WO2009137981A1 - 显微焊机 - Google Patents

显微焊机 Download PDF

Info

Publication number
WO2009137981A1
WO2009137981A1 PCT/CN2009/000221 CN2009000221W WO2009137981A1 WO 2009137981 A1 WO2009137981 A1 WO 2009137981A1 CN 2009000221 W CN2009000221 W CN 2009000221W WO 2009137981 A1 WO2009137981 A1 WO 2009137981A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
output
pulse
control device
machine according
Prior art date
Application number
PCT/CN2009/000221
Other languages
English (en)
French (fr)
Inventor
杨仕桐
Original Assignee
Yang Shitong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Shitong filed Critical Yang Shitong
Priority to US12/992,604 priority Critical patent/US20110062123A1/en
Priority to JP2011508786A priority patent/JP5443475B2/ja
Priority to GB1021320.5A priority patent/GB2474151B/en
Priority to DE112009001225T priority patent/DE112009001225T5/de
Publication of WO2009137981A1 publication Critical patent/WO2009137981A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/241Electric supplies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/26Storage discharge welding

Definitions

  • the invention relates to a micro-welding and micro-welding machine which is first proposed in the field of electric resistance welding, and is mainly applied to a fine workpiece which can be welded by means of a micro-optical device, such as an enameled wire lead-out joint in various electronic components with small coils. Welding, etc. Background technique
  • the present invention firstly requires the concept of microwelding and microwelding machines.
  • micro-welding refers to spot welding of fine workpieces by electric resistance welding.
  • Micro-welding must have the following two-part structure: Part is micro-optics. Structure, due to the very small size of the welded parts, When welding, it is necessary to ensure a certain working distance, which makes the normal person's vision unable to see clearly, or can not see the weldment joint for direct viewing operation for a long time. It is better to use a stereo microscope or other optical magnification display device.
  • the welding is completed; the other part is the structure of the micro-welded electric resistance spot welding machine, which can also be referred to as the structure of the micro-ply machine.
  • the spot welding machine is required to include the power type, power size, electrodes and electrodes.
  • the structure of the chuck, the various electrical parameters and the control of the welding force should also be adapted to the control, especially the adjustment of the output pulse, which requires more precise, even if the square wave output pulse is adjusted by O.Olv and lms, It is necessary to further adjust the pulse of the step wave to meet the requirements of microscopic splicing. In other words, only a resistance spot welder that meets the requirements for microscopy is called a microwelder.
  • the object of the present invention is to provide a micro-welding machine for the field of electric resistance welding, which can ensure that the welding machine can provide accurate pulse output when welding the thin workpiece and directly splicing the enameled wire, so as to improve the welding head of the direct welding enameled wire.
  • the service life and the welding quality of the fine workpieces can be improved.
  • the device provides a stepped wave pulse output for welding, and the machine head connects the output of the soldering resistance transformer to the welding head during welding.
  • the power control device includes a control circuit for providing a pulse output, at least one function key for providing a signal to the control circuit to adjust a pulse output, and a display device electrically connected to the control circuit for outputting information.
  • the step wave provided by the power control device is composed of ⁇ ⁇ 2 and a first step (V ⁇ ) second step (V 2 , ⁇ 2 ), wherein the pulse output rises to the first at a certain angle ( ⁇ )
  • the step V sustaining time continues to rise to the second step v 2 , and after the second step maintaining time T 2 , then falls to an end at a certain angle ⁇ ⁇ 2 , and the above-mentioned step wave 1 , ⁇ 2 ,
  • each parameter of ⁇ 2 can be adjusted, and ⁇ !, ⁇ can be designed to be adjustable or preset to a certain value, and cannot be adjusted thereafter.
  • the power control device is provided with at least one function key for adjusting the first step voltage amplitude.
  • the power control device is provided with at least one function key for adjusting the second step voltage amplitude.
  • At least one function key is provided in the power control device for adjusting the time during which the first step is maintained.
  • the power control device is provided with at least one function key for adjusting the time for maintaining the second step.
  • the power control device may be provided with a function button for adjusting the output pulse rising angle.
  • the power control device may be provided with a function button for adjusting the output pulse falling angle ⁇ 2 .
  • the welding machine is a capacitor energy storage welding machine or an inverter power welding machine.
  • the handpiece is a spot welder head with a pressure display.
  • the pulse output of the staircase wave provided by the power control device control circuit can pass through the digital circuit
  • the DAC is implemented, or a constant current source is used to charge the capacitor and switch the potential.
  • FIG. 1 is a graph showing a step wave formed by a pulse width and a width of a microscopy machine of the present invention.
  • Figure 2 shows the schematic diagram of the welder circuit and the position of the A point.
  • Fig. 3 is a circuit diagram of the staircase wave shown in Fig. 1 realized by a digital circuit DAC.
  • Figure 4 is a circuit diagram of the step wave shown in Figure 1 using a constant current source to charge the capacitor and switch the potential.
  • FIG. 5 is a waveform diagram of the output of the digital-to-analog converter DAC0 of the circuit diagram of the C8051F020 single-chip microcomputer in FIG.
  • Figure 6 is a graph showing the relationship between the parameters ⁇ and T in equation (2).
  • FIG. 7 is a graph showing the relationship of the reference #t We( ) - 1 of the embodiment of FIG. 4 using a constant current source to charge a capacitor to form a ramp wave.
  • the invention has been subjected to a large number of experiments, research and analysis, and is summarized directly; 1: The principle of early enameled wire can be summarized as follows: Conduction current during welding, due to the insulation layer on the enameled wire, the current flows through the welding head.
  • the tip of the electrode causes the tip of the horn to generate an electric spark, and the insulating varnish in contact with the horn is burned off and stripped, and the metal is exposed; after that, since the conductivity of the copper core in the enamel wire and the conductivity of the metal substrate are greater than that of the electrode material Conductivity, under the combined action of welding force and resistance heat, the contact resistance between the welding head and the workpiece is less than the contact resistance of the two electrode tips, and a large amount of current flows into the workpiece to complete the resistance welding in the same pulse output. The current flowing through the tips of the two electrodes becomes a bias current.
  • the entire process of directly welding the enameled wire generally takes only a few seconds to ten milliseconds to complete.
  • the spot electric boring machine which can directly solder the enamel wire (Chinese Patent Application No. CN 01114785.7) or other precision welding machines in the prior art generally only requires the current and voltage output of the welding machine to be stable, that is, the output pulse waveform is mostly square wave or close to square wave. .
  • the output pulse waveform is mostly square wave or close to square wave.
