WO2009136430A1 - 発熱体ユニット及び加熱装置 - Google Patents

発熱体ユニット及び加熱装置 Download PDF

Info

Publication number
WO2009136430A1
WO2009136430A1 PCT/JP2008/003860 JP2008003860W WO2009136430A1 WO 2009136430 A1 WO2009136430 A1 WO 2009136430A1 JP 2008003860 W JP2008003860 W JP 2008003860W WO 2009136430 A1 WO2009136430 A1 WO 2009136430A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
heat generating
heating
heat
holder
Prior art date
Application number
PCT/JP2008/003860
Other languages
English (en)
French (fr)
Inventor
小西政則
西尾章
松岡広彰
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008123408A external-priority patent/JP4523050B2/ja
Priority claimed from JP2008123396A external-priority patent/JP2009272222A/ja
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP08874202A priority Critical patent/EP2288230A4/en
Priority to CN2008801291168A priority patent/CN102017789A/zh
Priority to US12/990,767 priority patent/US20110044736A1/en
Publication of WO2009136430A1 publication Critical patent/WO2009136430A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • H05B3/0066Heating devices using lamps for industrial applications for photocopying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/04Incandescent bodies characterised by the material thereof
    • H01K1/06Carbon bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/14Incandescent bodies characterised by the shape

