ、皺の発生の有無など、外観を目視により評価し、外観の変化が見られない場合を良好な結果(○)とした。
<Solder heat resistance evaluation>
Cut the copper foil / polyesterimide laminate to a size of 3 cm in length x 3 cm in width, mask the 2.5 cm x 2.5 cm center using a masking tape, under the same conditions as above, The copper foil was etched using a ferric chloride solution (Tsurumi Soda Co., Ltd., 40 Baume, ferric chloride 37% or more) to obtain a test piece. The obtained test piece was allowed to stand for 1 hour or longer in a dryer 105 ° C. and dried, and then left in the solder bath surface set at 300 ° C. for 2 minutes so that the copper foil side was in contact with the copper. The appearance of the foil and the polyesterimide film, such as blistering and wrinkle generation, was evaluated by visual observation, and a case where no change in the appearance was observed was taken as a good result (◯).
<煮沸ハンダ耐熱性評価>
 ハンダ耐熱性評価と同様に作製した試験片を得て、還流冷却器付き容器に精製水を入れ、得られた試験片を浸漬し、100℃で2時間静置した。その後、常温精製水中に試験片を投入し、各試験片を1枚ずつ取り出し、両面の水分を紙タオルでふきとった。その後、280℃に設定されたハンダ浴中に、銅箔側が接するようにハンダ浴表面に2分間静置し、銅箔とポリエステルイミドフィルム中のふくれ、皺の発生の有無など、外観を目視により評価し、外観の変化が見られない場合を良好な結果(○)とした。
<Boiled solder heat resistance evaluation>
The test piece produced similarly to solder heat resistance evaluation was obtained, purified water was put into the container with a reflux condenser, the obtained test piece was immersed, and it left still at 100 degreeC for 2 hours. Then, the test piece was thrown into normal temperature purified water, each test piece was taken out one by one, and the water | moisture content of both surfaces was wiped off with the paper towel. Then, in a solder bath set at 280 ° C., leave it on the surface of the solder bath for 2 minutes so that the copper foil side is in contact with the copper foil and the polyesterimide film. A case where no change in appearance was observed was evaluated as a good result (◯).
<銅箔とポリエステルイミド層との接着強度>
 試験片の測定法についてはJIS C6471規格に準じて行った。試験片は、銅箔/ポリエステルイミドの積層板を長さ15cm×幅1cmの大きさに切断し、マスキングテープを用いて1cmの中心幅3mmのマスキングを行い、上記と同様の条件下にて塩化第二鉄溶液を用いて銅箔をエッチングした。得られた試験片を乾燥器105℃にて1時間以上放置し乾燥させ、その後、厚み3mmのFR-4基板に両面粘着テープにて取り付けた。幅3mmの導体をポリエステルイミドフィルムとの界面で引剥がし、アルミ製テープに張りつけ掴み代とし、試料を作製した。
<Adhesive strength between copper foil and polyesterimide layer>
About the measuring method of the test piece, it carried out according to JIS C6471 standard. For the test piece, a copper foil / polyesterimide laminate was cut into a size of 15 cm long × 1 cm wide, masked with a 1 cm center width of 3 mm using a masking tape, and chlorinated under the same conditions as above. The copper foil was etched using a ferric solution. The obtained test piece was left to dry at 105 ° C. for 1 hour or longer and then attached to a FR-4 substrate having a thickness of 3 mm with a double-sided adhesive tape. A conductor having a width of 3 mm was peeled off at the interface with the polyesterimide film and attached to an aluminum tape as a grip allowance to prepare a sample.
 得られた試料を島津製作所製引っ張り試験機(オートグラフAG-10KNI)に固定した。固定する際、確実に90°の方向に引き剥がすために治具をとりつけ、約50mm/分の速度にて50mm引き剥がした際の荷重を測定し、1cmあたりの接着強度として算出した。 The obtained sample was fixed to a Shimadzu tensile tester (Autograph AG-10KNI). When fixing, a jig was attached in order to surely peel off in the direction of 90 °, and the load at the time of peeling 50 mm at a speed of about 50 mm / min was measured and calculated as the adhesive strength per 1 cm.
<弾性率>
 株式会社オリエンテック製RTG-1210型引張試験装置を用い、試験長50mm、試験速度50mm/分にて3mm×50mmのポリイミドフィルムを引き伸ばし、弾性率は、ポリエステルイミドフィルムの引張伸度0.4%~1.0%間における応力の傾きより算出した。(50mmの試料が100mmに伸びた時点で破断した場合に「引張破断伸度が100%」と表記する。)
<Elastic modulus>
Using a RTG-1210 type tensile tester manufactured by Orientec Co., Ltd., a polyimide film of 3 mm × 50 mm was stretched at a test length of 50 mm and a test speed of 50 mm / min. The elastic modulus was a tensile elongation of 0.4% of the polyesterimide film. It was calculated from the slope of stress between ˜1.0%. (When a 50 mm sample breaks when it is stretched to 100 mm, it is described as “tensile elongation at break of 100%”.)
<トラウザー引裂き強度>
 ポリエステルイミドフィルムを50mm×150mmに切り出して試料とし、株式会社オリエンテック製RTG-1210型引張試験装置(同社製UR-50N-D型ロードセルを装着)を用い、JIS K7128-1に記載の方法で、試験速度50mm/分にて測定した。
<Trouser tear strength>
A polyester imide film is cut out into 50 mm × 150 mm as a sample, and the RTG-1210 type tensile tester (Orientec Co., Ltd. equipped with UR-50ND type load cell) is used, and the method described in JIS K7128-1 Measured at a test speed of 50 mm / min.
<反り>
 銅箔/ポリエステルイミドの積層板を10cm×10cmの大きさに切断し、23℃、湿度50%の恒温恒湿室に一日放置した。その後、サンプルの4片それぞれと設置面の距離を測定し、測定した距離の平均値を反りの値とした。ここで、ポリエステルイミド側へカールした場合を(+)の値とした。
<融解熱ピーク温度(a)℃、温度幅△T=((b)-(a))℃>
<Warpage>
A copper foil / polyesterimide laminate was cut to a size of 10 cm × 10 cm and left in a constant temperature and humidity chamber at 23 ° C. and 50% humidity for one day. Thereafter, the distance between each of the four pieces of the sample and the installation surface was measured, and the average value of the measured distances was taken as the value of warpage. Here, the case of curling to the polyesterimide side was defined as the value (+).
<Melting heat peak temperature (a) ° C., temperature range ΔT = ((b) − (a)) ° C.>
 式(19)で表されるエステル構造を有するテトラカルボン酸二無水物(以下、TABP)を5mg程度秤量し、付属のアルミニウム試料容器に入れ、蓋をかぶせて、クリンプし測定サンプルを作製した。同様にして、未秤量のアルミニウム試料容器と蓋をクリンプしたものを標準物質とした。示差走査熱量計(DSC-60、株式会社島津製作所製)の加熱炉内に標準物質と測定サンプルを置き、昇温速度10℃/分、N雰囲気下にて測定を行い室温~350℃の範囲にて測定を行った。融解熱のピーク温度を(a)℃とし、融解熱ピークへの立ち上がりが開始する温度を接点とする仮想接線と、融解熱ピークの略直線部分に沿う直線との交点となる温度を(b)℃とし、温度幅△T=((b)-(a))℃を算出した。なお、温度と熱流量の校正については、インジウムの標準物質で行った。
Figure JPOXMLDOC01-appb-C000075
About 5 mg of tetracarboxylic dianhydride (hereinafter referred to as TABP) having an ester structure represented by the formula (19) was weighed, put into an attached aluminum sample container, covered with a lid, and crimped to prepare a measurement sample. Similarly, an unbalanced aluminum sample container and a lid crimped were used as standard substances. A standard substance and a measurement sample are placed in a heating furnace of a differential scanning calorimeter (DSC-60, manufactured by Shimadzu Corporation), and measured at a heating rate of 10 ° C./min in an N 2 atmosphere at room temperature to 350 ° C. Measurements were made in the range. The peak temperature of the heat of fusion is (a) ° C., and the temperature that is the intersection of the virtual tangent with the contact temperature being the temperature at which the rise to the heat of fusion peak starts, and the straight line along the substantially linear portion of the heat of fusion peak is (b) The temperature range ΔT = ((b) − (a)) ° C. was calculated. The calibration of temperature and heat flow was performed with an indium standard material.
