WO2009086789A1 - 上行数据传输的控制方法及装置 - Google Patents

上行数据传输的控制方法及装置 Download PDF

Info

Publication number
WO2009086789A1
WO2009086789A1 PCT/CN2008/073899 CN2008073899W WO2009086789A1 WO 2009086789 A1 WO2009086789 A1 WO 2009086789A1 CN 2008073899 W CN2008073899 W CN 2008073899W WO 2009086789 A1 WO2009086789 A1 WO 2009086789A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
burst
function
gap
amplifying
Prior art date
Application number
PCT/CN2008/073899
Other languages
English (en)
French (fr)
Inventor
Sulin Yang
Jinrong Yin
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009086789A1 publication Critical patent/WO2009086789A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an uplink data control method and apparatus.
  • GPON/EPON Gigabit Passive Optical Network/Ethernet Passive Optical Network
  • ODN passive optical distribution network
  • ONT/ONU The optical network terminal/optical network unit
  • TDM multiplex division multiplexing
  • the ONT/ONU only receives the corresponding downlink data.
  • the uplink data of the ONU/ONT is transmitted to the OLT through the split-multiple-access (TDMA) mode.
  • the uplink buffer of the ONU is allocated by the OLT, which can prevent the uplink data conflict of multiple ONUs/ONTs.
  • the passive ODN is generally composed of a backbone fiber, a splitter, and a split fiber.
  • the trunk fiber is connected to the OLT and the splitter, and the splitter is connected to the ONT/ONU through the split fiber. Due to the limitation of ODN line attenuation and the output optical power of the existing laser transmitter, receiver sensitivity and other factors, the maximum length of ODN fiber supported by EPON/GPO N is currently 20Km.
  • EB extends the distance between the OLT and the ONU/ONT to increase the service coverage of the office where the OLT is located.
  • OLT in the original PON system in Long Reach PON Extender The location of the Box, the distance between the OLT and the ONU/ONT is generally no more than 20Km.
  • the interface of the Extender Box near the OLT side is the main fiber interface (IFT), and the interface of the Extender Box near the optical splitter side is the distributed optical interface (IFD).
  • IFT main fiber interface
  • IFD distributed optical interface
  • the distance between the boxes can reach 40Km, that is, after the introduction of the Extender Box, Long Reach
  • PON coverage can reach 60Km.
  • the downlink relay or amplification or regeneration function is to relay or amplify or regenerate the continuous signals
  • the uplink relay or amplification or regeneration function is to relay or amplify or regenerate the uplink burst signals. Since the uplink of the IFD interface is bursty, the OLT receives the uplink data, and the uplink data is also required to be bursty. The uplink data transmission of the IFT interface must be guaranteed to be bursty to meet the OLT ( ⁇ , ⁇ ) standard OLT side burst. The requirements of the receiving part are sent, so the EB needs to accurately control the uplink burst relay or the amplification or regeneration function to meet the requirements of the OLT burst receiving part.
  • management functions may be implemented in EB, and management functions generally pass an integrated ONU (referred to as P
  • the OLT is managed by Operation Administration and Management (OAM) or other channels, such as Simple Network Management (Simple Network Management).
  • OAM Operation Administration and Management
  • Simple Network Management Simple Network Management
  • SNMP Network Management Protocol
  • data channel manages EB.
  • the EB implements one or more management functions
  • the uplink data of the management function needs to be uploaded through the IFT interface.
  • the uplink resources of the ICT interface need to be shared with all ONUs on the IFD interface of the link.
  • the implementation of the relay or amplification or regeneration function is more complicated, and the technical requirements are higher. It is necessary to solve the problems of uplink relay or amplification or regeneration and PON ONU uplink gap conflict.
  • the inventor found that the burst receiver on the OLT side resets between two burst signals, and the EB cannot guarantee the output of the no-light signal in the uplink direction of the IFT interface, thereby affecting the normality of the uplink data. Receiving, the uplink signal output by the EB management function and the uplink signal received by the IFD interface are likely to collide after multiplexing, which affects the normal operation of the system.
  • the embodiment of the present invention provides a method and an apparatus for controlling uplink data transmission, which are used to implement control and management of a multiplexed uplink burst signal, and prevent multiplexed uplink data from colliding on an uplink interface. .
  • the method for controlling uplink data transmission is configured to be disposed in an EB between an optical line terminal OLT and an optical network unit ONU of a passive optical network PON, and includes the following steps:
  • the apparatus for controlling uplink data transmission includes:
  • the uplink gap information acquiring module is configured to monitor the downlink frame sent from the downlink relay or the amplification or regeneration function of the extension box EB, obtain the uplink buffer authorization information, and/or obtain the uplink from the management function of the EB. Gap authorization information;
  • the uplink burst control signal generating module is configured to generate an uplink buffer control signal according to the uplink buffer grant information to control relaying or amplifying or regenerating the uplink burst signal.
  • the EB device provided by the embodiment of the present invention includes: an uplink burst control module, configured to monitor a downlink frame sent from a downlink relay or an amplification or regeneration function of the extension box EB, and obtain uplink buffer authorization information. And/or obtaining uplink buffer authorization information from the management function of the EB, and outputting the uplink gap grant information, wherein the uplink buffer grant information is used to control relaying or amplifying or regenerating the uplink burst signal.
  • an uplink burst control module configured to monitor a downlink frame sent from a downlink relay or an amplification or regeneration function of the extension box EB, and obtain uplink buffer authorization information. And/or obtaining uplink buffer authorization information from the management function of the EB, and outputting the uplink gap grant information, wherein the uplink buffer grant information is used to control relaying or amplifying or regenerating the uplink burst signal.
  • the uplink relay or the amplification or regeneration function is controlled according to the obtained uplink burst gap authorization information, and the uplink burst signal is ensured to pass the EB in the corresponding authorization gap. Control and manage the multiplexed uplink burst signal to prevent the uplink burst signal from colliding on the interface
  • FIG. 1 is a system structural diagram of a long-distance PON in the prior art
  • FIG. 2 is a schematic structural view of an EB in the prior art
  • FIG. 3 is a schematic structural diagram of an uplink burst gap control module added to an EB according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of the present invention
  • FIG. 6 is a schematic structural view of a third embodiment of the present invention
  • Figure 7 is a schematic structural view of a fourth embodiment of the present invention.
  • Figure 8 is a schematic structural view of Embodiment 5 of the present invention.
  • Embodiment 6 of the present invention is a schematic structural view of Embodiment 6 of the present invention.
  • FIG. 10 is a schematic structural diagram of an uplink gap information acquiring module according to Embodiment 6 of the present invention.
  • the embodiment of the present invention takes an uplink burst signal transmission under PON (GPON, EPON) as an example, but is not limited thereto, and other methods related to uplink burst signal transmission control in multiplexing or The devices are similar.
  • PON GPON, EPON
  • FIG. 3 is a schematic structural diagram of adding an uplink burst gap control module in the EB.
  • the ONU uplink buffer is allocated and authorized by the OLT, and the OLT authorizes the uplink buffer for the ONU through the downlink frame.
  • the uplink burst control module obtains the uplink gap authorization information in the downlink data from the downlink relay or the amplification or regeneration function module.
  • the uplink burst control module can also learn through the management function.
  • the uplink burst control module controls the uplink relay or the amplification or regeneration function according to the acquired uplink buffer authorization information, so that the uplink relay or the amplification or regeneration function can correctly transmit the burst signal in the uplink direction, and can also prevent The multiplexed upstream data collides on the upstream interface.
  • FIG. 4 is a flowchart of the embodiment, and the specific steps are as follows:
  • MPCP MPCP message acquisition ONU uplink buffer authorization information on the IFD interface side.
  • the Map obtains the ONU uplink gap authorization information on the IFD interface side.
  • the OLT sends the IUD side 0 NU uplink buffer authorization information and/or the management function uplink gap authorization information to the integrated management function in the EB through the OAM channel or other channels, such as SNMP or common data channel, and the management function. Then, it is transmitted to the uplink burst control module through an interface with the uplink burst control module.
