WO2009130274A1 - Procede de fabrication de microcanaux reconfigurables - Google Patents

Procede de fabrication de microcanaux reconfigurables Download PDF

Info

Publication number
WO2009130274A1
WO2009130274A1 PCT/EP2009/054884 EP2009054884W WO2009130274A1 WO 2009130274 A1 WO2009130274 A1 WO 2009130274A1 EP 2009054884 W EP2009054884 W EP 2009054884W WO 2009130274 A1 WO2009130274 A1 WO 2009130274A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
channel
electrodes
microfluidic
plates
Prior art date
Application number
PCT/EP2009/054884
Other languages
English (en)
Inventor
Yves Fouillet
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to EP09733747A priority Critical patent/EP2268404A1/fr
Priority to US12/988,213 priority patent/US8679423B2/en
Publication of WO2009130274A1 publication Critical patent/WO2009130274A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00055Grooves
    • B81C1/00071Channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/051Micromixers, microreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material

Definitions

  • the invention relates to the field of microfluidics.
  • the channels are made by assembling two plates, one of the plates having been etched to form grooves.
  • a microchannel network is produced by replication techniques such as the molding of polymeric materials (eg polycarbonate).
  • polymeric materials eg polycarbonate
  • Other materials such as PDMS can be cast on micro-machined molds ....
  • the geometry of the microfluidic network is defined at design.
  • Their manufacture requires cleanroom type equipment involving significant resources and significant manufacturing time.
  • Liquid handling techniques in the form of drops are known which form what is calls discrete microfluidics. This allows to manipulate drops powered by electric forces. This technique is different from the microfluidic, called microchannel, referred to by this patent.
  • the object of the invention is to propose a device that can be produced in a very simple manner and that can be quickly configured according to the needs of a user, without involving a heavy and expensive manufacturing process.
  • the invention firstly relates to a method for producing a microfluidic network, comprising at least a first microfluidic channel, comprising: a) introducing, between two plates provided with electrodes, a first fluid and a second fluid, these two fluids being immiscible, the first fluid being a liquid that can be hardened or solidified, b) the interface between the two fluids being shaped with the aid of the electrodes so as to form at least said first fluid flow channel, c) the solidification or hardening of the material of said first fluid.
  • the second fluid can be removed.
  • a microfluidic component or network is formed in the air gap of two plates placed in parallel and having electrodes.
  • the invention makes it possible to manufacture a component comprising reconfigurable or reusable channels.
  • the shaping of the channels and the channel network is driven by electric forces.
  • a first fluid material is disposed between the two plates. Thanks to the electric forces and the second fluid, the shape of this fusible material (always in the fluid state) is imposed in order to define a microchannel network. This shaping can then be fixed by polymerization, hardening or crystallization of the fusible material.
  • the component thus comprises a microfluidic network formed of solid walls.
  • the first and second fluids can both be insulating, or all two conductors. In the latter case, the conductivity of the first fluid is different or very different from that of the second fluid. Alternatively, one is insulating and the other conductor.
  • the material of the first fluid In the solid state, the material of the first fluid can be fuse.
  • a method according to the invention may then further comprise a fluidification step of the solidified material of said first fluid.
  • first fluid for example also a liquid, which can also be hardened or solidified. It is possible to repeat steps b) and c) using the first fluid or the third fluid and a second fluid, immiscible with the first fluid or the third fluid. It is also possible to shape the first fluid or the third fluid, using the electrodes and the second fluid, so as to form at least one second fluid flow channel, different from the first.
  • a third fluid for example also a liquid, which can also be hardened or solidified.
  • steps b) and c) using the first fluid or the third fluid and a second fluid, immiscible with the first fluid or the third fluid. It is also possible to shape the first fluid or the third fluid, using the electrodes and the second fluid, so as to form at least one second fluid flow channel, different from the first.
  • each microfluidic network is fast and does not require microfabrication equipment.
  • the microfluidic network that can be realized with such a process can comprise various elements such as, for example, one or more pillars in a channel and / or one or more closed chambers and / or a convergent then divergent section and / or a constriction in at least one channel, and / or at least one serpentine-shaped channel .
  • the invention also relates to a microfluidic device, comprising a microfluidic network, comprising: a) two plates or substrates, each or each being provided with one or more electrodes, b) at least one channel whose walls are made of a material obtained by solidifying or hardening the material of a first fluid.
  • Means may be provided for varying a physical parameter of the material constituting the walls of the channel in order to pass this material at least from the liquid state to the solid state. These means are not necessarily integrated into the device. It can be means external to the device (UV lamp, or external means of heating ).
  • the invention also relates to a microfluidic device, comprising a microfluidic network, comprising: a) two plates or substrates, each or each being provided with one or more electrodes, b) at least one channel having solid walls, c) means for varying a physical parameter of the material constituting the walls of the channel in order to pass this material at least from the liquid state to the solid state, these means being integrated in the device or external to the device (UV lamp, or external means of heating ).
  • the first fluid, or the material constituting the walls of the device may be an adhesive, for example of the epoxy type, or silicone, or a resin, or a UV adhesive or an insulating adhesive or a gel, for example alginate or agarose, or a polymer, for example PDMS, or a liquid-solid phase change material, for example a material having a phase transition temperature of between 50 ° C. and 150 ° C., for example paraffin, possibly charged with conductive particles, or polycarbonate, or a metal or alloy based on tin and / or lead.
  • an adhesive for example of the epoxy type, or silicone, or a resin, or a UV adhesive or an insulating adhesive or a gel, for example alginate or agarose, or a polymer, for example PDMS, or a liquid-solid phase change material, for example a material having a phase transition temperature of between 50 ° C. and 150 ° C., for example paraffin, possibly charged with conductive particles, or polycarbonate, or a
  • the second fluid may be a gas, for example air, or an insulating fluid, such as oil, or a conductive fluid, such as water or an aqueous solution.
  • the invention makes it possible to format a microfluidic channel network in a non-disposable component with the following advantages:
  • the geometry of the microfluidic network can be imposed, realized and modified by the user without having to use technological means of the cleanroom type (for example, photolithography and / or etching techniques).
  • the material forming the walls can be renewed between each redesign which allows to reuse the component if the microfluidic network has been damaged, contaminated, clogged ....
  • FIGS. 1A-1D represent steps of a method for producing a device according to the invention, in configuration for activation by liquid dielectric force (FIGS. 1A, 1B) and in configuration with a view to a activation by electrowetting (figures IC, ID).
  • FIGS. 2A to 2B represent steps of a variant of a method for producing a device according to the invention,
  • FIG. 3 represents a device according to the invention, in activation configuration by electrowetting, with total wetting of the walls by the curable liquid,
  • FIGS. 4A-4E represent certain steps of realization of another method according to the invention
  • FIGS. 5A-5C represent, in view in section, steps of realization of a device according to the invention
  • FIGS. 6A-6C show, in plan view, steps for producing a device according to the invention
  • FIGS. 7A-7D represent steps for producing a device according to the invention
  • FIG. 8 represents a sectional view of a channel in a device according to the invention, with total wetting of the walls of the channel by the curable liquid,
  • FIGS. 9A-9E show, in top view, examples of geometry of channels and microfluidic networks, with a convergence / divergence channel and pillars (FIG. 9A), parallel channels (FIG. 9B), FIG. crossing channels FIG. 9C), a closed chamber FIG. 9D), and an array of electrodes (FIG. 9E),
  • FIGS. 10A and 10B respectively represent a view in section and a view from above of another component according to the invention
  • FIGS. 11A-11C represent steps for producing another device according to the invention
  • FIGS. 12A-12C represent a component comprising an array of electrodes in order to produce fluidic networks of different shapes
  • FIGS. 13A-13B show channel details in a device according to the invention, and in particular a view from above of a part of a channel having a curvature (FIG. 13A) and a sectional view of a channel (FIGS. 13B). )
  • FIGS. 14A and 14B represent, on the one hand, a microfluidic network according to the invention and, on the other hand, an example of experiment carried out with this network.
  • FIGS. 1A and 1B A first embodiment of the invention is shown diagrammatically in FIGS. 1A and 1B.
  • FIGS. 12A-12C represent, in section, a device comprising two parallel substrates or plates 2, 4 between which a channel 9 is defined.
  • a single channel is shown but the invention applies to the realization of any configuration of channels, for example of the type shown in plan view on any one of Figures 12A-12C.
  • each of these plates comprising one or more electrodes 3, 13, are arranged two fluid media 6, 8, immiscible ( Figure IA).
  • first fluid the fluid 6
  • second fluid the fluid 8
  • the electrodes can be in direct contact with the medium that separates the two plates. This is the case of the electrodes 3, 13 of Figures IA and IB.
  • the mechanism of preferential displacement of the fluids will then be of the DEP (dielectrophoresis) type.
  • the electrodes 3 ', 13' are buried in the substrates 2, 4 (in the case of FIGS. 1C, 1D), the preferred mechanism for displacing the fluids will then be of the electrowetting type.
  • the electrodes are buried in the substrates
  • the electrodes 3, 3 ', 13, 13' can be connected to means for selectively applying a voltage to each electrode, for example switch means 33 and voltage generator means 31 (see FIG. these means are not represented in the other figures).
  • the distance E between the two plates or substrates 2, 4 can be between 1 micron and 500 microns, it is for example the order of 100 microns.
  • the potential difference between the electrodes 3 associated with the substrate 2 and the electrode 13 associated with the substrate 4 is between 100 V or a few hundred V, for example 500 V, and 1000 V or a few thousands of V, for example 5000 V, for a distance E of about 100 microns.
  • the potential differences between the electrodes 3 'and the electrode 13' are of the order of ten volts, for example between 10 V and 50 V, typically 40V for an insulation thickness of 1 ⁇ m.
  • the electrode associated with the substrate or with the plate 4 is represented as being unique.
  • this substrate may also comprise a plurality of electrodes, opposite the electrodes 3.
  • the first fluid medium 6 may be a liquid material having the property of solidifying or hardening by modification of one of its physical parameters, for example by a decrease or a rise in temperature, or by exposure under a specific radiation range for example photon radiation, especially UV radiation.
  • Means are provided in the device to cause such a modification, these are for example means for controlling the temperature. These means are arranged on or in at least one of the substrates 2, 4 or in the space between the substrates. It may also be external means, especially in the case of UV insolation, using, for example, glues and lamps marketed (see for example the products offered by the company Adler SA).
  • the second fluid medium 8 will allow, with the aid of the electrodes, to define, in the first fluid medium 6, the geometry of the desired channel 9.
  • the interface between the two fluids 6 and 8 is shaped by the electrostatic forces thanks to the electrodes 3, 13, 3 ', 13' and the voltages that are applied thereto, whether in the frame of displacement of DEP type fluid or electrowetting type. It can thus give the channel or channels to achieve any desired shape.
  • the solidification of the first fluid medium 6 makes it possible to freeze the shape of this channel or these channels. It is then possible to evacuate the second fluid 8 (FIGS. 1B and 1D), leaving the walls of these channels, constituted by the material of the first fluid 6 solidified or hardened. Any forms of channels or one or more channel networks can be made. In particular, it is possible to produce channels whose width or maximum dimension in the plane of FIGS. 1A-1D is small in front of the length of the channel perpendicular to this plane. Thus, FIGS. 4E, 6A-6C, 7A-7D, 9A-9D, 1OB, HC
  • Figure 14B can flow in the direction of stretching of the channel while being guided by the side walls formed by the fluid 6, 6 'solidified. Examples of use or application of the microfluidic component thus produced are given below. In use, and even simply after formation of the solid walls of the channels, they are well defined, and it is no longer necessary to apply electric forces to maintain the shape of the fixed microfluidic network.
  • the walls can be dissolved, for example by chemical etching of the first fluid medium 6. Then, a new volume of fluid material 6 (and fluid 8) can be reinjected. ) to reform a new fluidic network according to the invention, as described above, in the same channel configuration or in a different channel configuration.
  • the voltages applied to the electrodes 3, 3 ', 13, 13' are then adjusted according to the new desired configuration.
  • Figures 2A and 2B show a variant of this method. There are two plates 2, 4, and a channel defined by side walls of a material 6 ', which can be made fluid or liquid. This time it is a reversible phase change material. In the example illustrated in these two figures, a configuration with the displacement by DEP, but the configuration with electrowetting displacement is also possible.
  • a first configuration can be performed as explained above, by solidifying the material 6 ', again with a first modification of a physical parameter such as temperature.
  • Figure 2A illustrates this state with solidified material 6 '.
  • a second fluid 8 '(FIG. 2B) also makes it possible to define the desired channel geometry, which is achieved by solidification of the fluid 6'.
  • the medium 6 ' can be renewed after each melting operation of the constituent material of the microfluidic network, which allows the formation of channels 9 with walls made of a healthy or non-polluted material.
  • the medium 6, 6 ' preferably has a high affinity with the walls of the two plates 2, 4 in order to maintain a total wetting of this medium (in the liquid state) on the surfaces.
