WO2009133906A1 - 映像信号線駆動回路および液晶表示装置 - Google Patents

映像信号線駆動回路および液晶表示装置 Download PDF

Info

Publication number
WO2009133906A1
WO2009133906A1 PCT/JP2009/058404 JP2009058404W WO2009133906A1 WO 2009133906 A1 WO2009133906 A1 WO 2009133906A1 JP 2009058404 W JP2009058404 W JP 2009058404W WO 2009133906 A1 WO2009133906 A1 WO 2009133906A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal line
potential
video signal
liquid crystal
display device
Prior art date
Application number
PCT/JP2009/058404
Other languages
English (en)
French (fr)
Inventor
拓也 津田
望 上坂
圭介 吉田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US12/989,773 priority Critical patent/US20110043711A1/en
Publication of WO2009133906A1 publication Critical patent/WO2009133906A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/13606Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit having means for reducing parasitic capacitance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors

Definitions

  • the present invention relates to a video signal line driving circuit and a liquid crystal display device including the video signal line driving circuit.
  • FIG. 21 is a configuration diagram of a general active matrix type liquid crystal display.
  • This liquid crystal display includes a source driver (signal line driver) 110, signal lines S1 to SN (102) connected to the source driver 110 and extending in the vertical direction, and a gate driver (scanning line driver) 120, as shown in FIG. And scanning lines G1 to GM (101) extending in the horizontal direction connected to the gate driver 120, and pixels and TFTs 103 located at intersections of the signal lines S1 to SN and the scanning lines G1 to GM.
  • the signal lines S1 to SN and the scanning lines G1 to GM are orthogonal to each other, and pixels and TFTs 103 are arranged at the intersections.
  • the pixel and the TFT 103 include the TFT 103, Cgd (gate-drain parasitic capacitance) 104, Clc (liquid crystal pixel capacitance) 105, Cs (auxiliary capacitance) 106, and a counter electrode 107. ing.
  • FIG. 22 is a waveform diagram showing a drive signal at point A in FIG. 21, and FIG. 23 is a waveform diagram showing a drive signal at point B in FIG.
  • a is a field through potential (VFD)
  • b is an effective field through potential
  • c is a voltage variation due to rewriting
  • ⁇ t is from the falling edge of the gate signal. The time until the TFT is turned off is shown.
  • the point A is located closer to the output of the gate driver than the point B.
  • VFD The field through potential
  • VFD Cgd * (Vgh ⁇ Vgl) / (Clc + Cs + Cgd) (Formula 1)
  • Cgd TFT-gate parasitic capacitance
  • Clc pixel capacitance
  • Vgh gate signal high potential
  • Vgl gate signal low potential
  • Equation 1 is an ideal case where the gate signal (scan line signal) is a rectangular wave. Field through potential. However, an actual large-screen / high-definition panel has long scanning lines and a large number of intersecting signal lines. Since the ON resistance and parasitic capacitance of the transistor (TFT) increase, the waveform of the gate signal (scanning line signal) becomes dull according to the time constant.
  • VFD ⁇ Cgd * (Vgh ⁇ Vgl) + ⁇ IDS * ⁇ t ⁇ / (Clc + Cs + Cgd) (Formula 3)
  • the delay ⁇ t of the gate signal waveform is relatively small as shown in FIG. 22, but at point B far from the output of the gate driver, the gate signal waveform is shown in FIG.
  • the delay ⁇ t is larger than the point A. Therefore, the voltage fluctuation c due to rewriting shown in the above (Formula 2) also has a distribution in the plane, and the effective field-through voltage b shown in the above (Formula 3) is also in the plane. With distribution. Therefore, the distribution on the line segment perpendicular to the source signal line having the optimum counter potential has a distribution as shown in FIG.
  • the potential of the counter electrode (common potential) is adjusted.
  • common potential is common within the same screen, even if flicker is adjusted at one location in the plane due to the distribution of the field-through potential on the line segment perpendicular to the source signal line, other locations can be obtained. The problem that it is not.
  • Patent Documents 1 and 2 disclose a technique called Cgd gradation.
  • Cgd gradation By adopting Cgd gradation, in-plane flicker can be suppressed to almost no problem level on a general display screen, but there is sufficient accuracy on some special display screens (eg, counter adjustment screen for production process). However, further improvement is needed.
  • a capacitance is created in advance between the gate and drain of the TFT, the capacitance is reduced at the point A near the output of the gate driver, and the capacitance is increased at the point B far from the output of the gate driver. The distribution of the optimum counter potential is uniformly compensated.
  • the liquid crystal screen is divided into a plurality of regions and the capacitance value is changed.
  • the correction characteristic is as shown by a broken line in FIG. Due to the approximation by the broken line, an error may appear in the vicinity of the boundary of the divided region, and adjustment and contrivance in design are necessary.
  • the method of creating the correction capacitor in the panel in this way has a limit in accuracy, and since the correction capacitor is embedded near the pixel, the transmittance of the panel may be sacrificed.
  • the liquid crystal display device described in Patent Document 4 corresponds to the optimum counter electrode potential obtained by the flicker minimum value determination method in order to make the image display characteristics uniform even in a large TFT liquid crystal display device.
  • the voltage applied to the counter substrate corresponding to the interval between the input end and the end of the scanning signal is inclined.
  • Japanese Patent Publication “Japanese Patent Laid-Open No. 11-84428” Publication Date: March 26, 1999
  • Japanese Patent Publication “JP 2002-236296” release date: August 23, 2002
  • Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2006-171022” Publication Date: June 29, 2006
  • Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2001-296843” Publication Date: October 26, 2001
  • Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2002-91391” Publication Date: March 27, 2002)
  • the present invention has been made in view of the above-described conventional problems, and the object thereof is from in-plane flicker based on the distribution of the optimum counter potential according to the distance from the scanning signal line driving circuit, and from the scanning signal line driving circuit. It is an object of the present invention to provide a video signal line driving circuit and a liquid crystal display device that suppress in-plane flicker based on fluctuations due to the distance and CS trunk line resistance.
  • the video signal line driving circuit of the present invention is an optimal counter electrode obtained by a flicker minimum value determining method in a video signal line driving circuit for driving a video signal line provided in a liquid crystal display device. Based on the distribution of the potential on the line segment perpendicular to the video signal line, the potential of the output signal is changed according to the position of the video signal line, and the potential of the output signal is approximately the center of the display surface of the display device. It is characterized by the fact that it becomes larger as it gets closer to the outside.
  • the distribution of the optimum counter electrode potential obtained by the flicker minimum value determination method on the line segment perpendicular to the video signal line is the pull-in potential due to the signal delay of the scanning signal and / or the CS (auxiliary capacitance) potential. This is based on the field through potential.
  • an optimum counter electrode obtained by the flicker minimum value determination method as it approaches the outside from the approximate center of the display surface of the liquid crystal display device
  • the potential decreases. Therefore, if the potential of the output signal of the video signal line driving circuit is increased as it is closer to the outside from the approximate center of the display surface of the liquid crystal display device, the optimum counter electrode potential obtained by the flicker minimum value determination method is perpendicular to the video signal line. It is possible to compensate for a distribution on a straight line segment.
  • the video signal line driving circuit is an optimal video signal line driving circuit for driving a video signal line provided in a liquid crystal display device, which is obtained by a flicker minimum value determination method.
  • the potential of the output signal is changed in accordance with the position of the video signal line, and the potential of the output signal is applied to the display surface of the display device. It is characterized in that it becomes larger from the point near one end of the display surface of the display device toward the outside than the approximate center.
  • the distribution of the optimum counter electrode potential obtained by the flicker minimum value determination method on the line segment perpendicular to the video signal line is the pull-in potential due to the signal delay of the scanning signal and / or the CS (auxiliary capacitance) potential. This is based on the field through potential.
  • the optimum counter electrode potential obtained by the flicker minimum value determination method increases as the distance from the scanning signal line driving circuit used in the liquid crystal display device increases.
  • the optimum obtained by the flicker minimum value determination method as it approaches the outside from the approximate center of the display surface of the liquid crystal display device The counter electrode potential is reduced.
  • the potential of the output signal of the video signal line driving circuit is The video signal of the optimum counter electrode potential obtained by the flicker minimum value determination method can be increased by increasing the distance from the point near one end of the display surface of the liquid crystal display device to the outside from the approximate center of the display surface of the liquid crystal display device.
  • the distribution on the line segment perpendicular to the line can be compensated.
  • the flicker minimum value determination method takes into account the influence of the distribution of the optimal counter electrode potential on the line perpendicular to the video signal line obtained by the flicker minimum value determination method based on the auxiliary capacitance signal input from both sides. It is possible to compensate for the distribution of the optimum counter electrode potential to be generated on the line segment perpendicular to the video signal line.
  • the video signal line drive circuit of the present invention preferably includes an offset addition circuit storing an offset value for compensating the distribution on the vertical line segment.
  • the offset value is simply stored, that is, a line perpendicular to the video signal line generated by field-through of the optimum counter potential obtained by the flicker minimum value determination method with a simple configuration.
  • the minute distribution can be compensated.
  • the liquid crystal display device of the present invention includes a video signal line and a scanning signal line orthogonal to each other, a video signal line driving circuit for driving the video signal line, and the scanning signal line. And a scanning signal line driving circuit for driving the video signal line driving circuit, wherein the video signal line driving circuit distributes an optimum counter electrode potential obtained by a flicker minimum value determination method on a line segment perpendicular to the video signal line. And an auxiliary capacitance signal source for changing the potential of the output signal according to the position of the video signal line and inputting the auxiliary capacitance signal from both sides of the display device itself in parallel with the scanning signal line. The potential of the output signal increases as it approaches the outside from the approximate center of the display surface of the liquid crystal display device.
  • the distribution of the optimum counter electrode potential obtained by the flicker minimum value determination method on the line segment perpendicular to the video signal line is the pull-in potential due to the signal delay of the scanning signal and / or the CS (auxiliary capacitance) potential. This is based on the field through potential.
  • an optimum counter electrode obtained by the flicker minimum value determination method as it approaches the outside from the approximate center of the display surface of the liquid crystal display device
  • the potential decreases. Therefore, if the potential of the output signal of the video signal line driving circuit that drives the video signal line is increased as it is closer to the outside from the approximate center of the display surface of the liquid crystal display device, the optimum counter electrode potential obtained by the flicker minimum value determination method can be obtained.
  • the distribution on the line segment perpendicular to the video signal line can be compensated. Therefore, according to the above configuration, it is possible to compensate for the distribution on the line segment perpendicular to the video signal line of the optimum counter electrode potential obtained by the flicker minimum value determination method.
  • the liquid crystal display device of the present invention includes a video signal line and a scanning signal line orthogonal to each other, a video signal line driving circuit for driving the video signal line, and the scanning signal line. And a scanning signal line driving circuit for driving the video signal line driving circuit, wherein the video signal line driving circuit distributes an optimum counter electrode potential obtained by a flicker minimum value determination method on a line segment perpendicular to the video signal line. And an auxiliary capacitance signal source for changing the potential of the output signal in accordance with the position of the video signal line and inputting the auxiliary capacitance signal in parallel to the scanning signal line from both sides of the liquid crystal display device itself.
  • the potential of the output signal increases as it approaches the outside from a point closer to the scanning signal line driving circuit than the approximate center of the display surface of the liquid crystal display device.
  • the distribution of the optimum counter electrode potential obtained by the flicker minimum value determination method on the line segment perpendicular to the video signal line is the pull-in potential due to the signal delay of the scanning signal and / or the CS (auxiliary capacitance) potential. This is based on the field through potential.
  • the optimum counter electrode potential obtained by the flicker minimum value determination method increases as the distance from the scanning signal line driving circuit used in the liquid crystal display device increases.
  • the optimum obtained by the flicker minimum value determination method as it approaches the outside from the approximate center of the display surface of the liquid crystal display device The counter electrode potential is reduced.
