WO2009130083A1 - Circuit de refroidissement de gaz et procede de refroidissement de gaz - Google Patents

Circuit de refroidissement de gaz et procede de refroidissement de gaz Download PDF

Info

Publication number
WO2009130083A1
WO2009130083A1 PCT/EP2009/052651 EP2009052651W WO2009130083A1 WO 2009130083 A1 WO2009130083 A1 WO 2009130083A1 EP 2009052651 W EP2009052651 W EP 2009052651W WO 2009130083 A1 WO2009130083 A1 WO 2009130083A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gases
cooler
circuit
cooled
Prior art date
Application number
PCT/EP2009/052651
Other languages
English (en)
Inventor
Bertrand Gessier
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2009130083A1 publication Critical patent/WO2009130083A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0418Layout of the intake air cooling or coolant circuit the intake air cooler having a bypass or multiple flow paths within the heat exchanger to vary the effective heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0468Water separation or drainage means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a gas cooling circuit.
  • a motor vehicle engine has a combustion chamber, generally formed by a plurality of cylinders, in which a mixture of oxidant and fuel is burned to generate the engine work.
  • the oxidant comprises air, which can be compressed or not, depending on whether or not the engine comprises compression means such as a compressor or a turbocharger.
  • the air (called supply air) can also be mixed with exhaust gases; we are talking about recirculated exhaust gas.
  • the gases admitted into the combustion chamber, thus including supply air optionally mixed with exhaust gases, are called intake gas. When the intake gases are compressed by compression means, it is then more particularly speaking of the charge air.
  • the recirculation of the exhaust gases makes it possible, for a gasoline engine, to reduce fuel consumption and to obtain a better engine efficiency, while it makes it possible, for a diesel engine, to reduce the fuel consumption. pollution to comply with environmental standards.
  • charge air cooler In order to increase the density of the charge air (whether or not it is mixed with exhaust gases), it is known to cool it by means of a heat exchanger called a charge air cooler. , whose acronym “RAS” is generally used; the RAS is also often designated by the person skilled in the art by its acronym CAC, meaning "charge air cooler”.
  • This charge air cooler uses, as coolant for cooling, either air or a liquid of cooling such as brine. In the following, we will simply talk about a cooler.
  • the charge air is mixed with recirculated exhaust gas as it passes through the cooler.
  • the exhaust gases are loaded with water, which is a product of combustion in the engine; the gases are also charged with other particles, in particular sulfur.
  • cooling of the air and recirculated exhaust may cause condensation, especially of water and / or sulfuric acid (as well as other elements); the products of this condensation are called “condensates" and are harmful for the engine and its gas circuits.
  • the water condensates can cause congestion of the cooler, thus reducing its performance.
  • the condensates of sulfuric acid whose pH is low, can generate a phenomenon of corrosion, not only in the cooler but also in the tubes of the gas intake circuit in the engine; this corrosion can lead to premature degradation of the considered elements.
  • the condensates can freeze and cause the chiller to break and / or the engine to suffocate by obstructing the flow of gases.
  • the aim of the invention is to propose a gas cooling circuit that effectively and simply deals with the problem of condensates.
  • the invention has been presented in connection with a problem related to the charge air cooler of an internal combustion engine. It nevertheless applies more generally to a gas cooling circuit of an internal combustion engine, in particular the recirculated exhaust gas cooling circuit. More generally, the invention applies to any gas cooling circuit with a cooler. Cooler means any element that can cool a flow gas and cause condensation of the latter; in particular, a cold pipe is a cooler.
  • the invention relates to a gas cooling circuit with a cooler connected, upstream, to a gas circuit to be cooled and, downstream, to a cooled gas circuit, comprising condensate recovery means and recovered condensate recirculation means for returning recovered condensates to the cooled gas circuit.
  • the recuperated condensate recirculation means are evaporation means mounted between the recovery means and the gas circuit to be cooled.
  • the evaporation means can use the gases to be cooled as condensate evaporation means, which simplifies the structure of the cooling circuit and improves its efficiency.
  • the cooling circuit comprises means for guiding condensates evaporated towards the cooled gas circuit.
  • the cooling circuit comprises a circuit for bypassing the cooler, forming means for evaporation of the condensates.
  • bypass circuit performs a dual function, bypass and evaporation.
  • the cooling circuit comprises a bypass line of the cooler and the condensate recovery means comprise means for guiding the condensates in the bypass pipe for evaporation by the gases circulating therein.
  • the guide means are gravity guide means opening into the bypass line.
  • the cooler comprising a gas collection box, the condensate guiding means in the bypass pipe comprise the gas collection box.
  • the cooler comprising a gas collection box, the guide means comprise a guide pipe opening into the gas collection box and the bypass pipe.
  • the contouement channel is arranged to form a large heat exchange surface between the condensates and the gases flowing in the pipe.
  • the bypass line is of flattened shape, for example of oval section.
  • the bypass line is inclined downward on its upstream side.
  • the cooler is inclined downward on its downstream side, to facilitate the recovery of condensates on the downstream side.
  • the cooling circuit is the cooling circuit of the gas intake circuit in an internal combustion engine of a motor vehicle
  • the invention also relates to a motor vehicle, comprising an internal combustion engine, a gas intake circuit in the engine and a cooling circuit of the engine intake gases comprising the characteristics of the cooling circuit presented below. above.
  • the invention also relates to a method of cooling gas in a gas circuit with a cooler connected, upstream, to a gas circuit to be cooled and, downstream, to a cooled gas circuit, in which: condensates and the condensates are evaporated by means of evaporation means mounted between the recovery means and the gas circuit to be cooled.
  • the gas circuit comprising a first gas flow regulating valve entering the cooler, and a cooler contortion pipe, mounted between the gas circuit to be cooled and the gas circuit cooled with a second valve, for regulating the flow rate of the gases circulating therein
  • the method comprises the steps according to which: a threshold gas temperature is defined, for example equal to about
  • a critical temperature of the gases for example equal to approximately 35 ° C.
  • a temperature of the gases at the outlet of the cooler is measured and if the measured temperature is higher than the threshold temperature, the first valve is completely opened and the second valve is closed completely,
  • valves are opened, as a function of the gas temperature, according to inverse linear laws with respect to each other.
  • FIG. 1 represents a functional block diagram of the gas circuit of an internal combustion engine
  • FIG. 2 represents a schematic perspective view of the intake gas cooling circuit of the gas circuit of FIG.
  • FIG. 3 is a diagram showing the control law of the opening of the valves of the cooling circuit of Figure 2, according to a measured temperature of the inlet gas.
  • a motor vehicle internal combustion engine 1 comprises a combustion chamber (not shown), formed by a plurality of cylinders, for example four in number, and intended to receive a mixture of oxidant and fuel whose combustion generates the engine work 1.
  • the operation of the engine 1 is traditional: the gases are admitted into the combustion chamber, are compressed, burned and expelled in the form of exhaust gas; these are the classic four times of a thermal engine
  • the gas intake circuit 2 in the engine comprises a supply air inlet pipe 3, an intake gas compressor 4, which is in this case a turbocharger, a heat exchanger 5, cooling the gases from the compressor 4, at the output of which the gases open into a manifold 6 for the admission of gases into the combustion chamber of the engine 1, the intake manifold 6 is a piece well known to those skilled in the art , which forms a gas inlet box on the cylinder head of the engine 1.
  • the flow of recirculated exhaust gas is controlled by a valve mounted in the connection zone between the recirculation pipe 7 and the exhaust pipe 8; it may for example be a so-called "three-way" valve, with an inlet opening into the outlet pipe of the combustion chamber 1, a first outlet opening into the recirculation pipe 7 and a second outlet opening into the exhaust pipe 8.
  • the heat exchanger 5 is a cooler of the intake gas and in particular of the supply air; this supply air being compressed, it is called, as already explained above, air supercharging. It is for this reason that the heat exchanger is called "air cooler". supercharging "5, whose acronym is” RAS "5. Its function is to increase the air density of the intake gases, by cooling them, We will simply speak, in the following description, chiller. understands that, despite this denomination by those skilled in the art, the cooler 5 is in fact an intake gas cooler, these gases possibly comprising air or a mixture of air and exhaust gas, as explained above.
  • a cooler uses a coolant to cool the gases passing through it; this heat transfer fluid may for example be air or water, in particular glycol water. In the embodiment shown in FIG. 2, this is an air cooler 5, the intake gases being cooled by air.
  • the invention also applies to a water cooler.
  • the coolant flows in a coolant circuit
  • the coolant circuit includes a radiator and a pump driving brine for circulation in the coolant circuit.
  • the brine is cooled in the radiator, by heat exchanges with the ambient air that passes through the radiator; it is driven by the pump from the radiator into the cooler where it exchanges heat with the inlet gases passing through the cooler. Since the brine is at a temperature lower than that of the inlet gases, it cools them. After passing through the cooler, the water returns to the radiator and returns to the same loop.