  • a very thin film 60 of this material then still exists on the surface of the plates 2, 4, even after solidification of the medium 6, 6 'and elimination of the second fluid medium 8, 8'.
  • the channels will be entirely defined by walls formed by the medium 6, 6 '(upper wall and lower wall included).
  • the material of the medium 6, 6 ' is for example a glue (especially of the epoxy type, or silicone, or a resin ). Before curing, these glues are made sufficiently fluid (fluidity for example between 1 centipoise and a few tens of centipoise, for example 50 cp) to facilitate the shaping of the material.
  • this material can be a UV adhesive. Curing is then effected by exposure of the component by a UV light source.
  • Glue and UV source references are available from several manufacturers, for example Photobond, Adler, Vitralit.
  • medium 6 is a gel (in particular alginate, or agarose, etc.). It can also be a polymer, such as PDMS for example. Medium 6 can also be a liquid-solid phase change material. Preferably one will choose a material having a phase transition temperature acceptable by the entire component and easily achievable by the user. This transition temperature can therefore be of the order of a few tens of 0 C, for example between 50 0 C and 150 0 C.
  • the material of the medium 6 is paraffin, whose transition temperature is substantially 60 °.
  • this material is polycarbonate, or a metal or an alloy based on tin and / or lead, etc.: each of these materials has a transition temperature greater than 100 ° C.
  • the medium 8 may be a gas (air). It can be an insulating fluid, such as oil or water or an aqueous solution.
  • the material 8 is preferably chosen according to the material 6 in order to be able to apply an electric force to the interface of the two fluids.
  • the two fluids 6, 8 can be insulating, with different dielectric permittivities, the constant ⁇ of the first fluid medium 6 being greater than the constant ⁇ of the second fluid medium 8.
  • the electrodes are disposed under the first fluid medium 6 , as in FIG. 1A, and the mode of actuation of the fluids is the DEP.
  • the material 6 is paraffin, or an insulating glue, or polycarbonate or PDMS ...; and the material 8 is air or an inert gas or any fluid insulation is immiscible with the material 6. The phenomenon of liquid DEP is then used to shape the interface between these two fluids and to control the geometry of this interface.
  • the electrodes 3 are arranged under the paraffin.
  • the electrodes 3 can be arranged under the oil 8 (or more generally under the other material 8) if the dielectric permittivity material 8 is higher than that of paraffin 6.
  • the conductive material may be the material 6 or the material 8. Electrowetting is then used to control the geometry of the interface between these two materials. In this case, the electrodes 3 'will be arranged not under the interface 6 - 8, but under that of the two fluid media 6, 8, which is conductive (or which is the most conductive).
  • Paraffin-couple (salt water) is possible. You can also use a Paraffin couple
  • the material 6 a metal (for example: tin, lead, etc.) or a paraffin containing conductive particles (for example microbeads, or carbon particles, or carbon nanotubes, or silicon ... ), or a conductive glue, for the material 8: air or an organic liquid, for example an oil.
  • a metal for example: tin, lead, etc.
  • a paraffin containing conductive particles for example microbeads, or carbon particles, or carbon nanotubes, or silicon ...
  • a conductive glue for the material 8: air or an organic liquid, for example an oil.
  • FIGS. 4A-4E An exemplary embodiment of a starting component for implementing the invention will be given in conjunction with FIGS. 4A-4E.
  • the fluid component is made by two parallel plates 2, 4 (Figure 4D). These plates may be for example glass, or silicon, or polycarbonate, or epoxy (printed circuit board type).
  • electrodes 3 are produced (FIG. 4B). These electrodes 3 are obtained by a structured layer of a conductive material, for example ITO (transparent conductive layer). The structure of the electrodes makes it possible to define the zones where the DEP forces will act. In the example of Figure 4B these electrodes 3 are simply formed of two parallel strips spaced apart by a distance d between a few microns, for example 5 microns, and a few millimeters, for example 10 mm. This spacing corresponds to the width of the desired fluidic channel 9. On the other plate (upper plate 4) one or electrodes 13 may also be made (Figure 4D).
  • Figure 4D On the other plate (upper plate 4) one or electrodes 13 may also be made ( Figure 4D).
  • spacing means 5 are formed on one of the two plates (FIG. 4C). They are for example obtained by a thickness of resin layer 5 controlled, a few microns, for example 5 microns, a few hundred microns, for example 500 microns.
  • a photosensitive resin film is laminated on the plate 2, and then structured by photolithography. The two plates 2, 4 are then assembled ( Figure 4D) and glued to form a cavity.
  • Apertures 7, 17 are provided for injecting fluids into this cavity. These openings may be obtained by drilling one of the plates 2, 4 or walls which constitute the spacer means 5, as shown in the top view of Figure 4E.
  • Means are provided for making an electrical interface of the component to an electrical control system. This is for example tip contacts or electrical bonds.
  • Peltier element (not shown in the figures) is pressed against the bottom plate 2 of the component.
  • the component is filled with a fuse and insulator material 6. This is injected in the liquid state into the space between the two substrates 2, 4 by one of the lateral openings 7, 17 (FIG. 5A and FIG. 6A).
  • the chip is then maintained at a temperature above the melting point of the fuse liquid 6 by the thermal means provided for this purpose.
  • it implements an electric actuation of the fuse liquid.
  • a voltage ⁇ V is applied between the electrodes 3 of the lower substrate and the electrode 13 of the upper substrate (FIG. 5B and FIG. 6B). Since the liquid 6 is insulating and has a higher dielectric permittivity than that of the fluid 8, the DEP forces tend to attract it to the lower electrodes 3.
  • the volume of fusible liquid conforms to the shape of the electrodes.
  • the microchannel 9 will be formed by solidification of the fuse liquid 6.
  • the temperature of the chip is lowered, the liquid 6 solidifies, thus forming a channel 9 with solid walls ( Figure 5C and Figure 6C).
  • the formed channel has a width equal to the air gap of the two electrodes 3 of the lower plate 2.
  • Fusible liquid 6 is, for example paraffin, the liquid-solid transition temperature is 40 to 70 0 C depending on the composition or the additives. There are also paraffins whose melting temperatures are around 90 ° C. (eg Apieson®), and which can also be used in the context of the invention.
  • FIGS. 7A-7D A variant of this example of use is shown in FIGS. 7A-7D.
  • the fluid component is first formed in the manner explained above (FIGS. 4D and 4E), this is the structure of FIG. 7A.
  • a voltage is applied between the electrodes 3 of the lower plate 2 and that of the upper plate 4.
  • the fluid 8 Through one of the orifices 17 is injected the fluid 8 (Figure 7C). As and when this injection, the interface between the two fluids 6, 8 is guided by the forces of DEP. This interface stretches to align with the edges of the lower electrodes 3. This process continues until the fluid 8 extends along the entire component ( Figure 7D). In the end, the formed channel has a width equal to the distance separating the two electrodes 3 from the lower plate 2. By lowering the temperature solidifies the medium 6 in order to freeze the shape of the channel obtained.
  • FIG. 8 represents a variant in which the fusible material 6 has a high physicochemical affinity with the upper 4 and lower 2 plates. More specifically, this material has, in the liquid state, a total wetting with the walls and forms the film 60 When a drop wets a surface with a total wetting configuration, and after a sufficient waiting time, a zero wetting angle is obtained and a very thin film 60 of liquid (of nanometer thickness or micrometric) that results from a competition between molecular and capillary forces.
  • a fuse material 6 such as the latter-in the liquid state-are chosen in the total wetting configuration on the surfaces of the substrates.
  • paraffin, glass substrates and ITO electrodes can be used.
  • a thin paraffin film 60 remains on the surface of the substrates 2, 4.
  • This phenomenon can possibly be reinforced by applying a coating treatment. appropriate surface on the wet surface.
  • This configuration makes it possible to manufacture channels entirely formed by walls of fusible materials 6, since a thin film 60 resulting from the total wetting property previously described is present on the surfaces of the channel.
  • FIGS. 10A-10B A second embodiment of a component for the implementation of the invention will be given in conjunction with FIGS. 10A-10B.
  • the interface is manipulated by electrowetting.
  • the fluid component is made by two parallel plates 2, 4 (Figure 10A). These plates can be for example glass, or silicon.
  • the bottom plate 2 comprises at least one metal level 3 for the definition of the electrodes.
  • These electrodes 3 are obtained by deposition and then etching a thin layer of a metal that can be selected from Au, Al, ITO (Indium Tin Oxide), Pt Cu, Cr, ....
  • the microtechnologies are used conventional microelectronics, for example photolithography.
  • the thickness of the electrodes 3, 13 is from a few tens of nm to a few microns, for example from 10 nm to 10 ⁇ m.
  • the width of the patterns is from a few ⁇ m to a few mm, for example from 5 ⁇ m to 10 mm.
  • the space 1 between two neighboring units is of the order of a few microns, for example between 1 ⁇ m and 50 ⁇ m.
  • the plate 2 may preferentially be covered with an insulating layer 12, for example made of Si 3 N 4 , or of SiO 2 , ....
  • an insulating layer 12 for example made of Si 3 N 4 , or of SiO 2 , ....
  • a deposit of a thick resin layer 5 is made for example by rolling of a photosensitive resin film of the Ordyl type (marketed by Elga). The thickness of this film is for example between 10 microns and 500 microns. Then, by photolithography, this layer is structured. This layer defines the space between the two plates 2, 4.
  • the patterns of this layer are pillars or cords.
  • a deposition of a hydrophobic layer 14 is preferably carried out, such as for example a Teflon or SiOC deposit, as described in document WO 2007/003720.
  • the upper substrate 4 comprises a thin metal layer 13, for example chosen from Au, Al, ItO (Indium Tin Oxide), Pt Cu, Cr, ....
  • a deposit of a hydrophobic layer 16 may be carried out, as for example a deposit of Teflon or SiOC.
  • the two plates are plated and possibly glued one on the other.
  • Holes in the upper plate 4 or lateral openings 7, 17 in the resin bead 5 are provided for injecting the fluids, for example by capillaries 18 bonded to these orifices (FIG.
  • Means are provided for making an electrical interface of the component to an electrical control system.
  • Other means are provided for controlling the temperature of the component.
  • a Peltier element (not shown in the figures) is pressed against the bottom plate 2 of the component.
  • FIGS. 11A-11C An example of use of this type of component will be given in conjunction with FIGS. 11A-11C.
  • the channels have paraffin walls, but other materials could be used for the walls.
  • the component ( Figure HA) is initially placed at a temperature of 90 °. Then, paraffin 6 is injected by one of the capillaries 18, so as to completely fill the space between the two plates 2, 4. Through this same orifice, or another orifice, an aqueous solution 8 is injected (FIG.
  • the electrode 3 is actuated in order to guide by electrowetting the advance of this liquid in the component until reaching the other end of the component (Figure HC).
  • the shape of the aqueous solution then covers the electrodes 3.
  • the fusible material 6 can then be solidified: it will thus memorize the shape obtained, that is to say, in the case of the example of Figure HC, a right channel. But, as in the previous example, any type of channel geometry can be envisaged by varying the number and the geometry of the electrodes 3 of the lower plate.
  • the electrodes are in the form of strips. But the shape of the electrodes can be more complex than these simple bands, to form a network of channels with complex geometries. It is thus possible to form one or more pillars in a channel and / or one or more closed chambers and / or a convergent then divergent section and / or a constriction in at least one channel, and / or at least one channel in the form of coil, each of these elements being formed in the material 6, initially liquid and then solidified or hardened.
  • FIGS. 9A-9E various embodiments are represented in FIGS. 9A-9E:
  • the electrode array 3 of the lower plate 2 can consist of a matrix 30 of electrodes, each pixel of this electrode matrix being addressable independently of the other pixels. This results in a fluidic network formed of channels intersecting at right angles. But the user can choose only part of the electrodes of this network to operate, to define itself the form of microfluidic network to manufacture.
  • a large variety of microfluidic networks can be formed with various geometries. The denser the matrix of electrodes, the greater the geometric resolution of the channel and the complexity of the microfluidic networks.
  • FIGS. 12A-12C give examples of channel geometries or networks 59, 69 of channels that can be produced on the same component consisting of an electrode matrix 3, represented in view from above in FIG. 12A. It will be understood from FIGS. 12B and 12C that, from such a matrix, a very large variety of microfluidic networks, for example with a serpentine channel, can be realized. As in the first embodiment ( Figure 8), one can choose a fuse material 6 in total wetting configuration. This makes it possible to preserve a very thin film of this material at the level of the surface of the walls 2, 4. For reasons of simplification of drawing, the networks of FIGS. 9A-9E and 12A-12C are represented with right angles.
  • FIG. 13A represents an enlarged view of a bend or curvature of a channel made according to the invention, in which figure the non-angular shape of the channel appears.
  • Figure 13B shows a view of a channel, in section. There is the rounded shape, without roughness or right angle.
  • FIGS. 14A-14B give an example of a microfluidic experiment carried out in a shaped channel 9 according to the invention.
  • An aqueous phase is injected through a first orifice 17, and a water-immiscible phase (for example oil, organic solvent, etc.) is injected through a second orifice 17 '.
  • a hydrodynamic mechanism known in microfluidics makes it possible to form drops of water 42 (FIG. 14B) of reproducible size. These are then transported by the immiscible phase in water.
  • the electrodes used for the manufacture of the channels can be used again to manipulate the drops by electrowetting.
  • the electrodes used for the manufacture of the channels can be used again to manipulate the drops by electrowetting.
  • the invention makes it possible to obtain a rapid prototyping technique because the user easily and with great interactivity modifies the shape of the channels.
  • the optimization of a design of a microfluidic component is much faster than the techniques of the prior art.
  • the invention also makes it possible successively to carry out biological or chemical reactions without the need to change chips, while limiting the risk of contamination between successive uses. In the end only the middle 6 is the consumable part.
  • a cleaning of the substrate and the electrodes can be envisaged between two uses. Potential applications are therefore biochips, for the field of analysis, for example environmental analysis or diagnosis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)