Figure JPOXMLDOC01-appb-C000075
(実施例1)
(合成例1)TABPの合成
 1Lセパラフラスコ中に、N,N-ジメチルホルムアミド溶液100ml、無水トリメリット酸クロリド200mmol(東京化成株式会社製)を溶解し、窒素雰囲気下にて氷浴にて0℃に冷却した。その後、N,N-ジメチルホルムアミド50ml、ピリジン50mlに、4,4’-ビフェノールを溶かした溶液を、10℃以下になるように2時間かけて撹拌速度100rpmにて滴下し、その後、室温にて6時間攪拌を行った。滴下を開始すると溶液は赤くなり、滴下終了になるにつれて黄色沈殿が生成した
Example 1
(Synthesis Example 1) Synthesis of TABP In a 1 L Separa flask, 100 ml of an N, N-dimethylformamide solution and 200 mmol of trimellitic anhydride chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) were dissolved, and 0% in an ice bath in a nitrogen atmosphere. Cooled to ° C. Thereafter, a solution of 4,4′-biphenol dissolved in 50 ml of N, N-dimethylformamide and 50 ml of pyridine was dropped at a stirring speed of 100 rpm over 2 hours so as to be 10 ° C. or less, and then at room temperature. Stir for 6 hours. The solution turned red when the dripping was started, and a yellow precipitate was formed as the dripping was completed.
 次いで、析出物をろ過し、N,N-ジメチルホルムアミドで洗浄し、更に水で洗浄した後濾過を2回繰り返し、濾取物を乾燥して、TABPを含む黄白色結晶を得た。その後、真空乾燥器にて減圧しながら、昇温速度10℃/分にて130℃、2時間加熱乾燥し、未精製TABPである黄色結晶を得た。 Next, the precipitate was filtered, washed with N, N-dimethylformamide, further washed with water and then filtered twice, and the filtered product was dried to obtain yellowish white crystals containing TABP. Thereafter, the mixture was heat-dried at 130 ° C. for 2 hours at a rate of temperature increase of 10 ° C./min while reducing the pressure in a vacuum dryer to obtain yellow crystals which were unpurified TABP.
<TABPの精製>
 300mlフラスコ中に、得られた未精製TABP10gをγ-ブチロラクトン溶液150mlに入れ、オイルバスにて200℃まで加熱し30分かけて攪拌しながら溶解させた。このとき不溶物は、みられなかった。その後、オイルバスの加熱及び攪拌をやめ、室温まで徐冷した。
<Purification of TABP>
In a 300 ml flask, 10 g of the obtained crude TABP was placed in 150 ml of a γ-butyrolactone solution, heated to 200 ° C. in an oil bath and dissolved with stirring over 30 minutes. At this time, no insoluble matter was observed. Thereafter, heating and stirring of the oil bath were stopped and the mixture was gradually cooled to room temperature.
 室温まで放置することにより、ゆるやかに溶液が2層分離しながら針状の黄白色結晶が析出した。析出物を濾過により分取し、真空乾燥器にて減圧しながら、昇温速度10℃/分にて130℃、2時間加熱乾燥後、さらに昇温速度10℃/分にて200℃、6時間加熱乾燥し真空度を保持しながら室温まで冷却した後、大気圧にした後、目的物の高純度TABP黄色結晶を得た。 When the solution was allowed to stand at room temperature, needle-like yellowish white crystals were precipitated while the solution was slowly separated into two layers. The precipitate was collected by filtration, heated and dried at 130 ° C. for 2 hours at a heating rate of 10 ° C./min while reducing the pressure in a vacuum dryer, and then further heated at 200 ° C. at a heating rate of 10 ° C./min. After heating and drying for a period of time and cooling to room temperature while maintaining the degree of vacuum, the pressure was changed to atmospheric pressure, and then high purity TABP yellow crystals of the target product were obtained.
 得られたTABP5mgを示差走査熱量計(DSC-60、株式会社島津製作所製)にて測定した結果は、表2に示すように、融解熱のピーク温度(a)325℃、温度幅△T=((b)-(a))=3.2℃であった。 As a result of measuring 5 mg of the obtained TABP with a differential scanning calorimeter (DSC-60, manufactured by Shimadzu Corporation), the peak temperature of heat of fusion (a) 325 ° C., temperature range ΔT = It was ((b)-(a)) = 3.2 ° C.
<ポリエステルイミド前駆体の重合、イミド化及びポリエステルイミドフィルム特性評価>
 よく乾燥した攪拌機付密閉反応容器中に式(33)で表されるエステル構造を有するジアミン(以下、BPIP)12.84mmolを入れ、N-メチル-2-ピロリドン61mLを加え、溶液を80℃に加温し溶解させた。溶解後に、この溶液に上記で得られたTABPの粉末13.38mmolを徐々に加えた。30分間攪拌することで、溶液粘度が急激に増加した。さらに4時間撹拌させ、一般式(1)で表される反復単位をする透明、均一で粘稠なポリエステルイミド前駆体溶液を得た。ここで、式(1)中、Bは式(10)で表される2価の芳香族基である。
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
<Polymerization of polyesterimide precursor, imidization and polyesterimide film property evaluation>
In a well-dried closed reaction vessel with a stirrer, 12.84 mmol of a diamine having an ester structure represented by the formula (33) (hereinafter referred to as BPIP) was added, 61 mL of N-methyl-2-pyrrolidone was added, and the solution was heated to 80 ° C. Warm and dissolve. After dissolution, 13.38 mmol of TABP powder obtained above was gradually added to this solution. By stirring for 30 minutes, the solution viscosity increased rapidly. The mixture was further stirred for 4 hours to obtain a transparent, uniform and viscous polyesterimide precursor solution having repeating units represented by the general formula (1). Here, in the formula (1), B 1 is a divalent aromatic group represented by the formula (10).
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
 このポリエステルイミド前駆体溶液は室温及び20℃で一ヶ月間放置しても沈澱、ゲル化は全く起こらず、高い溶液貯蔵安定を示した。 This polyesterimide precursor solution did not precipitate or gel at all even when allowed to stand at room temperature and 20 ° C. for one month, and showed high solution storage stability.
 金属製の塗工台に、12μm厚の銅箔(日本電解株式会社 USLP箔)を、マット面側が表面になるように静置した。塗工台の表面温度を90℃に設定し、ポリエステルイミド前駆体溶液をドクターブレードにて銅箔マット面に塗布した。その後、塗工台で30分静置、さらに乾燥器中、100℃で30分間静置の後、タック性のない銅箔/ポリエステルイミド前駆体の積層体(ポリエステルイミド前駆体層の厚み47μm及び24μm)を得た。次いで、SUS製金属板上に銅箔/ポリエステルイミド前駆体の積層体をテープではりつけ固定し、窒素雰囲気下、熱風乾燥器中にて、昇温速度5℃/分にて、150℃で30分、200℃で1時間、400℃で1時間にてイミド化を行った。その後、SUS製金属板を取り外し、カールのない銅箔/ポリエステルイミドの積層板が得られた。この銅箔/ポリエステルイミドの積層板の銅箔を塩化第二鉄水溶液(鶴見曹達株式会社製、40ボーメ、塩化第二鉄37%以上)を室温、もしくは50℃以下の加熱条件下にてエッチングすることにより、膜厚26μm及び12μmの薄茶色のポリエステルイミドフィルムを得た。 A 12 μm-thick copper foil (NIPPON ELECTRIC CO., LTD. USLP foil) was allowed to stand on a metal coating table so that the matte surface was the surface. The surface temperature of the coating table was set to 90 ° C., and the polyesterimide precursor solution was applied to the copper foil mat surface with a doctor blade. Then, after leaving still for 30 minutes on a coating table, and further leaving still in a dryer at 100 ° C. for 30 minutes, a laminate of a copper foil / polyesterimide precursor without tackiness (the thickness of the polyesterimide precursor layer is 47 μm and 24 μm) was obtained. Next, the laminate of the copper foil / polyesterimide precursor was fixed with a tape on a SUS metal plate, and 30 ° C. at 150 ° C. at a temperature rising rate of 5 ° C./min in a hot air drier in a nitrogen atmosphere. Minutes, imidization was performed at 200 ° C. for 1 hour and at 400 ° C. for 1 hour. Thereafter, the SUS metal plate was removed, and a copper foil / polyesterimide laminate without curling was obtained. Etching the copper foil of this copper foil / polyesterimide laminate with aqueous ferric chloride (Tsurumi Soda Co., Ltd., 40 Baume, ferric chloride 37% or more) at room temperature or under 50 ° C heating conditions By doing so, the light brown polyesterimide film with a film thickness of 26 micrometers and 12 micrometers was obtained.