  • the air cooler 5 shown comprises a beam 10 of tubes arranged parallel to one another over a plurality of rows (parallel to each other), these tubes being arranged to transport the gases of admission to cool.
  • the fresh cooling air flows into the volume of the cooler 5, between the tubes of the bundle of tubes 10.
  • the cooler 5 furthermore comprises an inlet box 11 and an outlet box 12 (or box 12 for the collection of gas), mounted respectively upstream and downstream of the bundle of tubes 10.
  • Other structures, well known to those skilled in the art, are conceivable for the cooler 5.
  • the gases to be cooled (in this case the inlet gases from the compressor 4) open into the inlet box 11, flow into the tubes of the bundle of tubes 10, which allows heat exchange between the intake gases to be cooled and the fresh air cooling, and open into the outlet box 12.
  • the cooler 5 is arranged to collect gases from a circuit 13 of gas to be cooled, cool them and guide them to a circuit 14 of cooled gases.
  • the gas circuit to be cooled 13 here comprises a pipe 13a carrying the gases from the compressor 4, in which a flow control valve 13b is mounted in this pipe 13a.
  • the cooled gas circuit 14 comprises a pipe 14a guiding the gases towards the combustion chamber of the engine 1.
  • the gas cooling circuit also comprises a duct 15 for bypassing the cooler 5.
  • the bypass duct 15 opens, upstream, into the pipe 13a of the gas circuit to be cooled 13 and, downstream, into the pipe 14a of the circuit
  • a valve 15a is mounted in the bypass line 15 to regulate the flow rate of the gases flowing therethrough.
  • the gas cooling circuit further comprises a tube 16 for recovering the condensates formed in the cooler 5.
  • the tube 16 opens on the one hand into the outlet box 12 of the cooler 5 and on the other hand into the Contamination channel 15.
  • a means 9 for measuring the temperature of the intake gases is mounted in the intake manifold 6; this measurement means 9 is in this case a temperature sensor 9. It measures the temperature of the gases at the inlet of the combustion chamber (thus at the outlet of the cooler 5). The knowledge of this temperature makes it possible to know if a risk of condensation exists in the cooler 5.
  • the gases circulate, either in the cooler 5, or in the contouement pipe 15, or in both; this circulation of gases is regulated by the valves 13b, 15a which control the flow of gas in the cooled lane 5 and in the lane 15.
  • condensates can form, as already explained above. If condensates have been formed, they are collected in the outlet box 12, flow into the recovery tube 16 and are thus guided to the contouement pipe 15, in which they flow, the valve 15a of the pipe
  • the control circuit 15 is controlled to allow uncooled gases to pass through it, the contamination line 15 filling both recirculation means recovered condensates so as to return the condensate in the circuit 14 of cooled gas and the function of evaporation means 15 mounted between the recovery means 12, 16 and the gas circuit 13 to be cooled.
  • the contouement pipe 15 is a means capable of fulfilling two distinct functions, namely recirculating the recovered condensates so as to return them to the cooled gas circuit 14 as well as the function of allowing as complete evaporation as possible before the reintroduction of these in the circuit of the cooled gases.
  • the uncooled gases, passing through the channel of contoumement 15, allow evaporation of the condensates that flow there due to their high temperature due to the compression experienced in the In other words, this evaporation is possible because the uncooled gases (from the gas circuit to be cooled 13) are at a higher temperature than that of the cooled gases (and therefore that of the condensates) and have a capacity of absorption of more important water; Moreover, the gases flowing in the bypass line 15 are in relative motion with respect to the liquid condensates and the evaporation is facilitated by the convection related to this movement.
  • the evaporated condensates are guided by the bypass line 15 of the cooler 5, downstream of the recovery tube 16, to the cooled gas circuit 14.
  • the evaporation means capable of enabling evaporation of the condensates consist of the bypass line 15 of the cooler and the valve 15a of the bypass line 15 of the cooler.
  • the flows of the gases in the cooler 5 and its bypass duct 15 are controlled by the valves 13b, 15a, themselves controlled according to the temperature measured by the temperature sensor 9 mounted in the intake manifold 6.
  • control laws of the valves 13b, 15a as a function of the temperature are shown in FIG. 3.
  • FIG. 3 is shown in full lines the control law of the valve 13b of the pipe 13a guiding the gases in the cooler 5, while shown in dashed lines the control law of the valve 15a of the bypass line 15.
  • These control laws apply especially to the engine speeds in which the intake gases are not very hot, it is that is to say when they are not very compressed, in particular during the starting phases or the phases in which the vehicle does not roll at high speed (for example in urban traffic in traffic jams); we are talking about "low-charge" diets.
  • valve 13b of the cooled track 5 is completely open (100% opening) while the valve 15a of the bypass path 15 is completely closed (0% opening); in this configuration, the gases intake are completely in the cooler 5 to be cooled;
  • the valve 13b of the cooled track 5 is completely closed (0% of opening) while the valve 15a of the track of bypass 15 is fully open (100% open); in this configuration, the inlet gases pass in their entirety in the contolement channel 15 and are not cooled;
  • the openings of the valves 13b, 15a as a function of the temperature of the gases here follow portions of linear curves inverted with respect to each other, each linear portion joining the value corresponding to the temperatures above the threshold temperature and the value corresponding to temperatures below the critical temperature; thus, the closer the temperature approaches the critical temperature, the more the valve 13b of the cooled path 5 is closed and the more the valve 15a of the bypass path 15 is open, and vice versa if the temperature approaches the threshold temperature, and this linearly depending on the temperature for each valve 13b, 15a.
  • control laws of the opening of the valves 13b, 15a as a function of the temperature of the gases have been presented as being constant for values below a critical temperature and for values greater than a threshold temperature, linear between the two. It goes without saying that other laws can be provided.
  • the critical temperature of 35 ° is the temperature below which the gases form condensates.
  • the regulation laws of the opening of the valves 13b, 15a make it possible to force the gases in the bypass 15 accordingly. more than the temperature approaches the critical temperature, which makes it possible to anticipate the drop in temperature to take into account the thermal inertia of the gases, to readjust their temperature before it passes below the critical temperature .
  • the condensates are recovered by gravity. This is why the bypass duct 15 is located below the cooler 5.
  • the bypass line 15 is inclined so that the condensates (which are liquid) flow in the direction opposite to the direction of flow of the uncooled gases that pass through the bypass line 15, which increases the surface of the condensates exposed to gases and facilitates their evaporation; the bypass line 15 is in this case inclined downward on its upstream side.
  • the cooler 5 is inclined so that the condensates flow by gravity to the tube 16 for condensate recovery; this makes it possible to collect condensates better; the cooler 5 is then inclined downward on its downstream side.
  • the recovery tube 16 is preferably formed of plastic material to better resist the corrosion of possible acid condensates.
  • the bypass line 15 is preferably formed of plastic material.
  • the bypass line 15 has a flattened section, for example oval, whose large dimension is located at the bottom; in this way, the condensates flowing in the bypass line 15 extend in this large dimension and have a greater exchange surface with the gases for their evaporation.
  • the device may comprise means for analyzing the temperature of the inlet gases and the control means of the valves 13b, 15a for regulating the flow of gas in the various pipes.
  • the device preferably comprises a microprocessor for analyzing the data and for controlling the valves 13b, 15a.
  • the bypass duct 15 opens directly into the outlet box 12 of the cooler 5, which avoids providing a tube 16 for condensate recovery.
  • the condensate recovery means are then formed directly by the outlet box 12 of the cooler 12, which guides the condensates in the bypass line 15.
  • condensate recovery means may be provided which are not necessarily means using gravity.
  • a Venturi device or a liquid pump may be provided,
  • the condensate recovery means are not necessarily arranged to recover the condensates in the outlet box 12 of the cooler 5.
  • they can for example collect the condensates in the middle of the cooler 5, if the cooler is arranged so that the condensates are guided towards this point (for example by inclining its walls or by means for guiding the condensates).
  • the cooling circuit also comprises a condensate recovery tube in the inlet box 11 of the cooler 5.
  • a condensate recovery tube opens, on the one hand, in the input box 11 cooler 5 and, secondly, in the bypass line 15.
  • the latter is an always open bypass of the cooler 5; in this case, it should be provided that this tube is of small diameter, so that the gases to be cooled preferably flow into the cooler 5 and the flow rate in the recovery tube is at a minimum.
  • the two flow control valves 13b, 15a between the cooled track 5 and the bypass route 15 can be replaced by a so-called "three-way" valve such as that presented above with reference to the exhaust gas recirculation (with in this case, its inlet opening into the pipe connected to the compressor 4, an outlet opening into the pipe 13a leading to the cooler 5 and an outlet opening into the bypass pipe 15).
  • the temperature of the gases can be measured by a single temperature sensor or by a sensor combined with a sensor for measuring the pressure in the intake manifold.
  • the means for measuring the temperature can be provided, as shown, in the intake manifold, but also in other places of the gas circuit, for example in the outlet box 12 of the cooler 5.