  • a large amount of current first passes through the two electrode tips of the contact or the joint and generates an electric spark.
  • the two electrode tips are repeated.
  • the resulting spark will inevitably affect its structure.
  • the two electrode tips can no longer generate an electric spark, the insulating paint cannot be burned out and the welding cannot be performed. Therefore, in the prior art welding machine, the life of the welding head is not long, and there are only a few hundred welding points, which greatly affects the promotion and application of the direct welding enameled wire technology.
  • the present invention utilizes a "high-speed camera” with a frequency of 10,000 sheets/second to photograph the entire process of directly welding the enameled wire, and uses the “resistance welding test analyzer” to measure the actual waveforms of current and voltage during direct welding of the enameled wire; At the same time, the dynamic resistance of the entire floating process is measured.
  • the welding machine of the invention comprises a main power source, a welding head and a machine head, wherein the main power source is a main part of the welding machine, the main power source comprises a solder resist transformer and a power control device, and the output of the solder resist transformer And the output cable, and the power control device controls the output of the soldering resistance transformer.
  • the welding machine is generally referred to as the main power source, and the welding head and the machine head are the supporting facilities of the welding machine, wherein the welding head is also called the electrode.
  • the welding connection is required to be connected to the output of the solder resist transformer, and the handpiece is the part that provides connection and provides welding force.
  • a spot welding head (Chinese Patent Application No. CN01114808.X) or a resistance welding head (Chinese Patent Application No. CN2005121259.2) may be used, and if it is not a welded enameled wire, a pair of parallel electrodes may be used. Or the upper and lower electrodes, and the machine head can use the spot welding machine head (Chinese Patent Application No. CN01114856.X).
  • the main power of the welder is the main content of the present invention.
  • the main power supply generally uses a capacitor energy storage welder with high power factor, fast response, concentrated heating, and short connection time. It can also use an inverter power welder.
  • the patented welder disclosed in Chinese patent application CN01114785.7 is for example, the welder is a constant voltage controlled capacitor energy storage welder whose output is a pulse output of a square wave adjusted in units of Q.Olv (voltage) and 1 ms (duration), and is controlled by adjusting pulses. The magnitude of the output current has been studied. The research shows that the welding machine still can not meet the requirements of the welding enameled wire.
  • the power control device divides the pulse of the square wave output into two parts, which are the first half of the pulse output. Part and the second half of the pulse output, because the amplitudes of the two parts are not equal, the shape is similar to the step, so it is called the order.
  • the ladder wave, the first half of the pulse output is the first step, and the second half of the pulse output is the second step.
  • the step wave composition includes: pulse rising angle ⁇ ⁇ first step 1 ⁇ 4, Tj second step ⁇ 2 , T 2 and pulse drop angle ⁇ ⁇ 2 .
  • the pulse voltage rises at a certain angle, and the ⁇ ! ⁇ is adjustable (may not be adjustable after a certain angle is preset), when the pulse voltage rises to a certain height and is maintained at the height,
  • the height and hold time make up the settings of the first step 1 ⁇ 4, T l 5 1 ⁇ 4 and ⁇ are all adjustable.
  • the first step provides a suitable current for burning off the insulating varnish; the voltage then continues to rise to the height of the set voltage and is maintained at this height, which is referred to as the second step ⁇ 2 , ⁇ 2 , ⁇ 2 and D 2
  • the setting is also adjustable, the second step provides the appropriate current for the welding, and then the pulse waveform ends with a ⁇ 2 drop.
  • the function of the setting is to clamp the impact of the large current on the welding head and the workpiece, and the action of ⁇ 2 is to maintain the heat. Since ⁇
  • ⁇ ⁇ 2 is variable. When ⁇ ⁇ ⁇ ⁇ 2 determines that the time for voltage rise or fall can also be determined, the time for voltage rise or fall can be not increased when the pulse time is set.
  • the power control device includes a control circuit for providing a pulse output, at least one function key for providing a signal to the control circuit to adjust a pulse output, and a display electrically connected to the control circuit for outputting information.
  • a control circuit for providing a pulse output
  • at least one function key for providing a signal to the control circuit to adjust a pulse output
  • a display electrically connected to the control circuit for outputting information.
  • the microwelding machine of the invention divides a pulse output into a first step in the setting of the pulse output
  • Vi, ⁇ and the second step V 2 , T 2 form a staircase wave. Because of: 1: early enameled wire wire diameter is different, there are different insulation paint materials, there are different thickness of insulation paint, etc., so the present invention V! , IV 2 and T 2 are set to be flexible and adjustable. For the pulse rise and fall angle ⁇ ⁇ ⁇ 2 can also be set to be flexible, or set a certain angle without adjustment.
  • the pulse is further designed to have parameters such as ⁇ !, ⁇ 2 , Vi Tj, V 2 , T 2 and the like.
  • the stepped wave output makes the control of the output current more precise. Since the power supply of the stepped wave output is often applied to a fine workpiece that needs to be welded by means of a microscopic optical device, it is different from other well-known precision.
  • the welding machine so the main power supply is called a micro-welding machine.
  • the formation of the staircase wave of the present invention will be further described below with reference to the embodiments.
  • Figure 1 shows the coordinate waveform of the output pulse amplitude and width forming the step wave, and the ordinate V is the output pulse amplitude (voltage, unit V).
  • the abscissa T is the output pulse width (time, unit ms).
  • the structure of the staircase wave is composed of a pulse rising angle ⁇ ⁇ ⁇ first step VI second steps V 2 , T 2 and a pulse falling angle ⁇ ⁇ 2 . At the beginning of the pulse output, the pulse amplitude V rises at a certain angle.
  • the hold time is the set value 1 ⁇ , which is called the first step 1 ⁇ 4, T 1 ? and then the amplitude jumps to the new setting.
  • the value V 2 is maintained at this amplitude, and the sustain period is the set value T 2 , which is referred to as the second step V 2 , T 2 , and then the pulse output wave is lowered to ⁇ ⁇ 2 to the end.
  • 0! is 50. 1 ⁇ 4 is 0.75 ⁇ , 1 ⁇ is 4ms; V 2 is l.OOv, T 2 is 4ms, and ⁇ 2 is 75. .
  • ⁇ ⁇ 2 is variable, after the value of ⁇ ⁇ 2 is determined, the time at which the pulse amplitude rises or falls to the set value is determined, so that it is not necessary to additionally increase ⁇ !, ⁇ when setting the pulse width. 2 rise and fall times.
  • the step wave is completed by the same pulse output, the first step is used to burn off the insulating paint on the enameled wire, and the second step is used to weld. It is divided into several waveforms as described in some documents of the prior art, such as preheating pulses, tapping pulses, and sustaining pulses, which are completely different concepts.
  • the preheating pulse, the welding pulse, and the sustain pulse are independent outputs, and there is a certain interval between the preheating pulse and the welding pulse, or between the welding pulse and the sustaining pulse, and the step wave is set in this setting.