Abstract

L' invention concerne un dispositif microfluidique, comportant un réseau microfluidique, comportant: a) deux plaques (2, 4) parallèles chacune munie d'une ou plusieurs électrodes (3, 13), b) au moins un canal (9), disposé entre les deux plaques, en un matériau obtenu par solidification ou durcissement du matériau d'un premier fluide (6), c) des moyens pour faire varier un paramètre physique du matériau constitutif des parois du canal afin de le faire passer au moins de l'état liquide à l'état solide.

Description

PROCEDE DE FABRICATION DE MICROCANAUX RECONFIGURABLES
DESCRIPTION
DOMAINE TECHNIQUE ET ART ANTÉRIEUR
L' invention concerne le domaine de la microfluidique .
Dans ce domaine, les dispositifs connus mettent généralement en œuvre des technologies du type
MEMS. Les canaux sont réalisés par assemblage de deux plaques, l'une des plaques ayant été gravée afin de former des rainures.
Selon une autre famille de dispositifs on réalise un réseau de microcanaux par des techniques de réplication comme le moulage de matériaux polymères (ex Polycarbonate) . D'autre matériaux comme le PDMS peuvent être coulés sur des moules micro-usinés....
Dans tous ces dispositifs connus la géométrie du réseau microfluidique est définie à la conception . Leur fabrication nécessite des équipements du type salle blanche impliquant des moyens importants et des temps de fabrication importants.
Pour une nouvelle géométrie de composant il faut donc effectuer un nouveau cycle de conception, réalisation, packaging etc.... Ce cycle est long (de la semaine semaines, à plusieurs mois) est coûteux, ce qui pénalise le déroulement d'un projet. Le composant est généralement jeté après une utilisation.
On connaît des techniques de manipulation de liquide sous forme de gouttes, qui forme ce que l'on appelle la microfluidique discrète. Celle-ci permet de manipuler des gouttes actionnées par des forces électriques. Cette technique est différente de la microfluidique, dite en microcanal, visée par ce brevet.
Dans toutes les techniques connues les surfaces peuvent être contaminées par des réactions chimiques ou biologiques et le composant microfluidique ne peut pas être réutilisé. Or, pour des applications dans le domaine du diagnostic médical, les composants habituellement utilisés sont souvent conçus pour un usage unique. Ceci implique une contrainte de bas coût de fabrication malheureusement incompatible avec les technologies MEMS.
EXPOSÉ DE L'INVENTION
L' invention vise à proposer un dispositif pouvant être réalisé de manière très simple, et pouvant être rapidement configuré en fonction des besoins d'un utilisateur, sans impliquer de processus de fabrication lourd et onéreux.
L'invention concerne d'abord un procédé de réalisation d'un réseau micro-fluidique, comportant au moins un premier canal micro-fluidique, comportant : a) l'introduction, entre deux plaques munies d'électrodes, d'un premier fluide et d'un deuxième fluide, ces deux fluides étant non miscibles, le premier fluide étant un liquide pouvant être durci ou solidifié, b) l'interface entre les deux fluides étant mise en forme à l'aide des électrodes de manière à former au moins ledit premier canal de circulation fluidique, c) la solidification ou le durcissement du matériau dudit premier fluide.
Le deuxième fluide peut être éliminé. Selon l'invention, un composant ou un réseau microfluidique est formé dans l'entrefer de deux plaques mises en parallèles et comportant des électrodes .
L' invention permet de fabriquer un composant comportant des canaux reconfigurables ou réutilisables. La mise en forme des canaux et du réseau de canaux est pilotée par des forces électriques.
Un premier matériau fluide est disposé entre les deux plaques. Grâce aux forces électriques et au deuxième fluide on impose la forme de ce matériau fusible (toujours à l'état fluide) dans le but de définir un réseau de microcanaux. Cette mise en forme peut ensuite être figée, par polymérisation, durcissement ou cristallisation du matériau fusible. Le composant comporte donc un réseau microfluidique formé de parois solides. Les premier et deuxième fluides peuvent être tous deux isolants, ou bien tout deux conducteurs. Dans ce dernier cas, la conductivité du premier fluide est différente ou très différente de celle du deuxième fluide. En variante, l'un est isolant et l'autre conducteur. A l'état solide, le matériau du premier fluide peut être fusible. Un procédé selon l'invention peut alors comporter en outre une étape de fluidification du matériau solidifié dudit premier fluide.
On peut alors éliminer le premier fluide et le remplacer par un troisième fluide, par exemple également liquide et pouvant lui aussi être durci ou solidifié . II est possible de réitérer les étapes b) et c) à l'aide du premier fluide ou du troisième fluide et d'un deuxième fluide, non miscible avec le premier fluide ou le troisième fluide. On peut en outre mettre en forme le premier fluide ou le troisième fluide, à l'aide des électrodes et du deuxième fluide, de manière à former au moins un deuxième canal de circulation fluidique, différent du premier.
Le passage entre l'état liquide et l'état solide étant éventuellement réversible, on peut donc reconstruire un même réseau microfluidique, obtenu selon l'invention, en renouvelant le matériau fusible ou bien reconstruire un autre réseau microfluidique, différent du précédent.
Un même composant réalisé selon l'invention est donc réutilisable un grand nombre de fois avec une grande variété de géométries de réseaux microfluidiques . La formation de chaque réseau microfluidique est rapide et ne nécessite pas d'équipement de microfabrication. Le réseau microfluidique qu'il est possible de réaliser avec un tel procédé peut comporter divers éléments tels que par exemple un ou plusieurs piliers dans un canal et/ou une ou plusieurs chambres fermées et/ou une section convergente puis divergente et/ ou une constriction dans au moins un canal, et/ou au moins un canal en forme de serpentin.
L'invention concerne également un dispositif microfluidique, comportant un réseau microfluidique, comportant : a) deux plaques ou substrats, chacun ou chacune étant munie d'une ou plusieurs électrodes, b) au moins un canal dont les parois sont en un matériau obtenu par solidification ou durcissement du matériau d'un premier fluide.
Des moyens peuvent être prévus pour faire varier un paramètre physique du matériau constitutif des parois du canal afin de faire passer ce matériau au moins de l'état liquide à l'état solide. Ces moyens ne sont pas forcément intégrés au dispositif. Il peut s'agir de moyens externes au dispositif (lampe UV, ou moyen externe de chauffage...) .
En variante 1 ' invention concerne également un dispositif microfluidique, comportant un réseau microfluidique, comportant : a) deux plaques ou substrats, chacun ou chacune étant munie d'une ou plusieurs électrodes, b) au moins un canal ayant des parois solides, c) des moyens pour faire varier un paramètre physique du matériau constitutif des parois du canal afin de faire passer ce matériau au moins de l'état liquide à l'état solide, ces moyens étant intégrés au dispositif ou étant externes au dispositif (lampe UV, ou moyen externe de chauffage...) .
Dans un procédé et un dispositif selon l'invention le premier fluide, ou le matériau constitutif des parois du dispositif, peut être une colle, par exemple de type époxy, ou silicone, ou une résine, ou une colle UV ou une colle isolante ou un gel, par exemple alginate ou agarose, ou un polymère, par exemple du PDMS, ou un matériau à changement de phase liquide - solide, par exemple un matériau ayant une température de transition de phase comprise entre 500C et 1500C, par exemple de la paraffine, éventuellement chargée de particules conductrices, ou du Polycarbonate, ou un métal ou un alliage à base d' étain et/ou de plomb.
Le deuxième fluide peut être un gaz, par exemple de l'air, ou un fluide isolant, tel que de l'huile, ou un fluide conducteur, tel que de l'eau ou une solution aqueuse. L'invention permet de mettre en forme un réseau de canaux microfluidique dans un composant non jetable avec les avantages suivants :
- la géométrie du réseau microfluidique peut être imposée, réalisée et modifiée par l'utilisateur sans avoir à utiliser des moyens technologiques du type salle blanche (par exemple, des techniques de type photolithographie et/ou gravure....)
- la formation et la refonte du réseau microfluidique est un processus rapide, - entre deux utilisations, l'utilisateur peut reformer un nouveau réseau microfluidique identique ou différent,
- le matériau formant les parois peut être renouvelé entre chaque refonte ce qui permet de réutiliser le composant si le réseau microfluidique a été endommagé, contaminé, bouché....
BRÈVE DESCRIPTION DES DESSINS
- Les figures 1A-1D représentent des étapes d'un procédé de réalisation d'un dispositif selon l'invention, en configuration en vue d'une activation par force diélectrique liquide (figures IA, IB) et en configuration en vue d'une activation par électromouillage (figures IC, ID) . - les figures 2A à 2B représentent des étapes d'une variante d'un procédé de réalisation d'un dispositif selon l'invention,
- la figure 3 représente un dispositif selon l'invention, en configuration d' activation par électromouillage, avec mouillage total des parois par le liquide durcissable,
- les figures 4A-4E représentent certaines étapes de réalisation d'un autre procédé selon 1' invention, - les figures 5A-5C représentent, en vue en coupe, des étapes de réalisation d'un dispositif selon 1 ' invention,
- les figures 6A-6C représentent, en vue de dessus, des étapes de réalisation d'un dispositif selon l'invention, - les figures 7A-7D représentent des étapes de réalisation d'un dispositif selon l'invention,
- la figure 8 représente une vue en coupe d'un canal dans un dispositif selon l'invention, avec mouillage total des parois du canal par le liquide durcissable,
- les figures 9A-9E représentent, en vue de dessus, des exemples de géométrie de canaux et de réseaux micro-fluidiques, avec un canal de convergence/divergent et des piliers (figure 9A) , des canaux parallèles (figure 9B) , des canaux se croisant figure 9C) , une chambre fermée figure 9D) , et une matrice d'électrodes (figure 9E),