  • the potential of the output signal of the video signal line driving circuit is If the distance from the point closer to the scanning signal line driving circuit is closer to the outside than the approximate center of the display surface of the liquid crystal display device, it is perpendicular to the video signal line at the optimum counter electrode potential obtained by the flicker minimum value determination method. It is possible to compensate for a distribution on a straight line segment.
  • the distribution on the line segment perpendicular to the video signal line of the optimum counter electrode potential obtained by the flicker minimum value determination method based on the distance from the scanning signal line driving circuit, and The minimum flicker value in consideration of the influence of both the distribution on the line segment perpendicular to the video signal line caused by the field through of the optimum counter potential determined by the flicker minimum value determination method based on the auxiliary capacitance signal input from both sides The distribution on the line segment perpendicular to the video signal line of the optimum counter electrode potential obtained by the determination method can be compensated.
  • the scanning signal line driving circuit includes an offset addition circuit storing an offset value for compensating the distribution on the vertical line segment.
  • the offset value is simply stored, that is, a line perpendicular to the video signal line generated by field-through of the optimum counter potential obtained by the flicker minimum value determination method with a simple configuration.
  • the minute distribution can be compensated.
  • the video signal line driving circuit of the present invention is a video signal line driving circuit that drives a video signal line provided in a liquid crystal display device, and has an optimal counter electrode potential obtained by the flicker minimum value determination method. Based on the distribution on the line segment perpendicular to the signal line, the potential of the output signal is changed according to the position of the video signal line, and the potential of the output signal approaches the outside from the approximate center of the display surface of the display device. It grows as you go.
  • the video signal line driving circuit of the present invention is the video signal line driving circuit for driving the video signal line provided in the liquid crystal display device, and has the optimum counter electrode potential obtained by the flicker minimum value determining method.
  • the potential of the output signal is changed according to the position of the video signal line based on the distribution on the line segment perpendicular to the video signal line, and the potential of the output signal is more than the approximate center of the display surface of the display device. The distance increases from the point near one end of the display surface of the display device toward the outside.
  • the liquid crystal display device of the present invention includes the video signal line and the scanning signal line orthogonal to each other, the video signal line driving circuit for driving the video signal line, and the scanning signal for driving the scanning signal line.
  • the video signal line drive circuit is based on the distribution on the line segment perpendicular to the video signal line of the optimum counter electrode potential obtained by the flicker minimum value determination method. It further comprises an auxiliary capacitance signal source for changing the potential of the output signal in accordance with the position of the video signal line and inputting the auxiliary capacitance signal from both sides of the display device itself in parallel with the scanning signal line. The potential increases as it approaches the outside from the approximate center of the display surface of the liquid crystal display device.
  • the liquid crystal display device of the present invention includes the video signal line and the scanning signal line orthogonal to each other, the video signal line driving circuit for driving the video signal line, and the scanning signal for driving the scanning signal line.
  • the video signal line drive circuit is based on the distribution on the line segment perpendicular to the video signal line of the optimum counter electrode potential obtained by the flicker minimum value determination method. It further includes an auxiliary capacitance signal source that changes the potential of the output signal in accordance with the position of the video signal line and inputs the auxiliary capacitance signal from both sides of the liquid crystal display device itself in parallel with the scanning signal line. The potential of the signal increases from the point closer to the scanning signal line driving circuit to the outside than the approximate center of the display surface of the liquid crystal display device.
  • the video signal line drive circuit of the present invention is a video signal line drive circuit that drives a video signal line provided in a liquid crystal display device, and uses a preset offset value to position the video signal line. Accordingly, the center potential of the output signal is changed, and the offset value is set so as to increase as the center potential of the output signal approaches the outside from the approximate center of the display surface of the liquid crystal display device.
  • the video signal line drive circuit of the present invention is a video signal line drive circuit for driving a video signal line provided in a liquid crystal display device, and uses a preset offset value according to the position of the video signal line.
  • the center potential of the output signal is changed, and the offset value is set such that the center potential of the output signal approaches the outside from a point near one end of the display surface of the liquid crystal display device rather than the approximate center of the display surface of the video display device. It is set to be large.
  • the liquid crystal display device includes a video signal line and a scanning signal line orthogonal to each other, a video signal line driving circuit for driving the video signal line, and a scanning signal line driving circuit for driving the scanning signal line.
  • the video signal line drive circuit changes the center potential of the output signal according to the position of the video signal line using a preset offset value
  • a storage capacitor signal source that is input from both sides of the liquid crystal display device itself is further provided in parallel with the scanning signal line.
  • the offset value is such that the center potential of the output signal is outside the approximate center of the display surface of the liquid crystal display device. It is set to increase as it approaches.
  • the liquid crystal display device includes a video signal line and a scanning signal line orthogonal to each other, a video signal line driving circuit for driving the video signal line, and a scanning signal line driving circuit for driving the scanning signal line.
  • the video signal line drive circuit changes the center potential of the output signal according to the position of the video signal line using a preset offset value
  • a storage capacitor signal source that inputs from both sides of the liquid crystal display device itself is further provided in parallel with the scanning signal line, and the offset value is such that the center potential of the output signal is higher than the approximate center of the display surface of the liquid crystal display device. It is set so as to increase from the point near the scanning signal line driving circuit toward the outside.
  • the video signal line drive that suppresses the in-plane flicker based on the distribution of the optimum counter potential according to the distance from the scanning signal line driving circuit and the in-plane flicker based on the variation from the distance from the scanning signal line driving circuit and the CS trunk line resistance.
  • a circuit and a liquid crystal display device can be provided.
  • FIG. 4 is a diagram illustrating timings and potentials of a source driver signal, a gate driver signal, and a CS signal input to the pixel model illustrated in FIG. 3.
  • FIG. 4 is a diagram illustrating timings and potentials of a source driver signal, a gate driver signal, and a CS signal input to the pixel model illustrated in FIG. 3.
  • FIG. 5 is a waveform diagram showing a TFT drain potential, a gate signal, and a CS signal in each of a pixel near the CS input terminal and a pixel far from the CS input terminal when a pSPICE simulation is performed on the models shown in FIGS.
  • This is a distribution on a line segment perpendicular to the source signal line of the optimum counter potential based on the potential drawn by the auxiliary capacitance potential when the auxiliary capacitance signal is input from one side.
  • It is a figure which shows the pixel model in the case of inputting an auxiliary capacity signal from both sides.
  • FIG. 8 is a diagram illustrating timings and potentials of a source driver signal, a gate driver signal, and a CS signal input to the pixel model illustrated in FIG. 7.
  • FIG. 9 is a waveform diagram showing a TFT drain potential and a CS signal in each of a pixel near the CS input terminal and a pixel far from the CS input terminal when a pSPICE simulation is performed on the models shown in FIGS. 7 and 8.
  • This is a distribution on a line segment perpendicular to the source signal line of the optimum counter potential based on the potential drawn by the auxiliary capacitance potential when the auxiliary capacitance signal is inputted from both sides.
  • This is a distribution on the line segment perpendicular to the source signal line of the optimum counter potential based on the pull-in potential due to the auxiliary capacitance potential and the pull-in potential due to the signal delay of the gate signal when the auxiliary capacitance signal is input from both sides.
  • FIG. It is a flowchart of the image data processing part shown in FIG. It is a figure which shows the internal structure of a gradation reference voltage generation circuit. It is a graph as a reference example showing the output voltage when the center potential adjustment of the source driver of the present embodiment is not performed. It is a graph which shows the output voltage at the time of performing center potential adjustment of the source driver of this Embodiment. It is a graph which shows the center electric potential of the source driver which compensates the distribution on the line segment perpendicular
  • the center potential of the source driver that compensates for the distribution on the line perpendicular to the source signal line of the optimum counter potential based on the pull-in potential due to the auxiliary capacitance potential and the pull-in potential due to the signal delay of the gate signal when the auxiliary capacitance signal is input from one side It is a graph which shows. It is a block diagram which shows the conventional active matrix type liquid crystal display. It is a wave form diagram which shows the drive signal in A point of FIG.
  • the pull-in voltage is synonymous with the field-through potential and refers to a potential that pulls the drain potential of the TFT in the shift direction of the gate signal.
  • the optimum counter potential is adjusted by the flicker minimum value determination method.
  • the flicker minimum value determination method is known as a technique for evaluating and determining symmetry as disclosed in Patent Document 5, and an optical response waveform is observed in a state where a display pattern in which flicker is most conspicuous is displayed, and a frequency component (30 Hz) is determined. This is a method of determining the counter potential as the optimum value when the minimum is the most).
  • the optimum counter potential determined by the above method is the case where the average potential of the “TFT drain potential” and the average potential of the “counter signal potential” coincide with each other.
  • the output of the output center potential means an output signal of the source driver (video signal line drive circuit), and the source driver is normally AC driven at a duty ratio of 50%.
  • the source driver output signal amplitude means an average potential between a high level and a low level.
  • the present invention is to improve the in-plane flicker by compensating the optimum counter potential distribution.
  • the present inventors have paid attention to the fact that not only the pull-in potential due to the signal delay of the gate signal but also the pull-in potential due to the CS (auxiliary capacitance) potential affects the in-plane flicker. Therefore, before describing this embodiment, a mechanism of in-plane flicker based on the auxiliary capacitance potential will be described. Since the auxiliary capacitance signal is input from only one side of the liquid crystal display device and input from both sides of the liquid crystal display device, the mechanism in each case will be described.
  • the source signal line 21 is connected to the pixel unit 10 including the TFT 12, the CS capacitor C1, and the Cgd capacitor C2.
  • the source signal line 22 is connected to the pixel unit 11 including the TFT 13, the CS capacitor C5, and the Cgd capacitor C6. Is connected.
  • the CS capacitor C1 of the pixel unit 10 is connected to the CS signal input unit 25 via the CS trunk line resistor R3, and the CS capacitor C5 of the pixel unit 11 is connected to the CS signal input unit 25 with the CS trunk line resistor R3 and CS. They are connected via a bus line resistor R2.
  • the CS trunk line resistance R3 is a storage capacitor (CS) signal line outside the display area on the substrate, and has a relatively small resistance value.
  • the CS bus line resistor R2 is a storage capacitor (CS) signal line in the display area on the substrate and has a relatively large resistance value, which affects the distribution of the optimum counter voltage.
  • FIG. 4A shows a gate waveform at point P on the gate signal line 20 connected to the Cgd capacitor C2
  • FIG. 4B shows the gate waveform on the gate signal line 20 connected to the Cgd capacitor C6.
  • the gate waveform at the Q point is shown.
  • the time required for rising and falling is 1 ⁇ s
  • the gate waveform at point Q the time required for rising and falling is 4 ⁇ s.
  • FIG. 4C shows voltages applied to the source signal line 21 and the drain of the TFT 12 and the source signal line 22 and the TFT 13. As shown in the figure, a DC voltage of 2 V is applied in the period of 8 ⁇ s to 38 ⁇ s.
  • FIG. 4D shows the CS signal waveform at the CS signal input terminal. It is a rectangular wave that reverses with a period of 50 ⁇ s.
  • FIG. 5 shows the result of SPICE simulation performed on the model shown in FIG. 3 by applying the external signal shown in FIG.
  • FIG. 5 is a waveform diagram showing a TFT drain potential, a gate signal, and a CS signal in each of a pixel near the CS input terminal and a distant pixel of the CS input terminal.
  • the CS signal (vi) of the far pixel of the CS input terminal has a dull waveform compared to the CS signal (iii) of the neighboring pixel of the CS input terminal.
  • the source driver output is applied to the drain potential of the TFT, and the signals (i) and (iv) corresponding to the TFT drain potential approach 2Vdc.
  • the signals (i) and (iv) corresponding to the TFT drain potential are pulled in through the Cgd capacitance (gate-drain parasitic capacitance) to be lowered.