  • S102 Control relay or amplification or regeneration of the uplink signal.
  • Controls the upstream burst signal includes controlling the relaying or amplification or regeneration of the burst signal, such as by turning the burst mode laser driver on or off. For another example, if it is necessary to perform the chirping of the uplink burst signal and the data recovery, and then drive the transmission function of the IFT interface side, the burst data recovery clock (BCDR) circuit is completed before each burst by the reset signal. Reset.
  • BCDR burst data recovery clock
  • the uplink relay or amplification or regeneration function is turned on at the beginning of each gap, and the uplink relay or amplification is turned off at the end of each burst gap.
  • Regeneration function The implementation of the control can be achieved by means of corresponding control signals, such as an uplink relay or an enable signal for amplification or regeneration.
  • control signals such as an uplink relay or an enable signal for amplification or regeneration.
  • OEO Optical-Electronic-Optical Conversion
  • the burst transmission function on the IFT interface side needs to be turned off after the end or end of a burst, and the transmission function can be turned on or off by enabling or disabling the IFT interface side burst mode laser driver.
  • OEO method is used to implement ⁇ , if it is necessary to perform the ⁇ clock and data recovery on the uplink burst signal and then drive the transmission function on the IFT interface side, it is also necessary to control the reset of the BCDR circuit according to the uplink ⁇ ⁇ authorization information, that is, in the burst. The reset of the BCDR is completed before the beginning of the gap.
  • the method embodiment may be implemented by adding an uplink burst control module, or may have a management function in the EB, and directly integrating the uplink burst control module into the management function. This does not affect the implementation of this embodiment.
  • the uplink burst control module can share the downlink data receiving function of the management function, which The implementation of this embodiment is not affected.
  • the uplink relay or the amplification or regeneration function is controlled according to the obtained uplink burst gap authorization information, so that the uplink burst signal is ensured to pass the EB in the corresponding authorization gap, and two are avoided. Guard time or band gap between bursts Gap) , there is still an output of the optical signal in the upstream direction of the IFT interface.
  • the uplink data of the IFD interface side and the uplink scheduling of the management function are effectively scheduled to prevent the multiplexed uplink data from colliding on the uplink interface.
  • the OLT reserves an empty window or a silent window, in which a specific ONU can send uplink data (such as an ONU in an activated state or discovery process, such as GPON).
  • the newly activated ONU can send the uplink sequence number response information). Since the 0 NU has not been measured or accurately authorized, the OLT cannot predict the specific location of the ONU uplink buffer. That is, the uplink burst control module in the EB cannot generate accurate information through the downlink authorization window. Upstream burst control signal.
  • the uplink burst control module can combine the message authorization information of the downlink reserved window and the SD (signal detection) signal of the uplink receiving function of the IFD interface to generate a corresponding signal to control the burst mode laser of the IFT interface side.
  • the drive is snoring or the send function is turned off.
  • the uplink burst control module slams the IFT interface side burst mode laser driver at the active level of the SD signal, and turns off the IFT interface side burst mode when the SD signal is inactive. Laser driver.
  • the uplink burst control module is composed of an uplink gap information acquisition module and an uplink burst control signal generation module.
  • the uplink gap information obtaining module is configured to obtain the authorization information of the uplink gap
  • the uplink burst control signal generating module is configured to generate a corresponding control signal according to the authorization information of the uplink buffer acquired by the uplink gap information acquiring module, to control relaying or amplifying or regenerating the uplink signal.
  • the optical direction amplification (OA) method is used in the above direction
  • the optical-electrical-optical conversion (OEO) method is used as an example to illustrate the operation mode of the uplink burst control module.
  • the downlink mode uses the OEO mode
  • the downlink relay function includes an IFT downlink receiving function and an IFD downlink sending function, wherein the downlink receiving function is mainly performed by a photoelectric converter (Photoelectric)
  • the slot control module includes an uplink slot information acquisition module and an uplink burst gap control signal generation module.
  • the uplink buffer information acquisition module is directly connected or through an additional circuit, such as a serial-to-parallel conversion circuit (Serdes), to connect to the IFT downlink receiving function, obtain a downlink frame from the CDR, and obtain an uplink gap grant information in the downlink frame by listening to the downlink frame.
  • Serdes serial-to-parallel conversion circuit
  • the uplink burst control signal generating module generates a control signal of the OA according to the uplink buffer authorization information monitored by the uplink gap information acquiring module, that is, the control signal starts to be engraved in each burst, or a period before the start Between (considering the signal processing delay), the control OA is turned on, so that the OA can amplify the uplink signal, and at the end of each crevice, the control OA is turned off, and the OA is prohibited from transmitting the signal in the upward direction.
  • the opening and closing operations can be accomplished by controlling the drive current and/or bias current of the OA.
  • This embodiment ensures that the OLT side can successfully receive uplink data by controlling the uplink burst signal to pass the EB in the effective gap.
  • the OEO mode is used in both the uplink and downlink directions, and the structure diagram is shown in FIG. 6.
  • the downlink relay function includes an IFT downlink receiving function and an IFD downlink transmitting function, wherein the downlink receiving function is mainly composed of a photoelectric converter, a transimpedance amplifier (TIA), a limiting amplifier, and a data clock recovery circuit (CDR), wherein Photoelectric converters and transimpedance amplifiers are typically integrated in the same module.
  • the IFT uplink interface function typically includes a laser and laser burst driver (BM LDD), when BM
  • the enable signal of LDD is disabled, the output of LDD drive laser does not output signal, the laser does not output optical signal or only outputs very weak optical signal;
  • BM LDD enable signal is turned on, BM
  • the LDD output drives the laser to output optical signals representing the 0 and 1 signals based on the data input at the input.
  • the data uplink burst control module includes an uplink buffer information acquisition module and an uplink burst gap control signal generation module.
  • the uplink gap information acquisition module directly connects or passes an additional circuit, such as a serial-to-parallel conversion circuit, to connect to the IFT downlink receiving function, acquires a downlink frame from the CDR, and obtains uplink gap grant information in the downlink frame by monitoring the downlink frame.
  • the uplink burst gap control signal generating module generates the BM of the uplink sending function of the IFT interface according to the uplink buffering authorization information monitored by the uplink gap information acquiring module.
  • the enable control signal of LDD that is, the control signal starts to be etched in each burst, or a period before the start (considering the signal processing delay) enables BM LDD, and closes the BM at the end of each gap.
  • the driving function of LDD prohibits the uplink transmission function of the IFT interface from transmitting optical signals in the upward direction.
  • the OLT side can successfully receive the uplink data.
  • the EB includes a management function
  • the uplink direction optical amplification is used to implement the uplink distance extension function
  • the downlink direction is the OEO mode.
  • the specific structural block diagram is shown in FIG. 7.
  • the downlink relay function includes the IFT downlink receiving function and the IFD downlink transmitting function, wherein the downlink receiving function is mainly composed of a photoelectric converter, a transimpedance amplifier (TIA), a limiting amplifier and a data clock recovery circuit (CDR), in which the photoelectric The converter and the transimpedance amplifier are generally integrated in the same module.
  • the uplink burst control module includes an uplink buffer information acquisition module and an uplink burst gap control signal generation module.
  • the uplink buffer information acquisition module is directly connected or passed through an additional The circuit, such as the serial-to-parallel conversion circuit, connects the IFT downlink receiving function, acquires the downlink frame from the CDR, and obtains the uplink glitch authorization information in the downlink frame by listening to the downlink frame.
