WO2013125002A1 - ネットワークシステム及びトポロジーマップ生成方法 - Google Patents
ネットワークシステム及びトポロジーマップ生成方法 Download PDFInfo
- Publication number
- WO2013125002A1 WO2013125002A1 PCT/JP2012/054365 JP2012054365W WO2013125002A1 WO 2013125002 A1 WO2013125002 A1 WO 2013125002A1 JP 2012054365 W JP2012054365 W JP 2012054365W WO 2013125002 A1 WO2013125002 A1 WO 2013125002A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission
- onus
- olt
- splitter
- distance
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 57
- 230000005540 biological transmission Effects 0.000 claims abstract description 177
- 230000003287 optical effect Effects 0.000 claims description 77
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 abstract description 19
- 238000004519 manufacturing process Methods 0.000 description 17
- 239000013307 optical fiber Substances 0.000 description 13
- 238000011144 upstream manufacturing Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 238000012544 monitoring process Methods 0.000 description 8
- 239000000835 fiber Substances 0.000 description 7
- 238000012423 maintenance Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000001174 ascending effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/12—Discovery or management of network topologies
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/44—Star or tree networks
Definitions
- the present invention relates to a network system composed of an OLT (Optical Line Terminal) such as a PON (Passive Optical Network) and a plurality of ONUs (Optical Network Unit), and in particular, a topology between the OLT and a plurality of ONUs. It relates to map creation technology.
- OLT Optical Line Terminal
- PON Passive Optical Network
- ONUs Optical Network Unit
- ADSL Asymmetric Digital Subscriber Line
- FTTH Fiber To The Home
- An optical fiber link is a technology that can best satisfy the service provider's requirement of combining wide-ranging economic development and high-bandwidth communication.
- Optical fiber takes over the backbone of long-distance networks and is being deployed in metropolitan areas.
- SONET Synchronous-Optical Network
- DWDM Denssian-Wavelength-Division Multiplexing
- Passive optical network including telephone line side optical line terminal equipment (OLT) ⁇ , subscriber premises optical network unit (ONU), shared fiber network, and passive optical splitter
- OLT telephone line side optical line terminal equipment
- ONU subscriber premises optical network unit
- shared fiber network and passive optical splitter
- Ethernet® IEEE 802.3
- Ethernet® is a general purpose LAN that has been frequently used in metropolitan and other wide area optical network applications including passive optical networks.
- Ethernet registered trademark
- a passive optical network (EPON) in a general purpose LAN based on the gigabit general purpose LAN and the new IEEE 802.3 std (Section 5) protocol standard provides the high capacity and low cost necessary for wide and economical deployment.
- a passive optical network in a general-purpose LAN has a communication distance of a maximum of 20 km as defined in IEEE802.3ah, and there is a wide area supported by one PON interface in one OLT. Also, the maximum number of ONUs that can be connected is 64. When the transmission line, that is, the optical fiber breakage or the optical splitter failure occurs, it is very difficult to manually identify the failure location.
- the PON system disclosed in Patent Document 1 discloses a method for increasing the estimation accuracy of an abnormal site in a passive optical network using a general-purpose LAN including an optical network unit.
- PON topology information information on the optical transmission line distance and the number of stages of the optical splitter
- the threshold value is determined by multiplying the sum of the threshold values of all the home-side devices under its control by a coefficient.
- the determination unit receives the error detection signal of the error detection unit, obtains the number of error occurrences per unit time by the home side device or the optical splitter, and compares this with a threshold value to determine whether or not an abnormality occurs. Do.
- the conventional network system disclosed in Patent Document 1 or the like detects an input state based on PON topology information (information on the optical transmission line distance and the number of stages of the optical splitter) input in advance and generates an error frame when an abnormality occurs.
- PON topology information information on the optical transmission line distance and the number of stages of the optical splitter
- the failure detection accuracy is improved by performing the failure determination according to the occurrence frequency. For this reason, manual generation of PON topology information is a precondition, and there is a problem that inputting topology information requires effort and cost.
- An object of the present invention is to solve the above-described problems and to obtain a network system and a topology map generation method capable of automatically generating a topology map.
- the network system is a network system having a predetermined network composed of an OLT and a plurality of ONUs, and the OLT can acquire distance-related information related to a transmission distance with each of the plurality of ONUs. It has a distance information acquisition function, and the downlink transmission power value of the OLT and the downlink reception power value of the plurality of ONUs during downlink transmission from the OLT to each of the plurality of ONUs between the OLT and the plurality of ONUs And the second power information comprising the upstream transmission power value of each of the plurality of ONUs and the upstream reception power value of the OLT at the time of upstream transmission from each of the plurality of ONUs to the OLT.
- At least one piece of power information can be acquired as a transmission line loss parameter group.
- the network system has a plurality of distance related information and a plurality of transmission path loss parameters, which are the distance related information and the transmission path loss parameter group between the OLT and each of the plurality of ONUs.
- a topology map generating unit that generates a topology map by performing a topology map creation process based on the group, wherein the topology map generation process includes: (a) ⁇ ⁇ ⁇ ⁇ each of the OLT and the plurality of ONUs obtained from the plurality of distance related information The number of two branches of the splitter on the transmission path between the OLT and each of the plurality of ONUs based on a plurality of transmission distances that are transmission distances and the plurality of transmission path loss parameter groups. A step of calculating the number of branches; and (b) ⁇ based on the plurality of two branches and the plurality of transmission distances. And a step of generating the topology map.
- the network system includes a topology map generation unit that generates a topology map by performing a topology map generation process based on a plurality of distance-related information and a plurality of parameter groups for transmission line loss. Can be generated automatically.
- FIG. 1 is a block diagram showing a configuration of a network system according to an embodiment of the present invention.
- the network system of the present embodiment automatically performs the PON topology map together with the OLT having a P2MP function and an OAM (Operation, Administration, and Maintenance) function defined by IEEE802.3Std and a plurality of ONUs in the GE-PON device.
- the supervisory control system 401 has a PON topology generation unit 402 (topology map generation unit) that generates automatically.
- the passive optical network in the general-purpose LAN includes an OLT 101 installed in a station building and a plurality of ONUs 201 to 203 installed in a home / premises (for convenience of explanation, FIG. 1 shows three ONUs). And the optical fiber 250 laid from the OLT 101 of the central office to the ONUs 201 to 203 in the premises / premises, and the optical splitter 300 that branches the optical fiber 250.
- a monitoring control system 401 for maintaining and monitoring the state of the network is connected so as to be able to receive data from the OLT.