Abstract

Le circuit de refroidissement de gaz de l'invention comporte un refroidisseur (5) relié, en amont, à un circuit (13) de gaz à refroidir et, en aval, à un circuit (14) de gaz refroidis. Le circuit comprend des moyens (12, 16) de récupération de condensats et des moyens de recirculation (15) des condensats récupérés de manière à renvoyer les condensats dans le circuit (14) de gaz refroidis. La structure du circuit est ainsi simplifiée et son fonctionnement amélioré.

Description

Circuit de refroidissement de gaz et procédé de refroidissement de gaz
L'invention concerne un circuit de refroidissement de gaz.
Un moteur thermique de véhicule automobile comporte une chambre de combustion, généralement formée par une pluralité de cylindres, dans laquelle un mélange de comburant et de carburant est brûlé pour générer le travail du moteur. Le comburant comporte de l'air, qui peut être comprimé ou non, selon que le moteur comporte ou pas des moyens de compression tels qu'un compresseur ou un turbocompresseur. L'air (dénommé air d'alimentation) peut par ailleurs être mélangé à des gaz d'échappement; on parle de gaz d'échappement recirculés. Les gaz admis dans la chambre de combustion, comportant donc de l'air d'alimentation éventuellement mélangé à des gaz d'échappement, sont dénommés gaz d'admission. Lorsque les gaz d'admission sont comprimés par des moyens de compression, on parle alors plus particulièrement de l'air de suralimentation.
A titre d'exemple, la recirculation des gaz d'échappement permet, pour un moteur à essence, de diminuer la consommation de carburant et d'obtenir un meilleur rendement moteur, tandis qu'elle permet, pour un moteur diesel, de diminuer la pollution pour être en accord avec les normes environnementales.
Afin d'augmenter la densité de l'air de suralimentation (qu'il soit ou non mélangé à des gaz d'échappement), il est connu de le refroidir, au moyen d'un échangeur de chaleur appelé refroidisseur d'air de suralimentation, dont l'acronyme "RAS" est généralement utilisé; le RAS est également souvent désigné par l'homme du métier par son acronyme anglais CAC, signifiant "Charge Air Cooler", Ce refroidisseur d'air de suralimentation utilise, comme fluide caloporteur de refroidissement, soit de l'air, soit un liquide de refroidissement tel que l'eau glycolée. On parlera simplement, dans la suite, de refroidisseur.
En cas de recirculation des gaz d'échappement, l'air de suralimentation est mélangé à des gaz d'échappement recirculés lorsqu'il passe dans le refroidisseur. Or, les gaz d'échappement sont chargés en eau, qui est un produit de la combustion dans le moteur; les gaz sont également chargés en d'autres particules, notamment du soufre. Dans certaines conditions de fonctionnement du moteur, le refroidissement de l'air et des gaz d'échappement recirculés peut provoquer une condensation, notamment d'eau et/ou d'acide sulfurique (ainsi que d'autres éléments); les produits de cette condensation sont dénommés "condensats" et sont néfastes pour le moteur et ses circuits de gaz. En particulier, les condensats d'eau peuvent provoquer un encombrement du refroidisseur, réduisant ainsi ses performances. Les condensats d'acide sulfurique, dont le pH est faible, peuvent générer un phénomène de corrosion, non seulement dans le refroidisseur mais aussi dans les tubulures du circuit d'admission des gaz dans le moteur; cette corrosion peut entraîner une dégradation prématurée des éléments considérés. Par ailleurs, dans des conditions climatiques froides, les condensats peuvent geler et entraîner la casse du refroidisseur et/ou l'étouffement du moteur par obstruction du flux des gaz.
L'art antérieur propose des solutions dans lesquelles les condensats sont récupérés et guidés dans la chambre de combustion pour y être brûlés. Cette solution n'est néanmoins pas toujours optimale, surtout si la condensation est importante. Or, dans les moteurs modernes, il est fréquent que, dans certaines phases du moteur (notamment le démarrage), les gaz en sortie du refroidisseur soient à une température inférieure à 350C, la condensation étant alors importante.
D'autres solutions de l'art antérieur consistent, dans les phases du fonctionnement du moteur dans lesquelles une condensation pourrait avoir lieu, à dévier les gaz pour qu'ils contournent le refroidisseur. Cette solution n'est néanmoins pas non plus toujours satisfaisante, car les condensats formés avant la mise en place du contournement ne sont pas faciles à évacuer.
L'invention vise à proposer un circuit de refroidissement de gaz traitant de manière efficace et simple le problème des condensats.
L'invention a été présentée en relation avec un problème lié au refroidisseur d'air de suralimentation d'un moteur thermique à combustion interne. Elle s'applique néanmoins plus généralement à un circuit de refroidissement de gaz d'un moteur thermique à combustion interne, notamment le circuit de refroidissement des gaz d'échappement recirculés. Plus généralement encore, l'invention s'applique à tout circuit de refroidissement de gaz avec un refroidisseur. Par refroidisseur, on entend tout élément pouvant refroidir un flux de gaz et provoquer une condensation de ces derniers; en particulier, une canalisation froide est un refroidisseur.
C'est ainsi que l'invention concerne un circuit de refroidissement de gaz avec un refroidisseur relié, en amont, à un circuit de gaz à refroidir et, en aval, à un circuit de gaz refroidis, comprenant des moyens de récupération de condensats et des moyens de recirculation des condensats récupérés de manière à renvoyer les condensats récupérés dans le circuit de gaz refroidis.
Selon une forme de réalisation, les moyens de recirculation des condensats récupérés sont des moyens d'évaporation montés entre les moyens de récupération et le circuit de gaz à refroidir. Ainsi, les moyens d'évaporation peuvent utiliser les gaz à refroidir comme moyen d'évaporation des condensats, ce qui simplifie la structure du circuit de refroidissement et améliore son efficacité.
Selon une forme de réalisation, le circuit de refroidissement comporte des moyens de guidage des condensats évaporés vers le circuit de gaz refroidis.
Selon une forme de réalisation, le circuit de refroidissement comprend un circuit, de contournement du refroidisseur, formant moyen d'évaporation des condensats.
Ainsi, le circuit de contournement remplit une double fonction, de contournement et d'évaporation.
Selon une forme de réalisation, le circuit de refroidissement comprend une canalisation de contournement du refroidisseur et les moyens de récupération des condensats comprennent des moyens de guidage des condensats dans la canalisation de contournement pour leur évaporation par les gaz y circulant.
Selon une forme de réalisation, les moyens de guidage sont des moyens de guidage par gravité débouchant dans la canalisation de contournement.
Selon une forme de réalisation, le refroidisseur comportant une boîte de collection des gaz, les moyens de guidage des condensats dans la canalisation de contournement comprennent la boîte de collection des gaz. Selon une forme de réalisation, le refroidisseur comportant une boîte de collection des gaz, les moyens de guidage comprennent une canalisation de guidage débouchant dans la boîte de collection des gaz et dans la canalisation de contournement.
Selon une forme de réalisation, la canalisation de contoumement est agencée pour former une surface d'échanges thermiques importante entre les condensats et les gaz circulant dans la canalisation.
Par importante, on comprend une surface plus importante que celle que présenterait un filet de condensât s'écoulant dans une canalisation cylindrique horizontale.
Selon une forme de réalisation, la canalisation de contournement est de forme aplatie, par exemple de section ovale.
Selon une forme de réalisation, la canalisation de contournement est inclinée vers le bas de son côté amont.
Selon une forme de réalisation, le refroidisseur est incliné vers le bas de son côté aval, pour faciliter la récupération des condensats du côté aval.
Selon une forme de réalisation, le circuit de refroidissement est le circuit de refroidissement du circuit d'admission de gaz dans un moteur thermique à combustion interne d'un véhicule automobile,
L'invention concerne encore un véhicule automobile, comportant un moteur thermique à combustion interne, un circuit d'admission de gaz dans le moteur et un circuit de refroidissement des gaz d'admission dans le moteur comportant les caractéristiques du circuit de refroidissement présenté ci-dessus.
L'invention concerne encore un procédé de refroidissement de gaz dans un circuit de gaz avec un refroidisseur relié, en amont, à un circuit de gaz à refroidir et, en aval, à un circuit de gaz refroidis, dans lequel: - on récupère des condensats et - on évapore les condensats à l'aide de moyens d'évaporation montés entre les moyens de récupération et le circuit de gaz à refroidir.
Selon une forme de réalisation, le circuit de gaz comportant une première vanne, de régulation du débit des gaz entrant dans le refroidisseur, et une canalisation de contoumement du refroidisseur, montée entre le circuit de gaz à refroidir et le circuit de gaz refroidis avec une deuxième vanne, de régulation du débit des gaz y circulant, le procédé comporte les étapes selon lesquelles: - on définit une température seuil des gaz, par exemple égale à environ
4O0C,
- on définit une température critique des gaz, par exemple égale à environ 350C,
- on mesure une température des gaz en sortie du refroidisseur et - si la température mesurée est supérieure à la température seuil, on ouvre complètement la première vanne et on ferme complètement la deuxième vanne,
- si la température mesurée est inférieure à la température critique, on ferme complètement la première vanne et on ouvre complètement la deuxième vanne et
- si la température mesurée est comprise entre la température critique et la température seuil, on ouvre les vannes, en fonction de la température des gaz, selon des lois linéaires inversées l'une par rapport à l'autre.
L'invention sera mieux comprise à l'aide de la description suivante de la forme de réalisation préférée du circuit de refroidissement de l'invention, en référence aux planches de dessins annexées, sur lesquelles:
- la figure 1 représente un schéma bloc fonctionnel du circuit de gaz d'un moteur thermique à combustion interne; - la figure 2 représente une vue en perspective schématique du circuit de refroidissement des gaz d'admission du circuit de gaz de la figure 1 et
- la figure 3 est un diagramme représentant la loi de contrôle de l'ouverture des vannes du circuit de refroidissement de la figure 2, en fonction d'une température mesurée des gaz d'admission.
Dans la description qui suit, les gaz et liquides sont guidés dans des canalisations. Les traits reliant les divers blocs fonctionnels de la figure 1 correspondent à des canalisations, même si cela ne sera pas systématiquement précisé dans la description.
Un moteur thermique 1 à combustion interne de véhicule automobile comporte une chambre de combustion (non représentée), formée par une pluralité de cylindres, par exemple au nombre de quatre, et destinée à recevoir un mélange de comburant et de carburant dont la combustion génère le travail du moteur 1.
Le fonctionnement du moteur 1 est classique: les gaz sont admis dans la chambre de combustion, y sont comprimés, brûlés puis expulsés sous forme de gaz d'échappement; il s'agit des quatre temps classiques d'un moteur thermique
(admission, compression, combustion, échappement).
Le circuit 2 d'admission de gaz dans le moteur comporte une canalisation 3 d'admission de l'air d'alimentation, un compresseur 4 des gaz d'admission, qui est en l'espèce un turbocompresseur, un échangeur de chaleur 5, de refroidissement des gaz issus du compresseur 4, en sortie duquel les gaz débouchent dans un collecteur 6 d'admission des gaz dans la chambre de combustion du moteur 1 , Le collecteur d'admission 6 est une pièce bien connue de l'homme du métier, qui forme une boîte d'entrée des gaz sur la culasse du moteur 1. En sortie de la chambre de combustion du moteur 1 est prévue une voie 7 de recirculation des gaz d'échappement vers l'admission du moteur 1; ainsi, les gaz d'échappement issus de la chambre de combustion peuvent être guidés, soit dans une canalisation d'échappement 8 qui les guide vers l'extérieur de circuit de gaz, soit dans la voie de recirculation 7 qui les guide vers la canalisation 3 d'admission d'air dans le moteur, en amont du compresseur 4 des gaz d'admission. Le flux de gaz d'échappement recirculés est contrôlé par une vanne montée dans la zone de raccord entre la canalisation de recirculation 7 et la canalisation d'échappement 8; il peut par exemple s'agir d'une vanne dite "trois voies", avec une entrée débouchant dans la canalisation de sortie de la chambre de combustion 1, une première sortie débouchant dans la canalisation de recirculation 7 et une deuxième sortie débouchant dans la canalisation d'échappement 8.
L'échangeur de chaleur 5 est un refroidisseur des gaz d'admission et notamment de l'air d'alimentation; cet air d'alimentation étant comprimé, on le dénomme, comme déjà expliqué plus haut, air de suralimentation. C'est pour cette raison que l'échangeur de chaleur est dénommé "refroidisseur d'air de suralimentation" 5, dont l'acronyme est "RAS" 5. Sa fonction est d'augmenter la densité d'air des gaz d'admission, en les refroidissant, On parlera simplement, dans la suite de la description, de refroidisseur. On comprend que, malgré cette dénomination par l'homme du métier, le refroidisseur 5 est en fait un refroidisseur des gaz d'admission, ces gaz pouvant comporter de l'air ou un mélange d'air et de gaz d'échappement, comme expliqué ci-dessus.
Un refroidisseur utilise un fluide caloporteur pour refroidir les gaz qui le traversent; ce fluide caloporteur peut par exemple être de l'air ou de l'eau, en particulier de l'eau glycolée. Il s'agit dans la forme de réalisation représentée sur la figure 2 d'un refroidisseur 5 à air, les gaz d'admission étant refroidis par de l'air
(frais) de refroidissement avec lequel ils échangent de l'énergie thermique.
On note incidemment que l'invention s'applique également à un refroidisseur à eau. Dans le cas (non représenté) d'un refroidisseur à eau, le liquide de refroidissement circule dans un circuit de liquide de refroidissement
(non représenté), en circuit fermé; il s'agit dans ce cas d'un circuit de liquide de refroidissement dit basse température, par opposition au circuit de liquide de refroidissement haute température utilisé pour le refroidissement du bloc moteur. Le circuit de liquide de refroidissement comporte un radiateur et une pompe entraînant l'eau glycolée pour sa circulation dans le circuit de liquide de refroidissement. L'eau glycolée est refroidie dans le radiateur, par échanges thermiques avec l'air ambiant qui traverse le radiateur; elle est entraînée, par la pompe, depuis le radiateur dans le refroidisseur, où elle échange de la chaleur avec les gaz d'admission qui traversent le refroidisseur. L'eau glycolée étant à une température inférieure à celle des gaz d'admission, elle les refroidit. Après son passage dans le refroidisseur, l'eau retourne dans le radiateur et reprend la même boucle.
Structurellement, et de nouveau en référence à la figure 2, le refroidisseur à air 5 représenté comprend un faisceau 10 de tubes disposés parallèlement les uns aux autres sur une pluralité rangées (parallèles entre elles), ces tubes étant agencés pour transporter les gaz d'admission à refroidir. L'air frais de refroidissement s'écoule dans le volume du refroidisseur 5, entre les tubes du faisceau de tubes 10. Le refroidisseur 5 comporte par ailleurs une boîte d'entrée 11 et une boîte de sortie 12 (ou boîte 12 de collection des gaz), montées respectivement en amont et en aval du faisceau de tubes 10. D'autres structures, bien connues de l'homme du métier, sont envisageables pour le refroidisseur 5.
Les gaz à refroidir (en l'espèce les gaz d'admission, en provenance du compresseur 4), débouchent dans la boîte d'entrée 11, s'écoulent dans les tubes du faisceau de tubes 10, ce qui permet des échanges thermiques entre les gaz d'admission à refroidir et l'air frais de refroidissement, et débouchent dans la boîte de sortie 12.
Ainsi, le refroidisseur 5 est agencé pour collecter des gaz issus d'un circuit 13 de gaz à refroidir, les refroidir et les guider vers un circuit 14 de gaz refroidis. Le circuit de gaz à refroidir 13 comporte ici une canalisation 13a transportant les gaz issus du compresseur 4, dans laquelle est montée une vanne 13b de régulation du débit dans cette canalisation 13a. Le circuit de gaz refroidis 14 comporte une canalisation 14a guidant les gaz vers la chambre de combustion du moteur 1.
Le circuit de refroidissement des gaz comporte par ailleurs une canalisation 15 de contournement du refroidisseur 5. La canalisation de contournement 15 débouche, en amont, dans la canalisation 13a du circuit de gaz à refroidir 13 et, en aval, dans la canalisation 14a du circuit de gaz refroidis 14. Une vanne 15a est montée dans la canalisation de contournement 15 pour réguler le débit des gaz qui y circulent.
On note que, lorsque les gaz issus du circuit de gaz à refroidir 13 empruntent exclusivement la canalisation de contournement 15, ils ne sont pas refroidis et les dénominations de "circuit de gaz à refroidir 13" et "circuit de gaz refroidis 14" semblent moins adaptées; néanmoins, on conserve ces dénominations car c'est bien autour du refroidisseur 5 qu'est construit et défini le circuit de refroidissement. On pourrait plus généralement (et structurellement) parler de "circuit 13 en amont du refroidisseur 5" et "circuit 14 en aval du refroidisseur 5".
Le circuit de refroidissement des gaz comporte en outre un tube 16 de récupération des condensats formés dans le refroidisseur 5. Le tube 16 débouche, d'une part, dans la boîte de sortie 12 du refroidisseur 5 et, d'autre part, dans la canalisation de contoumement 15. Un moyen 9 de mesure de la température des gaz d'admission est monté dans le collecteur d'admission 6; ce moyen de mesure 9 est en l'espèce un capteur de température 9. Il permet de mesurer la température des gaz en entrée de la chambre de combustion (donc à la sortie du refroidisseur 5). La connaissance de cette température permet de savoir si un risque de condensation existe dans le refroidisseur 5.
Le fonctionnement du circuit de refroidissement va maintenant être décrit plus en détails.
Les gaz circulent, soit dans le refroidisseur 5, soit dans la canalisation de contoumement 15, soit dans les deux; cette circulation des gaz est régulée par les vannes 13b, 15a qui commandent le débit de gaz dans la voie refroidie 5 et dans la voie de contoumement 15.
Lors du refroidissement des gaz dans le refroidisseur 5, des condensats peuvent se former, comme déjà expliqué plus haut. Si des condensats ont été formés, ils sont collectés dans la boîte de sortie 12, s'écoulent dans le tube de récupération 16 et sont ainsi guidés vers la canalisation de contoumement 15, dans laquelle ils s'écoulent, La vanne 15a de la canalisation de contoumement 15 est commandée pour permettre à des gaz non refroidis de l'emprunter, la canalisation de contoumement 15 remplissant la fois de moyen de recirculation des condensats récupérés de manière à renvoyer les condensats dans le circuit 14 de gaz refroidis ainsi que la fonction de moyens d'évaporation 15 montés entre les moyens de récupération 12, 16 et le circuit 13 de gaz à refroidir. Autrement dit, la canalisation de contoumement 15 est un moyen apte à remplir deux fonctions distincte, à savoir recirculer les condensats récupérés de manière à les renvoyer dans le circuit 14 de gaz refroidis ainsi que la fonction de permettre une évaporation la plus complète possible avant la réintroduction de ces derniers dans le circuit des gaz refroidis.
En effet, suite la régulation opérée par la vanne 13a située sur le circuit de gaz à refroidir 13 et/ou par la vanne 15a située sur la canalisation de contoumement 15, les gaz non refroidis, en passant dans la canalisation de contoumement 15, permettent l'évaporation des condensats qui s'y écoulent en raison de leur température élevée due à la compression subie dans le compresseur, Autrement dit, cette évaporation est possible car les gaz non refroidis (provenant du circuit de gaz à refroidir 13) sont à température plus élevée que celle des gaz refroidis (et donc que celle des condensats) et présentent une capacité d'absorption de l'eau plus importante; par ailleurs, les gaz s'écoulant dans la canalisation de contournement 15 sont en mouvement relatif par rapport aux condensats liquides et l'évaporation est facilitée par la convection liée à ce mouvement. Les condensats évaporés sont guidés par la canalisation 15 de contournement du refroidisseur 5, en aval du tube de récupération 16, vers le circuit de gaz refroidis 14.