  • the uplink burst crevice control module can also pass the management function.
  • the interface obtains the relevant uplink gap authorization information.
  • the uplink burst gap control module can be integrated into the management function.
  • the uplink gap information acquisition module can share the downlink frame receiving function of the management function, and the uplink frame receiving function of the management function extracts the uplink.
  • Direction bursting authorization information is directly connected or passed through an additional The circuit, such as the serial-to-parallel conversion circuit, connects the IFT downlink receiving function, acquires the downlink frame from the CDR, and obtains the uplink glitch authorization information in the downlink frame by listening to the downlink frame.
  • the uplink burst crevice control module can
  • the burst gap control signal generating module generates a control signal of the OA according to the uplink buffer grant information monitored by the uplink gap information acquiring module, that is, the control signal starts to be engraved in each burst, or a period of time before the start
  • the OA is turned on, enabling the OA to amplify the uplink signal, controlling the OA to be turned off at the end of each gap, and prohibiting the OA from transmitting signals in the uplink direction.
  • the management function itself also needs the OLT to allocate uplink buffers.
  • the uplink burst control module needs to prohibit the OA operation and prevent OA.
  • the optical signal is output in the upstream direction. Since the management function itself also receives the configuration, management and other information transmitted by the OLT to the management function, that is, the management function needs to have the capability of receiving the downlink frame. In order to reduce the EB cost, the uplink burst can be implemented within the management function.
  • the OLT side can successfully receive the uplink data.
  • the uplink resource is multiplexed with the management function, and the uplink burst signal is transmitted.
  • the control of the transmission ensures that the uplink signal output by the EB management function and the uplink signal received by the IFD do not collide on the IFT interface.
  • the ONU of the IFD interface has a problem, it can be implemented by controlling the OA uplink transmission function. Isolation of the IFD interface ensures that the EB's control and management functions are still functioning properly without being affected by IBD interface side failures.
  • the EB includes a management function
  • the OEO mode is taken in the uplink direction
  • the OE 0 mode is used in the downlink direction as an example to describe the working principle of the uplink data control device.
  • the specific structural block diagram is shown in FIG. 8.
  • the downlink relay or regenerative function includes IFT downlink receiving function and IFD downlink transmitting function, wherein the downlink receiving function is mainly composed of a photoelectric converter, a transimpedance amplifier (TIA), a limiting amplifier and a data clock recovery circuit (CDR). , where the photoelectric converter and the transimpedance amplifier are generally integrated in the same module.
  • IFT uplink interface functions typically include laser and laser burst drivers (BM LDD), when BM
  • the enable signal of LDD is disabled, the output of LDD drive laser does not output signal, the laser does not output optical signal or only outputs very weak optical signal;
  • BM LDD enable signal is turned on, BM
  • the LDD output drives the laser to output optical signals representing the 0 and 1 signals based on the data input at the input.
  • the uplink burst control module includes an uplink gap information acquisition module and an uplink burst gap control signal generation module.
  • the uplink buffer information acquisition module is directly connected or through an additional circuit, such as a serial-to-parallel conversion circuit, to connect the IFT downlink receiving function, obtain a downlink frame from the CDR or other circuit, and acquire the uplink gap authorization information in the downlink frame by listening to the downlink frame.
  • the uplink burst control signal generating module generates an enable control signal of the BM LDD of the uplink transmission function of the IFT interface according to the uplink buffer authorization information monitored by the uplink gap information acquisition module, that is, the control signal starts at each burst gap.
  • the control signal generated by the uplink burst control signal generating module can also control the multiplexing module to ensure that the uplink signal is transmitted on the IFD interface, and the management function cannot send uplink data or management functions, even if the data is sent, it is not input to the BM.
  • the input of the LDD is
  • the management function itself also needs the OLT to allocate uplink buffers.
  • the uplink buffer of the management function in order to ensure the reliable transmission of the uplink data of the management function, after the management function is sent upstream, the uplink signal of the IFD interface cannot be accessed. Send function to the IFT interface, so you need to control the BM through the multiplexing module.
  • the multiplexing module here can be implemented by a multi-way selector or a multi-way switch, and is switched to the data line of the uplink output of the receiving management function in the uplink function of the management function, and the uplink gap on the IFD interface.
  • the LDD input is switched to the IFD interface.
  • the control switching signal can also be controlled by the upstream buffer control module based on the upstream gap information. Since the management function itself also receives the configuration, management and other information transmitted by the OLT to the management function, that is, the management function needs to have the capability of receiving the downlink frame. In order to reduce the EB cost, the uplink burst can be implemented within the management function. The function of the upstream gap information acquisition module inside the control module, or directly implements all the uplink burst control module functions inside the management function module.
  • the control of the uplink burst signal ensures that the uplink signal output by the EB management function and the uplink signal received by the IFD do not collide on the IFT interface; on the other hand, when the IFD If there is a problem with the ONU of the interface, you can control the multiplexing function to implement the isolated IFD interface, so that the control and management functions of the EB can still operate normally without being affected on the IFD interface side.
  • the EB includes an uplink gap information acquisition module that directly connects to the downlink reception function of the EB or the downlink reception function output of the EB through a serial-to-parallel conversion circuit (Serdes).
  • Serdes serial-to-parallel conversion circuit
  • GPON is taken as an example to illustrate the block diagram of the uplink gap information acquisition module, as shown in Figure 9 and Figure 10, including frame synchronization, sequence generation logic, buffer, PLEND field read, BWMAP field length identification, BWMAP field read. Take and extract the gap information.
  • the frame synchronization circuit searches for the Psyn field of the downlink frame, and triggers the synchronization state machine according to the Psyn field.
  • the state machine process can refer to ITU-T.
  • the frame synchronization circuit outputs a frame synchronization signal to trigger the sequence generation logic to generate corresponding sequence information.
  • the sequence generation circuit generates an enable signal for the PLEND field read circuit and the BWMAP field read circuit.
  • the PLEND field reads the circuit connection buffer, and the enable signal is turned on.
  • the PLEND field read circuit receives data from the data line, receives the PLEND field, and buffers it and outputs it to the BWMAP field length identification circuit.
  • the BWMAP field length identification circuit completes the extraction of the BWMAP field length information, and feeds back the BWMAP length information to the sequence generation circuit. Since the starting position of the BWAMP field is fixed, but the length is variable, the length is specified by the value of the BLEN field in the PLEND field, and the sequence generating circuit is based on the synchronization signal output by the frame synchronization circuit, the BWMAP fixed position offset, and the BWMAP field length information, which is BWMAP.
  • the field read circuit produces an enable signal of the corresponding width.
  • the BWMAP field read circuit After the BWMAP field read circuit is enabled, it receives data from the data line, and receives the BWMA P field, which is buffered and sent to the gap information extraction circuit.
  • the sequence information extraction circuit extracts the uplink buffer authorization information from the BWMAP field, including the start of the gap (SSTART), the end of the gap (SSTOP), and the Alloc-ID (authorization identifier) information. And output the extracted uplink gap authorization information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种上行数据传输的控制方法及装置,以实现对多路复用的上行突发信号进行控制和管理,防止多路复用的上行数据在上行接口上发生冲突。本发明上行数据传输的控制方法,用于设置于无源光网络PON的光线路终端OLT和光网络单元ONU之间的扩展盒EB中,包括:从扩展盒EB的下行接收功能接收的下行帧中获取光网络单元ONU的上行时隙授权信息;根据所述上行时隙授权信息,控制所述上行突发信号的中继或放大或再生。