  • One step is completely continuous with the second step, and there is no time interval between the two steps, only the jump of the voltage amplitude.
  • the micro-welding machine of the invention can be applied not only to the welding enamelled package because of the step wave described above Wire, in addition to precision welding of fine workpieces, such as repair of printed circuit boards, connection of solar cells, welding of various instruments on medical, defense, aerospace, preheating with the first step of the step wave, with pulse drop After the angle is used for heat maintenance, it is better to reduce the splash and improve the welding quality than the conventional welding pulse and the preheating pulse, or the welding effect of the conventional welding machine with the welding pulse and the sustain pulse intermittent, which is better than the welded workpiece. Too small, it is easy to lose heat during the interval.
  • the pulse rising angle of the staircase wave of the invention can effectively suppress the impact of the instantaneous large current on the workpiece, reduce the adhesion of the electrode to the workpiece, and improve the service life of the electrode.
  • parallel electrodes or upper and lower electrodes should be used.
  • FIG. 2 is a circuit schematic diagram of a welding machine disclosed in Chinese Patent Application No. CN01114785.7. As can be seen from FIG. 2, as long as a voltage waveform of an appropriate amplitude and shape is applied at point A, after amplification and feedback circuits work together, A voltage waveform with a proportional amplitude and the same shape can be obtained at the output of the pulse transformer.
  • FIG. 1 is a circuit diagram of the stepped waveform of Figure 1 obtained by the digital circuit DAC at the output of the welder;
  • Figure 4 is a stepped wave of Figure 1 obtained by charging the capacitor with a constant current source and switching the potential at the output of the welder. Type circuit diagram.
  • Figure 3 uses the C8051F020 microcontroller, an integrated mixed-signal system-on-a-chip (SOC) that operates at speeds up to 25MPIS and features a variety of functional blocks. It has two 12 on the chip The digital-to-analog converters DACO and DAC1 have conversion speeds of up to 1 ⁇ . It can fully meet the application requirements of this welder, complete the control of the whole welder, and output accurate and smooth voltage waveform. In the circuit, DACO is used to output the voltage waveform as shown in Figure 5. The shape of the waveform is generated by the program operation. The voltage waveform signal is passed through a voltage follower (U7324-B), and then smoothed by capacitor C32 to be added to point A.
  • SOC system-on-a-chip
  • the corresponding voltage value Ua is output to the charging circuit through the program operation, and the voltage of the storage capacitor C30 is adjusted to ensure that the C30 has sufficient energy output to form a complete output waveform that meets the requirements. .
  • the microcontroller When idle, the microcontroller continuously reads the data of the voltage dial and the time dial. Set the timer to control the width of the output pulse according to the value set by the time dial! ⁇ And! ⁇ ;
  • the output voltage Ua of the DAC1 is set according to the value set by the voltage dial, thereby adjusting the voltage of the storage capacitor C30, and also calculating a set of output data of the DACO, so that it outputs a voltage waveform having a shape as shown in FIG.
  • This set of data corresponds to the voltage value set by the user and changes as the set value changes.
  • the DACO output data set is calculated according to equations (1) and (2):
  • Dn represents the nth digital-to-analog conversion data to be output by the DACO
  • U Indicates the full-scale voltage value of the D AC0 output
  • 212 indicates the data at the full-scale output.
  • is the voltage rising angle or falling angle ⁇ ⁇ 2
  • is the DACO update period
  • both ⁇ and T are set by the program and can be easily adjusted. Their relationship is shown in Figure 6.
  • the DACO output voltage When idle, the DACO output voltage is 0V.
  • the MCU When the trigger condition is met, a negative transition occurs on the MCU 62 pin, and an interrupt occurs.
  • the MCU outputs a value from 0V to U1, U2, U3 every other cycle T, at DACO.
  • the output pin (100 feet) forms a ramp-up ramp voltage, which is applied to point A after voltage follower and capacitor C32 filtering.
  • DACO keeps the current voltage value and starts timing.
  • the timer starts counting; when the timing reaches ⁇ , the DACO output is n+1 conversion values, so that the output voltage reaches V 2 , and keep the current voltage value T 2 time constant.
  • DAC0 When the time reaches ⁇ 2 , DAC0 outputs a value every other cycle, the value decreases one by one, and press ⁇ 2 falls, until 0V, ends an output process. In this way, a voltage waveform having a shape as shown in FIG. 5 is formed at the defect point; at the same time, the purpose is also achieved: an amplitude is also obtained at the output end in accordance with the set value, and the shape is as shown in FIG. It can be seen that as long as the update period T of DAC0 is sufficiently small (e.g., 10 microseconds), the rise and fall of the voltage waveform can be considered smooth throughout the output process. And the parameters of the waveform ⁇ !, ⁇ 2 , V, ⁇ , V 2 , T 2 are completely determined by the program, so it is easy to realize the pulse rising or falling angle, the amplitude and the width are adjustable.
  • Figure 4 uses a constant current source to charge the capacitor to form a ramp wave.
  • the potential wave is used to form a staircase wave.
  • the voltage waveform shown in Figure 1 can be generated.
  • the rising slope of the ramp wave is determined by R108 and C12, and the amplitude ratio of the staircase wave is determined by R95 and RJ07.
  • the width ratio and pulse width t are controlled by the program.
  • Q7, Q8, Q9, and R108 constitute a typical transistor mirror constant current source (a constant current source), and C12 is a constant current source load.
  • the waveform generation process is described as follows:
  • the charging circuit adjusts the storage capacitor according to the set voltage value Ua The voltage of C30 is to ensure that C30 has enough energy output to form a complete output waveform that meets the requirements.
  • step A a step voltage waveform as shown in Fig. 5 is formed.
  • the welder goes into an idle state, waiting for the next trigger to arrive.
  • the generation of the staircase wave is obtained by applying another voltage waveform at point A of the schematic diagram of Fig. 2. Therefore, it is possible to install a switch at point A, so that the spot welder of the present invention can use the original square wave or the step wave of the present invention according to the use requirements.
  • the power control device provides a pulse output of the step wave for the direct welding enameled wire, which is set according to the welding principle of the direct welding enameled wire proposed by the present invention, and the pulse output of the step wave reduces the excessive current of the insulating lacquer period.
  • the impact of the tip of the electrode, while the current during the welding period is largely transferred to the weldment, so the current and voltage during the welding period do not have much influence on the two electrode tips.
  • the step wave pulse output proposed by the present invention greatly prolongs the service life of the direct welding enameled wire horn.
  • the welding machine disclosed in the Chinese Patent Application No. CN01004785.7 is used for the experiment, and the welding head disclosed in the patent of the Chinese Patent Application No.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Description