  • the CS potential on the opposite side via the capacitor is similarly changed, but the CS potential and the TFT drain potential (i) of the pixel near the CS input terminal are the CS potential and TFT drain of the distant pixel of the CS input terminal.
  • the pull-in is smaller than the potential (iv) and the recovery is quick, the TFT drain potential (iv) of the distant pixel at the CS input terminal becomes the TFT drain potential (i of the pixel near the CS input terminal due to the influence of the CS bus line resistance R2. Converge higher than).
  • the CS input terminal increases as the distance from the distance increases.
  • R3 and R5 are CS trunk line resistors, and R2 and R4 are CS bus line resistors.
  • the CS bus line resistors R2 and R4 are auxiliary capacitance (CS) signal lines in the display area on the substrate, have a relatively large resistance value, and affect the distribution of the optimum counter voltage.
  • the CS main line resistors R3 and R5 are auxiliary capacitance (CS) signal lines outside the display area on the substrate, and have relatively small resistance values.
  • the fall time of the gate signal is changed depending on the position, but even if the fall time is made equal, the distribution of the TFT drain potential does not change.
  • the CS signal waveform becomes the smallest in the B point pixel portion, and the TFT drain potential becomes high.
  • the distribution of the optimum drain potential of the TFT drain potential on the line segment perpendicular to the source signal line has a mountain shape as shown in FIG. Note that when the auxiliary capacitance signal is input from both sides, the signal difference is smaller than when the auxiliary capacitance signal is input from one side.
  • FIG. 10 shows the distribution on the line segment perpendicular to the source signal line at the optimum counter potential when only the influence of the CS bus line (both sides input) is considered.
  • FIG. 11 shows a distribution on a line segment perpendicular to the source signal line of the optimum counter potential when the influence of the CS bus line (both side inputs) and the influence of the gate signal delay are taken into consideration.
  • the characteristic configuration of the present embodiment is an offset addition circuit (described later) inside the source driver.
  • This embodiment is characterized in that the offset addition circuit compensates for the distribution on the line segment perpendicular to the source signal line of the optimum counter potential.
  • the offset addition circuit compensates for the distribution on the line segment perpendicular to the source signal line of the optimum counter potential.
  • the first is a pattern that compensates for the distribution of the optimum counter potential on the line perpendicular to the source signal line by only the pull-in potential due to the gate signal delay
  • the second is the optimum counter potential by only the pull-in potential of the CS potential.
  • the third is a pattern for compensating the distribution on the line segment perpendicular to the source signal line, and the third is on the line segment perpendicular to the source signal line of the optimum counter potential due to the pull-in potential due to the gate signal delay and the pull-in potential of the CS potential.
  • This pattern compensates for the distribution of.
  • the configuration of the signal line driver circuit (source driver) for realizing these patterns is common except for the offset value stored in the offset addition circuit.
  • the offset is stored in the offset addition circuit.
  • the present invention is not limited to this, and the offset addition value may be read from the offset value stored in another location.
  • the source driver includes a data input unit 1, an image data processing unit 2, a timing controller 3, a left / right inversion switching / timing control circuit 4, a time division SW switching control circuit 5, a level shifter 6, a data register 7, A time division data selector 9, a level shifter 11, a plurality of source driver output units 12, and a gradation reference voltage generation circuit 13 are provided.
  • the 8-bit video data input DataIN, the vertical synchronization signal VSYNC, the horizontal synchronization signal HSYNC, and the data capturing clock input DCLK are input to the source driver as input signals.
  • 28 gradations, that is, 256 gradations can be displayed.
  • the timing controller 3 receives the VSYNC, HSYNC, and DCLK, and controls the left / right inversion switching / timing control circuit 4 and the time division SW switching control circuit 5.
  • Video data is sequentially input to the data input unit 1 in the order in which it is displayed in synchronization with DCLK with reference to HSYNC.
  • the data input unit 1 sends video data to the image data processing unit 2.
  • FIG. 12 shows a processing flow of the image data processing unit 2.
  • the image data processing unit 2 first expands to 10 bits (shifts by 2 bits; S1).
  • the black level / white level are matched, that is, the corresponding offset value is added to the data (S2).
  • the ⁇ characteristic of the display gradation is adjusted (S3). That is, a general display is given an input gradation-display luminance characteristic of an index of 2.2, but a gradation reference voltage generation circuit 13 described later has a linear gradation-voltage characteristic, so that the voltage-display of the panel is displayed. Even if combined with the luminance characteristic, it is not always possible to obtain the characteristic of index 2.2. Therefore, data conversion is necessary.
  • Data conversion in a ⁇ correction circuit is generally performed by a conversion formula or a conversion method using a conversion table called LOOK UP TABLE. Thereafter, the brightness and sub-brightness adjustment unit (not shown) performs black-and-white amplitude adjustment (S4) for each RGB display color, and data corresponding to 10 bits is output.
  • S4 black-and-white amplitude adjustment
  • the data that has passed through the image data processing unit 2 is stored in the data register 7.
  • the time division data selector 9 selects six pieces of data stored in the data register 7 according to the timing of a time division switching SW (switch) (not shown). This switch is controlled by the time division SW switching control circuit 5. The selected data is transferred to the source driver output unit 12 after the voltage level is adjusted by the level shifter 6.
  • the source driver output unit 12 has one output circuit per source driver 1 output terminal (output). For example, if the source driver has 320 output terminals (outputs), it has 320 output circuits.
  • the output circuit includes a DAC circuit 17 that switches a corresponding reference voltage for data corresponding to 10 bits from 0 to 1023, an output amplifier 18 that can drive a source bus line in the liquid crystal panel, an offset addition circuit 16, It has.
  • the reference voltage is generated by a gradation reference voltage generation circuit.
  • FIG. 13 shows a gradation reference voltage generation circuit 13 of a resistance DAC method.
  • the n-level positive polarity reference voltage is VnP and the n-level negative polarity reference voltage is VnN
  • VnP is created by a resistance ladder between V0P and V1023P
  • VnN is a resistance between V0N and V1023N.
  • the polarity inversion period is one horizontal period (1H inversion driving), and the resistance ladder between the positive and negative electrodes is shared, and only the voltage V0 / V1023 at both ends is switched corresponding to the polarity switching signal ⁇ . use.
  • FIG. 14 shows the output voltage when the gradation reference voltage configured in this way is changed from Data0 to Data1023 at a constant rate.
  • the source driver output when displaying the same gradation level is all the same voltage.
  • the source driver output voltage in the case of displaying “24 gradations” is output by switching V24P and V24N in accordance with the polarity switching signal ⁇ .
  • an offset addition circuit 16 is provided for each source driver output unit 12 in the preceding stage of the 10-bit DAC.
  • an offset addition value is created in advance according to the output position of the source driver, and the offset addition circuit 16 is switched between addition and subtraction by the polarity switching signal ⁇ .
  • the offset addition circuit 16 subtracts the output value for the offset addition value, and in the case of negative polarity, the offset addition circuit 16 adds the output value for the offset addition value.
  • V0P 4.596V
  • V1023P 0.500V
  • V0N 0.500V
  • V1023N 0.596V of the gradation reference voltage circuit.
  • the amount of change of the reference voltage per gradation is 4 [mV] (
  • the center value of the source driver output potential of the source driver output unit 12 can be set uniformly 16 [mV] higher. In this way, by setting the center value of the output potential of the source driver according to the position from the output of the gate driver, it is possible to compensate for variations in the distribution on the line segment perpendicular to the source signal line of the optimum counter potential. . In other words, by setting the output center potential of the source driver using this embodiment, the distribution of the optimum counter potential can be made constant and in-plane flicker can be eliminated.
  • the output center potential of the source driver is set higher by the field through potential. In other words, the output center potential of the source driver is set high in inverse proportion to the distance from the gate driver output unit 12.
  • the output center potential of the source driver is set high, and the effective field-through voltage is small in the distance from the output portion of the gate driver. Set the output center potential of the driver low.
  • the source driver output signal lines are S1, S2,..., Sn,.
  • the output center potential of the source driver is set higher by the difference of ⁇ V (inclined line in FIG. 16).
  • the distribution of the optimum counter potential can be corrected.
  • variation in the distribution on the line segment perpendicular to the source signal line having the optimum counter potential can be corrected, and in-plane flicker can be prevented.
  • the output center potential of the source driver is set lower as the distance from the auxiliary capacitance signal input portion increases. To do. As a result, variation in the distribution on the line segment perpendicular to the source signal line having the optimum counter potential can be corrected, and flicker can be prevented.
  • the output center potential of the source driver is set as a downward convex function as shown in FIG.
  • the distribution of the optimum counter potential on the line segment perpendicular to the source signal line is a distribution affected by both the pull-in voltage based on the gate signal delay and the pull-in voltage due to the CS potential pull-in at each point. That is, at each point, the distribution is drawn by the potential obtained by adding the pull-in voltage based on the gate signal delay and the pull-in voltage due to the pull-in of the CS potential. Therefore, the distribution of the optimum counter potential is as shown in FIG. FIG. 19 shows the case where the CS signal input is on the same side as the gate signal input.
  • the center potential of the source driver output that compensates for the distribution of the optimum counter potential on the line segment perpendicular to the source signal line based on the gate signal delay decreases as the distance from the gate driver output section increases.
  • the center potential of the source driver output that compensates for the distribution of the optimum counter potential on the line segment perpendicular to the source signal line also decreases as the distance from the output portion of the gate driver increases.
  • the center potential of the source driver output for compensating the distribution on the line segment perpendicular to the source signal line of the optimum counter potential based on the pull-in potential due to the signal delay of the gate signal and the pull-in potential of the CS potential is as shown in FIG.
  • the distribution on the line segment perpendicular to the source signal line of the optimum counter potential is the distribution drawn by the potential obtained by adding the pull-in voltage based on the gate signal delay and the pull-in voltage due to the CS potential pull-in at each point. Become. Therefore, this distribution is as shown in FIG.
  • the pull-in potential b at the center of the liquid crystal panel (point B) is a value obtained by adding the pull-in potential ⁇ shown in FIG. 20 and the pull-in potential ⁇ shown in FIG. Therefore, the center potential of the source driver output that compensates for the distribution of the optimum counter potential on the line segment perpendicular to the source signal line is slightly shifted from the center of the liquid crystal panel (display surface) as shown in FIG. It increases from the point between the point and the point C) toward the end of the liquid crystal panel. Thereby, the distribution on the line segment perpendicular to the source signal line having the optimum counter potential can be compensated.
  • the gradation reference voltage configuration of the driver IC is the configuration shown in FIG.
  • the amount of change in the reference voltage per gradation is
  • 4 [mV].
  • Vx50P positive output gradation when displaying 50 gray levels at point x
  • Vx50N negative output gradation when displaying 50 gray levels at point x
  • Vb50P V43P
  • Vb50N V57N
  • Vc50P V40P
  • Vc50N V60N
  • the offset of the design value can be given by the source center potential while maintaining the source output amplitude as designed.
  • the output center potential between the source driver output (A) that drives the source bus line close to the gate driver output and the source driver output (B) that drives the source bus line far from the gate driver output has a certain gradient.
  • the difference between the present invention and the prior art can be expressed as follows.
  • driving in three or six divisions is performed to reduce signal lines (drive by switching three or six signal lines in a time division manner for each driver output terminal).
  • the number of divisions is a sufficiently small unit, a gentle gradient can be formed.
  • one signal line is assigned to one driver output terminal.
  • the output voltage deviation of the source driver is usually kept low within 10-20 mV, the manufacturing variation is small. There is no factor that deteriorates the display quality because the design in the panel does not need to be changed as in the Cgd gradation.
  • most of the source driver ICs for small and medium-sized liquid crystals can be easily adjusted and changed from the outside by setting such as serial communication. It is even possible to adjust each unit individually according to the individual differences of panels and ICs.
  • the present invention can be suitably used for, for example, a medium-sized liquid crystal display for mobile use.
  • the application and size of the applicable liquid crystal display are not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明のソースドライバは、液晶表示装置に設けられたソース信号線を駆動するものであって、フリッカー最小値決定法で求められる最適対向電極電位の映像信号線に垂直な線分上の分布に基づいて、映像信号線の位置に応じて出力信号の電位を変化させ、出力信号のセンター電位は、表示装置の表示面の略中心から外側に近づくにつれて大きくなっている。これにより、走査信号線駆動回路からの距離に応じた最適対向電位の分布に基づく面内フリッカ、走査信号線駆動回路からの距離およびCS幹線抵抗による変動に基づく面内フリッカを抑制する映像信号線駆動回路を提供する。