Description

上行数据传输的控制方法及装置
[1] 本申请要求于 2008年 1月 4日提交中国专利局、 申请号为 200810065113.4、 发明 名称为"上行数据传输的控制方法及装置"的中国专利申请的优先权, 其全部内容 通过引用结合在本申请中。
[2] 技术领域
[3] 本发明涉及通信技术领域, 尤其涉及上行数据控制方法及装置。
[4] 发明背景
吉比特无源光网络 /以太网无源光网络 (GPON/EPON) 为新一代宽带无源光综 合接入技术, 局端的光线路终端 (OLT) 通过无源光分布网络 (ODN) 与多个 光网络终端 /光网络单元 (ONT/ONU) 连接, OLT向 ONT/ONU发送下行数据吋 釆用吋分复用 (TDM) 的方式, 通过 ODN传给所有的 ONT/ONU。 ONT/ONU只 接收对应的下行数据; ONU/ONT的上行数据通过吋分多址 (TDMA) 方式传递 给 OLT, ONU的上行吋隙由 OLT分配, 可以防止多个 ONU/ONT的上行数据的冲 突。 无源 ODN—般由主干光纤、 分光器和分路光纤组成, 主干光纤连接 OLT和 分光器, 分光器通过分路光纤连接 ONT/ONU。 由于受限于 ODN线路衰减及现有 的激光发射器的输出光功率大小、 接收机灵敏度等因素的影响, 目前 EPON/GPO N支持的 ODN光纤最大长度为 20Km。
当无源光网络 (PON) 应用在人口比较稀散的地区吋, 运营商希望 PON系统的 ODN能够覆盖更广的范围, 以减少局端站点的数量, 从而降低运营成本。
因此运营商提出在现有 ODN系统中增加一个扩展盒 (Extender
Box, 简称 EB) 来延伸 OLT到 ONU/ONT间的距离, 增大 OLT所在局的服务覆盖 范围。 增加了 Extender
Box的 PON系统结构如附图 1所示, 这种 PON系统在业界被称为长距离 PON (Lon g Reach PON) 。 通过引入 Extender
Box可以把 OLT往更靠近核心网络的位置移动。 原有 PON系统中 OLT在 Long Reach PON中 Extender Box所在的位置, OLT与 ONU/ONT的距离一般不大于 20Km。 Long Reach PON中 Extender Box靠近 OLT侧的接口为主干光纤接口 (IFT) , Extender Box靠近分光器侧的接口为分布光纤接口 (IFD) 。 OLT与 Extender
Box之间的距离可以达到 40Km, 即引入 Extender Box后, Long Reach
PON的覆盖范围可以达到 60Km。
[7] EB的基本结构如附图 2所示, 其中下行中继或放大或再生功能完成下行信号 (I
FT到 IFD接口) 的中继或放大或再生, 上行中继或放大或再生功能完成上行信号
(IFD到 IFT接口) 的中继或放大或再生。 下行中继或放大或再生功能是对于下 行连续的信号进行中继或放大或再生处理, 而上行中继或放大或再生功能是对 上行突发信号进行中继或放大或再生处理。 由于 IFD接口的上行是突发的, OLT 接收上行数据吋也要求上行数据是突发的, IFT接口的上行数据发送吋必须保证 是突发的才能满足 PON (ΕΡΟΝ,ΟΡΟΝ) 标准中 OLT侧突发接收部分的要求, 因 此 EB中需要对上行突发中继或放大或再生功能进行精确的控制, 以满足 OLT突 发接收部分的要求。
[8] 另外 EB中可能会实现管理功能, 管理功能一般通过一个集成的 ONU (简称为 P
ON ONU) 来实现。 OLT通过运行管理维护 (Operation Administration and Management, 简称 OAM)或其他通道, 例如简单网络管理协议 (Simple Network Management
Protocol, 简称 SNMP) 或数据通道, 对 EB进行管理。 当 EB内部实现一个或多个 管理功能吋, 管理功能的上行数据也需要通过 IFT接口上传数据, 需要与该链路 的 IFD接口上的所有 ONU共享 IFT接口上行资源, 因此该链路的上行方向的中继 或放大或再生功能的实现更复杂, 技术要求更高, 需要解决上行中继或放大或 再生与 PON ONU上行吋隙冲突等问题。
[9] 发明人在实现本发明吋, 发现 OLT侧的突发接收器在两个突发信号之间进行复 位吋, EB不能保证 IFT接口的上行方向无光信号输出, 从而影响上行数据的正常 接收, 另外 EB管理功能输出的上行信号和 IFD接口接收的上行信号在复用吋容易 发生冲突, 影响系统正常工作。
[10] 发明内容 [11] 本发明实施例提供了上行数据传输的控制方法及装置, 用以实现对多路复用的 上行突发信号进行控制和管理, 防止多路复用的上行数据在上行接口上发生冲 突。
[12] 本发明实施例提供的上行数据传输的控制方法, 用于设置于无源光网络 PON的 光线路终端 OLT和光网络单元 ONU之间的 EB中, 包括以下步骤:
[13] 从扩展盒 EB的下行接收功能接收的下行信号中获取光网络单元 ONU的上行吋 隙授权信息; 根据所述上行吋隙授权信息, 控制所述上行突发信号的中继或放 大或再生。
[14] 本发明实施例提供的上行数据传输的控制装置, 包括:
[15] 上行吋隙信息获取模块, 用于监听从扩展盒 EB的下行中继或放大或再生功能 中发出的下行帧, 获取上行吋隙授权信息, 和 /或从 EB的管理功能中获取上行吋 隙授权信息;
[16] 上行突发吋隙控制信号生成模块, 用于根据所述的上行吋隙授权信息生成上行 吋隙控制信号, 以控制上行突发信号的中继或放大或再生。
[17] 本发明实施例提供的 EB设备, 包括: 上行突发吋隙控制模块, 用于监听从扩 展盒 EB的下行中继或放大或再生功能中发出的下行帧, 获取上行吋隙授权信息 , 和 /或从 EB的管理功能中获取上行吋隙授权信息, 并输出所述上行吋隙授权信 息, 其中所述上行吋隙授权信息用于控制上行突发信号的中继或放大或再生。
[18] 在本发明实施例中, 根据获取的上行突发吋隙授权信息, 来控制上行中继或放 大或再生功能, 保证了上行突发信号在相应的授权吋隙中通过 EB , 实现了对多 路复用的上行突发信号进行控制和管理, 防止了上行突发信号在接口发生冲突
[19] 附图简要说明
[20] 图 1为现有技术中长距离 PON的系统结构图;
[21] 图 2为现有技术中 EB的结构示意图;
[22] 图 3为本发明实施例一 EB中增加了上行突发吋隙控制模块的结构示意图;
[23] 图 4为本发明实施例一的方法流程图;
[24] 图 5为本发明实施例二的结构示意图; [25] 图 6为本发明实施例三的结构示意图;
[26] 图 7为本发明实施例四的结构示意图;
[27] 图 8为本发明实施例五的结构示意图;
[28] 图 9为本发明实施例六的结构示意图;
[29] 图 10为本发明实施例六中的上行吋隙信息获取模块结构示意图。
[30] 实施本发明的方式
[31] 本发明实施例以在 PON (GPON, EPON) 下的上行突发信号传输为例, 但并 不局限于此, 其它涉及到多路复用中的上行突发信号传输控制的方法或装置均 与之类似。
[32] 下面结合附图对本发明实施例做进一步地描述。