显微焊机
技术领域
本发明涉 电阻焊领域首次提出的显微焊接和显微焊机, 其主要应用于 需借助显微光学装置才能进行焊接的微细工件, 如各种带小线圈电子元器件制 作中对漆包线引出接点的焊接等。 背景技术
直接焊接漆包线技术是一种新的技术, 本专利申请的申请人申请了包括
"可直接焊漆包线的点电焊机" (中国专利申请 CN 01114785.7)、 "点电焊焊 头" (中国专利申请 CN 01114808.X), "预应力点电焊电极" (中国专利申请 CN 93245377.5)、 "电阻焊焊头及其制备方法" (中国专利申请 CN 2005121259.2)、 "带压力显示的点电焊机机头" (中国专利申请 CN 01114856.X)、 "点电焊机焊头夹"(中国专利申请 CN 01114831.4)、 "带光源的 焊头夹" (中国专利申请 CN 01242320.3)、 以及 "直接焊接漆包线点电焊焊头 的工作状态监测装置" (中国专利申请 CN 200410015223.1 )等多项专利申请, 使直接悍接漆包线技术日趋成熟。
但是各种现有技术中的焊机, 焊头寿命都不长, 有的只有几百个焊点。 由于焊头寿命短, 极大地影响直接焊接漆包线技术的推广应用, 究其原因在 于, 现有技术的焊机, 不论线径粗细, 均采用统一的大小的方波脉冲输.出, 这样的设计是因为未意识到在微观世界里, 绝缘漆厚薄、 材料、 燃烧时间、 及线径、 线芯的焊接电流、 焊接时间等等细节之间的相互联系。 尤其在涉及 对焊接只有 0.1mm如此微细的工件, 应当如何调节脉沖输出, 才能满足相关 的悍接要求, 将是本发明重点克服的问题。 ί认本 发明内容
为了更有利于对直接焊接漆包线的技术和对焊接微细工件的技术的研究 推广, 本发明首先需要提出显微焊接和显微焊机的概念。
显微焊接的概念:显微焊接是指以电阻焊对微细工件进行点焊, 显微焊接 必需具备下述的二部分结构: .一部分是显微光学.结构, 由于被焊件十分细小, 加上进行焊接时必需保证有一定的工作距离,导致正常人的视力无法看清、 或 者无法长时间看清焊件接头进行直视操作,需要借助体视显微镜或其它光学放 大显示装置才能更好地完成焊接; 另一部分是显微焊接的电阻焊点焊机的结 构, 也可简称显微坪机的结构, 由于被焊件十分细小,要求点焊机对包括电源 类型、 功率大小、 电极和电极夹头的结构、各项悍接电参数和焊接力的调控等 也要与 ^目适应,特别对输出脉冲的调节,要求更加精确,即使以 O.Olv和 lms 进行调节的方波输出脉冲,还要进一步调节为阶梯波的脉冲才能满足显微悍接 的要求。 换言之, 只有满足了显微坪接所需要各项要求的电阻焊点焊机, 才能 称之为显微焊机。
本发明的目的在于为电阻焊领域提供一种显微焊机, 保证该类焊机在 焊接 ί敖细工件和直接垾接漆包线时能提供精确的脉冲输出 , 以提高直接焊接 漆包线的焊头的使用寿命, 并可提高对微细工件得接的焊接质量。
为解决背景技术提出的问题, 配合本发明提出的新概念, 本发明提供的 显微焊机包括主电源、 焊头和机头, 主电源包括阻焊变压器和电源控制装置, 主电源通过电源控制装置为焊接提供阶梯波状脉冲输出, 机头在焊接时把阻 焊变压器的输出端和焊头连接。
所述的电源控制装置包括用于提供脉冲输出的控制电路、 用于提供信号 给所述控制电路以调节脉冲输出的至少一个功能键、 和与控制电路电性连接 供输出信息的显示装置。 所述电源控制装置所提供的阶梯波由 Ζθ^ Ζθ2、 第一阶梯(V Τί ) 第二阶梯(V2、 Τ2 )组成, 其中, 脉冲输出以一定的角度(ΖΘ )上升至第一 阶梯 V 维持时间为 尔后继续上升至第二阶梯 v2, 并在第二阶梯维持时 间 T2, 尔后以一定的角度 Ζθ2下降至结束, 上述組成阶梯波的 1 、 ν2
Τ2的各参数的值都是可以调节的, 而 Ζθ!、 ΖΘ既可以设计成可调节, 也可以 是预设定一定的值, 此后不可调节。
所述电源控制装置中至少设有一个功能键, 用于调节第一阶梯电压幅度。 所述电源控制装置中至少设有一个功能键, 用于调节第二阶梯电压幅度。 所述电源控制装置中至少设有一个功能键, 用于调节第一阶梯维持的时 间。
所述电源控制装置上至少设有一个功能键, 用于调节第二阶梯维持的时 间。
所述电源控制装置中可以设有一个功能键, 用于调节输出脉冲上升角度 所述电源控制装置中可以设有一个功能键, 用于调节输出脉冲下降角度 Ζθ2
所述的焊机为电容储能式焊机或逆变电源焊机。
所述机头为带压力显示的点焊机机头。
所述焊头点焊焊头、 电阻焊焊头或一对平行电极或一对上下电极。
所述电源控制装置控制电路所提供的阶梯波的脉冲输出可通过数字电路
DAC实现, 或采用恒流源对电容充电及电位切换实现。
与现有技术相比, 本发明显微焊机的主电源通过电源控制装置为焊接漆 包线提供阶梯波的脉冲输出, 减少了烧除漆包线的绝缘漆时过大的电流对焊 头的损伤, 延长了焊头的使用寿命, 并可提高对焊接微细工件的悍接质量。 附图说明 图 1为本发明显微焊机所输出脉冲幅度和宽度构成阶梯波的坐标图。
图 2为焊机电路原理图和 A点的位置图。 图 3为通过数字电路 DAC实现如图 1所示阶梯波的电路图。 图 4为采用恒流源对电容充电及电位切换实现如图 1所示阶梯波的电路 图。
图 5为图 4中采用 C8051F020单片机的电路图的数模转换器 DAC0输出的波 形示意图。
图 6为式 (2)中参数 Θ和 T的关系曲线示意图。
图 7为图 4中采用恒流源对电容充电形成斜波的实施例的参 #tWe( ) - 1的关 系曲线图示意。
具体实施方式
下面结合附图, 详细说明本发明显微焊机的具体实施方式。
要直接焊接漆包线, 一般需要使用中国专利申请号 CN93245377.5 所揭 示的预应力点电焊电极、 中国专利申请号 CN01114808.X所揭示的点焊焊头, 或中国专利申请号 CN2005121259.2 (电阻焊焊头及其制备方法)所揭示的焊 头。 从这几种焊头的结构来看, 构成焊头的二个电极的尖端分别是应力接触 欧姆接触或者是连体的。
本发明经过大量的实验、 研究和分析, 总结出直接 ;1:早接漆包线的原理可 概括为: 焊接时导通电流, 由于漆包线上有绝缘层, 电流全部流经焊头的二 个电极的尖端, 使焊头尖端产生电火花, 把与焊头接触的绝缘漆烧除剥脱, 棵露金属; 之后, 由于漆包线内铜芯的导电率和金属基底的导电率都大于电 极材料的导电率, 在焊接力和电阻热的共同作用下, 焊头与工件的接触电阻 小于二个电极尖端的接触电阻, 大量电流转而流入工件, 实现在同一脉冲输 出内完成电阻焊焊接, 而此时流经二个电极尖端的电流成为偏置电流。
直接焊接漆包线的整个过程, 视漆包线线径的大小, 一般只需几亳秒到 十几毫秒即可完成。 可直接焊漆包线的点电悍机(中国专利申请号 CN 01114785.7)或现有技术中的其它精密焊机一般只要求焊机输出的电流电压稳 定, 即输出脉冲波形大都是方波或接近方波。 但是, 根据上述直接悍接漆包 线的焊接原理, 在漆包线绝缘漆未除去前, 大量电流首先通过接触或连体的 二个电极尖端并产生电火花, 随着焊接工作的持续, 二个电极尖端反复产生 的电火花必然影响其结构。 当二个电极尖端不能再产生电火花时, 绝缘漆即 无法烧除, 焊接也就不能进行。 所以现有技术的焊机, 焊头寿命都不长, 有 的只有几百个焊点, 这极大地影响直接焊接漆包线技术的推广应用。
虽然直接烀 -接漆包线的时间很短, 只有几毫秒到十几毫秒, 但整个过程 还是可以划分为"烧除绝缘漆"和"焊接"二个时段, 这样就可以提出: 烧除绝 缘漆时段和焊接时段所需要的电流是否相等? 原先的脉冲波型以方波输出是 否合理? 如何为直接焊接漆包线提供精确的电流?