Definitions

  • the present invention relates to a heating element unit used as a heat source and a heating device using the heating element unit, and in particular, a heating element unit having a heating element formed mainly of a carbon-based substance in a film sheet and its heat generation
  • the present invention relates to a heating device using a body unit.
  • the heating apparatus according to the present invention includes, for example, electronic devices such as copying machines, facsimiles, and printers, and various devices that require heat sources such as electric heating devices, cooking devices, and electric devices such as dryers.
  • a heating element unit is widely used as a heat source in various devices.
  • the heat generating unit so as to be compatible with the specifications such as the function, shape, and configuration of the device in which the heat generating unit is used.
  • high temperature as a heat source ability to maintain specified temperature, wide temperature adjustment range, ability to convert to heating energy with high efficiency for input power, ability to uniformly heat the object to be heated, specified Having a directivity that heats only the specified direction, a small inrush current at power on, a short rise time to the set temperature, and a structure in which the heating element unit can be miniaturized and can be easily attached and detached.
  • heating element units have been proposed for the purpose of satisfying the above-mentioned requirements.
  • a conventional heating element unit serving as a long heat source an elongated coiled tungsten wire or a rod-like or plate-like carbon-based sintered body is enclosed as a heating element inside a cylindrical glass tube.
  • fibers based on carbon-based materials are made of resin as a highly versatile heating element unit that can heat the object to be heated more uniformly and to a higher temperature. What used the elongate sheet-like (strip
  • the heating element unit members (power supply members) for supplying power are attached to both end portions of the heating element housed inside the glass tube, and this power supply member is securely applied to the heating element. It is necessary to be configured to be able to efficiently supply power while being attached. In addition, since the heating element and the power supply member in the heating element unit are arranged and sealed at a predetermined position inside the thin and fragile glass tube, the heating element and the power supply member are used in the manufacture of the heating element unit. It is necessary to have a workable structure that can be easily and reliably incorporated into the inside of the glass tube. Furthermore, in a heating element unit used as a heat source, it is an absolute requirement that it be a highly safe and reliable device that can withstand long-term use. JP 2004-193130 A Japanese Patent Application Laid-Open No. 2006-040898 JP 2005-116412 A JP 2005-149809 A
  • both end portions of the heating element are coated with noble metals
  • the coated portion is covered with a metal sleeve, and the metal sleeve and the coated portion are brazed with a metal solder (see JP-A-2004-193130).
  • the brazed part is melted by the thermal conduction from the heating element In some cases, there was a big problem in terms of safety that the heating element came off.
  • the conventional heat generating unit there has been a configuration in which the power supply member is crimped to both end portions of the elongated sheet-like heat generating unit (see Japanese Patent Application Laid-Open No. 2006-040898).
  • a structure in which a plurality of carbon fibers are fixed in a sheet shape by a resin is used as the heat generating unit.
  • the sheet-like heat generating body in the conventional heat generating unit formed in this manner has a smooth surface, so the heat generating body drops out of the power supply member when the power supply member does not have a strong clamping force. It had the problem of fear and lack of reliability.
  • the present inventors use a new film sheet-like material which is completely different in the material and the manufacturing method as the sheet-like heat generating element mainly composed of a carbon-based material used in the conventional heat generating element unit as a heat generating material.
  • the new film sheet-like material to be applied to the heating element used for such a heating element unit has a smoother surface than that of the conventional heating element and is flexible.
  • the film sheet material is not strong in strength, and may be torn and broken when subjected to a large force. For this reason, it is safe and reliable to construct the heating element unit by applying the configuration of the power supply member in the conventional heating element unit as described above using the new film sheet-like material as the heating element. There was a problem in terms of
  • the present invention has high safety and reliability, and easily manufactures a heating element unit and a heating device as a highly efficient heat source capable of heating an object to be heated with desired heat distribution and high temperature.
  • the purpose is to be able to As a result, according to the present invention, it is possible to provide a heating element unit and a heating device that are highly safe and reliable and can be easily manufactured.
  • a heating apparatus using a heating element unit as a heat source includes an image fixing apparatus and an image forming apparatus provided with the image fixing apparatus.
  • the image forming apparatus includes, for example, a device requiring a heat source such as a copying machine, a facsimile, a printer, and a multifunction machine having these functions.
  • a recording member carrying an unfixed toner image for example, an image fixing apparatus for pressing a paper and heating it at high temperature to fix the image is used.
  • a heat generating unit is used as a heat source in the image fixing apparatus.
  • a conventional heating element unit used in an image fixing apparatus is formed of a halogen heater using a heating element formed of a tungsten material, or a mixture of crystallized carbon such as graphite, a resistance value adjusting substance, and amorphous carbon.
  • a carbon heater using an elongated plate-shaped heating element can be mentioned. (Refer to JP 2005-116412 A and JP 2005-149809 A.)
  • the object to be heated can be efficiently heated at a high temperature and high temperature with a desired heat distribution in the fixing process using the heating element unit achieving the above object, and the start-up is quick, energy
  • an image fixing apparatus and an image forming apparatus having a heat source capable of reducing consumption are provided.
  • the heating element unit according to the first aspect of the present invention is: A strip-shaped heating element formed of a film sheet of a material containing a carbon-based material and having two-dimensional isotropic heat conduction; A power supply unit for supplying power to opposite ends of the heating element; A heating element unit comprising the heating element and a container including a part of the power supply unit, The power supply unit inside the container has a holder for holding the heating element holding units at both ends of the heating element, and an internal lead wire portion connected to the holder, and the holder is A hook receiving portion around which the heat generating body holding portion is wound, a locking portion extended from the hook receiving portion to lock the heat generating body, and the hook receiving portion sandwiching the heat generating body holding portion And a hook portion attached to the
  • the heating element unit according to the first aspect of the present invention thus configured can heat the object to be heated with a desired heat distribution and high temperature, and has high safety and reliability. And it becomes a highly efficient
  • the portion receiving the heating element holding portion extends in the width direction orthogonal to the longitudinal direction of the heating element It is done.
  • the heat generating unit according to the second aspect of the present invention configured as described above, the heat generating element is not reliably latched to the holder and does not fall off, and a heat source having a simple configuration and high safety and reliability. It becomes.
  • a hole or a notch is formed in the heat generating body holding portion according to the second aspect, and the locking portion is disposed inside the hole or the notch There is.
  • the heating element unit according to the third aspect of the present invention configured as described above has a simple configuration and is a heat source easy to manufacture.
  • the locking portion disposed inside the hole or notch of the third aspect is joined to the internal lead wire portion.
  • the heat generating unit according to the fourth aspect of the present invention thus configured has a simple structure and is a heat source easy to manufacture.
  • the hooking portion and the locking portion of the fourth aspect are integrally formed of a wire, and the hooking portion bends the wire.
  • the heating element holding portion is configured to be wound, and the locking portion is configured to be connected to the internal lead wire portion.
  • the heat generating unit according to the fifth aspect of the present invention thus configured has a simple structure and is a heat source easy to manufacture.
  • the hooking portion and the locking portion of the fourth aspect are integrally formed of a wire, and the edge of the heat generating body holding portion in the width direction The locking portion is disposed inside the notch formed in the.
  • the heat generating unit according to the sixth aspect of the present invention thus configured has a simple structure and is a heat source easy to manufacture.
  • the hooking portion and the hooking portion of the first aspect are formed of a single wire, and the hook is bent to make the hooking portion And the locking portion is formed.
  • the heat generating unit according to the seventh aspect of the present invention configured as described above has a simple configuration and is a heat source easy to manufacture.
  • the hooking portion of the first aspect is formed of an elastic material, and is configured to be attached to the hooking portion by an elastic force. .
  • the heat generating unit according to the eighth aspect of the present invention thus configured can easily and reliably fix the heat generating member to the hook receiving portion, and facilitates the heat source having high safety and reliability. Can be manufactured.
  • the hooking portion of the first aspect is formed of a conductive material.
  • the heat generating unit according to the ninth aspect of the present invention thus configured, power supply to the heat generating element can be ensured, and a highly reliable heat source can be provided.
  • the holder of the first aspect has a position regulating function for arranging the heat generating element at a predetermined position inside the container, and the holding The end of the tool is placed close to the inner surface of the container.
  • the heat generating element can be disposed at a desired position in the container to provide a heat source with high safety and reliability.
  • the heating element of the first aspect has a structure having an elastic force to absorb thermal contraction and thermal expansion in the heating element itself, and the holder is provided with electric power.
  • the inner lead wire portion to be supplied does not have an elastic structure.
  • the heat generating unit according to the eleventh aspect of the present invention thus configured is a heat source having high reliability and efficiency because the heat generating unit is surely disposed at a desired position in the container with a simple structure. .
  • the heating element unit according to the twelfth aspect of the present invention has an interlayer structure formed of a material containing a carbon-based material.
  • the heat generating unit according to the twelfth aspect of the present invention thus configured can be heated to a high temperature, and is a heat source having high safety, reliability, and efficiency.
  • the container of the first aspect is formed of a heat resistant glass tube or ceramic tube, filled with an inert gas, and sealed in the power supply portion It has been stopped.
  • the heat generating unit according to the thirteenth aspect of the present invention which is configured as described above, can heat the object to be heated uniformly to a high temperature, and is a heat source having high safety and reliability.
  • the heating apparatus according to the fourteenth aspect of the present invention is equipped with the heat generating unit according to any one of the first to thirteenth aspects as a heat source, so that it can be easily manufactured with high safety and reliability. It becomes.
  • the image fixing apparatus is A heating body for heating a recording member carrying an unfixed toner image; And a pressing body disposed opposite to the heating body and pressurizing the heating body via the recording member.
  • the heating body has a heating element as a heating source, and the heating element is formed in a strip shape of a film sheet of a material containing a carbon-based material, and has two-dimensional isotropic heat conduction.
  • the image fixing apparatus according to the fifteenth aspect of the present invention which is configured as described above, can be quickly started up and can reduce energy consumption.
  • the heat generating body according to the fifteenth aspect has an interlayer structure formed of a material containing a carbon-based material.
  • the image fixing apparatus according to the sixteenth aspect of the present invention which is configured in this manner, can be quickly set up, and can efficiently heat the recording member with a desired heat distribution and high reliability image fixing is possible. It becomes.
  • the heating element according to the sixteenth aspect is a value of a rate of change in resistance obtained by dividing the value of the resistance at the time of balanced lighting by energization. Is in the range of 1.2 to 3.5, and has a positive characteristic in which the heating element temperature is proportional to the resistance value.
  • the image fixing apparatus according to the seventeenth aspect of the present invention which is configured as described above, can be quickly raised, and can efficiently heat the recording member with a desired heat distribution and with high accuracy and high efficiency.
  • the heat generating body according to the seventeenth aspect may be a thin film having a thickness of 300 ⁇ m or less.
  • the image fixing apparatus according to the eighteenth aspect of the present invention which is configured as described above, can perform fixing with reduced energy consumption by using a heat source having a small heat capacity and having a fast rise.
  • the heat generating body according to the seventeenth aspect may be a light film having a density of 1.0 g / cm 3 or less.
  • the image fixing apparatus according to the nineteenth aspect of the present invention configured as described above can perform fixing with reduced energy consumption using a heat source having a small heat capacity and having a fast rise.
  • the heat generating body of the seventeenth aspect may be formed of a material having a thermal conductivity of 200 W / m ⁇ K or more.
  • the heat generating member has excellent heat conduction, and therefore uniform heat distribution distribution is possible.
  • the heating body according to the seventeenth aspect accommodates a part of a power supply unit that supplies power to both opposing ends of the heating element together with the heating element.
  • a container may be provided, and the container may be filled with an inert gas and sealed at the power supply unit.
  • the image fixing apparatus according to the twenty-first aspect of the present invention thus configured becomes an image fixing apparatus having a highly reliable heat source, and can be efficiently heated at a high temperature with a desired heat distribution. Become.
  • the heating body according to the seventeenth aspect is provided with a reflecting portion for defining a heating area by the heat generating member.
  • the image fixing apparatus according to the twenty-second aspect of the present invention configured as described above can efficiently heat the heating area at a high temperature with a desired heat distribution and can perform highly reliable fixing processing. It becomes.
  • a plurality of heating elements are provided on the heating element according to the seventeenth aspect, and central axes in a longitudinal direction of the plurality of heating elements are the subject It may be disposed on a straight line orthogonal to the conveyance direction of the recording member.
  • the image fixing apparatus according to the twenty-third aspect of the present invention configured as described above is capable of switching the heating area according to the recording member, and specifying high efficiency heating at a high temperature to a desired area. Is possible.
  • a film may be formed of a member that absorbs infrared light on the surface facing the heating element.
  • the heating member efficiently absorbs the heat from the heat generating member, thereby enabling highly efficient heating of the recording member at a high temperature.
  • the heating range of the heat generating body of the seventeenth aspect is a nip portion which is a pressing portion of the recording material by the heating body and the pressure body. A portion upstream of the nip portion in the conveyance direction of the recording material may be included.
  • the image fixing apparatus according to the twenty-fifth aspect of the present invention thus configured can perform image fixing processing efficiently and reliably.
  • An image forming apparatus includes any one of the image fixing devices according to the fifteenth to twenty-fifth aspects.
  • the image forming apparatus according to the twenty-sixth aspect of the present invention configured as described above can heat the recording member, which is the object to be heated, with a desired heat distribution and high temperature, and has a rising edge. As a result, energy loss can be reduced quickly and accurate heating control can be performed.
  • the present invention it is possible to configure a heat generating unit that is a heat source having high safety and reliability, and high efficiency, and at the same time, it is easy to manufacture a heat generating unit having high work efficiency and excellent productivity. Can be provided. Further, according to the present invention, since the heating element unit having the above effects is incorporated as a heat source into a heating device, it is possible to provide a heating device having high safety and reliability and high efficiency. Further, according to the present invention, it is possible to provide a heating device having a highly efficient heat source capable of heating the recording member, which is the object to be heated, to a desired heat distribution and high temperature. . In particular, according to the present invention, it is possible to provide an image fixing apparatus and an image forming apparatus capable of performing a fixing process with a quick start-up and reduced energy consumption.
  • the top view which shows the structure of the heat generating body unit of Embodiment 1 which concerns on this invention Front view of the heat generating unit shown in FIG. 1
  • FIG. 12 The perspective view which shows an example of the heating apparatus of Embodiment 5 which concerns on this invention
  • Temperature characteristic diagram showing relationship between temperature [° C.] and resistance [ ⁇ ] in the heating element of the heating element unit in the sixth embodiment
  • Heating element unit 92 used in the image fixing apparatus according to the sixth embodiment of the present invention and a graph showing the rising characteristics of a conventional carbon heater and a halogen heater
  • (c) is current waveform at rise time of halogen heater A heating element unit used in the image fixing apparatus according to the sixth embodiment of the present invention, and a graph showing the measurement results of the copper plate temperature when the object to be heated is heated by the conventional heater
  • FIG. 1 is a plan view showing the structure of the heat generating unit according to the first embodiment.
  • FIG. 2 is a front view of the heat generating unit shown in FIG.
  • a strip-shaped heat generating member 2 in the form of a film sheet is disposed inside the elongated container 1 having heat resistance.
  • the strip-shaped heating element 2 is disposed extending along the longitudinal direction of the container 1.
  • the container 1 is formed of a transparent quartz glass tube, and both ends of the quartz glass tube are welded in a flat plate shape to form the container 1.
  • An argon gas as an inert gas is enclosed in the inside of a container that accommodates the heating element 2.
  • the inert gas that can be enclosed inside the container is not limited to argon gas, and in addition to argon gas, nitrogen gas, or argon gas and nitrogen gas, argon gas and xenon gas, argon gas and krypton gas, etc. Even if the mixed gas is used, the same effect as that of the present invention can be obtained, and the inert gas to be enclosed can be appropriately selected according to the purpose.
  • the inert gas is sealed in the inside of the container 1 in order to prevent the oxidation of the heating element 2 which is a carbon-based substance inside the container when it is used at high temperature.
  • any material having heat resistance, insulation and heat permeability can be used as a material of the container 1, any material having heat resistance, insulation and heat permeability can be used. For example, glass materials such as soda lime glass, borosilicate glass, lead glass, etc. in addition to quartz glass And ceramic materials and the like.
  • a container 1, a strip-shaped heat generating member 2 as a heat radiation film body, and the heat generating member 2 are held at predetermined positions in the container.
  • the first and second power supply units 10a and 10b are provided at both end portions of the heating element 2 in the longitudinal direction to supply power to the heating element 2.
  • the first and second power supply units 10 a and 10 b provided at both ends of the heating element 2 include holders 3 attached at both ends of the heating element 2.
  • the first inner lead wire portion 11a is attached to one of the holders 3 (the holder 3 on the left side in FIG. 1), and the other holder 3 (on the right side in FIG. 1)
  • the second inner lead wire portion 11b is attached to the tool 3).
  • Each of the first inner lead wire portion 11 a and the second inner lead wire portion 11 b is provided from both ends of the container 1 through the molybdenum foil 8 embedded in the sealing portion (welded portion) at both end portions of the container 1. It is electrically connected to an external lead 9 leading to the outside of the container.
  • the first power supply unit 10a is configured to include the holder 3, the molybdenum foil 8, the outer lead wire 9, and the first inner lead wire portion 11a.
  • the second power supply unit 10 b is configured to include the holder 3, the molybdenum foil 8, the outer lead wire 9, and the second inner lead wire portion 11 b.
  • the first inner lead wire portion 11a is formed in a helical shape and has a spring portion having elasticity in the longitudinal direction, and a fixing portion 5 joined to the holder 3 attached to one end (left end in FIG. 1) of the heating element 2. 6, and the internal lead wire 7 joined to the molybdenum foil 8, and the fixing part 5, the spring portion 6 and the internal lead wire 7 are integrally formed of one wire, for example, a molybdenum wire .
  • the second inner lead wire portion 11b has the fixing portion 5 joined to the holder 3 mounted on the other end (right end in FIG. 1) of the heat generating body 2, and the heat generating body 2 at a predetermined position in the container.
  • the fixed portion 5, the position restricting portion 4 and the internal lead wire 7 are composed of a single wire, such as a molybdenum wire, which comprises the position restricting portion 4 for holding and the internal lead wire 7 connected to the molybdenum foil 8.
  • a molybdenum wire which comprises the position restricting portion 4 for holding and the internal lead wire 7 connected to the molybdenum foil 8.
  • the first inner lead wire portion 11a and the second inner lead wire portion 11b in the first embodiment are described as an example formed of a molybdenum wire, a metal having elasticity made of tungsten, nickel, stainless steel or the like is used. You may form using a line (round bar shape or flat plate shape).
  • the first power supply unit 10a configured of the holder 3, the molybdenum foil 8, the external lead wire 9, and the first internal lead wire portion 11a;
  • the heating element 2 is stretched in the container by the second power supply unit 10 b configured by the holder 3, the molybdenum foil 8, the external lead wire 9, and the second internal lead wire portion 11 b.
  • the spring portion 6 in the first inner lead wire portion 11a applies tension to the heat generating element 2, and the heat generating element 2 is always arranged linearly at a desired position in the container.
  • the spring portion 6 also has a function as a position restricting member for arranging the heat generating element 2 at a predetermined position in the container.
  • the outer peripheral portion of the spring portion 6 is at a position close to the inner peripheral surface of the container 1, and by disposing the spring portion 6, the heating element 2 is reliably arranged at a position not in contact with the container 1.
  • the longitudinal direction of the heating element 2 is disposed on the substantially central axis extending in the longitudinal direction of the container 1, and the heating element 2 is disposed so as not to contact the container 1. Further, by providing the spring portion 6 between the internal lead wire 7 and the fixing portion 5, it is possible to absorb the change due to the expansion and contraction of the heat generating element 2.
  • the expansion ratio of the material itself of the heating element 2 or the expansion ratio due to the shape of the heating element 2 is large with respect to the change due to the expansion and contraction in the heating element 2 and the heating element 2 itself has elasticity. It is not necessary to provide the spring portion 6 in each of the inner lead wire portions 11a and 11b.
  • the same constituent members as the first internal lead wire portion 11a or the same components as the second internal lead wire portion 11b may be provided at both ends of the heat generating member 2, and the heat generating unit is used It changes suitably according to the product specification, the use, etc. of the heating apparatus to be carried out. If the first inner lead wire portion 11a having the spring portion 6 is disposed on one end side of the heat generating element 2, the position restriction of the heat generating element 2 and absorption of changes due to expansion and contraction are possible. If the first internal lead wire portions 11a are provided on both sides of the heat generating element 2, position restriction and change absorption can be performed on both end sides of the heat generating element 2, and further effects can be expected.
  • the heating element unit When the heating element unit is incorporated in the heating device such that the longitudinal direction of the heating element unit of the first embodiment is the vertical direction, the temperature of the heating element 2 when the spring portion 6 is arranged above the heating element 2 Thus, the spring portion 6 is stretched and heated, and there is a possibility that the thermal expansion can not be absorbed beyond the elastic limit. Therefore, it is preferable to dispose the spring portion 6 below the heating element 2 and use it in a compressed state.
  • FIGS. 3 and 4 are views showing the holder 3 and the like attached to both end portions of the heating element 2 in the heating element unit according to the first embodiment.
  • FIG. 3 is a plan view of the holder 3 and the like on which the heating element 2 is mounted
  • FIG. 4 is a front view of the holder 3 and the like on which the heating element 2 is mounted.
  • the holder 3 used in the heat generating unit according to the first embodiment is a rod-shaped retaining portion 3a formed of a metal material having conductivity and heat resistance, such as molybdenum, and the retaining portion 3a. And a locking portion 3c extended from the locking receiving portion 3a.
  • the heating element holding portion 2 a which is an end portion of the heating element 2 is wound around the bar-like retaining portion 3 a so as to be folded back.
  • the hook portion 3b is fitted in the hook receiving portion 3a in which the heating element holding portion 2a is folded and wound so as to sandwich the heating element holding portion 2a of the heating element 2.
  • the hooking portion 3 b is formed of an elastic member, and is configured to grip the hook receiving portion 3 a.
  • the hooking portion 3b has a C-shaped cross-sectional shape in the longitudinal direction of the heat generating element 2 to be clamped, and the rod-like hooking receiving portion 3a is fitted, and the outer surface of the hooking receiving portion 3a is the heating element holding portion 2a. Grasp through.
  • the locking portion 3c extends so as to lead out from the central position (the position of the central axis parallel to the longitudinal direction of the heat generating member 2) of the hook receiving portion 3a of the holder 3 toward the internal lead wire portions 11a and 11b. It is done.
  • the locking portion 3c extended from the hook receiving portion 3a is connected to the fixing portion 5 of the internal lead wire portions 11a and 11b. Therefore, in the heat generating unit of the first embodiment, a so-called T-shape is formed by the hook receiving portion 3a and the locking portion 3c.
  • the heat generating body unit of Embodiment 1 although the example which the latching
  • a through hole 2 h is formed in the heating element holding portion 2 a of the heating element 2 held by the holder 3 configured as described above.
  • the through hole 2h of the heat generating body holding portion 2a is a lock which is extended from the center of the hook receiving portion 3a to the fixing portion 5 It will be in the state which the part 3c penetrated.
  • the hooking portion 3b is fitted in the hooking receiving portion 3a so as to sandwich the heating element holding portion 2a.
  • the locking portion 3c is a through hole 3d formed at the center position of the hooking portion 3b (the position of the central axis parallel to the longitudinal direction of the heating element 2) together with the through hole 2h of the heating element holding portion 2a. Penetrate. Therefore, the heating element 2 is held securely without coming off the holder 3.
  • the locking portion 3 c of the holder 3 is inserted into the through hole 2 h of the heat generating member holding portion 2 a which is the end of the heat generating member 2.
  • the heat generating body holding portion 2a is wound around the hook receiving portion 3a, and the hooking portion 3b is fitted into the hook receiving portion 3a, so that the heat generating body holding portion 2a is reliably held.
  • tension is applied to the holder 3 holding the heating element holding portion 2a by the first inner lead wire portion 11a and the second inner lead wire portion 11b, and the heating element 2 is placed at a predetermined position in the container. In a straight line.
  • both ends of the hook receiving portion 3 a are in the container 1 in order for the holder 3 to linearly stretch the heat generating member 2 at a predetermined position without contacting the heat generating member 2 with the inner surface of the container 1. Is placed in close proximity to the inner surface of the Therefore, the length of the rod-like hook receiving portion 3 a is set to be longer than the width of the heat generating body 2 and smaller than the inner diameter of the container 1.
  • the heating element 2 used in the heating element unit according to the first embodiment of the present invention has a laminated structure in which a carbon-based substance is used as a main component and parts thereof are fixed so that each layer forms a gap in the thickness direction. It has a two-dimensional isotropic heat conduction, and is formed of a film sheet-like material having a thermal conductivity of 200 W / m ⁇ K or more. Therefore, the strip-shaped heating element 2 is a heat source that generates heat uniformly without temperature unevenness.
  • the film sheet material which is the material of the heating element 2 is a high-temperature, for example, heat-treated, fired and graphitized polymer film or a polymer film to which a filler is added in an atmosphere of high temperature, for example, 2400 ° C. or higher. It is an oriented graphite film sheet, has a thermal conductivity of 200 W / m ⁇ K or more in the plane direction, and has a characteristic of 600 to 950 W / m ⁇ K. As described above, the heating element 2 used in the first embodiment has excellent two-dimensional isotropic heat conduction having a thermal conductivity in the plane direction of 600 to 950 W / m ⁇ K.
  • two-dimensional isotropy refers to, for example, one direction (X-axis direction) which is a carbon fiber direction in a heating element formed by arranging carbon fibers side by side in the same direction, or Not only refers to the two directions (X-axis direction and Y-axis direction) which are carbon fiber directions in a heating element formed by knitting, but also refers to having the same property in the surface direction in the film sheet heating element 2.
  • the film sheet material which is a material of the heat generating element 2 used in the present invention has a laminated structure, and has various surface shapes such as a flat surface, a concavo-convex surface or a corrugated surface in the surface direction. An air gap is formed between the opposing layers.
  • the image of the formation state of the void formed between each layer is folded so as to overlap with a plurality of times (for example, dozens of times, hundreds of times) to form a pie dough, and the pie The dough is baked and is similar to the cross-sectional shape of the pie.
  • the heating element 2 has an interlayer structure in which a plurality of film bodies formed of a material containing a carbon-based material are laminated and the laminating direction is partially fixed, and a film having flexibility in the thickness direction It is a sheet material. Therefore, as described above, the film sheet material which is the material of the heating element 2 in the present invention is a material having excellent two-dimensional isotropic heat conduction which has substantially the same heat conductivity in the surface direction. As shown in FIG. 4, it has the flexibility which can be wound along the outer surface of the latching receiving part 3a.
  • polymer film used as a film sheet material manufactured as described above examples include polyoxadiazole, polybenzothiazole, polybenzobisthiazole, polybenzoxazole, polybenzobisoxazole, polypyromellitimide ), Polyphenylene isophthalamide (phenylene isophthalamide), polyphenylene benzimidazole (phenylene benzimidazole), polyphenylene benzobis imitazole (phenylene benzo bis imitazole), polythiazole, polyparaphenylene vinylene And at least one type of polymer film.
  • phosphate ester type As the filler to be added to the polymer film, phosphate ester type, calcium phosphate type, polyester type, epoxy type, stearic acid type, trimellitic acid type, metal oxide type, metal tin type, organotin type, lead type, azo type, Each compound of nitroso type and sulfonyl hydrazide type can be mentioned. More specifically, tricresyl phosphate, tris (isopropylphenyl) phosphate, tributyl phosphate, triethyl phosphate, tris dichloropropyl phosphate, tris butoxyethyl phosphate etc. may be mentioned as the phosphate compound. be able to.
  • Examples of calcium phosphate compounds include calcium dihydrogen phosphate, calcium hydrogen phosphate, and tricalcium phosphate.