[33] 实施例一
[34] 本实施例为上行突发信号控制的方法实施例, 通过在 EB中增加上行突发吋隙 控制模块来实现。 附图 3为在 EB中增加上行突发吋隙控制模块的结构示意图。 由 于 PON系统中, ONU上行吋隙由 OLT分配和授权, OLT通过下行帧为 ONU授权 上行吋隙。 上行突发吋隙控制模块从下行中继或放大或再生功能模块中获取下 行数据中的上行吋隙授权信息, 当 EB中集成管理功能吋, 上行突发吋隙控制模 块还可以通过管理功能获知 IFD接口侧所有 ONU的上行吋隙授权信息和 /或管理 功能的上行吋隙授权信息。 上行突发吋隙控制模块根据获取的上行吋隙授权信 息对上行中继或放大或再生功能进行控制, 使得上行中继或放大或再生功能能 够正确的发送上行方向的突发信号, 也可以防止多路复用的上行数据在上行接 口上发生冲突。
[35] 图 4为本实施例的流程图, 具体步骤如下:
[36] S101 : 获取上行吋隙授权信息;
[37] 具体的, 对 EPON系统, 可以通过监听多点控制协议 (Gate
MPCP) 消息获取 IFD接口侧 ONU上行吋隙授权信息, 对于 GPON系统, 可以通 过监听下行帧中的宽带授权 (Band Width
Map, 简称 BWMAP) 字段获取 IFD接口侧的 ONU上行吋隙授权信息。 当 EB内集 成管理功能吋, 可以通过以下方式获取 IFD接口侧和 /或管理功能的上行吋隙授权 信息, 即 OLT通过 OAM通道或其他通道, 如 SNMP或普通数据通道, 把 IFD侧 0 NU上行吋隙授权信息和 /或管理功能的上行吋隙授权信息发送给 EB中集成的管 理功能, 管理功能再通过与上行突发吋隙控制模块之间的接口传递给上行突发 吋隙控制模块。
[38] S102: 控制上行信号的中继或放大或再生。
[39] 对上行突发信号进行控制。 所述的控制包括控制突发信号的中继或放大或再生 , 例如通过使能信号打开或关闭突发模式激光驱动器。 又如, 如果需要对上行 突发信号进行吋钟、 数据恢复后再驱动 IFT接口侧的发送功能吋, 通过复位信号 在每个突发吋隙之前完成突发数据吋钟恢复 (BCDR) 电路的复位。
[40] 根据获取的上行吋隙授权信息, 在每个吋隙的开始吋刻打开上行中继或放大或 再生功能, 在每个突发吋隙的结束吋刻, 关闭上行中继或放大或再生功能。 控 制的实现可以通过相应的控制信号来实现, 例如上行中继或放大或再生功能的 使能信号。 例如, 当釆用 OEO (光-电-光转换) 方式实现上行突发信号的再生功 能吋, 控制信号需要在一个突发吋隙的开始之前或开始吋刻打开 IFT接口侧的突 发发送功能, 需要在一个突发吋隙结束后或结束吋, 关闭 IFT接口侧的突发发送 功能, 可以通过使能或禁止使能 IFT接口侧突发模式激光驱动器来打开或关闭发 送功能。 当釆用 OEO方式实现吋, 如果需要对上行突发信号进行吋钟、 数据恢 复后再驱动 IFT接口侧的发送功能吋, 也需要根据上行吋隙授权信息控制 BCDR 电路的复位, 即在突发吋隙的开始之前完成对 BCDR的复位。
[41] 需要说明的是, 本方法实施例可以通过增加一个上行突发吋隙控制模块来实现 , 也可以在 EB中有管理功能吋, 直接将上行突发吋隙控制模块集成在管理功能 中, 这并不影响本实施例的实现。
[42] 另外, 当 EB中集成有管理功能吋, 特别是当集成的管理功能从 IFT下行接收功 能接收下行数据吋, 上行突发吋隙控制模块可以共用管理功能的下行数据接收 功能, 这并不影响本实施例的实现。
[43] 本实施例中, 根据获取的上行突发吋隙授权信息, 来控制上行中继或放大或再 生功能, 保证了上行突发信号在相应的授权吋隙中通过 EB , 避免了两个突发吋 隙之间的保护吋间 (Guard time) 或禁带 (band gap) , IFT接口上行方向上仍有光信号的输出。 另外当 EB中有管理功能吋, 通 过对 IFD接口侧的上行吋隙和管理功能上行吋隙的有效调度, 防止多路复用的上 行数据在上行接口上发生冲突。
[44] 另外, 在 TDM-PON激活或发现过程, OLT会预留一个空窗或静默窗口, 在该 窗口内特定的 ONU可以发送上行数据 (如处于被激活态或发现过程的 ONU, 例 如 GPON
序列号 (SN)获取状态下, 新激活的 ONU可以发送上行序列号响应信息) 。 由于 0 NU还没有进行测距或被精确的授权, OLT不能预知 ONU上行吋隙的具体位置, 即 EB中上行突发吋隙控制模块单独通过下行幵空窗的报文授权信息不能生成精 确的上行突发控制信号。 在这种情况下, 上行突发吋隙控制模块可以结合下行 预留空窗的报文授权信息和 IFD接口上行接收功能的 SD (信号检测)信号来产生相 应信号控制 IFT接口侧突发模式激光驱动器打幵或关闭发送功能。 例如, 在 ONU 激活或发现过程, 上行突发吋隙控制模块在 SD信号有效电平吋打幵 IFT接口侧突 发模式激光驱动器, 在 SD信号为无效电平吋, 关闭 IFT接口侧突发模式激光驱动 器。
[45] 实施例二
[46] 本实施例中上行突发吋隙控制模块由上行吋隙信息获取模块和上行突发吋隙控 制信号生成模块组成。
[47] 其中上行吋隙信息获取模块用于获取上行吋隙的授权信息;
[48] 上行突发吋隙控制信号生成模块用于根据上行吋隙信息获取模块获取的上行吋 隙的授权信息产生相应的控制信号, 用以控制上行信号的中继或放大或再生。
[49] 本实施例以上行方向釆用光放大 (OA) 方式, 下行釆用光 -电-光转换 (OEO) 方式为例, 以说明上行突发吋隙控制模块的工作方式。
[50] 如图 5所示, 为本实施例中上行釆用光放大方式吋上行突发吋隙的控制框图。
本实施例中下行釆用 OEO方式, 则下行中继功能包括 IFT下行接收功能和 IFD下 行发送功能, 其中下行接收功能主要由光电转换器 (Photoelectric
Transducer, PT) 、 跨阻放大器 (ΤΙΑ) 、 限幅放大器和数据吋钟恢复电路 (CD
R) 组成, 其中光电转换器和跨阻放大器一般集成在同一个模块中。 上行突发吋 隙控制模块包括上行吋隙信息获取模块、 上行突发吋隙控制信号生成模块。 上 行吋隙信息获取模块直接连接或通过额外的电路, 如串并转换电路 (Serdes) 连 接 IFT下行接收功能, 从 CDR获取下行帧, 通过监听下行帧获取下行帧中的上行 吋隙授权信息。 上行突发吋隙控制信号生成模块根据上行吋隙信息获取模块监 听到的上行吋隙授权信息生成 OA的控制信号, 即控制信号在每个突发吋隙开始 吋刻, 或开始之前的一段吋间 (考虑信号处理延迟) 控制 OA打开, 使得 OA能对 上行信号进行放大, 在每个吋隙的结束吋刻控制 OA关闭, 禁止 OA向上行方向发 送信号。 所述的打开、 关闭操作可以通过控制 OA的驱动电流和 /或偏置电流来完 成。
[51] 本实施例通过控制上行突发信号在有效吋隙内通过 EB, 从而保证了 OLT侧能成 功接收上行数据。
[52] 实施例三
[53] 本实施例上行和下行方向均釆用 OEO方式, 结构示意图如图 6所示。