 この膜厚26μmのポリエステルイミドフィルムは180°折曲げ試験によって破断せず、可撓性を示した。N-メチル-2-ピロリドンやジメチルアセトアミドなどの有機溶媒に対して溶解性を示さなかった。また、TMA測定により22ppm/℃(50℃から200℃の間の平均値)と銅箔同等の低い線熱膨張係数を示した。吸湿膨張係数を測定したところ5.0ppm/%RH(30%RHから70%RHの間の平均値)と、極めて低い吸湿膨張係数を示した。膜厚12μmのポリエステルイミドフィルムの難燃性を評価したところUL94VTM-0の性能を示した。また、良好なはんだ耐熱性、煮沸はんだ耐熱性を示した。弾性率は5.1GPaと低く、トラウザー引裂き強度は26μmのポリエステルイミドフィルムにおいて、62mNと高引裂き強度であった。 The polyesterimide film having a film thickness of 26 μm was not broken by a 180 ° bending test and showed flexibility. It was not soluble in organic solvents such as N-methyl-2-pyrrolidone and dimethylacetamide. Also, TMA measurement showed a low linear thermal expansion coefficient equivalent to 22 ppm / ° C. (average value between 50 ° C. and 200 ° C.) and copper foil. When the hygroscopic expansion coefficient was measured, an extremely low hygroscopic expansion coefficient of 5.0 ppm /% RH (average value between 30% RH and 70% RH) was shown. Evaluation of the flame retardancy of a polyesterimide film having a thickness of 12 μm showed the performance of UL94VTM-0. Moreover, it showed good solder heat resistance and boiling solder heat resistance. The elastic modulus was as low as 5.1 GPa, and the trouser tear strength was 62 mN and a high tear strength in a 26 μm polyesterimide film.
(実施例2)
 よく乾燥した攪拌機付密閉反応容器中にBPIP6.42mmol、式(37)で表されるエステル構造を有するジアミン(以下、APAB)6.42mmolを入れ、N-メチル-2-ピロリドン61mLを加え、溶液を80℃に加温し溶解させた。溶解後に、この溶液に実施例1で得られたTABPの粉末13.38mmolを徐々に加えた。30分間攪拌することで、溶液粘度が急激に増加した。さらに4時間撹拌させ、式(11)で表される反復単位と、式(12)で表される反復単位を有し、式(11)及び式(12)のモル比が式(11)/式(12)=50/50の割合である、透明、均一で粘稠なポリエステルイミド前駆体溶液を得た。ここで、式(12)中、Bは式(16)で表される2価の芳香族基である。
(Example 2)
In a well-dried sealed reaction vessel equipped with a stirrer, 6.42 mmol of BPIP and 6.42 mmol of a diamine having an ester structure represented by the formula (37) (hereinafter referred to as APAB) were added, and 61 mL of N-methyl-2-pyrrolidone was added. Was dissolved by heating to 80 ° C. After dissolution, 13.38 mmol of TABP powder obtained in Example 1 was gradually added to this solution. By stirring for 30 minutes, the solution viscosity increased rapidly. The mixture was further stirred for 4 hours, and had a repeating unit represented by the formula (11) and a repeating unit represented by the formula (12), and the molar ratio of the formula (11) and the formula (12) was the formula (11) / A transparent, uniform and viscous polyesterimide precursor solution having a ratio of formula (12) = 50/50 was obtained. Here, in the formula (12), B 2 is a divalent aromatic group represented by the formula (16).
 実施例1に記載した方法に従い、製膜、イミド化してポリエステルイミドフィルムを作製し、同様に物性評価した。物性値を表1に示す。表1に示す他に、反りも1mmと良好な値を示した。
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
According to the method described in Example 1, film formation and imidization were performed to produce a polyesterimide film, and physical properties were similarly evaluated. The physical property values are shown in Table 1. In addition to the results shown in Table 1, the warpage also showed a good value of 1 mm.
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
(実施例3)
 よく乾燥した攪拌機付密閉反応容器中にBPIP8.99mmol、APAB3.85mmolを入れ、N-メチル-2-ピロリドン63mLを加え、溶液を80℃に加温し溶解させた。溶解後に、この溶液に実施例1で得られたTABP13.38mmolを徐々に加えた。30分間攪拌することで、溶液粘度が急激に増加した。さらに4時間撹拌させ、一般式(11)で表される反復単位と、一般式(12)で表される反復単位を有し、一般式(11)及び一般式(12)のモル比が一般式(11)/一般式(12)=70/30の割合である、透明、均一で粘稠なポリエステルイミド前駆体溶液を得た。ここで、一般式(12)中、Bは式(16)で表される2価の芳香族基である。
(Example 3)
BPIP 8.99 mmol and APAB 3.85 mmol were placed in a well-closed sealed reaction vessel equipped with a stirrer, N-methyl-2-pyrrolidone 63 mL was added, and the solution was heated to 80 ° C. to dissolve. After dissolution, 13.38 mmol of TABP obtained in Example 1 was gradually added to this solution. By stirring for 30 minutes, the solution viscosity increased rapidly. The mixture is further stirred for 4 hours, has a repeating unit represented by the general formula (11) and a repeating unit represented by the general formula (12), and the molar ratio of the general formula (11) and the general formula (12) is generally A transparent, uniform and viscous polyesterimide precursor solution having a ratio of formula (11) / general formula (12) = 70/30 was obtained. Here, in General Formula (12), B 2 is a divalent aromatic group represented by Formula (16).
 実施例1に記載した方法に従い、製膜、イミド化してポリエステルイミドフィルムを作製し、同様に物性評価した。物性値を表1に示す。表1に示す他に、反りも10mmと良好な値を示した。 In accordance with the method described in Example 1, film formation and imidization were performed to prepare a polyesterimide film, and physical properties were similarly evaluated. The physical property values are shown in Table 1. In addition to the results shown in Table 1, the warpage was as good as 10 mm.
(実施例4)
 よく乾燥した攪拌機付密閉反応容器中にBPIP6.88mmol、式(38)で表されるアミド構造を有するジアミン(以下、DABA)6.88mmolを入れ、N-メチル-2-ピロリドン65mLを加え、溶液を80℃に加温し溶解させた。溶解後に、この溶液に実施例1で得られたTABPの粉末14.33mmolを徐々に加えた。30分間攪拌することで、溶液粘度が急激に増加した。さらに4時間撹拌させ、一般式(11)で表される反復単位と、一般式(12)で表される反復単位を有し、一般式(11)及び一般式(12)のモル比が一般式(11)/一般式(12)=50/50の割合である、透明、均一で粘稠なポリエステルイミド前駆体溶液を得た。ここで、一般式(12)中、Bは式(17)で表される2価の芳香族基である。
Example 4