  • polyester compounds include polymers obtained by the reaction of adipic acid, azelaic acid, sebacic acid, phthalic acid and the like with glycols and glycerins. Further, as stearic acid compounds, dioctyl sebacate, dibutyl sebacate, acetyl tributyl citrate and the like can be mentioned.
  • Examples of metal oxide compounds include calcium oxide, magnesium oxide and lead oxide.
  • Examples of trimellitic acid compounds include dibutyl fumarate, diethyl phthalate and the like.
  • Examples of lead-based compounds include lead stearate and lead silicate.
  • Examples of the azo compound include azodicarbonamide and azobisisobutyronitrile.
  • Examples of nitroso compounds include nitrosopentamethylenetetramine and the like.
  • Examples of sulfonyl hydrazide compounds include p-toluene sulfonyl hydrazide and the like.
  • the film sheet material is laminated, treated in an inert gas at 2400 ° C. or higher, and controlled by adjusting the pressure of the gas treatment atmosphere generated in the process of graphitization to produce a film sheet-like heating element . Furthermore, if necessary, the film sheet-like heating element manufactured as described above is subjected to a rolling treatment, whereby a film sheet-like heating element of even better quality can be obtained.
  • the film sheet-like heating element manufactured in this way is used as the heating element 2 in the heating element unit of the present invention.
  • the amount of the filler added is suitably in the range of 0.2 to 20.0% by weight, and more preferably in the range of 1.0 to 10.0% by weight.
  • the optimum addition amount varies depending on the thickness of the polymer, and when the thickness of the polymer is thin, the addition amount should be large, and when the thickness is thick, the addition amount may be small.
  • the role of the filler is to bring the heat treated film into a state of uniform foaming. That is, the added filler generates a gas during heating, and the cavity after the generation of the gas becomes a passage to assist the gentle passage of the decomposition gas from the inside of the film. The fillers thus serve to create a homogeneous foam state.
  • the film sheet material manufactured as described above is processed into a desired shape by, for example, a punching die of Thomson type or pinnacle type, a sharp blade such as a rotary die cutter, or laser processing.
  • the heat generating body 2 in the first embodiment has a thickness (t) of 100 ⁇ m, a width (W) of 6.0 mm, and a length (L) of the heat generating portion 2 b of 300 mm.
  • the length, width, and thickness of the heating element 2 are determined by the input voltage and the heat generation temperature, etc., and can be appropriately changed according to the product specification and application as a heat source in which the heating element unit is used is there.
  • As the heating element 2 of the first embodiment a thin film of 300 ⁇ m or less is used.
  • a groove pattern in which a plurality of grooves are extended in a direction orthogonal to the longitudinal direction of the heat generating body 2 is formed. ing.
  • the plurality of grooves formed in the heat generating portion 2 b regulate the flow direction of the current in the heat generating portion 2 b and adjust the resistance value.
  • a groove shape formed in the heat generating portion 2b there are a groove (slit) which penetrates according to a product specification, a use and the like in which the heat generating unit is used, a groove with a bottom (recess groove) and the like. Further, in the recess groove, it is possible to adjust the resistance value of the heat generating portion 2b by changing the depth in the thickness direction.
  • a groove pattern shown in FIG. 3 is repeatedly formed in the heat generating portion 2 b of the heat generating body 2 of the first embodiment. That is, in the heat generating portion 2b of the heat generating element 2, an end groove 2d extending from the opposite position of both side edge portions parallel to the longitudinal direction to the center side orthogonal to the longitudinal direction and the heat generating portion 2b orthogonal to the longitudinal direction
  • the central grooves 2e formed in the central portion of the are alternately formed in the longitudinal direction.
  • the opposing end portion on the central side of the end grooves 2d and 2d opposing each other in the heat generating portion 2b has a first predetermined distance (a distance indicated by L1 in FIG. 3), and the current path is formed in the center portion of the heat generating portion 2b.
  • the edge end portions which are both end portions of the central groove 2e have the same second predetermined distance (the distance indicated by L2 in FIG. 3) from the edge portions in the width direction of the heat generating portion 2b.
  • a conduction path is formed in the vicinity of both side edge portions of.
  • the distance between the end groove 2d and the central groove 2e in the longitudinal direction has a third predetermined distance (the distance indicated by L3 in FIG. 3).
  • a current path flowing in a direction perpendicular to the longitudinal direction of the heat generating element 2 is formed between the groove 2e and the groove 2e.
  • the third predetermined distance L3 which is the distance between the end groove 2d and the central groove 2e in the longitudinal direction is set to the same distance as the second predetermined distance L2.
  • the predetermined distance L1 is set to twice the second predetermined distance L2 and the third predetermined distance L3.
  • a meandering current path is formed, and the cross-sectional area orthogonal to the flow of the same current becomes substantially the same. It becomes easy and can set uniform temperature distribution.
  • the second predetermined distance L2 is not half of the first predetermined distance L1. Even the uniform temperature distribution (heat distribution distribution) is not greatly affected.
  • the mechanical strength of the heating element 2 with respect to the impact applied to the heating element unit can be enhanced.
  • the groove-shaped slit or recess groove formed in the heat generating portion 2b is appropriately selected according to the product specification and application for which the heat generating unit is used, thereby obtaining the temperature distribution (heat distribution pattern) of the heat generating portion 2b. It is possible to make it a desired pattern.
  • the distance L3 in the longitudinal direction between the end groove 2d and the central groove 2e is gradually increased by approaching the end portion in the longitudinal direction of the heat generating body 2, ie, the heat generating body holding portion 2a
  • the temperature distribution (heat distribution pattern) of the heat generating portion 2b can be changed so that the central portion has high heat.
  • the heat releasing area 2 c connected from the heat generating body holding part 2 a to the heat generating part 2 b has a heat releasing function.
  • the above-described grooves are not formed in the heat radiation area 2c having the heat radiation function, and a wide current path is formed. For this reason, in the heat radiation region 2c, the heat conducted from the heat generating portion 2b is dissipated, so that the thermal stress in the heat generating element 2 is reduced and the life is extended.
  • the width of the heat generating body holding portion 2a and the width of the heat generating portion 2b are formed to be the same width, but the width of the heat generating body holding portion 2a is greater than the width of the heat generating portion 2b. It is also possible to form narrowly. In that case, it is preferable that the edge shape of the heat radiation area 2c connected from the heat generating body holding portion 2a to the heat generating portion 2b be a curved shape in order to prevent concentration load and prevent breakage.
  • the heat radiation area 2c is provided with a temperature gradient by gradually narrowing the width of the heat radiating area 2c from the heat generating portion 2b to the heat generating body holding portion 2a. It is possible to reduce the heat stress on the part 2a. Furthermore, in the heating element 2, providing a temperature gradient to the heating portion 2b by gradually lengthening the first predetermined distance L1 and the second predetermined distance L2 toward the heating element holding portions 2a on both sides. And a structure of high mechanical strength having high impact resistance and vibration resistance.
  • the heating element 2 configured as described above, a groove pattern having a plurality of grooves that inhibit the flow of current is formed in the heating portion 2b, so the desired current is not restricted by the overall shape of the heating portion 2b. You can set the path. As a result, in the heating element unit according to the first embodiment, it is possible to set a desired heat generation distribution according to the product specification and application, and can be used as various heat sources.
  • the heat generating body 2 in the heat generating body unit of Embodiment 1 was formed in strip shape by press work and was grooved, it is also possible to process it into a desired shape using a laser.
  • a laser for example, as an example of laser processing, when the thermal conductivity of the heat generating element 2 in the plane direction is 200 W / m ⁇ K or more, laser processing mainly using thermal processing action such as CO 2 laser (wavelength 10600 nm) is used. There is a problem that heat is taken by the heating element 2 and it can not be processed. However, it becomes possible to process a desired shape with high accuracy by using laser processing of wavelength 1064 to 380 nm mainly based on non-thermal processing action, for example, short wavelength laser processing of 1064 nm.
  • the material of the heating element 2 in the first embodiment is a film sheet material, and a polymer film or a polymer film to which a filler is added is heat-treated in an atmosphere at a high temperature, for example, 2400 ° C. or higher, and fired to graphitize
  • the material is a highly oriented graphite film sheet having heat resistance.
  • the heating element 2 is formed of a material having a thermal conductivity in the plane direction of 600 to 950 W / m ⁇ K.
  • the preferable laser processing method is appropriately selected from the processing methods having the laser processing wavelength (1064 to 380 nm) mainly based on the above-mentioned non-thermal processing action depending on the material of the heat generating element 2, ie, the thermal conductivity and shape in the surface direction. It goes without saying that it is possible. Furthermore, it goes without saying that the laser processing method for processing the heat generating element 2 described above can also be adopted in the processing of the heat generating element of the heat generating unit in another embodiment described later.
  • both end portions of the strip-shaped heat generating element 2 are reliably held by the holder 3 having a simple configuration, and the heat generating element 2 is electrically held at a predetermined position in the container. Connection status is maintained.
  • the heat generating element 2 is securely held at a predetermined position in the container by the holder 3, so that a heat source having high safety and reliability and high efficiency can be obtained. It can be configured.
  • the heat generating unit according to the first embodiment has a simple configuration, it can provide a heat generating unit having high work efficiency and excellent productivity.
  • the heating element unit according to the second embodiment differs from the heating element unit according to the first embodiment described above in the configuration and the shape of a holder attached to both ends of the heating element 2.
  • the configuration other than the holder in each heating element unit is the same as the heating element unit of the first embodiment. Therefore, in the heat generating unit of each example of the second embodiment, components having the same functions and configurations as the heat generating unit of the first embodiment are denoted by the same reference numerals, and the description thereof will be described in the first embodiment. Apply the description.
  • FIG. 5 is a plan view showing a state in which the holder 13 of the first embodiment holds the heating element 2 in the heating element unit of the second embodiment.
  • the holder 13 includes a rod-like hook receiving portion 13a formed of a conductive metal material, for example, a wire of molybdenum, and a hooking portion 13b fitted into the hook receiving portion 13a. It is comprised by the latching
  • the heating element holding portion 2a which is an end portion of the heating element 2 is wound around the rod-like locking receiving portion 13a so as to be folded back.
  • through-hole 2h is formed in heating element holding portion 2a, extending from the center of retaining portion 13a, and engaging portion 13c connected to fixing portion 5 is inserted. ing.
  • the hooking portion 13b is fitted in the hook receiving portion 13a around which the heating element holding portion 2a is wound so as to sandwich the heating element holding portion 2a of the heating element 2.
  • the hooking portion 13b is formed of an elastic member and configured to grip the hooking receiving portion 13a.
  • the hooking portion 13b is C-shaped in cross section in the longitudinal direction of the heat generating element 2 to be clamped, and is fitted into the bar-like hooking receiving portion 13a, and the outer surface of the hooking receiving portion 13a is the heating element holding portion 2a. Grasp through.
  • a notch 13d parallel to the longitudinal direction of the heat generating member 2 is formed in the hook portion 13b.
  • a locking portion 13c extending from the center of the hook receiving portion 13a toward the fixed portion 5 is disposed in the notch 13d.
  • the hooking portion 13 b is formed of, for example, a molybdenum plate having a thickness of 0.2 mm.
  • a material having heat resistance such as tungsten, nickel, or stentes may be used as the material of the hook portion 13b other than the above-described molybdenum.
  • the central portion of the hook receiving portion 13a is bent to form a recess, and the inner lead wire is located at the center of the recess (the position of the central axis parallel to the longitudinal direction of the heating element 2).
  • the locking portion 13c connected to the fixing portion 5 of the portions 11a and 11b is joined (for example, spot welding).
  • each may be formed and joined with another member, and the holder 13 may be comprised. .
  • the through hole 2 h is formed in the heat generating body holding portion 2 a held by the holder 13, the locking portion 13 c is inserted into the through hole 2 h, and the heat generating body holding portion 2 a is hooked
  • the hooking portion 13b is fitted into the hooking receiving portion 13a while being wound around the hooking portion 13a.
  • a locking portion 13c protruding from the center of the locking receiving portion 13a is disposed in the notch 13d of the locking portion 13b. Therefore, the heating element 2 does not come off the holder 13 and is in a reliable holding state.
  • the locking portion 13c extended from the hook receiving portion 13a is inserted into the through hole 2h and locked, and the heating element
  • the hooking portion 13b is fitted into the hook receiving portion 13a, and the heating element holding portion 2a is sandwiched.
  • both end portions of the strip-shaped heat generating element 2 are reliably held by the holder 13. Can reliably maintain electrical and mechanical connections at predetermined locations within the container.
  • FIG. 6 is a plan view showing a state in which the holder 23 of the second embodiment holds the heating element 2 in the heating element unit of the second embodiment.
  • the hook receiving portion 23a of the holder 23 is formed by bending a conductive wire.
  • the hook receiving portion 23a and the locking portion 23c of the holder 23 of the second embodiment are configured to be formed in an L shape by bending the end portions of the two rod-like wire members to approximately 90 degrees.
  • the hook receiving portion 23a is configured such that the respective tip portions project in opposite directions (180 degrees) with each other.
  • the hook receiving portion 23a of the holder 23 is a bent tip portion, and is linearly arranged by two wire members protruding in the opposite direction to each other.
  • the heat generating body holding portion 2a of the heat generating body 2 is wound around the hook receiving portion 23a so as to be folded back.
  • the locking portion 23 c of the holder 23 is configured to be inserted into a long hole-like through hole 2 h formed in the heat generating body holding portion 2 a which is an end portion of the heat generating body 2.
  • the locking portions 23c are arranged in parallel at two positions indicated by a symbol X.
  • the wire is spot welded.
  • the hooking portion 23b is fitted to the hooking receiving portion 23a around which the heating element holding portion 2a is wound so as to sandwich the heating element holding portion 2a of the heating element 2.
  • the hooking portion 23b is formed of an elastic member and configured to grip the hooking receiving portion 23a.
  • a hook-shaped through hole 23d is formed at the center of the hooking portion 23b, and a hooking portion 23c formed of two wires connected from the hooking receiving portion 23a to the fixing portion 5 is formed in the through hole 23d.
  • the hooking portion 23b is C-shaped in cross section in the longitudinal direction of the heat generating body 2 to be clamped, and is fitted into the bar-like hooking receiving portion 23a, and the outer surface of the hooking receiving portion 23a is the heating element holding portion 2a. Grasp through.
  • the through hole 23d is formed at the center of the hooking portion 23b
  • a notch is formed instead of the through hole 23d, and the hooking portion is connected to the fixing portion 5 from the hooking receiving portion 23a in the notch 23c may be arranged.
  • the locking portion 23c formed of two wires is joined to the fixing portion 5, but the locking portion 23c and the fixing portion 5 are integrally configured in the same configuration. You may form.
  • the heat generating member holding portion 2a which is the end portion of the heat generating member 2 is inserted into the through hole 2h and locked, and the heat generating member holding portion 2a is a hook of the holder 23 In the state of being wound around the receiving portion 23a, the hooking portion 23b is fitted into the hooking receiving portion 23a, and the heating element holding portion 2a is sandwiched.
  • both end portions of the strip-shaped heat generating member 2 are reliably held by the holding member 23. Can reliably maintain electrical and mechanical connections at predetermined locations within the container.
  • FIG. 7 is a plan view showing a state in which the holder 33 of the third embodiment holds the heating element 2 in the heating element unit of the second embodiment.
  • the hook receiving portion 33a, the hooking portion 33b fitted in the hook receiving portion 33a, and the hook receiving portion 33a are extended And the same material as the respective materials in the holder 13 of the first embodiment.
  • the hook receiving portion 33 a and the locking portion 33 c of the holder 33 are formed by bending a single wire having conductivity.
  • the hook receiving portion 33a of the holder 33 of the third embodiment is formed by bending one rod-like wire rod into two and then bending both end portions to approximately 90 degrees.
  • the hook receiving portions 33 a are configured to be disposed such that the respective tip portions project in opposite directions (180 degrees).
  • the hook receiving portion 33a of the holder 33 is configured by arranging both end portions of one wire in a straight line.
  • the heat generating body holding portion 2a of the heat generating body 2 is wound around the hook receiving portion 33a so as to be folded back.
  • the locking portion 33 c of the holder 33 is configured to be inserted into the long hole-like through hole 2 h formed in the heat generating body holding portion 2 a which is an end portion of the heat generating body 2.
  • the hooking portion 33b is fitted in the hook receiving portion 33a around which the heating element holding portion 2a is wound so as to sandwich the heating element holding portion 2a of the heating element 2.
  • the hooking portion 33b is formed of an elastic member and configured to grip the hooking receiving portion 33a.
  • a notch 33d is formed at the central portion of the hooking portion 33b, and when the hooking portion 33b grips the hooking receiving portion 33a, a hooking from the hooking receiving portion 33a to the fixing portion 5 in the notch 33d Portion 33c is arranged.
  • the hooking portion 33b is C-shaped in cross section in the longitudinal direction of the heat generating body 2 to be clamped, and is fitted into the hook receiving portion 33a, and the outer surface of the hooking receiving portion 33a is through the heat generating body holding portion 2a. Hold on.
  • the cut 33d is formed at the center position of the hooking portion 33b (the position of the central axis parallel to the longitudinal direction of the heating element 2)
  • a through hole is formed instead of the cut 33d.
  • the locking portion 33 c may be inserted into the through hole.
  • the heat generating member holding portion 2a which is the end of the heat generating member 2 is inserted into the through hole 2h and locked, and the heat generating member holding portion 2a is a hook of the holder 33
  • the hooking portion 33b is fitted into the hooking receiving portion 33a, and the heating element holding portion 2a is sandwiched.
  • both end portions of the strip-shaped heating element 2 are reliably held by the holding tool 33, and the heating element 2 is a container. Electrical and mechanical connections can be reliably maintained at predetermined locations within.
  • FIG. 8 is a plan view showing a state in which the holder 43 of the fourth embodiment holds the heating element 2 in the heating element unit of the second embodiment.
  • the hooks 43a, the hooks 43b fitted in the hooks 43a, and the hooks 43a extend from the hooks 43a.
  • the hook receiving portion 43a and the locking portion 43c of the holder 43 are formed by bending a conductive wire.
  • the hook receiving portion 43a and the locking portion 43c of the holder 43 of the fourth embodiment are configured to be formed in an L shape by bending the end of one rod-like wire rod to approximately 90 degrees.
  • the hook receiving portion 43a of the holder 43 is formed of a bent tip portion, and the heating element holding portion 2a of the heating element 2 is wound around the tip portion. Further, the locking portion 43 c of the holder 43 is configured to be inserted into a through hole 2 h formed in the heat generating body holding portion 2 a which is an end portion of the heat generating body 2.
  • the hooking portion 43 b is fitted in the hook receiving portion 43 a around which the heating element holding portion 2 a is wound so as to sandwich the heating element holding portion 2 a of the heating element 2.
  • the hooking portion 43 b is formed of an elastic member, and is configured to grip the hook receiving portion 43 a.
  • a through hole 43d is formed at a central position (a position of a central axis parallel to the longitudinal direction of the heating element 2) of the hooking portion 43b, and the through hole 43d is connected to the fixing portion 5 from the hooking receiving portion 43a.
  • the locking portion 43c is inserted.
  • the hooking portion 43b has a C-shaped cross-sectional shape in the longitudinal direction of the heat generating element 2 to be clamped, and is a heat generating element which is fitted to the rod-like hook receiving portion 43a and wound around the outer surface of the hook receiving portion It grips via the holding part 2a.
  • the through hole 43d is formed at the center of the hooking portion 43b
  • a cut may be formed instead of the through hole 43d, and the locking portion 43c may be disposed in the cut.
  • the holder 43 of the fourth embodiment the holder 43 and the fixing portion 5 are integrally formed by the wire, but the fixing portion 5 and the holder 43 are separately formed and joined. It may be a configuration.
  • the heat generating member holding portion 2a which is the end portion of the heat generating member 2 is inserted into the through hole 2h and locked, and the heat generating member holding portion 2a is a hook of the holder 43 In the state of being wound around the receiving portion 43a, the hooking portion 43b is fitted into the hooking receiving portion 43a, and the heating element holding portion 2a is sandwiched.
  • both end portions of the belt-shaped heating element 2 are reliably held by the holding device 43, and the heating element 2 is a container. Electrical and mechanical connections can be reliably maintained at predetermined locations within.
  • FIG. 9 is a plan view showing a state in which the holder 53 of the fifth embodiment holds the heating element 2 in the heating element unit of the second embodiment.
  • the holder 53 of the fifth embodiment is a modification of the holder 43 of the fourth embodiment described above, and is a hook receiving portion 53a in which the heating element holding portion 2a is folded back and wound, and a hook fitted into the hook receiving portion 53a. It is comprised by the stop part 53b, the latching
  • the hook receiving portion 53a is formed in a straight line in a direction perpendicular to the longitudinal direction of the heat generating body 2, and the heat generating body holding portion 2a is folded back and wound around the linear portion.
  • a lead-out portion 53e which is a lead-out portion connected from one end of the hook receiving portion 53a to the fixed portion 5, is configured to lead out from the edge in the width direction of the heat generating body holding portion 2a.
  • the locking portion 53c which is the tip end of the locking receiving portion 53a protrudes from the through hole 2h formed at the center position of the heating element holding portion 2a (the position of the central axis parallel to the longitudinal direction of the heating element 2). Configuration. Therefore, the locking portion 53 c of the hook receiving portion 53 a is configured to protrude in the direction in which the fixing portion 5 is disposed on the central axis of the heating element 2 in the longitudinal direction.
  • the hooking portion 53 b is fitted in the hook receiving portion 53 a around which the heating element holding portion 2 a is wound so as to sandwich the heating element holding portion 2 a of the heating element 2.
  • the hooking portion 53b is formed of an elastic member, and is configured to grip the hooking receiving portion 53a.
  • a through hole 53d is formed at the center of the hooking portion 53b, and a hooking portion 53c, which is the tip of the hooking receiving portion 53a, protrudes from the through hole 53d.
  • the hooking portion 53b is C-shaped in cross section in the longitudinal direction of the heat generating element 2 to be clamped, and is fitted into the hook receiving portion 53a of the rod-like portion, and the outer surface of the hooking receiving portion 53a is a heating element holding portion Grip through 2a.
  • the holder 53 and the fixing portion 5 are integrally formed by one wire, but the holder 53 and the fixing portion 5 are separately provided. It may be formed and joined.
  • the locking portion 53c which is the tip of the hook receiving portion 53a is inserted into the through hole 2h and locked.
  • the hooking portion 53b is fitted into the hook receiving portion 53a, and the heating element holding portion 2a is sandwiched.
  • both end portions of the strip-shaped heating element 2 are reliably held by the holding tool 53, and the heating element 2 is a container. Electrical and mechanical connections can be reliably maintained at predetermined locations within.
  • Example 6 The configuration of the holder 63 of the sixth embodiment in the second embodiment will be described below with reference to FIG.
  • FIG. 10 is a plan view showing a state in which the holder 63 of the sixth embodiment holds the heating element 2 in the heating element unit of the second embodiment.
  • the holder 63 of the sixth embodiment is a modification of the holder 43 of the fourth embodiment described above, and is a hook receiving portion 63a in which the heating element holding portion 2a is folded back and wound, and a hook fitted into the hook receiving portion 63a.
  • a lock portion 63b, a lock portion 63c extended from the lock receiving portion 63a, and a lead-out portion 63e connected from the lock receiving portion 63a to the fixed portion 5 are formed.
  • the hook receiving portion 63a, the locking portion 63c and the lead-out portion 63e of the holder 63 are formed by bending a single wire having conductivity.
  • the hook receiving portion 63a is formed in a straight line in a direction perpendicular to the longitudinal direction of the heat generating body 2, and the heat generating body holding portion 2a is folded back and wound around the linear portion.
  • notches 63d are formed at the both edges of the heat generating body holding portion 2a in the width direction of the lead-out portion 63e, which is a lead-out portion connected to the fixing portion 5 from one end of the hook receiving portion 63a. Is derived from one of the two.
  • the locking portion 63c which is the tip end of the locking receiving portion 63a is formed to project from the other cut 63d formed at the edge in the width direction of the heat generating body holding portion 2a. Therefore, in the hook receiving portion 63a, the regions between the notches 63d formed at the edges on both sides in the width direction of the heating element 2 are in contact with each other.
  • the hooking portion 63b is fitted in the hook receiving portion 63a around which the heating element holding portion 2a is wound so as to sandwich the heating element holding portion 2a of the heating element 2.
  • the hooking portion 63b is formed of an elastic member and configured to grip the hooking receiving portion 63a.
  • Notches 63d and 63d are formed on both sides of the hooking portion 63b. Therefore, a lead-out portion 63e which is a lead-out portion to the fixed portion 5 is disposed on one of the notches 63d and 63d, and a locking portion 63c which is a tip of the hook receiving portion 63a protrudes on the other.
  • the hooking portion 63b is C-shaped in cross section in the longitudinal direction of the heat generating element 2 to be clamped, and is fitted into the hook receiving portion 63a of the rod-like portion, and the outer surface of the hooking receiving portion 63a Grip through 2a.
  • the holder 63 and the fixing portion 5 are integrally formed by one wire, the holder 63 and the fixing portion 5 are separately provided. It may be formed and joined.
  • the heating element holding portion 2a which is the end of the heating element 2 is inserted into the notch of the locking portion 63c which is the tip of the locking receiving portion 63a and is locked, and the heating element holding portion 2a
  • the hook portion 63b is fitted in the hook receiving portion 63a in a state where the hook is wound around the hook receiving portion 63a of the holder 63, and the heating element holding portion 2a is sandwiched.
  • both end portions of the strip-shaped heating element 2 are reliably held by the holding member 63, and the heating element 2 is a container. Electrical and mechanical connections can be reliably maintained at predetermined locations within.
  • FIG. 11 is a plan view showing the structure of the heat generating unit of the third embodiment, and shows the left side portion of the heat generating unit.
  • the heating element unit according to the third embodiment has an elongated shape, and both left and right sides have the same configuration.
  • the heating element unit according to the third embodiment differs from the heating element unit according to the first embodiment described above in the configuration of the power supply unit 20 including holders 73 attached to both ends of the heating element 2.
  • the same reference numerals are attached to components having the same functions and configurations as the heating element unit of the first embodiment described above, and the description of the first embodiment applies.
  • a container 1, an elongated strip-shaped heat generating member 2 as a heat radiation film body, and a heat generating unit 2 are held at predetermined positions in the container.
  • a power supply unit 20 provided at both end portions in the longitudinal direction of the heat generating element 2 for supplying power to the heat generating element 2.
  • the power supply units 20 provided at both ends of the heating element 2 are configured to include holders 73 attached to both ends of the heating element 2, an internal lead wire 21, a molybdenum foil 8 and an external lead wire 9. ing.
  • the inner lead wire 21 is joined to the holder 73 holding the both ends of the heat generating element 2, and the inner lead wire 21 is made of molybdenum foil 8 embedded in the sealing portion (welded portion) of the both end portions of the container 1. It is electrically connected to the external lead wire 9 drawn out from the both ends of the container 1 to the outside of the container.
  • the holder 73 used in the heat generating unit according to the third embodiment is, like the first embodiment described above, a rod-like hook receiving portion 73a formed of a conductive wire and a hook receiving portion It is comprised by the latching
  • the locking portion 73c of the holder 73 is extended so as to lead out from the central position (the position of the central axis parallel to the longitudinal direction of the heating element 2) of the hook receiving portion 73a toward the internal lead wire 21. There is.
  • the locking portion 73 c is joined to the internal lead wire 21. Therefore, in the heat generating unit of the third embodiment, a so-called T-shape is formed by the hook receiving portion 73a and the locking portion 73c.
  • the heat generating body holding portion 2a which is an end portion of the heat generating body 2 is folded and wound around the rod-like hook receiving portion 73a.
  • the locking portion 73c extended from the locking receiving portion 73a penetrates the through hole formed in the heating element holding portion 2a.
  • the hooking portion 73b is fitted in the hook receiving portion 73a in which the heating element holding portion 2a is folded and wound so as to sandwich the heating element holding portion 2a of the heating element 2.
  • a through hole is also formed in the hooking portion 73b, and the through hole is also penetrated by the through hole.
  • the hooking portion 73b is formed of an elastic member and configured to grip the hooking receiving portion 73a.
  • the hooking portion 73b has a C-shaped cross-sectional shape in the longitudinal direction of the heat-generating body 2 to be clamped, and a bar-like hooking receiving portion 73a is fitted to the outer surface of the hooking receiving portion 73a. Grasp through.
  • the portion of the hook receiving portion 73 a which is wound so that the heat generating element holding portion 2 a is folded back is the heat generating element 2.
  • the axial direction of the hook receiving portion 73a of the rod-like body around which the heating element holding portion 2a is wound is the direction orthogonal to the longitudinal direction of the heating element 2.
  • the holder 73 locks the heat generating body holding portion 2a and holds the heat generating body holding portion 2a. It does not deviate from 73 and is held securely.
  • both end portions of the hook receiving portion 73 a of the holder 73 are disposed in the vicinity of the inner surface of the container 1. Therefore, the length (the length in the direction orthogonal to the longitudinal direction of the heat generating body 2) of the hook receiving portion 73a is set to be longer than the width of the heat generating body 2 and slightly shorter than the inner diameter of the container 1. For this reason, the hook receiving portion 73 a has a position regulating function in the container with respect to the heating element 2.
  • the heating element 2 is reliably held at a predetermined position in the container without contacting the container 1, and the position regulating member as a position regulating function ( It becomes a structure which does not need to provide the position control part 4 of FIG. 1 again.