[54] 下行中继功能包括 IFT下行接收功能和 IFD下行发送功能, 其中下行接收功能主 要由光电转换器、 跨阻放大器 (TIA)、 限幅放大器和数据吋钟恢复电路 (CDR) 组成, 其中光电转换器和跨阻放大器一般集成在同一个模块中。 IFT上行接口功 能一般包括激光器和激光器突发驱动器 (BM LDD) , 当 BM
LDD的使能信号禁止吋, LDD驱动激光器的输出端不输出信号, 激光器不输出 光信号或只输出非常微弱的光信号; 当 BM LDD使能信号打开吋, BM
LDD输出端根据输入端的数据输入驱动激光器输出表示 0和 1信号的光信号。 数 据上行突发吋隙控制模块包括上行吋隙信息获取模块、 上行突发吋隙控制信号 生成模块。 上行吋隙信息获取模块直接连接或通过额外的电路, 如串并转换电 路, 连接 IFT下行接收功能, 从 CDR获取下行帧, 通过监听下行帧获取下行帧中 的上行吋隙授权信息。 上行突发吋隙控制信号生成模块根据上行吋隙信息获取 模块监听到的上行吋隙授权信息生成 IFT接口上行发送功能的 BM
LDD的使能控制信号, 即控制信号在每个突发吋隙开始吋刻, 或开始之前的一 段吋间 (考虑信号处理延迟) 使能 BM LDD, 在每个吋隙的结束吋刻关闭 BM
LDD的驱动功能, 禁止 IFT接口上行发送功能向上行方向发送光信号。 [55] 本实施例通过控制上行突发信号在有效吋隙内通过 EB, 从而保证了 OLT侧能成 功接收上行数据。
[56] 实施例四
[57] 本实施例中, EB包括管理功能, 上行方向釆取光放大实现上行方向距离延长 功能, 下行方向釆用 OEO方式, 具体结构框图如图 7所示。
[58] 下行中继功能包括 IFT下行接收功能和 IFD下行发送功能, 其中下行接收功能主 要由光电转换器、 跨阻放大器 (TIA) 、 限幅放大器和数据吋钟恢复电路 (CDR 组成, 其中光电转换器和跨阻放大器一般集成在同一个模块中。 上行突发吋 隙控制模块包括上行吋隙信息获取模块、 上行突发吋隙控制信号生成模块。 上 行吋隙信息获取模块直接连接或通过额外的电路, 如串并转换电路连接 IFT下行 接收功能, 从 CDR获取下行帧, 通过监听下行帧获取下行帧中的上行吋隙授权 信息, 当然上行突发吋隙控制模块也可以通过和管理功能的接口获取相关的上 行吋隙授权信息。 上行突发吋隙控制模块可以集成到管理功能内部。 上行吋隙 信息获取模块可以共享管理功能的下行帧接收功能, 由管理功能的下行帧接收 功能提取上行方向突发吋隙授权信息。 上行突发吋隙控制信号生成模块根据上 行吋隙信息获取模块监听到的上行吋隙授权信息生成 OA的控制信号, 即控制信 号在每个突发吋隙开始吋刻, 或开始之前的一段吋间控制 OA打开, 使能 OA能够 对上行信号进行放大, 在每个吋隙的结束吋刻控制 OA关闭, 禁止 OA上行方向发 送信号。
[59] 管理功能自身也需要 OLT为其分配上行吋隙, 在管理功能的上行吋隙内, 为了 保证管理功能的上行数据的可靠传输, 上行突发吋隙控制模块需要禁止 OA工作 , 防止 OA在上行方向上输出光信号。 由于管理功能自身也要接收 OLT传输给管 理功能的配置、 管理等信息, 即管理功能内部需要具有能接收下行帧的能力, 为了降低 EB成本的考虑, 可以在管理功能内部实现上行突发吋隙控制模块内部 的上行吋隙信息获取模块或者直接在管理功能模块内部实现全部的上行突发吋 隙控制模块功能。
[60] 本实施例中, 通过控制上行突发信号在有效吋隙内通过 EB , 保证了 OLT侧能成 功接收上行数据。 另外在和管理功能复用上行资源吋, 通过对上行突发信号传 输的控制, 保证了 EB管理功能输出的上行信号和 IFD接收的上行信号在 IFT接口 不会发生冲突; 另外一方面, 当 IFD接口的 ONU出现问题吋, 可以通过控制禁止 OA上行方向发送功能实现隔离 IFD接口, 从而可以保证 EB的控制和管理功能仍 能正常运行不受 IFD接口侧故障的影响。
[61] 实施例五
[62] 本实施例中, 以 EB包括管理功能, 上行方向釆取 OEO方式, 下行方向釆用 OE 0方式为例, 来说明上行数据控制装置的工作原理, 具体结构框图如图 8所示。
[63] 下行中继或再生功能包括 IFT下行接收功能和 IFD下行发送功能, 其中下行接收 功能主要由光电转换器、 跨阻放大器 (TIA) 、 限幅放大器和数据吋钟恢复电路 (CDR) 组成, 其中光电转换器和跨阻放大器一般集成在同一个模块中。 IFT上 行接口功能一般包括激光器和激光器突发驱动器 (BM LDD) , 当 BM
LDD的使能信号禁止吋, LDD驱动激光器的输出端不输出信号, 激光器不输出 光信号或仅输出非常微弱的光信号; 当 BM LDD使能信号打开吋, BM
LDD输出端根据输入端的数据输入驱动激光器输出表示 0和 1信号的光信号。
[64] 上行突发吋隙控制模块包括上行吋隙信息获取模块、 上行突发吋隙控制信号生 成模块。 上行吋隙信息获取模块直接连接或通过额外的电路, 如串并转换电路 , 连接 IFT下行接收功能, 从 CDR或其它电路上获取下行帧, 通过监听下行帧获 取下行帧中的上行吋隙授权信息。 上行突发吋隙控制信号生成模块根据上行吋 隙信息获取模块监听到的上行吋隙授权信息生成 IFT接口上行发送功能的 BM LDD的使能控制信号, 即控制信号在每个突发吋隙开始吋刻, 或开始之前的一 段吋间, 使能 BM LDD, 在每个吋隙的结束吋刻或结束后一段吋间关闭 BM LDD的驱动功能, 禁止 IFT接口上行发送功能向上行方向发送光信号。 上行突发 吋隙控制信号生成模块产生的控制信号还可以控制复用模块, 以保证在 IFD接口 上行信号发送吋隙吋, 管理功能不能发送上行数据或管理功能即使发送数据也 不会输入到 BM LDD的输入端。
[65] 管理功能自身也需要 OLT为其分配上行吋隙, 在管理功能的上行吋隙内, 为保 证管理功能的上行数据的可靠传输, 在管理功能上行发送吋, IFD接口上行信号 不能接入到 IFT接口发送功能, 因此需要通过复用模块来控制 BM LDD输入端, 此处的复用模块可以通过多路选择器或多路开关来实现, 在管理 功能上行吋隙内切换到接收管理功能上行输出的数据线上, 在 IFD接口上的上行 吋隙内, BM
LDD输入端切换到 IFD接口上。 控制切换信号也可以由上行吋隙控制模块根据上 行吋隙信息来控制。 由于管理功能自身也要接收 OLT传输给管理功能的配置、 管 理等信息, 即管理功能内部需要具有能接收下行帧的能力, 为了降低 EB成本的 考虑, 可以在管理功能内部实现上行突发吋隙控制模块内部的上行吋隙信息获 取模块功能, 或者直接在管理功能模块内部实现全部的上行突发吋隙控制模块 功能。
[66] 本实施例中, 通过控制上行突发信号在有效吋隙内通过 EB , 保证了 OLT侧能成 功接收上行数据。 另外在和管理功能复用上行资源吋, 通过对上行突发信号传 输的控制, 保证了 EB管理功能输出的上行信号和 IFD接收的上行信号在 IFT接口 不会发生冲突; 另外一方面, 当 IFD接口的 ONU出现问题吋, 可以控制复用功能 实现隔离 IFD接口, 从而保证 EB的控制和管理功能在 IFD接口侧出现故障吋仍能 够正常运行而不受影响。
[67] 实施例六