为此, 本发明借助了以 1万张 /秒频率的"高速摄影仪"对直接焊接漆包线 的全过程进行拍摄, 借用 "电阻焊测试分析仪"测量直接焊接漆包线过程的电 流和电压实际波形; 同时测量整个浮接过程的动态电阻情况, 借助上述高科 技手段和科学的分析, 总结出上述直接焊接漆包线的焊接原理, 同时还得出 下述的结果:
1、烧除漆包线绝缘漆并不需要焊接那么大的电流,尽管被焊接漆包线线 径有大小的不同, 烧除绝缘漆所需的电流约为焊接的 65%~85%左右。也就是 说, 既要保证二个电极尖端产生电火花用以烧除绝缘漆, 又要避免输出过大 的电流导致二个电极尖端产生的电火花太大, 因为烧除漆包线时段过大的电 流对焊头尖端是有害的。 高速摄影的照片还显示, 在焊接时段, 二个电极尖 端反而没有电火花, 说明此时电流是转向流入焊件, 而流经二个电极尖端的 电流成为偏置电流。
2、 烧除绝缘漆所需要的脉冲时间和浮接所需要的脉冲时间大致相等。 根据上述实验分析研究的结果, 本发明焊机包括主电源、 焊头和机头, 其中主电源为焊机的主要部分,主电源包括一个阻焊变压器和电源控制装置, 阻焊变压器上有输出和输出电缆,而电源控制装置则调控阻焊变压器的输出, 在电阻焊领域, 一般说焊机就是说主电源, 而焊头和机头则为焊机的配套设 施, 其中焊头也称电极, 需和阻焊变压器的输出连接方可进行焊接工作, 而 机头即是为其提供连接和提供焊接力的部分。 在本发明中的焊头, 可使用点 电焊焊头(中国专利申请号 CN01114808.X )或电阻焊焊头(中国专利申请号 CN2005121259.2 ), 如果不是焊接漆包线, 也可使用一对平行电极或上下电 极, 而机头即可选用点电焊机机头 (中国专利申请号 CN01114856.X )。
焊机主电源是本发明的主要内容。 主电源一般选用功率因素高, 响应速 度快, 加热集中, 悍接时间短的电容储能式焊机, 也可以选用逆变电源焊机, 以中国专利申请 CN01114785.7所揭示的专利焊机为例 ,该焊机为恒压控制的 电容储能式焊机, 其输出是以 Q.Olv (电压)和 1ms (持续时间)为单位进行 调节的方波的脉冲输出, 并通过调节脉冲来控制输出电流的大小,研究显示, 该种焊机仍不能很好满足焊接漆包线的使用要求 ,本发明通过电源控制装置, 把上述以方波输出的脉冲再划分为二部分, 分别为脉冲输出的前半部分和脉 冲输出后半部分, 由于二部分的幅度不相等, 形状类似阶梯, 所以称之为阶 梯波, 脉冲输出的前半部分为第一阶梯, 脉冲输出的后半部分为第二阶梯, 如说明书图 1所示, 阶梯波组成包括: 脉冲上升角度 Ζθ 第一阶梯 ¼、 Tj 第二阶梯 ν2、 T2和脉冲下降角度 Ζθ2。 脉冲输出开始, 脉沖电压以一定的角 度 上升, 该 ΖΘ!Α可调的 (也可以是预设定一定的角度后不再可调的), 当脉冲电压上升至一定高度并在该高度维持, 该高度和维持时间组成第一阶 梯 ¼、 Tl 5 ¼和 ^的设置都是可调节的。 第一阶梯为烧除绝缘漆提供合适 的电流; 随之电压继续上升至设定电压的高度, 并在该高度维持, 该时段称 之为第二阶梯 ν2、 τ2, ν2和丁2的设置也是可调节的, 第二阶梯为焊接提供 合适的电流, 然后脉冲波形以 Ζθ2下降结束。 设置 的作用为扼制脉冲输 出瞬间大电流对焊头和工件的冲击, Ζθ2的作用为作后热维持。 由于 Ζθ^
Ζθ2是可变的, 当 Ζθ Ζθ2确定, 电压上升或下降的时间也可确定, 所以 在设置脉冲时间时可不另外增加电压上升或下降的时间。
具体的, 所述的电源控制装置包括用于提供脉冲输出的控制电路、 用于 提供信号给所述控制电路以调节脉冲输出的至少一个功能键、 和与控制电路 电性连接供输出信息的显示装置。
本发明显微焊机在脉沖输出的设定中, 把一个脉冲输出划分为第一阶梯
Vi, Ί\和第二阶梯 V2、 T2组成阶梯波。 由于被 :1:早接漆包线有线径大小不同, 有绝缘漆材料的不同, 还有绝缘漆厚薄的不同等等, 所以本发明把 V!、 I V2、 T2设置为灵活可调。 而对脉冲上升和下降角度 Ζθ^ Ζθ2也可设置为灵活 可调, 或设置好一定角度后不作调节。
由于本发明把精密到以 O.Olv和 1ms为单位进行调节的方波输出点焊机, 还进一步把脉冲设计为含 Ζθ!、 Ζθ2, Vi Tj, V2、 T2等参数值可调的阶梯波 输出, 使其对输出电流的控制更加精确, 由于该阶梯波输出的电源往往应用 在需借助显微光学装置才能进行焊接的微细工件, 为有别于其它公知的精密 焊机, 故把该主电源称之为显微焊机。 下面结合实施例对本发明阶梯波的形成做进一步的说明。
以调节脉冲输出幅度 (电压)来控制电流输出的电容储能式焊机为例,图 1 为输出脉冲幅度和宽度构成阶梯波的坐标图, 纵坐标 V为输出脉冲幅度 (电 压, 单位 V), 横坐标 T为输出脉冲宽度 (时间, 单位 ms)。 阶梯波的结构由脉 冲上升角度 Ζθ^ 第一阶梯 V I 第二阶梯 V2、 T2和脉冲下降角度 Ζθ2 构成。 脉冲输出的起始, 脉冲幅度 V以一定的角度 上升。 当脉冲幅度上 升至设定值 Vl 5 维持该幅度, 维持的时间为设定值 1\, 该时段称之为第一阶 梯 ¼、 T1 ? 随之幅度再跳变跃升至新的设定值 V2并在该幅度维持, 维持时 长为设定值 T2, 该时段称之为第二阶梯 V2、 T2, 然后脉冲输出波以 Ζθ2下降 至结束。 图 1中, 0!为 50。, ¼为 0.75ν, 1^为 4ms; V2为 l.OOv, T2为 4ms, θ2为 75。。
由于 Ζθ^ Ζθ2是可变的, 在确定了 Ζθ Ζθ2的值后, 脉冲幅度上升或 下降至设定值的时间也就得以确定, 故在设置脉冲宽度时不需要另外增加 θ!, Ζθ2上升和下降的时间。
所述阶梯波是由同一脉沖输出完成的, 第一个阶梯是用以烧除漆包线上 的绝缘漆, 第二个阶梯用以焊接。 它和公知技术中某些文献所述把焊接划分 为若干个波形, 如有预热脉冲、 评接脉冲、 维持脉冲是完全不同的概念。 预 热脉冲、 焊接脉冲、 维持脉沖这几个脉冲是各自独立的输出, 预热脉冲和焊 接脉冲之间, 或者是焊接脉冲和维持脉冲之间都有一定的间歇时间, 而本设 置阶梯波第一个阶梯与第二个阶梯完全是连续的, 二个阶梯之间没有时间间 歇, 只是电压幅值的跳变。
本发明显微焊机, 由于其具有所述的阶梯波, 不但可以应用在焊接漆包 线, 此外对于微细工件的精密焊接, 如印刷电路板的修补、 太阳能电池的连 接、 医疗、 国防、 航天航空上各种仪器仪表的焊接, 以阶梯波的第一阶梯作 预热, 以脉冲下降角度作后热维持, 对于减少飞溅, 提高焊接质量, 也都比 采用传统焊接脉冲与预热脉冲有间歇, 或焊接脉冲与维持脉冲有间歇的传统 焊机的焊接效果要好,这与被焊工件太细小,在间歇期热量很容易散失有关。 同时, 由于电容储能式焊机放电时间短, 瞬时电流峰值高, 本发明阶梯波的 脉冲上升角度可以有效扼制瞬时大电流对工件的冲击, 減少电极与工件的粘 连, 提高电极的使用寿命。 当然, 焊接这些非漆包线的微细工件, 就应使用 平行电极或上 ,下电极。
下面再进一步结合中国专利申请 CN01114785.7所揭示的焊机的电路,说 明如何在电路上获得设置的阶梯波。
图 2是中国专利申请 CN01114785.7所揭示的焊机的电路原理图, 由图 2 可知, 只要在 A点施加一个幅度适当、 形状任意的电压波型, 经过放大与反 馈电路的共同作用, 就能在脉冲变压器的输出端得到一个幅度成比例而形状 相同的电压波形。
因此若要焊机输出如图 1的电压波形, 就要在 A点产生一个幅度成比例 而形状与图 1相同的电压波形。要产生如图 1所示的电压波形的方法有多种, 在电路结构上可采用模拟电路或数字电路作为电源控制装置的控制电路, 或 者模拟电路和数字电路相结合。图 3为通过数字电路 DAC实现在焊机输出端 得到如图 1的阶梯波型的电路图; 图 4为采用恒流源对电容充电及电位切换 实现在焊机输出端得到如图 1的阶梯波型的电路图。