- les figures 1OA, 1OB représentent respectivement une vue en coupe et une vue de dessus d'un autre composant selon invention,
- les figures 11A-11C représentent des étapes de réalisation d'un autre dispositif selon 1 ' invention, - les figures 12A-12C représentent un composant comportant une matrice d'électrodes en vue de réaliser des réseaux fluidiques de différentes formes,
- les figures 13A-13B représentent des détails de canaux dans un dispositif selon invention, et notamment une vue de dessus d'une partie d'un canal présentant une courbure (figures 13A) et une vue en coupe d'un canal (figures 13B),
- les figures 14A, 14B représentent, d'une part, un réseau micro fluidique selon l'invention et, d'autre part, un exemple d'expérience réalisée avec ce réseau . EXPOSE DETAILLE DE MODES DE REALISATION PARTICULIERS
Un premier exemple de réalisation de l'invention est schématisé sur les figures IA et IB.
Ces figures représentent, en coupe, un dispositif comportant deux substrats ou plaques 2, 4 parallèles entre lesquelles un canal 9 est défini. Un seul canal est représenté mais l'invention s'applique à la réalisation d'une configuration quelconque de canaux, par exemple du type représenté en vue de dessus sur l'une quelconque des figures 12A-12C.
Dans l'espace défini entre les deux plaques (ou substrats) parallèles 2, 4, chacune de ces plaques comportant une ou des électrodes 3, 13, sont disposés deux milieux fluides 6, 8, non miscibles (figure IA) . Dans la suite on pourra désigner le fluide 6 par l'expression «premier fluide», et le fluide 8 par l'expression «deuxième fluide».
Les électrodes peuvent être directement en contact avec le milieu qui sépare les deux plaques. C'est le cas des électrodes 3, 13 des figures IA et IB.
Le mécanisme de déplacement préférentiel des fluides sera alors du type DEP (diélectrophorèse) .
En variante les électrodes 3' , 13' sont enterrées dans les substrats 2, 4 (cas des figures IC, ID) , le mécanisme de déplacement préférentiel des fluides sera alors du type électromouillage. Le fait que les électrodes soient enterrées dans les substrats
2, 4 permet de réaliser une isolation par des couches isolantes et de se prémunir ainsi des risques d' électrolyse du milieu conducteur. L'article de Jones et al., « Frequency- based relationship of electrowetting and dielectrophoretic liquid microactuation", Langmuir, 19, 7646-51, 2003 donne des explications concernant les forces mise en œuvre dans le cas d'un déplacement de type DEP et celle mise en œuvre dans le cas d'un déplacement par électromouillage (EWOD) . Dans les deux cas, on exploite des contraintes d'origines électrostatiques appliquées à l'interface entre les premiers et seconds fluides.
Dans les deux cas, les électrodes 3, 3' , 13, 13' peuvent être reliées à des moyens pour leur appliquer sélectivement une tension à chaque électrode, par exemple des moyens commutateurs 33 et des moyens 31 générateurs de tension (voir figure IA, ces moyens ne sont pas représentés sur les autres figures) .
Egalement dans les deux cas, la distance E entre les deux plaques ou substrats 2, 4 peut être comprise entre 1 μm et 500 μm, elle est par exemple le de l'ordre de 100 μm.
Typiquement, lorsque les fluides sont activés par DEP, la différence de potentiel entre les électrodes 3 associées au substrat 2 et l'électrode 13 associée au substrat 4 est comprise entre 100V ou quelques centaines de V, par exemple 500 V, et 1000V ou quelques milliers de V, par exemple 5000 V, pour une distance E d'environ 100 μm.
Lorsque les fluides sont actionnés par électromouillage, les différences de potentiel entre les électrodes 3' et l'électrode 13' sont de l'ordre de la dizaine de volt, par exemple comprises entre 10 V et 50 V, typiquement 40V pour une épaisseur d'isolant d'1 μm.
Sur toutes les figures, l'électrode associée au substrat ou à la plaque 4 est représenté comme étant unique. En variante, ce substrat peut également comporter une pluralité d'électrodes, opposées aux électrodes 3.
Le premier milieu fluide 6 peut être un matériau liquide ayant la propriété de se solidifier ou de se durcir par modification d'un de ses paramètres physiques, par exemple par une diminution ou une élévation de température, ou par insolation sous une gamme de rayonnement spécifique, par exemple un rayonnement photonique, notamment UV. Des moyens sont prévus dans le dispositif pour provoquer une telle modification, ce sont par exemple des moyens de contrôle de la température. Ces moyens sont disposés sur ou dans au moins un des substrats 2, 4 ou dans l'espace entre les substrats. Il peut également s'agir de moyens externes, notamment dans le cas d'une insolation UV, à l'aide, par exemple, de colles et de lampes commercialisées (voir par exemple les produits proposés par la société Adler SA) . Il peut être prévu de maintenir l'un des paramètres physiques du fluide indiqués ci-dessus, à un premier niveau, pour maintenir le matériau sous forme fluide, puis de faire varier ledit paramètre pour faire passer ce matériau sous forme solide. On peut donc avoir des moyens pour maintenir ce paramètre physique du fluide à un premier niveau, par exemple une température lui permettant d'être sous forme liquide, puis pour faire varier ledit paramètre, par exemple pour faire varier la température, pour faire passer ce matériau sous forme solide .
Le deuxième milieu fluide 8 va permettre, à l'aide des électrodes, de définir, dans le premier milieu fluide 6, la géométrie du canal 9 souhaité.
Plus spécifiquement, l'interface entre les deux fluides 6 et 8 est mis en forme par les forces électrostatiques grâce aux électrodes 3, 13, 3' , 13' et aux tensions qui y sont appliquées, que ce soit dans le cadre de déplacement de fluide de type DEP ou de type électromouillage. On peut ainsi donner au canal ou aux canaux à réaliser une forme quelconque souhaitée.
La solidification du premier milieu fluide 6 permet de figer la forme de ce canal ou de ces canaux. On peut alors évacuer le deuxième fluide 8 (figures IB et ID) , il reste donc les parois de ces canaux, constituées par le matériau du premier fluide 6 solidifié ou durci. Des formes quelconques de canaux ou un ou plusieurs réseaux de canaux peuvent être ainsi réalisés. En particulier on peut réaliser des canaux dont la largeur ou la dimension maximale dans le plan des figures 1A-1D est petite devant la longueur du canal perpendiculairement à ce plan. Ainsi, on voit bien sur les figures 4E, 6A-6C, 7A-7D, 9A-9D, 1OB, HC,
12B-12C, 14A, 14B que les canaux réalisés peuvent avoir une forme allongée ou étirée, une goutte 42 de fluide
(figure 14B) pouvant s'écouler suivant la direction d'étirement du canal tout en étant guidée par les parois latérales formées par le fluide 6, 6' solidifié. Des exemples d'utilisation ou d'application du composant micro-fluidique ainsi réalisé sont donnés plus loin. En cours d'utilisation, et même simplement après formation des parois solides des canaux, ceux-ci sont bien définis, et il n'est plus nécessaire d'appliquer des forces électriques pour maintenir la forme du réseau micro-fluidique figé.
Après que le dispositif ait été constitué, et en cours d'utilisation pour transporter des fluides ou des gouttes, il va être possible d'utiliser les électrodes 3, 3' , 13, 13' pour contrôler des écoulements diphasiques ou en gouttes dans les microcanaux réalisés.
Après utilisation du composant, par exemple pour réaliser des analyses médicales ou biologiques, on peut en dissoudre les murs, par exemple par attaque chimique du premier milieu fluide 6. Puis, on peut réinjecter un nouveau volume de matériau fluide 6 (et du fluide 8) pour reformer un nouveau réseau fluidique selon l'invention, conformément à ce qui a été décrit ci-dessus, dans la même configuration de canaux ou dans une configuration de canaux différente. On adapte alors les tensions appliquées aux électrodes 3, 3', 13, 13' en fonction de la nouvelle configuration souhaitée. Les figures 2A et 2B représentent une variante de ce procédé. On retrouve les deux plaques 2, 4, et un canal défini par des parois latérales en un matériau 6', que l'on peut rendre fluide ou liquide. Il s'agit cette fois d'un matériau à changement de phase réversible. Dans l'exemple illustré sur ces deux figures, on a choisi une configuration avec le déplacement par DEP, mais la configuration avec déplacement par électromouillage est également possible .
Une première configuration peut être réalisée comme expliqué ci-dessus, en solidifiant le matériau 6', là encore à l'aide d'une première modification d'un paramètre physique tel que la température. La figure 2A illustre cet état avec le matériau 6' solidifié. Mais, cette fois, on peut aussi faire repasser le milieu 6' à l'état liquide (figure 2B) , en provoquant une deuxième modification dudit paramètre en sens inverse de la première modification, et ainsi reconfigurer le réseau microfluidique, en créant un nouveau (deuxième) réseau différent du premier, dont au moins un canal peut avoir une forme et/ou une géométrie différente de celle du premier réseau créé. Un deuxième fluide 8' (figure 2B) permet, là aussi, de définir la géométrie de canal souhaitée, que l'on réalise par solidification du fluide 6' . II est alors possible de recréer la structure microfluidique antérieure. En variante, en changeant la configuration des forces électriques, il est possible de former un nouveau réseau microfluidique, différent du réseau antérieur. Le milieu 6' peut être renouvelé après chaque opération de fusion du matériau constitutif du réseau micro-fluidique, ce qui permet de reformer des canaux 9 avec des parois en un matériau sain ou non pollué. Le milieu 6' fluidisable étant renouvelable à chaque nouvelle refonte, on peut réutiliser le même composant un grand nombre de fois tout en minimisant les risques de contamination ou de pollution du composant .