[68] EB中包括一个上行吋隙信息获取模块, 其直接连接 EB的下行接收功能或通过 串并转换电路 (Serdes) 连接 EB的下行接收功能输出。 这里以 GPON为例说明上 行吋隙信息获取模块实现原理框图, 如图 9和图 10所示, 包括帧同步, 吋序产生 逻辑、 缓存器、 PLEND字段读取、 BWMAP字段长度识别、 BWMAP字段读取、 吋隙信息提取。 帧同步电路搜索下行帧的 Psyn字段, 根据 Psyn字段触发同步状态 机, 状态机过程具体可以参考 ITU-T
G.984.3 , 完成同步后, 帧同步电路输出帧同步信号触发吋序产生逻辑产生相应 的吋序信息。
[69] 吋序产生电路产生 PLEND字段读取电路和 BWMAP字段读取电路的使能信号。
由于 GPON中下行帧中的 PLEND字段位置固定, 即相对帧头 Psync字段的位置固 定, 因此只需要根据帧同步电路输出同步信号后计数固定的吋钟周期, 为 PLEN D字段读取电路产生对应 PLEND字段长度的使能信号。 [70] PLEND字段读取电路连接缓存器, 使能信号开启吋, PLEND字段读取电路从 数据线上接收数据, 接收的是 PLEND字段, 经缓冲后输出给 BWMAP字段长度 识别电路。
[71] BWMAP字段长度识别电路完成 BWMAP字段长度信息的提取, 并把 BWMAP 长度信息反馈给吋序产生电路。 由于 BWAMP字段起始位置固定, 但是长度可变 , 长度通过 PLEND字段中的 BLEN字段值指定, 吋序产生电路根据帧同步电路输 出的同步信号、 BWMAP固定位置偏移及 BWMAP字段长度信息, 为 BWMAP字 段读取电路产生相应的宽度的使能信号。
[72] BWMAP字段读取电路被使能后, 就从数据线上接收数据, 接收的即是 BWMA P字段, 经缓冲后送给吋隙信息提取电路。
[73] 吋序信息提取电路从 BWMAP字段中提取上行吋隙授权信息, 包括吋隙开始吋 间 (SSTART)、 吋隙结束吋间 (SSTOP), 还可以提取 Alloc-ID (授权标识 )信息。 并 输出提取的上行吋隙授权信息。
[74] 通过本实施例可以解决 EB中无法获得上行吋隙授权信息的问题。
[75] 显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的 精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及其等 同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
[1] 一种上行数据传输的控制方法, 用于设置于无源光网络 PON的光线路终端
OLT和光网络单元 ONU之间的扩展盒 EB中, 其特征在于, 包括以下步骤: 从扩展盒 EB的下行接收功能接收的下行帧中获取光网络单元 ONU的上行吋 隙授权信息;
根据所述上行吋隙授权信息, 控制所述上行突发信号的中继或放大或再生
[2] 根据权利要求 1所述的方法, 其特征在于, 从所述下行帧中获取上行吋隙授 权信息包括监听从扩展盒 EB的下行中继或放大或再生功能中发出的下行帧 , 获取上行吋隙授权信息, 和 /或从 EB的管理功能中获取上行吋隙授权信息
[3] 根据权利要求 1所述的方法, 其特征在于, 所述根据所述上行吋隙授权信息
, 控制所述上行突发信号的中继或放大或再生具体包括:
在所述每个上行吋隙的开始吋刻或开始之前的一段吋间, 控制上行中继或 放大或再生功能开启, 对所述上行突发信号进行中继或放大或再生; 在所述每个上行吋隙的结束吋刻, 控制所述上行中继或放大或再生功能关 闭。
[4] 根据权利要求 1所述的方法, 其特征在于, 所述根据所述上行吋隙授权信息
, 控制所述上行突发信号的中继或放大或再生包括:
根据上行吋隙授权信息, 在突发吋隙的开始之前完成突发数据吋钟恢复电 路的复位。
[5] 根据权利要求 1所述的方法, 其特征在于, 所述控制所述上行突发信号的中 继或放大或再生具体包括:
在一个突发吋隙的开始之前或开始吋控制打开 IFT接口侧的突发模式激光驱 动器的突发发送功能, 在一个突发吋隙结束后或结束吋, 控制关闭 IFT接口 侧的突发模式激光驱动器的突发发送功能。
[6] 根据权利要求 2所述的方法, 其特征在于, 所述监听从扩展盒 EB的下行中 继或放大或再生功能中发出的下行帧, 获取上行吋隙授权信息具体包括: 在以太网无源光网络 EPON系统中, 通过监听多点控制协议 Gate
MPCP消息获取上行吋隙授权信息; 或者,
在吉比特无源光网络 GPON系统中, 通过监听下行帧中的 BWMAP字段获取 上行吋隙授权信息。
[7] 根据权利要求 1所述的方法, 其特征在于, 所述的方法还包括:
针对通过空窗或静默窗口发送的上行数据, 根据下行预留空窗的报文授权 信息和 IFD接口上行接收功能的信号检测信号控制上行中继或放大或再生 功能开启或关闭。
[8] —种上行数据传输的控制装置, 其特征在于, 包括:
上行吋隙信息获取模块, 用于监听从扩展盒 EB的下行中继或放大或再生功 能中发出的下行帧, 获取上行吋隙授权信息, 和 /或从 EB的管理功能中获取 上行吋隙授权信息;
上行突发吋隙控制信号生成模块, 用于根据所述的上行吋隙授权信息生成 上行吋隙控制信号, 以控制上行突发信号的中继或放大或再生。
[9] 根据权利要求 8所述的装置, 其特征在于:
在以太网无源光网络 EPON系统中, 所述上行吋隙信息获取模块通过监听 多点控制协议 Gate MPCP消息获取上行吋隙授权信息; 或者, 在吉比特无源光网络 GPON系统中, 所述上行吋隙信息获取模块通过监听 下行帧中的 BWMAP字段获取上行吋隙授权信息。
[10] 根据权利要求 8或 9所述的装置, 其特征在于, 所述上行突发吋隙控制信号 生成模块控制上行突发信号的中继或放大或再生包括:
在所述每个上行吋隙的开始吋刻或开始之前的一段吋间, 控制上行中继或 放大或再生功能开启, 对所述上行突发信号进行中继或放大或再生; 在所述每个上行吋隙的结束吋刻, 控制所述上行中继或放大或再生功能关 闭。
[11] 一种 EB设备, 其特征在于, 包括: 上行突发吋隙控制模块, 用于监听从扩 展盒 EB的下行中继或放大或再生功能中发出的下行帧, 获取上行吋隙授权 信息, 和 /或从 EB的管理功能中获取上行吋隙授权信息, 并输出所述上行吋 隙授权信息, 其中所述上行吋隙授权信息用于控制上行突发信号的中继或 放大或再生。
根据权利要求 11所述的设备, 其特征在于, 所述控制上行突发信号的中继 或放大或再生包括:
在所述每个上行吋隙的开始吋刻或开始之前的一段吋间, 控制上行中继或 放大或再生功能开启, 对所述上行突发信号进行中继或放大或再生; 在所述每个上行吋隙的结束吋刻, 控制所述上行中继或放大或再生功能关 闭。
PCT/CN2008/073899 2008-01-04 2008-12-31 上行数据传输的控制方法及装置 WO2009086789A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810065113.4 2008-01-04
CNA2008100651134A CN101478701A (zh) 2008-01-04 2008-01-04 上行数据传输的控制方法及装置