Description

映像信号線駆動回路および液晶表示装置
 本発明は、映像信号線駆動回路および映像信号線駆動回路を備えた液晶表示装置に関するものである。
 昨今、モバイル用途の中小型液晶ディスプレイにおいても、高精細および大画面化(VGA、3型以上)の傾向があり、面内フリッカの問題、つまり、表示画面内で引き込み電圧に差異が生じ、画面全体でフリッカの調整ができないという問題、が顕著になっている。
 ここで、面内フリッカの発生メカニズムについて説明する。
 図21は、一般的なアクティブマトリクス型液晶ディスプレイの構成図である。
 この液晶ディスプレイは、同図に示す通り、ソースドライバ(信号線ドライバ)110と、ソースドライバ110に接続された縦方向に延びる信号線S1~SN(102)と、ゲートドライバ(走査線ドライバ)120と、ゲートドライバ120に接続された横方向に延びる走査線G1~GM(101)と、信号線S1~SNおよび走査線G1~GMの交差部に位置する画素およびTFT103と、を備えている。信号線S1~SNと走査線G1~GMとは互いに直交しており、その交差部には画素およびTFT103が配されている。
 画素およびTFT103は、図21の拡大図に示すように、TFT103、Cgd(ゲート-ドレイン間寄生容量)104、Clc(液晶画素容量)105、Cs(補助容量)106、および対向電極107を有している。
 TFT103のゲート-ドレイン間に存在する、寄生容量に起因してゲート信号(走査線信号)の立下り時に、フィールドスルー(ゲート信号線の電位が画素TFTをオフさせる電位にシフトすると、画素電極の電位もゲート信号線の電位がシフトする方向にΔVだけ引き込まれる現象。ΔVは突き抜け電圧、またはフィールドスルー電圧と呼ぶ。)と呼ばれるドレイン電位の電圧変化が生じる。このフィールドスルーは、液晶パネルにおける焼付きやフリッカの原因となる。なお、フィールドスルーについては、特許文献4に開示されている。
 ここで、図22は、図21のA点における駆動信号を示す波形図であり、図23は、図21のB点における駆動信号を示す波形図である。これらの図中、aは、フィールドスルー電位(VFD)であり、bは、実効的なフィールドスルー電位であり、cは、再書きこみによる電圧変動であり、Δtは、ゲート信号の立下りからTFTがOFFするまでの時間を示している。なお、A点は、図21に示すように、B点よりもゲートドライバの出力に近い地点に位置している。
 フィールドスルー電位(VFD)は、次の(式1)で示される。
 VFD=Cgd*(Vgh-Vgl)/(Clc+Cs+Cgd)・・・(式1)
Cgd:TFT部ゲート-ドレイン間寄生容量
Clc:画素容量
Cs:補助容量
Vgh:ゲート信号ハイ電位
Vgl:ゲート信号ロー電位
 (式1)は、ゲート信号(走査線信号)が矩形波の理想的な場合のフィールドスルー電位である。しかるに、現実の大画面・高精細のパネルでは、走査線が長く、交差する信号線数も多い。トランジスタ(TFT)のON抵抗、寄生容量が大きくなるため、ゲート信号(走査線信号)の波形は時定数に応じて鈍る。すなわち、ゲート信号(走査線信号)が立ち下がってからTFTがOFFするまでの時間には遅延Δtが生じる。Δtの期間、ドレイン電極にはソース信号線を介して再度電圧が書き込まれて電圧変動cが生じる。この電圧変動cは、(式2)で示される。
 c=∫IDS*Δt/(Clc+Cs+Cgd)・・・(式2)
 ∫IDS:Δtの間にTFTを介してドレイン電極からソース電極に流れる平均電流
 Δt:ゲート信号(走査線信号)の立下り開始からTFTがオフするまでの時間
 この電圧変動を補正した実効的なフィールドスルー電圧bは次に(式3)で示される。
 VFD={Cgd*(Vgh-Vgl)+∫IDS*Δt}/(Clc+Cs+Cgd)・・・(式3)
 一般的にゲートドライバの出力から近いA点では、図22に示すようにゲート信号波形の遅延Δtは比較的小さいが、ゲートドライバの出力から遠いB点では、図23に示すようにゲート信号波形の遅延ΔtはA点に比して大きくなる。それゆえ、上記の(式2)で示される、再書き込みによる電圧変動cも面内で分布を持ち、これに伴い上記の(式3)で示される、実効的なフィールドスルー電圧bも面内で分布を持つ。したがって、最適対向電位のソース信号線に垂直な線分上の分布は、図24に示すような分布を持つ。
 通常、フィールドスルー電位を補正して、フリッカを抑制するために、対向電極の電位(コモン電位)を調整する。しかしながら、コモン電位は、同一画面内で共通であるため、上記したフィールドスルー電位のソース信号線に垂直な線分上の分布のために、面内の一箇所でフリッカを調整しても、他所であわないという問題が生じる。
 この問題を解決するために、特許文献1、および2などにCgdグラデーションという技術が開示されている。Cgdグラデーションの採用により、一般的な表示画面では面内フリッカをほぼ問題ないレベルに抑えることができるが、一部の特殊な表示画面(例;生産工程の対向調整画面)では十分な精度があるとはいえないため、更なる改善が必要とされている。Cgdグラデーションは、TFTのゲートドレイン間にあらかじめ容量を作り込み、ゲートドライバの出力付近のA点では、容量を小さくし、ゲートドライバの出力から遠い位置のB点では、容量を大きくすることで、最適対向電位の分布を一様に補償するものである。
 しかしながら、実際の設計では、図25に示すように、液晶画面内を複数の領域に分割して容量値を変化させる。このとき補正特性は、図25に示す折れ線のようになる。この折れ線による近似のため、分割領域の境界付近で誤差に見える場合があり、設計上の調整および工夫が必要である。このように補正容量をパネル内に作りこむ方法は、精度に限界があり、画素付近に補正容量を埋め込むため、パネルの透過率が犠牲になる場合もある。
 これに対して、特許文献4に記載の液晶表示装置は、大型のTFT液晶表示装置においても画像表示特性を均一化させることを目的として、フリッカー最小値決定法で求められる最適対向電極電位に相応させて、走査信号の入力端と終端との間に対応する対向基板への印加電圧に傾斜を持たせるように構成している。
日本国公開特許公報「特開平11-84428号」(公開日:平成11年3月26日) 日本国公開特許公報「特開2002-236296号」(公開日:平成14年8月23日) 日本国公開特許公報「特開2006-171022号」(公開日:平成18年6月29日) 日本国公開特許公報「特開2001-296843号」(公開日:平成13年10月26日) 日本国公開特許公報「特開2002-91391号」(公開日:平成14年3月27日)
 しかしながら、特許文献5に記載のように、単に傾斜を持たせるだけでは、CS幹線抵抗による変動しか補償することができず、走査信号線駆動回路からの距離に応じた影響による最適対向電位の分布、および、走査信号線駆動回路からの距離およびCS幹線抵抗による変動に応じた影響による最適対向電位の分布を補償することができないという問題があった。
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、走査信号線駆動回路からの距離に応じた最適対向電位の分布に基づく面内フリッカ、走査信号線駆動回路からの距離およびCS幹線抵抗による変動に基づく面内フリッカを抑制する、映像信号線駆動回路および液晶表示装置を提供することを目的としている。
 本発明の映像信号線駆動回路は、上記の課題を解決するために、液晶表示装置に設けられた映像信号線を駆動する映像信号線駆動回路において、フリッカー最小値決定法で求められる最適対向電極電位の、映像信号線に垂直な線分上の分布に基づいて、映像信号線の位置に応じて出力信号の電位を変化させ、上記出力信号の電位は、上記表示装置の表示面の略中心から外側に近づくにつれて大きくなっていることを特徴としている。
 ここで、フリッカー最小値決定法で求められる最適対向電極電位の、映像信号線に垂直な線分上の分布とは、走査信号の信号遅延による引き込み電位、および/または、CS(補助容量)電位によるフィールドスルー電位に基づくものである。
 液晶表示装置に用いる補助容量信号源から入力する補助容量信号を両側から入力する液晶表示装置では、液晶表示装置の表示面の略中心から外側に近づくにつれてフリッカー最小値決定法で求められる最適対向電極電位が小さくなる。したがって、液晶表示装置の表示面の略中心から外側に近いほど映像信号線駆動回路の出力信号の電位を大きくすれば、フリッカー最小値決定法で求められる最適対向電極電位の上記映像信号線に垂直な線分上の分布を補償することができる。したがって、上記構成を、補助容量信号源から入力する補助容量信号を両側から入力する液晶表示装置に適用すれば、フリッカー最小値決定法で求められる最適対向電極電位の上記映像信号線に垂直な線分上の分布を補償することができる。
 また、本発明の映像信号線駆動回路は、上記の課題を解決するために、液晶表示装置に設けられた映像信号線を駆動する映像信号線駆動回路において、フリッカー最小値決定法で求められる最適対向電極電位の、映像信号線に垂直な線分上の分布に基づいて、映像信号線の位置に応じて出力信号の電位を変化させ、上記出力信号の電位は、上記表示装置の表示面の略中心よりも上記表示装置の表示面の一端寄りの地点から外側に近づくにつれて大きくなっていることを特徴としている。
 ここで、フリッカー最小値決定法で求められる最適対向電極電位の、映像信号線に垂直な線分上の分布とは、走査信号の信号遅延による引き込み電位、および/または、CS(補助容量)電位によるフィールドスルー電位に基づくものである。
 液晶表示装置に用いる走査信号線駆動回路から離れるほど、フリッカー最小値決定法で求められる最適対向電極電位は大きくなる。また、液晶表示装置に用いる補助容量信号源から入力する補助容量信号を両側から入力する液晶表示装置では、液晶表示装置の表示面の略中心から外側に近づくにつれてフリッカー最小値決定法で求められる最適対向電極電位が小さくなる。したがって、これらの両方の影響に基づくフリッカー最小値決定法で求められる最適対向電極電位の上記映像信号線に垂直な線分上の分布を考慮した場合、映像信号線駆動回路の出力信号の電位を、上記液晶表示装置の表示面の略中心よりも上記液晶表示装置の表示面の一端寄りの地点から外側に近づくにつれて大きくすれば、フリッカー最小値決定法で求められる最適対向電極電位の上記映像信号線に垂直な線分上の分布を補償することができる。したがって、上記構成を液晶表示装置に用いることにより、走査信号線駆動回路からの距離に基づくフリッカー最小値決定法で求められる最適対向電極電位の上記映像信号線に垂直な線分上の分布、および、両側から入力する補助容量信号に基づくフリッカー最小値決定法で求められる最適対向電極電位の上記映像信号線に垂直な線分上の分布の両方の影響を考慮してフリッカー最小値決定法で求められる最適対向電極電位の上記映像信号線に垂直な線分上の分布を補償することができる。
 また、本発明の映像信号線駆動回路では、上記垂直な線分上の分布を補償するオフセット値を格納したオフセット加算回路を備えていることが好ましい。
 上記構成によれば、単にオフセット値を格納しておくだけで、つまり、簡単な構成にて、フリッカー最小値決定法で求められる最適対向電位の、フィールドスルーによって生じる上記映像信号線に垂直な線分上の分布を補償することができる。
 また、本発明の液晶表示装置は、上記の課題を解決するために、互いに直交する映像信号線および走査信号線と、上記映像信号線を駆動する映像信号線駆動回路と、上記走査信号線を駆動する走査信号線駆動回路と、を備えた液晶表示装置において、上記映像信号線駆動回路は、フリッカー最小値決定法で求められる最適対向電極電位の、映像信号線に垂直な線分上の分布に基づいて、映像信号線の位置に応じて出力信号の電位を変化させ、補助容量信号を、上記走査信号線と平行に、表示装置自身の両側から入力する補助容量信号源をさらに備えており、上記出力信号の電位は、上記液晶表示装置の表示面の略中心から外側に近づくにつれて大きくなっていることを特徴としている。
 ここで、フリッカー最小値決定法で求められる最適対向電極電位の、映像信号線に垂直な線分上の分布とは、走査信号の信号遅延による引き込み電位、および/または、CS(補助容量)電位によるフィールドスルー電位に基づくものである。