- OpS Operaation System
- the OLT 101 includes a P2MP (Point-to-Multipoint) control unit 102, an optical transmission / reception interface unit 103, an OAM frame transmission / reception unit 104, and an OpS interface unit 105.
- P2MP Point-to-Multipoint
- the P2MP control unit 102 has a P2MP discovery function (distance information acquisition function) and an upstream signal control function from the ONUs 201 to 203.
- the optical transmission / reception interface unit 103 exchanges optical transmission / reception signals with the ONUs 201 to 203. At this time, the downstream optical transmission power at the time of transmission to each ONU and the upstream optical reception power at the time of reception from each ONU can be measured.
- the OAM frame transmission / reception unit 104 performs transmission / reception by the OAM frame to the ONUs 201 to 203 via the optical transmission / reception interface unit 103.
- the OpS interface unit 105 serving as a data transmission unit can transmit data regarding parameters for the topology map to the PON topology generation unit 402 of the monitoring control system 401.
- the ONUs 201 to 203 each have an optical transmission / reception interface unit 233 and an OAM frame transmission / reception unit 234.
- the configuration units 233 and 234 are shown only in the ONU 203, but it is a matter of course that the configuration units 233 and 234 exist in the ONUs 201 and 202.
- the optical transmission / reception interface unit 233 exchanges optical transmission / reception signals with the OLT 101. At this time, the upstream optical transmission power at the time of transmission to the OLT and the downstream optical reception power at the time of reception from the OLT can be measured.
- the OAM frame transmission / reception unit 234 transmits / receives the OLT 101 using the OAM frame via the optical transmission / reception interface unit 233.
- the P2MP discovery function is defined in IEEE802.3ah, and is a function that automatically discovers an ONU when an ONU is connected under the PON OLT, and automatically establishes a communication link between the OLT and the ONU. .
- the OLT performs RTT measurement with the ONU to obtain a measured value RTT. Since the RTT measurement is periodically performed thereafter, the RTT measurement is performed again after the ONU is disconnected and reconnected. For this reason, the OLT can constantly acquire the transmission distance by a calculation process based on the measured value RTT.
- the OLT 101 and the ONUs 201 to 203 measure the optical transmission power and the optical reception power transmitted and received by the DDM (Digital Diagnostics Monitoring) function for measuring the optical reception power defined in the SFF-8472 standard. The power value and the optical reception power value are retained.
- DDM Digital Diagnostics Monitoring
- the upstream optical transmission power value and the downstream optical reception power value held in the ONUs 201 to 203 are respectively transmitted between the OLT 101 and the ONUs 201 to 203 by the OAM function defined in IEEE802.3std, similarly to the P2MP function.
- Optical transmission / reception processing between the optical transmission / reception interface unit 103 and the optical transmission / reception interface unit 233 is performed.
- the upstream optical transmission power value and the downstream optical reception power value held by the ONUs 201 to 203 can be transmitted to the OLT 101.
- the OLT 101 and the ONU 203 have an optical transmission / reception interface unit 103 and an optical transmission / reception interface unit 233, respectively.
- Each of these optical transmission / reception interface units 103 and 233 has the DDM function.
- the optical transmission / reception interface unit 103 exhibits a transmission power acquisition function capable of acquiring a downstream optical transmission power value
- the optical transmission / reception interface unit 233 includes a downstream optical transmission interface.
- the reception power acquisition function capable of acquiring the reception power value is exhibited, and the temperature information and the like can be acquired together.
- the DDM function including the power information acquisition function including the transmission power acquisition function and the reception power acquisition function
- the downlink (light) transmission power value and the downlink (light) between the OLT 101 and the ONUs 201 to 203 respectively.
- the received power value can be acquired by the OLT 101 and the ONUs 201 to 203.
- each of the ONUs 201 to 203 can transmit the downlink reception power value to the OLT 101 by including the acquired downlink reception power value in the OLT frame by the OAM function.
- the OAM function is a function defined in IEEE802.3ah, and can control an ONU using an OAM frame.
- An interface that can be inserted into the optical transmission / reception power value acquired in the OAM frame and notified to the OLT is provided by the OAM function.
- the received power value acquired by the ONU 203 is included in the OAM frame by the OAM frame transmission / reception unit 234 by the OAM function, and the OAM frame of the OLT 101 is transmitted via the optical transmission / reception interface unit 233 and the optical transmission / reception interface unit 103.
- the transmission / reception unit 104 can be notified.
- the OLT 101 can obtain the received power value of the ONU 203.
- the OLT 101 has a transmission distance calculation function for calculating a transmission distance Li that is a distance between the OLT 101 and each of the ONUs 201 to 203 based on the measured value RTT. That is, the transmission distance Li between the OLT 101 and the ONU 20i can be calculated by applying the following formula (1) to the measured value RTT.
- Pm is a variable distance (for example, 3.2 [m / TQ]), and is a fixed value that can be set in advance. It is.
- the last 10 ⁇ 3 is a conversion constant between “m” and “km”.
- the OLT 101 can acquire the transmission distance Li (distance related information), the downlink transmission power value, and the downlink reception power value (transmission path loss parameter group) between the OLT 101 and each of the ONUs 201 to 203.
- the OLT 101 receives a plurality of (three) transmission distances Li, a plurality of downlinks from the OAM frame transmission / reception unit 104, which are the transmission distance Li, the downlink transmission power value, and the downlink reception power value between the OLT 101 and each of the ONUs 201 to 203.
- the transmission power value and the downlink reception power value (a plurality of transmission path loss parameter groups) can be output to the PON topology generation unit 402 in the monitoring control system 401.
- the PON topology generation unit 402 receives the above-described plurality of transmission distances Li, a plurality of downlink transmission power values, and a plurality of downlink reception power values, and executes a topology map generation process based on these pieces of information (PON) topology Generate a map.
- the topology map means a network configuration between the OLT 101 and the ONUs 201 to 203 by the optical fiber 250 and the optical splitter 300.
- the topology map can be generated by automatically calculating the PON topology configuration by the PON topology generation unit 402.
- the PON topology generation unit 402 When the PON topology generation unit 402 is provided in the monitoring control system 401 and the PON topology generation unit 402 automatically calculates the PON topology map, for example, communication disconnection due to optical fiber disconnection, optical splitter failure, etc.
- the failure location can be quickly identified remotely by referring to the topology map based on the link disconnection information of the ONU, so that it is possible to stipulate shortening of the service disconnection time.
- FIG. 2 is an explanatory diagram schematically showing the relationship between the transmission distance Li and the measured value RTT.
- the OLT 101 performs the RTT measurement described above to obtain a measurement value RTT, and then calculates the transmission distance Li between the OLT 101 and the ONU 20i by applying the above formula (1).