In a well-dried sealed reaction vessel equipped with a stirrer, BPIP 6.88 mmol and diamine having an amide structure represented by formula (38) (hereinafter referred to as DABA) 6.88 mmol were added, and 65 ml of N-methyl-2-pyrrolidone was added, Was dissolved by heating to 80 ° C. After dissolution, 14.33 mmol of TABP powder obtained in Example 1 was gradually added to this solution. By stirring for 30 minutes, the solution viscosity increased rapidly. The mixture is further stirred for 4 hours, has a repeating unit represented by the general formula (11) and a repeating unit represented by the general formula (12), and the molar ratio of the general formula (11) and the general formula (12) is generally A transparent, uniform and viscous polyesterimide precursor solution having a ratio of formula (11) / general formula (12) = 50/50 was obtained. Here, in General Formula (12), B 2 is a divalent aromatic group represented by Formula (17).
 実施例1に記載した方法に従い、製膜、イミド化してポリエステルイミドフィルムを作製し、同様に物性評価した。物性値を表1に示す。表1に示す他に、反りも1mmと良好な値を示した。
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
According to the method described in Example 1, film formation and imidization were performed to produce a polyesterimide film, and physical properties were similarly evaluated. The physical property values are shown in Table 1. In addition to the results shown in Table 1, the warpage also showed a good value of 1 mm.
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
(実施例5)
 よく乾燥した攪拌機付密閉反応容器中にBPIP9.63mmol、式(39)で表されるエステル構造を有するジアミン(以下、BPTP)4.13mmolを入れ、N-メチル-2-ピロリドン71mLを加え、溶液を80℃に加温し溶解させた。溶解後に、この溶液に実施例1で得られたTABPの粉末14.79mmolを徐々に加えた。30分間攪拌することで、溶液粘度が急激に増加した。さらに4時間撹拌させ、一般式(11)で表される反復単位と、一般式(12)で表される反復単位を有し、一般式(11)及び一般式(12)のモル比が一般式(11)/一般式(12)=70/30の割合である、透明、均一で粘稠なポリエステルイミド前駆体溶液を得た。ここで、一般式(12)中、Bは式(18)で表される2価の芳香族基である。
(Example 5)
In a well-closed closed reaction vessel with a stirrer, BPIP 9.63 mmol and diamine having an ester structure represented by the formula (39) (hereinafter referred to as BPTP) 4.13 mmol were added, and 71 mL of N-methyl-2-pyrrolidone was added to the solution. Was dissolved by heating to 80 ° C. After dissolution, 14.79 mmol of TABP powder obtained in Example 1 was gradually added to this solution. By stirring for 30 minutes, the solution viscosity increased rapidly. The mixture is further stirred for 4 hours, has a repeating unit represented by the general formula (11) and a repeating unit represented by the general formula (12), and the molar ratio of the general formula (11) and the general formula (12) is generally A transparent, uniform and viscous polyesterimide precursor solution having a ratio of formula (11) / general formula (12) = 70/30 was obtained. Here, in General Formula (12), B 2 is a divalent aromatic group represented by Formula (18).
 実施例1に記載した方法に従って、製膜、イミド化してポリエステルイミドフィルムを作製し、同様に物性評価した。物性値を表1に示す。表1に示す他に、反りも-3mmと良好な値を示した。ここで-3mmとは、銅箔側へ反っていることを意味する。
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
According to the method described in Example 1, film formation and imidization were performed to produce a polyesterimide film, and physical properties were similarly evaluated. The physical property values are shown in Table 1. In addition to the results shown in Table 1, the warpage was as good as -3 mm. Here, −3 mm means warping to the copper foil side.
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
(実施例6)
 よく乾燥した攪拌機付密閉反応容器中にBPIP50mmolを入れ、N-メチル-2-ピロリドン191mLに溶解した後、この溶液に実施例1で得られたTABPの粉末50mmolを徐々に加えた。30分後、溶液粘度が急激に増加した。更に80℃で4時間撹拌し透明、均一で粘稠なポリエステルイミド前駆体を得た。得られたポリエステルイミド前駆体は室温及び-20℃で一ヶ月間放置しても沈澱、ゲル化は全く起こらず、高い溶液貯蔵安定を示した。N-メチル-2-ピロリドン中、30℃、0.5質量%の濃度でオストワルド粘度計にて測定したポリエステルイミド前駆体の固有粘度は、2.8dL/gであった。このポリエステルイミド前駆体を5μmメンブレンフィルターにて窒素3kg/cmの加圧条件にて濾過を行い目的とするポリエステルイミド前駆体を得た。
(Example 6)
In a well-dried sealed reaction vessel with a stirrer, 50 mmol of BPIP was placed and dissolved in 191 mL of N-methyl-2-pyrrolidone, and then 50 mmol of TABP powder obtained in Example 1 was gradually added thereto. After 30 minutes, the solution viscosity increased rapidly. Furthermore, it stirred at 80 degreeC for 4 hours, and obtained the transparent, uniform and viscous polyesterimide precursor. The obtained polyesterimide precursor did not precipitate or gel at all even after being allowed to stand at room temperature and −20 ° C. for one month, and showed high solution storage stability. The intrinsic viscosity of the polyesterimide precursor measured with an Ostwald viscometer in N-methyl-2-pyrrolidone at a concentration of 0.5% by mass at 30 ° C. was 2.8 dL / g. This polyesterimide precursor was filtered with a 5 μm membrane filter under a pressure condition of nitrogen 3 kg / cm 2 to obtain a target polyesterimide precursor.
 実施例1に記載した方法に従い、製膜、イミド化することにより、膜厚25μm及び12μmの薄茶色のポリエステルイミドフィルムを得、同様に物性評価した。物性値を表3に示す。このポリエステルイミドフィルムは180°折曲げ試験によっても破断せず、可撓性を示した。また如何なる有機溶媒に対しても全く溶解性を示さなかった。 According to the method described in Example 1, a light brown polyesterimide film having a film thickness of 25 μm and 12 μm was obtained by film formation and imidization, and physical properties were similarly evaluated. Table 3 shows the physical property values. This polyesterimide film did not break even in the 180 ° bending test and showed flexibility. Moreover, it did not show any solubility in any organic solvent.
 また、上記で得られたポリエステルイミド前駆体を6インチのシリコンウエハ上に、スピンコーター(MS-250 ミカサ株式会社製)にてスピンコートし、乾燥器中で100℃、30分静置の後、タック性のないポリエステルイミド前駆体/シリコンウエハ積層体(ポリエステルイミド前駆体層の厚み17μm)を得た。その後、積層体を窒素雰囲気下、熱風乾燥器中にて、昇温速度5℃/分にて、150℃で30分、200℃で1時間、400℃で1時間にて、イミド化を行った。その後、フッ酸にてシリコンウエハから剥離して10μm厚みのポリエステルイミドフィルムが得られた。得られたポリエステルイミドフィルムについて引っ張り試験を行ったところ、弾性率5.4GPa及び破断伸び53%が得られた。 The polyesterimide precursor obtained above was spin-coated on a 6-inch silicon wafer with a spin coater (MS-250, manufactured by Mikasa Co., Ltd.) and allowed to stand at 100 ° C. for 30 minutes in a dryer. A polyesterimide precursor / silicon wafer laminate (polyesterimide precursor layer thickness 17 μm) having no tackiness was obtained. Thereafter, the laminate was imidized in a hot air drier in a nitrogen atmosphere at a heating rate of 5 ° C./min, 150 ° C. for 30 minutes, 200 ° C. for 1 hour, and 400 ° C. for 1 hour. It was. Then, it peeled from the silicon wafer with hydrofluoric acid, and the 10-micrometer-thick polyesterimide film was obtained. When a tensile test was performed on the obtained polyesterimide film, an elastic modulus of 5.4 GPa and an elongation at break of 53% were obtained.