  • the heat generating element 2 has an elastic force in the longitudinal direction thereof, and the heat generating element 2 is in the container.
  • the spring portion 6 used in the heat generating unit of the first embodiment of FIG. 1 becomes unnecessary in the heat generating unit of the third embodiment.
  • the configuration of the power supply unit is simplified, and in addition to the effects described in the above-described embodiments, the manufacturing cost can be significantly reduced. It becomes.
  • FIG. 12 is a plan view showing the structure of the heat generating unit according to the fourth embodiment, and the heat generating unit has an elongated shape so that the middle portion is omitted.
  • FIG. 13 is a front view of the heat generating unit of FIG. As shown in FIG. 12, the heating element unit of the fourth embodiment has the same configuration on both the left and right sides.
  • the heating element unit according to the fourth embodiment differs from the heating element unit according to the first embodiment described above in the configuration of the power supply unit 80 including holders 83 attached to both ends of the heating element 2.
  • parts having the same functions and configurations as the heating element unit of the first embodiment are given the same reference numerals, and the description of the first embodiment applies.
  • the heat generating unit according to the fourth embodiment holds the container 1, the elongated strip-shaped heat generating member 2 as a heat radiation film, and the heat generating member 2 at a predetermined position in the container. And a power supply unit 80 provided at both end portions in the longitudinal direction of the heating element 2 for supplying power to the heating element 2.
  • the power supply units 80 provided at both ends of the heating element 2 are provided with holders 83 attached at both ends of the heating element 2, a support ring 84, an inner lead wire 7 having a fixing portion 5, a molybdenum foil 8 and an outer lead wire.
  • Contains 9 The fixed portion 5 of the inner lead wire 7 is fixed to the holder 83, and the inner lead wire 7 is inserted into the container 1 via the molybdenum foil 8 embedded in the sealed portion (welded portion) at both end portions of the container 1.
  • a support ring 84 which is a position restricting portion having a position restricting function is attached to the internal lead 7.
  • the internal lead wire 7 connected to the fixed portion 5 is formed by winding a single wire, for example, a molybdenum wire in a coil shape.
  • internal lead wire 7 in the fourth embodiment is described as an example formed of a molybdenum wire, it is formed using a metal wire (round bar shape, flat plate shape) made of tungsten, nickel, stainless steel or the like. May be
  • the power supply unit 80 including the holder 83, the support ring 84, the internal lead 7, the molybdenum foil 8, and the external lead 9 is a heating element. It is provided on both sides of 2 to supply power to the heating element 2 and stretch the heating element 2 at a predetermined position in the container.
  • the end of the heat generating element 2 is held between the flat surface side and the back surface side by the holder 83, and the through hole formed substantially at the center of the holder 83 and the through hole formed at the end of the heat generating element 2 are internal leads. It is penetrated by the end of fixed part 5 of line 7.
  • the fixing portion 5 is formed in a so-called L shape by bending its heat generating body side end. The tip of the fixed portion 5 bent in an L-shape protrudes through the through hole of the holder 83 sandwiching the heating element 2.
  • the protruding end portion 5 a of the fixing portion 5 protruding from the through hole of the holder 83 is provided with a falling prevention means (dropping prevention means).
  • the protruding end 5a of the fixing portion 5 is in a state of being plastically deformed and crushed by press working, melting or the like. That is, the projecting end 5a of the fixing portion 5 is processed into a shape larger than the diameter of the through hole of the holder 83, and the falling preventing means is provided.
  • the support ring 84 of the heat generating unit of the fourth embodiment is wound around and fixed to the inner lead wire 7 and formed in a coil shape.
  • the support ring 84 is configured to be wound around the inner lead wire 7 for supplying power to the heating element 2, and the current path from the external lead wire 9 to the heating element 2 does not pass through the support ring 84. That is, the support ring 84 does not intervene in the current path in the inner lead 7.
  • the support ring 84 in the fourth embodiment has a function of restricting the position of the heating element 2 and also functions as a heat dissipation function of releasing the heat conducted from the heating element 2.
  • the support ring 84 will be described as an example formed of a molybdenum wire, but if it is a material that has a rigidity that can positionally regulate the heating element 2 and is excellent in heat conduction (heat dissipation function) and processing, the support ring It is possible to use as 84, for example, metallic materials, such as nickel, stainless steel, tungsten, etc. can be used. However, the support ring 84 is not necessarily a necessary component depending on the configuration and specifications of the heat generating unit, such as the length of the heat generating element 2 and the dimensional difference between the inner diameter of the container 1 and the heat generating element 2.
  • the material of heat generating element 2 itself has stretchability, and the shape pattern of heat generating element 2 has stretchability, so that the change due to expansion and contraction in heat generating element 2 is absorbed. No mechanism is required.
  • the heat generating element 2 used in the fourth embodiment has a small coefficient of thermal expansion, the heat generating element 2 disposed (stretched) in a state where tension is applied at the time of manufacture It can be absorbed by the stretchability by the shape pattern of the heating element 2.
  • the heat generating element 2 used in the heat generating unit of the fourth embodiment according to the present invention has an excellent two-dimensional structure in which each layer of a plurality of film sheet materials is laminated with a carbon-based substance as a main component in the thickness direction. It is formed of a film sheet-like material having a highly isotropic heat conduction and a heat conductivity of 200 W / m ⁇ K or more. Therefore, the strip-shaped heating element 2 is a heat source that generates heat uniformly without temperature unevenness. That is, the heating element 2 used in the heating element unit of the fourth embodiment is made of the same manufacturing method and the same material as the heating element 2 used in the above-mentioned first embodiment and the like.
  • a plurality of slits are extended in a direction orthogonal to the longitudinal direction of the heat generating body 2.
  • the plurality of slits formed in the heat generating portion regulate the flow direction of the current in the heat generating portion to adjust the resistance value.
  • a slit shape formed in the heat generating portion there are a groove which is penetrated, a groove having a bottom, and the like according to a product specification, a use and the like in which the heat generating unit is used.
  • the recess groove it is possible to adjust the resistance value of the heat generating portion by changing the depth in the thickness direction.
  • the heat generating body 2 has a characteristic of having high stretchability. Become.
  • FIG. 14 is a perspective view showing an example of a heating apparatus equipped with the heating element unit described in the first to fourth embodiments.
  • the heating device shown in FIG. 12 shows a heating device 91 for heating as an example of the heating device of the present invention. Inside the heating device 91, the heating element unit of the present invention described in the first to fourth embodiments is installed. In the fifth embodiment, the heat generating unit is described with reference numeral 92.
  • the heating device 91 according to the fifth embodiment is provided with components used for a general heating device such as a temperature controller 93, a reflection plate 94, and a protective cover 95.
  • the heating device 91 configured as described above, by applying a rated voltage to the heating unit 92, a predetermined current flows through the heating unit 2 in the heating unit 92 to generate heat, and the temperature rises at an early rise. Do.
  • the heating device 91 according to the fifth embodiment is reliably maintained at a predetermined temperature desired by the user by temperature control by the temperature controller 93.
  • a strip-shaped heat generating member 2 having a flat surface is used as a heat source. For this reason, the heat radiated from the plane has directivity.
  • the flat portions of the heat generating body 2 of the heat generating unit 92 are disposed to face the front side and the back side.
  • the heat radiated from the front side of the heat generating body 2 heats the heated region on the front side of the heating device 91, and the heat radiated from the back side of the heat generating body 2 is reflected by the reflection plate 94 The heated area is heated.
  • the heat generating body 2 is formed in a strip shape with a film sheet material, the amount of heat radiated from the side of the heat generating body 2 is very small and can be ignored compared to the amount of heat radiated from the front side (rear side) It is small. For this reason, in the heating apparatus 91 of the fifth embodiment, it is possible to efficiently heat the heated region and the heated target with high directivity.
  • the heating element unit 92 equipped in the heating apparatus of the present invention has the heating element 2 described in the first to fourth embodiments described above, and this heating element 2 has a thermal conductivity in the surface direction It is formed of a film sheet material having an excellent two-dimensional isotropic heat conduction, and has a characteristic of quick rise and small rush current due to its small heat capacity. For this reason, the heating device equipped with the heating element unit of the present invention as a heat source has excellent responsiveness that enables quick heating, and excellent characteristics that can heat a predetermined region with high thermal efficiency. It becomes a heating device that it has.
  • the heating element unit according to the present invention can be used as a heat source for various electronic / electrical devices other than heating devices, for example, OA devices such as copying machines, facsimiles, and printers equipped with high-temperature heating elements. And it can utilize for various apparatuses which require heat sources, such as electric apparatuses, such as cooking apparatus, a dryer, and a humidifier.
  • the inventors of the present invention use a new film sheet-like material (film sheet material) which is completely different in material and manufacturing method from the heating element used in the conventional image fixing apparatus as the heating element.
  • the film sheet material (film sheet material) to be applied to the heating element used for the heating element unit as a new heat source of the image fixing apparatus has high efficiency and high temperature as well as is light and thin. Because of this, the heat capacity is small and it has excellent rising characteristics.
  • an image fixing apparatus using the heating element unit of the present invention will be described with reference to FIGS.
  • an electrostatic latent image designated by the exposure device is formed on the surface of the photosensitive drum uniformly charged by the charging device, and the developing device is formed according to the electrostatic latent image.
  • a toner image is formed.
  • the toner image formed on the surface of the photosensitive drum is transferred by a transfer device onto a recording material such as transported paper.
  • the recording member carrying the unfixed toner image transferred in this manner, for example, a sheet of paper is conveyed to an image fixing device for fixing the image.
  • the image fixing apparatus applies pressure and heat to the recording material carrying the unfixed toner image to fix the unfixed toner image on the recording material.
  • an image forming process of a single color image will be described.
  • four sets of photosensitive drums correspond to four color toners.
  • the toner images of the respective colors are sequentially transferred onto the transfer belt, and the color images are sequentially transferred onto the recording material.
  • the color image thus transferred onto the recording material is fixed by pressure and heat in the image fixing device.
  • FIG. 15 is a diagram showing the main configuration of the image fixing device of the sixth embodiment.
  • the image fixing apparatus presses and heats the recording member carrying the unfixed toner image at a high temperature to melt the unfixed toner image and fix it on the recording member Do.
  • the image fixing apparatus includes a fixing roller 113, which is a heating element for heating and melting the unfixed toner image 112 carried on the recording member 111, and an unfixed toner image 112.
  • the recording member 111 carried is pressed against the fixing roller 113 to press the unfixed toner image 112 against the recording member 111, and the pressure belt 114 is pressed against the fixing roller 113 with a desired force.
  • two pressure rollers 115 and 115 which are rotated.
  • the pressure belt 114 and the pressure rollers 115 and 115 constitute a pressure body.
  • the recording member 111 is conveyed by the pressure belt 114 to the nip portion 109 which is a fixing area, and pressure fixing is performed.
  • a configuration is also possible in which the recording member 111 is pressed against the fixing roller 113 by the pressure rollers 115, 115 arranged.
  • the heating body is configured by the fixing roller 113 is described, it is also possible to configure the heating body by a belt rotated by a roller.
  • a heating element unit 92 having a heating element 2 is provided inside the fixing roller 113.
  • the heating unit 2 is a heat source for heating the fixing roller 113, and the heating unit 2 is enclosed in the container 1.
  • a cylindrical reflecting portion 116 having an opening is provided around the long container 1 in which the heating element 2 is sealed.
  • the reflecting portion 116 is made of stainless steel, and its inner surface is mirror finished.
  • the opening 116 a formed in the reflection portion 116 is extended in parallel with the longitudinal direction of the heat generating element 2.
  • the opening 116 a of the reflecting portion 116 radiates the heat radiated from the heating element 2 toward the nip portion 109 of the fixing region by the fixing roller 113 and the pressure belt 114 together with the heat reflected on the inner surface of the reflecting portion 116. It is an opening.
  • the opening of the reflecting portion 116 is directed such that the region heated by the heat generating unit 92 is the most upstream side in the conveyance direction of the recording member 111 in the nip portion 109. .
  • the flat side of the strip-shaped heat generating member 2 of the heat generating unit 92 is also directed to the most upstream side in the conveyance direction of the recording member 111 in the nip portion 109.
  • the reflection unit 116 is provided around the heating unit 92, but in the image fixing apparatus according to the present invention, the heating unit is not provided. The configuration may be such that the fixing roller 113 therearound is heated by 92.
  • the fixing roller 113 is composed of a plurality of layers so that the heat radiated from the heat generating unit 92 can be efficiently absorbed by the fixing roller 113 and can be kept warm.
  • the inner surface of the fixing roller 113 is provided with an infrared absorbing layer which absorbs heat (infrared rays) from the heat generating unit 92 and does not reflect it.
  • the image fixing apparatus according to the sixth embodiment is described as an example in which a single heat generating unit 92 is provided, a plurality of heat generating units 92 may be provided.
  • a plurality of heating element units 92 When a plurality of heating element units 92 are provided, the central axes of the heating element units 92 in the longitudinal direction are disposed on a straight line orthogonal to the conveyance direction of the recording target member 111.
  • the image fixing apparatus in which the plurality of heating element units 92 are provided inside the fixing roller 113 is configured to be able to select the heating element unit 92 to which power is supplied according to the size of the recording member 111.
  • the heat generating element 2 of the heat generating unit 92 used in the image fixing apparatus according to the present invention is a film sheet-like band, so the amount of heat radiation from its plane portion is much higher than the amount of heat radiation from the side portion. There are many, high directivity. Therefore, in an image fixing apparatus provided with a plurality of heat generating units 92, the area heated by overlapping heat generating units 92 can be set small, and the area near the nip can be heated efficiently with high efficiency. It becomes possible. Further, in the image fixing apparatus according to the sixth embodiment, regardless of the number of the heating unit 92 provided being single or plural, the film sheet heating unit 2 used for the heating unit 92 is high, as described later. Since it has directivity and excellent rising characteristics, it is possible to process the image fixing process in the image forming process efficiently and at high speed.
  • the configuration of the heat generating unit 92 of the image fixing apparatus according to the sixth embodiment is the heat generating unit described in the first to third embodiments, and therefore the details thereof are omitted here.
  • the halogen heater used as a heat source in the conventional image fixing apparatus has an advantage that the rise at the time of power feeding is quick.
  • the halogen heater has a large inrush current, and a large-capacity control circuit is required to control the halogen heater on and off, which causes an increase in the size of the apparatus and also has a problem in cost.
  • a fluorescent lamp which is a nearby lighting apparatus, flickers (flicker phenomenon).
  • flickers flicker phenomenon
  • the carbon heater since the rush current hardly occurs, the problem that the voltage drops when the power is supplied to the heating element and the problem that the fluorescent lamp flickers (flicker phenomenon) are reduced.
  • the carbon heater has a problem that it takes time to start up, takes a long time for fixing processing in an image forming process, and increases energy consumption at the time of fixing processing.
  • the infrared emissivity of the carbon-based substance is as high as 78 to 84%.
  • the heating element used as a carbon heater is a plate-shaped heating element having a thickness (for example, several mm), has a large heat capacity to some extent, and takes time to start up when power is supplied. Had.
  • the heating element used as the carbon heater has a temperature resistance characteristic in which the resistance value is substantially constant regardless of the temperature of the heating element and the rush current hardly occurs.
  • a rush current hardly occurs, there is a problem that a voltage drops when power is supplied to the heating element, and a problem that a fluorescent lamp flickers (flicker phenomenon) Is reduced.
  • this heating element when this heating element is used as a heat source, it takes time to start up, takes a long time to fix in the image forming process, and has a problem that energy consumption increases at the time of fixing.
  • the inventors of the present invention have used the heating element 2 of the heating element unit 92 used in the image fixing apparatus according to the sixth embodiment of the present invention, and an elongated material mainly composed of a carbon-based material used as a heat source in the conventional image fixing apparatus.
  • a heater with a plate-shaped heating element hereinafter, abbreviated as carbon heater
  • a heater with a halogen lamp as a reference example hereinafter, abbreviated as halogen heater
  • halogen heater A comparative experiment of temperature characteristics showing the relationship between temperature [° C.] and resistance [ ⁇ ] was conducted.
  • the heat generating unit 92 used in the following experiment (the experiment whose experimental results are shown in FIGS.
  • FIG. 16 to 19 is the heat generating unit (see FIGS. 12 and 13) described in the fourth embodiment.
  • FIG. 16 is a temperature characteristic diagram showing the relationship between the temperature [° C.] and the resistance [ ⁇ ] in the heating element 2 of the heating element unit 92, the carbon heater which is the conventional heat source, and the halogen heater.
  • a solid line X represents the temperature characteristic of the heat generating element 2 of the heat generating unit 92 used in the image fixing apparatus according to the present invention.
  • the broken line Y is the temperature characteristic of the carbon heater
  • the dashed-dotted line Z is the temperature characteristic of the halogen heater as a reference example.
  • the heat generating element 2 of the heat generating unit 92 used in the image fixing apparatus according to the sixth embodiment of the present invention has a positive characteristic that the resistance increases as the temperature becomes higher.
  • the resistance value is 9.2 ⁇
  • the resistance value is 16.7 ⁇
  • the rate of change (resistance change rate) of the resistance value when the heating element 2 is not energized and at the time of balanced lighting is 1.81.
  • the time of equilibrium lighting refers to the case where a voltage (for example, 100 V) is applied to the heater and power is supplied, current flows through the heating element, and the heating temperature of the heating element becomes constant.
  • the resistance change rate refers to a value obtained by dividing the value of the resistance at the time of balanced lighting by energization in the heating element 2 by the value of the resistance at the time of non-energization.
  • the temperature characteristic of the carbon heater indicated by the broken line Y which is a conventional heating element, shows a substantially constant resistance value even if the temperature changes.
  • the resistance value is 15.9 ⁇
  • the resistance value is 16.7 ⁇ Met. Therefore, the rate of change in resistance between the non-energized carbon heater and the balanced lighting is 1.05.
  • the resistance value is 1.8 ⁇ when the temperature is 20 ° C.
  • the resistance value is 16.7 ⁇ when the temperature at equilibrium lighting is 1830 ° C. Met. Therefore, the rate of change in resistance is 9.28 when the halogen heater is not energized and when it is in the balanced state.
  • the heat generator 2 of the heat generator unit 92 used in the image fixing device of Embodiment 6 has the positive characteristic that the resistance increases as the temperature becomes higher.
  • the resistance value at the time of equilibrium lighting is 11.0 ⁇
  • the resistance change rate is 1.2.
  • the temperature setting at the time of equilibrium lighting is 2000 ° C.
  • the resistance value at the time of equilibrium lighting is 32.2 ⁇
  • the rate of change of resistance is 3.5, indicating that the temperature and the resistance value are substantially proportional.
  • the heat generating element 2 of the heat generating unit 92 used in the image fixing apparatus of Embodiment 6 has a resistance change rate of 1.81 obtained by dividing the resistance value at the time of balanced lighting by energization at the rated value by the resistance value at no electricity application. Met.
  • the heat generating element 2 of the heat generating unit 92 used in the image fixing apparatus according to the present invention has a certain degree of resistance (9.2 ⁇ ) even when not energized, so that it is not energized and balanced lighting
  • the rate of change in resistance is 1.81.
  • the heating element 2 of the heating element unit 92 generates heat at a desired temperature with high accuracy by setting the electric power or the heater temperature such that the rate of change in resistance is in the range of 1.2 to 3.5. While the heat generating unit 92 is turned on, an effect of speeding up the rising of heat generation can be achieved without generating a large inrush current. When the rate of change in resistance between non-energized state and balanced lighting state is in the range of 1.2 to 3.5, the heat generation unit 92 is controlled as described later while the rise at the time of heat generation becomes faster. There is no need for large capacity equipment for this.
  • the image fixing device When a heating element having a rate of change in resistance of less than 1.2 is used, the image fixing device has a low temperature, a small inrush current, and a slow rise. On the other hand, when a heating element whose resistance change rate exceeds 3.5 is used, a large inrush current occurs, so it is necessary to set a large margin for each component in order to ensure reliability. There is a problem that the capacity is increased, the manufacturing cost is increased, and the size of the device is increased.
  • the carbon heater when used as a heat source, since the resistance value is substantially constant regardless of the temperature, the rush current is not generated at the time of lighting, and a substantially constant current flows. Therefore, when a carbon heater is used as a heat source, there is a problem that the rate of rise (rise) of the heat generation temperature is slow, and it takes time to reach a predetermined temperature. Therefore, when it is used as a heat source of the image fixing apparatus, it takes time until the nip portion reaches a desired temperature, so that it takes time for the image fixing process and so-called quick start.
  • the specific resistance value of the heating element 2 of the heating element unit 92 is 250 ⁇ ⁇ cm
  • the specific resistance value of carbon of the carbon heater is 3000 to 50000 ⁇ ⁇ cm
  • the specific resistance value of tungsten of the halogen heater is 5.6 ⁇ ⁇ cm It is.
  • the specific resistance value of carbon is very high compared to the materials of other heaters, it is possible to design with little change in current and a design in which rush current at the time of power supply is less likely to occur.
  • the specific resistance value of the heating element 2 is smaller than the specific resistance value of carbon, it is larger than the specific resistance value of tungsten, so the heating element 2 is easier to design than the heating element of tungsten.
  • the density of the heat generating body 2 of the heat generating body unit 92 is 0.5 to 1.0 g / m 3 (it depends on the thickness), the density of carbon of the carbon heater is 1.5 g / m 3 , The density of tungsten is 19.3 g / m 3 .
  • the density of the heating element 2 is lighter than the materials of other heaters, and since the heating element 2 is a band-like thin film, the heat capacity is very small compared to the other heaters, and the rising is quicker I understand that.
  • FIG. 17 is a graph showing the results of investigation of the rising characteristics of a heating element unit 92 used in the image fixing apparatus according to the present invention, and carbon heaters and halogen heaters which are conventional heaters.
  • the solid line X represents the rising characteristic of the heat generating unit 92 used in the image fixing apparatus according to the present invention.
  • the broken line Y represents the rising characteristic of the carbon heater using the elongated plate-like heating element mainly composed of the carbon-based material described above
  • the dashed dotted line Z represents the rising characteristic of the halogen heater using the halogen lamp. It is.
  • the rising characteristics from 5 seconds after lighting are shown using the heaters of the configuration of the specifications of 100V and 600W.
  • the rising characteristics (solid line X of FIG. 17) of the heat generating unit 92 used in the image fixing apparatus according to the present invention Compared to the rise characteristics of Y), it shows a quick rise.
  • the 90% arrival time of the temperature at the time of equilibrium lighting was 2.7 seconds for the carbon heater while it was 0.6 seconds for the heating element unit 92.
  • the 90% reaching time in the case of the halogen heater was 1.1 seconds.
  • the power consumed in the rise time is largely different.
  • the time until reaching 90% of the temperature at equilibrium lighting is 0. Since it is 6 seconds, the power consumption at that time is about 360 W ⁇ S.
  • the time to reach 90% of the temperature at the time of equilibrium lighting is 2.7 seconds, so the power consumption of that time is about 1620 W ⁇ S.
  • the power consumption of that time is about 600 W ⁇ S.
  • the power consumption in the heating unit 92 until the time of balanced lighting is significantly smaller than that of the other heaters, and in the image fixing apparatus, the fixing process is frequently performed and the on / off is repeated. Energy consumption will be greatly reduced.
  • FIG. 18 is a diagram comparing inrush current at the initial stage of power supply in each heater, and shows a current waveform from 1.0 second after the initial stage of power supply.
  • the heating element unit 92 used in the image fixing apparatus according to the present invention has an effective value of the current at the initial stage of power supply of 15.75 A and 1.0 seconds from the initial stage of power supply.
  • the effective value of the later current was 9.00A. That is, although generation of inrush current is recognized in the heating element unit 92, the magnitude thereof is equal to or less than twice the current at the time of balanced lighting.
  • the halogen heater has a large value of five times or more, that is, a resistance change ratio of 9.27 when not energized and at equilibrium lighting. Occurs.
  • the occurrence of such a large inrush current has the problem of having to use a large-capacity element capable of withstanding a large current in an apparatus using the halogen heater while having the characteristic that the rising is quick.
  • a thyristor as a switching element needs to have a large current capacity, and it is also necessary to use a contact having a large breaking capacity so that welding is not performed at a large current even at mechanical contacts.
  • it is difficult to perform voltage control based on the heat generation principle (halogen cycle) of the halogen heater and only on / off switching control has a problem that accurate temperature control can not be performed.
  • the heating element unit 92 used in the image fixing apparatus according to the sixth embodiment of the present invention has a change ratio of 1.81 at the time of non-energization and at the time of equilibrium lighting, and some inrush current occurs. Due to the characteristics, the rise is quick, the time until the time of equilibrium lighting is short, and the heat source has excellent responsiveness. Therefore, using the heat generating unit 92 as a heat source of the image fixing apparatus can improve the performance as the image fixing apparatus and provide an apparatus capable of achieving energy saving with less energy consumption. In addition, since the heat generating unit 92 used in the image fixing apparatus according to the sixth embodiment of the present invention has the characteristic of not generating a large rush current like a halogen heater, the heat generating unit 92 is used.
  • the large inrush current means that the current at the initial stage of power supply is five or more times the current 1.0 seconds after the initial stage of power supply.
  • the current at the initial stage of power supply is set to 3.5 times or less of the current 1.0 seconds after the initial stage of power supply. .
  • the rise is quick and has excellent responsiveness. There is no need to use a heat source and a device having a large capacity that can withstand a large current as the device using the heating element unit, and it is possible to achieve reduction in manufacturing cost and downsizing.
  • FIG. 19 shows the measurement results of the copper plate temperature when the copper plate as the object to be heated is heated by the heater unit 92, the carbon heater, and the halogen heater.
  • a solid line X is a temperature rise curve of the copper plate by the heating unit 92
  • a broken line Y is a temperature rise curve of the copper plate by the carbon heater
  • a dashed dotted line Z is a temperature rise curve of the copper plate by the halogen heater.
  • the copper plate piece as the object to be heated is 65 mm (L) x 65 mm (W) x 0.5 mm (t), and the heating surface facing the heater as a heating body is black I painted it.
  • the length of each heater was a long heater of 300 mm, and a 100 V, 600 W specification was used.
  • the opposing distance between the copper plate piece and the heater was 300 mm, and a thermocouple was attached to the back surface opposite to the heating surface of the copper plate piece to measure the copper plate temperature.
  • the heating element unit 92 used in the image fixing apparatus according to the sixth embodiment of the present invention has the same copper sheet as the object to be heated despite the same specifications as other heaters.
  • the temperature is raised quickly and heated to a high temperature.
  • the temperature of the tungsten wire as the heating element is high, but the temperature rise of the object to be heated is also delayed because the emissivity (about 0.18) of tungsten is low.
  • the temperature rise of the carbon heater is faster than the temperature rise of the halogen heater but slower than the temperature rise of the heat generating unit 92, and the equilibrium temperature is also lower.
  • the heating element unit 92 used in the image fixing apparatus according to the present invention can heat the object to be heated quickly with high efficiency.
  • the heat generating element 2 used in the image fixing apparatus of Embodiment 6 has excellent characteristics of being thin and having a small heat capacity, and having a quick rise until the time of balanced lighting by energization. For this reason, in the image fixing apparatus according to the sixth embodiment, since the heat generating unit having the heat generating element which has excellent response and heats efficiently with high efficiency is used, heating of the fixing area becomes fast and energy saving is achieved. And a quick start can be realized. Further, in the image fixing apparatus according to the sixth embodiment, a large inrush current does not occur at the time of lighting at the initial stage of heating, so that the problems of voltage drop and flickering of the fluorescent lamp are solved.
  • the carbon-based material is used as a main component to have two-dimensional isotropic heat conduction, and to have flexibility, flexibility, and elasticity, and further to heat.
  • a heat generating element composed of a film sheet material having a conductivity of 200 W / m ⁇ K or more and a thickness of 300 ⁇ m or less is used.
  • the heating element has excellent characteristics with a high emissivity of 80% or more, and the heating element unit using this heating element as a heat source enables efficient heating. Furthermore, by using the heating element unit of the present invention for a heating device, it is possible to provide a heating device having high safety and reliability, and easy to manufacture.
  • the object to be heated can be efficiently heated at a high temperature at a high temperature with a desired heat distribution in the fixing process. It has an excellent effect that energy consumption can be reduced quickly.
  • the present invention can construct a heat source having high safety, reliability, and efficiency, as well as providing a heating element unit and a heating device having high work efficiency and excellent productivity. Useful in the field of electronic / electrical devices that require