- Table 1 shows topology map information held by the OLT 101 and transmitted from the OpS interface unit 105 to the PON topology generation unit 402.
- the topology map information includes distance-related information that defines the transmission distance Li between the OLT 101 and the ONU 20i obtained by the equation (1), the downlink transmission power value PT of the OLT 101, and the downlink reception power in each ONU 20i. It comprises transmission / reception power information defining the value PRi, and fixed value information including a unit fiber loss LF, a unit splitter loss Lc, a tolerance DL, and a tolerance DNC.
- the topology map generation process is a PON topology map generation process in a network system having a PON including an OLT (for example, the OLT 101 in FIG. 1) and a plurality of ONUs (for example, the ONUs 201 to 203 in FIG. 1).
- OLT for example, the OLT 101 in FIG. 1
- ONUs for example, the ONUs 201 to 203 in FIG. 1.
- the OLT can acquire the transmission distance Li to each of the plurality of ONUs as distance related information by applying the equation (1) to the measurement value RTT acquired by the above-described P2MP discovery function. That is, the distance related information is the transmission distance Li itself.
- the OLT can perform the downlink transmission power value PT of the OLT and the downlink reception power values PRi of the plurality of ONUs at the time of downlink transmission from the OLT to each of the plurality of ONUs by the above-described P2MP function.
- Power information (first power information) consisting of can be acquired.
- the PON topology generation unit 402 in the monitoring control system 401 executes a topology map generation process through a preparation process of obtaining distance-related information, power information, and fixed value information shown in Table 1 from the OpS interface unit 105 of the OLT 101. be able to.
- the downlink transmission power value PT is set to the same value for all ONUs.
- the downlink transmission power value PTi is acquired for each ONUi.
- the PON topology generation unit 402 applies Formula (3) based on the transmission distance Li that is distance-related information between the OLT and each of the plurality of ONUs and the unit fiber loss LF that is fixed value information, Between the OLT and each of the plurality of ONUs, a fiber loss LFi that is a loss amount caused by transmitting the optical fiber is calculated.
- the optical splitter is composed of a plurality of combinations of unit splitters whose minimum unit is composed of two branches.
- a two-branch unit splitter which is the minimum unit, is connected in a two-stage tree form.
- the two-branch number Nci which is the number of unit splitters used between the OLT and each of the plurality of ONUs, is determined by the transmission line loss LTi and the fiber loss LFi obtained by the above formulas (2) and (3). Based on the unit splitter loss Lc, the following formula (4) is applied.
- the number of two branches Nci that is the number of unit splitters on the optical fiber transmission path between the OLT and each of the plurality of ONUi can be calculated.
- the PON topology generation unit 402 classifies a plurality of ONUs into a predetermined number of groups by preferentially using the number of two branches Nci and secondarily using the transmission distance Li.
- the predetermined number of groups means a group of ONUs commonly connected to the same nearest splitter in the same group.
- FIGS. 3 to 10 are explanatory diagrams showing the contents of group processing in the topology map generation process, and FIGS. 3 to 7 and FIGS. 9 and 10 show the ONU position information tables in a table format.
- an ONU position information table including the ONU number, the number of branches Nci, the transmission distance Li, and the group number is created.
- a subset of ONUs composed of ONUs having the same two-branch number Nci is classified as a temporary group.
- FIG. 6 shows, in a tabular form, an example in which a plurality of ONUs are classified into a predetermined number of groups and assigned group numbers in accordance with the above grouping conditions (a) to (c).
- the state shown in FIG. 6 is the completed state of the ONU position information table.
- the group number in the ONU position information table having the contents shown in FIG. 6 is determined through the following processing based on the grouping condition consisting of the above conditions (A) to (D).
- the group information table includes a group number, the number of belonging ONUs Nj, a group 2 branch number Ncj, a shortest distance Lminj, a remaining 2 branch number Cj, and an ONU nearest splitter ID.
- the number of belonging ONUs Nj means the number of ONUs belonging to the group
- the group 2 branching number Ncj means the number of two branches of the splitter required for direct connection of ONUs belonging to the group
- the shortest distance Lminj is the transmission distance in each group This means the minimum value of Li
- the remaining two branch number Cj means the number of splitters that can be inserted between the nearest splitter and the first stage splitter
- the ONU nearest splitter ID indicates the ID of the splitter to which each ONU of the group is directly connected.
- the value of the group 2 branch number Ncj is set as it is as the remaining 2 branch number Cj.
- FIG. 8 is an explanatory diagram schematically showing an ONU nearest splitter.
- the optical fiber 25 is connected to the terminal ONU 20 while being branched from the first-stage splitter 30 r by the splitter 30 (30 t), thereby forming a PON.
- the ONU 20 belonging to the corresponding group is directly connected to the ONU nearest splitter 30t.
- all ONUs 20 belonging to the ONU group G1 are connected to the nearest ONU nearest splitter 30t1.
- the ONU nearest splitter scale CZj in each group j is obtained from the number of belonging ONUs Nj.
- the ONU nearest splitter scale CZj including the former and the latter is set to “3”.
- ⁇ Ncj ⁇ CZj ⁇ ⁇ 0 the remaining two branch number Cj is set to “0”.
- () in the column of the remaining two branch number Cj means the ONU nearest splitter scale CZj.
- FIG. 11 is an explanatory diagram showing an outline of the splitter tree. In the figure, it is determined that the ONU nearest splitter 30t is directly connected to the ONU 20 belonging to the corresponding group j in the group information table.
- Each ONU nearest splitter 30t is connected to from the first stage splitter 30r existing in the first stage SP1, and A process for recognizing a splitter tree as shown in FIG. 11 is a splitter tree generation process.
- the splitter tree generation process is intended to determine the connection relationship between splitters other than the ONU nearest splitter and the ONU nearest splitter, and the ID of each splitter.
- the first stage splitter 30r which is a splitter directly connected to the OLT, is determined.
- the first stage splitter is calculated as the root splitter, and then the second and subsequent splitters are determined as the root splitter using the same algorithm. This is repeated until the connection destinations of the ONU nearest splitters of all groups are determined.
- 12 to 20 are explanatory diagrams showing splitter tree generation processing. 12 to 17, 19 and 20 are shown in a table format. Details of the splitter tree generation process will be described below with reference to these drawings.
- the first stage first-stage splitter directly connected to the OLT is initialized as a root splitter, the ID of the splitter is determined, and managed as a splitter information table as shown in FIG.
- the splitter information table includes a splitter ID, a stage number Sk, a connection number NUMk, and a parent splitter ID.