 なお、ここで、固有粘度(η)は0.5質量%のポリエステルイミド前駆体を、オストワルド粘度計を用いて30℃で測定した。 Here, the intrinsic viscosity (η) was measured at 30 ° C. using a Ostwald viscometer for a 0.5% by mass polyesterimide precursor.
(実施例7)
 300mlフラスコ中に、合成例1で得られた未精製TABP10g、スルホラン150mLを入れ、オイルバスにて180℃まで加熱し30分かけて攪拌しながら溶解させた。その後、実施例1と同様にしてTABPの評価を行った。得られたTABPを示差走査熱量計(DSC-60、株式会社島津製作所製)、にて測定したところ、表2に示すように、融解熱のピーク温度(a)322.5℃、温度幅△T=((b)-(a))=4.5℃であった。分子量が最大となるのは、酸二無水物とジアミンの仕込み比が0.99であった。また、仕込み比0.99で得られたポリエステルイミド前駆体の固有粘度は、2.4dL/gであった。そして、実施例1、6に記載した方法に従い、製膜、イミド化してポリエステルイミドフィルムを作製し、同様に物性評価をした。物性値を表3に示す。
(Example 7)
In a 300 ml flask, 10 g of unpurified TABP obtained in Synthesis Example 1 and 150 ml of sulfolane were placed, heated to 180 ° C. in an oil bath, and dissolved with stirring over 30 minutes. Thereafter, TABP was evaluated in the same manner as in Example 1. The obtained TABP was measured with a differential scanning calorimeter (DSC-60, manufactured by Shimadzu Corporation). As shown in Table 2, the peak temperature of the heat of fusion (a) 322.5 ° C., the temperature range Δ T = ((b) − (a)) = 4.5 ° C. The molecular weight was maximized when the charge ratio of acid dianhydride and diamine was 0.99. Moreover, the intrinsic viscosity of the polyesterimide precursor obtained with the preparation ratio of 0.99 was 2.4 dL / g. And according to the method described in Examples 1 and 6, film formation and imidization were performed to produce a polyesterimide film, and physical properties were similarly evaluated. Table 3 shows the physical property values.
(比較例1)
 よく乾燥した攪拌機付密閉反応容器中にBPIP9.27mmolを入れ、N-メチル-2-ピロリドン48mLを加え、溶液を80℃に加温し溶解させた。溶解後に、この溶液に式(20)で表されるエステル構造を有するテトラカルボン酸二無水物(以下、TAHQ)の粉末9.66mmolを徐々に加えた。30分間攪拌することで、溶液粘度が急激に増加した。さらに4時間撹拌させ、透明、均一で粘稠なポリエステルイミド前駆体溶液を得た。
(Comparative Example 1)
In a well-dried closed reaction vessel with a stirrer, 9.27 mmol of BPIP was added, 48 mL of N-methyl-2-pyrrolidone was added, and the solution was heated to 80 ° C. to dissolve. After dissolution, 9.66 mmol of a tetracarboxylic dianhydride (hereinafter referred to as TAHQ) powder having an ester structure represented by the formula (20) was gradually added to this solution. By stirring for 30 minutes, the solution viscosity increased rapidly. The mixture was further stirred for 4 hours to obtain a transparent, uniform and viscous polyesterimide precursor solution.
 実施例1に記載した方法に従って、製膜、イミド化してポリエステルイミドフィルムを作製し、同様に物性評価した。物性値を表1に示す。
Figure JPOXMLDOC01-appb-C000086
According to the method described in Example 1, film formation and imidization were performed to produce a polyesterimide film, and physical properties were similarly evaluated. The physical property values are shown in Table 1.
Figure JPOXMLDOC01-appb-C000086
 銅箔に近い線熱膨張係数、高い熱安定性及び可撓性、低弾性率、比較的高い接着性を示したが、吸湿膨張係数は、7.6ppm/%RHと比較的高く、引裂き強度は、26μmポリエステルイミドフィルムにおいて42mNと低い。また、12μm厚のフィルムにて難燃性能が低くUL94VTM-0の性能が得られなかった。 It showed linear thermal expansion coefficient close to copper foil, high thermal stability and flexibility, low elastic modulus, and relatively high adhesiveness, but the hygroscopic expansion coefficient was relatively high at 7.6 ppm /% RH, and the tear strength Is as low as 42 mN in a 26 μm polyesterimide film. Further, the flame resistance performance was low with a film having a thickness of 12 μm, and the performance of UL94VTM-0 was not obtained.
(比較例2)
 実施例2において、TABPの代わりにTAHQを用い、ジアミンとしてAPAB10.49mol、4,4’-ジアミノジフェニルエーテル(以下、ODA)2.62molを用いた以外は、実施例2に記載した方法に従って、ポリエステルイミド前駆体を重合し、製膜、イミド化してポリエステルイミドフィルムを作製し、同様に物性評価した。物性値を表1に示す。銅箔に近い線熱膨張係数、高い熱安定性及び可撓性を示したが、吸湿膨張係数は、8.3ppm/%RHと比較的高く、弾性率は、7.9GPaと高く、接着強度は0.3N/mmと低く、引裂き強度は、26μmポリエステルイミドフィルムにおいて42mNと低い。また、12μm厚のフィルムにて難燃性能が低くUL94VTM-0の性能が得られなかった。
(Comparative Example 2)
According to the method described in Example 2, except that TAHQ was used instead of TABP and APAB 10.49 mol and 4,4′-diaminodiphenyl ether (hereinafter referred to as ODA) 2.62 mol were used as the diamine in Example 2. The imide precursor was polymerized, formed into a film and imidized to produce a polyesterimide film, and the physical properties were similarly evaluated. The physical property values are shown in Table 1. Although it showed linear thermal expansion coefficient close to copper foil, high thermal stability and flexibility, the hygroscopic expansion coefficient was relatively high at 8.3 ppm /% RH, the elastic modulus was high at 7.9 GPa, and the adhesive strength Is as low as 0.3 N / mm, and the tear strength is as low as 42 mN in a 26 μm polyesterimide film. Further, the flame resistance performance was low with a film having a thickness of 12 μm, and the performance of UL94VTM-0 was not obtained.
(比較例3)
 比較例1において、ジアミンとして式(23)で表されるジアミン(以下、BAPB)を用いた以外は、比較例1に記載した方法に従って、ポリエステルイミド前駆体を重合し、製膜、イミド化してポリエステルイミドフィルムを作製し、同様に物性評価した。物性値を表1に示す。
Figure JPOXMLDOC01-appb-C000087
(Comparative Example 3)
In Comparative Example 1, a polyesterimide precursor was polymerized according to the method described in Comparative Example 1 except that the diamine represented by the formula (23) (hereinafter referred to as BAPB) was used as the diamine. A polyesterimide film was prepared and similarly evaluated for physical properties. The physical property values are shown in Table 1.
Figure JPOXMLDOC01-appb-C000087
 高いガラス転移温度、高い接着性、弾性率は5.2GPaと低い値を示したが、線熱膨張係数は32ppm/℃と高い値を示し、吸湿膨張係数は、13.2ppm/%RHと高く、引裂き強度は、26μmポリエステルイミドフィルムにおいて45mNと低い。また、半田耐熱試験においてフクレが見られ、12μm厚のフィルムにて難燃性能が低くUL94VTM-0の性能が得られなかった。 High glass transition temperature, high adhesiveness, and elastic modulus showed a low value of 5.2 GPa, but the linear thermal expansion coefficient showed a high value of 32 ppm / ° C., and the hygroscopic expansion coefficient was as high as 13.2 ppm /% RH. The tear strength is as low as 45 mN in a 26 μm polyesterimide film. In addition, blistering was observed in the solder heat resistance test, and the flame resistance performance was low with the film having a thickness of 12 μm, and the performance of UL94VTM-0 was not obtained.
(比較例4)
 比較例1において、TAHQの代わりに実施例1で得られたTABPを用い、ジアミンとしてAPABを用いた以外は、比較例1に記載した方法に従って、ポリエステルイミド前駆体を重合し、製膜、イミド化してポリエステルイミドフィルムを作製し、同様に物性評価した。物性値を表1に示す。高い熱安定性及び可撓性を示し、低吸湿膨張係数、高引裂き強度、膜厚12μmのポリイミドフィルムの難燃性を評価したところUL94VTM-0の性能を示したが、線熱膨張係数は13ppm/℃と銅箔に比べて低い線熱膨張係数を示し、接着強度は、0.4N/mmと低く、弾性率は7.7GPaと高い値を示した。
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
 