Selon un mode de réalisation, les moyens d'évaporation aptes à permettre l'évaporation des condensats se composent de la canalisation 15 de contournement du refroidisseur et de la vanne 15a du la canalisation 15 de contournement du refroidisseur.
Selon une forme de réalisation de l'invention, les flux des gaz dans le refroidisseur 5 et sa canalisation de contournement 15 sont commandés par les vannes 13b, 15a, elles-mêmes commandées en fonction de la température mesurée par le capteur de température 9 monté dans le collecteur d'admission 6.
Les lois de commande des vannes 13b, 15a en fonction de la température sont représentées sur la figure 3. Sur cette figure, est représentée en traits pleins la loi de commande de la vanne 13b de la canalisation 13a guidant les gaz dans le refroidisseur 5, tandis qu'est représentée en traits pointillés la loi de commande de la vanne 15a de la canalisation de contournement 15. Ces lois de commande s'appliquent spécialement aux régimes moteurs dans lesquels les gaz d'admission ne sont pas très chauds, c'est-à-dire lorsqu'ils ne sont pas très compressés, en particulier lors des phases de démarrage ou les phases dans lesquelles le véhicule ne roule pas à grande vitesse (par exemple en circulation urbaine dans des embouteillages); on parle de régimes à "faible charge".
En vertu de ces lois:
- au-dessus d'une valeur seuil de la température des gaz (ici fixée à
4O0C), la vanne 13b de la voie refroidie 5 est complètement ouverte (100% d'ouverture) tandis que la vanne 15a de la voie de contournement 15 est complètement fermée (0% d'ouverture); dans cette configuration, les gaz d'admission passent dans leur intégralité dans le refroidisseur 5 pour y être refroidis;
- en-dessous d'une valeur critique de la température des gaz (ici fixée à 35°C), la vanne 13b de la voie refroidie 5 est complètement fermée (0% d'ouverture) tandis que la vanne 15a de la voie de contournement 15 est complètement ouverte (100% d'ouverture); dans cette configuration, les gaz d'admission passent dans leur intégralité dans la voie de contoumement 15 et ne sont pas refroidis;
- entre la température critique et la température seuil, les ouvertures des vannes 13b, 15a en fonction de la température des gaz suivent ici des portions de courbes linéaires inversées l'une par rapport à l'autre, chaque portion linéaire rejoignant la valeur correspondant aux températures supérieures à la température seuil et la valeur correspondant aux températures inférieures à la température critique; ainsi, plus la température s'approche de la température critique, plus la vanne 13b de la voie refroidie 5 est fermée et plus la vanne 15a de la voie de contournement 15 est ouverte, et vice- versa si la température s'approche de la température seuil, et ce de manière linéaire en fonction de la température pour chaque vanne 13b, 15a.
Les lois de contrôle de l'ouverture des vannes 13b, 15a en fonction de la température des gaz ont été présentées comme étant constantes pour des valeurs inférieures à une température critique et pour des valeurs supérieures à une température seuil, linéaires entre les deux. Il va de soi que d'autres lois peuvent être prévues. Dans la forme de réalisation présentée, la température critique de 35° est la température en-dessous de laquelle les gaz forment des condensats.
Grâce à ces lois de régulation de l'ouverture des vannes 13b, 15a en fonction de la température des gaz, il est possible de réguler la condensation et d'évaporer des condensats qui auraient néanmoins pu se former. En effet, si la température des gaz en sortie du refroidisseur 5 est inférieure à la température critique, les gaz empruntent uniquement la voie de contournement 15 et ne sont plus refroidis, donc leur température augmente pour rejoindre un niveau de température où il n'y a plus de condensation, tandis qu'en empruntant la voie de contournement 15 ils permettent, comme expliqué plus haut, l'évaporation d'éventuels condensats qui auraient pu se former lorsque la température des gaz refroidis était passée en-dessous de la température critique. Si la température est supérieure à la température seuil, les gaz peuvent passer dans leur intégralité dans la voie refroidie 5 sans risque d'être condensés. Si la température des gaz passe en-dessous de la température seuil mais reste au-dessus de la température critique, les lois de régulation de l'ouverture des vannes 13b, 15a permettent de forcer les gaz dans la voie de contournement 15 d'autant plus que la température s'approche de la température critique, ce qui permet d'anticiper la baisse de température pour prendre en compte l'inertie thermique des gaz, pour réajuster leur température avant qu'elle ne passe en-dessous de la température critique.
Dans la forme de réalisation présentée, les condensats sont récupérés par gravité. C'est pour cela que le conduit de contournement 15 est situé en-dessous du refroidisseur 5.
Par ailleurs, dans la forme de réalisation présentée, la canalisation de contournement 15 est inclinée pour que les condensats (qui sont liquides) s'écoulent dans le sens contraire du sens d'écoulement des gaz non refroidis qui empruntent la canalisation de contournement 15, ce qui augmente la surface des condensats exposée aux gaz et facilite leur évaporation; la canalisation de contournement 15 est donc en l'espèce inclinée vers le bas de son côté amont.
En outre, selon une forme de réalisation non représentée, le refroidisseur
5 est incliné pour que les condensats s'écoulent par gravité vers le tube 16 de récupération des condensats; cela permet de mieux collecter les condensats; le refroidisseur 5 est alors incliné vers le bas de son côté aval.
Le tube de récupération 16 est de préférence formé en matériau plastique pour mieux résister à la corrosion d'éventuels condensats acides. Pour la même raison, la canalisation de contournement 15 est de préférence formée en matériau plastique.
Selon une forme de réalisation, la canalisation de contournement 15 présente une section aplatie, par exemple ovale, dont la grande dimension est située en partie basse; de la sorte, les condensats qui s'écoulent dans la canalisation de contournement 15 s'étalent dans cette grande dimension et présentent une surface d'échange avec les gaz plus grande pour leur évaporation.
Dans toutes les formes de réalisation décrites ci-dessus, le dispositif peut comporter des moyens d'analyse de la température des gaz d'admission et des moyens de commande des vannes 13b, 15a pour réguler les flux de gaz dans les diverses canalisations. Le dispositif comporte de préférence un microprocesseur d'analyse des données et de commande des vannes 13b, 15a.
Selon une forme de réalisation non représentée, le conduit de contournement 15 débouche directement dans la boîte de sortie 12 du refroidisseur 5, ce qui évite de prévoir un tube 16 de récupération des condensats. Les moyens de récupération des condensats sont alors formés directement par la boîte de sortie 12 du refroidisseur 12, qui guide les condensats dans la canalisation de contournement 15.
D'autres moyens de récupération des condensats peuvent être prévus, qui ne sont pas nécessairement des moyens utilisant la gravité. Par exemple, on peut prévoir un dispositif à effet Venturi ou encore une pompe à liquide,
Par ailleurs, les moyens de récupération des condensats ne sont pas nécessairement agencés pour récupérer les condensats dans la boîte de sortie 12 du refroidisseur 5. Ainsi, ils peuvent par exemple collecter les condensats au milieu du refroidisseur 5, si le refroidisseur est agencé pour que les condensats soient guidés vers cet endroit (par exemple par une inclinaison de ses parois ou par des moyens de guidage des condensats).
Selon une forme de réalisation non représentée, le circuit de refroidissement comporte également un tube de récupération de condensats dans la boîte d'entrée 11 du refroidisseur 5. Un tel tube de récupération débouche, d'une part, dans la boîte d'entrée 11 du refroidisseur 5 et, d'autre part, dans la canalisation de contournement 15. Dans les cas où il n'est pas possible de prévoir un moyen d'obturation contrôlable de ce tube, ce dernier constitue une voie de contournement toujours ouverte du refroidisseur 5; dans ce cas, il convient de prévoir que ce tube soit de faible diamètre, pour que les gaz à refroidir s'écoulent préférentiellement dans le refroidisseur 5 et que le débit dans le tube de récupération soit minimum. Il s'agit en tout état de cause d'une perte d'efficacité pour le refroidisseur 5, car une partie des gaz à refroidir empruntent le tube; un tel tube ne devra donc être prévu que dans les cas où il est absolument nécessaire de récupérer également des condensats dans la boîte d'entrée 11 du refroidisseur 5. L'invention a été présentée en relation avec un circuit de contournement du refroidisseur formant également moyen d'évaporation, cette double fonction remplie par le circuit de contournement permettant de minimiser le nombre de pièces. Les moyens d'évaporation peuvent sinon être formés par d'autres moyens qui ne remplissent éventuellement que cette fonction d'évaporation, connectés entre le circuit de gaz à refroidir et les moyens de récupération des condensats.
Les deux vannes 13b, 15a de régulation du flux entre la voie refroidie 5 et la voie de contournement 15 peuvent être remplacées par une vanne dite "trois voies" telle que celle présentée plus haut en référence à la recirculation des gaz d'échappement (avec, en l'espèce, son entrée débouchant dans la canalisation connectée au compresseur 4, une sortie débouchant dans la canalisation 13a menant au refroidisseur 5 et une sortie débouchant dans la canalisation de contournement 15).
La température des gaz peut être mesurée par un capteur de température simple ou par un capteur combiné avec un capteur de mesure de la pression dans le collecteur d'admission. Les moyens de mesure de la température peuvent être prévus, comme présenté, dans le collecteur d'admission, mais aussi à d'autres endroits du circuit de gaz, par exemple dans la boîte de sortie 12 du refroidisseur 5.

Claims

Revendications
1- Circuit de refroidissement de gaz avec un refroidisseur (5) relié, en amont, à un circuit (13) de gaz à refroidir et, en aval, à un circuit (14) de gaz refroidis, comprenant des moyens (12, 16) de récupération de condensats et des moyens de recirculation (15) des condensats récupérés de manière à renvoyer les condensats dans le circuit (14) de gaz refroidis.
2- Circuit de refroidissement selon la revendication 1, dans lequel les moyens de recirculation sont des moyens d'évaporation (15) montés entre les moyens de récupération (12, 16) et le circuit (13) de gaz à refroidir.
3- Circuit de refroidissement selon l'une des revendications précédentes, comportant des moyens (15) de guidage des condensats évaporés vers le circuit ( 14) de gaz refroidis .
4- Circuit de refroidissement selon l'une des revendications précédentes, comprenant un circuit (15), de contoumement du refroidisseur (5), formant moyen (15) d'évaporation des condensats.
5- Circuit de refroidissement selon la revendication précédente, comprenant une canalisation (15) de contoumement du refroidisseur (5), les moyens (12, 16) de récupération des condensats comprenant des moyens (12, 16) de guidage des condensats dans la canalisation (15) de contoumement pour leur évaporation par les gaz y circulant.
6- Circuit de refroidissement selon la revendication précédente, dans lequel les moyens (12, 16) de guidage sont des moyens de guidage par gravité débouchant dans la canalisation de contoumement (15).
7- Circuit de refroidissement selon la revendication précédente, dans lequel, le refroidisseur (5) comportant une boîte (12) de collection des gaz, les moyens (12, 16) de guidage des condensats dans la canalisation de contoumement comprennent la boîte de collection des gaz (12).
8- Circuit de refroidissement selon l'une des revendications 6 et 7 dans lequel, le refroidisseur (5) comportant une boîte (12) de collection des gaz, les moyens (12, 16) de guidage comprennent une canalisation de guidage (16) débouchant dans la boîte de collection des gaz (12) et dans la canalisation de contoumement (15),
9- Circuit de refroidissement selon l'une des revendications 5 à 8, dans lequel la canalisation de contoumement (15) est agencée pour former une surface d'échanges thermiques importante entre les condensais et les gaz circulant dans la canalisation (15).
10- Circuit de refroidissement selon la revendication 9, dans lequel la canalisation de contoumement (15) est de forme aplatie, par exemple de section ovale.
11- Circuit de refroidissement selon l'une des revendications 9 et 10, dans lequel la canalisation de contoumement (15) est inclinée vers le bas de son côté amont.
12- Circuit de refroidissement selon l'une des revendications 1 à 11, dans lequel le refroidisseur (5) est incliné vers le bas de son côté aval, pour faciliter la récupération des condensats du côté aval.
13- Procédé de refroidissement de gaz dans un circuit de gaz avec un refroidisseur (5) relié, en amont, à un circuit (13) de gaz à refroidir et, en aval, à un circuit (14) de gaz refroidis, dans lequel: - on récupère des condensats et
- on évapore les condensats à l'aide de moyens d'évaporation (15) montés entre les moyens de récupération (12, 16) et le circuit (13) de gaz à refroidir.
14- Procédé de refroidissement de gaz selon la revendication 14 dans lequel, le circuit de gaz comportant une première vanne (13b), de régulation du débit des gaz entrant dans le refroidisseur (5), et une canalisation (15) de contoumement du refroidisseur (5), montée entre le circuit (13) de gaz à refroidir et le circuit (14) de gaz refroidis avec une deuxième vanne (15a), de régulation du débit des gaz y circulant, le procédé comporte les étapes selon lesquelles:
- on définit une température seuil des gaz, par exemple égale à environ 4O0C, - on définit une température critique des gaz, par exemple égale à environ 350C,
- on mesure une température des gaz en sortie du refroidisseur (5) et
- si la température mesurée est supérieure à la température seuil, on ouvre complètement la première vanne (13b) et on ferme complètement la deuxième vanne (15a),
- si la température mesurée est inférieure à la température critique, on ferme complètement la première vanne (13b) et on ouvre complètement la deuxième vanne (15a) et - si la température mesurée est comprise entre la température critique et la température seuil, on ouvre les vannes (13b, 15a), en fonction de la température des gaz, selon des lois linéaires inversées l'une par rapport à l'autre.
PCT/EP2009/052651 2008-04-24 2009-03-06 Circuit de refroidissement de gaz et procede de refroidissement de gaz WO2009130083A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0802312 2008-04-24
FR0802312A FR2930633B1 (fr) 2008-04-24 2008-04-24 Circuit de refroidissement de gaz et procede de refroidissement de gaz

Publications (1)

Publication Number Publication Date
WO2009130083A1 true WO2009130083A1 (fr) 2009-10-29

Family

ID=40149859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/052651 WO2009130083A1 (fr) 2008-04-24 2009-03-06 Circuit de refroidissement de gaz et procede de refroidissement de gaz

Country Status (2)

Country Link
FR (1) FR2930633B1 (fr)
WO (1) WO2009130083A1 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2955621A1 (fr) * 2010-01-26 2011-07-29 Peugeot Citroen Automobiles Sa Boitier de filtrage d'air de suralimentation, systeme de refroidissement d'air de suralimentation comportant un tel boitier et vehicule equipe de ce systeme
FR2959455A1 (fr) * 2010-04-30 2011-11-04 Peugeot Citroen Automobiles Sa Dispositif comportant un echangeur thermique, un conduit de derivation et des moyens de vidanges des condensats presents dans l'echangeur, et moteur dote d'un tel dispositif
US20120174576A1 (en) * 2011-01-12 2012-07-12 Ford Global Technologies, Llc Supercharged internal combustion engine and method for operating an internal combustion engine of said type
CN102852623A (zh) * 2011-06-30 2013-01-02 福特环球技术公司 具有增压空气冷却器的内燃发动机的操作方法
DE202013100932U1 (de) 2013-03-04 2013-03-19 Ford Global Technologies, Llc. Ladeluftkühlersystem mit integrierter Aufheizeinrichtung
DE102013223395A1 (de) 2013-01-18 2014-07-24 Ford Global Technologies, Llc Einrichtung zum Abführen von Kondensat aus einer Turboladeranordnung
DE102013203646A1 (de) 2013-03-04 2014-09-04 Ford Global Technologies, Llc Ladeluftkühlersystem mit integrierter Aufheizeinrichtung
DE102014201678A1 (de) 2013-03-04 2014-09-04 Ford Global Technologies, Llc Ladeluftkühlersystem mit integrierter Aufheizeinrichtung
FR3007456A1 (fr) * 2013-06-24 2014-12-26 Peugeot Citroen Automobiles Sa Moteur a combustion de vehicule automobile a refroidissement d'air d'admission
DE102011018958B4 (de) * 2011-04-29 2014-12-31 Audi Ag Verbrennungsmotor und Verfahren zum Betrieb eines Verbrennungsmotors mit Ausleitung von gefrorenem Kondenswasser aus dem Ansaugtrakt
EP2995797A1 (fr) * 2014-09-11 2016-03-16 MAN Truck & Bus AG Système refroidisseur d'air de suralimentation doté d'un système d'aspiration de condensat et refroidisseur d'air de suralimentation pivotable
JP2016114044A (ja) * 2014-12-18 2016-06-23 三菱自動車工業株式会社 インタークーラ
DE202015003040U1 (de) * 2015-04-24 2016-07-26 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Ladeluftvorrichtung für einen Verbrennungsmotor
EP2642109A3 (fr) * 2012-03-23 2016-10-19 Benteler Automobiltechnik GmbH Dispositif d'échangeur de chaleur pour contourner un échangeur de chaleur
DE102015208475A1 (de) * 2015-05-07 2016-11-10 Ford Global Technologies, Llc Einrichtung zum Abführen von Kondensat aus einer Turboladeranordnung
DE102015208482A1 (de) * 2015-05-07 2016-11-10 Ford Global Technologies, Llc Einrichtung zum Abführen von Kondensat aus einer Turboladeranordnung
EP3095983A1 (fr) * 2015-05-20 2016-11-23 Mahle International GmbH Refroidisseur d'air de suralimentation
WO2017140682A1 (fr) * 2016-02-18 2017-08-24 Renault S.A.S. Dispositif de refroidissement d'air de suralimentation d'un moteur comportant des moyens de chauffage
FR3048027A1 (fr) * 2016-02-18 2017-08-25 Renault Sas "moteur a combustion interne comportant des moyens de regulation de la temperature de l'air de suralimentation"
DE102017216228B3 (de) 2017-09-13 2019-01-17 Audi Ag Ladeluftrohr zur Versorgung eines Antriebsaggregats einer Antriebseinrichtung mit Ladeluft sowie entsprechende Antriebseinrichtung
CN109869243A (zh) * 2019-04-04 2019-06-11 无锡同益汽车动力技术有限公司 一种可排出冷凝水的清洁低压废气再循环系统及其使用方法
US20230129282A1 (en) * 2021-10-26 2023-04-27 Honda Motor Co., Ltd. Intake device of internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3005116B1 (fr) * 2013-04-26 2017-09-01 Peugeot Citroen Automobiles Sa Refroidisseur d’air de suralimentation avec derivations partielles
CN106989589A (zh) * 2017-04-19 2017-07-28 宁波北新建材有限公司 一种石膏板生产线汽水分离系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2553827A1 (fr) * 1983-10-21 1985-04-26 Volkswagenwerk Ag Dispositif d'entrainement pour vehicules automobiles
US6283725B1 (en) * 1997-07-21 2001-09-04 Westinghouse Air Brake Company Aftercooler bypass means for a locomotive compressed air system
US20030234009A1 (en) * 2002-06-21 2003-12-25 Kennedy Lawrence C. Working fluid circuit for a turbocharged engine having exhaust gas recirculation
JP2005226476A (ja) * 2004-02-10 2005-08-25 Toyota Motor Corp 吸気通路内蓄積オイルの排出構造
WO2006040053A1 (fr) * 2004-10-07 2006-04-20 Behr Gmbh & Co. Kg Echangeur de chaleur de gaz d'echappement refroidi par air, en particulier refroidisseur de gaz d'echappement pour vehicules automobiles
FR2893677A1 (fr) * 2005-11-23 2007-05-25 Renault Sas Dispositif de recirculation des gaz brules et refroidisseur d'air de suralimentation adapte pour un tel dispositif
DE102006054227A1 (de) * 2006-11-15 2008-05-21 Behr Gmbh & Co. Kg Verfahren zur Verringerung des Schadstoffausstoßes einer Brennkraftmaschine, Vorrichtung zur Durchführung des Verfahrens und Abgasrückführsystem

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2553827A1 (fr) * 1983-10-21 1985-04-26 Volkswagenwerk Ag Dispositif d'entrainement pour vehicules automobiles
US6283725B1 (en) * 1997-07-21 2001-09-04 Westinghouse Air Brake Company Aftercooler bypass means for a locomotive compressed air system
US20030234009A1 (en) * 2002-06-21 2003-12-25 Kennedy Lawrence C. Working fluid circuit for a turbocharged engine having exhaust gas recirculation
JP2005226476A (ja) * 2004-02-10 2005-08-25 Toyota Motor Corp 吸気通路内蓄積オイルの排出構造
WO2006040053A1 (fr) * 2004-10-07 2006-04-20 Behr Gmbh & Co. Kg Echangeur de chaleur de gaz d'echappement refroidi par air, en particulier refroidisseur de gaz d'echappement pour vehicules automobiles
FR2893677A1 (fr) * 2005-11-23 2007-05-25 Renault Sas Dispositif de recirculation des gaz brules et refroidisseur d'air de suralimentation adapte pour un tel dispositif
DE102006054227A1 (de) * 2006-11-15 2008-05-21 Behr Gmbh & Co. Kg Verfahren zur Verringerung des Schadstoffausstoßes einer Brennkraftmaschine, Vorrichtung zur Durchführung des Verfahrens und Abgasrückführsystem

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2955621A1 (fr) * 2010-01-26 2011-07-29 Peugeot Citroen Automobiles Sa Boitier de filtrage d'air de suralimentation, systeme de refroidissement d'air de suralimentation comportant un tel boitier et vehicule equipe de ce systeme
FR2959455A1 (fr) * 2010-04-30 2011-11-04 Peugeot Citroen Automobiles Sa Dispositif comportant un echangeur thermique, un conduit de derivation et des moyens de vidanges des condensats presents dans l'echangeur, et moteur dote d'un tel dispositif
US20120174576A1 (en) * 2011-01-12 2012-07-12 Ford Global Technologies, Llc Supercharged internal combustion engine and method for operating an internal combustion engine of said type
CN102588082A (zh) * 2011-01-12 2012-07-18 福特环球技术公司 增压内燃发动机和用于运行所述类型的内燃发动机的方法
DE102011018958B4 (de) * 2011-04-29 2014-12-31 Audi Ag Verbrennungsmotor und Verfahren zum Betrieb eines Verbrennungsmotors mit Ausleitung von gefrorenem Kondenswasser aus dem Ansaugtrakt
CN102852623A (zh) * 2011-06-30 2013-01-02 福特环球技术公司 具有增压空气冷却器的内燃发动机的操作方法
EP2642109A3 (fr) * 2012-03-23 2016-10-19 Benteler Automobiltechnik GmbH Dispositif d'échangeur de chaleur pour contourner un échangeur de chaleur
DE102013223395A1 (de) 2013-01-18 2014-07-24 Ford Global Technologies, Llc Einrichtung zum Abführen von Kondensat aus einer Turboladeranordnung
DE102013223395B4 (de) * 2013-01-18 2016-01-28 Ford Global Technologies, Llc Einrichtung zum Abführen von Kondensat aus einer Turboladeranordnung
DE102014201678A1 (de) 2013-03-04 2014-09-04 Ford Global Technologies, Llc Ladeluftkühlersystem mit integrierter Aufheizeinrichtung
US9739194B2 (en) 2013-03-04 2017-08-22 Ford Global Technologies, Llc Charge-air intercooler system with integrated heating device
DE102013203646A1 (de) 2013-03-04 2014-09-04 Ford Global Technologies, Llc Ladeluftkühlersystem mit integrierter Aufheizeinrichtung
DE102014201678B4 (de) 2013-03-04 2024-01-25 Ford Global Technologies, Llc Ladeluftkühlersystem mit integrierter Aufheizeinrichtung
DE202013100932U1 (de) 2013-03-04 2013-03-19 Ford Global Technologies, Llc. Ladeluftkühlersystem mit integrierter Aufheizeinrichtung
FR3007456A1 (fr) * 2013-06-24 2014-12-26 Peugeot Citroen Automobiles Sa Moteur a combustion de vehicule automobile a refroidissement d'air d'admission
CN105422263A (zh) * 2014-09-11 2016-03-23 曼卡车和巴士股份公司 带冷凝物抽吸和增压空气冷却器的增压空气冷却器组件
RU2680479C2 (ru) * 2014-09-11 2019-02-21 Ман Трак Унд Бас Аг Система охлаждения наддувочного воздуха с отсасыванием конденсата и поворотным охладителем наддувочного воздуха
CN105422263B (zh) * 2014-09-11 2021-06-04 曼卡车和巴士股份公司 带冷凝物抽吸和增压空气冷却器的增压空气冷却器组件
EP2995797A1 (fr) * 2014-09-11 2016-03-16 MAN Truck & Bus AG Système refroidisseur d'air de suralimentation doté d'un système d'aspiration de condensat et refroidisseur d'air de suralimentation pivotable
JP2016114044A (ja) * 2014-12-18 2016-06-23 三菱自動車工業株式会社 インタークーラ
DE202015003040U1 (de) * 2015-04-24 2016-07-26 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Ladeluftvorrichtung für einen Verbrennungsmotor
DE102015208475A1 (de) * 2015-05-07 2016-11-10 Ford Global Technologies, Llc Einrichtung zum Abführen von Kondensat aus einer Turboladeranordnung
DE102015208482B4 (de) * 2015-05-07 2016-12-22 Ford Global Technologies, Llc Einrichtung zum Abführen von Kondensat aus einer Turboladeranordnung
DE102015208475B4 (de) * 2015-05-07 2016-12-22 Ford Global Technologies, Llc Einrichtung zum Abführen von Kondensat aus einer Turboladeranordnung
DE102015208482A1 (de) * 2015-05-07 2016-11-10 Ford Global Technologies, Llc Einrichtung zum Abführen von Kondensat aus einer Turboladeranordnung
EP3095983A1 (fr) * 2015-05-20 2016-11-23 Mahle International GmbH Refroidisseur d'air de suralimentation
US10054035B2 (en) 2015-05-20 2018-08-21 Mahle International Gmbh Inter cooler
FR3048026A1 (fr) * 2016-02-18 2017-08-25 Renault Sas "dispositif de refroidissement d'air de suralimentation d'un moteur comportant des moyens de chauffage"
FR3048027A1 (fr) * 2016-02-18 2017-08-25 Renault Sas "moteur a combustion interne comportant des moyens de regulation de la temperature de l'air de suralimentation"
WO2017140682A1 (fr) * 2016-02-18 2017-08-24 Renault S.A.S. Dispositif de refroidissement d'air de suralimentation d'un moteur comportant des moyens de chauffage
DE102017216228B3 (de) 2017-09-13 2019-01-17 Audi Ag Ladeluftrohr zur Versorgung eines Antriebsaggregats einer Antriebseinrichtung mit Ladeluft sowie entsprechende Antriebseinrichtung
CN109869243A (zh) * 2019-04-04 2019-06-11 无锡同益汽车动力技术有限公司 一种可排出冷凝水的清洁低压废气再循环系统及其使用方法
CN109869243B (zh) * 2019-04-04 2023-09-08 无锡同益汽车动力技术有限公司 一种可排出冷凝水的清洁低压废气再循环系统及其使用方法
US20230129282A1 (en) * 2021-10-26 2023-04-27 Honda Motor Co., Ltd. Intake device of internal combustion engine
US11773766B2 (en) * 2021-10-26 2023-10-03 Honda Motor Co., Ltd. Intake device of internal combustion engine

Also Published As

Publication number Publication date
FR2930633B1 (fr) 2014-10-24
FR2930633A1 (fr) 2009-10-30

Similar Documents

Publication Publication Date Title
WO2009130083A1 (fr) Circuit de refroidissement de gaz et procede de refroidissement de gaz
RU140283U1 (ru) Система охлаждения двигателя
EP2867515A1 (fr) Ensemble comprenant un moteur thermique et un compresseur electrique
FR2892155A1 (fr) Circuit d'alimentation en au moins un fluide d'un moteur suralimente et procede pour alimenter en au moins un fluide un tel moteur
FR2924169A1 (fr) Dispositif et procede de depollution et de chauffage pour vehicule automobile
EP1963657B1 (fr) Dispositif de refroidissement de l'air d'admission et des gaz d'echappement recircules
EP3002443A1 (fr) Module d'admission d'air d'un moteur a combustion interne de vehicule automobile
EP1432907A1 (fr) Dispositif perfectionne de regulation thermique de l'air d'admission d'un moteur a combustion interne de vehicule automobile
FR2948421A1 (fr) Procede de gestion de la circulation d'un fluide caloporteur dans un circuit de refroidissement d'un moteur thermique de vehicule automobile.
FR2930634A1 (fr) Procede et dispositif de regulation de la condensation des gaz dans un echangeur de chaleur
FR2933746A3 (fr) Circuit de recirculation des gaz d'echappement (egr) dit basse pression avec vannage a l'admission du moteur a combustion interne et recuperation de la chaleur dans la ligne d'echappement
FR2892770A1 (fr) Dispositif de recirculation controlee des gaz brules d'un circuit egr a haute pression
EP3417158B1 (fr) Dispositif de refroidissement d'air de suralimentation d'un moteur comportant des moyens de chauffage
FR2910388A3 (fr) Systeme de refroidissement thermique
FR2904056A1 (fr) Moteur thermique avec circuit de recirculation mixte
FR3048027A1 (fr) "moteur a combustion interne comportant des moyens de regulation de la temperature de l'air de suralimentation"
FR2952407A3 (fr) Systeme de regulation du debit de recirculation des gaz d'echappement
EP3236053A1 (fr) Procédé de contrôle d'une production d'électricité sur un véhicule automobile
FR2921122A3 (fr) Systeme de regulation de temperature des gaz d'admission d'un moteur a combustion interne, et procede associe
FR3067402B1 (fr) Procede de gestion du debit de gaz de suralimentation au sein d'un refroidisseur de gaz de suralimentation et refroidisseur de gaz de suralimentation associe.
EP2480767B1 (fr) Procede de gestion d'un module d'echange air/eau pour la regulation en temperature des gaz d'admission d'un moteur thermique
FR3111388A1 (fr) Circuit de refroidissement pour module double flux
FR2910538A1 (fr) Ligne de recirculation egr comprenant un refroidisseur d'air et moteur a combustion interne comprenant une telle ligne
FR2990472A1 (fr) Procede de determination d'un taux de recirculation des gaz d'echappement
FR2929340A1 (fr) Circuit de refroidissement des gaz des circuits d'alimentation en gaz et de recirculation des gaz d'echappement d'un moteur thermique a combustion interne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09735273

Country of ref document: EP

Kind code of ref document: A1