下面分别说明两电路的工作过程。
图 3 中采用 C8051F020单片机, 它是一个集成的混合信号片上系统 (SOC), 其运行速度高达 25MPIS, 具有多种功能模块。 其片内具有两个 12 位数模转换器 DACO和 DAC1 , 转换速度可高达 1ΜΗζ。 完全可以满足本焊 机的应用要求, 完成整部焊机的控制工作, 输出精确而平滑的电压波形。 电 路中, DACO用于输出如图 5所示的电压波形, 波形的形状由程序运算产生, 电压波形信号经过一个电压跟随器 (U7324-B), 再经电容 C32进行平滑滤波, 加到 A点上; DAC1则根据输入的设定电压值, 经过程序运算输出相应的电 压值 Ua到充电电路, 调节储能电容 C30的电压, 以保证 C30有足够的能量 输出, 形成符合要求的完整的输出波形。
在空闲时, 单片机不断读取电压拨盘和时间拨盘的数据。 根据时间拨盘 设定的数值,设定定时器来控制输出脉冲的宽度!^和!^;根据电压拨盘设定 的数值设定 DAC1的输出电压 Ua, 从而调节储能电容 C30的电压, 同时还 计算出 DACO的一组输出数据, 使它输出形状如图 1的电压波形。 该组数据 与用户所设定电压值相对应, 并随着设定值的改变而改变。 DACO输出数据 组根据式 (1)、 式 (2)进行运算:
U n = tg 9 x tn= tg 9 x n T = tg 9 x n
(
式 (1)中 Dn表示 DACO要输出的第 n个数模转换数据, U。表示 DAC0输 出的满幅电压值, 212表示满幅输出时的数据。 式 (2)中 Θ是电压上升角度 或下降角度 Ζθ2, Τ是 DACO更新周期, Θ和 T都由程序进行设定, 可方便地 调节。 它们的关系如图 6所示。
在空闲时, DACO输出电压为 0V, 当满足触发条件时, 在单片机 62脚 产生负跳变, 发生中断, 单片机即从 0V开始到 Ul、 U2、 U3每隔一个周期 T输出一个数值, 在 DACO输出引脚 (100脚)形成緩升的斜波电压, 经过电压 跟随器和电容 C32滤波加到 A点上; 当斜波电压值达到 Vj时, DACO就保持 当前电压值不变, 并启动定时器开始计时; 当计时达到 Ί 时, DACO输出第 n+1个转换数值, 使输出电压达到 V2, 并保持当前电压值 T2时间不变, 当时 间到达 Τ2时刻, DAC0每隔一个周期 Τ输出一个数值, 数值逐个减小, 并按 Ζθ2下降, 直到 0V, 结束一个输出过程。 这样在 Α点上就形成形状如图 5 的电压波形; 同时也达到目的: 在输出端也得到了一个幅度与设定值一致, 形状如图 5的电压波形。 由此可知, 只要 DAC0的更新周期 T足够小 (如 10微秒), 则在整个输出 过程中, 电压波形的上升和下降过程可以认为是平滑的。 并且波形的参数 Ζθ!、 Ζθ2、 V、 Ί\、 V2、 T2完全由程序决定, 所以就很容易实现脉冲上升 或下降角度、 幅度和宽度都可调。
图 4采用恒流源对电容充电形成斜波, 用电位切换形成阶梯波, 结合程 序控制即可产生如图 1所示的电压波形。其中斜波的上升斜率由 R108和 C12 共同决定, 而阶梯波的幅度比例由 R95和 RJ07决定, 宽度比例和脉冲宽度 t 由程序控制。 图中 Q7、 Q8、 Q9、 R108构成典型晶体管镜像恒定电流源 (筒 称恒流源), C12为恒流源的负载。
电容两 ""') = X ^ (') f∞ W ^+ j (t) ^, (t)在这里为 恒定电流 I,
Figure imgf000012_0001
+ l t l; , 假定 t=0时刻 ) = 0V, 则
Mc« = I t , 由此可见, C12两端电压 W与时间 t成线性比例关系, 当 I大于
0 时, W随着时间 t 的增大而增大, 形成一个上升的斜波, 其斜率为 k = tg 0 = I, 故改变 I的大小即可改变 W的上升斜率, 即改变波形中的上 升角度 θ。 所以用恒定电流 I对电容充电时, — t关系曲线如图 7所示。
其波形产生过程说明如下:
在空闲时, 单片机随时等待触发信号, CON1=0, Q4截止, CON3=l, Q5截止, CON2=0, Q6导通, 把 C12电压 Uc拉到零, 故 Ub为 0。 故 U7-C 构成的电压跟随器输出也为 0V。 充电电路根据设定电压值 Ua调整储能电容 C30的电压, 以保证 C30有足够的能量输出, 形成符合要求的完整的输出波 形。
在满足触发条件时, 单片机 12脚发生负跳变, 引起中断, 立即开始输出 焊接波形。在单片机控制下, CON2=l , Q6截止, CON3=l , Q5截止, CON1-1 , 电压比较器 U7-B反相输入端电压为 Ub=0, 同相端为^大于 0V, 比较器输 出高电压, 所以 Q4导通恒流源电路开始工作, 以恒定电源 I对 C12充电, C12两端电压由零开始线性增长, A点电压等于 Ub等于 C12两端电压, 也 线性增长, 形成一斜率为 I的上升电压波形。
当 Ub上升到 ¼时, CONl=l, CON2=l , CON3=l保持不变。 电压比较 器 U7-B两端电压相等, 比较器输出变为低电位, 故 Ud也为低电位, Q4截 止, 直流源停止工作, C12两端电压停止上升; 与此同时因为 Ud由高变低, 在单片机 13脚立即产生中断, 单片机开始计时, 并不断与时间设定值的 进行比较。 此时电压比较器 U7-B的作用是使 Ub与 Ue (即 ¼)保持一致, 在 A点就形成幅度为 Vi的电压波形。
当单片机比较判断计时到达设定的 1 时, ¼在 A点已经保持了 1\时长, CONl=l , CON2=l保持不变, 立即设定 CON3=0, Q5饱和导通, 电压值 Ua 立即加到 Ub, A点电压从 1跳变为 V2。 与此同时单片机继续计时, 并不断 与时间设定值的 T2进行比较。
当单片机比较判断计时到达後定的 Τ2时, Ua在 Α点已经保持了 T2时长, 单片机立即设定 CON1=0, CON2=0, CON3=l , Q4、 Q5截止, Q6导通, 通 过与上升角度相反的过程, 添加额外电路控制流过 Q6的电流为恒流, 即可 使用 Ub按所需的 下降至 DV。
于是在 A点就形成了如图 5所示的阶梯电压波形。 一个完整的脉沖输出 过程结束, 焊机转入空闲状态, 等待下一个触发的到来。 根据本实施例的电路图, 本阶梯波的产生是在图 2, 电路原理图的 A点 施加另外一个电压波形而得到的。 因此就可以在 A点安装一个切换开关, 这 样本发明点焊机就可以按使用要求,分别使用原先的方波或本发明的阶梯波。
电源控制装置为直接焊接漆包线提供阶梯波的脉冲输出 , 是以本发明提 出直接焊接漆包线的焊接原理为依据而设定的, 阶梯波的脉冲输出减少了烧 除绝缘漆时段过大的电流对二个电极尖端的冲击, 而焊接时段的电流大量转 而流入焊件,所以焊接时段的电流电压不会对二个电极尖端产生太大的影响。 本发明提出的以阶梯波脉冲输出, 大大地延长了直接焊接漆包线焊头的使用 寿命。 以应用中国专利申请 CN01004785.7 所揭示的焊机作实验, 同样使用 中国专利申请号为 CN01114708.8 的专利所揭示的焊头或中国专利申请号为 CN200512159.2 的专利所揭示的电阻焊焊头, 焊接相同的漆包线和工件, 在 接的焊点数以十倍数增加, 视焊接漆包线线径的不同, 可达数万焊点以上, 大大延长了焊头的使用寿命。
当然, 本发明无法穷举所有实现输出阶梯波的电路, 但是, 本领域内普 通技术人员所做出的一切用于产生阶梯波的电路改进, 均可依据本发明公开 的内容简单变换得出, 因此, 此种改进应视为不脱离本发明的精神。