- the number of stages Sk is the number of stages of the splitter (corresponding to SPk of SP1 to SP3 in FIG. 11)
- the number of connections NUMk is the number of splitters connected to the lower stage of the splitter
- the parent splitter ID is the parent stage immediately above the splitter. It means the splitter ID of the splitter.
- the root ID (rootID) is initially set to the splitter ID “1”.
- the second-stage splitter that is immediately below the first-stage splitter that is initially set as the root splitter is determined.
- the set branch number SB of the route splitter is assumed.
- the utilization branching number UC of the route splitter is “3” (configuration in which unit splitters are connected in a three-stage tree shape). Therefore, the used 2-branch number UC is subtracted from the remaining 2-branch number Cj in each group j. If ⁇ Cj ⁇ UC ⁇ ⁇ 0, the remaining two branch number Cj is “0”.
- FIG. 13 shows a state after subtracting the used 2-branch number UC from the remaining 2-branch number Cj of each group j in the group information table. As shown in the figure, the remaining 2-branch number Cj of group numbers 1 to 4 is “0”.
- IDs (1-1 to 1-4) indicating the second stage are assigned to the group numbers 1 to 4 as the ONU nearest splitter ID.
- the number of connections NUMk of the route splitter with the splitter ID “1” is “4” (the splitters with ID 1-1 to 1-4 are connected), and the splitter ID “1-1”.
- To “1-4” is set to “2”
- the ONU nearest splitter connection number NUMk is set to “1” (ONU belonging to one group is connected)
- the parent splitter ID is set to “1”.
- FIG. 16 shows the state of the splitter information table when the set branch number SB is “4” (that is, the use two branch number UC is “2”).
- the remaining 2-branch number Cj of the group number “4” is “1” (3 (Cj) ⁇ 2 (UC)), and thus is excluded from the second stage connection splitter candidates. Therefore, in the splitter information table, the number of connections NUMk of the route splitter with the splitter ID “1” is “3” (the splitters with the IDs 1-1 to 1-3 are connected), and the splitter IDs “1-1” to “1-3” are connected. Is set to “2”, the ONU nearest splitter connection number NUMk is set to “1”, and the parent splitter ID is set to “1”.
- FIG. 17 shows the splitter information table after changing the route splitter. Note that the previous state is the state shown in FIG. As shown in the figure, in the splitter information table, the stage number Sk of the splitter ID “1-1” is “2”, the connection number NUMk of the nearest ONU splitter is “0” (the number of splitters connected to the lower stage is “0” at present) "), The parent splitter ID is set to" 1 ".
- FIG. 19 is an explanatory diagram showing an example of the group information table after completion.
- the ONU nearest splitter ID is determined in all groups.
- the ONU nearest splitter ID of the group number “1” is determined as “1-1” as the second stage splitter directly connected to the first stage splitter 30r, and the ONU nearest splitter ID of the group number n is “1-4- 2-3-1 "is determined as the fifth-stage splitter.
- FIG. 20 is an explanatory diagram showing an example of the splitter information table after completion. As shown in the figure, the number of stages Sk, the number of connections NUMk, and the parent splitter ID are stored for all splitter IDs.
- FIGS. 21 and 22 are explanatory diagrams showing an example of using the topology map automatically generated by the PON topology generation unit 402 in the network system according to the present embodiment.
- ONUs 201 belonging to the ONU group G1 are connected from the OLT 101 via an optical splitter 301 (first stage).
- the ONUs 202 to 204 belonging to the ONU group G2 are connected from the OLT 101 via the optical splitters 301 and 302 (second stage), and the ONUs 205 to 207 belonging to the ONU group G3 are connected from the OLT 101 to the optical splitters 301 to 303 (third stage). Connected through.
- Such a connection relationship of the ONUs 201 to 207 via the optical splitters 301 to 303 is recognized by referring to the topology map generated by the PON topology generation unit 402.
- the supervisory control system 401 makes a determination and issues a failure estimation alarm in the optical splitter 303 to the maintenance person, thereby notifying the maintenance person of the estimated failure point.
- the network system of the PON configuration of this embodiment includes a plurality of transmission distances Li (a plurality of distance related information), a plurality of downlink transmission power values PT, and a plurality of downlink reception power values PRi (a plurality of parameter groups for transmission line loss).
- the topology map can be automatically generated in the network system by including the PON topology generation unit 402 that generates the topology map by performing the topology map generation process based on the above.
- the OLT 101 has a P2MP discovery function (transmission distance calculation function included in the distance information acquisition function) that calculates the transmission distance Li itself, so that the PON topology generation unit 402 can transmit the transmission distance Li. Therefore, the configuration of the PON topology generating unit 402 can be simplified accordingly.
- P2MP discovery function transmission distance calculation function included in the distance information acquisition function
- the PON topology generation unit 402 uses the transmission function by the OpS interface unit 105 of the OLT 101 to generate information necessary for creating a topology map (a plurality of transmission distances Li, a plurality of downlink transmission power values PT, and a plurality of downlink reception power values PRi. ) Can be obtained relatively easily (information shown in Table 1) necessary for the PON topology generation process.
- PON topology generation unit 402 is configured as item 2.
- PON topology generation unit 402 is configured as item 2.
- Nci two-branch numbers preferentially and a plurality of transmission distances Li secondarily, they are commonly connected to the same ONU nearest splitter.
- a plurality of ONUs can be accurately classified into a predetermined number of groups.
- a splitter tree can be generated with high accuracy based on a predetermined number of remaining two branches Cj.
- the PON topology generation unit 402 can obtain a highly accurate topology map.
- the P2MP discovery function distance information acquisition function
- the P2MP discovery function distance information acquisition function for measuring the measured value RTT and calculating the transmission distance Li based on the PON standard
- the downlink transmission power value between the OLT and the plurality of ONUs can be realized relatively easily.
- the topology map generation method executed by the PON topology generation unit 402 of the present embodiment is based on the items 1.... Based on the plurality of transmission distances Li, the plurality of downlink transmission power values PT, and the plurality of downlink reception power values PRi. 1. “Calculation process of 2-branch number Nci” and item 2. And 3. The topology map is generated by executing the “grouping process” and the “splitter tree creation process” described above.
- the topology map is automatically obtained on the precondition that the plurality of transmission distances Li, the plurality of downlink transmission power values PT, and the plurality of downlink reception power values PRi are obtained. Can be generated.
- power information including the downlink transmission power value PT of the OLT and the downlink reception power values PRi of the plurality of ONUs at the time of downlink transmission from the OLT to each of the plurality of ONUs.
- first power information has been acquired, it is also possible to use power at the time of uplink transmission as power information instead.
- power information including the upstream transmission power value PT2i of each of the plurality of ONUs and the upstream reception power value PR2i of the OLT at the time of upstream transmission from each of the plurality of ONUs to the OLT is a transmission path loss parameter. It may be used as a group. In this case, in the above formulas (2) and (4), “PT2i” is used instead of “PT”, and “PR2i” is used instead of “PRi”.
- the OLT 101 calculates the transmission distance Li based on the measured measurement value RTT, and then transmits the transmission distance Li itself to the PON topology generation unit 402 as transmission distance related information.
- the measurement value RTT is transmitted from the OLT 101 to the PON topology generation unit 402 as transmission distance related information, and the PON topology generation unit 402 calculates the transmission distance Li by applying the above equation (1). Also good.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Electromagnetism (AREA)
- Small-Scale Networks (AREA)
Abstract
Description
図1はこの発明の実施の形態であるネットワークシステムの構成を示すブロック図である。本実施の形態のネットワークシステムは、GE-PON装置においてIEEE802.3Stdにて規定されているP2MP機能およびOAM(Operation, Administration, and Maintenance)機能を有するOLT及び複数のONUと共に、PONトポロジーマップを自動的に生成するPONトポロジー生成部402(トポロジーマップ生成部)を監視制御システム401内に有している。
(OLTによる保持)
上述した情報に基づいてPONトポロジーを生成するが、その際にシステムパラメータ、あるいは固定値としてOLT101内に保持しておく必要がある。
以下、上述したトポロジーマップ用情報に基づくPONトポロジー生成部402によるトポロジーマップ生成処理を説明する。
上記トポロジーマップ生成処理は、OLT(例えば、図1のOLT101)と複数のONU(例えば、図1のONU201~203)とからなるPONを有するネットワークシステムにおけるPONトポロジーマップの生成処理である。
(1-1.伝送路損失の算出処理)
まず、PONトポロジー生成部402は電力情報であるOLTの下り送信電力値PT及び各ONUi(i=1~n(n≧3)のいずれか)の下り受信電力値PRiに基づき、以下の式(2)を適用して、OLTと複数のONUそれぞれとの間における伝送路損失LTiを算出する。なお、本実施の形態では下り送信電力値PTはすべてのONUに対し同じ値に設定した場合を想定している。ONUi毎に下り送信電力値PTが異なる場合は当然、ONUi毎に下り送信電力値PTiを取得することになる。
次に、PONトポロジー生成部402は、OLTと複数のONUそれぞれとの間における距離関連情報である伝送距離Li及び固定値情報である単位ファイバ損失LFに基づき、式(3)を適用して、OLTと複数のONUそれぞれとの間において、光ファイバを伝送することにより生じる損失量であるファイバ損失LFiを算出する。
光スプリッタは最小単位が2分岐で構成される単位スプリッタの複数の組み合わせにて構成される。たとえば、4分岐の光スプリッタの場合は、最小単位である2分岐の単位スプリッタが2段ツリー状に接続されることにより構成されている。
通常、下り送信電力値PTと下り受信電力値PRiとの間において、「PT>PRi」、「(PT-PRi) > LI・LF」であるため、通常、2分岐数Nciは“1”以上となる。したがって、2分岐数Nciが“1”未満となる場合は、ONU等の故障が原因で、正しい値が取得できていないことを意味する。このようなONUが発生した場合は、異常なONUが接続されていることを保守者等に通知することが望ましい。
PONトポロジー生成部402は、2分岐数Nciを優先的に用い、伝送距離Liを二次的に用いることにより、複数のONUを所定数のグループに分類する。なお、上記所定数のグループは同一グループ内において同一の直近スプリッタに共通に接続されるONUのグループを意味する。
図4に示すように、ONU位置情報テーブル内に既に取得している各ONUiの2分岐数Nci及び伝送距離Liを格納する。この際、2分岐数Nciに関し昇順にソート(第1ソート)する。
そして、図5に示すように、2分岐数Nciが同一のONU毎に、伝送距離Liに関し昇順にソート(第2ソート)する。その結果、2分岐数Nciを第1基準、伝送距離Liを第2基準として複数のONUがソートされる。
その後、以下のグループ分け条件(イ)~(ハ)に従い、複数のONUを所定数のグループに分類する。
図6で示した完成後のONU位置情報テーブルに基づき、図7に示すグループ情報テーブルが生成される。グループ情報テーブルはグループ番号、所属ONU数Nj、グループ2分岐数Ncj、最短距離Lminj、残2分岐数Cj及びONU直近スプリッタIDから構成される。所属ONU数Njはグループに属するONUの数を意味し、グループ2分岐数Ncjはグループに所属するONUの直接接続に必要なスプリッタの2分岐数を意味し、最短距離Lminjは各グループにおいて伝送距離Liの最小値を意味し、残2分岐数Cjは直近スプリッタと初段スプリッタとの間に挿入可能なスプリッタ数を意味し、ONU直近スプリッタIDはグループの各ONUが直接接続されるスプリッタのIDを意味する。なお、当初は残2分岐数Cjとしてグループ2分岐数Ncjの値がそのまま設定される。
所属ONU数Njから、各グループjにおけるONU直近スプリッタ規模CZjを求める。ONU直近スプリッタ規模CZjは、{2,4,8,16,32,・・・,}のうち、所属ONU数Nj以上となる最小値をXとした場合、ONU直近スプリッタ規模CZj(=log2X}となる。
その後、図9に示すように、各グループjにおいて、グループ2分岐数NcjからONU直近スプリッタ規模CZjを差し引いて残2分岐数Cj{=Ncj-CZj}を算出する。なお、{Ncj-CZj}<0のときは、残2分岐数Cjは“0”とする。また、図9において、残2分岐数Cjの欄における()内はONU直近スプリッタ規模CZjを意味する。
最後に、図10に示すように、残2分岐数Cjに沿って昇順にソートすることにより、グループ情報テーブルを完成する。
図11はスプリッタツリーの概要を示す説明図である。同図において、ONU直近スプリッタ30tは、グループ情報テーブルにおける対応するグループjに所属するONU20が直接接続されていることは確定している。
まず、OLTに直接接続される1段目の初段スプリッタをルートスプリッタとして初期設定し当該スプリッタのIDを決定し、図12に示すように、スプリッタ情報テーブルとして管理する。同図に示すように、スプリッタ情報テーブルは、スプリッタID、段数Sk、接続数NUMk、親スプリッタIDから構成される。段数Skはスプリッタの段数(図11のSP1~SP3のSPkに相当)、接続数NUMkは当該スプリッタの下段に接続されるスプリッタ数を意味し、親スプリッタIDは当該スプリッタの直近の上段となる親スプリッタのスプリッタIDを意味する。まず、当初はルートID(rootID)をスプリッタID「1」に初期設定する。
次に、ルートスプリッタとして初期設定された初段スプリッタの直近下段となる2段目のスプリッタを決定する。この際、ルートスプリッタの設定分岐数SBを仮定する。例えば、設定分岐数SBを“8”とした場合を仮定する。この場合、ルートスプリッタの利用2分岐数UCは“3”(単位スプリッタを3段ツリー状に接続する構成)となる。そこで、各グループjにおける残2分岐数Cjから利用2分岐数UCを差し引く。なお、{Cj-UC}<0の場合、残2分岐数Cjは“0”とする。
次に、ONU直近スプリッタ以外のスプリッタを2段目に設定し、このスプリッタの新たなルートスプリッタに変更する。
グループ情報テーブルにおいて、残2分岐数Cjが“0”となっていないグループに対し、変更したルートスプリッタの設定分岐数SBを仮定して、(3-2.)で説明下2段目のスプリッタの決定処理と同様に、新たに残2分岐数Cjが“0”となったグループを3段目のスプリッタとして決定する。
以降、(3-3)及び(3-4)で示したルートスプリッタの変更、m段目のスプリッタの決定処理を繰り返し、すべてのONU直近スプリッタIDが設定した時点で処理を終了する。その結果、完成したグループ情報テーブル及びスプリッタ情報テーブルにより認識されるスプリッタツリーに基づき、図18に示すように、初段スプリッタ30rからONU直近スプリッタ30t以外のスプリッタ30を介してONU直近スプリッタ30tに至る光ファイバ25によるPONのトポロジーマップを完成することができる。
図21及び図22は本実施の形態のネットワークシステムにおけるPONトポロジー生成部402によって自動生成したトポロジーマップの利用例を示す説明図である。
本実施の形態のPON構成のネットワークシステムは、複数の伝送距離Li(複数の距離関連情報)及び複数の下り送信電力値PT及び複数の下り受信電力値PRi(複数の伝送路損失用パラメータ群)に基づき、トポロジーマップ作成処理を行いトポロジーマップを生成するPONトポロジー生成部402を備えることにより、トポロジーマップをネットワークシステム内で自動生成することができる。
なお、本実施の形態では、OLT,複数のONU間において、OLTから複数のONUそれぞれへの下り送信時における、OLTの下り送信電力値PT及び複数のONUの下り受信電力値PRiからなる電力情報(第1の電力情報)を取得したが、代わりに上り送信時の電力を電力情報とすることも可能である。
Claims (6)
- OLT(101)と複数のONU(201~203)とからなる所定のネットワークを有するネットワークシステムであって、
前記OLTは、前記複数のONUそれぞれとの伝送距離に関連する距離関連情報が取得可能な距離情報取得機能(102)を有し、
前記OLT,前記複数のONU間において、前記OLTから前記複数のONUそれぞれへの下り送信時における、前記OLTの下り送信電力値及び前記複数のONUの下り受信電力値からなる第1の電力情報、並びに前記複数のONUそれぞれから前記OLTへの上り送信時における、前記複数のONUそれぞれの上り送信電力値及び前記OLTの上り受信電力値からなる第2の電力情報のうち、少なくとも一つの電力情報を伝送路損失用パラメータ群として取得可能な電力情報取得機能(104,234)を有し、
前記ネットワークシステムは、
前記OLTと前記複数のONUそれぞれとの間における前記距離関連情報及び前記伝送路損失用パラメータ群である、複数の距離関連情報及び複数の伝送路損失用パラメータ群に基づき、トポロジーマップ作成処理を行いトポロジーマップを生成するトポロジーマップ生成部(402)をさらに備え、
前記トポロジーマップ生成処理は、
(a) 前記複数の距離関連情報によって得られる前記OLTと前記複数のONUそれぞれとの伝送距離である複数の伝送距離と、前記複数の伝送路損失用パラメータ群とに基づき、前記OLTと前記複数のONUそれぞれとの伝送経路上におけるスプリッタの2分岐数である、複数の2分岐数を算出するステップと、
(b) 前記複数の2分岐数及び前記複数の伝送距離に基づき、前記トポロジーマップを生成するステップとを備える、
ネットワークシステム。 - 請求項1記載のネットワークシステムであって、
前記距離情報取得機能は、前記OLTと前記複数のONUそれぞれとの間における送受信時間を測定し、該送受信時間に基づき前記伝送距離を算出する伝送距離算出機能を含み、
前記距離関連情報は前記伝送距離自体を指示する情報を含み、
前記OLTは、前記複数のONUそれぞれへの送信時における前記下り送信電力値を取得する送信電力取得機能(104)を有し、
前記複数のONUはそれぞれ受信時における前記下り受信電力値を取得する受信電力取得機能(234)を有し、
前記電力情報取得機能は、前記OLTによる前記送信電力算出機能及び前記複数のONUそれぞれにおける前記受信電力算出機能を含み、
前記複数の伝送路損失用パラメータ群は複数の第1の電力情報である、複数の下り送信電力値及び複数の下り受信電力値を含む、
ネットワークシステム。 - 請求項2記載のネットワークシステムであって、
前記OLTは前記複数のONUより前記複数の下り受信電力値を受信し、前記複数の距離関連情報、前記複数の下り送信電力値及び前記複数の下り受信電力値を前記トポロジーマップ作成部に伝達可能な送信部(105)を有する、
ネットワークシステム。 - 請求項1記載のネットワークシステムであって、
前記ステップ(b) は、
(b-1) 前記複数の2分岐数に基づき、前記複数のONUを仮分類するステップと、
(b-2) 前記ステップ(b-1)で仮分類された前記複数のONUに対し、前記複数の伝送距離に基づくグループ分け条件下で所定数のグループに分類するステップとを含み、前記所定数のグループは同一グループ内において同一の直近スプリッタに共通に接続されることが規定され、
(b-3) 前記所定数のグループそれぞれにおいて前記直近スプリッタの上段にさらに接続可能な2分岐数である所定数の残2分岐数を算出するステップと、
(b-4) 前記所定数の残2分岐数に基づき、前記OLTに直接接続される初段のスプリッタから前記所定数のグループの直近スプリッタに至るスプリッタツリーを生成して前記トポロジーマップを作成するステップをさらに含む、
ネットワークシステム。 - 請求項1ないし請求項4のうち、いずれか1項に記載のネットワークシステムであって、
前記所定のネットワークは、受動型光加入者網(PON)を含む、
ネットワークシステム。 - OLT(101)と複数のONU(201~203)とからなる所定のネットワークにおけるトポロジーマップを作成するトポロジーマップ生成方法であって、
前記OLTは、前記複数のONUそれぞれとの伝送距離に関連がある距離関連情報が取得可能な距離情報取得機能(102)を有し、
前記OLT,前記複数のONU間において、前記OLTから前記複数のONUそれぞれへの下り送信時における、前記OLTの下り送信電力値及び前記複数のONUの下り受信電力値からなる第1の電力情報、並びに前記複数のONUそれぞれから前記OLTへの上り送信時における、前記複数のONUそれぞれの上り送信電力値及び前記OLTの上り受信電力値からなる第2の電力情報のうち、少なくとも一つの電力情報を伝送路損失用パラメータ群として算出可能な電力情報取得機能(104,234)を有し、
前記トポロジーマップ生成方法は、
前記OLTと前記複数のONUそれぞれとの間における前記距離関連情報及び前記伝送路損失用パラメータ群を、複数の距離関連情報及び複数の伝送路損失用パラメータ群として取得し、
(a) 前記複数の距離関連情報によって得られる、前記OLTと前記複数のONUそれぞれとの伝送距離である複数の伝送距離と、前記複数の伝送路損失用パラメータ群とに基づき、前記OLTと前記複数のONUそれぞれとの伝送経路上におけるスプリッタの2分岐数である、複数の2分岐数を算出するステップと、
(b) 前記複数の2分岐数及び前記複数の伝送距離に基づき、前記トポロジーマップを生成するステップとを備える、
トポロジーマップ生成方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280070567.5A CN104322016A (zh) | 2012-02-23 | 2012-02-23 | 网络系统及拓扑图生成方法 |
PCT/JP2012/054365 WO2013125002A1 (ja) | 2012-02-23 | 2012-02-23 | ネットワークシステム及びトポロジーマップ生成方法 |
JP2014500812A JP5693783B2 (ja) | 2012-02-23 | 2012-02-23 | ネットワークシステム及びトポロジーマップ生成方法 |
US14/373,744 US9225607B2 (en) | 2012-02-23 | 2012-02-23 | Network system and topology map generating method |
TW101115538A TWI443983B (zh) | 2012-02-23 | 2012-05-02 | Network system and topology generation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/054365 WO2013125002A1 (ja) | 2012-02-23 | 2012-02-23 | ネットワークシステム及びトポロジーマップ生成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013125002A1 true WO2013125002A1 (ja) | 2013-08-29 |
Family
ID=49005224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054365 WO2013125002A1 (ja) | 2012-02-23 | 2012-02-23 | ネットワークシステム及びトポロジーマップ生成方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9225607B2 (ja) |
JP (1) | JP5693783B2 (ja) |
CN (1) | CN104322016A (ja) |
TW (1) | TWI443983B (ja) |
WO (1) | WO2013125002A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110838928A (zh) * | 2018-08-15 | 2020-02-25 | 华为技术有限公司 | Odn的逻辑拓扑信息的获取方法、装置、设备和存储介质 |
JP2020177581A (ja) * | 2019-04-22 | 2020-10-29 | 株式会社日立製作所 | トポロジマップ提示システム、トポロジマップ提示方法及びコンピュータプログラム |
WO2022201477A1 (ja) * | 2021-03-25 | 2022-09-29 | 日本電信電話株式会社 | 推定装置、推定方法及び推定プログラム |
CN115278407A (zh) * | 2021-04-30 | 2022-11-01 | 中国移动通信集团山西有限公司 | 无源光网络的拓扑结构的确定方法及装置 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101977113B1 (ko) * | 2015-06-02 | 2019-08-28 | 두산인프라코어 주식회사 | 건설기계의 유압 시스템 |
US9930432B1 (en) * | 2015-11-17 | 2018-03-27 | 3-Gis | System for signal management |
CN108964756B (zh) * | 2017-05-18 | 2022-09-27 | 中兴通讯股份有限公司 | 光分配网络的故障检测方法及装置、无源光网络系统 |
JP2019022158A (ja) * | 2017-07-20 | 2019-02-07 | 日本電信電話株式会社 | 加入者線端局装置 |
CN109495178B (zh) * | 2017-09-13 | 2021-08-31 | 凌云天博光电科技股份有限公司 | 一种FTTx网络拓扑链路的构建方法及装置 |
US10554500B2 (en) * | 2017-10-04 | 2020-02-04 | Futurewei Technologies, Inc. | Modeling access networks as trees in software-defined network controllers |
CN110661569B (zh) * | 2018-06-28 | 2022-08-02 | 中兴通讯股份有限公司 | 光纤故障定位的方法、设备和存储介质 |
JP7140976B2 (ja) * | 2019-03-05 | 2022-09-22 | 日本電信電話株式会社 | 通信システム、加入者線端局装置及び通信方法 |
CN111836134B (zh) * | 2019-04-17 | 2021-11-19 | 华为技术有限公司 | 网络拓扑信息的获取方法、装置、设备及存储介质 |
CN110347980A (zh) * | 2019-07-08 | 2019-10-18 | 北京英贝思科技有限公司 | 一种基于Unity3D的树形结构自动生成方法、插件、电子设备及计算机可读存储介质 |
CN113596629B (zh) * | 2020-04-30 | 2023-03-31 | 中国移动通信有限公司研究院 | 信息传输方法、装置、通信设备及可读存储介质 |
CN113644971B (zh) * | 2020-05-11 | 2023-04-28 | 华为技术有限公司 | 端口检测方法和装置 |
CN118158573B (zh) * | 2022-12-06 | 2024-09-24 | 华为技术有限公司 | 信息生成方法以及相关装置 |
CN118413267A (zh) * | 2023-01-29 | 2024-07-30 | 中兴通讯股份有限公司 | 网关设备的光功率计算方法及装置 |
CN118069896B (zh) * | 2024-04-22 | 2024-07-19 | 北京壁仞科技开发有限公司 | 功耗数据处理方法、装置、电子设备及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007228382A (ja) * | 2006-02-24 | 2007-09-06 | Fujitsu Ltd | トポロジ情報収集プログラム、トポロジ情報収集装置およびトポロジ情報収集方法 |
WO2008134961A1 (en) * | 2007-04-30 | 2008-11-13 | Huawei Technologies Co., Ltd. | Apparatus and method for estimating a passive optical network model |
EP2141832A1 (en) * | 2008-07-03 | 2010-01-06 | Nokia Siemens Networks OY | Automatic topology discovery for passive optical networks |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8687959B2 (en) * | 2002-02-06 | 2014-04-01 | Ciena Corporation | System and method for configuration discovery in an optical network |
US7710897B2 (en) * | 2004-08-26 | 2010-05-04 | Fujitsu Limited | Automatic discovery of logical network elements from existing links in a network |
JP2007166446A (ja) | 2005-12-16 | 2007-06-28 | Sumitomo Electric Ind Ltd | Ponシステム及びその異常判定方法並びに局側装置 |
CN101572832A (zh) | 2008-04-28 | 2009-11-04 | 华为技术有限公司 | 一种无源光网络拉远的方法及设备和系统 |
US8442398B2 (en) | 2008-10-21 | 2013-05-14 | Broadcom Corporation | Performance monitoring in passive optical networks |
CN102223185B (zh) * | 2010-04-14 | 2015-06-03 | 中兴通讯股份有限公司 | 无源光网络系统拓扑结构的确定方法及系统 |
US8774632B2 (en) * | 2010-04-27 | 2014-07-08 | Ciena Corporation | Reconfigurable optical add drop multiplexer node automated topology discovery systems and methods |
-
2012
- 2012-02-23 WO PCT/JP2012/054365 patent/WO2013125002A1/ja active Application Filing
- 2012-02-23 JP JP2014500812A patent/JP5693783B2/ja not_active Expired - Fee Related
- 2012-02-23 US US14/373,744 patent/US9225607B2/en not_active Expired - Fee Related
- 2012-02-23 CN CN201280070567.5A patent/CN104322016A/zh active Pending
- 2012-05-02 TW TW101115538A patent/TWI443983B/zh not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007228382A (ja) * | 2006-02-24 | 2007-09-06 | Fujitsu Ltd | トポロジ情報収集プログラム、トポロジ情報収集装置およびトポロジ情報収集方法 |
WO2008134961A1 (en) * | 2007-04-30 | 2008-11-13 | Huawei Technologies Co., Ltd. | Apparatus and method for estimating a passive optical network model |
EP2141832A1 (en) * | 2008-07-03 | 2010-01-06 | Nokia Siemens Networks OY | Automatic topology discovery for passive optical networks |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110838928A (zh) * | 2018-08-15 | 2020-02-25 | 华为技术有限公司 | Odn的逻辑拓扑信息的获取方法、装置、设备和存储介质 |
CN110838928B (zh) * | 2018-08-15 | 2021-03-30 | 华为技术有限公司 | Odn的逻辑拓扑信息的获取方法、装置、设备和存储介质 |
JP2021536170A (ja) * | 2018-08-15 | 2021-12-23 | 華為技術有限公司Huawei Technologies Co., Ltd. | Odn論理トポロジ情報を取得するための方法および装置、デバイス、ならびに記憶媒体 |
US11405103B2 (en) | 2018-08-15 | 2022-08-02 | Huawei Technologies Co., Ltd. | Method and apparatus for obtaining ODN logical topology information, device, and storage medium |
JP7174832B2 (ja) | 2018-08-15 | 2022-11-17 | 華為技術有限公司 | Odn論理トポロジ情報を取得するための方法および装置、デバイス、ならびに記憶媒体 |
US11722217B2 (en) | 2018-08-15 | 2023-08-08 | Huawei Technologies Co., Ltd. | Method and apparatus for obtaining ODN logical topology information, device, and storage medium |
JP2020177581A (ja) * | 2019-04-22 | 2020-10-29 | 株式会社日立製作所 | トポロジマップ提示システム、トポロジマップ提示方法及びコンピュータプログラム |
JP7166982B2 (ja) | 2019-04-22 | 2022-11-08 | 株式会社日立製作所 | トポロジマップ提示システム、トポロジマップ提示方法及びコンピュータプログラム |
WO2022201477A1 (ja) * | 2021-03-25 | 2022-09-29 | 日本電信電話株式会社 | 推定装置、推定方法及び推定プログラム |
JP7525054B2 (ja) | 2021-03-25 | 2024-07-30 | 日本電信電話株式会社 | 推定装置、推定方法及び推定プログラム |
CN115278407A (zh) * | 2021-04-30 | 2022-11-01 | 中国移动通信集团山西有限公司 | 无源光网络的拓扑结构的确定方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
US20150030328A1 (en) | 2015-01-29 |
CN104322016A (zh) | 2015-01-28 |
JP5693783B2 (ja) | 2015-04-01 |
TWI443983B (zh) | 2014-07-01 |
US9225607B2 (en) | 2015-12-29 |
TW201336248A (zh) | 2013-09-01 |
JPWO2013125002A1 (ja) | 2015-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5693783B2 (ja) | ネットワークシステム及びトポロジーマップ生成方法 | |
CN108964756B (zh) | 光分配网络的故障检测方法及装置、无源光网络系统 | |
WO2021098330A1 (zh) | 识别光网络单元连接端口的方法、相关装置及系统 | |
CN101873175B (zh) | 光无源网络系统及其运用方法 | |
US8774623B2 (en) | Passive optical network system and method for detecting fault in optical network terminal | |
CN111884832B (zh) | 一种获取无源网络拓扑信息的方法及相关设备 | |
KR102165074B1 (ko) | 파장분할 다중방식 수동형 광가입자망의 광신호 모니터링 장치 | |
CN110324190B (zh) | 一种网络规划方法及装置 | |
Maier | Survivability techniques for NG-PONs and FiWi access networks | |
CN102332955A (zh) | 一种用于pon的光中继器 | |
CN104935378A (zh) | 一种用于无源光网络的光纤链路检测系统及方法 | |
Adiati et al. | Design and Analysis of an FTTH-GPON in a Residential Area | |
JP2008277893A (ja) | マルチレートponシステムとその局側装置、端末装置及び伝送レート設定方法 | |
WO2012024923A1 (zh) | 传送节点资源状态信息的处理方法及装置 | |
CN106303765B (zh) | 一种分布式自动功率优化系统及方法 | |
CN103974152B (zh) | 一种光网络分配单元 | |
CN103220044B (zh) | 一种光接入网络系统、设备及方法 | |
Lafata et al. | Perspective application of passive optical network with optimized bus topology | |
US20160056913A1 (en) | Station-side terminal apparatus, optical access network, and communication method | |
Davronbekov et al. | Analytical Expressions and Model of Optical Communication Network Reliability Index Estimation | |
Rafel et al. | Automatic restoration over a type B dual parented PON using VLAN switching | |
CN210405508U (zh) | 一种基于epon网络视频监控系统 | |
JP2017011379A (ja) | Ponシステム | |
Lafata | Protection of passive optical network by using ring topology | |
CN103546834A (zh) | Xg-pon与gpon在odn中实现共存的系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12869516 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014500812 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14373744 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12869516 Country of ref document: EP Kind code of ref document: A1 |