 液晶表示装置に用いる補助容量信号源から入力する補助容量信号を両側から入力する液晶表示装置では、液晶表示装置の表示面の略中心から外側に近づくにつれてフリッカー最小値決定法で求められる最適対向電極電位が小さくなる。したがって、液晶表示装置の表示面の略中心から外側に近いほど映像信号線を駆動する映像信号線駆動回路の出力信号の電位を大きくすれば、フリッカー最小値決定法で求められる最適対向電極電位の上記映像信号線に垂直な線分上の分布を補償することができる。従って上記構成によれば、フリッカー最小値決定法で求められる最適対向電極電位の上記映像信号線に垂直な線分上の分布を補償することができる。
 また、本発明の液晶表示装置は、上記の課題を解決するために、互いに直交する映像信号線および走査信号線と、上記映像信号線を駆動する映像信号線駆動回路と、上記走査信号線を駆動する走査信号線駆動回路と、を備えた液晶表示装置において、上記映像信号線駆動回路は、フリッカー最小値決定法で求められる最適対向電極電位の、映像信号線に垂直な線分上の分布に基づいて、映像信号線の位置に応じて出力信号の電位を変化させ、補助容量信号を、上記走査信号線と平行に、液晶表示装置自身の両側から入力する補助容量信号源をさらに備えており、上記出力信号の電位は、上記液晶表示装置の表示面の略中心よりも上記走査信号線駆動回路寄りの地点から外側に近づくにつれて大きくなっていることを特徴としている。
 ここで、フリッカー最小値決定法で求められる最適対向電極電位の、映像信号線に垂直な線分上の分布とは、走査信号の信号遅延による引き込み電位、および/または、CS(補助容量)電位によるフィールドスルー電位に基づくものである。
 液晶表示装置に用いる走査信号線駆動回路から離れるほど、フリッカー最小値決定法で求められる最適対向電極電位は大きくなる。また、液晶表示装置に用いる補助容量信号源から入力する補助容量信号を両側から入力する液晶表示装置では、液晶表示装置の表示面の略中心から外側に近づくにつれてフリッカー最小値決定法で求められる最適対向電極電位が小さくなる。したがって、これらの両方の影響に基づくフリッカー最小値決定法で求められる最適対向電極電位の上記映像信号線に垂直な線分上の分布を考慮した場合、映像信号線駆動回路の出力信号の電位を、上記液晶表示装置の表示面の略中心よりも上記走査信号線駆動回路寄りの地点から外側に近づくにつれて大きくすれば、フリッカー最小値決定法で求められる最適対向電極電位の上記映像信号線に垂直な線分上の分布を補償することができる。したがって、上記構成を液晶表示装置に用いることにより、走査信号線駆動回路からの距離に基づくフリッカー最小値決定法で求められる最適対向電極電位の上記映像信号線に垂直な線分上の分布、および、両側から入力する補助容量信号に基づくフリッカー最小値決定法で求められる最適対向電位の、フィールドスルーによって生じる上記映像信号線に垂直な線分上の分布の両方の影響を考慮してフリッカー最小値決定法で求められる最適対向電極電位位の上記映像信号線に垂直な線分上の分布を補償することができる。
 また、本発明の液晶表示装置では、上記走査信号線駆動回路は、上記垂直な線分上の分布を補償するオフセット値を格納したオフセット加算回路を備えていることが好ましい。
 上記構成によれば、単にオフセット値を格納しておくだけで、つまり、簡単な構成にて、フリッカー最小値決定法で求められる最適対向電位の、フィールドスルーによって生じる上記映像信号線に垂直な線分上の分布を補償することができる。
 本発明の映像信号線駆動回路は、以上のように、液晶表示装置に設けられた映像信号線を駆動する映像信号線駆動回路において、フリッカー最小値決定法で求められる最適対向電極電位の、映像信号線に垂直な線分上の分布に基づいて、映像信号線の位置に応じて出力信号の電位を変化させ、上記出力信号の電位は、上記表示装置の表示面の略中心から外側に近づくにつれて大きくなっている。
 また、本発明の映像信号線駆動回路は、以上のように、液晶表示装置に設けられた映像信号線を駆動する映像信号線駆動回路において、フリッカー最小値決定法で求められる最適対向電極電位の、映像信号線に垂直な線分上の分布に基づいて、映像信号線の位置に応じて出力信号の電位を変化させ、上記出力信号の電位は、上記表示装置の表示面の略中心よりも上記表示装置の表示面の一端寄りの地点から外側に近づくにつれて大きくなっている。
 また、本発明の液晶表示装置は、以上のように、互いに直交する映像信号線および走査信号線と、上記映像信号線を駆動する映像信号線駆動回路と、上記走査信号線を駆動する走査信号線駆動回路と、を備えた液晶表示装置において、記映像信号線駆動回路は、フリッカー最小値決定法で求められる最適対向電極電位の、映像信号線に垂直な線分上の分布に基づいて、映像信号線の位置に応じて出力信号の電位を変化させ、補助容量信号を、上記走査信号線と平行に、表示装置自身の両側から入力する補助容量信号源をさらに備えており、上記出力信号の電位は、上記液晶表示装置の表示面の略中心から外側に近づくにつれて大きくなっている。
 また、本発明の液晶表示装置は、以上のように、互いに直交する映像信号線および走査信号線と、上記映像信号線を駆動する映像信号線駆動回路と、上記走査信号線を駆動する走査信号線駆動回路と、を備えた液晶表示装置において、記映像信号線駆動回路は、フリッカー最小値決定法で求められる最適対向電極電位の、映像信号線に垂直な線分上の分布に基づいて、映像信号線の位置に応じて出力信号の電位を変化させ、補助容量信号を、上記走査信号線と平行に、液晶表示装置自身の両側から入力する補助容量信号源をさらに備えており、上記出力信号の電位は、上記液晶表示装置の表示面の略中心よりも上記走査信号線駆動回路寄りの地点から外側に近づくにつれて大きくなっている。
 換言すれば、本発明の映像信号線駆動回路は、液晶表示装置に設けられた映像信号線を駆動する映像信号線駆動回路において、予め設定されたオフセット値を用いて、映像信号線の位置に応じて出力信号のセンター電位を変化させ、上記オフセット値は、上記出力信号のセンター電位が上記液晶表示装置の表示面の略中心から外側に近づくにつれて大きくなるように設定されている。
 また、本発明の映像信号線駆動回路は、液晶表示装置に設けられた映像信号線を駆動する映像信号線駆動回路において、予め設定されたオフセット値を用いて、映像信号線の位置に応じて出力信号のセンター電位を変化させ、上記オフセット値は、上記出力信号のセンター電位が上記映像表示装置の表示面の略中心よりも上記液晶表示装置の表示面の一端寄りの地点から外側に近づくにつれて大きくなるように設定されている。
 また、本発明に係る液晶表示装置は、互いに直交する映像信号線および走査信号線と、上記映像信号線を駆動する映像信号線駆動回路と、上記走査信号線を駆動する走査信号線駆動回路と、を備えた液晶表示装置において、上記映像信号線駆動回路は、予め設定されたオフセット値を用いて、映像信号線の位置に応じて出力信号のセンター電位を変化させ、補助容量信号を、上記走査信号線と平行に、液晶表示装置自身の両側から入力する補助容量信号源をさらに備えており、上記オフセット値は、上記出力信号のセンター電位が上記液晶表示装置の表示面の略中心から外側に近づくにつれて大きくなるように設定されている。
 また、本発明に係る液晶表示装置は、互いに直交する映像信号線および走査信号線と、上記映像信号線を駆動する映像信号線駆動回路と、上記走査信号線を駆動する走査信号線駆動回路と、を備えた液晶表示装置において、上記映像信号線駆動回路は、予め設定されたオフセット値を用いて、映像信号線の位置に応じて出力信号のセンター電位を変化させ、補助容量信号を、上記走査信号線と平行に、液晶表示装置自身の両側から入力する補助容量信号源をさらに備えており、上記オフセット値は、上記出力信号のセンター電位が上記液晶表示装置の表示面の略中心よりも上記走査信号線駆動回路寄りの地点から外側に近づくにつれて大きくなるように設定されている。
 したがって、走査信号線駆動回路からの距離に応じた最適対向電位の分布に基づく面内フリッカ、走査信号線駆動回路からの距離およびCS幹線抵抗による変動に基づく面内フリッカを抑制する映像信号線駆動回路および液晶表示装置を提供することができる。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白になるであろう。
本実施の形態のソースドライバ出力のセンター電位とゲートドライバ出力部からの距離との関係を示すグラフである。 本実施の形態のソースドライバの内部構成を示すブロック図である。 補助容量信号を片側から入力する場合の画素モデルを示す図である。 図3に示す画素モデルに入力されるソースドライバ信号、ゲートドライバ信号、CS信号のタイミング、電位を示す図である。 図3,4で示されるモデルに対してpSPICEシミュレーションを行った場合のCS入力端子近傍画素およびCS入力端子遠方画素のそれぞれにおける、TFTドレイン電位、ゲート信号、ならびにCS信号を示す波形図である。 補助容量信号を片側から入力する場合の補助容量電位による引き込み電位に基づく最適対向電位のソース信号線に垂直な線分上の分布である。 補助容量信号を両側から入力する場合の画素モデルを示す図である。 図7に示す画素モデルに入力されるソースドライバ信号、ゲートドライバ信号、CS信号のタイミング、電位を示す図である。 図7、図8で示されるモデルに対してpSPICEシミュレーションを行った場合のCS入力端子近傍画素およびCS入力端子遠方画素のそれぞれにおける、TFTドレイン電位、ならびにCS信号を示す波形図である。 補助容量信号を両側から入力する場合の補助容量電位による引き込み電位に基づく最適対向電位のソース信号線に垂直な線分上の分布である。 補助容量信号を両側から入力する場合の補助容量電位による引き込み電位およびゲート信号の信号遅延による引き込み電位に基づく最適対向電位のソース信号線に垂直な線分上の分布である。 図2に示す画像データ処理部のフローチャートである。 階調基準電圧生成回路の内部構成を示す図である。 本実施の形態のソースドライバのセンター電位調整を行わない場合の出力電圧を示す参考例としてのグラフである。 本実施の形態のソースドライバのセンター電位調整を行った場合の出力電圧を示すグラフである。 ゲート信号の信号遅延による引き込み電位に基づく最適対向電位のソース信号線に垂直な線分上の分布を補償するソースドライバのセンター電位を示すグラフである。 補助容量信号を片側から入力する場合の補助容量電位による引き込み電位に基づく最適対向電位のソース信号線に垂直な線分上の分布を補償するソースドライバのセンター電位を示すグラフである。 補助容量信号を両側から入力する場合の補助容量電位による引き込み電位に基づく最適対向電位のソース信号線に垂直な線分上の分布を補償するソースドライバのセンター電位を示すグラフである。 補助容量信号を片側から入力する場合の補助容量電位による引き込み電位およびゲート信号の信号遅延による引き込み電位に基づく最適対向電位のソース信号線に垂直な線分上の分布である。 補助容量信号を片側から入力する場合の補助容量電位による引き込み電位およびゲート信号の信号遅延による引き込み電位に基づく最適対向電位のソース信号線に垂直な線分上の分布を補償するソースドライバのセンター電位を示すグラフである。 従来のアクティブマトリクス型液晶ディスプレイを示す構成図である。 図21のA点における駆動信号を示す波形図である。 図21のB点における駆動信号を示す波形図である。 ゲート信号の信号遅延による引き込み電位による引き込み電位に基づく最適対向電位のソース信号線に垂直な線分上の分布である。 従来のCgdグラデーションの問題点を説明するための図である。
 以下の実施の形態の説明において、引き込み電圧は、フィールドスルー電位と同義であり、TFTのドレイン電位をゲート信号のシフト方向へ引き込む電位をいう。また、最適対向電位は、フリッカー最小値決定法によって調整される。フリッカー最小値決定法は、特許文献5にあるように対称性を評価・決定する手法として既知であり、フリッカーが最も目立つ表示パターンを表示させた状態で光学応答波形を観察し、周波数成分(30Hzの場合が多い)が最小となる時の対向電位を最適値として決定する方法である。