Claims

权利要求书
1、 一种显 焊机, 其包括主电源、 焊头和机头, 其特征在于: 主电源包 括阻焊变压器和电源控制装置, 主电源通过电源控制装置为焊接提供阶梯波 状脉冲输出, 机头在焊接时把阻焊变压器的输出端和焊头连接。
2、 根据权利要求 1所述的显微焊机, 其特征在于: 所述的电源控制装置 包括用于提供脉冲输出的控制电路、 用于提供信号给所述控制电路以调节脉 冲输出的至少一个功能键、 和与控制电路电性连接供输出信息的显示装置。
.
3、 根据权利要求 2所述的显微焊机, 其特征在于: 所述电源控制装置所 提供的阶梯波由 Ζθ Ζθ2, 第一阶梯(ν!、 1\ )、 笫二阶梯(V2、 T2 )组成, 其中, 脉沖输出以一定的角度 ( θ! )上升至第一阶梯, 维持一段特定时间后 继续上升至第二阶梯并继续维持某一特定时间, 然后以一定的角度 Ζθ2下降 至结束。
4、 根据权利要求 3 所述的显微焊机, 其特征在于: 用于形成阶梯波的 V 1\和¼、 T2的各个参数的值都是可调节的。
5、 根据权利要求 4所述的显微焊机, 其特征在于: 电源控制装置中至少 有一个功能键用于调节第一阶梯的电压 (¼ )。
6、 根据权利要求 4所述的显微焊机, 其特征在于: 电源控制装置中至少 有一个功能键用于调节第一阶梯的时间 (Tj )。
7、 根据权利要求 4所述的显微焊机, 其特征在于: 电源控制装置中至少 有一个功能键用于调节第二阶梯的电压(V2 )。
8、 根据权利要求 4所述的显微焊机, 其特征在于: 电源控制装置中至少 有一个功能键用于调节第二阶梯的时间 (T2 )。
9、 根据权利要求 3所述的显微焊机, 其特征在于: 电源控制装置中至少 有一个功能键用于调节输出脉冲上升角度( 6^。
10、 根据权利要求 3 所述的显微焊机, 其特征在于: 电源控制装置中至 少有一个功能键用于调节输出脉冲下降角度(Ζθ2 )。
11、 根据权利要求 1 所述的显微焊机, 其特征在于: 所述的焊机为电容 储能式焊机或逆变电源焊机。
12、 根据权利要求 1 所述的显微;):旱机, 其特征在于: 所述机头为带压力 显示的点焊机机头。
13、 根据权利要求 1 所述的显微焊机, 其特征在于: 所述焊头为点悍焊 头、 电阻焊焊头、 或一对平行电极、 或一对上下电极。
14、 根据权利要求 1 所述的显微焊机, 其特征在于: 所述电源控制装置 控制电路所提供的阶梯波的脉冲输出可通过数字电路 DAC实现,或采用恒流 源对电容充电及电位切换实现。
PCT/CN2009/000221 2008-05-16 2009-03-03 显微焊机 WO2009137981A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/992,604 US20110062123A1 (en) 2008-05-16 2009-03-03 Micro-welding machine
JP2011508786A JP5443475B2 (ja) 2008-05-16 2009-03-03 マイクロ溶接機
GB1021320.5A GB2474151B (en) 2008-05-16 2009-03-03 Microscopical welding apparatus
DE112009001225T DE112009001225T5 (de) 2008-05-16 2009-03-03 Mikroschweißmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2008/000952 WO2009137957A1 (zh) 2008-05-16 2008-05-16 精密电阻焊点焊机
CNPCT/CN2008/000952 2008-05-16