Landscapes

  • Resistance Heating (AREA)
  • Fixing For Electrophotography (AREA)

Abstract

 本発明の発熱体ユニットは、炭素系物質を含む材料によりフィルムシート素材で形成され、二次元的等方向性の熱伝導を有する帯状の発熱体(2)を容器(1)内に封入し、発熱体(2)の端部の発熱体保持部(2a)を保持具(3)により保持するように形成し、当該保持具(3)は、発熱体保持部(2a)が巻き付けられる掛止受部(3a)と、発熱体保持部(2a)を挟んで掛止受部(3a)に装着される掛止部(3b)と、掛止受部(3a)から延設され発熱保持部(2a)を係止する係止部(3c)とを有して構成されている。

Description

発熱体ユニット及び加熱装置
 本発明は、熱源として使用される発熱体ユニット及びその発熱体ユニットを用いた加熱装置に関し、特に、炭素系物質を主成分としてフィルムシート状に形成された発熱体を有する発熱体ユニット及びその発熱体ユニットを用いた加熱装置に関する。本発明に係る加熱装置としては、例えば複写機、ファクシミリ、プリンタ等の電子装置、及び電気暖房機器、調理機器、乾燥機等の電気機器等の熱源を必要とする各種機器が含まれる。
 上記のように各種機器において熱源として発熱体ユニットが広く用いられている。このため、発熱体ユニットに対しては、当該発熱体ユニットが用いられる機器の機能、形状、構成等の仕様に対応できるように各種の要求がある。例えば、熱源として高い温度になること、指定された温度を維持できること、温度調整範囲が広いこと、入力電力に対して高い効率で加熱エネルギーに変換できること、被加熱対象物を均一に加熱できること、指定された方向のみを加熱する指向性を有すること、電源投入時の突入電流が少ないこと、設定温度までの立ち上り時間か短いこと、及び発熱体ユニットの小型化が可能であり着脱が容易な構造であること等の要求がある。
 上記のような要求を満たすことを目的として、各種の発熱体ユニットが提案されている。
 長尺形状の熱源となる従来の発熱体ユニットには、円筒状のガラス管内部に細長いコイル状のタングステン線、又は棒状若しくは板状の炭素系焼結体が発熱体として封入されて構成されていた。最近、これらの発熱体に代わって、被加熱対称物をより均一に、且つ更に高温度に加熱することができる汎用性の高い発熱体ユニットとして、炭素系物質を主成分とした繊維を樹脂で含浸し温度処理を施した細長いシート状(帯状)の発熱体を用いたものが提供されている。
 発熱体ユニットにおいて、ガラス管内部に収納される発熱体の両端部分には、電源を供給するための部材(電力供給部材)が取り付けられており、この電力供給部材は発熱体に対して確実に装着されるとともに、効率高く電力を供給できるように構成することが必要である。また、発熱体ユニットにおける発熱体と電力供給部材は、細く破損しやすいガラス管の内部の所定位置に配置され封入される構成であるため、発熱体ユニットの製造においては、発熱体と電力供給部材を容易に、且つ確実にガラス管内部に組み込むことができる、作業性の優れた構造を有することが必要である。更に、熱源として使用される発熱体ユニットにおいては、安全性が高く、長期間の使用に耐える信頼性の高い装置であることが絶対的な条件である。
特開2004-193130号公報 特開2006-040898号公報 特開2005-116412号公報 特開2005-149809号公報
 炭素系物質を主成分とした繊維を樹脂で含浸し温度処理を施した細長いシート状(帯状)の発熱体を用いた従来の発熱体ユニットにおいては、発熱体の両端部分を貴金属で被覆し、その被覆部分を金属スリーブで覆い、金属スリーブと被覆部分とを金属ロウによりロウ付けしたものがあった(特開2004-193130号公報参照。)。このような金属ロウにより発熱体と金属スリーブを溶着する方法は、発熱体が高温度(例えば、1100℃)となる発熱体ユニットにおいて、発熱体からの熱伝導によりロウ付け部分が溶融してしまい、場合によっては発熱体が外れるという安全性の点で大きな問題があった。
 また、従来の発熱体ユニットにおいては、細長いシート状の発熱体の両端部分に電力供給部材を圧着した構成ものがあった(特開2006-040898号公報参照。)。このように構成された従来の発熱体ユニットにおいては、発熱体として複数の炭素繊維を樹脂によりシート状に固着して形成したものが用いられていた。このように形成された従来の発熱体ユニットにおけるシート状の発熱体は、その表面が滑らかであるため、電力供給部材が強い挟着力を有しない場合には、発熱体が電力供給部材から脱落するおそれがあり、信頼性に欠けるという問題を有していた。
 本発明者らは、従来の発熱体ユニットに用いられていた炭素系物質を主成分としたシート状の発熱体とは、材料及び製造方法において全く異なる新たなフィルムシート状の材料を発熱材料として発熱体に適用し、新たな熱源としての発熱体ユニットの開発に取り組んできた。そのような発熱体ユニットに用いる発熱体に適用しようとする新たなフィルムシート状の材料は、従来の発熱体の表面より更に滑らかな表面を有し、且つ柔軟性を持っている。また、このフィルムシート状の材料は、強度的には強いものではなく、大きな力を受けると、裂けて破壊されるおそれがあった。このため、新たなフィルムシート状の材料を発熱体として用いて前述のような従来の発熱体ユニットにおける電力供給部材の構成をそのまま適用して、発熱体ユニットを構成することは安全性及び信頼性の点で問題があった。
 本発明は、被加熱対称物を所望の配熱分布で、且つ高温度に加熱することができる効率の高い熱源としての発熱体ユニット及び加熱装置を、安全性及び信頼性が高く、容易に製造することができる構成とすることを目的とする。その結果として、本発明によれば、安全性及び信頼性が高く、容易に製造することができる発熱体ユニット及び加熱装置を提供することができるものである。
 なお、本発明においては、熱源として発熱体ユニットを用いた加熱装置には、画像定着装置、及び画像定着装置を備えた画像形成装置を含むものである。画像形成装置としては、例えば複写機、ファクシミリ、プリンタ、及びこれらの機能を備えた複合機等の熱源を必要とする機器が含まれる。
 画像形成装置における画像形成プロセスには、未定着トナー画像を担持した被記録部材、例えば紙を加圧するとともに高温度で加熱して画像を定着する画像定着装置が用いられている。
 画像定着装置における熱源としては、発熱体ユニットが用いられている。画像定着装置に用いられている従来の発熱体ユニットとしては、タングステン材料により形成された発熱体を用いたハロゲンヒータ、或いは黒鉛等の結晶化炭素、抵抗値調整物質及びアモルファス炭素の混合物で形成された細長い板状の発熱体を用いたカーボンヒータが挙げられる。(特開2005-116412号公報及び特開2005-149809号公報参照。)
 本発明においては、前述の目的を達成した発熱体ユニットを用いて、定着処理において被加熱対象物を所望の配熱分布で、高温度で効率高く加熱することができるとともに、立ち上がりが早く、エネルギー消費を低減することができる熱源を有する画像定着装置及び画像形成装置を提供するものである。
 前記従来技術における問題を解決して本発明の目的を達成するために、本発明に係る第1の観点の発熱体ユニットは、
 炭素系物質を含む材料によりフィルムシートで形成され、2次元的等方向性の熱伝導を有する帯状の発熱体と、
 前記発熱体における対向する両端に電力を供給する電力供給部と、
 前記発熱体と前記電力供給部の一部を内包する容器と、を具備する発熱体ユニットであって、
 前記容器の内部における前記電力供給部は、前記発熱体の両端にある発熱体保持部を保持する保持具と、前記保持具に接続された内部リード線部と、を有し、前記保持具は、前記発熱体保持部が巻き付けられる掛止受部と、前記掛止受部から延設されて前記発熱体を係止する係止部と、前記発熱体保持部を挟んで前記掛止受部に装着される掛止部と、を有して構成されている。このように構成された本発明に係る第1の観点の発熱体ユニットは、被加熱対称物を所望の配熱分布で、且つ高温度に加熱することができ、安全性及び信頼性が高く、且つ効率の高い熱源となり、製造の容易な構成となる。
 本発明に係る第2の観点の発熱体ユニットにおいて、前記第1の観点の前記掛止受部において、前記発熱体保持部を受ける部位が前記発熱体の長手方向に直交する幅方向に延設されている。このように構成された本発明に係る第2の観点の発熱体ユニットにおいては、発熱体が保持具に確実に掛け止めされて抜け落ちることがなく、簡単な構成で安全性及び信頼性の高い熱源となる。
 本発明に係る第3の観点の発熱体ユニットにおいて、前記第2の観点の前記発熱体保持部に孔又は切り欠きが形成され、前記孔又は切り欠きの内部に前記係止部が配置されている。このように構成された本発明に係る第3の観点の発熱体ユニットにおいては、簡単な構成を有しており、製造の容易な熱源となる。
 本発明に係る第4の観点の発熱体ユニットにおいて、前記第3の観点の前記孔又は切り欠きの内部に配置された前記係止部が前記内部リード線部に接合されている。このように構成された本発明に係る第4の観点の発熱体ユニットは、簡単な構成を有し、製造容易な熱源となる。
 本発明に係る第5の観点の発熱体ユニットにおいて、前記第4の観点の前記掛止受部と前記係止部が線材により一体的に形成され、前記掛止受部が前記線材を屈曲させて前記発熱体保持部が巻き付けられるよう構成され、前記係止部が前記内部リード線部に繋がるよう構成されている。このように構成された本発明に係る第5の観点の発熱体ユニットは、簡単な構成を有し、製造容易な熱源となる。
 本発明に係る第6の観点の発熱体ユニットにおいて、前記第4の観点の前記掛止受部と前記係止部が線材により一体的に形成され、前記発熱体保持部の幅方向の縁部に形成された切り欠きの内部に前記係止部が配置されている。このように構成された本発明に係る第6の観点の発熱体ユニットは、簡単な構成を有しており、製造容易な熱源となる。
 本発明に係る第7の観点の発熱体ユニットにおいて、前記第1の観点の前記掛止受部と前記係止部が一本の線材により形成され、前記線材を屈曲させて前記掛止受部と前記係止部が形成されている。このように構成された本発明に係る第7の観点の発熱体ユニットは、簡単な構成を有しており、製造容易な熱源となる。
 本発明に係る第8の観点の発熱体ユニットにおいて、前記第1の観点の前記掛止部が弾性材で形成され、前記掛止受部に対して弾性力により装着されるよう構成されている。このように構成された本発明に係る第8の観点の発熱体ユニットは、掛止受部に発熱体を容易に、且つ確実に固定することができ、安全性及び信頼性の高い熱源を容易に製造することができる。
 本発明に係る第9の観点の発熱体ユニットにおいて、前記第1の観点の前記掛止受部が導電性材料で形成されている。このように構成された本発明に係る第9の観点の発熱体ユニットは、発熱体への電力供給が確実なものとなり信頼性の高い熱源を提供することができる。
 本発明に係る第10の観点の発熱体ユニットにおいて、前記第1の観点の前記保持具は、前記発熱体を前記容器の内部の所定位置に配置するための位置規制機能を有し、前記保持具における端部が前記容器の内面に近接して配置される。このように構成された本発明に係る第10の観点の発熱体ユニットは、発熱体が容器内の所望の位置に配置され、安全性及び信頼性の高い熱源を提供することができる。
 本発明に係る第11の観点の発熱体ユニットにおいて、前記第1の観点の前記発熱体が発熱体自体における熱収縮及び熱膨張を吸収する弾性力を有する構造を持ち、前記保持具に電力を供給する前記内部リード線部に弾性構造を有しない構成である。このように構成された本発明に係る第11の観点の発熱体ユニットは、発熱体を簡単な構成で容器内の所望の位置に確実に配置されるため、信頼性及び効率の高い熱源となる。
 本発明に係る第12の観点の発熱体ユニットにおいて、前記第1の観点の前記発熱体は、炭素系物質を含む材料により形成された層間構造を有する。このように構成された本発明に係る第12の観点の発熱体ユニットは、高温度に加熱することができ、安全性及び信頼性が高く、且つ効率の高い熱源となる。
 本発明に係る第13の観点の発熱体ユニットにおいて、前記第1の観点の前記容器は、耐熱性を有するガラス管又はセラミックス管により形成され、不活性ガスが充填されて前記電力供給部において封止されている。このように構成された本発明に係る第13の観点の発熱体ユニットは、被加熱対称物を均一に、且つ高温度に加熱することができ、安全性及び信頼性が高い熱源となる。
 本発明に係る第14の観点の加熱装置は、前記第1乃至第13の観点における発熱体ユニットを熱源として装備しているため、安全性及び信頼性が高く、容易に製造することができる構成となる。
 本発明に係る第15の観点の画像定着装置は、
 未定着トナー画像が坦持された被記録部材を加熱する加熱体と、
 前記加熱体に対向して配設され、前記加熱体に対して前記被記録部材を介して加圧する加圧体と、を具備し、
 前記加熱体が加熱源として発熱体を有し、前記発熱体が炭素系物質を含む材料によりフィルムシートで帯状に形成され、2次元的等方向性の熱伝導を有する。このように構成された本発明に係る第15の観点の画像定着装置は、立ち上がりが早く、エネルギー消費を低減することができる。
 本発明に係る第16の観点の画像定着装置において、前記第15の観点の前記発熱体は、炭素系物質を含む材料により形成された層間構造を有する。このように構成された本発明に係る第16の観点の画像定着装置は、立ち上がりが早く、被記録部材を所望の配熱分布で効率高く加熱することができ、信頼性の高い画像定着が可能となる。
 本発明に係る第17の観点の画像定着装置において、前記第16の観点の前記発熱体は、通電による平衡点灯時の抵抗の値を未通電時の抵抗の値で除算した抵抗変化率の値が1.2から3.5の範囲であり、発熱体温度と抵抗値が比例する正特性を有する。このように構成された本発明に係る第17の観点の画像定着装置は、立ち上がりが早く、被記録部材を所望の配熱分布で、且つ高精度で効率高く加熱することができる。
 本発明に係る第18の観点の画像定着装置において、前記第17の観点の前記発熱体は、厚みが300μm以下の薄膜体であってもよい。このように構成された本発明に係る第18の観点の画像定着装置は、熱容量が少なく、立ち上がりが早い熱源を用いて、エネルギー消費を低減した定着が可能となる。
 本発明に係る第19の観点の画像定着装置において、前記第17の観点の前記発熱体は、密度が1.0g/cm以下の軽膜体であってもよい。このように構成された本発明に係る第19の観点の画像定着装置は、熱容量が少なく、立ち上がりが早い熱源を用いて、エネルギー消費を低減した定着が可能となる。
 本発明に係る第20の観点の画像定着装置において、前記第17の観点の前記発熱体は、熱伝導率が200W/m・K以上の材料で形成されてもよい。このように構成された本発明に係る第20の観点の画像定着装置は、発熱体が優れた熱伝導を有するため、均一な配熱分布の加熱が可能となる。
 本発明に係る第21の観点の画像定着装置において、前記第17の観点の前記加熱体は、前記発熱体とともに当該発熱体の対向する両端に電力を供給する電力供給部の一部を収納する容器を有し、前記容器が内部に不活性ガスを充填して前記電力供給部において封止された構造を有してもよい。このように構成された本発明に係る第21の観点の画像定着装置は、信頼性の高い熱源を有する画像定着装置となり、所望の配熱分布で、高温度で効率高く加熱することが可能となる。
 本発明に係る第22の観点の画像定着装置において、前記第17の観点の前記加熱体には、前記発熱体による加熱領域を規定するための反射部が設けられている。このように構成された本発明に係る第22の観点の画像定着装置は、加熱領域を所望の配熱分布で、高温度で効率高く加熱することが可能となり、信頼性の高い定着処理が可能となる。
 本発明に係る第23の観点の画像定着装置において、前記第17の観点の前記加熱体に前記発熱体が複数設けられており、複数の前記発熱体における長手方向の各中心軸が、前記被記録部材の搬送方向に直交して直線上に配置されてもよい。このように構成された本発明に係る第23の観点の画像定着装置は、被記録部材に応じて加熱領域を切り替えることが可能となり、高温度で効率の高い加熱を所望の領域に特定することが可能となる。
 本発明に係る第24の観点の画像定着装置において、前記第17の観点の前記加熱体において、前記発熱体に対向する面に赤外線を吸収する部材により膜体を形成してもよい。このように構成された本発明に係る第24の観点の画像定着装置は、加熱体が発熱体からの熱を効率高く吸収して、被記録部材に対する高温度で効率の高い加熱が可能となる。
 本発明に係る第25の観点の画像定着装置において、前記第17の観点の前記発熱体の加熱範囲は、前記加熱体と前記加圧体とによる前記被記録部材の押圧部位であるニップ部と、当該ニップ部より被記録部材の搬送方向における上流側の部位とを含むものとしてもよい。このように構成された本発明に係る第25の観点の画像定着装置は、画像定着処理を効率高く、確実に行うことができる。
 本発明に係る第26の観点の画像形成装置は、前記第15の観点から第25の観点におけるいずれかの画像定着装置を備えている。このように構成された本発明に係る第26の観点の画像形成装置は、被加熱対称物である被記録部材を所望の配熱分布で、且つ高温度に加熱することができるとともに、立ち上がりが早く、エネルギーロスを低減して高精度な加熱制御を行うことができる。
 本発明によれば、安全性及び信頼性が高く、且つ効率の高い熱源となる発熱体ユニットを構成することができるとともに、作業効率が高く優れた生産性を有する製造の容易な発熱体ユニットを提供することができる。また、本発明によれば、上記の効果を有する発熱体ユニットが熱源として加熱装置に組み込まれているため、安全性及び信頼性が高く、効率の高い加熱装置を提供することができる。また、本発明によれば、被加熱対称物である被記録部材を所望の配熱分布で、且つ高温度に加熱することができる効率の高い熱源を有する加熱装置を提供することが可能となる。特に、本発明によれば、立ち上がりが早く、エネルギー消費を低減した定着処理を行うことができる画像定着装置及び画像形成装置を提供できる。
本発明に係る実施の形態1の発熱体ユニットの構成を示す平面図 図1に示した発熱体ユニットの正面図 実施の形態1の発熱体ユニットにおける発熱体の端部に取り付けられた保持具3等を示す平面図 実施の形態1の発熱体ユニットにおける保持具等の正面図 本発明に係る実施の形態2における実施例1の保持具が発熱体に装着された状態を示す平面図 実施の形態2における実施例2の保持具が発熱体に装着された状態を示す平面図 実施の形態2における実施例3の保持具が発熱体に装着された状態を示す平面図 実施の形態2における実施例4の保持具が発熱体に装着された状態を示す平面図 実施の形態2における実施例5の保持具が発熱体に装着された状態を示す平面図 実施の形態2における実施例6の保持具が発熱体に装着された状態を示す平面図 本発明に係る実施の形態3の発熱体ユニットの構造を示す平面図 本発明に係る実施の形態4の発熱体ユニットの構成を示す平面図 図12の発熱体ユニットの正面図 本発明に係る実施の形態5の加熱装置の一例を示す斜視図 本発明に係る実施の形態6の画像定着装置における主要な構成を示す図 実施の形態6における発熱体ユニットの発熱体における温度[℃]と抵抗[Ω]の関係を示す温度特性図 本発明に係る実施の形態6の画像定着装置に用いた発熱体ユニット92、及び従来のヒータであるカーボンヒータとハロゲンヒータの立ち上がり特性を示すグラフ 各種ヒータにおける突入電流を比較した図であり、(a)は本発明に係る実施の形態6の画像定着装置に用いた発熱体ユニットの立ち上がり時の電流波形、(b)は従来のカーボンヒータの立ち上がり時の電流波形、(c)はハロゲンヒータの立ち上がり時の電流波形 本発明に係る実施の形態6の画像定着装置に用いた発熱体ユニット、及び従来のヒータにより被加熱対称物を加熱したときの銅板温度の測定結果を示すグラフ
 以下、本発明に係る発熱体ユニット及びその発熱体ユニットを用いた加熱装置の好適な実施の形態について添付の図面を参照しつつ説明する。
(実施の形態1)
 本発明に係る実施の形態1の発熱体ユニットについて図1乃至図4を用いて説明する。図1は実施の形態1の発熱体ユニットの構造を示す平面図である。図1においては、当該発熱体ユニットが長尺形状であるため、その中間部分を破断して省略し、両端部分近傍を示している。図2は図1に示した発熱体ユニットの正面図である。
 実施の形態1の発熱体ユニットにおいては、耐熱性を有する細長い容器1の内部にフィルムシート状で帯状の発熱体2が配置されている。帯状の発熱体2は容器1の長手方向に沿って延設され配置されている。実施の形態1の発熱ユニットにおいては、容器1が透明な石英ガラス管により形成されており、石英ガラス管の両端部分が平板状に溶着されて容器1が構成されている。発熱体2を収容する容器内部には、不活性ガスとしてのアルゴンガスが封入されている。容器内部に封入可能な不活性ガスとしては、アルゴンガスに限定されるものではなくアルゴンガスの他に、窒素ガス、又はアルゴンガスと窒素ガス、アルゴンガスとキセノンガス、アルゴンガスとクリプトンガス等の混合ガスを用いても本願発明と同様の効果を奏し、封入すべき不活性ガスとしては目的に応じ適宜選択することが可能である。容器1の内部に不活性ガスを封入するのは、高温度で使用した際において、容器内部の炭素系物質である発熱体2の酸化を防止するためである。なお、容器1の材料としては、耐熱性、絶縁性及び熱透過性を有する材料であれば用いることができ、例えば石英ガラスの他に、ソーダ石灰ガラス、ホウケイ酸ガラス、鉛ガラス等のガラス材、セラミック材等から適宜選択される。
 図1及び図2に示すように、実施の形態1の発熱体ユニットは、容器1と、熱輻射膜体としての細長い帯状の発熱体2と、この発熱体2を容器内の所定位置に保持するために発熱体2の長手方向の両端部分に設けられ、発熱体2に電力を供給するための第1及び第2の電力供給部10a,10bと、を備えている。
 発熱体2の両端に設けられた第1及び第2の電力供給部10a,10bは、発熱体2の両端に取り付けられた保持具3を含んでいる。保持具3において、一方の保持具3(図1においては左側の保持具3)には第1の内部リード線部11aが取り付けられており、他方の保持具3(図1においては右側の保持具3)には第2の内部リード線部11bが取り付けられている。第1の内部リード線部11a及び第2の内部リード線部11bのそれぞれは、容器1の両端部分の封着部分(溶着部分)に埋設されたモリブデン箔8を介して、容器1の両端から容器外部に導出する外部リード線9と電気的に接続されている。
 図1及び図2に示すように、第1の電力供給部10aは、保持具3、モリブデン箔8、外部リード線9、及び第1の内部リード線部11aを有して構成されている。一方、第2の電力供給部10bは、保持具3、モリブデン箔8、外部リード線9、及び第2の内部リード線部11bを有して構成されている。
 第1の内部リード線部11aは、発熱体2の一端(図1における左端)に装着された保持具3に接合された固定部5と、螺旋状に形成され長手方向に弾性を有するスプリング部6と、モリブデン箔8に接合された内部リード線7とにより構成され、固定部5とスプリング部6と内部リード線7とは一本の線材、例えばモリブデン線、により一体的に形成されている。
 また、第2の内部リード線部11bは、発熱体2の他端(図1における右端)に装着された保持具3に接合された固定部5と、発熱体2を容器内の所定位置に保持するための位置規制部4と、モリブデン箔8に接続された内部リード線7とにより構成され、固定部5と位置規制部4と内部リード線7とは一本の線材、例えばモリブデン線、により一体的に形成されている。実施の形態1における第1の内部リード線部11a及び第2の内部リード線部11bは、モリブデン線により形成された例で説明するが、タングステン、ニッケル、ステンレス等を材料とした弾性を有する金属線(丸棒形状又は平板形状)を用いて形成してもよい。
 以上のように、実施の形態1の発熱体ユニットにおいては、保持具3、モリブデン箔8、外部リード線9及び第1の内部リード線部11aにより構成された第1の電力供給部10aと、保持具3、モリブデン箔8、外部リード線9及び第2の内部リード線部11bにより構成された第2の電力供給部10bとにより、発熱体2が容器内に張設されている。
 なお、第1の内部リード線部11aにおけるスプリング部6は、発熱体2に対して張力を与えるものであり、発熱体2を常に容器内の所望の位置で直線的に配置するものである。実施の形態1の発熱体ユニットにおいては、スプリング部6が発熱体2を容器内の所定の位置に配置するための位置規制部材としての機能も有する。スプリング部6の外周部分は容器1の内周面に近接した位置にあり、スプリング部6が配設されることにより、発熱体2は容器1に接触しない位置に確実に配置される。実施の形態1の発熱体ユニットにおいては、発熱体2の長手方向が容器1の長手方向に延びる略中心軸上となるよう配置され、発熱体2が容器1に接触しないよう配置されている。また、内部リード線7と固定部5との間にスプリング部6を設けることにより、発熱体2における膨張収縮による変化を吸収することが可能となる。
 発熱体2における膨張収縮による変化に対し、発熱体2の材料自体が持つ伸縮率又は発熱体2の形状による伸縮率が大きく、発熱体2自体が弾性を有する場合には、発熱体2の両側にあるそれぞれの内部リード線部11a,11bにはスプリング部6を設ける必要がない。
 なお、実施の形態1の発熱体ユニットにおいては、発熱体2の両端に異なる構成の第1の内部リード線部11a及び第2の内部リード線部11bを設けた例で説明するが、本発明の発熱体ユニットでは発熱体2の両端に第1の内部リード線部11aと同様、若しくは第2の内部リード線部11bと同様の構成部材を配設してもよく、その発熱体ユニットが用いられる加熱装置の製品仕様及び用途等に応じて適宜変更される。発熱体2のいずれか一端側にスプリング部6を有する第1の内部リード線部11aを配設する構成とすれば、発熱体2の位置規制及び膨張収縮による変化の吸収は可能であるが、発熱体2の両側に第1の内部リード線部11aを配設する構成とすれば発熱体2の両端側において位置規制及び変化吸収を行うことができる構成となり、さらなる効果が期待できる。
 実施の形態1の発熱体ユニットの長手方向が鉛直方向となるように加熱装置に当該発熱体ユニットが組み込まれた場合、スプリング部6が発熱体2より上側に配置されると発熱体2の温度でスプリング部6が伸張されて加熱され、弾性限度を超えて熱膨張を吸収できなくなるおそれがある。このため、スプリング部6を発熱体2の下側に配置して圧縮された状態で使用する方が好ましい。
 実施の形態1の発熱体ユニットにおいては、第1の内部リード線部11aの固定部5、スプリング部6及び内部リード線7、並びに第2の内部リード線部11bの固定部5、位置規制部4及び内部リード線7を一体的に構成した例で説明したが、各々を別部材で構成してそれぞれが電気的に接合されていれば同様の効果が得られることは言うまでもない。
 図3及び図4は実施の形態1の発熱体ユニットにおける発熱体2の両端部分に装着される保持具3等を示す図である。図3は発熱体2が装着された保持具3等の平面図であり、図4は発熱体2が装着された保持具3等の正面図である。
 実施の形態1の発熱体ユニットに用いられている保持具3は、導電性及び耐熱性を有する金属材料、例えばモリブデンの線材で形成された棒状の掛止受部3aと、掛止受部3aが嵌め込まれる掛止部3bと、掛止受部3aから延設された係止部3cとで構成されている。図3及び図4に示すように、棒状の掛止受部3aには発熱体2の端部である発熱体保持部2aが折り返されるように巻き付けられている。発熱体保持部2aが折り返して巻き付けられた掛止受部3aには、掛止部3bが発熱体2の発熱体保持部2aを挟着するように嵌め込まれる。掛止部3bは弾性部材で形成され、掛止受部3aを握着するよう構成されている。掛止部3bは、挟着する発熱体2の長手方向における断面形状がC字状であり、棒状の掛止受部3aが嵌め込まれて、掛止受部3aの外面を発熱体保持部2aを介して握着する。
 保持具3の掛止受部3aの中央の位置(発熱体2の長手方向と平行な中心軸の位置)から内部リード線部11a,11bの方へ導出するように係止部3cが延設されている。掛止受部3aから延設された係止部3cは内部リード線部11a,11bの固定部5に繋がっている。したがって、実施の形態1の発熱体ユニットにおいては、掛止受部3aと係止部3cとにより、いわゆるT字形状が構成されている。
 なお、実施の形態1の発熱体ユニットにおいては、係止部3cと固定部5が1本の線材により一体的に構成された例で説明するが、それぞれを別部材で形成して接合してもよい。
 上記のように構成された保持具3により保持される発熱体2の発熱体保持部2aには、貫通孔2hが形成されている。発熱体保持部2aが掛止受部3aに折り返されるように巻き付けられるとき、発熱体保持部2aの貫通孔2hには、掛止受部3aの中央から固定部5へ延設された係止部3cが貫通した状態となる。この状態において、掛止受部3aに掛止部3bが発熱体保持部2aを挟着するように嵌め込まれる。このとき、係止部3cは、発熱体保持部2aの貫通孔2hとともに、掛止部3bの中央位置(発熱体2の長手方向に平行な中心軸の位置)に形成されている貫通孔3dを貫通する。したがって、発熱体2は保持具3から外れることがなく、確実に保持される。
 上記のように、本発明に係る実施の形態1の発熱体ユニットにおいては、発熱体2の端部である発熱体保持部2aの貫通孔2hには保持具3の係止部3cが挿入され、発熱体保持部2aが掛止受部3aに巻き付けられ、掛止部3bが掛止受部3aに嵌め込まれて、発熱体保持部2aは確実に保持される。このように発熱体保持部2aを保持する保持具3には、第1の内部リード線部11a及び第2の内部リード線部11bにより張力が加えられて、発熱体2を容器内の所定位置で直線状に張設される。
 保持具3が発熱体2を保持して、容器内で発熱体2が張設された状態において、掛止受部3aにおける発熱体保持部2aが折り返されるように巻き付けられる部位は、発熱体2の長手方向に直交する幅方向に配置される。即ち、発熱体保持部2aが巻き付けられる棒状体の掛止受部3aの軸方向は、発熱体2の長手方向に直交する方向である。
 実施の形態1の発熱体ユニットにおいて、保持具3が発熱体2を容器1の内面に接触させずに所定の位置に直線状に張設するため、掛止受部3aの両端部は容器1の内面に近接する位置に配置される。したがって、棒状の掛止受部3aの長さが発熱体2の幅より長く、且つ容器1の内径より小さく設定されている。
 本発明に係る実施の形態1の発熱体ユニットにおいて用いた発熱体2は、炭素系物質を主成分とし、厚み方向において各層が互いに空隙をなすように一部が固着された積層構造で、優れた二次元的等方向性の熱伝導を有しており、熱伝導率が200W/m・K以上を有するフィルムシート状の材料で形成されている。したがって、帯状の発熱体2は温度ムラがなく均一に発熱する熱源となる。
 発熱体2の材料であるフィルムシート素材は、高分子フィルム又はフィラーを添加した高分子フィルムを高温度、例えば2400℃以上の雰囲気中にて熱処理し、焼成してグラファイト化した耐熱性を有する高配向性のグラファイトフィルムシートであり、面方向の熱伝導率が200W/m・K以上であり、600から950W/m・Kの特性を有する。このように、実施の形態1において用いた発熱体2は、面方向の熱伝導率が600から950W/m・Kという優れた二次元的等方向性の熱伝導を有する。
 ここで、二次元的等方向性の熱伝導とは、直交するX軸とY軸で設定される面における、あらゆる方向の熱伝導率が略同じであることを示すものである。したがって、本発明において二次元的等方向性とは、例えば炭素繊維が同じ方向に並設して形成された発熱体における炭素繊維方向である1方向(X軸方向)、又は炭素繊維をクロスに編んで形成された発熱体における炭素繊維方向である2方向(X軸方向とY軸方向)だけを指すものではなく、フィルムシート状の発熱体2における面方向において同じ性質を持つことを言う。
 本発明において用いられる発熱体2の材料であるフィルムシート素材は、積層構造を有し、面方向の層表面が平坦な面、凹凸面或いは波うつ面等の各種の面形状を有しており、対向する各層の間には空隙が形成されている。このフィルムシート素材の積層構造において、各層間に形成される空隙の形成状態のイメージは、複数回(例えば、何十回、何百回)と重ね合わせるように折り曲げてパイ生地を作り、そのパイ生地を焼いて得た、パイの断面形状と類似している。即ち、発熱体2は、炭素系物質を含む材料により形成された複数の膜体が積層されて、積層方向が一部固着された層間構造を有しており、厚み方向に柔軟性を有するフィルムシート素材である。したがって、本発明における発熱体2の材料であるフィルムシート素材は、前述のように、面方向の熱伝導率が略同じである優れた二次元的等方向性の熱伝導を有する材料であるとともに、図4に示すように掛止受部3aの外面に沿って巻き付けることが可能な柔軟性を有するものである。