 上記方法で決定された最適対向電位は、「TFTドレイン電位」の平均電位と「対向信号電位」の平均電位とが一致する場合であり、上記引き込み電圧の影響を考慮に入れて、「(ソースドライバ出力信号センター電位)-(フィールドスルー電位)」と一致する。さらに、また、出力センター電位の出力は、ソースドライバ(映像信号線駆動回路)の出力信号を意味しており、ソースドライバは、通常Duty比50%でAC駆動されるために、センター電位とはソースドライバ出力信号振幅ハイレベルとローレベルとの平均電位を意味する。
 本発明は、最適な対向電位分布を補償して、面内フリッカを改善することである。本発明者らは、ゲート信号の信号遅延による引き込み電位だけでなく、CS(補助容量)電位による引き込み電位も面内フリッカに影響を及ぼすことに着目した。そこで、本実施の形態を説明する前に、補助容量電位に基づく面内フリッカのメカニズムについて説明する。なお、補助容量信号は、液晶表示装置の片側のみから入力される場合、および液晶表示装置の両側から入力される場合の両方があるため、それぞれの場合のメカニズムについて説明する。
 〔補助容量信号を片側から入力する場合のメカニズムについて〕
 ここでは、簡略化されたパネルモデルを用いて説明する。簡略化されたモデルでは、図3に示すような画素モデルとし、CS容量(画素補助容量;C1,C5)、およびCgd容量(ゲート-ドレイン間寄生容量;C2,C6)のみを考慮して考える。図3では、CS信号入力部(CS入力端子)25をゲート入力24と同じ側として、ゲート信号線20と、CS信号入力部25に近い方のソース信号線21およびCS信号入力部25から遠い方のソース信号線22と、が交差している。ソース信号線21には、TFT12、CS容量C1、およびCgd容量C2から成る画素部10が接続されており、ソース信号線22には、TFT13、CS容量C5、およびCgd容量C6から成る画素部11が接続されている。また、画素部10のCS容量C1は、CS信号入力部25にCS幹線抵抗R3を介して接続されており、画素部11のCS容量C5は、CS信号入力部25にCS幹線抵抗R3およびCSバスライン抵抗R2を介して接続されている。ここで、CS幹線抵抗R3は、基板上表示領域外の補助容量(CS)信号線であり、相対的に抵抗値は小さい。一方、CSバスライン抵抗R2は、基板上表示領域内の補助容量(CS)信号線であり、相対的に抵抗値が大きく、最適対向電圧の分布に影響を与える。
 この簡略化されたモデルに対して、実際の液晶パネルの駆動に即した駆動信号(ソース信号、ゲート信号、CS信号)、及び抵抗値、容量値を与えて動作メカニズムを確認する。
 駆動信号の波形図は図4に示すとおりである。図4(a)は、Cgd容量C2と接続されたゲート信号線20上のP点におけるゲート波形を示しており、図4(b)は、Cgd容量C6と接続されたゲート信号線20上のQ点におけるゲート波形を示している。これらの図に示すように、ゲート信号遅延により、画素部10と、画素部11とでは、信号波形(ゲート波形)に差がある。具体的には、P点におけるゲート波形では、立ち上がり、および立ち下がりにかかる時間が1μsであるのに対し、Q点におけるゲート波形では、立ち上がり、および立ち下がりにかかる時間が4μsとなる。
 図4(c)はソース信号線21とTFT12およびソース信号線22とTFT13のドレインに印加される電圧を示している。図に示されるとおり8μsから38μsの期間に2VのDC電圧が印加される。図4(d)はCS信号入力端におけるCS信号波形である。50μs周期で反転する矩形波である。
 図3のモデルに対して、図4の外部信号を与えてSPICEシミュレーションを行った結果が、図5となる。図5は、CS入力端子の近傍画素およびCS入力端子の遠方画素のそれぞれにおける、TFTドレイン電位、ゲート信号、ならびにCS信号を示す波形図である。
 CSバスライン抵抗R2の影響で、CS入力端子の遠方画素のCS信号(vi)は、CS入力端子の近傍画素のCS信号(iii)に比べて鈍った波形となる。TFTがONしている期間は、TFTのドレイン電位にはソースドライバ出力が印加され、TFTドレイン電位に対応した信号(i)・(iv)は、2Vdcに近づく。TFTがOFFしてゲート信号が立ち下がるとき、Cgd容量(ゲート-ドレイン間寄生容量)を介してTFTドレイン電位に対応した信号(i)・(iv)が引き込まれて低下する。上記の通り、容量を介した反対側のCS電位も同じく変動を受けるが、CS入力端子の近傍画素のCS電位およびTFTドレイン電位(i)は、CS入力端子の遠方画素のCS電位およびTFTドレイン電位(iv)よりも引き込みも小さく復帰も早いが、CSバスライン抵抗R2の影響によって、CS入力端子の遠方画素のTFTドレイン電位(iv)は、CS入力端子の近傍画素のTFTドレイン電位(i)よりも高めに収束する。これにより、補助容量信号を片側から入力する場合のフリッカー最小値決定法で求められる最適対向電極電位のソース信号線21に垂直な線分上の分布では、図6に示すように、CS入力端子から離れるにつれて最適対向電位が大きくなる。
 〔補助容量信号を両側から入力する場合のメカニズムについて〕
 両側から入力するCSバスラインの影響メカニズムも、片側から入力するCSバスラインの影響メカニズムと同様に、図7に示すようなモデルに図8で示される駆動信号を入力することによって図9に示すようなシミュレーション結果が得られる。図7に示すモデルでは、ゲートドライバから近い方からA点画素、B点画素、C点画素が並んでいる。また、A点画素は、液晶パネル左端の画素であり、B点画素は、液晶パネル中央の画素であり、C点画素は、液晶パネル右端の画素である。図7では、R3,R5がCS幹線抵抗であり、R2,R4がCSバスライン抵抗である。これらのうち、CSバスライン抵抗R2,R4は、基板上表示領域内の補助容量(CS)信号線であり、相対的に抵抗値が大きく、最適対向電圧の分布に影響を与える。一方、CS幹線抵抗R3,R5は、基板上表示領域外の補助容量(CS)信号線であり、相対的に抵抗値は小さい。
 このシミュレーションでは、ゲート信号の立下り時間を位置によって変えているが、立下り時間を等しくしたとしても、TFTドレイン電位の分布は変わらない。シミュレーション結果に示す通り、B点画素部が最もCS信号波形がなまり、TFTドレイン電位が高くなる。TFTドレイン電位の最適対向電位のソース信号線に垂直な線分上の分布は図10に示すように山型となる。なお、両側から補助容量信号を入力する場合には、片側から補助容量信号を入力する場合に比べて信号差は小さくなる。
 図10は、CSバスライン(両側入力)の影響のみを考慮した場合の最適対向電位のソース信号線に垂直な線分上の分布である。また、図11は、CSバスライン(両側入力)の影響およびゲート信号遅延の影響を考慮した場合の最適対向電位のソース信号線に垂直な線分上の分布である。
 〔本実施の形態の構成について〕
 次に、本実施の形態について説明する。本実施の形態の特徴的構成は、ソースドライバ内部のオフセット加算回路(後述)である。本実施の形態は、このオフセット加算回路により、最適対向電位のソース信号線に垂直な線分上の分布を補償することを特徴としている。具体的には、本実施の形態の最適対向電位のソース信号線に垂直な線分上の分布の補償には、3つのパターンが存在する。一つ目は、ゲート信号遅延による引き込み電位のみによる最適対向電位のソース信号線に垂直な線分上の分布を補償するパターンであり、二つ目は、CS電位の引き込み電位のみによる最適対向電位のソース信号線に垂直な線分上の分布を補償するパターンであり、三つ目は、ゲート信号遅延による引き込み電位およびCS電位の引き込み電位による最適対向電位のソース信号線に垂直な線分上の分布を補償するパターンである。但し、これらのパターンを実現するための信号線駆動回路(ソースドライバ)の構成では、オフセット加算回路の内部に格納するオフセット値以外は共通である。なお、ここで、オフセット加算回路にオフセットを格納するとしたが、これに限定されず、別の箇所に格納したオフセット値をオフセット加算値が読みにいくような構成でもよい。
 ソースドライバは、図2に示すように、データ入力部1、画像データ処理部2、タイミングコントローラ3、左右反転切替・タイミング制御回路4、時分割SW切替制御回路5、レベルシフタ6、データレジスタ7、時分割データセレクタ9、レベルシフタ11、複数のソースドライバ出力部12および階調基準電圧生成回路13を備えている。
 ソースドライバには、入力信号として8bitのビデオデータ入力DataINと、垂直同期信号VSYNC、水平同期信号HSYNC、データ取り込み用クロック入力DCLKが入力されている。8bitのビデオ入力の場合、28階調、すなわち、256階調の表示が可能となる。
 タイミングコントローラ3は、VSYNC、HSYNC、およびDCLKを受けて、左右反転切替・タイミング制御回路4、および時分割SW切替制御回路5を制御する。
 ビデオデータは、HSYNCを基準にDCLKに同期して、表示される順に順次データ入力部1へ入力される。データ入力部1は、ビデオデータを画像データ処理部2へ送る。
 図12には、画像データ処理部2の処理フローが示されている。画像データ処理部2は、データ変換するために、最初に10bitに拡張する(2bit分シフトさせる;S1)。次に、黒レベル/白レベルを合わせる、つまり、データに対して相当するオフセット値を加算する(S2)。次に、表示階調のγ特性を合わせ込む(S3)。つまり、一般的なディスプレイは指数2.2の入力階調-表示輝度特性を与えられるが、後述する階調基準電圧生成回路13は線形な階調-電圧特性を持つため、パネルの電圧-表示輝度特性と合成しても単純に指数2.2の特性を得られるとは限らない。したがって、データ変換が必要となる。γ補正回路(不図示)でのデータ変換は、変換式による演算、または、LOOK UP TABLEと呼ばれる変換表による変換方式が一般的である。その後、ブライトネス、サブブライトネス調整部(不図示)でRGB表示色ごとの黒白振幅調整(S4)を経て、10bit相当のデータが出力される。
 画像データ処理部2を経たデータは、データレジスタ7に格納される。データレジスタ7は、1ライン分の表示データを格納できる容量を持っている。例えば解像度がVGA相当のディスプレイでは、640×RGB=1920画素分の容量を持っている。データレジスタ7には、表示される順序にデータが格納されるが、左右反転の機能がある場合などは、逆順に格納される。
 ソースドライバの出力数削減のためパネル内部に切替SW(スイッチ)を持ち、時分割で出力を切り替える時分割駆動を行う場合がある。例えば時分割数が6の場合、1ライン期間の間に6回出力を切り替えることで、1出力につき6本のソースラインの駆動が可能である。
 時分割データセレクタ9ではデータレジスタ7に格納されたデータを6個1組として、図示しない時分割切替SW(スイッチ)のタイミングに合わせてデータを選択する。このスイッチの制御は、時分割SW切替制御回路5により行う。選択されたデータは、電圧レベルをレベルシフタ6で調節した後、ソースドライバ出力部12へ転送される。
 ソースドライバ出力部12は、ソースドライバ1出力端子(出力)につき1出力回路を持つ。例えばソースドライバが320出力端子(出力)を持っている場合、320個の出力回路を持つ。出力回路は、0~1023まで10bit相当のデータに対して、対応した基準電圧を切り替えるDAC回路17と、液晶パネル内のソースバスラインを駆動できるに足る出力アンプ18と、オフセット加算回路16と、を備えている。基準電圧は、階調基準電圧生成回路で生成される。図13に抵抗DAC方式の階調基準電圧生成回路13を示す。
 抵抗DAC方式の階調基準電圧生成回路13は、図13に示すように、n階調の階調基準電圧をVn(n=0,…1023)とすると、Vnは基準電圧V0と基準電圧V1023との間の抵抗ラダーR1~R1023によって作られる。これに限定されるわけではないが、ここで説明する階調間の抵抗値は均等であるとする。本実施の形態のように、液晶ディスプレイは極性反転駆動を行う場合が多い。