Comme illustré en figure 3, le milieu 6, 6' présente préférentiellement une forte affinité avec les parois des deux plaques 2, 4 afin de maintenir un mouillage total de ce milieu (à l'état liquide) sur les surfaces. Un très mince film 60 de ce matériau existe alors toujours à la surface des plaques 2, 4, même après solidification du milieu 6, 6' et élimination du deuxième milieu fluide 8, 8' . Après solidification, les canaux seront entièrement définis par des parois formées par le milieu 6, 6' (paroi supérieure et paroi inférieure comprises) .
Le matériau du milieu 6, 6' est par exemple une colle (notamment de type époxy, ou silicone, ou une résine...) . Avant durcissement, ces colles sont rendues suffisamment fluides (fluidité par exemple comprise entre 1 centipoise et quelques dizaines de centipoises, par exemple 50 cp) pour faciliter la mise en forme du matériau. A titre d'exemple ce matériau peut être une colle UV. Le durcissement s'effectue alors par insolation du composant par une source de lumière UV. Des références de colles et de sources UV sont disponibles chez plusieurs fabricants, par exemple Photobond, Adler, Vitralit. A titre d'exemple, on peut citer la colle UV 6127N de chez Adler S.A. Au moins l'une des deux plaques 2, 4 est alors transparente et la source de lumière UV est placée face à la colle.
Un autre exemple de matériau pour le milieu 6 est un gel (notamment alginate, ou agarose etc..) . Ce peut être aussi un polymère, comme le PDMS par exemple. Le milieu 6 peut aussi être un matériau à changement de phase liquide - solide. De préférence on choisira un matériau ayant une température de transition de phase acceptable par l'ensemble du composant et facilement atteignable par l'utilisateur. Cette température de transition peut donc être de l'ordre de quelques dizaines de 0C, par exemple comprise entre 500C et 1500C.
Par exemple le matériau du milieu 6 est de la paraffine, dont la température de transition se situe sensiblement à 60°. Selon un autre exemple ce matériau est du Polycarbonate, ou un métal ou un alliage à base d' étain et/ou de plomb etc : chacun de ces matériaux a une température de transition supérieure à 1000C.
Le milieu 8 peut être un gaz (de l'air) . Ce peut être un fluide isolant, tel que de l'huile ou de l'eau ou une solution aqueuse.
De préférence on choisit le matériau 8 en fonction du matériau 6 afin de pouvoir appliquer une force électrique à l'interface des deux fluides.
Les deux fluides 6, 8 peuvent être isolants, avec des permittivités diélectriques différentes, la constante ε du premier milieu fluide 6 étant supérieure à la constante ε du deuxième milieu fluide 8. Dans ce cas, les électrodes sont disposées sous le premier milieu fluide 6, comme en figure IA, et le mode d' actionnement des fluides est le DEP. A titre d'exemple le matériau 6 est de la paraffine, ou une colle isolante, ou du polycarbonate ou du PDMS... ; et le matériau 8 est de l'air ou un gaz inerte ou tout fluide isolant non miscible avec le matériau 6. On utilise alors le phénomène de DEP liquide pour mettre en forme l'interface entre ces deux fluides et pour contrôler la géométrie de cette interface. Dans le cas d'un couple paraffine (matériau 6) - air (matériau 8), les électrodes 3 sont disposées sous la paraffine. Dans le cas paraffine (matériau 6) - huile (ou plus généralement tout autre matériau en guise de matériau 8), les électrodes 3 peuvent être disposées sous l'huile 8 (ou plus généralement sous l'autre matériau 8) si la permittivité diélectrique du matériau 8 est plus élevée que celle de la paraffine 6.
Selon un autre exemple, un seul des deux matériaux 6, 8 est conducteur, le matériau conducteur peut être le matériau 6 ou le matériau 8. On utilise alors l' électromouillage pour contrôler la géométrie de l'interface entre ces deux matériaux. Dans ce cas, les électrodes 3' seront disposées non pas sous l'interface 6 - 8, mais sous celui, parmi les deux milieux fluides 6, 8, qui est conducteur (ou qui est le plus conducteur) .
Un couple Paraffine- (eau salée) est possible. On peut aussi utiliser un couple Paraffine
(chargée de particules conductrices) - air. D'autres possibilités de couples sont :
- pour le matériau 6 : un métal (par exemple : étain, plomb...) ou une paraffine chargée de particules conductrices (par exemple des microbilles, ou des particules de carbone, ou des nanotubes de carbone, ou du silicium...) , ou encore une colle conductrice, - pour le matériau 8 : de l'air ou un liquide organique, par exemple une huile.
Un exemple de réalisation d'un composant de départ pour mettre en œuvre l'invention va être donné en liaison avec les figures 4A-4E.
Pour ce premier exemple, on utilise deux fluides 6, 8 isolants, l'interface est donc manipulée par DEP liquide.
Le composant fluidique est réalisé par deux plaques parallèles 2, 4 (figure 4D) . Ces plaques peuvent être par exemple en verre, ou en silicium, ou en polycarbonate, ou en époxy (du type plaque de circuit imprimé) .
Sur la première plaque 2 (figure 4A) , sont réalisées des électrodes 3 (figure 4B) . Ces électrodes 3 sont obtenues par une couche structurée d'un matériau conducteur, par exemple en ITO (couche conductrice transparente) . La structure des électrodes permet de définir les zones où les forces de DEP vont agir. Dans l'exemple de la figure 4B ces électrodes 3 sont simplement formées de deux bandes parallèles espacées d'une distance d comprise entre quelques microns, par exemple 5 μm, et quelques millimètres, par exemple 10 mm. Cet espacement correspond à la largeur du canal fluidique 9 souhaité. Sur l'autre plaque (plaque supérieure 4) une ou des électrodes 13 peuvent également être réalisées (figure 4D) .
Puis, on forme des moyens espaceurs 5 sur l'une des deux plaques (figure 4C) . Ils sont par exemple obtenus par une couche de résine 5 d'épaisseur contrôlé, de quelques microns, par exemple 5 μm, à quelques centaines de microns, par exemple 500 μm. Par exemple un film de résine photosensible est laminé sur la plaque 2, puis structuré par photolithographie. Les deux plaques 2, 4 sont ensuite assemblées (figure 4D) et collées de manière à former une cavité.
Des ouvertures 7, 17 sont prévues afin d'injecter des fluides dans cette cavité. Ces ouvertures peuvent être obtenues par perçage de l'une des plaques 2, 4 ou des parois qui constituent les moyens espaceurs 5, comme illustré sur la vue de dessus de la figure 4E.
Des moyens (non représentés) sont prévus pour réaliser une interface électrique du composant à un système de pilotage électrique. Il s'agit par exemple de contacts par pointes ou par bondages électriques .
D' autres moyens sont prévus pour contrôler la température du composant. Par exemple un élément à effet Peltier (non représenté sur les figures) est plaqué contre la plaque inférieure 2 du composant.
Un exemple d'utilisation de ce composant va être décrit, en liaison avec les figures 5A-5C (vues de côté) et 6A-6C (vues de dessus) .
Dans une première étape on remplit le composant par un matériau 6, fusible et isolant. Celui-ci est injecté à l'état liquide dans l'espace entre les deux substrats 2, 4 par l'une des ouvertures latérales 7, 17 (Figure 5A et figure 6A) . La puce est alors maintenue à une température supérieure au point de fusion du liquide fusible 6 grâce aux moyens thermiques prévus à cet effet. Dans une deuxième étape, on met en œuvre un actionnement électrique du liquide fusible. Une tension ΔV est appliquée entre les électrodes 3 du substrat inférieur et l'électrode 13 du substrat supérieur (figure 5B et figure 6B) . Le liquide 6 étant isolant, et de permittivité diélectrique plus élevée que celle du fluide 8, les forces de DEP tendent à l'attirer sur les électrodes inférieures 3. Ainsi le volume de liquide fusible épouse la forme des électrodes.
Dans un troisième temps, le microcanal 9 va être formé par solidification du liquide fusible 6. La température de la puce est abaissée, le liquide 6 se solidifie en formant ainsi un canal 9 à parois solides (Figure 5C et figure 6C) . Le canal formé a une largeur 1 égale à l'entrefer des deux électrodes 3 de la plaque inférieure 2.
Le liquide fusible 6 est par exemple de la paraffine, dont la température de transition liquide- solide est de 40 à 70 0C suivant la composition ou les additifs. Il existe aussi des paraffines dont les températures de fusion sont aux environs de 900C (ex : Apieson®) , et qui peuvent également être utilisées dans le cadre de l'invention.
Une variante de cet exemple d'utilisation est représentée en figures 7A-7D. Le composant fluidique est d'abord formé de la manière expliquée ci-dessus (figures 4D et 4E), c'est la structure de la figure 7A.
Puis, sa cavité est entièrement remplie du milieu fusible 6 (figure 7B) .
Une tension est appliquée entre les électrodes 3 de la plaque inférieure 2 et celle 13 de la plaque supérieure 4.
Par l'un des orifices 17 on injecte le fluide 8 (figure 7C) . Au fur et à mesure de cette injection, l'interface entre les deux fluides 6, 8 est guidée par les forces de DEP. Cette interface s'étire afin de s'aligner sur les bords des électrodes inférieures 3. Ce processus se poursuit jusqu'à ce que le fluide 8 s'étende le long de tout le composant (figure 7D) . Au final, le canal formé a une largeur égale à la distance séparant les deux électrodes 3 de la plaque inférieure 2. En diminuant la température on solidifie le milieu 6 afin de figer la forme du canal obtenu.
La figure 8 représente une variante dans laquelle le matériau fusible 6 présente une forte affinité physicochimique avec les plaques supérieure 4 et inférieure 2. Plus précisément, ce matériaux présente, à l'état liquide, un mouillage total avec les parois et forme le film 60. Lorsqu'une goutte mouille une surface avec une configuration de mouillage total, et après une durée suffisante d'attente, on obtient un angle de mouillage nul et il se forme un film très mince 60 de liquide (d'épaisseur nanométrique ou micrométrique) qui résulte d'une compétition entre les forces moléculaires et capillaires.