(Comparative Example 4)
In Comparative Example 1, a polyester imide precursor was polymerized according to the method described in Comparative Example 1 except that TABP obtained in Example 1 was used instead of TAHQ, and APAB was used as a diamine. A polyesterimide film was prepared and similarly evaluated for physical properties. The physical property values are shown in Table 1. Evaluation of flame retardancy of polyimide film with high thermal stability and flexibility, low hygroscopic expansion coefficient, high tear strength and film thickness of 12μm showed the performance of UL94VTM-0, but the linear thermal expansion coefficient was 13ppm. The coefficient of linear thermal expansion was lower than that of copper foil at / ° C., the adhesive strength was as low as 0.4 N / mm, and the elastic modulus was as high as 7.7 GPa.
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
 本発明のポリエステルイミドは、各種電子デバイスにおける電気絶縁膜、フレキシブルプリント配線板、ディスプレー用基板、電子ペーパー用基板、太陽電池用基板、特にフレキシブルプリント配線板用基材として好適に利用できる。 The polyesterimide of the present invention can be suitably used as an electrical insulating film, a flexible printed wiring board, a display substrate, an electronic paper substrate, a solar cell substrate, particularly a flexible printed wiring board substrate in various electronic devices.

Claims (14)

  1.  下記式(1)で表される反復単位を有することを特徴とするポリエステルイミド前駆体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Arは式(2)で表される4価の芳香族基であり、Bは式(3)~式(9)の少なくとも1つより選択される2価の芳香族基である。Rは炭素数1~6のアルキル基を表す。R~Rは炭素数1~6のアルキル基、水素原子を表し、それぞれ独立であり、同じであっても異なっていてもよい。Rは炭素数1~6のアルキル基を表す。R~Rは炭素数1~6のアルキル基、水素原子を表す。)
     