 ここで、n階調の正極性基準電圧をVnP、n階調の負極性基準電圧をVnNとすると、VnPは、V0PとV1023P間の抵抗ラダーで作成され、VnNは、V0NとV1023N間の抵抗ラダーで作成される。本実施の形態では、極性反転の周期は、1水平期間(1H反転駆動)とし、正極・負極間の抵抗ラダーを共通化して両端の電圧V0/V1023のみ極性切替信号φに対応して切り替えて使用する。このように構成された階調基準電圧をData0からData1023まで一定の割合で変化させていった場合の出力電圧は、図14に示すようになる。
 通常のソースドライバであれば、同じ階調レベルを表示するときのソースドライバ出力は、全て同じ電圧となる。例えば、「24階調」を表示する場合のソースドライバ出力電圧は、図14に示すように、V24PとV24Nを極性切替信号φに合わせて切り替えて出力される。
 次に、本実施の形態の最重要部分について説明する。
 本実施の形態では、図2に示すように、ソースドライバ出力部12毎に、10bitDACの前段にオフセット加算回路16が設けられている。このオフセット加算回路16には、オフセット加算値がソースドライバの出力位置に応じて予め作りこまれており、オフセット加算回路16は、極性切替信号φによって加算と減算の切り替えが行われる。
 より具体的には、正極性のときは、オフセット加算回路16は、オフセット加算値分出力値を減算し、負極性のときは、オフセット加算回路16は、オフセット加算値分出力値を加算する。
 あくまで一例であるが、具体的な数値例を用いて出力の変化を説明する。階調基準電圧回路の基準電圧V0P=4.596V、V1023P=0.500V、V0N=0.500V、V1023N=4.596Vとする。この場合、1階調当たりの基準電圧の変化量は、4〔mV〕(│Vn+1P-VnP│=│Vn+1N-VnN│)となる。
 あるソースドライバ出力部12のオフセット加算値を「4」とすると、「24階調」を表示するときの出力値は、正極性のときは、「4階調減算」されて「20階調相当の出力値」となり、負極性のときは、「4階調加算」されて、「28階調相当の出力値」となる。
 この場合の出力値(出力電圧)と時間との関係は、図15に示すようになる。オフセット加算値が0の場合(従来の場合)と比較して、負極性時には、電位差ΔVnp=V20P-V24P=4.516-4.500=0.016〔V〕、電圧値を高く設定することができ、正極性時には、電位差ΔVp=V20P-V24P=4.516-4.500=0.016〔V〕、電圧値を高く設定することができる。
 つまり、このソースドライバ出力部12のソースドライバ出力電位のセンター値を一様に16〔mV〕高く設定することができる。このようにゲートドライバの出力からの位置に応じてソースドライバの出力電位のセンター値を設定することにより、最適対向電位のソース信号線に垂直な線分上の分布のバラツキを補償することができる。換言すれば、本実施の形態を用いて、ソースドライバの出力センター電位を設定することにより、最適対向電位の分布が一定として、面内フリッカをなくすことができる。
 次に、上記した3つのパターンに分けて、具体的に最適対向電位のソース信号線に垂直な線分上の分布のばらつきをいかにして補償するかについて説明する。
 〔ゲート信号の信号遅延による引き込み電位による最適対向電位のソース信号線に垂直な線分上の分布補償〕
 上述のように、ゲートドライバ出力部からの距離に応じてゲート信号波形の遅延の大きさが異なり、フィールドスルー電位はゲートドライバ出力部からの距離が大きいほど小さくなるため、上記の図20に示すように、ゲートドライバ出力部からの距離が大きいほど、最適対向電位が大きくなる。
 したがって、この最適対向電位のソース信号線に垂直な線分上の分布を補償するため、ソース信号線がゲートドライバの出力部から等間隔で並設されていることに着目して、図16に示すように、ソースドライバの出力センター電位を、フィールドスルー電位分だけ高く設定する。つまり、ゲートドライバ出力部12からの距離と反比例させてソースドライバの出力センター電位を高く設定する。
 さらに換言すれば、ゲートドライバの出力部の近傍では実効的なフィールドスルー電圧が大きいためソースドライバの出力センター電位を高く設定し、ゲートドライバの出力部遠方では実効的なフィールドスルー電圧が小さいためソースドライバの出力センター電位を低く設定する。
 具体的には、図16に示すように、ソースドライバの出力信号線(ソース信号線)をゲートドライバ出力に近い方からS1、S2、…、Sn、…、SNとする。出力信号線SNにおけるフィールドスルー電位をΔVとすると、ΔV1>ΔV2>…>ΔVn>…>ΔVNとなる傾向がある。本実施の形態では、このΔVの差分だけソースドライバの出力センター電位を高く設定する(図16の傾斜線)。これにより、最適対向電位の分布を補正することができる。これにより、最適対向電位のソース信号線に垂直な線分上の分布のバラツキを補正することができ、面内フリッカを防止することができる。
 〔Cs電位の引き込み電位による最適対向電位のソース信号線に垂直な線分上の分布補償〕
 補助容量信号を片側から入力する場合には、補助容量信号入力部の近傍では、Cs電位の引き込みが小さく、復帰も早い、一方、補助容量信号入力部の遠方では、Cs電位の引き込みが大きく、復帰も遅い。その結果、面内における最適対向電位は、補助容量信号入力部の遠方ほど大きくなる。このため、図6に示すように、補助容量信号入力部からの距離が大きいほど、最適対向電位が大きくなる。
 したがって、この最適対向電位のソース信号線に垂直な線分上の分布を補償するためには、図17に示すように、補助容量信号の入力部から離れるほどソースドライバの出力センター電位を低く設定する。これにより、最適対向電位のソース信号線に垂直な線分上の分布のバラツキを補正することができ、フリッカを防止することができる。
 また、補助容量信号をゲート信号線と平行に両側から入力する場合には、ゲートドライバの出力部の近傍、およびゲートドライバから最も離れた位置の近傍では、Cs電位の引き込みが小さく復帰も早い、一方、ゲートドライバの出力部とゲートドライバから最も離れた位置との中間地点の近傍では、Cs電位の引き込みが大きく、復帰も遅い。そのため、面内における最適対向電位の分布は、図10に示すように、上に凸の関数となる。
 したがって、この最適対向電位のソース信号線に垂直な線分上の分布を補償するため、図18に示すように、ソースドライバの出力センター電位を下に凸の関数として設定する。これにより、最適対向電位のソース信号線に垂直な線分上の分布のバラツキを補正することができ、面内フリッカを防止することができる。
〔ゲート信号の信号遅延による引き込み電位およびCS電位の引き込み電位による最適対向電位のソース信号線に垂直な線分上の分布補償〕
 次に、ゲート信号遅延、およびCS電位の引き込みによる最適対向電位のソース信号線に垂直な線分上の分布を補償する場合について説明する。
 まず、補助容量信号が片側から入力される場合について説明する。最適対向電位のソース信号線に垂直な線分上の分布は、各点においてゲート信号遅延に基づく引き込み電圧と、CS電位引き込みによる引き込み電圧との両方の影響を受けた分布となる。つまり、各点において、ゲート信号遅延に基づく引き込み電圧とCS電位の引き込みによる引き込み電圧とを加算した電位分引き込まれた分布となる。このため、この最適対向電位の分布は、図19に示すようになる。図19はCS信号入力をゲート信号入力と同じ側とした場合である。
 上述の通り、ゲート信号遅延に基づく最適対向電位のソース信号線に垂直な線分上の分布を補償するソースドライバ出力のセンター電位は、ゲートドライバ出力部から遠ざかるほど小さくなり、CS電位の引き込みによる最適対向電位のソース信号線に垂直な線分上の分布を補償するソースドライバ出力のセンター電位も同様に、ゲートドライバの出力部から遠ざかるほど小さくなる。
 したがって、ゲート信号の信号遅延による引き込み電位およびCS電位の引き込み電位に基づく最適対向電位のソース信号線に垂直な線分上の分布を補償するソースドライバ出力のセンター電位は、図20に示すように、ゲートドライバの出力部から遠ざかるほど小さくなる。
 次に、補助容量信号が両側から入力される場合について説明する。
 この場合も、最適対向電位のソース信号線に垂直な線分上の分布は、各点においてゲート信号遅延に基づく引き込み電圧と、CS電位引き込みによる引き込み電圧とを加算した電位分引き込まれた分布となる。このため、この分布は、図11に示すようになる。例えば、液晶パネル中央部(B点)における引き込み電位bが、図20に示す引き込み電位αと図10に示す引き込み電位βを加算した値となる。したがって、最適対向電位のソース信号線に垂直な線分上の分布を補償するソースドライバ出力のセンター電位は、図1に示すように、液晶パネル(表示面)の中心から少しずれた地点(B点とC点の間の地点)から液晶パネルの端部に近づくにつれて大きくしている。これにより、最適対向電位のソース信号線に垂直な線分上の分布を補償することができる。
 図1の特性の場合における、ソースドライバ出力電圧を具体的な数値例を用いて説明する。設計値として、a=100mV、b=28mV、c=40mVとする。
 ドライバICの階調基準電圧構成を図13に示す構成であるとする。基準電圧を、V0P=4.596V、V1023P=0.500V、V0N=0.500V、V1023N=4.596Vとする。この場合、1階調あたりの基準電圧の変化量は、
│Vn+1P-VnP│=│Vn+1N-VnN│=4〔mV〕となる。この場合、A点、B点、C点の各点に相当するソースドライバ出力のオフセット加算値は、それぞれ、a=25〔100mV/4mV〕、b=7、c=10となる。
 ここで、「50階調」を出力する場合を考える。以下、Vx50P(x点の50階調表示時の正極性出力階調)、Vx50N(x点の50階調表示時の負極性出力階調)と表記する。
 この場合、ソースセンター電位(基準センター電位)は、
(V50P+V50N)/2=(4.396+0.7)/2=2.548〔V〕
となる。
 また、A点におけるオフセット計算後出力値は、
Va50P=V25P,Va50N=V75N
A点におけるセンター電位は、
(V25P+V75N)/2=(4.496+0.8)/2=2.648〔V〕
となる。
 また、B点におけるオフセット計算後出力値は、
Vb50P=V43P,Vb50N=V57N
A点におけるセンター電位は、
(V43P+V57N)/2=(4.424+0.728)/2=2.576〔V〕
となる。
 さらに、C点におけるオフセット計算後出力値は、
Vc50P=V40P,Vc50N=V60N
A点におけるセンター電位は、
(V40P+V60N)/2=(4.436+0.74)/2=2.588〔V〕
となる。
 したがって、設計意図どおりソース出力振幅を保ったまま、ソースセンター電位だけ設計値のオフセットを持たせることができる。
 本発明は、ゲートドライバ出力に近いソースバスラインを駆動するソースドライバ出力(A)とゲートドライバ出力から遠いソースバスラインを駆動するソースドライバ出力(B)間の出力センター電位に一定の勾配をもたせることで、引き込み電圧の差異を補償し、面内フリッカを改善する、と表現することができる。
 本発明と先行技術との差異は、次のように表現することができる。低温ポリシリコン型の液晶ディスプレイでは、信号線削減のため3分割や6分割の駆動を行う(それぞれドライバ出力1端子に対して3本、6本の信号線を時分割で切り替えて駆動を行う)場合がある。しかし、分割数は十分小さい単位のため、なだらかな勾配を構成できる。分割を行わない場合は、ドライバ出力1端子に対して1本の信号線が割り当てられる。
 また、ソースドライバの出力電圧偏差は通常10~20mV以内と低く抑えられるために製造上のばらつきは小さい。Cgdグラデーションのようにパネル内の設計は変更せずに良いため表示品位を悪化させる要因もない。また、中小型用液晶用ソースドライバICはシリアル通信などの設定で外部から容易に調整変更が可能なものがほとんどである。パネルやICの個体差に合わせて1台1台個別に調整することさえ可能である。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。
 本発明は、例えば、モバイル用途の中小型液晶ディスプレイに好適に用いることができる。ただし、適用可能な液晶ディスプレイの用途およびサイズはこれに限定されるものではない。
 16   オフセット加算回路