Publications (1)

Publication Number Publication Date
WO2009086789A1 true WO2009086789A1 (zh) 2009-07-16

Family

ID=40839322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073899 WO2009086789A1 (zh) 2008-01-04 2008-12-31 上行数据传输的控制方法及装置

Country Status (2)

Country Link
CN (1) CN101478701A (zh)
WO (1) WO2009086789A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2618508A1 (en) * 2010-10-14 2013-07-24 Huawei Technologies Co., Ltd. Method and system for extending passive optical network and relay device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237932B (zh) * 2010-04-30 2016-07-06 中兴通讯股份有限公司 长距光放大装置、无源光网络和光信号传输方法
CN102332955B (zh) * 2011-09-28 2015-08-05 成都优博创技术有限公司 一种用于pon的光中继器
CN102413390B (zh) * 2011-12-08 2015-09-02 深圳市新岸通讯技术有限公司 用于连接olt和pos的光通信设备
US11076388B2 (en) 2017-01-13 2021-07-27 Qualcomm Incorporated Configurable common uplink burst length
CN107222295B (zh) * 2017-05-25 2018-02-23 武汉盈科通信技术有限公司 Pon聚合拉远系统上行突发处理方法及远端、局端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1244751A (zh) * 1998-08-06 2000-02-16 深圳市华为技术有限公司 无源光纤网络系统
CN1267975A (zh) * 1999-03-17 2000-09-27 阿尔卡塔尔公司 实现集中控制的方法以及实现这种方法的设备
CN101001120A (zh) * 2006-01-13 2007-07-18 段晓东 一种以太无源光网络的中继系统及其使用方法
WO2008064984A2 (de) * 2006-11-27 2008-06-05 Nokia Siemens Networks Gmbh & Co. Kg Verfahren und anordnung zur steuerung eines regenerators für datenburst-signale eines systems mit punkt-zu-multipunkt-verbindungen, übertragungssystem mit punkt-zu-multipunkt-verbindungen und regenerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1244751A (zh) * 1998-08-06 2000-02-16 深圳市华为技术有限公司 无源光纤网络系统
CN1267975A (zh) * 1999-03-17 2000-09-27 阿尔卡塔尔公司 实现集中控制的方法以及实现这种方法的设备
CN101001120A (zh) * 2006-01-13 2007-07-18 段晓东 一种以太无源光网络的中继系统及其使用方法
WO2008064984A2 (de) * 2006-11-27 2008-06-05 Nokia Siemens Networks Gmbh & Co. Kg Verfahren und anordnung zur steuerung eines regenerators für datenburst-signale eines systems mit punkt-zu-multipunkt-verbindungen, übertragungssystem mit punkt-zu-multipunkt-verbindungen und regenerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HE, P. ET AL.: "Technology and Application of Passive Optical Network", CHINA DIGITAL CABLE TV, July 2007 (2007-07-01), pages 1268 - 1273 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2618508A1 (en) * 2010-10-14 2013-07-24 Huawei Technologies Co., Ltd. Method and system for extending passive optical network and relay device
EP2618508A4 (en) * 2010-10-14 2014-04-30 Huawei Tech Co Ltd METHOD AND SYSTEM FOR EXTENDING A PASSIVE OPTICAL NETWORK AND RELAY DEVICE THEREFOR
US9154221B2 (en) 2010-10-14 2015-10-06 Huawei Technologies Co., Ltd. Method, system, and relay apparatus for realizing passive optical network reach extension

Also Published As

Publication number Publication date
CN101478701A (zh) 2009-07-08

Similar Documents

Publication Publication Date Title
US8818201B2 (en) Optical communication
EP2618508B1 (en) Method and system for extending passive optical network and relay device
JP5210959B2 (ja) 光受動網システム、および、その運用方法
US8571058B2 (en) Terminal apparatus, data transmission system and data transmission method
JP5331646B2 (ja) 光通信システム及び通信帯域制御方法
JP5070034B2 (ja) ネットワークシステム、光集線装置及び光ネットワーク装置
US9112612B2 (en) Relay device, station-side optical communication device, communication system, and bandwidth allocation method
JP2008532448A (ja) 光学伝送システム
CN101971537B (zh) 光线路终端olt的处理方法、光线路终端设备及pon网络
US20070230958A1 (en) Method and System for Maintenance of a Passive Optical Network
EP2262133A1 (en) Extending method device and system of passive optical network
JP2011517865A (ja) 受動光回線網の遠隔プロトコル端局装置
KR102231695B1 (ko) 다중 채널 수동 광 네트워크(PONs) 내의 디스커버리 및 등록
EP2552041A2 (en) Repeater, relay method and optical transmission system
WO2009086789A1 (zh) 上行数据传输的控制方法及装置
WO2011009368A1 (zh) 无源光网络中传输信息的方法、装置和系统
CN112235662A (zh) 一种降低无源光网络上行时延的方法及相关设备
JP5315282B2 (ja) 受動光網システム
WO2007134520A1 (fr) Procédé de maintenance de réseau optique passif, élément de réseau optique et terminal de ligne optique
JP2009171441A (ja) 宅側装置の登録方法、asonシステム及び局側装置
Kim et al. Low‐Cost, Low‐Power, High‐Capacity 3R OEO‐Type Reach Extender for a Long‐Reach TDMA‐PON
JP2012019264A (ja) 通信システムおよび通信装置
JP2009171434A (ja) Asonシステムとこれに使用する光スイッチ装置及び局側装置
JP4893589B2 (ja) Ponシステムの局側装置及びフレーム処理方法
KR100949886B1 (ko) Tdm-pon 기반의 원격 중계 장치 및 그 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08870202

Country of ref document: EP

Kind code of ref document: A1