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
     
    Figure JPOXMLDOC01-appb-C000004
     
    Figure JPOXMLDOC01-appb-C000005
     
    Figure JPOXMLDOC01-appb-C000006
     
    Figure JPOXMLDOC01-appb-C000007
     
    Figure JPOXMLDOC01-appb-C000008
     
    Figure JPOXMLDOC01-appb-C000009
     
    A polyesterimide precursor having a repeating unit represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), Ar is a tetravalent aromatic group represented by the formula (2), and B 1 is a divalent fragrance selected from at least one of the formulas (3) to (9). R 1 represents an alkyl group having 1 to 6 carbon atoms, R 2 to R 4 represent an alkyl group having 1 to 6 carbon atoms and a hydrogen atom, which are independent of each other, and may be the same or different R 5 represents an alkyl group having 1 to 6 carbon atoms, and R 6 to R 9 represent an alkyl group having 1 to 6 carbon atoms and a hydrogen atom.)

    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    Figure JPOXMLDOC01-appb-C000007

    Figure JPOXMLDOC01-appb-C000008

    Figure JPOXMLDOC01-appb-C000009
  2.  請求項1に記載のポリエステルイミド前駆体中の式(1)において、Bが式(3)または式(4)で表される反復単位を有することを特徴とするポリエステルイミド前駆体。 In the formula (1) of the polyesterimide precursor according to claim 1, polyesterimide precursor B 1 is characterized by having a repeating unit represented by the formula (3) or (4).
  3.  請求項1に記載のポリエステルイミド前駆体中の式(1)において、Bが式(4)で表される反復単位を有することを特徴とするポリエステルイミド前駆体。 In the formula (1) of the polyesterimide precursor according to claim 1, polyesterimide precursor B 1 is characterized by having a repeating unit represented by the formula (4).
  4.  請求項1に記載のポリエステルイミド前駆体中の式(1)において、Bが式(10)で表される反復単位を有することを特徴とするポリエステルイミド前駆体。
    Figure JPOXMLDOC01-appb-C000010
    In the formula (1) of the polyesterimide precursor according to claim 1, polyesterimide precursor B 1 is characterized by having a repeating unit represented by the formula (10).
    Figure JPOXMLDOC01-appb-C000010
  5.  下記式(11)及び式(12)で表される反復単位を有し、式(11)及び式(12)のモル比が式(11)/式(12)=20/80~80/20の割合であることを特徴とするポリエステルイミド前駆体。
    Figure JPOXMLDOC01-appb-C000011
    (式(11)及び式(12)中、Arは式(2)で表される4価の芳香族基である。式(12)中、Bは式(13)から式(17)の少なくとも1つより選択される2価の芳香族基であり、R10~R18は炭素数1~6のアルキル基、水素原子を表し、それぞれ独立であり、同じであっても異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    It has a repeating unit represented by the following formula (11) and formula (12), and the molar ratio of formula (11) and formula (12) is formula (11) / formula (12) = 20/80 to 80/20 A polyesterimide precursor, characterized in that
    Figure JPOXMLDOC01-appb-C000011
    (In the formula (11) and the formula (12), Ar is a tetravalent aromatic group represented by the formula (2). In the formula (12), B 2 is represented by the formulas (13) to (17). Is a divalent aromatic group selected from at least one, and R 10 to R 18 each represents an alkyl group having 1 to 6 carbon atoms or a hydrogen atom, and each is independent and may be the same or different Good.)
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
  6.  請求項5に記載のポリエステルイミド前駆体のうち、式(12)中、Bが式(16)、式(17)または式(18)で表される反復単位であることを特徴とするポリエステルイミド前駆体。
    Figure JPOXMLDOC01-appb-C000018
    Of polyesterimide precursor according to claim 5, wherein (12), polyester B 2 is characterized in that it is a repeating unit represented by the formula (16), equation (17) or formula (18) Imide precursor.
    Figure JPOXMLDOC01-appb-C000018
  7.  請求項5に記載のポリエステルイミド前駆体のうち、式(12)中、Bが式(16)で表される反復単位であることを特徴とするポリエステルイミド前駆体。 Of polyesterimide precursor according to claim 5, wherein (12), polyesterimide precursor B 2 is characterized in that it is a repeating unit represented by the formula (16).
  8.  請求項1から請求項7のいずれかに記載のポリエステルイミド前駆体において、重量平均分子量Mwが3万以上40万以下であることを特徴とするポリエステルイミド前駆体。 The polyesterimide precursor according to any one of claims 1 to 7, wherein the weight average molecular weight Mw is 30,000 to 400,000.
  9.  請求項1から請求項8のいずれかに記載のポリエステルイミド前駆体において、該ポリエステルイミド前駆体を得る際に用いる式(19)で表されるエステル基含有テトラカルボン酸二無水物が、示差走査熱量計(DSC)にて示される融解熱ピーク温度(a)℃、融解熱ピークへの立ち上がり開始温度とピーク傾きが一定に落ち着いた温度を接点とする接線の交点となる温度を(b)℃とし、温度幅ΔT=((b)-(a))℃とするとき、(a)≧322℃及びΔT≦5℃を満たすことを特徴とするポリエステルイミド前駆体。
    Figure JPOXMLDOC01-appb-C000019
    The polyesterimide precursor according to any one of claims 1 to 8, wherein the ester group-containing tetracarboxylic dianhydride represented by the formula (19) used for obtaining the polyesterimide precursor is a differential scan. The melting heat peak temperature (a) ° C indicated by the calorimeter (DSC), the temperature at the intersection of the tangent line with the temperature at which the rise to the melting heat peak starts and the peak slope settled constant is (b) ° C And a temperature range ΔT = ((b) − (a)) ° C., a polyesterimide precursor satisfying (a) ≧ 322 ° C. and ΔT ≦ 5 ° C.
    Figure JPOXMLDOC01-appb-C000019
  10.  請求項1から請求項9のいずれかに記載のポリエステルイミド前駆体をイミド化して得られることを特徴とするポリエステルイミド。 A polyesterimide obtained by imidizing the polyesterimide precursor according to any one of claims 1 to 9.
  11.  請求項1から請求項9のいずれかに記載のポリエステルイミド前駆体を加熱あるいは脱水試薬を用いてイミド化させて得ることを特徴とするポリエステルイミドの製造方法。 A method for producing a polyesterimide, which is obtained by heating or imidizing the polyesterimide precursor according to any one of claims 1 to 9 using a dehydrating reagent.
  12.  ポリエステルイミド層と金属層を有する積層板であって、該ポリエステルイミド層が請求項10に記載のポリエステルイミドから構成されることを特徴とする積層板。 A laminate having a polyesterimide layer and a metal layer, wherein the polyesterimide layer is composed of the polyesterimide according to claim 10.
  13.  請求項1から請求項9のいずれかに記載のポリエステルイミド前駆体を金属箔上に塗布し、乾燥後、加熱あるいは脱水試薬を用いてイミド化することによって得られることを特徴とする請求項12に記載の積層板。 The polyesterimide precursor according to any one of claims 1 to 9 is applied on a metal foil, dried, and then imidized by heating or using a dehydrating reagent. The laminated board as described in.
  14.  請求項12及び請求項13のいずれかに記載の積層板の金属層が配線にパターニングされてなることを特徴とするフレキシブルプリント配線板。 14. A flexible printed wiring board, wherein the metal layer of the laminated board according to claim 12 is patterned into a wiring.
PCT/JP2008/066535 2008-05-16 2008-09-12 Polyester-imide precursor and polyester-imide WO2009139086A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008801292052A CN102027044A (en) 2008-05-16 2008-09-12 Polyester-imide precursor and polyester-imide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008130045A JP2009275183A (en) 2008-05-16 2008-05-16 Polyamic acid varnish composition and metal polyimide complex using the same
JP2008-130045 2008-05-16
JP2008-212101 2008-08-20
JP2008212101A JP2010047674A (en) 2008-08-20 2008-08-20 Polyester imide precursor and polyester imide

Publications (1)

Publication Number Publication Date
WO2009139086A1 true WO2009139086A1 (en) 2009-11-19

Family

ID=41318466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066535 WO2009139086A1 (en) 2008-05-16 2008-09-12 Polyester-imide precursor and polyester-imide

Country Status (3)