 前述のように製造されたフィルムシート素材として用いられる高分子フィルムとしては、ポリオキサジアゾール、ポリベンゾチアゾール、ポリベンゾビスチアゾール、ポリベンゾオキサゾール、ポリベンゾビスオキサゾール、ポリピロメリットイミド(ピロメリットイミド)、ポリフェニレンイソフタルアミド(フェニレンイソフタルアミド)、ポリフェニレンベンゾイミタゾール(フェニレンベンゾイミタゾール)、ポリフェニレンベンゾビスイミタゾール(フェニレンベンゾビスイミタゾール)、ポリチアゾール、ポリパラフェニレンビニレンのうちから選ばれた少なくとも一種類の高分子フィルムを挙げることができる。また、高分子フィルムに添加されるフィラーとしては、リン酸エステル系、リン酸カルシウム系、ポリエステル系、エポキシ系、ステアリン酸系、トリメリット酸系、酸化金属系、有機錫系、鉛系、アゾ系、ニトロソ系およびスルホニルヒドラジド系の各化合物を挙げることができる。より具体的には、リン酸エステル系化合物として、リン酸トリクレジル、リン酸(トリスイソプロピルフェニル)、トリブチルホスフェ-ト、トリエチルホスフェ-ト、トリスジクロロプロピルホスフェート、トリスブトキシエチルフォスフェート等を挙げることができる。リン酸カルシウム系化合物としては、リン酸二水素カルシウム、リン水素カルシウム、リン酸三カルシウム、等を挙げることができる。また、ポリエステル系化合物としては、アジピン酸、アゼライン酸、セバチン酸、フタル酸などと、グリコール、グリセリン類との反応により得られるポリマー等を挙げることができる。また、ステアリン酸系化合物としては、セバシン酸ジオクチル、セバシン酸ジブチル、クエン酸アセチルトリブチル等を挙げることができる。酸化金属系化合物としては、酸化カルシウム、酸化マグネシウム、酸化鉛等を挙げることができる。トリメリット酸系化合物としては、ジブチルフマレート、ジエチルフタレート等を挙げることができる。鉛系化合物としては、ステアリン酸鉛、ケイ酸鉛等を挙げることができる。アゾ系化合物としては、アゾジカルボンアミド、アゾビスイソブチロニトリル等を挙げることができる。ニトロソ系化合物としては、ニトロソペンタメチレンテトラミン等を挙げることができる。スルホニルヒドラジド系化合物としては、p-トルエンスルホニルヒドラジド等を挙げることができる。
 前記フィルムシート素材を積層し、不活性ガス中において2400℃以上で処理し、グラファイト化の過程で発生するガス処理雰囲気の圧力を調整することにより制御してフィルムシート状の発熱体が製造される。更に、必要に応じて、前記のように製造されたフィルムシート状の発熱体を圧延処理することにより、さらに良質のフィルムシート状の発熱体を得ることができる。このように製造されたフィルムシート状の発熱体を本発明の発熱体ユニットにおける発熱体2として用いる。
 なお、前記フィラーの添加量は、0.2~20.0重量%の範囲が適当であり、より好ましくは1.0~10.0重量%の範囲である。その最適添加量は、高分子の厚さによって異なり、高分子の厚さが薄い場合には添加量が多い方がよく、厚い場合には添加量は少なくてよい。フィラーの役割は熱処理後のフィルムを均一発泡の状態にすることにある。即ち、添加されたフィラーは、加熱中にガスを発生し、このガスの発生した後の空洞が通り道となってフィルム内部からの分解ガスの穏やかな通過を助けるものである。フィラーはこのように均一発泡状態を作り出すのに役立つ。
 上記のように製造されたフィルムシート素材は、例えばトムソン型やピナクル型の抜き型、ロータリーダイカッタ等の鋭利な刃物、若しくはレーザー加工等により所望の形状に加工される。
 実施の形態1における発熱体2は、厚み(t)が100μmであり、幅(W)が6.0mmであり、発熱部2bの長さ(L)が300mmである。なお、発熱体2の長さや幅及び厚みについては、入力電圧及び発熱温度等により決定されるものであり、当該発熱体ユニットが用いられる熱源としての製品仕様及び用途に応じて適宜変更が可能である。
 なお、実施の形態1の発熱体2としては、300μm以下の薄膜体が用いられている。
 図3に示すように、実施の形態1における発熱体2の発熱部分である発熱部2bには、複数の溝が発熱体2の長手方向に直交する方向に延設された溝パターンが形成されている。発熱部2bに形成されている複数の溝は、発熱部2bにおける電流の流れ方向を規制し、抵抗値を調整するものである。発熱部2bに形成される溝形状としては、その発熱体ユニットが用いられる製品仕様及び用途等に応じて貫通した溝(スリット)や、有底の溝(凹部溝)等がある。また、凹部溝においては、その厚み方向の深さを変更することにより発熱部2bの抵抗値を調整することが可能である。
 実施の形態1の発熱体2の発熱部2bには、例えば図3に示す溝パターンが繰り返して形成されている。即ち、発熱体2の発熱部2bには、その長手方向と平行な両側縁部分の対向する位置から長手方向と直交して中心側へ延びる端溝2dと、長手方向と直交して発熱部2bの中央部分に形成された中央溝2eと、が長手方向に交互に形成されている。発熱部2bにおいて対向する端溝2d,2dの中央側の対向端部は、第1の所定距離(図3においてL1で示す距離)を有しており、発熱部2bの中央部分に通電径路を形成している。また、中央溝2eの両端部である縁側端部は、発熱部2bの幅方向の縁部分からそれぞれ同じ第2の所定距離(図3においてL2で示す距離)を有しており、発熱部2bの両側縁部分近傍に通電径路を形成している。さらに、発熱体2の発熱部2bにおいて、端溝2dと中央溝2eとの長手方向の間隔が第3の所定距離(図3においてL3で示す距離)を有しており、端溝2dと中央溝2eとの間に発熱体2の長手方向と直交する方向に流れる電流経路を形成している。
 実施の形態1の発熱体2においては、端溝2dと中央溝2eとの長手方向の間隔である第3の所定距離L3は第2の所定距離L2と同じ距離に設定されており、第1の所定距離L1は第2の所定距離L2及び第3の所定距離L3の2倍に設定されている。このように溝パターンが形成された発熱体2の発熱部2bにおいては、蛇行した電流径路が形成されており、同じ電流の流れに対して直交する断面積が略同じとなり、抵抗値の計算が容易となり、均一した温度分布を設定することができる。なお、発熱体2の面方向の熱伝導率が、例えば600W/m・K以上の特性を有する材料であれば、第2の所定距離L2が第1の所定距離L1の1/2でなくても均一な温度分布(配熱分布)に大きな影響を与えることはない。好ましくは、第2の所定距離L2を第1の所定距離L1の1/2以上に設定することにより、発熱体ユニットに加わる衝撃に対する発熱体2の機械的強度を高めることができる。
 また、発熱部2bに形成される溝形状のスリットや凹部溝は、当該発熱体ユニットが用いられる製品仕様や用途に応じて適宜選択することにより、発熱部2bの温度分布(配熱パターン)を所望のパターンとすることが可能である。
 さらに、発熱部2bにおいて、端溝2dと中央溝2eとの長手方向における間隔L3は、発熱体2の長手方向の端部、即ち発熱体保持部2aに近づくほど徐々に広くすることにより、発熱部2bにおける電流径路の抵抗率を徐々に変化させて、発熱部2bの温度分布(配熱パターン)を中央部分が高熱となるように変更することが可能となる。勿論、当該発熱体ユニットが用いられる製品仕様や用途に応じて上記間隔L1、L2及びL3を適宜変更することにより、所望の配熱パターンを有する熱源とすることが可能である。
 実施の形態1における発熱体2には、発熱体保持部2aから発熱部2bに繋がる放熱領域2cが放熱機能を有する。この放熱機能を有する放熱領域2cには前述のような溝は形成されておらず、広い電流径路が形成されている。このため、この放熱領域2cおいては、発熱部2bから伝導した熱が放熱されて、発熱体2における熱ストレスの低減及び長寿命化が図られている。
 なお、実施の形態1における発熱体2においては、発熱体保持部2aの幅と発熱部2bの幅が同じ幅に形成されているが、発熱体保持部2aの幅を発熱部2bの幅より狭く形成することも可能である。その場合には、発熱体保持部2aから発熱部2bへ繋がる放熱領域2cの縁形状は、集中荷重が加わり破損を防止するために曲面形状で構成することが好ましい。
 また、製品仕様により発熱部2bの温度が高い場合、発熱部2bから発熱体保持部2aへの放熱領域2cにおける幅を徐々に狭くすることにより、放熱領域2cに温度勾配を設けて発熱体保持部2aへの熱ストレスを低減することが可能となる。
 さらに、発熱体2において、第1の所定距離L1及び第2の所定距離L2の長さを両側の発熱体保持部2aに近づくに従い徐々に長くすることにより、発熱部2bに温度勾配を設けることができるとともに、高い耐衝撃性及び耐振動性を有する機械的強度の強い構造となる。
 上記のように構成された発熱体2において、電流の流れを阻害する複数の溝を有する溝パターンが発熱部2bに形成されているため、発熱部2bの全体形状に規制されずに所望の電流径路を設定できる。この結果、実施の形態1の発熱体ユニットにおいては、製品仕様及び用途に応じて所望の発熱分布を設定することが可能であり、多方面の熱源として利用できる。
 なお、実施の形態1の発熱体ユニットにおける発熱体2は、プレス加工により帯状に形成して、溝加工したが、レーザーを用いて所望の形状に加工することも可能である。例えば、レーザー加工の一例として、発熱体2の面方向の熱伝導率が200W/m・K以上となるとCOレーザー(波長10600nm)等の熱加工作用を主体としたレーザー加工を用いた場合には、発熱体2に熱を奪われてしまい、加工できないという問題がある。しかしながら、非熱加工作用を主体とした波長1064から380nmのレーザー加工、例えば、呼称1064nmの短波長レーザー加工を用いることにより所望の形状を精度高く加工することが可能となる。
 特に、実施の形態1における発熱体2を形成する場合には、呼称532nmの第二高調波レーザー加工を用いることにより、高精度に加工できることを発明者らは確認した。実施の形態1における発熱体2の材料は、フィルムシート素材であり、高分子フィルム又はフィラーを添加した高分子フィルムを高温度、例えば2400℃以上の雰囲気中にて熱処理し、焼成してグラファイト化した耐熱性を有する高配向性のグラファイトフィルムシートを材料としている。そして、発熱体2は、面方向の熱伝導率が600から950W/m・Kの特性を有する材料で形成されている。このような材料から、例えば、厚み(t)が100μm、幅(W)が6.0mm、長さ(L)が300mmの発熱体2を加工する場合、又は前述のように発熱部2bに溝(スリット)等の複雑な形状に加工する場合には、呼称532nmの第二高調波レーザー加工を用いることが望ましい。
 なお、好ましいレーザー加工方法は、発熱体2の材料、即ち面方向の熱伝導率及び形状によって、前述の非熱加工作用を主体としたレーザー加工波長(1064から380nm)を持つ加工方法から適宜選択し得ることは言うまでもない。さらに、上記説明した発熱体2を加工するためのレーザー加工方法は後述の他の実施の形態における発熱体ユニットの発熱体の加工においても採用できることは言うまでもない。
 以上のように、実施の形態1の発熱体ユニットにおいては、帯状の発熱体2の両端部分が簡単な構成の保持具3により確実に保持されて、発熱体2が容器内の所定位置で電気的接続状態が保持されている。このように、実施の形態1の発熱体ユニットは、発熱体2が保持具3により容器内の所定位置に確実に保持されているため、安全性及び信頼性が高く、且つ効率の高い熱源を構成することができる。また、実施の形態1の発熱体ユニットは、簡単な構成であるため、作業効率が高く優れた生産性を有する発熱体ユニットを提供することができる。
(実施の形態2)
 以下、本発明に係る実施の形態2の発熱体ユニットについて図5乃至図10を用いて説明する。実施の形態2の発熱体ユニットにおいて、前述の実施の形態1の発熱体ユニットと異なる点は、発熱体2の両端に取り付けられる保持具の構成及び形状である。
 実施の形態2の発熱体ユニットにおいては、構成及び形状が異なる保持具に関する6種類の具体的な実施例について説明する。実施の形態2の各実施例において、各発熱体ユニットにおける保持具以外の構成は、実施の形態1の発熱体ユニットと同じである。このため、実施の形態2の各実施例の発熱体ユニットにおいて、実施の形態1の発熱体ユニットと同じ機能、構成を有するものには同じ符号を付して、その説明は実施の形態1の説明を適用する。
実施例1
 以下、実施の形態2の発熱体ユニットにおける実施例1の保持具13の構成について図5を用いて説明する。図5は、実施の形態2の発熱体ユニットにおいて、実施例1の保持具13が発熱体2を保持している状態を示す平面図である。
 図5に示すように、保持具13は、導電性を有する金属材料、例えばモリブデンの線材で形成された棒状の掛止受部13aと、掛止受部13aに嵌め込まれる掛止部13bと、掛止受部13aから延設された係止部13cとで構成されている。棒状の掛止受部13aには、前述の実施の形態1と同様に、発熱体2の端部である発熱体保持部2aが折り返されるように巻き付けられる。また、実施の形態1と同様に、発熱体保持部2aには貫通孔2hが形成されており、掛止受部13aの中央から延設され、固定部5に繋がる係止部13cが挿入されている。
 発熱体保持部2aが巻き付けられた掛止受部13aには、掛止部13bが発熱体2の発熱体保持部2aを挟着するように嵌め込まれる。掛止部13bは弾性部材で形成され、掛止受部13aを握着するよう構成されている。掛止部13bは、挟着する発熱体2の長手方向における断面形状がC字状であり、棒状の掛止受部13aに嵌め込まれて、掛止受部13aの外面を発熱体保持部2aを介して握着する。
 図5に示すように、掛止部13bには発熱体2の長手方向と平行な切り込み13dが形成されている。この切り込み13dには掛止受部13aの中央から固定部5の方へ延設された係止部13cが配置される。実施例1の保持具13においては、掛止部13bが、例えば厚み0.2mmのモリブデン板により形成されている。
 なお、掛止部13bの材料として前述のモリブデン以外でもタングステン、ニッケル、ステンテス等の耐熱性を有する材料を使用してもよい。
 図5に示すように、掛止受部13aの中央部分は屈曲して凹みが形成されており、その凹みの中央(発熱体2の長手方向と平行な中心軸の位置)には内部リード線部11a,11bの固定部5に繋がる係止部13cが接合(例えば、スポット溶接)されている。なお、実施例1においては、係止部13cと固定部5は1本の線材により形成した例で説明するが、それぞれを別部材で形成して接合し、保持具13を構成してもよい。
 上記のように、保持具13により保持される発熱体保持部2aには、貫通孔2hが形成されており、この貫通孔2hに係止部13cが挿入され、発熱体保持部2aが掛止受部13aに巻き付けられた状態で、掛止部13bが掛止受部13aに嵌め込まれる。このとき、掛止部13bの切り込み13dには掛止受部13aの中央から突設された係止部13cが配置される。したがって、発熱体2は保持具13から外れることがなく、確実な保持状態となる。
 保持具13が発熱体2を保持して、容器内で発熱体2が張設された状態において、掛止受部13aにおける発熱体保持部2aが折り返されるように巻き付けられる部位は、発熱体2の長手方向に直交する幅方向に配置される。即ち、発熱体保持部2aが巻き付けられる棒状体の掛止受部13aの軸方向は、発熱体2の長手方向に直交する方向である。
 上記のように、発熱体2の端部である発熱体保持部2aは、その貫通孔2hに掛止受部13aから延設された係止部13cが挿入されて係止され、且つ発熱体保持部2aが掛止受部13aに折り返して巻き付けられた状態で、掛止部13bが掛止受部13aに嵌め込まれて、発熱体保持部2aが挟着されている。
 以上のように、実施の形態2の発熱体ユニットにおいては、実施例1の保持具13を用いることにより、帯状の発熱体2の両端部分が保持具13により確実に保持されて、発熱体2が容器内の所定位置で電気的及び機械的接続状態を信頼性高く維持することができる。
実施例2
 以下、実施の形態2における実施例2の保持具23の構成について図6を用いて説明する。図6は、実施の形態2の発熱体ユニットにおいて、実施例2の保持具23が発熱体2を保持している状態を示す平面図である。
 実施例2の保持具23においても、実施例1の保持具13と同様に、掛止受部23aと、掛止受部23aに嵌め込まれる掛止部23bと、掛止受部23aから延設された係止部23cとで構成され、実施例1の保持具13におけるそれぞれの材料と同じ材料により形成されている。図6に示すように、保持具23の掛止受部23aは、導電性を有する線材を屈曲させて形成したものである。実施例2の保持具23の掛止受部23aと係止部23cは、2本の棒状の線材の端部を略90度に折り曲げて、L字状に形成して構成されている。それぞれの先端部分が互いに逆方向(180度)に突出するよう配置して、掛止受部23aが構成されている。したがって、保持具23の掛止受部23aは、屈曲された先端部分であり、互いに逆方向に突設された2本の線材により直線状に配置されて構成されている。この掛止受部23aに発熱体2の発熱体保持部2aが折り返すように巻き付けられる。
 また、保持具23の係止部23cは、発熱体2の端部である発熱体保持部2aに形成された長孔状の貫通孔2hに挿入されるよう構成されている。
 図6に示すように、掛止受部23aから固定部5に繋がる2本の線材を並設して構成された係止部23cにおいては、符号Xで示す2箇所の位置で並設された線材がスポット溶接されている。
 発熱体保持部2aが巻き付けられた掛止受部23aには、掛止部23bが発熱体2の発熱体保持部2aを挟着するように嵌め込まれる。掛止部23bは弾性部材で形成され、掛止受部23aを握着するよう構成されている。掛止部23bはその中央に長孔状の貫通孔23dが形成されており、その貫通孔23dには掛止受部23aから固定部5に繋がる2本の線材で構成された係止部23cが予め挿入されている。掛止部23bは、挟着する発熱体2の長手方向における断面形状がC字状であり、棒状の掛止受部23aに嵌め込まれて、掛止受部23aの外面を発熱体保持部2aを介して握着する。
 なお、掛止部23bの中央に貫通孔23dを形成した例で説明したが、貫通孔23dの代わりに切り込みを形成して、その切り込みに掛止受部23aから固定部5に繋がる係止部23cが配置される構成でもよい。
 実施例2の保持具23においては、2本の線材で構成された係止部23cが固定部5に接合される構成であるが、係止部23cと固定部5を同じ構成で一体的に形成してもよい。
 上記のように、発熱体2の端部である発熱体保持部2aは、その貫通孔2hに係止部23cが挿入されて係止され、且つ発熱体保持部2aが保持具23の掛止受部23aに巻き付けられた状態で、掛止部23bが掛止受部23aに嵌め込まれて、発熱体保持部2aが挟着される。
 以上のように、実施の形態2の発熱体ユニットにおいては、実施例2の保持部23を用いることにより、帯状の発熱体2の両端部分が保持具23により確実に保持されて、発熱体2が容器内の所定位置で電気的及び機械的接続状態を信頼性高く維持することができる。
実施例3
 以下、実施の形態2における実施例3の保持具33の構成について図7を用いて説明する。図7は、実施の形態2の発熱体ユニットにおいて、実施例3の保持具33が発熱体2を保持している状態を示す平面図である。
 実施例3の保持具33においても、実施例1の保持具13と同様に、掛止受部33aと、掛止受部33aに嵌め込まれる掛止部33bと、掛止受部33aから延設された係止部33cとで構成され、実施例1の保持具13におけるそれぞれの材料と同じ材料により形成されている。図7に示すように、保持具33の掛止受部33aと係止部33cは、導電性を有する1本の線材を屈曲させて形成したものである。実施例3の保持具33の掛止受部33aは、1本の棒状の線材を2つ折りにした後に両端部分を略90度に折り曲げて形成されている。図7に示すように、それぞれの先端部分が互いに逆方向(180度)に突出するよう配置して掛止受部33aが構成されている。したがって、保持具33の掛止受部33aは、1本の線材の両端部分が直線状に配置されて構成されている。この掛止受部33aには発熱体2の発熱体保持部2aが折り返すように巻き付けられる。また、保持具33の係止部33cは、発熱体2の端部である発熱体保持部2aに形成された長孔状の貫通孔2hに挿入されるよう構成されている。
 図7に示す、掛止受部33aからの導出部分である係止部33cは、固定部5と接合されており、例えば、カシメや溶接等により電気的及び機械的に接続されている。
 発熱体保持部2aが巻き付けられた掛止受部33aには、掛止部33bが発熱体2の発熱体保持部2aを挟着するように嵌め込まれる。掛止部33bは弾性部材で形成され、掛止受部33aを握着するよう構成されている。掛止部33bはその中央部分に切り込み33dが形成されており、掛止部33bが掛止受部33aを握着したとき、切り込み33d内に掛止受部33aから固定部5に繋がる係止部33cが配置される。掛止部33bは、挟着する発熱体2の長手方向における断面形状がC字状であり、掛止受部33aに嵌め込まれて、掛止受部33aの外面を発熱体保持部2aを介して握着する。
 なお、掛止部33bの中央の位置(発熱体2の長手方向と平行な中心軸の位置)に切り込み33dを形成した例で説明したが、切り込み33dの代わりに貫通孔を形成して、その貫通孔に係止部33cが挿入される構成でもよい。
 上記のように、発熱体2の端部である発熱体保持部2aは、その貫通孔2hに係止部33cが挿入されて係止され、且つ発熱体保持部2aが保持具33の掛止受部33aに巻き付けられた状態で、掛止部33bが掛止受部33aに嵌め込まれて、発熱体保持部2aが挟着される。
 以上のように、実施の形態2の発熱体ユニットにおける実施例3の保持部33を用いることにより、帯状の発熱体2の両端部分が保持具33により確実に保持されて、発熱体2が容器内の所定位置で電気的及び機械的接続状態を信頼性高く維持することができる。
実施例4
 以下、実施の形態2における実施例4の保持具43の構成について図8を用いて説明する。図8は、実施の形態2の発熱体ユニットにおいて、実施例4の保持具43が発熱体2を保持している状態を示す平面図である。
 実施例4の保持具43においても、実施例1の保持具13と同様に、掛止受部43aと、掛止受部43aに嵌め込まれる掛止部43bと、掛止受部43aから延設された係止部43cとで構成され、実施例1の保持具13におけるそれぞれの材料と同じ材料により形成されている。図8に示すように、保持具43の掛止受部43aと係止部43cは、導電性を有する線材を屈曲させて形成したものである。実施例4の保持具43の掛止受部43aと係止部43cは、1本の棒状の線材の端部を略90度に折り曲げて、L字状に形成して構成されている。したがって、保持具43の掛止受部43aは、屈曲された先端部分で構成され、その先端部分に発熱体2の発熱体保持部2aが巻き付けられる。また、保持具43の係止部43cは、発熱体2の端部である発熱体保持部2aに形成された貫通孔2hに挿入されるよう構成されている。
 図8に示すように、発熱体保持部2aが巻き付けられた掛止受部43aには、掛止部43bが発熱体2の発熱体保持部2aを挟着するように嵌め込まれる。掛止部43bは弾性部材で形成され、掛止受部43aを握着するよう構成されている。掛止部43bはその中央の位置(発熱体2の長手方向と平行な中心軸の位置)に貫通孔43dが形成されており、その貫通孔43dに掛止受部43aから固定部5に繋がる係止部43cが挿入される。掛止部43bは、挟着する発熱体2の長手方向における断面形状がC字状であり、棒状の掛止受部43aに嵌め込まれて、掛止受部43aの外面に巻き付けられた発熱体保持部2aを介して握着する。
 なお、掛止部43bの中央に貫通孔43dを形成した例で説明したが、貫通孔43dの代わりに切り込みを形成して、その切り込みに係止部43cが配置される構成でもよい。
 実施例4の保持具43においては、保持具43と固定部5が線材により一体的に形成された構成で説明したが、固定部5と保持具43のそれぞれを別部材で形成して接合する構成でもよい。
 上記のように、発熱体2の端部である発熱体保持部2aは、その貫通孔2hに係止部43cが挿入されて係止され、且つ発熱体保持部2aが保持具43の掛止受部43aに巻き付けられた状態で、掛止部43bが掛止受部43aに嵌め込まれて、発熱体保持部2aが挟着されている。
 以上のように、実施の形態2の発熱体ユニットにおける実施例4の保持部43を用いることにより、帯状の発熱体2の両端部分が保持具43により確実に保持されて、発熱体2が容器内の所定位置で電気的及び機械的接続状態を信頼性高く維持することができる。
実施例5
 以下、実施の形態2における実施例5の保持具53の構成について図9を用いて説明する。図9は、実施の形態2の発熱体ユニットにおいて、実施例5の保持具53が発熱体2を保持している状態を示す平面図である。
 実施例5の保持具53は、前述の実施例4の保持具43の変形例であり、発熱体保持部2aが折り返して巻き付けられる掛止受部53aと、掛止受部53aに嵌め込まれる掛止部53bと、掛止受部53aから延設された係止部53cと、掛止受部53aから固定部5に繋がる導出部53eとで構成されている。図9に示すように、保持具53の掛止受部53aと係止部53cと導出部53eは、固定部5に繋がる導電性を有する1本の線材を折り曲げて形成したものである。掛止受部53aは、発熱体2の長手方向と直交する方向に直線状に形成されており、その直線状の部分に発熱体保持部2aが折り返して巻き付けられている。
 実施例5の保持具53においては、掛止受部53aの一端から固定部5に繋がる導出部分である導出部53eが、発熱体保持部2aの幅方向の縁から導出する構成である。一方、掛止受部53aの先端である係止部53cが、発熱体保持部2aの中央の位置(発熱体2の長手方向と平行な中心軸の位置)に形成された貫通孔2hから突出する構成である。したがって、掛止受部53aの係止部53cは、発熱体2の長手方向の中心軸上で固定部5が配設されている方向に突出するよう構成されている。
 図9に示すように、発熱体保持部2aが巻き付けられた掛止受部53aには、掛止部53bが発熱体2の発熱体保持部2aを挟着するように嵌め込まれる。掛止部53bは弾性部材で形成され、掛止受部53aを握着するよう構成されている。掛止部53bはその中央に貫通孔53dが形成されており、その貫通孔53dから掛止受部53aの先端である係止部53cが突出している。掛止部53bは、挟着する発熱体2の長手方向における断面形状がC字状であり、棒状部分の掛止受部53aに嵌め込まれて、掛止受部53aの外面を発熱体保持部2aを介して握着する。
 なお、実施例5の保持具53においては、保持具53と固定部5が1本の線材により一体的に形成された例で説明したが、保持具53と固定部5のそれぞれを別部材で形成して接合する構成でもよい。
 上記のように、発熱体2の端部である発熱体保持部2aは、その貫通孔2hに掛止受部53aの先端である係止部53cが挿入されて係止され、且つ発熱体保持部2aが保持具53の掛止受部53aに巻き付けられた状態で、掛止部53bが掛止受部53aに嵌め込まれて、発熱体保持部2aが挟着されている。
 以上のように、実施の形態2の発熱体ユニットにおける実施例5の保持部53を用いることにより、帯状の発熱体2の両端部分が保持具53により確実に保持されて、発熱体2が容器内の所定位置で電気的及び機械的接続状態を信頼性高く維持することができる。
実施例6
 以下、実施の形態2における実施例6の保持具63の構成について図10を用いて説明する。図10は、実施の形態2の発熱体ユニットにおいて、実施例6の保持具63が発熱体2を保持している状態を示す平面図である。
 実施例6の保持具63は、前述の実施例4の保持具43の変形例であり、発熱体保持部2aが折り返して巻き付けられる掛止受部63aと、掛止受部63aに嵌め込まれる掛止部63bと、掛止受部63aから延設された係止部63cと、掛止受部63aから固定部5に繋がる導出部63eとで構成されている。図10に示すように、保持具63の掛止受部63aと係止部63cと導出部63eは、導電性を有する1本の線材を折り曲げて形成したものである。掛止受部63aは、発熱体2の長手方向と直交する方向に直線状に形成されており、その直線状の部分に発熱体保持部2aが折り返して巻き付けられている。
 実施例6の保持具63においては、掛止受部63aの一端から固定部5に繋がる導出部分である導出部63eが、発熱体保持部2aの幅方向の両側の縁に形成された切り込み63dの一方から導出する構成である。一方、掛止受部63aの先端である係止部63cは、発熱体保持部2aの幅方向の縁に形成された他方の切り込み63dから突出するよう形成されている。したがって、掛止受部63aにおいては、発熱体2の幅方向における両側の縁に形成された切り込み63d,63dの間の領域が接触する。
 図10に示すように、発熱体保持部2aが巻き付けられた掛止受部63aには、掛止部63bが発熱体2の発熱体保持部2aを挟着するように嵌め込まれる。掛止部63bは弾性部材で形成され、掛止受部63aを握着するよう構成されている。掛止部63bはその両側に切り込み63d,63dが形成されている。したがって、切り込み63d,63dの一方には固定部5への導出部分である導出部63eが配置され、他方には掛止受部63aの先端である係止部63cが突出する。掛止部63bは、挟着する発熱体2の長手方向における断面形状がC字状であり、棒状部分の掛止受部63aに嵌め込まれて、掛止受部63aの外面を発熱体保持部2aを介して握着する。
 なお、実施例6の保持具63においては、保持具63と固定部5が1本の線材により一体的に形成された例で説明したが、保持具63と固定部5のそれぞれを別部材で形成して接合する構成でもよい。
 上記のように、発熱体2の端部である発熱体保持部2aは、その切り込みに掛止受部63aの先端である係止部63cが挿入されて係止され、且つ発熱体保持部2aが保持具63の掛止受部63aに巻き付けられた状態で、掛止部63bが掛止受部63aに嵌め込まれて、発熱体保持部2aが挟着されている。
 以上のように、実施の形態2の発熱体ユニットにおける実施例6の保持部63を用いることにより、帯状の発熱体2の両端部分が保持具63により確実に保持されて、発熱体2が容器内の所定位置で電気的及び機械的接続状態を信頼性高く維持することができる。
(実施の形態3)
 以下、本発明に係る実施の形態3の発熱体ユニットについて図11を用いて説明する。図11は実施の形態3の発熱体ユニットの構造を示す平面図であり、当該発熱体ユニットの左側部分を示している。実施の形態3の発熱体ユニットは、長尺形状であり、左右の両側は同じ構成を有している。
 実施の形態3の発熱体ユニットにおいて、前述の実施の形態1の発熱体ユニットと異なる点は、発熱体2の両端に取り付けられる保持具73を含む電力供給部20の構成である。実施の形態3の発熱体ユニットにおいて、前述の実施の形態1の発熱体ユニットと同じ機能、構成を有するものには同じ符号を付して、その説明は実施の形態1の説明を適用する。
 図11に示すように、実施の形態3の発熱体ユニットは、容器1と、熱輻射膜体としての細長い帯状の発熱体2と、この発熱体2を容器内の所定位置に保持するために発熱体2の長手方向の両端部分に設けられ、発熱体2に電力を供給するための電力供給部20と、を備えている。
 発熱体2の両端に設けられた電力供給部20は、発熱体2の両端に取り付けられた保持具73と、内部リード線21と、モリブデン箔8と、外部リード線9とを含んで構成されている。発熱体2の両端を保持する保持具73には、内部リード線21が接合されており、内部リード線21は容器1の両端部分の封着部分(溶着部分)に埋設されたモリブデン箔8を介して、容器1の両端から容器外部に導出する外部リード線9と電気的に接続されている。
 実施の形態3の発熱体ユニットに用いられている保持具73は、前述の実施の形態1と同様に、導電性を有する線材で形成された棒状の掛止受部73aと、掛止受部73aが嵌め込まれる掛止部73bと、掛止受部73aから延設され内部リード線21に繋がる係止部73cとで構成されている。
 保持具73の係止部73cは、掛止受部73aの中央の位置(発熱体2の長手方向と平行な中心軸の位置)から内部リード線21の方へ導出するように延設されている。係止部73cは内部リード線21に接合されている。したがって、実施の形態3の発熱体ユニットにおいては、掛止受部73aと係止部73cとにより、いわゆるT字形状が構成されている。
 棒状の掛止受部73aには発熱体2の端部である発熱体保持部2aが折り返えされて巻き付けられている。このとき、掛止受部73aから延設された係止部73cは発熱体保持部2aに形成された貫通孔を貫通している。発熱体保持部2aが折り返して巻き付けられた掛止受部73aには、掛止部73bが発熱体2の発熱体保持部2aを挟着するように嵌め込まれる。掛止部73bにも貫通孔が形成されており、この貫通孔も係止部73cは貫通している。掛止部73bは弾性部材で形成され、掛止受部73aを握着するよう構成されている。掛止部73bは、挟着する発熱体2の長手方向における断面形状がC字状であり、棒状の掛止受部73aが嵌め込まれて、掛止受部73aの外面を発熱体保持部2aを介して握着する。
 保持具73が発熱体2を保持して、容器内で発熱体2が張設された状態において、掛止受部73aにおける発熱体保持部2aが折り返されるように巻き付けられる部位は、発熱体2の長手方向に直交する幅方向に配置される。即ち、発熱体保持部2aが巻き付けられる棒状体の掛止受部73aの軸方向は、発熱体2の長手方向に直交する方向である。
 以上のように、実施の形態3の発熱体ユニットにおいては、保持具73が発熱体保持部2aを係止するとともに、発熱体保持部2aを挟着しているため、発熱体2は保持具73から外れることがなく、確実に保持される。
 実施の形態3の発熱体ユニットにおいては、保持具73の掛止受部73aの両端部が容器1の内面に近接して配置されている。したがって、掛止受部73aの長さ(発熱体2の長手方向に直交する方向の長さ)が発熱体2の幅より長く、容器1の内径より少し短く設定されている。このため、掛止受部73aが発熱体2に対する容器内の位置規制機能を有している。実施の形態3の発熱体ユニットにおいては、保持具73を用いることにより、発熱体2が容器1に接触することなく容器内の所定位置に確実に保持され、位置規制機能としての位置規制部材(図1の位置規制部4を参照)をあらためて設ける必要のない構成となる。
 さらに、実施の形態3の発熱体ユニットにおいては、発熱体2が前述の実施の形態1において説明したように、発熱体2がその長手方向に弾性力を有し、発熱体2が容器内で張設された状態で両側からの張力に耐える構成とすることにより、図1の実施の形態1の発熱体ユニットにおいて用いたスプリング部6が実施の形態3の発熱体ユニットにおいては不要となる。この結果、実施の形態3の発熱体ユニットは、電力供給部の構成が簡単なものとなり、前述の各実施の形態において説明した効果に追加して、製造コストの大幅な低減を図ることが可能となる。
(実施の形態4)
 以下、本発明に係る実施の形態4の発熱体ユニットについて図12及び図13を用いて説明する。図12は実施の形態4の発熱体ユニットの構造を示す平面図であり、当該発熱体ユニットは長尺形状であるため中間部分を省略して示している。図13は図12の発熱体ユニットの正面図である。実施の形態4の発熱体ユニットは、図12に示すように、左右の両側は同じ構成を有している。