On choisit pour cela des substrats 2, 4, des électrodes (3, 13) et un matériau 6 fusible tel que ce dernier - à l'état liquide- soit en configuration de mouillage total sur les surfaces des substrats. Par exemple on peut utiliser de la paraffine, des substrats en verre et des électrodes en ITO. Dans ce cas il a été constaté par les inventeurs qu'il reste toujours -d'un point de vue microscopique- un mince film 60 de paraffine sur la surface des substrats 2, 4. Ce phénomène peut éventuellement être renforcé en appliquant un traitement de surface approprié sur la surface mouillée. Cette configuration permet de fabriquer des canaux entièrement formés par des parois de matériaux fusibles 6, car un film mince 60 résultant de la propriété de mouillage total précédemment décrite est présent sur les surfaces du canal.
Un deuxième exemple de réalisation d'un composant pour la mise en œuvre de l'invention va être donné en liaison avec les figures 10A-10B.
Pour ce deuxième exemple, on utilise deux fluides 6, 8 dont l'un est isolant et l'autre est conducteur, l'interface est donc manipulée par électromouillage.
Le composant fluidique est réalisé par deux plaques parallèles 2, 4 (figure 10A) . Ces plaques peuvent être par exemple en verre, ou en silicium.
La plaque inférieure 2 comporte au moins un niveau métallique 3 pour la définition des électrodes. Ces électrodes 3 sont obtenues par dépôt, puis gravure d'une fine couche d'un métal qui peut être choisi parmi Au, Al, ITO (Indium Tin Oxyde), Pt Cu, Cr,.... On met en oeuvre les microtechnologies classiques de la microélectronique, par exemple la photolithographie. L'épaisseur des électrodes 3, 13 est de quelques dizaines de nm à quelques μm, par exemple de 10 nm à 10 μm. La largeur des motifs est de quelques μm à quelques mm, par exemple de 5 μm à 10 mm.
L'espace 1 entre deux motifs voisins est de l'ordre de quelques microns, par exemple compris entre 1 μm et 50 μm.
Après structuration des électrodes la plaque 2 peut préférentiellement être recouverte d'une couche isolante 12 par exemple en Si3N4, ou en SiO2,.... Un dépôt d'une couche de résine épaisse 5 est effectué par exemple par laminage d'un film de résine photosensible du type Ordyl (commercialisée par Elga) . L'épaisseur de ce film est par exemple comprise entre 10 μm et 500 μm. Puis par photolithographie on structure cette couche. Cette couche permet de définir l'espace entre les deux plaques 2, 4. Les motifs de cette couche sont des piliers ou des cordons.
Enfin, un dépôt d'une couche 14 hydrophobe est préférentiellement effectué, comme par exemple un dépôt de Teflon ou de SiOC, comme décrit dans le document WO 2007/003720.
Le substrat supérieur 4 comporte une fine couche 13 métallique, par exemple choisie parmi Au, Al, ItO (Indium Tin Oxyde), Pt Cu, Cr,.... Là aussi un dépôt d'une couche 16 hydrophobe peut être effectué, comme par exemple un dépôt de Teflon ou de SiOC. Les deux plaques sont plaquées et éventuellement collées l'une sur l'autre.
Des trous dans la plaque supérieure 4 ou des ouvertures latérales 7, 17 dans le cordon de résine 5 sont prévus pour injecter les fluides, par exemple par des capillaires 18 collés à ces orifices (Figure
10B) .
Des moyens (non représentés) sont prévus pour réaliser une interface électrique du composant à un système de pilotage électrique. D'autres moyens sont prévus pour contrôler la température du composant. Par exemple un élément à effet Peltier (non représenté sur les figures) est plaqué contre la plaque inférieure 2 du composant. Un exemple d'utilisation de ce type de composant va être donné en liaison avec les figures 11A-11C. Dans cet exemple, les canaux ont des parois en paraffine, mais d'autres matériaux pourraient être utilisés pour les parois. Le composant (figure HA) est initialement placé à une température de 90°. Puis, de la paraffine 6 est injectée par l'un des capillaires 18, de manière à remplir complètement l'espace entre les deux plaques 2, 4. Par ce même orifice, ou un autre orifice, on injecte une solution aqueuse 8 (figure HB), et on actionne l'électrode 3 afin de guider par électromouillage l'avancée de ce liquide dans le composant jusqu'à atteindre l'autre extrémité du composant (figure HC) . La forme de la solution aqueuse recouvre alors les électrodes 3. Le matériau fusible 6 peut alors être solidifié: il va ainsi mémoriser la forme obtenue, c'est-à-dire, dans le cas de l'exemple de la figure HC, un canal droit. Mais, comme dans l'exemple précédent tout type de géométrie de canal peut être envisagé en faisant varier le nombre et la géométrie des électrodes 3 de la plaque inférieure.
Dans tous les exemples et mode de réalisation qui ont été décrits ci-dessus, les électrodes se présentent sous forme de bandes. Mais la forme des électrodes peut être plus complexe que ces simples bandes, afin de former un réseau de canaux avec des géométries complexes. Il est ainsi possible de former un ou plusieurs piliers dans un canal et/ou une ou plusieurs chambres fermées et/ou une section convergente puis divergente et/ ou une constriction dans au moins un canal, et/ou au moins un canal en forme de serpentin, chacun de ces éléments étant formé dans le matériau 6, initialement liquide puis solidifié ou durci .
Ainsi sont représentées en figures 9A-9E diverses réalisations :
- avec un canal 9 de forme successivement convergente puis divergente, et avec des piliers 19 sur le trajet (figure 9A),
- avec des canaux 29 parallèles (figure 9B),
- avec des canaux 39 croisés (figure 9C) ,
- avec une chambre 49 (figure 9D) . En variante, illustrée en figure 9E, le réseau d'électrodes 3 de la plaque inférieure 2 peut être constitué d'une matrice 30 d'électrodes, chaque pixel de cette matrice d'électrode étant adressable indépendamment des autres pixels. Il en résulte un réseau fluidique formé de canaux se coupant à angle droit. Mais l'utilisateur peut choisir une partie seulement des électrodes de ce réseau à actionner, pour définir lui-même la forme de réseau microfluidique à fabriquer. Ainsi à partir d'un même réseau bidimensionnel d'électrodes, et notamment du type lignes/colonnes de la figure 9E, on peut former une grande variété de réseaux microfluidiques avec des géométries variées. Plus la matrice d'électrodes est dense, plus la résolution géométrique du canal et la complexité des réseaux microfluidiques pourront être élevées.
Quel que soit le mode de réalisation de l'invention, les figures 12A-12C donnent des exemples de géométrie de canal ou de réseaux 59, 69 de canaux réalisables sur le même composant constitué d'une matrice d'électrodes 3, représentée en vue de dessus en figure 12A. On comprend, d'après les figures 12B et 12C, que, à partir d'une telle matrice, une très grande variété de réseaux microfluidiques, par exemple avec un canal en serpentin, peut être réalisée. De même que dans le premier exemple de réalisation (figure 8), on peut choisir un matériau 6 fusible en configuration de mouillage total. Ceci permet de préserver un film très mince de ce matériau au niveau de la surface des parois 2, 4. Pour des raisons de simplification de dessin les réseaux des figures 9A-9E et 12A-12C sont représentés avec des angles droits. En réalité les effets capillaires, qui résultent de l'utilisation de fluides 6, 8 lors de la constitution des parois, font que ces angles sont arrondis ou incurvés. Ainsi, un autre intérêt de l'invention est de former un réseau microfluidique en évitant des formes anguleuses qui sont parfois indésirables en microfluidique, car pouvant conduire à des volumes morts et/ou à des effets de type piégeage de bulles. La figure 13A représente une vue agrandie d'un virage ou d'une courbure d'un canal réalisé selon l'invention, figure sur laquelle la forme non anguleuse du canal apparaît. De même la capillarité joue un effet de lissage des canaux, ayant pour effet d'atténuer toute rugosité. La figure 13B représente une vue d'un canal, en coupe. On y retrouve la forme arrondie, sans rugosité ni angle droit.
Les figures 14A-14B donnent un exemple d'expérience microfluidique réalisée dans un canal 9 mis en forme selon l'invention. Une phase aqueuse est injectée par un premier orifice 17, et une phase non miscible à l'eau (par exemple de l'huile, solvant organique...) est injectée par un deuxième orifice 17' . Au niveau du « T » 35 (figure 14A) un mécanisme hydrodynamique connu en microfluidique permet de former des gouttes d'eau 42 (figure 14B) de taille reproductible . Celles-ci sont ensuite transportées par la phase non miscible dans l'eau.
Les électrodes utilisées pour la fabrication des canaux peuvent être à nouveau utilisées pour manipuler les gouttes par électromouillage. Ainsi au niveau de la bifurcation 37 on peut orienter les gouttes 42 vers l'un des deux orifices 7, 7' en activant les électrodes 33 ou 35 quand une goutte 22 se situe dans leur voisinage.
En exemple d'application, il est possible de tester, dans chaque goutte, des réactions chimiques ou biologiques. Suivant le résultat de la réaction l'utilisateur peut trier les gouttes par électromouillage de manière par exemple à se débarrasser des gouttes qui n'ont pas réagit et ne garder que celles qui ont bien réagi. Cet exemple permet de montrer qu'avec les composants décrits par l'invention il est possible de réaliser une microfluidique du type hydrodynamique en canal, ou une microfluidique fondée sur la manipulation de goutte par électromouillage. Dans l'exemple, les gouttes sont manipulées simultanément par les effets hydrodynamiques et par électromouillage dans le même composant.
Diverses applications sont envisagées pour l'invention.
Par exemple, l'invention permet d'obtenir une technique de prototypage rapide, car l'utilisateur modifie facilement et avec une grande interactivité la forme des canaux. L'optimisation d'un design d'un composant microfluidique est beaucoup plus rapide que par les techniques de l'art antérieur. L'invention permet par ailleurs de réaliser successivement des réactions biologiques ou chimiques sans nécessité de changer de puce, tout en limitant le risque de contamination entre les utilisations successives. Au final seul le milieu 6 est la partie consommable. En outre, un nettoyage du substrat et des électrodes peut-être envisagé entre deux utilisations. Des applications potentielles sont donc les labopuces, pour le domaine de l'analyse, par exemple l'analyse environnementale ou le diagnostique.

Claims

REVENDICATIONS
1. Procédé de réalisation d'un réseau microfluidique, comportant au moins un premier canal microfluidique (9) , comportant : a) l'introduction, entre deux plaques munies d'électrodes (3, 3', 13, 13') , d'un premier fluide et d'un deuxième fluide, ces deux fluides étant non miscibles, le premier fluide (6, 6') étant un liquide pouvant être durci ou solidifié, b) l'interface entre les deux fluides étant mise en forme à l'aide des électrodes de manière à former au moins ledit premier canal (9) de circulation fluidique, c) la solidification ou le durcissement du matériau dudit premier fluide.
2. Procédé selon la revendication 1, les premier et deuxième fluides étant : - tous deux isolants, avec des permittivités diélectriques différentes, la constante ε du premier fluide (6) étant supérieure à la constante ε du deuxième fluide (8) ,
- ou tous deux conducteurs, l'un pouvant être sensiblement plus conducteur que l'autre,
- ou l'un étant isolant et l'autre conducteur .
3. Procédé selon l'une des revendications 1 ou 2, le premier fluide étant une colle, par exemple de type époxy, ou silicone, ou une résine, ou une colle UV ou une colle isolante ou un gel, par exemple alginate ou agarose, ou un polymère, par exemple du PDMS, ou un matériau à changement de phase liquide- solide, par exemple un matériau ayant une température de transition de phase comprise entre 500C et 1500C, par exemple de la paraffine, éventuellement chargée de particules conductrices, ou du Polycarbonate, ou un métal ou un alliage à base d' étain et/ou de plomb.
4. Procédé selon l'une des revendications
1 à 3, le deuxième fluide étant un gaz, par exemple de l'air, ou un fluide isolant, tel que de l'huile ou de l'eau ou une solution aqueuse.
5. Procédé selon l'une des revendications
1 à 4, comportant en outre une étape de fluidification du matériau solidifié dudit premier fluide (6) .
6. Procédé selon la revendication 5, dans lequel on élimine le premier fluide et on le remplace par un troisième fluide pouvant être durci ou solidifié .
7. Procédé selon l'une des revendications 5 ou 6, dans lequel on réitère les étapes b) et c) à l'aide dudit premier fluide (6) ou dudit troisième fluide et d'un deuxième fluide non miscible avec ledit premier fluide (6) ou ledit troisième fluide.
8. Procédé selon la revendication 7, dans lequel on met en forme le premier fluide ou le troisième fluide à l'aide du deuxième fluide et des électrodes (3, 3', 13, 13'), de manière à former au moins un deuxième canal de circulation fluidique, différent du premier .
9. Procédé selon l'une des revendications 1 à 8, le réseau microfluidique comportant un ou plusieurs piliers (19) dans un canal et/ou une ou plusieurs chambres fermées (49) et/ou une section convergente puis divergente et/ ou une constriction dans au moins un canal, et/ou au moins un canal en forme de serpentin.
10. Dispositif microfluidique, comportant un réseau microfluidique, comportant: a) deux plaques (2, 4) parallèles chacune munie d'une ou plusieurs électrodes (3, 3', 13, 13'), b) au moins un canal (9, 19, 29, 39, 49), disposé entre les deux plaques, en un matériau obtenu par solidification ou durcissement du matériau d'un premier fluide (6), c) des moyens pour faire varier un paramètre physique du matériau constitutif des parois du canal afin de le faire passer au moins de l'état liquide à l'état solide.
11. Dispositif micro-fluidique selon la revendication 10, comportant un ou plusieurs piliers
(19) dans un canal et/ou une ou plusieurs chambres fermées (49) et/ou une section convergente puis divergente et/ ou une constriction dans au moins un canal, et/ou au moins un canal en forme de serpentin.
12. Dispositif micro-fluidique selon la revendication 10 ou 11, au moins un canal comportant un film (60) du premier matériau déposé sur la surface des deux plaques.
13. Dispositif selon l'une des revendications 10 à 12, les électrodes (3, 3', 13, 13') étant enterrées, ou non.
14. Dispositif selon l'une des revendications 10 à 13, le matériau constitutif du canal étant une colle, par exemple de type époxy, ou silicone, ou une résine, ou une colle UV ou une colle isolante ou un gel, par exemple alginate ou agarose, ou un polymère, par exemple du PDMS, ou un matériau à changement de phase liquide-solide, par exemple un matériau ayant une température de transition de phase comprise entre 500C et 1500C, par exemple est de la paraffine, éventuellement chargée de particules conductrices, ou du Polycarbonate, ou un métal ou un alliage à base d' étain et/ou de plomb.
15. Dispositif selon l'une des revendications 10 à 14, le canal présentant, dans un plan perpendiculaire à une direction de circulation d'un fluide dans ce canal, une section à paroi incurvée.
PCT/EP2009/054884 2008-04-24 2009-04-23 Procede de fabrication de microcanaux reconfigurables WO2009130274A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09733747A EP2268404A1 (fr) 2008-04-24 2009-04-23 Procede de fabrication de microcanaux reconfigurables
US12/988,213 US8679423B2 (en) 2008-04-24 2009-04-23 Method for producing reconfigurable microchannels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0852766 2008-04-24
FR0852766A FR2930457B1 (fr) 2008-04-24 2008-04-24 Procede de fabrication de microcanaux reconfigurables

Publications (1)

Publication Number Publication Date
WO2009130274A1 true WO2009130274A1 (fr) 2009-10-29

Family

ID=39951743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/054884 WO2009130274A1 (fr) 2008-04-24 2009-04-23 Procede de fabrication de microcanaux reconfigurables

Country Status (4)

Country Link
US (1) US8679423B2 (fr)
EP (1) EP2268404A1 (fr)
FR (1) FR2930457B1 (fr)
WO (1) WO2009130274A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220510A1 (en) * 2010-03-12 2011-09-15 National Chiao Tung University Device and method for fabricating micro articles
EP2749527A1 (fr) 2012-12-28 2014-07-02 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Procédé de réalisation d'un reseau microfluidique

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035291B4 (de) * 2009-07-30 2011-09-01 Karlsruher Institut für Technologie Vorrichtung zur Erzeugung einer mikrofluidischen Kanalstruktur in einer Kammer, Verfahren zu ihrer Herstellung und ihre Verwendung
FR2984756B1 (fr) 2011-12-27 2014-02-21 Commissariat Energie Atomique Dispositif nano et micro fluidique pour la separation et concentration de particules presentes dans un fluide
US9046682B2 (en) * 2013-11-05 2015-06-02 Amazon Technologies, Inc. Mechanical stress mitigation in electrowetting display structures
EP3085661B1 (fr) * 2015-04-21 2017-12-27 JSR Corporation Procédé de production d'un dispositif microfluidique
US9914118B2 (en) 2015-08-12 2018-03-13 International Business Machines Corporation Nanogap structure for micro/nanofluidic systems formed by sacrificial sidewalls
US10898895B2 (en) 2018-09-13 2021-01-26 Talis Biomedical Corporation Vented converging capillary biological sample port and reservoir
US11008627B2 (en) 2019-08-15 2021-05-18 Talis Biomedical Corporation Diagnostic system
CN111167531A (zh) * 2020-02-11 2020-05-19 京东方科技集团股份有限公司 检测芯片及检测系统
DE102020202269A1 (de) 2020-02-21 2021-08-26 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Fixierung und Stabilisierung eines Zustandes von Flüssigkeiten in einer Kartusche eines Lab-on-Chip und zugehörige Kartusche

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016966A1 (fr) * 1990-05-10 1991-11-14 Pharmacia Biosensor Ab Structure microfluidique et procede pour sa fabrication
WO1994010561A1 (fr) * 1992-11-05 1994-05-11 Soane Technologies, Inc. Milieu de separation utile en electrophorese
US20020153251A1 (en) * 1999-02-03 2002-10-24 Alexander Sassi Multichannel control in microfluidics
US20030136451A1 (en) * 2001-10-11 2003-07-24 Beebe David J. Method of fabricating a flow constriction within a channel of a microfluidic device
US20040115861A1 (en) * 2002-12-16 2004-06-17 Palo Alto Research Center Incorporated Method for integration of microelectronic components with microfluidic devices
US6887384B1 (en) * 2001-09-21 2005-05-03 The Regents Of The University Of California Monolithic microfluidic concentrators and mixers

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2548431B1 (fr) 1983-06-30 1985-10-25 Thomson Csf Dispositif a commande electrique de deplacement de fluide
US4569364A (en) * 1985-05-20 1986-02-11 Fractionation Research, Inc. Variable flow self-cleaning liquid distribution element and liquid distribution assembly employing a plurality of such elements
US5569364A (en) 1992-11-05 1996-10-29 Soane Biosciences, Inc. Separation media for electrophoresis
FR2727648B1 (fr) 1994-12-01 1997-01-03 Commissariat Energie Atomique Procede de fabrication micromecanique de buses pour jets de liquide
FR2737019B1 (fr) 1995-07-19 1997-08-22 Commissariat Energie Atomique Microelements de balayage pour systeme optique
FR2761199B1 (fr) 1997-03-21 1999-04-16 Commissariat Energie Atomique Procede de realisation de deux cavites communicantes dans un substrat en materiau monocristallin par gravure chimique anisotrope
FR2772512B1 (fr) 1997-12-16 2004-04-16 Commissariat Energie Atomique Microsysteme a element deformable sous l'effet d'un actionneur thermique
EP1121199B1 (fr) 1998-10-16 2003-12-17 Commissariat A L'energie Atomique Dispositif d'analyse chimique et/ou biochimique avec un support d'analyse
FR2790092B1 (fr) 1999-02-24 2001-03-30 Commissariat Energie Atomique Procede de determination d'un analyte present dans une solution
FR2791280B1 (fr) 1999-03-23 2001-04-13 Commissariat Energie Atomique Dispositif d'ejection de gouttes de liquide
FR2795426A1 (fr) 1999-06-22 2000-12-29 Commissariat Energie Atomique Support d'analyse biologique a amplification
AU782726B2 (en) 1999-07-28 2005-08-25 Commissariat A L'energie Atomique Integration of biochemical protocols in a continuous flow microfluidic device
US6977145B2 (en) 1999-07-28 2005-12-20 Serono Genetics Institute S.A. Method for carrying out a biochemical protocol in continuous flow in a microreactor
FR2796863B1 (fr) 1999-07-28 2001-09-07 Commissariat Energie Atomique Procede et dispositif permettant de realiser en flux continu un protocole de traitement thermique sur une substance
FR2799139B1 (fr) 1999-10-01 2002-05-03 Genset Sa Dispositif d'analyse biochimique comprenant un substrat microfluidique notamment pour l'amplification ou l'analyse d'acides nucleiques.
FR2798604B1 (fr) 1999-09-17 2001-12-07 Genset Sa Dispositif pour la realisation de reactions chimiques ou biochimiques par cyclage thermique
FR2798867A1 (fr) 1999-09-23 2001-03-30 Commissariat Energie Atomique Dispositif de distribution de fluides dans un microsysteme fluidique
FR2811403B1 (fr) 2000-07-05 2002-08-16 Commissariat Energie Atomique Raccordement d'un micro-tube a une structure
FR2813073A1 (fr) 2000-12-19 2002-02-22 Commissariat Energie Atomique Dispositif de positionnement et de guidage pour la connexion etanche de capillaires a un micro-composant
FR2820058B1 (fr) 2001-01-29 2004-01-30 Commissariat Energie Atomique Procede et systeme permettant de realiser en flux continu un protocole biologique, chimique ou biochimique
FR2816525A1 (fr) 2001-02-26 2002-05-17 Commissariat Energie Atomique Dispositif dispensateur de fluide et procede de realisation d'un tel dispositif
FR2821657B1 (fr) 2001-03-01 2003-09-26 Commissariat Energie Atomique Dispositif pour la connexion etanche et reversible de capillaires a un composant de micro-fluidique
FR2830777B1 (fr) 2001-10-15 2003-12-05 Commissariat Energie Atomique Dispositif micro-fluidique pour la manipulation d'un liquide non magnetique
US7094379B2 (en) 2001-10-24 2006-08-22 Commissariat A L'energie Atomique Device for parallel and synchronous injection for sequential injection of different reagents
FR2839504B1 (fr) 2002-05-07 2004-06-18 Commissariat Energie Atomique Dispositif et procede de distribution de produits liquides
FR2841063B1 (fr) 2002-06-18 2004-09-17 Commissariat Energie Atomique Dispositif de deplacement de petits volumes de liquide le long d'un micro-catenaire par des forces electrostatiques
FR2841158B1 (fr) 2002-06-24 2007-02-23 Bio Merieux Dispositif fluidique permettant de maniere thermo-pneumatique l'isolement et eventuellement l'agitation du contenu d'une cavite operatoire
FR2843048B1 (fr) 2002-08-01 2004-09-24 Commissariat Energie Atomique Dispositif d'injection et de melange de micro-gouttes liquides.
DE102004007274A1 (de) 2004-02-14 2005-09-15 Roche Diagnostics Gmbh Testelement und Testelementanalysesystem zum Untersuchen einer flüssigen Probe sowie Verfahren zum Steuern der Benetzung eines Testfeldes eines Testelements
FR2866493B1 (fr) 2004-02-16 2010-08-20 Commissariat Energie Atomique Dispositif de controle du deplacement d'une goutte entre deux ou plusieurs substrats solides
FR2872438B1 (fr) 2004-07-01 2006-09-15 Commissariat Energie Atomique Dispositif de deplacement et de traitement de volumes de liquide
FR2872575A1 (fr) 2004-07-01 2006-01-06 Commissariat Energie Atomique Procede et dispositif d'analyse de petits volumes de liquide
FR2872809B1 (fr) 2004-07-09 2006-09-15 Commissariat Energie Atomique Methode d'adressage d'electrodes
FR2879946B1 (fr) 2004-12-23 2007-02-09 Commissariat Energie Atomique Dispositif de dispense de gouttes
FR2883860B1 (fr) 2005-03-29 2007-06-08 Commissariat Energie Atomique Procede de fabrication de micro-canaux enterres et micro-dispositif comprenant de tels micro-canaux.
FR2887030B1 (fr) 2005-06-09 2008-06-13 Commissariat Energie Atomique Dispositif planaire avec adressage de puits automatise par electromouillage dynamique
FR2887705B1 (fr) 2005-06-27 2007-08-10 Commissariat Energie Atomique Dispositif de pompage ou de centrifugation des gouttes deplacees par electromouillage
FR2887983A1 (fr) 2005-06-30 2007-01-05 Commissariat Energie Atomique Dispositif microfluidique de preparation d'au moins un echantillon et procede de preparation mettant en oeuvre un tel dispositif
EP1899048B1 (fr) 2005-07-01 2008-12-17 Commissariat A L'energie Atomique Revetement de surface hydrophobe et a faible hysteresis de mouillage, procede de depot d'un tel revetement, micro-composant et utilisation
FR2884243A1 (fr) 2005-07-11 2006-10-13 Commissariat Energie Atomique Dispositif et procede de commutation par electromouillage
FR2884242A1 (fr) 2005-07-11 2006-10-13 Commissariat Energie Atomique Dispositif de connexion de capot dans un systeme d'electromouillage
FR2888912B1 (fr) 2005-07-25 2007-08-24 Commissariat Energie Atomique Procede de commande d'une communication entre deux zones par electromouillage, dispositif comportant des zones isolables les unes des autres et procede de realisation d'un tel dispositif
FR2889082B1 (fr) 2005-07-28 2007-10-05 Commissariat Energie Atomique Dispositif d'extraction air/eau par collection electrostatique semi-humide et procede utilisant ce dispositif
FR2889515B1 (fr) 2005-08-02 2007-11-02 Commissariat Energie Atomique Dispositif de controle du deplacement d'un volume liquide entre deux ou plusieurs substrats solides et procede de deplacement
FR2890875B1 (fr) 2005-09-22 2008-02-22 Commissariat Energie Atomique Fabrication d'un systeme diphasique liquide/liquide ou gaz en micro-fluidique
FR2909293B1 (fr) 2006-12-05 2011-04-22 Commissariat Energie Atomique Micro-dispositif de traitement d'echantillons liquides
FR2925792B1 (fr) 2007-12-21 2012-12-07 Commissariat Energie Atomique Dispositif de recuperation d'energie a electrode liquide
FR2931079B1 (fr) 2008-05-13 2010-07-30 Commissariat Energie Atomique Dispositif et procede de separation d'une suspension
FR2933315B1 (fr) 2008-07-07 2012-02-10 Commissariat Energie Atomique Dispositif microfluidique de deplacement de liquide
FR2937690B1 (fr) 2008-10-28 2010-12-31 Commissariat Energie Atomique Micropome a actionnement par gouttes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016966A1 (fr) * 1990-05-10 1991-11-14 Pharmacia Biosensor Ab Structure microfluidique et procede pour sa fabrication
WO1994010561A1 (fr) * 1992-11-05 1994-05-11 Soane Technologies, Inc. Milieu de separation utile en electrophorese
US20020153251A1 (en) * 1999-02-03 2002-10-24 Alexander Sassi Multichannel control in microfluidics
US6887384B1 (en) * 2001-09-21 2005-05-03 The Regents Of The University Of California Monolithic microfluidic concentrators and mixers
US20030136451A1 (en) * 2001-10-11 2003-07-24 Beebe David J. Method of fabricating a flow constriction within a channel of a microfluidic device
US20040115861A1 (en) * 2002-12-16 2004-06-17 Palo Alto Research Center Incorporated Method for integration of microelectronic components with microfluidic devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2268404A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220510A1 (en) * 2010-03-12 2011-09-15 National Chiao Tung University Device and method for fabricating micro articles
TWI465386B (zh) * 2010-03-12 2014-12-21 Univ Nat Chiao Tung 微物品的製造裝置及製造方法
EP2749527A1 (fr) 2012-12-28 2014-07-02 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Procédé de réalisation d'un reseau microfluidique

Also Published As

Publication number Publication date
FR2930457B1 (fr) 2010-06-25
US8679423B2 (en) 2014-03-25
EP2268404A1 (fr) 2011-01-05
US20110104025A1 (en) 2011-05-05
FR2930457A1 (fr) 2009-10-30

Similar Documents

Publication Publication Date Title
WO2009130274A1 (fr) Procede de fabrication de microcanaux reconfigurables
US8342207B2 (en) Making a liquid/liquid or gas system in microfluidics
EP2282827B1 (fr) Dispositif de séparation de biomolécules d'un fluide
EP1567269B1 (fr) Dispositif microfluidique dans lequel l'interface liquide/fluide est stabilisee
EP2609993B1 (fr) Dispositif nano et micro fluidique pour la séparation et concentration de particules présentes dans un fluide
EP2903738B1 (fr) Procédé microfluidique de traitement et d'analyse d'une solution contenant un matériel biologique, et circuit microfluidique correspondant
EP1778976B1 (fr) Methode d'adressage d'electrodes
FR2866493A1 (fr) Dispositif de controle du deplacement d'une goutte entre deux ou plusieurs substrats solides
EP1337757B1 (fr) Vannes activees par des polymeres electro-actifs ou par des materiaux a memoire de forme, dispositif contenant de telles vannes et procede de mise en oeuvre
EP1376846B1 (fr) Dispositif de déplacement de petits volumes de liquide le long d'un micro-catenaire par des forces électrostatiques
WO2006134307A1 (fr) Dispositif de pompage par electromouillage et application aux mesures d'activite electrique
EP3318328B1 (fr) Equipement de tri de particules présentes dans un échantillon fluidique
WO2010004014A1 (fr) Procede et dispositif de manipulation et d'observation de gouttes de liquide
FR2897858A1 (fr) Procede de fabrication d'un reseau de capillaires d'une puce
WO2017042115A1 (fr) Substrat de support d'échantillon liquide, ensemble comportant un tel substrat et son utilisation
WO2012143908A1 (fr) Système microfluidique pour contrôler la concentration de molécules de stimulation d'une cible.
FR2820058A1 (fr) Procede et systeme permettant de realiser en flux continu un protocole biologique, chimique ou biochimique
WO2004112961A1 (fr) Procede de collage de substrats micro-structures
EP2038061B1 (fr) Dispositif microfluidique avec materiau de volume variable
EP2749527A1 (fr) Procédé de réalisation d'un reseau microfluidique
FR2831081A1 (fr) Dispositif d'injection parallelisee et synchronisee pour injections sequentielles de reactifs differents
EP2182212B1 (fr) Micropompe à actionnement par gouttes
FR2884243A1 (fr) Dispositif et procede de commutation par electromouillage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733747

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009733747

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12988213

Country of ref document: US