Claims (8)

  1.  液晶表示装置に設けられた映像信号線を駆動する映像信号線駆動回路において、予め設定されたオフセット値を用いて、映像信号線の位置に応じて出力信号のセンター電位を変化させ、
     上記オフセット値は、上記出力信号のセンター電位が上記液晶表示装置の表示面の略中心から外側に近づくにつれて大きくなるように設定されている、ことを特徴とする映像信号線駆動回路。
  2.  液晶表示装置に設けられた映像信号線を駆動する映像信号線駆動回路において、予め設定されたオフセット値を用いて、映像信号線の位置に応じて出力信号のセンター電位を変化させ、
     上記オフセット値は、上記出力信号のセンター電位が上記液晶表示装置の表示面の略中心よりも上記液晶表示装置の表示面の一端寄りの地点から外側に近づくにつれて大きくなるように設定されている、ことを特徴とする映像信号線駆動回路。
  3.  上記オフセット値は、フリッカー最小値決定法で求められる最適対向電極電位の、上記映像信号線に垂直な線分上の分布に基づいて設定されている、ことを特徴とする請求項1または2に記載の映像信号線駆動回路。
  4.  上記オフセット値を格納したオフセット加算回路を備えていることを特徴とする請求項1から3までの何れか1項に記載の映像信号線駆動回路。
  5.  互いに直交する映像信号線および走査信号線と、上記映像信号線を駆動する映像信号線駆動回路と、上記走査信号線を駆動する走査信号線駆動回路と、を備えた液晶表示装置において、
     上記映像信号線駆動回路は、予め設定されたオフセット値を用いて、映像信号線の位置に応じて出力信号のセンター電位を変化させ、
     補助容量信号を、上記走査信号線と平行に、上記液晶表示装置自身の両側から入力する補助容量信号源をさらに備えており、
     上記オフセット値は、上記出力信号のセンター電位が上記液晶表示装置の表示面の略中心から外側に近づくにつれて大きくなるように設定されている、ことを特徴とする液晶表示装置。
  6.  互いに直交する映像信号線および走査信号線と、上記映像信号線を駆動する映像信号線駆動回路と、上記走査信号線を駆動する走査信号線駆動回路と、を備えた液晶表示装置において、
     上記映像信号線駆動回路は、予め設定されたオフセット値を用いて、映像信号線の位置に応じて出力信号のセンター電位を変化させ、
     補助容量信号を、上記走査信号線と平行に、上記液晶表示装置自身の両側から入力する補助容量信号源をさらに備えており、
     上記オフセット値は、上記出力信号のセンター電位が上記液晶表示装置の表示面の略中心よりも上記走査信号線駆動回路寄りの地点から外側に近づくにつれて大きくなるように設定されている、ことを特徴とする液晶表示装置。
  7.  上記オフセット値は、フリッカー最小値決定法で求められる最適対向電極電位の、上記映像信号線に垂直な線分上の分布に基づいて設定されている、ことを特徴とする請求項5または6に記載の液晶表示装置。
  8.  上記映像信号線駆動回路は、上記オフセット値を格納したオフセット加算回路を備えていることを特徴とする請求項5から7までの何れか1項に記載の液晶表示装置。
PCT/JP2009/058404 2008-04-28 2009-04-28 映像信号線駆動回路および液晶表示装置 WO2009133906A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/989,773 US20110043711A1 (en) 2008-04-28 2009-04-28 Video signal line driving circuit and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008117433 2008-04-28
JP2008-117433 2008-04-28

Publications (1)

Publication Number Publication Date
WO2009133906A1 true WO2009133906A1 (ja) 2009-11-05

Family

ID=41255122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058404 WO2009133906A1 (ja) 2008-04-28 2009-04-28 映像信号線駆動回路および液晶表示装置

Country Status (2)

Country Link
US (1) US20110043711A1 (ja)
WO (1) WO2009133906A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9251749B2 (en) 2011-03-10 2016-02-02 Panasonic Liquid Crystal Display Co., Ltd. Liquid crystal display device with grey-scale voltage correction

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102439017B1 (ko) * 2017-11-30 2022-09-01 엘지디스플레이 주식회사 디스플레이 장치 및 그의 인터페이스 방법
JP6768724B2 (ja) * 2018-01-19 2020-10-14 株式会社Joled 表示装置および表示パネルの駆動方法
JP2020008711A (ja) * 2018-07-06 2020-01-16 堺ディスプレイプロダクト株式会社 表示装置
CN109905619B (zh) 2019-02-19 2020-10-23 海信视像科技股份有限公司 显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580296A (ja) * 1991-09-19 1993-04-02 Hitachi Ltd 液晶表示装置
JPH11133919A (ja) * 1997-10-27 1999-05-21 Advanced Display Inc 液晶表示装置
JP2002091391A (ja) * 2000-09-14 2002-03-27 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2007121485A (ja) * 2005-10-26 2007-05-17 Lg Phillips Lcd Co Ltd 液晶表示装置のフリッカ防止調整方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW495635B (en) * 1997-07-11 2002-07-21 Hitachi Ltd Liquid crystal display device
US7098884B2 (en) * 2000-02-08 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and method of driving semiconductor display device
JP2003015608A (ja) * 2001-06-22 2003-01-17 Internatl Business Mach Corp <Ibm> 画像表示装置、画像表示制御装置、表示制御方法、および信号供給方法
EP1780583B1 (en) * 2004-07-14 2013-12-25 Sharp Kabushiki Kaisha Active matrix substrate and drive circuit thereof
TWI354977B (en) * 2007-04-18 2011-12-21 Au Optronics Corp Display panel and opto-electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580296A (ja) * 1991-09-19 1993-04-02 Hitachi Ltd 液晶表示装置
JPH11133919A (ja) * 1997-10-27 1999-05-21 Advanced Display Inc 液晶表示装置
JP2002091391A (ja) * 2000-09-14 2002-03-27 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2007121485A (ja) * 2005-10-26 2007-05-17 Lg Phillips Lcd Co Ltd 液晶表示装置のフリッカ防止調整方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9251749B2 (en) 2011-03-10 2016-02-02 Panasonic Liquid Crystal Display Co., Ltd. Liquid crystal display device with grey-scale voltage correction

Also Published As

Publication number Publication date
US20110043711A1 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
KR100963935B1 (ko) 표시 장치, 액정 모니터, 액정 텔레비젼 수상기 및 표시방법
JP4890614B2 (ja) 液晶表示装置、液晶表示装置の駆動方法、およびテレビジョン受像機
WO2010073775A1 (ja) 表示装置および表示装置の駆動方法
US9218791B2 (en) Liquid crystal display device and method for driving a liquid crystal display device
WO2010106713A1 (ja) 液晶表示装置およびその駆動方法
JP5049101B2 (ja) 液晶表示装置
JP4330059B2 (ja) 液晶表示装置及びその駆動制御方法
JP5986442B2 (ja) 表示装置および表示方法
US8416175B2 (en) Liquid crystal display device and method for driving the same
JP2007538268A (ja) 液晶表示装置及びその駆動方法、並びに液晶表示装置を備えた液晶テレビ及び液晶モニタ
US20050264508A1 (en) Liquid crystal display device and driving method thereof
WO2010087051A1 (ja) 表示装置および表示装置の駆動方法
KR101818247B1 (ko) 액정표시장치 및 그 구동방법
JP2015018064A (ja) 表示装置
US20070195045A1 (en) Liquid crystal display device
KR20150047965A (ko) 액정 표시 장치 및 그 구동 방법
JP2003114659A (ja) 液晶駆動装置
WO2009133906A1 (ja) 映像信号線駆動回路および液晶表示装置
KR101244485B1 (ko) 액정표시장치와 그 구동방법
KR20080022689A (ko) 구동 장치, 이를 포함하는 액정 표시 장치 및 이의 구동방법
JP4896961B2 (ja) 液晶パネル駆動装置、液晶パネル駆動方法、液晶表示装置
KR20120133881A (ko) 액정표시장치와 그 구동방법
KR20070069797A (ko) 액정표시장치와 그 구동방법
JP2008216924A (ja) 表示装置および表示装置の駆動方法
KR101432568B1 (ko) 2도트 인버젼 액정표시장치의 구동 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12989773

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09738843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP