WO2009132549A1 - 一种无源光网络拉远的方法及设备和系统 - Google Patents

一种无源光网络拉远的方法及设备和系统 Download PDF

Info

Publication number
WO2009132549A1
WO2009132549A1 PCT/CN2009/071277 CN2009071277W WO2009132549A1 WO 2009132549 A1 WO2009132549 A1 WO 2009132549A1 CN 2009071277 W CN2009071277 W CN 2009071277W WO 2009132549 A1 WO2009132549 A1 WO 2009132549A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical network
signal
uplink
passive
Prior art date
Application number
PCT/CN2009/071277
Other languages
English (en)
French (fr)
Inventor
邹世敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09737659A priority Critical patent/EP2262133A4/en
Priority to BRPI0911116A priority patent/BRPI0911116A2/pt
Priority to CA2716739A priority patent/CA2716739A1/en
Publication of WO2009132549A1 publication Critical patent/WO2009132549A1/zh
Priority to US12/910,528 priority patent/US20110038632A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects

Definitions

  • the present invention relates to the field of communication applications, and in particular, to a method, device and system for remote access of a passive optical network. Background technique
  • Passive Optical Network is characterized by point-to-multipoint physical topology, optical line terminal (OLT), and passive optical distribution network.
  • the optical distribution network is composed of a plurality of optical network units (ONUs), wherein the plurality of ONUs share the optical fiber resources and share the OLT port; the ODN passively connects one OLT and one or more ONUs.
  • the optical branch point in the ODN does not require an active node device, and only one passive optical splitter is needed. Therefore, the PON has bandwidth resource sharing, saves room investment, high device security, fast network construction, and comprehensive construction. The advantages of low network cost.
  • FIG. 1 shows a system structure diagram of an existing GPON all-optical extension and capacity expansion, and is provided with an all-optical active at the far end of the original Gigabit-capable PON (GPON) system.
  • the GPON EXTENDER device is used to extend the transmission distance of GPON.
  • the working principle is: In the downstream direction, the OLT sends coarse wavelength division multiplexing to the GPON EXTENDER device.
  • the wavelength of the band is transmitted to the local switching node device GPON remote device after 50KM distance transmission.
  • the GPON remote device is mainly based on the semiconductor optical amplifier (SEMI-CONDUCTOR OPTIC ALAMPLIFER, SOA).
  • the bidirectional amplifying device, the CWDM demultiplexer separates the downlink signal and sends it to the downstream SOA for amplification by the CWDM add/drop multiplexer, where the CWDM add/drop multiplexer function selectively receives the local uplink and the slave from the transmission optical path. Certain wavelength channels are transmitted without affecting the transmission of other wavelength channels.
  • the downlink direction is a continuous signal of GPON, and the wavelength arrangement in the downlink direction is also in the amplification of SOA. Area, so the SOA in the downstream direction only compensates for the power of the optical signal.
  • the downlink signal After the downlink signal passes through the SOA method and the required output power is adjusted by the optical attenuator, the downlink signal is divided into four single-channel GPON downlink signals by wavelength by a 4*4 split/combiner, and respectively sent to the respective signals.
  • the uplink direction of each group of GPONs is different CWDM wavelengths, and the uplink burst laser wavelengths of all ONUs in the same group of GPONs are the same CWDM wavelength, that is, there are 4 ONUs with different uplink wavelengths.
  • the uplink GPON signal is a burst signal
  • each ONU sends its own burst packet in different time, and the distance to the GPON remote device of the optical splitter is different, and the power of each burst packet is different.
  • the gain recovery time of SOA is faster than the gain recovery response speed of EDFA, and has a certain amplification effect on bursts of different levels.
  • the GPON remote device also functions as a splitter (SPLITER).
  • CWDM needs to be used to expand the overall capacity of the PON.
  • the uplink of the ONU must also be customized according to the CWDM wavelength, which increases the implementation cost of the ONU.
  • the OLT also needs to be customized according to the CWDM wavelength. It also increases the cost.
  • the above system even if CWDM is used to expand capacity, is essentially the sum of the capacity of four GPONs, and the split ratio of a single GPON is still 1:32.
  • This solution does not substantially improve the spectral ratio performance of GPON, and is not suitable for the technical requirements of LONGREACH PON that will meet the high split ratio in the future. Therefore, the number of ONUs supported by the GPON remote device is limited, the split ratio is small, and the system device is not easily extended. Summary of the invention
  • the embodiments of the present invention provide a method, a device, and a system for remotely accessing a passive optical network, and provide a new PON remote device for the PON, so as to extend the distance of the PON. Longer, the PON split ratio achieves higher requirements.
  • a passive optical network remote device including:
  • the optical control switch is configured to connect to the optical network unit, and extract the overhead information of the passive optical network signal in the downlink channel, and select an uplink optical fiber network as the output uplink optical fiber network according to the extracted overhead information.
  • the regeneration device is configured to perform regeneration of the optical signal on the uplink channel passive optical network signal outputted by the light control switch.
  • the embodiment of the present invention further provides a passive optical network remote system, which comprises an optical line terminal, a passive optical network remote device connected to the optical line terminal, and a remote optical device with a passive optical network. At least one optical network unit connected at one end,
  • the optical line terminal is configured to perform the interaction between the remote device and the optical component of the remote optical device through the passive optical network to perform optical signal interaction with the at least one optical network unit; and reclaim the overhead information of the passive optical network signal in the downlink channel, according to The extracted overhead information selects an uplink optical channel signal of one of the optical network unit as an output, and performs optical signal regeneration on the output uplink passive optical network signal.
  • the embodiment of the present invention further provides a method for remotely accessing a passive optical network, including: performing optical power compensation on a downlink channel passive optical network signal;
  • the embodiments of the present invention implement the passive optical network remote device provided by the embodiment of the present invention, and control the input and output of the PON signal in the uplink channel through the optical control switch, so that the remote distance of the remote optical device of the passive optical network is reached.
  • FIG. 1 is a system structural diagram of a conventional GPON all-optical zoom-out and capacity expansion
  • FIG. 2 is a structural diagram of a system for remote access of a passive optical network according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a remote optical device of a passive optical network according to an embodiment of the present invention.
  • FIG. 4 is another schematic structural diagram of a remote optical device of a passive optical network according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a remote optical device of a passive optical network according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a remote optical network remote method according to an embodiment of the present invention.
  • the embodiment of the invention provides a method, a device and a system for remotely accessing a passive optical network, and provides a new PON remote device and a splitter for the PON, so that the long distance of the PON is longer, and the PON split ratio is achieved. higher requirement.
  • FIG. 2 is a structural diagram of a system for remote access of a passive optical network according to an embodiment of the present invention, including an optical line terminal (OLT) 20, a passive optical network remote (PON EXTENDER) device 21, and an optical network unit (ONU). 22, wherein: the OLT 20 is configured to perform PON signal interaction with the remote ONU 22, and the PON signal needs to be remotely and spectrally processed by the PON EXTENDER device 21 before entering the ONUs 22.
  • OLT optical line terminal
  • PON EXTENDER passive optical network remote
  • ONU optical network unit
  • the PON EXTENDER device 21 is provided with an optical amplifier 211, a light control switch 212 and a reproducing device 213, wherein: the optical amplifier 211 is used for optical power compensation of the downlink channel PON signal; and the optical control switch 212 is used for connecting to the plurality of ONUs 22 And extracting the overhead information of the PON signal in the downlink channel, where the overhead information includes the transmission time location information of each ONU, including the time position of the beginning of the burst packet and the end position of the burst packet.
  • the extracted overhead information generates an open signal for controlling the optical switch, the time of opening is at the time of the beginning of the burst packet, and the time of the closing is at the end of the burst packet, and the different ONUs are turned on at different times.
  • the uplink channel PON signal input is controlled, and one of the ONU22 uplink signals is selected as the output uplink channel PON signal; and the regeneration device 213 is configured to perform the optical signal regeneration on the uplink channel PON signal controlled by the light control switch 212.
  • FIG. 3 is a schematic structural diagram of a passive optical network remote device in an embodiment of the present invention, including a reproducing device optical amplifier 211, a light control switch 212, and a reproducing device 213.
  • An overhead extraction module 301, a control circuit module 302, and an optical switch module 303 are disposed in the optical control switch 212, where: the overhead extraction module 301 is configured to extract overhead information from the downlink channel PON signal; and the control circuit module 302 is configured to extract the overhead according to the overhead.
  • the overhead information extracted by the module 301 controls the opening and closing of the optical switch module 303.
  • the optical switch module 303 is configured to select one of the ONU uplink signals as the output uplink channel PON signal under the control of the control circuit module 302.
  • the optical switch module 303 is a 1:N switching device, and N is an arbitrary natural number, such as a value 1, a value 2, a value of 3, or other values. According to the design requirements, the access of N ONUs is controlled, so that it has good scalability.
  • the light control switch 212 further includes a filter module 304.
  • the filter module 304 is respectively connected to the regeneration device 213 and the optical switch module 303. In the uplink channel, some optical power compensation is performed through the optical amplifier 211.
  • the subsequent downlink optical signal enters the uplink channel, and the output of the optical control switch 212 needs to add a thin film filter-based optical splitter, which is essentially a filter, and filters the optical signal in the uplink channel based on the principle of transmission and reflection.
  • the input optical signal of the light control switch 212 includes an optical signal from which the output light of the down amplifier 211 is combined, and the wavelength is 1550 band. Therefore, it is not necessary to let this part of the light enter the uplink channel, and such a filter needs to be added. Thus, light having a wavelength of 1310 nm in the upward direction can be transmitted, and other wavelengths are not transmitted, and are reflected back.
  • the GPON signal or the Ethernet passive optical network (EPON) signal passes through the optical splitter to enter the optical amplifier 211 on the downlink channel, and the optical amplifier 211 performs optical power compensation on the downlink continuous PON signal. And then outputted to each ONU through the power coupler; in the uplink direction, the uplink burst signals of each ONU arrive at the corresponding power coupler at different times, and also reach a multi-channel select 1 light control switch 212, wherein
  • the control circuit control module 302 controls the optical switch module 303 according to the overhead information of the PON signal in the downlink channel extracted by the overhead extraction module 301.
  • the overhead information includes the transmission time location information of each ONU, including the burst packet.
  • the time position of the beginning of the preamble and the end time position of the burst packet, and the opening signal of the control optical switch is generated by the extracted overhead information, and the opening time is at the time position immediately before the beginning of the burst packet, and is closed.
  • the time is at the end of the burst packet, and different ONUs are connected at different times.
  • the GP can be used.
  • the ON bandwidth map information controls the turn-on and turn-off time of the optical switch module 303.
  • the optical switch module 303 outputs the power compensation through the upstream optical amplifier, and then couples to the uplink for the OLT to receive.
  • the optical switch module 303 can be a lithium niobate (LiNb03, LN) optical switch or a semiconductor optical amplifier (SOA) optical switch, and the optical switch module 303 is connected to an uplink channel of at least one or more ONUs, and the optical switch module 303 is Under the control of the control circuit module 302, only one ONU connected to it is selected to output an uplink signal.
  • the optical switch module 303 turns on the optical switch at the arrival time of the ONU uplink burst packet under the control of the control circuit module 302, and switches to another ONU uplink signal at the end of the burst packet.
  • a plurality of light control switches 212 may also be extended in the passive optical network remote device to realize a large-capacity split ratio.
  • the uplink PON signal channel is connected to the ONU or the optical splitter, and the overhead extraction module 301 extracts the overhead information from the downlink PON signal, where the extraction process can perform optical power compensation on the downlink PON signal in the optical amplifier 211.
  • the optical amplifier 211 may be an Erbium-doped Optical Fiber Amplifier (EDFA) or an SOA
  • the regeneration device 213 may be a full-light reproducing device or an Optical-Electrical-Optical (OEO) Regeneration device.
  • the optical amplifier 211 since the downlink direction is a continuous optical signal, as long as the downstream optical wavelength is within the amplification range of the optical amplifier 211, the optical amplifier 211 does not have any difficulty in compensating the optical power, if the downlink OLT uses the 1550 band. In the dawn, the optical compensation can be directly realized by EDFA.
  • the total power attenuation is 19DB, assuming that the distance of the ONU from the remote device is 10km. , about 4DB of power budget is required again, and then the ONU's receiving sensitivity is -18DB, the output of the optical amplifier 211 can be satisfied by controlling at + 5DB (19 + 4 - 18); when the split ratio is increased from 1:64 By 1: 256, the budget of 6DB is increased, and the optical amplifier can control the VOA to control the output power to +11DB output to meet the requirements. Since the saturated output power of the EDFA is + 20DB or more, 4 ⁇ is easy to achieve the above power compensation requirements. It should be noted that the optical amplifier 211 on the downlink channel can also be implemented by SOA.
  • the light control switch 212 In the upstream direction, under the control of the light control switch 212, it is time-divisionally connected to the optical fibers of each ONU, so that regardless of the number of optical fibers entering the light control switch 212, the optical power attenuation is always controlled within a certain range. Within this, it is only related to the distance from the ONU to the light control switch 212, and has no relationship with the number of ONUs.
  • the optical switch module 303 in the light control switch 212 can be assembled by using a small optical switch, and only the optical coupler and the optical switch need to be connected. In terms of the speed at which the light control switch 212 switches, the LN-based 1:N optical switch can achieve a switching speed of 10 ns, or even a higher speed.
  • the speed of the light control switch 212 should reach the protection time requirement between the bursts of the GPON, the protection time of the GPON is 78 ns, and the time of the light control switch 212 should be much less than 78 ns.
  • the light control switch 212 completes the switching action before the end of the burst packet or the preamble of the burst packet, there is no effect on the format of the burst packet.
  • there are other high-speed optical switches such as SOA-based optical switches, which can reach speeds of 2 ns. Since the preamble of the EPON is as long as 400 ns, the speed requirement of the optical switch is much lower than that of the GPON.
  • the overhead extraction module 301 in the uplink direction may extract the optically compensated PON signal from the optical amplifier 211 in the downlink direction; when the overhead information of the PON signal is sent in other modulation manners, the optical amplifier may also be used.
  • the front of the 211 is extracted, such as from the optical monitoring channel or from the frequency shift keying (FSK) to receive the corresponding overhead information.
  • the overhead extraction module 301 in the uplink direction can directly extract the overhead information directly from the downlink direction of the GPON signal.
  • the overhead information mainly includes the transmission time position of each ONU, and is an uplink bandwidth map (BW-MAP) for the GPON signal, and the downlink overhead information of the GPON includes bandwidth map information, which is used to indicate when each ONU is sent.
  • BW-MAP uplink bandwidth map
  • the uplink burst packet when the transmission ends, so extracting the GPON overhead information in the device means knowing when the burst packet of each ONU is sent and terminated, and knowing the arrival of the light control switch input port.
  • the arrival time and end time of each burst packet since the time of each burst packet is known, a control signal can be generated to select the uplink burst packet in consideration of the path delay.
  • the burst packet of ONU1 arrives at time T11, and the time T12 ends.
  • the burst packet of ONU2 arrives at time T21, and T22 ends, and then considers the path delays as D1 and D2, respectively.
  • the control circuit should select the signal from ONU1 at T11+D1 time, turn off at T12+D1 time, switch to the input of ONU2 at time T21 + D2, select the burst packet of ONU2, and so on.
  • Control circuit module 302 Until all the ONU's upstream burst packets pass, then enter the next loop, and start from ONU1, ONUN ends, and so on, as long as the extracted bandwidth map changes, these control times follow changesfensiv Control circuit module 302 according to the overhead Extracting the overhead information extracted by the module 301, generating a corresponding control signal to control the opening and closing of the optical switch module 303, the time of opening is at the time when the preamble of the burst packet is just started, and the closing time is at the end time of the burst packet. Switching on different ONUs at different times, so that the optical switch module 303 is only connected to one of the ONUs at any time.
  • the signal output from the optical switch module 303 is sent to the reproducing device 213 for reproduction of the optical signal.
  • the reproduction mode may be all-optical or OEO.
  • the all-optical regenerative device can use SOA, SOA amplifies the PON signal, and can only perform optical compensation. If the OEO regeneration mode is used in the uplink regeneration mode, since the OEO regeneration mode requires precise time control, it is also necessary to use the overhead information extracted by the overhead extraction module 301 in the optical control switch 212 to generate an uplink burst optical module and a burst. A reset of the clock recovery.
  • Figure 4 shows the junction of an expandable beam splitter and a PON EXTENDER device in an embodiment of the invention.
  • the composition works in the same way as in Figure 3, except that the structure of the passive optical splitter (SPLITER) has packet spreading capability and four 1:2 passive power splitters.
  • the second group is the extended SPLITER.
  • the internal structure is the same as the first group.
  • the location of the extended SPLITER is reserved inside the PON EXTENDER device. When the number of ONU users needs to be extended, the SPLITER is placed in the reserved position.
  • the PON EXTENDER device in Figure 3 has both the remote device and the SPLITER function.
  • the SPLITER output is directly connected to each ONU, but the SPLITER in Figure 4 has two levels, the first level is 1:4, and the second level is close to the ONU.
  • the distance from the first stage SPLITER to the second level SPLITER is greater than 10KM.
  • the power budget of the EDFA is increased by 1: 2.
  • the expansion budget 3DB and the 10KM transmission loss budget 4DB are easily realized by the power compensation of the EDFA.
  • the PON EXTENDER device here has more flexibility, without having to place the PON EXTENDER device in Figure 3 in the SPLITER position, and the number of input ports on the light control switch 212 is reduced, only 1:4 Or 1:8 optical switch, here 1: 8 as an example, of course, other ratios of optical switches are also achievable.
  • the optical switch of 1:8 is selected, the reserved four ports are expansion ports.
  • each optical control switch 201 port can be extended to 256 ONUs if it has 32 ONUs. Based on a similar design, it can be extended to a larger number of ONUs.
  • Each group of ONUs on the ODN2 (10KM segment) can be allocated in different time positions in groups in the uplink frame structure, and the optical control switch 211 switches in groups; here, it is also possible to press the uplink burst packet of each ONU. Switching separately, but you must know the exact location of each ONU upstream signal.
  • the PON EXTENDER device has 4 fibers to the second-level passive optical SPLITER, the ONU uplink directions on the four fibers all share the same frame structure.
  • FIG. 5 is a structural diagram of a PON EXTENDER device of an expandable optical control switch according to an embodiment of the present invention.
  • the principle of the scheme is basically the same as that of FIG. 4, except that the structure of the light control switch 212 adopts an expandable design.
  • the step-by-step extension can be implemented according to the growth of the number of users.
  • a 1:4 optical switch module 303 and a 1:4 SPLITER can be used in the initial stage, and the number of users can be 1 - 128, when the number of users When the requirement exceeds 128, the 1:4 optical switch and the 1:4 SPLITER are added to the reserved position to expand the number of users to 256.
  • the switching ratio of the optical switch module 303 can be 1: N
  • the split ratio of the SPLITER can be 1: N, where N is an arbitrary natural number, and when the number of users changes, it is easier to expand the corresponding ONU.
  • FIG. 6 is a flowchart of a remote optical network remote method in an embodiment of the present invention. The process is as follows:
  • Step S601 start;
  • Step S602 Perform optical power compensation on the downlink channel passive optical network signal.
  • Step S603 Extracting overhead information of the passive optical network signal in the downlink channel
  • step S603 may be before or after step S602.
  • Step S604 Control the input of the uplink signal in the uplink channel according to the extracted overhead information.
  • the switch of the optical switch is controlled according to the extracted overhead information, so that one of the optical switches is connected to the optical switch.
  • the uplink signal of the optical network unit is used as an output uplink channel passive optical network signal; according to the extracted overhead information, the optical switch is turned on at the arrival time of the uplink packet of the optical network, and is switched to another light at the end of the burst packet.
  • Network unit uplink signal is used as an output uplink channel passive optical network signal; according to the extracted overhead information, the optical switch is turned on at the arrival time of the uplink packet of the optical network, and is switched to another light at the end of the burst packet.
  • the overhead information includes time information of each ONU transmission time, including a time position of the beginning of the burst packet and an end position of the burst packet, and the opening signal of the control optical switch is generated by using the extracted overhead information,
  • the time of opening is at the time of the beginning of the burst packet
  • the time of the closing is at the time of the end of the burst
  • the different ONUs are turned on at different times.
  • Step S605 Perform regeneration of the optical signal on the output uplink channel passive optical network signal; before reproducing the optical signal, filter the optical signal coupled to the uplink channel in the downlink channel.
  • Step S606 End.
  • the PON EXTENDER device selects one of the PON uplink signals as the output uplink channel PON signal through the optical control switch, because only one ONU signal passes through the light control switch at any time.
  • the insertion loss of the optical switch is the same, so the number of extended ONUs is independent of the insertion loss, avoiding the difficulty of optical power compensation in the uplink direction, so that the uplink expansion is basically independent of the split ratio, and the downlink direction is
  • the optical power compensation is not technically difficult, and a long transmission distance can be realized, and the number of extended ONUs is only related to the downlink optical power compensation, and is related to the switching speed of the upstream optical switch, so the scheme is more scalable than the prior art. Strong, thus overcoming the shortcomings of the existing split ratio, achieving a high split ratio, meeting a large number of user needs.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only memory (Read-Only Memory, ROM) or random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Description

一种无源光网络拉远的方法及设备和系统 本申请要求于 2008年 4月 28日提交中国专利局、申请号为 200810027746.6、 发明名称为 "一种无源光网络拉远的方法及设备和系统" 的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种通信应用领域, 尤其涉及一种无源光网络拉远的方法及设 备和系统。 背景技术
无源光网络 ( Passive Optical Network , PON )作为一种宽带光接入技术, 其特点是点到多点的物理拓朴结构,由光线路终端( Optical Line Terminal, OLT )、 无源光分配网络( Optical Distribution Network, ODN )和多个光网络单元( Optical Network Unit, ONU )组成 , 其中, 多个 ONU共享光纤资源、 共享 OLT端口; ODN以无源方式连接一个 OLT和一个或多个 ONU, ODN中的光分支点不需要 有源的节点设备, 只需一个无源的光分支器即可, 因此, PON具有带宽资源共 享、 节省机房投资、 设备安全性高、 建网速度快、 综合建网成本低等优点。
目前, 运营商对 PON的传输距离和分光比都有一定的要求, 为使满足更多 的用户需求。 图 1示出了现有的 GPON全光拉远与容量扩展的系统结构图, 在 原有的千兆无源光网络( Gigabit-capable PON, GPON )系统的远端设有一个全 光有源的 GPON拉远( EXTENDER )设备, 用来扩展 GPON的传输距离。 其工 作原理为: 在下行方向中, OLT向 GPON EXTENDER设备发出粗波分复用
( Coarse Wavelength Division Multiplexing, CWDM ) 波段的波长, 进行 50KM 距离传输后, 达到本地交换节点设备 GPON拉远设备, 所述 GPON拉远设备主 要以半导体光放大器(SEMI-CONDUCTOR OPTIC ALAMPLIFER, SOA )为核 心的双向放大装置, CWDM分波器将下行信号分离出来经过 CWDM分插复用 器送给下行的 SOA进行放大, 这里的 CWDM分插复用器功能是从传输光路中 有选择地上下本地接收和发送某些波长信道, 同时不影响其它波长信道的传输。 由于下行方向为 GPON的连续信号,且下行方向的波长安排也处于 SOA的放大 区域, 所以下行方向的 SOA仅仅对光信号做功率补偿。 在下行信号经过 SOA 方法, 并经过光衰减器调节需要的输出功率后, 经过 4*4的分^ /合波器将下行 信号按波长分为 4路单路的 GPON下行信号, 分别发送给各自的 ONU; 在上行 方向中, 每一组 GPON的上行方向为不同的 CWDM波长, 同一组 GPON内的 所有 ONU的上行突发激光器波长都是相同的 CWDM波长, 即有 4种不同上行 波长的 ONU, 由于上行方向 GPON信号为突发信号, 每个 ONU在不同的时间 内发送各自的突发包, 且到达分光器 GPON拉远设备的距离各不相同, 其各突 发包的功率也不相同, SOA的增益恢复时间比 EDFA的增益恢复响应速度要快, 对不同电平的突发包有一定的放大作用。 所述 GPON拉远设备除了功率补偿功 能外, 这里还作为了分光器( SPLITER ) 的功能。
但是通过上述的 GPON拉远设备, 需要利用 CWDM来扩展 PON的总体容量, 则 ONU的上行也必须要按 CWDM波长来定制, 增加了 ONU的实现成本, 同时, OLT也需要按 CWDM波长来定制, 也增加了成本。 在实现过程中, 上述系统, 即使使用了 CWDM来扩展容量, 但其实质是 4个 GPON的容量总和, 单个 GPON 的分光比还是 1 : 32。 该方案没有从实质上改进 GPON的分光比性能, 不适合未 来满足高分光比的 LONGREACH PON的技术要求。 所以所述 GPON拉远设备所 支持的 ONU数量有限, 分光比很小, 并且对系统设备也不容易进行扩展。 发明内容
鉴于上述现有技术所存在的问题, 本发明实施例提供了一种无源光网络拉 远的方法及设备和系统, 为 PON提供了一种新的 PON拉远设备, 使 PON的拉 远距离更长, PON分光比达到更高的要求。
为了解决上述技术问题, 本发明实施例提出了一种无源光网络拉远设备, 包括:
光放大器, 用于对下行通道无源光网络信号进行光功率补偿;
光控制开关, 用于连接到光网络单元, 并提取下行通道中无源光网络信号 的开销信息 , 根据所述提取的开销信息选择其中一路光网络单元上行信号作为 输出的上行通道无源光网络信号;
再生装置, 用于对光控制开关控制输出的上行通道无源光网络信号进行光 信号的再生。 相应的, 本发明实施例还提出了一种无源光网络拉远系统, 该系统包括光 线路终端、 与光线路终端相连的无源光网络拉远设备和与无源光网络拉远设备 另一端相连的至少一个光网络单元,
所述光线路终端用于通过无源光网络拉远设备的拉远和分光与所述至少一 个光网络单元进行光信号的交互; 偿, 提取下行通道中无源光网络信号的开销信息, 根据所述提取的开销信息选 择其中一路光网络单元上行信号作为输出的上行通道无源光网络信号, 并对所 述输出的上行通道无源光网络信号进行光信号的再生。
相应的, 本发明实施例还提出了一种无源光网络拉远的方法, 包括: 对下行通道无源光网络信号进行光功率补偿;
提取所述下行通道中无源光网络信号的开销信息;
根据所述提取的开销信息选择其中一路上行信号作为输出的上行通道无源 光网络信号;
对所述输出的上行通道无源光网络信号进行光信号的再生。
实施本发明实施例, 通过本发明实施例中提供的无源光网络拉远设备, 通 过光控制开关控制上行通道中 PON信号的输入和输出, 使无源光网络拉远设备 的拉远距离达到较长的距离; 由于任何时刻只有一个 ONU的信号通过光控制开 关, 而光开关的插损是一致的, 所以扩展 ONU的数量与插损是无关的, 从而达 到了容易扩展 ONU数量, 使分光比的目标达到了更高的要求。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有的 GPON全光拉远与容量扩展的系统结构图;
图 2是本发明实施例中的无源光网络拉远的系统结构图;
图 3是本发明实施例中的无源光网络拉远设备的结构示意图;
图 4是本发明实施例中的无源光网络拉远设备的另一结构示意图; 图 5是本发明实施例中的无源光网络拉远设备的再一结构示意图; 图 6是本发明实施例中的无源光网络拉远方法的流程图。 具体实施方式
本发明实施例提供了一种无源光网络拉远的方法及设备和系统, 为 PON提 供了一种新的 PON拉远设备和分光器, 使 PON的拉远距离更长, PON分光比 达到更高的要求。
下面结合附图详细说明本发明的优选实施例。
图 2示出了本发明实施例中的无源光网络拉远的系统结构图, 包括光线路 终端( OLT ) 20、 无源光网络拉远 ( PON EXTENDER )设备 21以及光网络单元 ( ONU ) 22, 其中: OLT20用于与远端的 ONU22进行 PON信号的交互, 所述 PON信号需要通过 PON EXTENDER设备 21进行拉远和分光处理之后才能进入 到各个 ONU22中。所述 PON EXTENDER设备 21中设有光放大器 211、光控制 开关 212和再生装置 213, 其中: 光放大器 211用于对下行通道 PON信号进行 光功率补偿; 光控制开关 212用于连接到多个 ONU22, 并提取下行通道中 PON 信号的开销信息, 所述开销信息中包含了每个 ONU的发送时间位置信息, 包括 突发包的前序刚开始的时间位置和突发包的结束位置, 通过所述提取的开销信 息产生控制光开关的开启信号, 开启的时间在突发包的前序刚开始的时间位置, 关闭的时间在突发包的结束位置, 在不同的时间接通不同的 ONU, 控制上行通 道 PON信号输入,选择其中一路 ONU22上行信号作为输出的上行通道 PON信 号; 再生装置 213用于对光控制开关 212控制输出的上行通道 PON信号进行光 信号的再生。
图 3 示出了本发明实施例中的无源光网络拉远设备的结构示意图, 包括再 生装置光放大器 211、 光控制开关 212和再生装置 213。 所述光控制开关 212中 设有开销提取模块 301、 控制电路模块 302和光开关模块 303, 其中: 开销提取 模块 301用于从下行通道 PON信号中提取开销信息; 控制电路模块 302用于根 据开销提取模块 301提取的开销信息控制光开关模块 303的开启和关闭; 光开 关模块 303用于在控制电路模块 302的控制下选择其中一路 ONU上行信号作为 输出的上行通道 PON信号。 需要说明的是, 所述光开关模块 303为一个 1: N 的开关装置, N为任意自然数, 如数值 1、 数值 2、 数值 3或其他数值, 可以根 据设计需求控制 N个 ONU的接入, 所以具有 ^艮好的可扩展性。相应的, 所述光 控制开关 212中还包括滤波器模块 304, 所述滤波器模块 304分别与再生装置 213和光开关模块 303相连, 在上行通道中, 会有一些经过光放大器 211进行光 功率补偿后的下行光信号进入到上行通道中, 光控制开关 212 的输出需要增加 一个基于薄膜滤波的分光器, 实质上为一滤波器, 基于透射和反射的原理, 对 上行通道中的光信号进行滤波。 光控制开关 212 的输入光信号含有下行放大器 211的输出光輛合进来的光信号, 波长为 1550波段, 所以不需要让这部分光进 入上行通道, 需要增加这样一个滤波器。 这样, 上行方向 1310nm波长的光可以 透过, 其他波长就不能透过, 被反射回去。
在实施本发明实施例过程中, 在下行方向上, GPON信号或以太无源光网 络(EPON )信号通过分光器进入下行通道上的光放大器 211 , 光放大器 211对 下行的连续 PON信号进行光功率补偿,然后通过功率耦合器输出到各 ONU;在 上行方向上, 各 ONU的上行突发信号在不同的时间到达对应的功率耦合器, 也 同时到达一个多路选 1的光控制开关 212,其中的控制电路控制模块 302根据开 销提取模块 301 提取的下行通道中 PON信号的开销信息来实现对光开关模块 303的控制, 所述开销信息中包含了每个 ONU的发送时间位置信息, 包括突发 包的前序刚开始的时间位置和突发包的结束时间位置, 通过所述提取的开销信 息产生控制光开关的开启信号, 开启的时间在突发包的前序刚开始的时间位置, 关闭的时间在突发包的结束位置, 在不同的时间接通不同的 ONU, 具体实现过 程时,可以跟据 GPON带宽地图信息来控制光开关模块 303的开启和关闭时间, 光开关模块 303输出后再经过上行光放大器进行功率补偿, 然后耦合到上行链 路, 送给 OLT接收。 光开关模块 303可以为铌酸锂(LiNb03 , LN )光开关或 者半导体光放大器( SOA )光开关,所述光开关模块 303与至少一个或以上 ONU 的上行通道相连, 所述光开关模块 303在控制电路模块 302的控制下, 只选择 一个与之相连的 ONU输出上行信号。 所述光开关模块 303在控制电路模块 302 的控制下, 在 ONU上行突发包的到达时刻打开光开关, 在突发包的结束时刻切 换到另一路 ONU上行信号。 在具体的应用过程中, 也可以在无源光网络拉远设 备中扩展多个光控制开关 212, 实现大容量的分光比。 这里的上行 PON信号通 道与 ONU或者分光器相连, 开销提取模块 301从下行的 PON信号中提取开销 信息, 所述提取过程可以在光放大器 211对下行的 PON信号进行光功率补偿之 前或者之后, 所述光放大器 211可以为掺铒光纤放大器(Erbium-doped Optical Fiber Amplifier, EDFA )或者 SOA, 再生装置 213可以为全光的再生装置或者 光电光( Optical-Electrical-Optical , OEO ) 的再生装置。
在具体实施过程中, 由于下行方向是连续光信号, 只要下行光波长处在光 放大器 211的放大范围之内, 光放大器 211对光功率的补偿是没有任何难度的, 如果下行方向 OLT釆用 1550波段的釆光, 则光补偿可以釆用 EDFA直接实现, 利用 EDFA的高输出功率, 和 EDFA内部设置的可变光衰减器(VOA )组合, 可以实现对不同分光比的应用时的功率补偿。 例如, 当分光比为 1: 64 时, 分 光比带来的功率衰减大约为 6 x 3 = 18DB, 考虑插损 1DB, 则总的功率衰减为 19DB, 假定 ONU距离该拉远设备的距离为 10km, 大约再需要 4DB的功率预 算, 再假定 ONU的接收灵敏度为 - 18DB, 则光放大器 211的输出只要控制在 + 5DB ( 19 + 4 - 18 )就可以满足要求; 当分光比从 1: 64增加到 1: 256时, 增 加 6DB的预算,光放大器通过调节 VOA将输出功率控制在 + 11DB输出就可以 满足要求。 由于 EDFA的饱和输出功率为 + 20DB以上, 4艮容易实现上述功率补 偿要求。 需要说明的是, 在下行通道上的光放大器 211也可以通过 SOA实现。
在上行方向, 在所述光控制开关 212的控制下, 是分时与各 ONU的光纤接 通, 这样不管进入光控制开关 212 的光纤的数目是多少, 光功率衰减总是控制 在一定的范围之内, 仅仅与 ONU到光控制开关 212的距离有关系, 而与 ONU 的数目没有关系。 这里的光控制开关 212中的光开关模块 303可以利用较小的 光开关来组合搭建, 仅需要光耦合器和光开关连接起来就可以。 在光控制开关 212切换的速度方面, 基于 LN的 1: N光开关可以达到 10ns的切换速度, 甚至 更高的速度。 对于 GPON信号来说, 光控制开关 212的速度应达到 GPON的突 发包之间的保护时间要求, GPON的保护时间为 78ns, 光控制开关 212的时间 应远小于 78ns。 当光控制开关 212在突发包的尾部或突发包的前序之前完成切 换动作, 对突发包的格式就没有任何影响。 这里除了 LN光开关, 也还有其他的 高速光开关, 例如基于 SOA的光开关, 速度可以达到 2ns级别。 由于 EPON的 前序更长达 400ns, 对光开关的速度要求比 GPON要低很多, 如果光控制开关 212切换时间能满足 GPON的要求, 则一定能满足 EPON的要求。 上行方向上 的开销提取模块 301可以从下行方向的光放大器 211对光补偿后的 PON信号中 提取; 如 PON信号的开销信息是以其他调制的方式送达时, 也可以从光放大器 211的前面来提取,如从光监控通道或从频移键控(Frequency-shift keying, FSK ) 等方式来接收相应的开销信息。 在 GPON情况下, 上行方向上的开销提取模块 301可直接从 GPON信号的下行方向上直接提取开销信息。 所述开销信息主要 包括各 ONU 的发送时间位置, 对 GPON 信号来说就是上行带宽地图 ( BW-MAP ) , GPON 的下行开销信息中包含有带宽地图信息, 用来指示每个 ONU在什么时间发送上行突发包, 什么时间结束发送, 所以在该装置中提取 GPON的开销信息, 就意味着知道了每个 ONU的突发包什么时间发送和结束, 也就知道了到达光控制开关输入口的每个突发包的到达时间和结束时间, 既然 知道了每个突发包的时间, 就可以在考虑路径延时的情况下, 产生一个控制信 号来选择上行的突发包。 例如, 通过提取开销信息中的带宽地图, 知道了 ONU1 的突发包是时间 T11到达, 时间 T12结束, ONU2的突发包是时间 T21到达, T22结束,再考虑路径延时分别为 D1和 D2,则控制电路应该在 T11+D1时间选 择 ONU1来的信号通过, 在 T12+D1时间关闭 , 并在 T21 + D2的时间切换到 ONU2来的输入, 选择 ONU2的突发包通过, 以此类推, 直到所有 ONU的上行 突发包都通过, 然后进入下一个循环, 又从 ONU1开始, ONUN结束, 如此循 环往复, 只要提取的带宽地图有变化, 这些控制时间就跟着变化„ 控制电路模 块 302根据开销提取模块 301提取的开销信息, 产生相应的控制信号来控制光 开关模块 303 的开启和关闭, 开启的时间在突发包的前序刚开始的时间位置, 关闭时间在突发包的结束时间位置, 在不同的时间接通不同的 ONU, 从而在任 何时间, 光开关模块 303仅仅与其中一个 ONU是连通的, 这就是基于时间上的 分光器( TIME BASED OPTICAL SPLITER ) , 不会因为 ONU的数量多少而产 生随 ONU数量而改变的插损的变化,通过这种拉远设备的构架不会因为用户数 量的升级而改变原来的功率预算。
光开关模块 303输出的信号送给再生装置 213进行光信号的再生, 再生方 式可以是全光的方式, 也可以是 OEO 的方式。 全光方式的再生装置可以釆用 SOA, SOA对 PON信号进行放大, 仅能进行光补偿。 如果上行再生方式釆用的 是 OEO再生方式, 由于 OEO再生方式需要精确的时间控制, 所以也需要利用 光控制开关 212中的开销提取模块 301提取的开销信息来产生控制上行突发光 模块和突发时钟恢复的复位。
图 4示出了本发明实施例中可扩展的分光器和 PON EXTENDER设备的结 构图,其工作原理与图 3中的相同,不同之处在于,所述的无源分光器(SPLITER ) 的结构具有分组扩展能力和 4个 1:2的无源功分器。 第二组为扩展 SPLITER,内 部结构与第一组相同 ,在 PON EXTENDER设备内部预留扩展 SPLITER的位置 , 当需要扩展 ONU用户数量时, 再将所述 SPLITER安放在预留的位置。 图 3中 的 PON EXTENDER设备同时具有拉远设备和 SPLITER功能, SPLITER输出直 接连接到每个 ONU, 但图 4中的 SPLITER共有两级, 第一级为 1: 4, 第二级 靠近 ONU, 为 1: N, 其中 N为自然数, 当 N=32时, 总的分光比为 128。 从第 一级 SPLITER到第二级 SPLITER的距离大于 10KM。 在同样的 ONU数目下, 与图 3相比, EDFA的功率预算多了 1: 2扩展预算 3DB和 10KM的传输损耗预 算 4DB, 通过 EDFA的功率补偿还是容易实现。 这里的 PON EXTENDER设备 具有更大的灵活性, 而不必如图 3 中的 PON EXTENDER 设备必须放置在 SPLITER的位置, 并且对光控制开关 212上的输入端口数量的要求降低了, 只 需要 1: 4或 1: 8的光开关, 这里以 1: 8为例进行说明, 当然其他比例的光开 关也是可以实现的。 当选择 1: 8的光开关时, 预留的 4个端口为扩展端口。 图 4中每个光控制开关 201端口如果带 32个 ONU, 则共可以扩展到 256个 ONU, 基于类似的设计, 还可以扩展到更大的 ONU数量。 ODN2 ( 10KM段)上的每 一组 ONU在上行方向帧结构中可以按组来分配在不同的时间位置,光控制开关 211按组来进行切换; 这里也可以按每个 ONU的上行突发包单独切换, 但必须 知道每个 ONU上行信号的准确位置。 虽然 PON EXTENDER设备有 4根光纤到 第二级无源光 SPLITER,但这 4根光纤上的 ONU上行方向都是共享同一个帧结 构。
图 5示出了本发明实施例中的可扩展的光控制开关的 PON EXTENDER设 备结构图, 该方案的原理与图 4基本相同, 区别在于, 光控制开关 212的结构 釆用了可以扩展的设计方式, 可根据用户数量的增长情况来实现分步骤扩展, 例如在初期可使用一个 1: 4的光开关模块 303和 1个 1: 4的 SPLITER, 可实 现带用户数 1 - 128, 当用户数量要求超过 128时, 在预留位置增加 1: 4光开关 和 1: 4的 SPLITER, 可将用户数量扩大到 256。 这里的光开关模块 303的开关 比例可以是 1: N, SPLITER的分光比可以是 1: N, 这里的 N为任意自然数, 当用户数量发生变化之后, 这种方式更容易扩展相应的 ONU。
图 6示出了本发明实施例中的无源光网络拉远方法的流程图, 具体实现过 程如下:
步骤 S601: 开始;
步骤 S602: 对下行通道无源光网络信号进行光功率补偿;
步骤 S603: 提取下行通道中无源光网络信号的开销信息;
需要说明的是, 步骤 S603提取开销信息的过程可以在步骤 S602之前或者 之后。
步骤 S604: 根据所述提取的开销信息控制上行通道中的上行信号的输入; 需要说明的是, 根据所述提取的开销信息控制光开关的开关, 使光开关选 择其中一路与所述光开关相连的光网络单元上行信号作为输出的上行通道无源 光网络信号; 根据所述提取的开销信息在光网络上行突发包的到达时刻打开光 开关, 在突发包的结束时刻切换到另一路光网络单元上行信号。 所述开销信息 中包含了每个 ONU发送时间位置信息, 包括突发包的前序刚开始的时间位置和 突发包的结束位置, 通过所述提取的开销信息产生控制光开关的开启信号, 开 启的时间在突发包前序刚开始的时间位置, 关闭的时间在突发包结束的时间位 置, 在不同的时间接通不同的 ONU。
步骤 S605: 对所述输出的上行通道无源光网络信号进行光信号的再生; 在对光信号进行再生之前, 需要滤出下行通道中耦合到上行通道的光信号。 步骤 S606: 结束。
综上所述, 通过本发明实施例所提供的 PON EXTENDER设备, 通过光控 制开关选择其中一路的 PON上行信号作为输出的上行通道 PON信号, 由于任 何时刻只有一个 ONU的信号通过光控制开关, 而光开关的插损是一致的, 所以 扩展 ONU的数量与插损是无关的, 避开了上行方向的光功率补偿的难度, 使上 行方向的扩展基本上与分光比没有关系, 而下行方向的光功率补偿是没有技术 难度的, 可以实现较长的传输距离, 且扩展 ONU的数量仅与下行光功率补偿相 关, 与上行光开关的开关速度相关, 所以该方案在扩展性上比现有技术强, 从 而克服了现有分光比小缺点, 实现了高分光比, 满足了大量用户需求。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算 机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上揭露的仅为本发明的较佳实施例而已, 当然不能以此来限定本发明之 权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种无源光网络拉远设备, 其特征在于, 包括:
光放大器, 用于对下行通道无源光网络信号进行光功率补偿;
光控制开关, 用于连接到光网络单元, 并提取下行通道中无源光网络信号 的开销信息 , 根据所述提取的开销信息选择其中一路光网络单元上行信号作为 输出的上行通道无源光网络信号;
再生装置, 用于对光控制开关控制输出的上行通道无源光网络信号进行光 信号的再生。
2、 如权利要求 1所述的无源光网络拉远设备, 其特征在于, 所述光控制开 关包括开销提取模块、 控制电路模块和光开关模块, 其中:
开销提取模块, 用于从下行通道无源光网络信号中提取开销信息; 控制电路模块, 用于根据开销提取模块提取的开销信息控制光开关模块的 开启和关闭;
光开关模块, 用于在控制电路模块的控制下选择其中一路光网络单元上行 信号作为输出的上行通道无源光网络信号。
3、 如权利要求 2所述的无源光网络拉远设备, 其特征在于, 所述光控制开 关还包括:
滤波器模块, 分别与光开关模块和再生装置相连, 用于滤出下行通道中耦 合到上行通道的光信号。
4、 如权利要求 3所述的无源光网络拉远设备, 其特征在于, 所述光开关模 块与至少一个光网络单元的上行通道相连, 所述光开关模块在控制电路模块的 控制下, 只选择一个与之相连的光网络单元输出上行信号。
5、 如权利要求 4所述的无源光网络拉远设备, 其特征在于, 所述光开关模 块为至少一个以上, 每个光开关模块分别与所述至少一个光网络单元的上行通 道相连。
6、 如权利要求 4或 5所述的无源光网络拉远设备, 其特征在于, 所述开销信息包括各光网络单元的发送时间位置信息, 该时间位置信息包 括突发包的开始时间位置和突发包的结束时间位置;
所述光开关模块在控制电路模块的控制下, 根据所述开销提取模块提取的 开销信息在光网络单元上行突发包的到达时刻打开光开关, 在突发包的结束时 刻切换到另一路光网络单元上行信号。
7、 如权利要求 6所述的无源光网络拉远设备, 其特征在于, 所述光网络单 元的上行通道直接与所述光控制开关相连或经过无源分光器再与所述光控制开 关相连。
8、 如权利要求 7所述的无源光网络拉远设备, 其特征在于, 所述开销提取 模块在光放大器对下行的无源光网络信号进行光功率补偿之前或者之后从下行 的无源光网络信号中提取开销信息。
9、 一种无源光网络拉远系统, 该系统包括光线路终端、 与光线路终端相连 的无源光网络拉远设备和与无源光网络拉远设备另一端相连的至少一个光网络 单元, 其特征在于,
所述光线路终端用于通过无源光网络拉远设备的拉远和分光与所述至少一 个光网络单元进行光信号的交互; 偿, 提取下行通道中无源光网络信号的开销信息, 根据所述提取的开销信息选 择其中一路光网络单元上行信号作为输出的上行通道无源光网络信号, 并对所 述输出的上行通道无源光网络信号进行光信号的再生。
10、 一种无源光网络拉远的方法, 其特征在于, 包括:
对下行通道无源光网络信号进行光功率补偿;
提取下行通道无源光网络信号的开销信息; 根据所述提取的开销信息选择其中一路与光网络单元上行信号作为输出的 上行通道无源光网络信号;
对所述输出的上行通道无源光网络信号进行光信号的再生。
11、 如权利要求 10所述的方法, 其特征在于, 所述提取下行通道中无源光 网络信号的开销信息在所述对下行通道无源光网络信号进行光功率补偿之前。
12、 如权利要求 11所述的方法, 其特征在于, 所述提取下行通道中无源光 网络信号的开销信息在所述对下行通道无源光网络信号进行光功率补偿之后。
13、 如权利要求 11或 12所述的方法, 其特征在于, 所述开销信息包括各 光网络单元的发送时间位置信息, 该时间位置信息包括突发包的开始时间位置 和突发包的结束时间位置;
所述根据所述提取的开销信息选择其中一路与光网络单元上行信号作为输 出的上行通道无源光网络信号步骤具体为:
根据所述提取的开销信息在光网络单元上行突发包的到达时刻打开光开 关, 在突发包的结束时刻切换到另一路光网络单元上行信号。
14、 如权利要求 13所述的方法, 其特征在于, 所述对所述输出的上行通道 无源光网络信号进行光信号的再生之前还包括:
滤出下行通道中耦合到上行通道的光信号。
PCT/CN2009/071277 2008-04-28 2009-04-15 一种无源光网络拉远的方法及设备和系统 WO2009132549A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09737659A EP2262133A4 (en) 2008-04-28 2009-04-15 METHOD, DEVICE AND SYSTEM FOR EXTENSION OF PASSIVE OPTICAL NETWORK
BRPI0911116A BRPI0911116A2 (pt) 2008-04-28 2009-04-15 método, aparelho e sistema para estender rede ótica passiva
CA2716739A CA2716739A1 (en) 2008-04-28 2009-04-15 Method, apparatus, and system for extending passive optical network
US12/910,528 US20110038632A1 (en) 2008-04-28 2010-10-22 Method, Apparatus, and System for Extending Passive Optical Network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2008100277466A CN101572832A (zh) 2008-04-28 2008-04-28 一种无源光网络拉远的方法及设备和系统
CN200810027746.6 2008-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/910,528 Continuation US20110038632A1 (en) 2008-04-28 2010-10-22 Method, Apparatus, and System for Extending Passive Optical Network

Publications (1)

Publication Number Publication Date
WO2009132549A1 true WO2009132549A1 (zh) 2009-11-05

Family

ID=41232040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071277 WO2009132549A1 (zh) 2008-04-28 2009-04-15 一种无源光网络拉远的方法及设备和系统

Country Status (6)

Country Link
US (1) US20110038632A1 (zh)
EP (1) EP2262133A4 (zh)
CN (1) CN101572832A (zh)
BR (1) BRPI0911116A2 (zh)
CA (1) CA2716739A1 (zh)
WO (1) WO2009132549A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2380969A1 (es) * 2009-12-18 2012-05-22 Universitat Politècnica De Catalunya Metodo y dispositivos para tranmision bidireccional optica punto-a-multipunto usando un divisor de señal optica con perdidas de insercion reducidas.
KR101404533B1 (ko) 2010-06-10 2014-06-09 후아웨이 테크놀러지 컴퍼니 리미티드 수동 광학 네트워크를 위한 통신 방법, 장치 및 시스템

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131131B (zh) * 2010-10-14 2013-09-25 华为技术有限公司 一种实现无源光网络拉远的方法和系统及中继装置
WO2013012361A1 (en) * 2011-07-18 2013-01-24 Telefonaktiebolaget Lm Ericsson (Publ) Otm functionality in soa based transceivers
WO2012119421A1 (zh) * 2011-08-29 2012-09-13 华为技术有限公司 一种光放大装置、方法及无源光网络系统和设备
US9225607B2 (en) 2012-02-23 2015-12-29 Mitsubishi Electric Corporation Network system and topology map generating method
CN103686468A (zh) * 2012-09-21 2014-03-26 上海斐讯数据通信技术有限公司 用户端设备及其控制方法和无源光网络及其运行方法
US9577758B2 (en) * 2014-04-10 2017-02-21 Tibit Communications, Inc. Method and system for scheduling cascaded PON
EP3086489A1 (en) * 2015-04-24 2016-10-26 Alcatel Lucent Optical signal amplification
US10523356B2 (en) * 2016-05-31 2019-12-31 Cable Television Laborties, Inc. System and methods for coherent optical extension
US10256910B2 (en) * 2017-04-24 2019-04-09 Futurewei Technologies, Inc. Control and management of passive optical network reach extenders
US11095375B2 (en) * 2017-06-27 2021-08-17 Sumitomo Electric Industries, Ltd. Optical receiver module, optical receiving method, optical line terminal, PON system, and optical filter
CN108964771A (zh) * 2017-10-24 2018-12-07 上海欣诺通信技术股份有限公司 一种带有光放大模块的光分路装置
US10534110B2 (en) 2018-01-09 2020-01-14 Precision Optical Transceivers Inc. Integrated photonics device for continuous phase-controlled active beam steering and forming
US11791924B2 (en) * 2018-01-10 2023-10-17 Infinera Corporation Optical channel power control system and method
US10523331B2 (en) 2018-01-12 2019-12-31 Precision Optical Transceivers Inc. Increasing RF power output in photonics-fed phased array antenna systems
US10629989B2 (en) 2018-02-23 2020-04-21 Precision Optical Transceivers Inc. Phased array communication system with remote RF transceiver and antenna beam control
US10505632B1 (en) * 2018-07-23 2019-12-10 Precision Optical Transceivers Inc. Fiber bus extender embedment
CN108519751B (zh) * 2018-04-02 2021-02-09 南京国睿安泰信科技股份有限公司 一种固态矩阵开关系统
CN113395114B (zh) * 2020-03-12 2022-09-16 华为技术有限公司 光模块、数据中心系统以及数据传输方法
CN113938214A (zh) * 2020-07-13 2022-01-14 瑞昱半导体股份有限公司 光纤网络方法和相关装置
CN113992271B (zh) * 2021-10-26 2023-09-26 京信网络系统股份有限公司 一种5g毫米波基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1512687A (zh) * 2002-12-26 2004-07-14 日本电信电话株式会社 光网络单元、波长分支器及光波长复用存取系统
CN1574712A (zh) * 2003-06-09 2005-02-02 三星电子株式会社 无源光网络中的光功率均衡器
US20070092256A1 (en) * 2005-08-01 2007-04-26 Daiki Nozue WDM type passive optical network
CN101005322A (zh) * 2005-12-20 2007-07-25 日本电气通信系统株式会社 光开关设备,光通路网络,光开关方法、程序,以及记录介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163971A (ja) * 1996-11-25 1998-06-19 Fujitsu Ltd 光信号の波長を制御するための方法、装置及びシステム
GB9704587D0 (en) * 1997-03-05 1997-04-23 Fujitsu Ltd Wavelength-division multiplexing in passive optical networks
JP4860137B2 (ja) * 2004-11-12 2012-01-25 日本電気通信システム株式会社 光アクセスネットワーク方法及び光アクセスネットワーク並びに光アクセスネットワーク用光スイッチ
JP4682692B2 (ja) * 2005-05-16 2011-05-11 沖電気工業株式会社 光通信システム
JP5017942B2 (ja) * 2006-06-30 2012-09-05 富士通株式会社 ビットレート混在光通信方法並びに光加入者装置及び光局側装置
JP4065892B1 (ja) * 2006-10-13 2008-03-26 株式会社日立コミュニケーションテクノロジー Ponシステムおよびそのレンジング方法
US8107819B2 (en) * 2007-05-31 2012-01-31 Industrial Technology Research Institute Systems and methods for interference prediction
US20090208210A1 (en) * 2008-02-18 2009-08-20 Elmar Trojer Passive optical network remote protocol termination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1512687A (zh) * 2002-12-26 2004-07-14 日本电信电话株式会社 光网络单元、波长分支器及光波长复用存取系统
CN1574712A (zh) * 2003-06-09 2005-02-02 三星电子株式会社 无源光网络中的光功率均衡器
US20070092256A1 (en) * 2005-08-01 2007-04-26 Daiki Nozue WDM type passive optical network
CN101005322A (zh) * 2005-12-20 2007-07-25 日本电气通信系统株式会社 光开关设备,光通路网络,光开关方法、程序,以及记录介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2380969A1 (es) * 2009-12-18 2012-05-22 Universitat Politècnica De Catalunya Metodo y dispositivos para tranmision bidireccional optica punto-a-multipunto usando un divisor de señal optica con perdidas de insercion reducidas.
KR101404533B1 (ko) 2010-06-10 2014-06-09 후아웨이 테크놀러지 컴퍼니 리미티드 수동 광학 네트워크를 위한 통신 방법, 장치 및 시스템

Also Published As

Publication number Publication date
CA2716739A1 (en) 2009-11-05
BRPI0911116A2 (pt) 2015-10-06
CN101572832A (zh) 2009-11-04
EP2262133A1 (en) 2010-12-15
EP2262133A4 (en) 2012-03-07
US20110038632A1 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
WO2009132549A1 (zh) 一种无源光网络拉远的方法及设备和系统
US9967033B2 (en) Flexible TWDM PON with load balancing and power saving
JP4977215B2 (ja) 下位互換性を有するpon共存
TW201032502A (en) Managed PON repeater and cross connect
CN102665152B (zh) 一种新型广域覆盖混合波分时分复用无源光网络系统
EP2056495A1 (en) Electrical point-to-multipoint repeater for PON
JP2008532448A (ja) 光学伝送システム
US9008516B2 (en) Method, apparatus, and system for transmitting information in passive optical network
US8050561B2 (en) Asymmetrical PON with multiple return channels
WO2010133159A1 (zh) 突发光信号放大方法、突发光放大器及系统和通信系统
US9112613B2 (en) Passive optical network reach extender based on wavelength tunable optical module and method thereof
JP2022540600A (ja) 受動光ネットワークの上り遅延を低減する方法および関連機器
WO2009012699A1 (fr) Appareil et procédé permettant d'amplifier des signaux optiques dans un résau optique passif et un terminal de ligne optique
Hu et al. Flexible ring-tree TWDM network architecture for next generation optical access network
WO2009086789A1 (zh) 上行数据传输的控制方法及装置
Misawa et al. Broadcast-and-select photonic ATM switch with frequency division multiplexed output buffers
Takagi et al. 400Gb/s hybrid optical switching demonstration combining multi-wavelength OPS and OCS with dynamic resource allocation
Tokuhashi et al. MPCP based active optical access network with PLZT high-speed optical switch
Van Der Plas et al. Evolution of the optical access network and the related technical issues
WO2016082613A1 (zh) 一种控制光功率的方法和系统
Choudhary et al. Analysis of next generation PON architecture for optical broadband access networks
Miyazawa et al. Optical access architecture designs based on WDM-direct toward new generation networks
Caponio Optical Switching for End-to-end Packet Communications and its Potential Advantages over Electronic Switching
Imaizumi et al. HOTARU: A novel concept of hybrid optical network architecture combining multi-wavelength packet and circuit switching
SHARMA STRUCTURE ANALYSIS AND DESIGNING OF PASSIVE OPTICAL NETWORK

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09737659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2716739

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 3242/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009737659

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0911116

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101006