Country Link
CN (1) CN102027044A (en)
TW (1) TWI395770B (en)
WO (1) WO2009139086A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063647A (en) * 2009-09-15 2011-03-31 Asahi Kasei E-Materials Corp Polyimide film and polyimide metal laminate
WO2017051827A1 (en) * 2015-09-24 2017-03-30 旭化成株式会社 Polyimide precursor, resin composition, and method for producing resin film
KR20170139624A (en) 2015-05-29 2017-12-19 후지필름 가부시키가이샤 Polyimide precursor composition, photosensitive resin composition, cured film, process for producing cured film, semiconductor device and process for producing polyimide precursor composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998930B2 (en) * 2010-06-10 2016-09-28 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014121415A1 (en) * 2013-02-06 2014-08-14 量子高科(北京)研究院有限公司 Pharmaceutical composite material applied under extreme temperature condition
KR102528185B1 (en) * 2015-02-10 2023-05-03 닛산 가가쿠 가부시키가이샤 Composition for forming release layer
CN112920602A (en) * 2018-03-01 2021-06-08 中天电子材料有限公司 High-modulus low-thermal-expansion-coefficient polyimide film and preparation method thereof
TWI677517B (en) * 2018-08-22 2019-11-21 臻鼎科技股份有限公司 Polymer resin, polymer resin composition, and copper clad laminate
TWI773937B (en) 2019-10-29 2022-08-11 達興材料股份有限公司 Poly(imide-ester-amide) copolymer and optical film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070157A (en) * 1996-08-27 1998-03-10 Kanegafuchi Chem Ind Co Ltd Fc type and tab tape using new polyimide film as base film
JPH11199668A (en) * 1997-10-23 1999-07-27 Kanegafuchi Chem Ind Co Ltd Polytmide composition, and tape for tab and flexible printed circuit board therefrom
WO2005113647A1 (en) * 2004-05-21 2005-12-01 Manac Inc Polyesterimide having low coefficient of linear thermal expansion and precursor therefor
JP2006336011A (en) * 2005-05-30 2006-12-14 Chang Chun Plastics Co Ltd Polyimide resin and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031068A (en) * 1997-10-23 2000-02-29 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polyimide composition and base tape for TAB carrier tape and flexible printed circuit board made from said composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070157A (en) * 1996-08-27 1998-03-10 Kanegafuchi Chem Ind Co Ltd Fc type and tab tape using new polyimide film as base film
JPH11199668A (en) * 1997-10-23 1999-07-27 Kanegafuchi Chem Ind Co Ltd Polytmide composition, and tape for tab and flexible printed circuit board therefrom
WO2005113647A1 (en) * 2004-05-21 2005-12-01 Manac Inc Polyesterimide having low coefficient of linear thermal expansion and precursor therefor
JP2006336011A (en) * 2005-05-30 2006-12-14 Chang Chun Plastics Co Ltd Polyimide resin and method for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063647A (en) * 2009-09-15 2011-03-31 Asahi Kasei E-Materials Corp Polyimide film and polyimide metal laminate
US10538627B2 (en) 2015-05-29 2020-01-21 Fujifilm Corporation Polyimide precursor composition, photosensitive resin composition, cured film, method for producing cured film, a semiconductor device, and method for producing polyimide precursor composition
KR20170139624A (en) 2015-05-29 2017-12-19 후지필름 가부시키가이샤 Polyimide precursor composition, photosensitive resin composition, cured film, process for producing cured film, semiconductor device and process for producing polyimide precursor composition
JPWO2017051827A1 (en) * 2015-09-24 2018-03-22 旭化成株式会社 Polyimide precursor, resin composition and method for producing resin film
KR20180048605A (en) * 2015-09-24 2018-05-10 아사히 가세이 가부시키가이샤 Polyimide precursor, resin composition, and method for producing resin film
JP2019070811A (en) * 2015-09-24 2019-05-09 旭化成株式会社 Polyimide precursor, resin composition, and method for producing resin film
WO2017051827A1 (en) * 2015-09-24 2017-03-30 旭化成株式会社 Polyimide precursor, resin composition, and method for producing resin film
KR102133559B1 (en) * 2015-09-24 2020-07-13 아사히 가세이 가부시키가이샤 Polyimide precursor, resin composition, and method for producing resin film
KR20200085383A (en) * 2015-09-24 2020-07-14 아사히 가세이 가부시키가이샤 Polyimide precursor, resin composition, and method for producing resin film
JP2020172652A (en) * 2015-09-24 2020-10-22 旭化成株式会社 Polyimide precursor, resin composition, and method for producing resin film
JP7095024B2 (en) 2015-09-24 2022-07-04 旭化成株式会社 Method for manufacturing polyimide precursor, resin composition and resin film
KR102460768B1 (en) * 2015-09-24 2022-10-28 아사히 가세이 가부시키가이샤 Polyimide precursor, resin composition, and method for producing resin film
KR102659377B1 (en) * 2015-09-24 2024-04-19 아사히 가세이 가부시키가이샤 Polyimide precursor, resin composition, and method for producing resin film

Also Published As

Publication number Publication date
TW200948862A (en) 2009-12-01
TWI395770B (en) 2013-05-11
CN102027044A (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP5746280B2 (en) Novel ester group-containing tetracarboxylic dianhydrides, novel polyesterimide precursors and polyesterimides derived therefrom
WO2009139086A1 (en) Polyester-imide precursor and polyester-imide
JP5727795B2 (en) Ester group-containing tetracarboxylic dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing them
JP2008001876A (en) Polyesterimide and method for producing the same
JP2009286854A (en) Polyesterimide precursor and polyesterimide
JP2008101187A (en) Polyesterimide and method for producing the same
JP2009286868A (en) Linear polyimide precursor, linear polyimide, thermally cured product thereof, production method, adhesive and copper-clad laminate
JP5244303B2 (en) Polyesterimide and method for producing the same
JP5009670B2 (en) Polyesterimide precursor and polyesterimide
JP4846609B2 (en) Polyimide precursor having ester group and oxazole structure, polyimide and method for producing the same
JP5232745B2 (en) Polyimide film and polyimide metal laminate
JP4918025B2 (en) Ester group-containing tetracarboxylic dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing them
EP2145910A1 (en) Linear polyimide precursor having asymmetric structure, polyimide, and their production methods
JP2009286853A (en) Polyesterimide precursor and polyesterimide
JP5547874B2 (en) Polyimide resin
JP2007314443A (en) Ester group-containing tetracarboxylic acid compound, polyesterimide precursror, polyesterimide, and method for producing them
JP2011148901A (en) Phosphorus-containing diamine and phosphorus-containing polyimide obtained therefrom
TW200930563A (en) Metal laminate
JP2009091441A (en) Polyimide precursor and polyimide
JP2009286966A (en) Polyesterimide precursor, polyesterimide, and metal-polyesterimide complex
JP2009275183A (en) Polyamic acid varnish composition and metal polyimide complex using the same
JP2011021072A (en) Polyesterimide precursor and polyesterimide
JP2010047674A (en) Polyester imide precursor and polyester imide
JP2008063517A (en) Polyesterimide and its manufacturing method
JP2009286967A (en) Polyamic acid varnish composition and metal-polyimide composite using it

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129205.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08810586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08810586

Country of ref document: EP

Kind code of ref document: A1