 実施の形態4の発熱体ユニットにおいて、前述の実施の形態1の発熱体ユニットと異なる点は、発熱体2の両端に取り付けられる保持具83を含む電力供給部80の構成である。実施の形態4の発熱体ユニットにおいて、実施の形態1の発熱体ユニットと同じ機能、構成を有するものには同じ符号を付して、その説明は実施の形態1の説明を適用する。
 図12及び図13に示すように、実施の形態4の発熱体ユニットは、容器1と、熱輻射膜体としての細長い帯状の発熱体2と、この発熱体2を容器内の所定位置に保持するために発熱体2の長手方向の両端部分に設けられ、発熱体2に電力を供給するための電力供給部80と、を備えている。
 発熱体2の両端に設けられた電力供給部80は、発熱体2の両端に取り付けられた保持具83、サポートリング84、固定部5を有する内部リード線7、モリブデン箔8、及び外部リード線9を含んでいる。保持具83には内部リード線7の固定部5が固定されており、内部リード線7は容器1の両端部分の封着部分(溶着部分)に埋設されたモリブデン箔8を介して、容器1の両端から容器外部に導出する外部リード線9と電気的に接続されている。
 図12及び図13に示すように、内部リード線7には、位置規制機能を有する位置規制部であるサポートリング84が取り付けられている。固定部5に繋がる内部リード線7は、一本の線材、例えばモリブデン線をコイル状に形成したものである。
 なお、実施の形態4における内部リード線7は、モリブデン線により形成された例で説明するが、タングステン、ニッケル、ステンレス等を材料とした金属線(丸棒形状、平板形状)を用いて形成してもよい。
 以上のように、実施の形態4の発熱体ユニットにおいては、保持具83、サポートリング84、内部リード線7、モリブデン箔8、及び外部リード線9により構成された電力供給部80が、発熱体2の両側に設けられて、発熱体2に電力を供給するとともに、発熱体2を容器内の所定位置に張設している。
 発熱体2の端部は保持具83により平面側と裏面側が挟み付けらており、保持具83の略中央に形成された貫通孔と発熱体2の端部に形成された貫通孔が内部リード線7の固定部5の端部により貫通されている。固定部5は、その発熱体側端部が屈曲されて、いわゆるL字状に形成されている。このL字状に屈曲した固定部5の先端が、発熱体2を挟んだ保持具83の貫通孔を貫通して突出している。
 保持具83の貫通孔から突出した固定部5の突出端部5aには、抜け落ち防止手段(脱落防止手段)が施されている。固定部5の突出端部5aは、プレス加工、溶融等により塑性変形して潰された状態である。即ち、固定部5における突出端部5aは、保持具83の貫通孔の直径より大きな形状に加工されており、抜け落ち防止手段が施されている。
 実施の形態4の発熱体ユニットのサポートリング84は、内部リード線7に巻き付けられて固定され、コイル状に形成されている。
 サポートリング84は、発熱体2に電力を供給するための内部リード線7に巻着する構成であり、サポートリング84には外部リード線9から発熱体2への電流径路が通らない構成である、即ち、サポートリング84は内部リード線7における電流径路に介在しない構成である。このように、サポートリング84は発熱体2への電流が流れない構成となるため、その電流により発熱することがない。実施の形態4におけるサポートリング84は、発熱体2の位置規制機能を有するとともに、発熱体2から伝導してきた熱を放熱する放熱機能としても機能する。
 サポートリング84は、モリブデン線により形成された例で説明するが、発熱体2を位置規制できる剛性を有して、優れた熱伝導(放熱機能)と加工の容易な材料であれば、サポートリング84として用いることが可能であり、例えばニッケル、ステンレス、タングステン等の金属材料等を用いることができる。但し、サポートリング84は、発熱体2の長さ、容器1の内径と発熱体2との寸法差など、発熱体ユニットにおける構成及び仕様によっては必ずしも必要な構成要素ではない。
 実施の形態4の発熱体ユニットでは、発熱体2の材料自体が伸縮性を有し、且つ発熱体2の形状パターンが伸縮性を有するため、発熱体2における膨張収縮による変化を吸収するための機構が不要である。特に、実施の形態4において用いた発熱体2は熱膨張率が小さいため、製造時に張力を加えた状態で配設(張設)された発熱体2は、発熱時の膨張を発熱体自体及び発熱体2の形状パターンによる伸縮性により吸収できるものである。
 本発明に係る実施の形態4の発熱体ユニットにおいて用いた発熱体2は、炭素系物質を主成分とし厚み方向において複数のフィルムシート素材の各層が互いに空隙を介して積層され、優れた二次元的等方向性の熱伝導を有しており、熱伝導率が200W/m・K以上を有するフィルムシート状の材料で形成されている。したがって、帯状の発熱体2は温度ムラがなく均一に発熱する熱源となる。
 即ち、実施の形態4の発熱体ユニットにおいて用いた発熱体2は、前述の実施の形態1等において用いた発熱体2と同じ製法、同じ材料により構成されたものである。
 なお、本発明における発熱体の特性を示す「二次元的等方向性の熱伝導」に関する定義は、前述の実施の形態1において説明したのでここでは省略する。また、発熱体2のフィルムシート素材として用いられる高分子フィルムと、この高分子フィルムに添加されるフィラーについても、前述の実施の形態1において具体的に説明しているのでここでは省略する。
 図12に示すように、実施の形態4における発熱体2の発熱部には、複数のスリットが発熱体2の長手方向に直交する方向に延設されている。発熱部に形成されている複数のスリットは、発熱部における電流の流れ方向を規制し、抵抗値を調整するものである。発熱部に形成されるスリット形状としては、その発熱体ユニットが用いられる製品仕様及び用途等に応じて貫通した溝や、有底の溝等がある。また、凹部溝においては、その厚み方向の深さを変更することにより発熱部の抵抗値を調整することが可能である。
 また、実施の形態4における発熱体2にスリットを形成することにより、発熱体自体の伸縮性と合わせて、このスリット形状による伸縮性により、発熱体2が大きな伸縮性を持つ特性を有するものとなる。
(実施の形態5)
 本発明に係る実施の形態5の加熱装置ついて図14を用いて以下に説明する。
 図14は、前述の実施の形態1から実施の形態4において説明した発熱体ユニットを装備した加熱装置の一例を示す斜視図である。
 図12に示した加熱装置は、本発明の加熱装置の一例として暖房用の加熱機器91を示している。この加熱機器91の内部には、実施の形態1から実施の形態4で説明した本発明の発熱体ユニットが装備されている。なお、実施の形態5においては発熱体ユニットに符号92を付して説明する。実施の形態5の加熱機器91には、温度コントローラー93、反射板94、保護用のカバー95等の一般的な暖房用の加熱機器に用いられる構成部材が設けられている。
 このように構成された加熱機器91において、発熱体ユニット92に定格の電圧を印加することにより、所定の電流が発熱体ユニット92内の発熱体2に流れて発熱し、早い立ち上がりで温度が上昇する。実施の形態5の加熱機器91は、温度コントローラー93による温度制御により、ユーザが望む所定の温度に確実に保持される。また、発熱体ユニット92には、平面を有する帯状の発熱体2が熱源として用いられている。このため、その平面から輻射される熱は指向性を有している。実施の形態5の加熱機器91においては、発熱体ユニット92の発熱体2の平面部分が正面側と背面側に向くよう配設されている。このため、発熱体2の正面側から輻射された熱は、加熱機器91の正面側にある被加熱領域を加熱し、発熱体2の背面側から輻射された熱は反射板94により反射されて被加熱領域を加熱する。なお、発熱体2はフィルムシート素材で帯状に形成されているため、発熱体2の側面側から輻射される熱量は非常に少なく、正面側(背面側)から輻射される熱量に比べて無視できる程小さいものである。このため、実施の形態5の加熱機器91においては、高い指向性を有して、被加熱領域及び被加熱対称物を効率高く加熱することができる。
 本発明の加熱装置に装備された発熱体ユニット92は、前述の実施の形態1から実施の形態4において説明した発熱体2を有しており、この発熱体2は、面方向の熱伝導率が同じである優れた二次元的等方向性の熱伝導を有するフィルムシート素材で形成されており、熱容量が小さいため立ち上がりが早く、且つ突入電流が少ない特性を有している。このため、本発明の発熱体ユニットを熱源として装備した加熱機器は、素早く加熱することが可能となる優れた応答性を有し、所定の領域を熱効率が高く加熱することができる優れた特徴を有する暖房機器となる。
 なお、本発明の発熱体ユニットは、暖房機器以外でも多種多様な電子/電気機器の熱源として用いることができ、例えば高温度の発熱体を装備している複写機、ファクシミリ、プリンタ等のOA機器、及び調理機器、乾燥機、加湿器等の電気機器等の熱源を必要とする各種機器に利用できる。
(実施の形態6)
 次に、本発明に係る画像定着装置及びその画像定着装置を用いた画像形成装置の好適な実施の形態について添付の図面を参照しつつ説明する。ここで説明する画像定着装置及び画像形成装置は、前述の各実施の形態において説明した発熱体ユニットを熱源として装備している。
 本発明者らは、前述したように、従来の画像定着装置において用いられていた発熱体とは材料及び製造方法において全く異なる新たなフィルムシート状の材料(フィルムシート素材)を発熱材料として発熱体に適用した。画像定着装置の新たな熱源としての発熱体ユニットに用いる発熱体に適用しようとするフィルムシート状の材料(フィルムシート素材)は、前述のように、効率が高く高温度になると共に、軽薄であるため熱容量が少なく、優れた立ち上がり特性を有している。
 本発明の発熱体ユニットを用いた実施の形態6の画像定着装置について図15から図19を用いて説明する。
 画像形成装置の画像形成プロセスにおいて、帯電装置により一様に帯電された感光ドラムの表面には、露光装置により指定された静電潜像が形成され、その静電潜像に応じて現像装置によりトナー画像が形成される。感光ドラム表面に形成されたトナー画像は、搬送されてきた紙等の被記録部材上に転写装置により転写される。このように転写された未定着トナー画像を担持した被記録部材、例えば紙は、画像定着を行う画像定着装置に搬送される。画像定着装置は、未定着トナー画像を担持した被記録部材を加圧及び加熱して、未定着トナー画像を被記録部材上に定着する。
 なお、実施の形態6の画像形成装置においては単色画像の画像形成プロセスについて説明するが、カラー画像の画像形成プロセスの場合には、上記の感光ドラムが4色のカラートナーに対応するよう4組並設されており、各色のトナー画像が転写ベルトに順次転写されて、カラー画像が被記録部材上に順次転写される構成である。このように被記録部材上に転写されたカラー画像は、画像定着装置において加圧及び加熱されて定着される。
 図15は、実施の形態6の画像定着装置における主要な構成を示す図である。上記のように、画像定着装置は、画像形成プロセスにおいて、未定着トナー画像を担持した被記録部材を加圧するとともに高温度で加熱して、未定着トナー画像を溶融して、被記録部材に定着する。
 図15において、実施の形態6の画像定着装置は、被記録部材111上に坦持された未定着トナー画像112を加熱して溶融する加熱体である定着ローラ113と、未定着トナー画像112を担持した被記録部材111を定着ローラ113に押し付けて加圧し、未定着トナー画像112を被記録部材111に圧着する加圧ベルト114と、加圧ベルト114を定着ローラ113に所望の力で押し付けるように回動させる2つの加圧ローラ115,115と、を備えている。実施の形態6の画像定着装置においては、加圧ベルト114及び加圧ローラ115,115により加圧体が構成されている。
 なお、実施の形態6の画像定着装置においては、加圧ベルト114により被記録部材111を定着領域であるニップ部109に搬送して加圧定着する構成であるが、定着ローラ113に対向して配置された加圧ローラ115,115により被記録部材111を定着ローラ113に押し付けて加圧する構成も可能である。また、実施の形態6の画像定着装置においては、加熱体を定着ローラ113で構成した例で説明するが、ローラにより回動するベルトにより加熱体を構成することも可能である。
 図15に示すように、定着ローラ113の内部には発熱体2を有する発熱体ユニット92が設けられている。発熱体ユニット92において、発熱体2は定着ローラ113を加熱するための熱源であり、発熱体2は容器1内部に封入されている。発熱体2を封入する長尺の容器1の周りには開口を有する筒状の反射部116が設けられている。反射部116はステンレス製であり、内面が鏡面仕上げになっている。反射部116に形成されている開口116aは、発熱体2の長手方向と平行に延設されている。反射部116の開口116aは、発熱体2から輻射された熱を反射部116の内面において反射した熱と共に、定着ローラ113と加圧ベルト114による定着領域のニップ部109に向けて放射するための開口である。実施の形態6の画像定着装置においては、発熱体ユニット92による加熱される領域が、ニップ部109における被記録部材111の搬送方向の最上流側になるよう反射部116の開口が向けられている。また、発熱体ユニット92の帯状の発熱体2の平面側もニップ部109における被記録部材111の搬送方向の最上流側に向けられている。
 なお、実施の形態6の画像定着装置においては発熱体ユニット92の周りに反射部116を設けた構成で説明するが、本発明に係る画像定着装置においては反射部を設けずに、発熱体ユニット92によりその周りの定着ローラ113を加熱する構成でもよい。
 実施の形態6の画像定着装置においては、発熱体ユニット92から輻射された熱が定着ローラ113において効率高く吸収され、且つ保温できるように、定着ローラ113が複数の層から構成されている。定着ローラ113の内面には発熱体ユニット92からの熱(赤外線)を吸収して反射しない赤外線吸収層が設けられている。
 なお、実施の形態6の画像定着装置においては、単数の発熱体ユニット92を設けた例で説明するが、発熱体ユニット92は複数設けてもよい。発熱体ユニット92を複数設ける場合には、発熱体ユニット92における長手方向の各中心軸が、被記録部材111の搬送方向に直交して直線上に配置される。このように複数の発熱体ユニット92が定着ローラ113の内部に設けられた画像定着装置は、被記録部材111のサイズに応じて給電する発熱体ユニット92を選択できる構成となる。本発明に係る画像定着装置に用いた発熱体ユニット92の発熱体2は、フィルムシート状の帯体であるため、その平面部分からの熱輻射量が側面部分からの熱輻射量に比べて非常に多く、高い指向性を有している。したがって、複数の発熱体ユニット92を設けた画像定着装置においては、隣り合う発熱体ユニット92により重複加熱される領域を小さく設定することができ、効率が高く均一にニップ部近傍を加熱することが可能となる。
 また、実施の形態6の画像定着装置においては、発熱体ユニット92の配設数が単数、複数にかかわらず、後述するように、発熱体ユニット92に用いたフィルムシート状の発熱体2が高い指向性を持つとともに、優れた立ち上がり特性を有するため、画像形成プロセスにおける画像定着処理を効率高く高速度で処理することが可能となる。
 実施の形態6の画像定着装置の発熱体ユニット92の構成に関しては、前述の実施の形態1から実施の形態3において説明した発熱体ユニットが用いられているため、ここではその詳細は省略する。
 以下、本発明に係る実施の形態6の画像定着装置において熱源として用いた発熱体ユニット92の発熱体2の特性について従来のものと比べて説明する。
 まず、従来の画像定着装置において用いていた熱源について説明する。
 従来の画像定着装置における熱源として用いられているハロゲンヒータは、電力給電時の立ち上りが早いという利点はある。しかし、ハロゲンヒータは、突入電流が大きく、ハロゲンヒータをオンオフ制御するためには大容量の制御回路が必要となり、装置が大型化するとともにコスト的にも問題を有していた。更に、ハロゲンヒータを制御することにより、近くの照明器具である蛍光灯がちらつく(フリッカ現象)という問題を有している。
 また、カーボンヒータにおいては、突入電流はほとんど発生しないため、発熱体への電力供給時に電圧が降下するという問題や、蛍光灯がちらつく(フリッカ現象)という問題は低減されている。しかし、カーボンヒータは、立ち上がりに時間がかかり、画像形成プロセスにおける定着処理に時間がかかり、定着処理時のエネルギー消費が増えるという問題を有していた。
 一方、黒鉛等の結晶化炭素、抵抗値調整物質及びアモルファス炭素の混合物で形成された板状の発熱体を用いたカーボンヒータにおいては、炭素系物質の赤外線放射率が78~84%と高いため、炭素系物質を発熱体として用いることにより、カーボンヒータからの赤外線放射率が高くなり、効率の高い熱源を構築することが可能である。しかし、カーボンヒータとして用いられていた発熱体は、厚み(例えば、数mm)を有する板状の発熱体であり、ある程度大きな熱容量を有しており、電力供給時の立ち上がりに時間がかかるという問題を有していた。
 また、カーボンヒータとして用いられていた発熱体は、その発熱体温度にかかわらず抵抗値が略一定で、突入電流がほとんど発生しない温度抵抗特性を有している。このように従来のカーボンヒータとして用いられていた発熱体においては、突入電流がほとんど発生しないため、発熱体への電力供給時に電圧が降下するという問題や、蛍光灯がちらつく(フリッカ現象)という問題は低減される。しかし、この発熱体を熱源として用いた場合には、立ち上がりに時間がかかり、画像形成プロセスにおける定着処理に時間がかかり、定着処理時にエネルギー消費が増えるという問題を有していた。
 発明者らは、本発明に係る実施の形態6の画像定着装置において用いた発熱体ユニット92の発熱体2、従来の画像定着装置において熱源として用いられていた炭素系物質を主成分とした細長い板状の発熱体を用いたヒータ(以下、カーボンヒータと略称)、及び参考例としてハロゲンランプを用いたヒータ(以下、ハロゲンヒータと略称)に関して、100V、600Wの仕様のヒータに構成して、温度[℃]と抵抗[Ω]の関係を示す温度特性の比較実験を行った。
 なお、以下の実験(図16~図19に実験結果を示す実験)において用いた発熱体ユニット92は、前述の実施の形態4において説明した発熱体ユニット(図12及び図13参照)である。
 図16は発熱体ユニット92の発熱体2、従来の熱源であるカーボンヒータ、及びハロゲンヒータにおける温度[℃]と抵抗[Ω]の関係を示す温度特性図である。図16において、実線Xが本発明に係る画像定着装置に用いた発熱体ユニット92の発熱体2の温度特性である。また、図16において、破線Yがカーボンヒータの温度特性であり、一点鎖線Zが参考例としてのハロゲンヒータの温度特性である。
 図16に示すように、本発明に係る実施の形態6の画像定着装置に用いた発熱体ユニット92の発熱体2は温度が高くなるにしたがい抵抗が増加する正特性を有している。実験によれば、例えば発熱体2の温度が20℃(未通電時)のとき、抵抗値は9.2Ωであり、平衡点灯時の温度が1120℃のとき、抵抗値は16.7Ωであった。したがって、発熱体2の未通電時と平衡点灯時の抵抗値の変化率(抵抗変化率)は1.81である。なお、ここで平衡点灯時とは、ヒータに電圧(例えば、100V)を印加し電力が供給されて発熱体に電流が流れ、発熱体の発熱温度が一定となったときを言う。また、抵抗変化率とは発熱体2における通電による平衡点灯時の抵抗の値を未通電時の抵抗の値で除算した値のことをいう。
 一方、従来の発熱体である破線Yで示すカーボンヒータの温度特性は、温度が変わっても略一定の抵抗値を示している。発明者らの実験によれば、カーボンヒータの温度が20℃(未通電時)のとき、抵抗値は15.9Ωであり、平衡点灯時の温度が1030℃のとき、抵抗値は16.7Ωであった。したがって、カーボンヒータの未通電時と平衡点灯時の抵抗変化率は1.05である。また、一点鎖線Zで示すハロゲンヒータの場合、温度が20℃(未通電時)のとき、抵抗値は1.8Ωであり、平衡点灯時の温度が1830℃のとき、抵抗値は16.7Ωであった。したがって、ハロゲンヒータの未通電時と平衡点灯時の抵抗変化率は9.28である。
 なお、実施の形態6の画像定着装置に用いた発熱体2を用いて、平衡点灯時の温度が500℃になるように電力を供給した場合においても、図16において実線Xで示した立ち上がり特性であり、500℃のときの抵抗値は11.0Ωであった。したがって、この発熱体2の未通電時と平衡点灯時の抵抗変化率は1.2(=11.0/9.2)である。
 また、実施の形態6の画像定着装置に用いた発熱体2を用いて、平衡点灯時の温度が2000℃になるように電力を供給した場合には、図16において実線Xに続く2点破線で示した立ち上がり特性であり、2000℃のときの抵抗値は32.2Ωであった。したがって、この発熱体2の未通電時と平衡点灯時の抵抗変化率は3.5(=32.2/9.2)である。
 上記のように、実施の形態6の画像定着装置に用いた発熱体ユニット92の発熱体2は、温度が高くなるにしたがい抵抗が増加する正特性を有している。例えば、平衡点灯時の温度設定を500℃とした場合、平衡点灯時の抵抗値が11.0Ωとなり抵抗変化率が1.2であった。また、平衡点灯時の温度設定を2000℃とした場合、平衡点灯時の抵抗値が32.2Ωとなり抵抗変化率が3.5であり、温度と抵抗値が略比例した特性を示している。
 また、実施の形態6の画像定着装置に用いた発熱体ユニット92の発熱体2は、定格の通電による平衡点灯時の抵抗値を未通電時の抵抗値で除算した抵抗変化率が1.81であった。このように、本発明に係る画像定着装置に用いた発熱体ユニット92の発熱体2は、未通電時でもある程度の抵抗(9.2Ω)を有しており、未通電時と平衡点灯時との抵抗変化率が1.81である。
 本発明に係る発熱体ユニット92の発熱体2は、抵抗変化率を1.2から3.5の範囲内となるよう電力またはヒータ温度を設定することにより、所望の温度で高精度に発熱させることができるとともに、発熱体ユニット92の点灯時において、大きな突入電流を発生させることなく、発熱時の立ち上がりを早くする効果を奏する。なお、未通電時と平衡点灯時との抵抗変化率が1.2から3.5の範囲内であるとき、発熱時の立ち上がりが早くなるとともに、後述するように当該発熱体ユニット92を制御するための機器に大きな容量のものを必要としなくなる。抵抗変化率が1.2未満の発熱体を用いた場合には、温度が低く、突入電流が小さく、そして立ち上がりの遅い画像定着装置となる。一方、抵抗変化率が3.5を超える発熱体を用いた場合には、大きな突入電流が発生するため、信頼性を確保するため各構成要素のマージンを大きく設定する必要があり、構成要素の容量が増大して、製造コストの増大、装置の大型化という問題がある。
 一方、カーボンヒータを熱源として用いた場合には、温度に関係なく抵抗値が略一定であるため、点灯時において突入電流が発生せず、略一定の電流が流れる。したがって、カーボンヒータを熱源として用いた場合には、発熱温度の上昇速度(立ち上がり)が遅く、所定温度となるまでに時間がかかるという問題がある。このため、画像定着装置の熱源として用いた場合には、ニップ部が所望温度になるまで時間を要し、画像定着処理に時間がかかるとともに、いわゆるクイックスタートに時間がかかるという問題がある。
 発熱体ユニット92の発熱体2の固有抵抗値が250μΩ・cmであり、カーボンヒータのカーボンの固有抵抗値が3000~50000μΩ・cmであり、ハロゲンヒータのタングステンの固有抵抗値が5.6μΩ・cmである。上記のように、カーボンの固有抵抗値が他のヒータの材料に比べて非常に高いため、電流変化の少ない設計とともに電力供給時の突入電流が発生しにくい設計が可能となる。また、発熱体2の固有抵抗値は、カーボンの固有抵抗値より小さいが、タングステンの固有抵抗値より大きいため、発熱体2においてはタングステンの発熱体に比べ設計が容易となる。
 また、発熱体ユニット92の発熱体2の密度が0.5~1.0g/m(厚みにより異なる)であり、カーボンヒータのカーボンの密度が1.5g/mであり、ハロゲンヒータのタングステンの密度が19.3g/mである。このように、発熱体2の密度は他のヒータの材料に比べて軽いため、また発熱体2は帯状の薄膜体であるため、他のヒータに比べて熱容量が非常に小さく、立ち上がりが早くなることが理解できる。
 図17は、本発明に係る画像定着装置に用いた発熱体ユニット92、及び従来のヒータであるカーボンヒータとハロゲンヒータの立ち上がり特性を調べた結果を示すグラフである。
 図17において、実線Xが本発明に係る画像定着装置に用いた発熱体ユニット92の立ち上がり特性である。また、図17において、破線Yが前述の炭素系物質を主成分とした細長い板状の発熱体を用いたカーボンヒータの立ち上がり特性であり、一点鎖線Zがハロゲンランプを用いたハロゲンヒータの立ち上がり特性である。図17に示す特性図においては、100V、600Wの仕様の構成の各ヒータを用いて、点灯から5秒後までの立ち上がり特性を示している。
 図17のそれぞれの立ち上がり特性から分かるように、本発明に係る画像定着装置に用いた発熱体ユニット92の立ち上がり特性(図17の実線X)は、従来の熱源であるカーボンヒータ(図17の破線Y)の立ち上がり特性に比べて、早い立ち上がりを示している。発明者らの実験によれば、平衡点灯時の温度の90%到達時間は、発熱体ユニット92が0.6秒であったのに対してカーボンヒータが2.7秒であった。また、ハロゲンヒータの場合の90%到達時間は、1.1秒であった。
 上記のように、発熱体ユニット92、カーボンヒータ、及びハロゲンヒータの各ヒータにおける平衡点灯時までの立ち上がり時間が異なるため、その立ち上がり時間において消費される電力は大きく異なることになる。例えば、前述の実験で用いた各ヒータにおいて起動時の電流変化はあるが、6Aを消費したと仮定した場合、平衡点灯時の温度の90%到達時までの時間が発熱体ユニット92では0.6秒であるため、その時間の電力消費量は約360W・Sである。一方、カーボンヒータにおいて平衡点灯時の温度の90%到達時までの時間は、2.7秒であるため、その時間の電力消費量は約1620W・Sである。また、ハロゲンヒータにおいて平衡点灯時の温度の90%到達時までの時間は、1.1秒であるため、その時間の電力消費量は約600W・Sである。
 このように、発熱体ユニット92における平衡点灯時までの電力消費量は、他のヒータに比べて大幅に少なく、画像定着装置においては定着処理が頻繁に行われてオンオフが繰り返されるため、その差は非常の大きなものとなり、エネルギー消費が大幅に削減される。
 なお、ハロゲンヒータにおいて到達時間が比較的に短いのは、図16に示したように、未通電時の抵抗値が低く、電力供給初期において大きな突入電流が発生しているためである。前述のハロゲンヒータにおける電力消費量の計算で6Aを消費すると仮定して計算したが、実際には、ハロゲンヒータの電力供給初期における0~5秒間の安定する期間では、大きな突入電流が流れるため、その期間の消費電力が更に大きな値となる。
 図18は各ヒータにおける電力供給初期の突入電流を比較した図であり、電力供給初期から1.0秒後までの電流波形を示している。図18において、(a)は本発明に係る画像定着装置に用いた発熱体ユニット92の立ち上がり時の電流波形であり、(b)は従来のカーボンヒータの立ち上がり時の電流波形であり、(c)はハロゲンヒータの立ち上がり時の電流波形である。
 図18の(a)に示すように、本発明に係る画像定着装置に用いた発熱体ユニット92は、電力供給初期の電流の実効値が15.75Aであり、電力供給初期から1.0秒後の電流の実効値が9.00Aであった。即ち、発熱体ユニット92においては突入電流の発生は認められるが、その大きさは平衡点灯時の電流の2倍以下となっている。
 図18の(b)に示すカーボンヒータの場合は突入電流がほとんど無く、電力供給初期の電流の実効値が9.00Aであり、電力供給初期から1.0秒後の電流の実効値が8.75Aであった。一方、図18の(c)に示すハロゲンヒータの場合は、大きな突入電流が発生しており、電力供給初期の電流の実効値が64.75Aであり、電力供給初期から1.0秒後の電流の実効値が10.38Aであった。ハロゲンヒータは前述の図16(一点鎖線Z)に示したように、未通電時と平衡点灯時の抵抗変化率が9.27という5倍以上の大きな値を有しているため、大きな突入電流が発生する。このような大きな突入電流が発生することは、立ち上がりが早くなるという特性を有する一方で、当該ハロゲンヒータを使用する機器において大電流に耐える大容量の要素を使用しなければならず問題を有する。例えば、スイッチング素子としてのサイリスタは電流容量の大きなものが必要であり、また機械的接点においても大電流で溶着しないように遮断容量が大きな接点を使用する必要がある。また、ハロゲンヒータはその発熱原理(ハロゲンサイクル)から電圧制御を行うことが困難であり、オンオフの切替え制御のみであるため、精度の高い温度制御ができないという問題を有する。
 上記のように、本発明に係る実施の形態6の画像定着装置に用いた発熱体ユニット92は、未通電時と平衡点灯時の変化率が1.81であり、ある程度の突入電流が発生する特性を有しているため、立ち上がりが早くなり、平衡点灯時までの時間が短くなり、優れた応答性を有する熱源となる。このため、画像定着装置の熱源として発熱体ユニット92を用いることは、画像定着装置としての性能を高め、エネルギー消費が少ない省エネルギーを達成できる機器とすることができる。
 また、本発明に係る実施の形態6の画像定着装置に用いた発熱体ユニット92は、ハロゲンヒータのように大きな突入電流を発生させない特性を有しているため、当該発熱体ユニット92を使用する機器に大電流に耐える大容量のものを使用する必要が無く、製造コストの低減及び小型化を図ることが可能となる。なお、ここで大きな突入電流とは、電力供給初期の電流が電力供給初期から1.0秒後の電流の5倍以上のものをいう。
 本発明に係る実施の形態6の画像定着装置に用いた発熱体ユニットにおいては、電力供給初期の電流が電力供給初期から1.0秒後の電流の3.5倍以下となるよう設定される。このように、発熱体ユニットにおいて、電力供給初期の電流が電力供給初期から1.0秒後の電流の3.5倍以下となるよう設定することにより、立ち上がりが早く、優れた応答性を有する熱源となるとともに、当該発熱体ユニットを使用する機器に大電流に耐える大容量のものを使用する必要が無く、製造コストの低減及び小型化を図ることが可能となる。
 図19は、発熱体ユニット92、カーボンヒータ、及びハロゲンヒータの各ヒータにより被加熱対称物としての銅板を加熱したときの銅板温度の測定結果を示している。図19において、実線Xが発熱体ユニット92による銅板の温度上昇曲線であり、破線Yがカーボンヒータによる銅板の温度上昇曲線であり、一点鎖線Zがハロゲンヒータによる銅板の温度上昇曲線である。
 図19に示す銅板温度測定実験において、被加熱対称物としての銅板片は65mm(L)x65mm(W)x0.5mm(t)を使用し、加熱体であるヒータと対向する加熱面には黒色塗装を施した。各ヒータの長さは300mmの長尺ヒータであり、100V、600Wの仕様のものを使用した。銅板片とヒータとの対向距離は300mmであり、銅板片の加熱面の反対側である裏面に熱電対を取り付けて銅板温度を測定した。
 図19に示すように、本発明に係る実施の形態6の画像定着装置に用いた発熱体ユニット92は、他のヒータに比べて同じ仕様にもかかわらず、被加熱対称物である銅板を最も早く温度上昇させるとともに、高温度に加熱している。ハロゲンヒータはその発熱体であるタングステン線が高温度となるが、タングステンの放射率(約0.18)が低いため被加熱対称物の温度上昇も遅くなる。カーボンヒータの温度上昇は、ハロゲンヒータの温度上昇より早いが、発熱体ユニット92の温度上昇より遅くなっており、平衡温度も低くなっている。これは、カーボンの放射率0.85に比べ発熱体ユニット92の発熱体2の放射率が0.9と高いためである。
 したがって、本発明に係る画像定着装置に用いた発熱体ユニット92は、効率高く、且つ早く被加熱対称物を加熱することができることが理解できる。
 上記のように、実施の形態6の画像定着装置において用いた発熱体2は、軽薄で熱容量が小さく、通電による平衡点灯時までの立ち上がりが早いという優れた特性を有している。このため、実施の形態6の画像定着装置においては、優れた応答性を有して効率高く加熱する発熱体を有する発熱体ユニットを用いているため、定着領域の加熱が早くなり、省エネルギーを図ることができるとともに、クイックスタートを実現することができる。また、実施の形態6の画像定着装置においては、加熱初期の点灯時に大きな突入電流が発生しないため、電圧降下の発生、蛍光灯がちらつくフリッカの発生という問題が解消されている。
 本発明の発熱体ユニット及び加熱装置においては、炭素系物質を主成分として二次元的等方向性の熱伝導を有し、可撓性、柔軟性、及び弾力性を有しており、さらに熱伝導性が200W/m・K以上であり、厚みが300μm以下であるフィルムシート素材で構成された発熱体を用いている。この発熱体は放射率が、80%以上の高い優れた特性を有しており、この発熱体を熱源として用いた発熱体ユニットによれば効率の高い加熱が可能となる。さらに、本発明の発熱体ユニットを加熱装置に用いることにより、安全性及び信頼性が高く、製造が容易な加熱装置を提供することができる。また、本発明の発熱体ユニットを用いた画像定着装置及び画像形成装置においては、定着処理において被加熱対象物を所望の配熱分布で、高温度で効率高く加熱することができるとともに、立ち上がりが早く、エネルギー消費を低減することができる、優れた効果を奏する。
 本発明は、安全性及び信頼性が高く、且つ効率の高い熱源を構築することができるとともに、作業効率が高く優れた生産性を有する発熱体ユニット及び加熱装置を提供することができるため、熱源を必要とする電子/電気機器分野において有用である。