Publications (1)

Publication Number Publication Date
WO2009137981A1 true WO2009137981A1 (zh) 2009-11-19

Family

ID=41318330

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2008/000952 WO2009137957A1 (zh) 2008-05-16 2008-05-16 精密电阻焊点焊机
PCT/CN2009/000221 WO2009137981A1 (zh) 2008-05-16 2009-03-03 显微焊机

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000952 WO2009137957A1 (zh) 2008-05-16 2008-05-16 精密电阻焊点焊机

Country Status (6)

Country Link
US (1) US20110062123A1 (zh)
JP (1) JP5443475B2 (zh)
KR (1) KR20110015630A (zh)
DE (1) DE112009001225T5 (zh)
GB (1) GB2474151B (zh)
WO (2) WO2009137957A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2139492Y (zh) * 1992-09-30 1993-08-04 北京航空航天大学 一种弧焊逆变电源的外特性控制电路
US5406045A (en) * 1992-12-24 1995-04-11 Honda Giken Kogyo Kabushiki Kaisha Method of controlling welding current in direct-current resistance welding machine
CN101234452A (zh) * 2007-02-14 2008-08-06 杨仕桐 精密电阻焊点焊机

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2800962C3 (de) * 1978-01-11 1986-02-13 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur Steuerung einer elektrischen Widerstands-Schweißvorrichtung
JPS6043233B2 (ja) * 1981-03-20 1985-09-27 株式会社電元社製作所 抵抗溶接機における溶接電流波形制御方法及びその装置
MX158466A (es) 1984-11-01 1989-02-03 Sony Corp Aparato registrador y/o reproductor de senales
JPH0677846B2 (ja) * 1986-09-27 1994-10-05 アイシン精機株式会社 抵抗溶接機
CH686617A5 (de) * 1992-03-09 1996-05-15 Max Breitmeier Elektrische Speiseschaltung zur Erzeugung von einzeln steuerbaren Stromimpulsen.
HU217059B (hu) 1993-09-21 1999-11-29 Frick Aerotech Ag. Repülőszerkezet
CN2180393Y (zh) 1993-11-20 1994-10-26 杨仕桐 预应力点电焊电极
JP2938337B2 (ja) 1994-03-09 1999-08-23 三菱電機株式会社 スペクトル拡散通信用データ復調回路
ITMI940871A1 (it) * 1994-05-05 1995-11-05 M & G Ricerche Spa Resine poliammidiche con migliorate proprieta' reologiche
FR2720897A1 (fr) 1994-06-14 1995-12-15 Atochem Elf Sa Compositions insecticides à base d'undécylénate de méthyle.
CN1114785A (zh) 1994-07-07 1996-01-10 北京市超纶无纺技术公司 一种熔喷叠层差别化电池隔板
CN1036287C (zh) 1994-12-16 1997-10-29 赵殿兴 多功能防盗锁
JP4198789B2 (ja) 1998-07-16 2008-12-17 本田技研工業株式会社 スクータ型車両の後部収納構造
JP2001275224A (ja) * 1999-08-23 2001-10-05 Miyachi Technos Corp 接合装置
AT411878B (de) * 2000-10-17 2004-07-26 Fronius Schweissmasch Prod Verfahren zum steuern und/oder regeln eines schweissprozesses
JP2002210566A (ja) * 2001-01-16 2002-07-30 Miyachi Technos Corp 金属部材接合方法及び交流波形インバータ式電源装置
CN1132714C (zh) * 2001-06-07 2003-12-31 杨仕桐 可直接焊漆包线的点电焊机
CN1128035C (zh) * 2001-06-25 2003-11-19 杨仕桐 带压力显示的点电焊机机头
JP2003080372A (ja) * 2001-09-07 2003-03-18 Miyachi Technos Corp 被覆線用接合装置
AT502175B1 (de) * 2002-04-10 2007-02-15 Fronius Int Gmbh Schweiss- und heftschweissverfahren mit nichtabschmelzender elektrode
CN100340368C (zh) 2004-01-19 2007-10-03 杨仕桐 直接焊接漆包线点电焊焊头的工作状态监测装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2139492Y (zh) * 1992-09-30 1993-08-04 北京航空航天大学 一种弧焊逆变电源的外特性控制电路
US5406045A (en) * 1992-12-24 1995-04-11 Honda Giken Kogyo Kabushiki Kaisha Method of controlling welding current in direct-current resistance welding machine
CN101234452A (zh) * 2007-02-14 2008-08-06 杨仕桐 精密电阻焊点焊机

Also Published As

Publication number Publication date
DE112009001225T5 (de) 2011-06-22
JP5443475B2 (ja) 2014-03-19
GB2474151A (en) 2011-04-06
GB2474151B (en) 2012-08-08
US20110062123A1 (en) 2011-03-17
GB201021320D0 (en) 2011-01-26
KR20110015630A (ko) 2011-02-16
JP2011520613A (ja) 2011-07-21
WO2009137957A1 (zh) 2009-11-19

Similar Documents

Publication Publication Date Title
US20050264237A1 (en) Lighting device for discharge lamp
RU2001132549A (ru) Аппарат для дуговой сварки с коротким замыканием, контроллер этого аппарата и способ управления аппаратом
DE602005008504D1 (de) Elektrische Lichtbogenvorrichtung mit einem gesteuerten Wellenformprofil für Kernelektroden
DE602004001121D1 (de) AC elektrische Lichtbogenschweissvorrichtung und -verfahren mit zwei Elektroden
JP4335667B2 (ja) エナメル線を直接溶接するためのswマイクロ溶接機
CN103182582A (zh) 微电弧点焊电源及微电弧点焊方法
CN101234452B (zh) 精密电阻焊点焊机
CN107503873A (zh) 点火线圈模拟负载参数设定及点火电流调整方法和系统
JPH0459178A (ja) アーク溶接電源装置
WO2009137981A1 (zh) 显微焊机
JPS6362098B2 (zh)
CN105880819A (zh) 热压电阻焊显微焊接点焊机
TW200826739A (en) Preheat control device for modulating voltage of gas-discharge lamp
CN110340491B (zh) 一种焊接控制方法、装置及系统
CN201415310Y (zh) 一种精密点焊机
KR20010061940A (ko) 리플로식 납땜장치
WO2017063253A1 (zh) 一种熔化极焊机及其焊接方法
RU2449867C2 (ru) Способ электродуговой пайки наконечников рельсовых соединителей к рельсу и устройство для его осуществления
CN1186164C (zh) 双焊头点电焊机
CN203498458U (zh) 新型高效电弧喷涂装置
CN103526150B (zh) 一种电弧喷涂装置
CN2534479Y (zh) 一种用于陶瓷内衬钢管制造的点火装置
CN204180374U (zh) 一种Blumlein线驱动的直线感应加速器及其电压调整方法
CN111390366A (zh) 一种电阻焊电极温度补偿方法
CN2512541Y (zh) 多功能电阻焊控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09745365

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011508786

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12992604

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107028085

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1021320

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20090303

WWE Wipo information: entry into national phase

Ref document number: 1021320.5

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 09745365

Country of ref document: EP

Kind code of ref document: A1