Claims (26)

  1.  炭素系物質を含む材料によりフィルムシートで形成され、2次元的等方向の熱伝導を有する帯状の発熱体と、
     前記発熱体における対向する両端に電力を供給する電力供給部と、
     前記発熱体と前記電力供給部の一部を内包する容器と、を具備する発熱体ユニットであって、
     前記容器の内部における前記電力供給部は、前記発熱体の両端にある発熱体保持部を保持する保持具と、前記保持具に接続された内部リード線部と、を有し、前記保持具は、前記発熱体保持部を受ける掛止受部と、前記掛止受部から延設されて前記発熱体を係止する係止部と、前記発熱体保持部を挟んで前記掛止受部に装着される掛止部と、を有して構成された発熱体ユニット。
  2.  前記掛止受部において、前記発熱体保持部を受ける部位が前記発熱体の長手方向に直交する幅方向に延設された請求項1に記載の発熱体ユニット。
  3.  前記発熱体保持部に孔又は切り欠きが形成され、前記孔又は切り欠きの内部に前記係止部が配置された請求項2に記載の発熱体ユニット。
  4.  前記孔又は切り欠きの内部に配置された前記係止部が前記内部リード線部に接合された請求項3に記載の発熱体ユニット。
  5.  前記掛止受部と前記係止部が線材により一体的に形成され、前記掛止受部が前記線材を屈曲させて前記発熱体保持部が巻き付けられるよう構成され、前記係止部が前記内部リード線部に繋がるよう構成された請求項4に記載の発熱体ユニット。
  6.  前記掛止受部と前記係止部が線材により一体的に形成され、前記発熱体保持部の幅方向の縁部に形成された切り欠きの内部に前記係止部が配置された請求項4に記載の発熱体ユニット。
  7.  前記掛止受部と前記係止部が一本の線材により形成され、前記線材を屈曲させて前記掛止受部と前記係止部が形成された請求項1に記載の発熱体ユニット。
  8.  前記掛止部が弾性材で形成され、前記掛止受部に対して弾性力により装着されるよう構成された請求項1に記載の発熱体ユニット。
  9.  前記掛止受部が導電性材料で形成された請求項1に記載の発熱体ユニット。
  10.  前記保持具は、前記発熱体を前記容器の内部の所定位置に配置するための位置規制機能を有し、前記保持具における端部が前記容器の内面に近接して配置される請求項1に記載の発熱体ユニット。
  11.  前記発熱体が発熱体自体における熱収縮及び熱膨張を吸収する弾性力を有する構造を持ち、前記保持具に電力を供給する前記内部リード線部に弾性構造を有しない構成とした請求項1に記載の発熱体ユニット。
  12.  前記発熱体は、炭素系物質を含む材料により形成された層間構造を有する請求項1に記載の発熱体ユニット。
  13.  前記容器は、耐熱性を有するガラス管又はセラミックス管により形成され、不活性ガスが充填されて前記電力供給部において封止された請求項1に記載の発熱体ユニット。
  14.  請求項1乃至13のいずれか一項に記載の発熱体ユニットを熱源として装備した加熱装置。
  15.  未定着トナー画像が坦持された被記録部材を加熱する加熱体と、
     前記加熱体に対向して配設され、前記加熱体に対して前記被記録部材を介して加圧する加圧体と、を具備する画像定着装置において、
     前記加熱体が加熱源として発熱体を有し、前記発熱体が炭素系物質を含む材料によりフィルムシートで帯状に形成され、2次元的等方向性の熱伝導を有する画像定着装置。
  16.  前記発熱体は、炭素系物質を含む材料により形成された層間構造を有する請求項15に記載の画像定着装置。
  17.  前記発熱体は、通電による平衡点灯時の抵抗の値を未通電時の抵抗の値で除算した抵抗変化率の値が1.2から3.5の範囲であり、発熱体温度と抵抗値が比例する正特性を有する請求項16に記載の画像定着装置。
  18.  前記発熱体は、厚みが300μm以下の薄膜体である請求項17に記載の画像定着装置。
  19.  前記発熱体は、密度が1.0g/cm以下の軽膜体である請求項17に記載の画像定着装置。
  20.  前記発熱体は、熱伝導率が200W/m・K以上の材料で形成された請求項17に記載の画像定着装置。
  21.  前記加熱体は、前記発熱体とともに当該発熱体の対向する両端に電力を供給する電力供給部の一部を収納する容器を有し、前記容器が内部に不活性ガスを充填して前記電力供給部において封止された構造を有する請求項17に記載の画像定着装置。
  22.  前記加熱体には、前記発熱体による加熱領域を規定するための反射部が設けられている請求項17に記載の画像定着装置。
  23.  前記加熱体に前記発熱体が複数設けられており、複数の前記発熱体における長手方向の各中心軸が、前記被記録部材の搬送方向に直交して直線上に配置された請求項17に記載の画像定着装置。
  24.  前記加熱体において、前記発熱体に対向する面に赤外線を吸収する部材により膜体が形成された請求項17に記載の画像定着装置。
  25.  前記発熱体の加熱範囲は、前記加熱体と前記加圧体とによる前記被記録部材の押圧部位であるニップ部と、当該ニップ部より被記録部材の搬送方向における上流側の部位とを含む請求項17に記載の画像定着装置。
  26.  請求項15乃至25のいずれか一項に記載の画像定着装置を備えた画像形成装置。
PCT/JP2008/003860 2008-05-09 2008-12-19 発熱体ユニット及び加熱装置 WO2009136430A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08874202A EP2288230A4 (en) 2008-05-09 2008-12-19 HEATING ELEMENT AND HEATING EQUIPMENT
CN2008801291168A CN102017789A (zh) 2008-05-09 2008-12-19 发热体单元及加热装置
US12/990,767 US20110044736A1 (en) 2008-05-09 2008-12-19 Heat generating unit and heating apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-123396 2008-05-09
JP2008-123408 2008-05-09
JP2008123408A JP4523050B2 (ja) 2008-05-09 2008-05-09 画像定着装置及び画像形成装置
JP2008123396A JP2009272222A (ja) 2008-05-09 2008-05-09 発熱体ユニット及び加熱装置

Publications (1)

Publication Number Publication Date
WO2009136430A1 true WO2009136430A1 (ja) 2009-11-12

Family

ID=41264492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003860 WO2009136430A1 (ja) 2008-05-09 2008-12-19 発熱体ユニット及び加熱装置

Country Status (5)

Country Link
US (1) US20110044736A1 (ja)
EP (1) EP2288230A4 (ja)
KR (1) KR20110004421A (ja)
CN (1) CN102017789A (ja)
WO (1) WO2009136430A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291862A (zh) * 2011-05-06 2011-12-21 天津市永耀电光源有限公司 一种红外线对装卤素加热管
KR101873033B1 (ko) * 2011-12-01 2018-07-03 에이치피프린팅코리아 주식회사 전압 공용화 화상 형성 장치 및 이의 정착 온도 제어 방법
US10254690B2 (en) * 2016-06-20 2019-04-09 Toshiba Tec Kabushiki Kaisha Heater and fixing device
BR112019021706B1 (pt) 2017-06-28 2023-10-31 Philip Morris Products S.A Conjunto de aquecimento elétrico, dispositivo gerador de aerossol e método para aquecimento resistivo de um substrato formador de aerossol
CN112188655A (zh) * 2020-10-30 2021-01-05 广东美的厨房电器制造有限公司 发热片、发热管和电器
US20230276540A1 (en) * 2020-10-30 2023-08-31 Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd. Heating sheet, heating tube, and electric appliance

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4863339U (ja) * 1971-11-16 1973-08-11
JPS59217981A (ja) * 1984-05-09 1984-12-08 松下電器産業株式会社 石英管ヒ−タユニツト
JP2002170654A (ja) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd 赤外線電球及びその製造方法並びにそれを用いた加熱或いは暖房装置
JP2004193130A (ja) 2002-12-11 2004-07-08 Heraeus Noblelight Gmbh 赤外輻射器
JP2005085682A (ja) * 2003-09-10 2005-03-31 Matsushita Electric Ind Co Ltd 赤外線電球、加熱装置及び電子装置
JP2005116412A (ja) 2003-10-09 2005-04-28 Matsushita Electric Ind Co Ltd 赤外線電球及び加熱装置
JP2005149809A (ja) 2003-11-12 2005-06-09 Matsushita Electric Ind Co Ltd 赤外線電球及び加熱装置
JP2006040898A (ja) 2004-07-27 2006-02-09 Lg Electronics Inc 炭素ヒータ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1008656A (en) * 1911-05-09 1911-11-14 Charles G Matthias Clamp member.
JPS5840571A (ja) * 1981-09-04 1983-03-09 Fuji Photo Film Co Ltd 電子写真定着装置
DE3680824D1 (de) * 1985-05-30 1991-09-19 Matsushita Electric Ind Co Ltd Verfahren zum erzeugen von graphit.
JP3239671B2 (ja) * 1995-03-08 2001-12-17 松下電器産業株式会社 フィルム状ヒーター、保温座席、蒸着ボートおよび加熱炉
DE10029437B4 (de) * 2000-06-21 2005-11-17 Heraeus Noblelight Gmbh Infrarotstrahler und Verfahren zum Betreiben eines solchen Infrarotstrahlers
US6922017B2 (en) * 2000-11-30 2005-07-26 Matsushita Electric Industrial Co., Ltd. Infrared lamp, method of manufacturing the same, and heating apparatus using the infrared lamp
US6611670B2 (en) * 2001-12-04 2003-08-26 Nexpress Solutions Llc External heater member and methods for fusing toner images
KR100547189B1 (ko) * 2003-04-23 2006-01-31 스타전자(주) 그라파이트 펠트를 이용하는 탄소 발열 장치의 제조 방법
WO2005051043A1 (ja) * 2003-11-20 2005-06-02 Matsushita Electric Industrial Co., Ltd. 赤外線電球及び加熱装置
KR100657469B1 (ko) * 2004-07-21 2006-12-13 엘지전자 주식회사 탄소 히터의 트위스트형 탄소 필라멘트 구조
JP4614267B2 (ja) * 2004-08-04 2011-01-19 メトロ電気工業株式会社 赤外線ヒータ
JP2008033240A (ja) * 2006-07-03 2008-02-14 Ricoh Co Ltd 画像定着装置と画像形成装置
JP2008235080A (ja) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd 発熱体ユニット
CN101960913A (zh) * 2007-11-16 2011-01-26 松下电器产业株式会社 发热体单元及加热装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4863339U (ja) * 1971-11-16 1973-08-11
JPS59217981A (ja) * 1984-05-09 1984-12-08 松下電器産業株式会社 石英管ヒ−タユニツト
JP2002170654A (ja) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd 赤外線電球及びその製造方法並びにそれを用いた加熱或いは暖房装置
JP2004193130A (ja) 2002-12-11 2004-07-08 Heraeus Noblelight Gmbh 赤外輻射器
JP2005085682A (ja) * 2003-09-10 2005-03-31 Matsushita Electric Ind Co Ltd 赤外線電球、加熱装置及び電子装置
JP2005116412A (ja) 2003-10-09 2005-04-28 Matsushita Electric Ind Co Ltd 赤外線電球及び加熱装置
JP2005149809A (ja) 2003-11-12 2005-06-09 Matsushita Electric Ind Co Ltd 赤外線電球及び加熱装置
JP2006040898A (ja) 2004-07-27 2006-02-09 Lg Electronics Inc 炭素ヒータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2288230A4

Also Published As

Publication number Publication date
KR20110004421A (ko) 2011-01-13
EP2288230A4 (en) 2011-08-17
EP2288230A1 (en) 2011-02-23
US20110044736A1 (en) 2011-02-24
CN102017789A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2009136430A1 (ja) 発熱体ユニット及び加熱装置
US20100266319A1 (en) Heat generation unit and heating apparatus
US20100247180A1 (en) Heat generation unit and heating apparatus
EP2111082A1 (en) Heat generating body unit and heating apparatus
JP2009009835A (ja) 面状発熱体
JP2008257946A (ja) 加熱ユニットおよび加熱装置
WO2011016169A1 (ja) 発熱体ユニット及び加熱装置
WO2009136431A1 (ja) 発熱体ユニット及び加熱装置
JP4523050B2 (ja) 画像定着装置及び画像形成装置
JP2008218267A (ja) 発熱体ユニット及び加熱装置
JP4733161B2 (ja) 発熱体ユニット及び加熱装置
JP4739314B2 (ja) 発熱体ユニット及び加熱装置
JP4733099B2 (ja) 発熱体ユニット及び加熱装置
JP2011228004A (ja) 発熱体ユニット及び加熱装置
JP2007122893A (ja) 赤外線電球及び加熱装置
JP2009272221A (ja) 発熱体ユニット及び加熱装置
JP2009272223A (ja) 発熱体ユニット及び加熱装置
JP2000155488A (ja) ヒートローラ
JP2009272222A (ja) 発熱体ユニット及び加熱装置
JP2007200798A (ja) 発熱構成体、発熱ユニット及び加熱装置
JP2010091229A (ja) 加熱調理器
JP5860004B2 (ja) 平角状導体の製造方法
JP2002043038A (ja) 管状ヒータ、およびトナー定着装置
CN105594300A (zh) 带状加热器
RU29937U1 (ru) Электрический нагреватель

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129116.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874202

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12990767

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107024811

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008874202

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE