WO2009127578A1 - Wärmetauscher mit expandierbaren kunststoff-endrohren - Google Patents

Wärmetauscher mit expandierbaren kunststoff-endrohren Download PDF

Info

Publication number
WO2009127578A1
WO2009127578A1 PCT/EP2009/054239 EP2009054239W WO2009127578A1 WO 2009127578 A1 WO2009127578 A1 WO 2009127578A1 EP 2009054239 W EP2009054239 W EP 2009054239W WO 2009127578 A1 WO2009127578 A1 WO 2009127578A1
Authority
WO
WIPO (PCT)
Prior art keywords
tailpipe
thermally expandable
heat exchanger
expandable plastic
metal tubes
Prior art date
Application number
PCT/EP2009/054239
Other languages
English (en)
French (fr)
Inventor
Eugen Bilcai
Andrea Ferrari
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Publication of WO2009127578A1 publication Critical patent/WO2009127578A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1228Joining preformed parts by the expanding material
    • B29C44/1242Joining preformed parts by the expanding material the preformed parts being concentric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/66Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by liberation of internal stresses, e.g. shrinking of one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/116Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5223Joining tubular articles for forming corner connections or elbows, e.g. for making V-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • B29C66/52291Joining tubular articles involving the use of a socket said socket comprising a stop
    • B29C66/52292Joining tubular articles involving the use of a socket said socket comprising a stop said stop being internal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/727General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being porous, e.g. foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2223/00Use of polyalkenes or derivatives thereof as reinforcement
    • B29K2223/04Polymers of ethylene
    • B29K2223/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2267/00Use of polyesters or derivatives thereof as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2277/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2277/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as reinforcement
    • B29K2277/10Aromatic polyamides [Polyaramides] or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • B29K2305/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • B29K2305/08Transition metals
    • B29K2305/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/18Heat-exchangers or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/24Pipe joints or couplings
    • B29L2031/243Elbows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a method for producing a heat exchanger, wherein the term "production” also includes the repair of a used heat exchanger with the aid of the method steps according to the invention.
  • the invention further relates to a correspondingly produced heat exchanger and tailpipes which can be used in its production.
  • FIG. 1 shows the schematic structure of a heat exchanger, which can be produced by the method according to the invention.
  • This figure is taken from document JP 2006/194543.
  • This heat exchanger consists of metallic pipe sections (1) which are interconnected by running perpendicular to the pipe sections cooling fins (2). Open ends of adjacent metal tubes (1) are joined together in an overlapping area by U-shaped tailpipes, for which, according to the cited document, a liquid thermosetting adhesive is used.
  • the application of a liquid adhesive in the production area of the heat exchanger has the disadvantage that special application systems must be provided for this purpose. Malfunctions of the application systems can lead to contamination of the work area and workpieces with adhesive.
  • the present invention proposes a solution to this problem.
  • a method for producing a heat exchanger in which a) uses a tailpipe, which consists of a thermally expandable plastic, and this in the overlap area aufsteckt on the metal pipes or inserted into the metal pipes and b) the tailpipe heated from thermally expandable plastic to an expansion temperature at which the plastic expands, so that presses the tail pipe in the overlap region of the metal pipes.
  • the invention further comprises a correspondingly designed heat exchanger and prefabricated tailpipes which can be used for the process according to the invention.
  • a first object of the present invention is a method of manufacturing a heat exchanger having heat exchanger fins and substantially parallel metallic tubes in thermal contact with each other, the metal tubes being substantially perpendicular to the fins and having open ends and two each adjacent metal tubes are connected at their open ends in an overlap region by a respective U-shaped tail tube with each other without the use of an adhesive, characterized in that: a) uses a tailpipe, which consists of a thermally expandable plastic, and this in the overlap region on the Hoses metal pipes or inserted into the metal pipes and b) heats the tailpipe of thermally expandable plastic to an expansion temperature at which the plastic expands, so that the tailpipe presses in the overlap region of the metal pipes.
  • a heat exchanger can be produced, as shown schematically in Figure 1. It is no longer necessary, in contrast to the prior art, to connect tailpipe and metal pipes with an adhesive together. Rather, prefabricated storage and shipping tailpipes can be made, which are simply plugged for the production of the heat exchanger on the metal pipes or plugged into this. By heating to the expansion temperature, the material of the tailpipe irreversibly expands, so that the tailpipe in the overlapping area presses against the metal pipes and in this way mechanically bonds firmly to the metal pipes.
  • the procedure is such that i) in the manufacture of the tailpipe at least in the overlap area embeds in this a filament or heating wire and ii) heated in step b), the tailpipe at least in the overlap region with the aid of the filament or heating wire to the expansion temperature , It ensures that the ends of the filament or heater wire protrude out of the tailpipe, so that they can be connected to electrical contacts.
  • the two ends of the filament projecting from the end tube are connected to a current source and a current of such a magnitude is conducted through the filament or heating wire that the thermally activatable plastic is heated to its activation temperature.
  • the required current or voltage can be determined in preliminary tests and fixed at the power source.
  • the filament or heating wire can be introduced or injected in the injection mold.
  • this embodiment of the present invention ie heats the tailpipe, at least in the overlap region by means of a filament or heating wire
  • this can facilitate a later repair with a suitable design.
  • the remaining ends of the filament or heating wire are in turn connected to a power source and through the filament or the heating wire conducts a current of such a magnitude that the plastic softens. In this condition, the tailpipe can be easily removed from the metal pipes. pull. They are not damaged in this case, so that they can be connected to each other after repair according to the method of the invention.
  • the material of the metal pipes is preferably selected from copper or a copper alloy or from aluminum or an aluminum alloy. If the metal pipes are made of aluminum or an aluminum alloy, they can be subjected to a chemical surface treatment at least in the overlap area before plugging or plugging in the tailpipe. For details refer to the comments in GB 2008462. However, instead of chromating which is preferably used there, a chromium-free conversion method is preferred for environmental reasons, for example a treatment of the aluminum surfaces with an acidic aqueous solution of complex fluorides of at least one of the elements B, Si, Ti, Zr. For this example, methods can be used, as proposed in EP 754 251 or in the introductory cited prior art.
  • FIG. A possible embodiment of the present invention is shown in FIG. It is provided that the U-shaped tailpipe (3) is plugged onto the metal tubes (1), so that the metal tube is located within the U-shaped tailpipe in the overlapping area.
  • the U-shaped tail pipe is widened in the overlapping region, so that it can be pushed over the metal pipe, without a narrowing of the flow cross section in the metal pipe and in the U-shaped tail pipe occurs.
  • Figure 3 is an example of an alternative embodiment, wherein the U-shaped tail pipe (3) is inserted into the metal pipes (1) so that the U-shaped tail pipe (3) is located within the metal pipe (1) in the overlapping area.
  • the metal tube is widened in the overlapping region, so that the U-shaped end tube can be inserted into the metal tube, without any constriction of the flow cross section in the metal tube and in the U-shaped tail tube occurs.
  • FIG. 4 shows a further possible embodiment.
  • the metal tubes (1) in the overlapping region (4) are flared.
  • the tail pipes (3) have a higher wall thickness than the metal pipes.
  • the wall thickness of the tailpipes tapers in the overlap area with the metal pipes, so that the tailpipes in the conically widened overlap region of the metal tubes can be inserted without the flow cross section changing.
  • a thermally expandable plastic which increases its volume when heated to expansion temperature by 0.5 to 50%, preferably by 1 to 25%.
  • the plastic in addition to the normal and reversible thermal expansion according to its thermal expansion coefficient increases its volume compared to the original volume at room temperature (22 0 C) when heated to the expansion temperature irreversibly such that it is after re-cooling to room temperature by 0 , 5 to 50%, preferably 1 to 25% larger than before.
  • the stated degree of expansion thus refers to the volume of the plastic at room temperature before and after the temporary heating to expansion temperature.
  • step b) at least the tailpipe is heated to a temperature which is greater than or equal to the expansion temperature.
  • the upper limit is the temperature at which the plastic is thermally damaged or softens so much that the tailpipes deform undesirably. In practice, it is not necessary to exceed a temperature of 250 0 C.
  • the heating can take place, for example, by introducing the entire assembled heat exchanger into a correspondingly heated heating oven and leaving it at least until the tailpipes have assumed the expansion temperature of the plastic. Then remove the heat exchanger and let it cool to ambient temperature. If desired, the cooling can be accelerated, for example by blowing off with air or by immersion in a cooling medium such as water.
  • the thermally expandable plastic contains at least the following components: a) at least one reactive prepolymer, b) at least one (chemical or physical) latent blowing agent.
  • the mass may additionally contain: c) at least one latent hardener for the reactive prepolymer.
  • “latent” means that the desired reaction of the respective component does not occur below 80 ° C., but in the temperature range from 130 to 220 ° C.
  • the thermally expandable plastic preferably contains at least: a) a resin which crosslinks with itself or with other constituents of the composition (for example an optionally added hardener) at temperatures in the range from 130 to 220 ° C. (also referred to below as "binder") , b) a blowing agent which reacts at a temperature in the range of 130 to 220 0 C under increase in volume or evolution of gas and thereby increases the volume of the mass at least in the extent specified above.
  • a resin which crosslinks with itself or with other constituents of the composition for example an optionally added hardener
  • binder also referred to below as "binder”
  • a blowing agent which reacts at a temperature in the range of 130 to 220 0 C under increase in volume or evolution of gas and thereby increases the volume of the mass at least in the extent specified above.
  • the compositions for the thermally expandable plastic additionally contain fibers, for example based on aramid fibers, carbon fibers, metal fibers - e.g. of aluminum, glass fibers, polyamide fibers, polyethylene fibers or polyester fibers, these fibers preferably being pulp fibers or staple fibers having a fiber length between 0.5 and 6 mm and a diameter of 5 to 20 ⁇ m.
  • the fibers may also be longer than 6 mm, for example up to 20 mm or more, and may be in the form of fibrous structures such as a fiber knit or fabric.
  • the curable resin a) may be selected, for example, from polyurethanes having free or blocked isocyanate groups, unsaturated polyester / styrene systems, polyester / polyol mixtures, polymercaptans, siloxane-functional reactive resins or rubbers, benzoxazine-based resins and resins based on reactive epoxide groups. Due to the mechanical properties, it is preferable to use as the curable resin a) a polyurethane resin or a precursor thereof, or a reactive epoxy group-based resin. If the reactive prepolymer a) is a polyurethane resin or a polyurethane resin precursor, the latent curing agent c) is a hardener for polyurethane resins. If an epoxide resin is chosen as the reactive prepolymer a) the latent hardener c) is a hardener for epoxy resins. Examples of this will follow below.
  • polymeric base binders for the thermally expandable plastic are, for example, ethylene-vinyl acetate copolymers (EVA), copolymers of ethylene with (meth) acrylate esters, which optionally also contain proportionate (meth) acrylic acid, random or block copolymers of styrene with butadiene
  • EVA ethylene-vinyl acetate copolymers
  • copolymers of ethylene with (meth) acrylate esters which optionally also contain proportionate (meth) acrylic acid, random or block copolymers of styrene with butadiene
  • the latter may also be triblock copolymers of the SBS, SIS or their hydrogenation products SEBS or SEPS
  • the binders may also contain crosslinkers, adhesion promoters, tackifiers, plasticizers and other auxiliaries and additives such as B. low molecular weight oligomers.
  • a binder system for the thermally expandable plastic based on epoxy resins and hardeners, as disclosed, for example, in WO 00/52086, WO 2003/054069 and WO 2004/065485, is described below:
  • epoxy resins are a variety of polyepoxides having at least 2 1, 2 Epoxi law per molecule.
  • the epoxide equivalent of these polyepoxides may vary between 150 and 50,000, preferably between 170 and 5,000.
  • the polyepoxides may in principle be saturated, unsaturated, cyclic or acyclic, aliphatic, alicyclic, aromatic or heterocyclic polyepoxide compounds.
  • suitable polyepoxides include the polyglycidyl ethers prepared by reaction of epichlorohydrin or epibromohydrin with a polyphenol in the presence of alkali.
  • Suitable polyphenols for this purpose are, for example, resorcinol, pyrocetchine, hydroquinone, bisphenol A (bis (4-hydroxy-phenyl-2,2-propane)), bisphenol F (bis (4-hydroxyphenyl) methane), bis ( 4-hydroxyphenyl) -1, 1-isobutane, 4,4'-dihydroxybenzophenone, bis (4-hydroxyphenyl) -1, 1-ethane, 1, 5-hydroxy-naphthalene.
  • Other suitable polyphenols as a basis for the polyglycidyl ethers are the known condensation products of phenol and formaldehyde or acetaldehyde type of novolak resins.
  • polyepoxides are polyglycidyl esters of polycarboxylic acids, for example reaction products of glycidol or epichlorohydrin with aliphatic or aromatic Polycarboxylic acids such as oxalic acid, succinic acid, glutaric acid, terephthalic acid or dinner fatty acid.
  • epoxides are derived from the epoxidation products of olefinically unsaturated cycloaliphatic compounds or from native oils and fats.
  • epoxy resins which are derived by reaction of bisphenol A or bisphenol F and epichlorohydrin.
  • Flexibilizing agents which can be used are flexibilizing epoxy resins, such as the known adducts of carboxyl-terminated butadiene-acrylonitrile copolymers (CTBN) and liquid epoxy resins based on the diglycidyl ether of bisphenol A. Concrete examples are the reaction products of Hycar CTBN 1300 X8, 1300 X13 or 1300 X15 from B.F. Goodrich with liquid epoxy resins. Furthermore, the reaction products of amino-terminated polyalkylene glycols (Jeffamine) can be used with an excess of liquid polyepoxides.
  • CTBN carboxyl-terminated butadiene-acrylonitrile copolymers
  • Li epoxy resins based on the diglycidyl ether of bisphenol A. Concrete examples are the reaction products of Hycar CTBN 1300 X8, 1300 X13 or 1300 X15 from B.F. Goodrich with liquid epoxy resins.
  • reaction products of mercapto-functional prepolymers or liquid Thiokol polymers with an excess of polyepoxides are also possible.
  • reaction products of polymeric fatty acids in particular the dimer fatty acid with epichlorohydrin, glycidol or in particular diglycidyl ether of bisphenol A (DGBA).
  • the thermally expandable plastic may include reactive diluents to set a desired viscosity for, for example, an injection molding process.
  • Reactive diluents for the purposes of this invention are epoxide-containing, low-viscosity substances (glycidyl ethers or glycidyl esters) having an aliphatic or aromatic structure. These reactive diluents serve on the one hand to reduce the viscosity of the binder system above the softening point, on the other hand they control the pre-gelation process by injection molding.
  • Typical examples of inventively used Zende reactive diluents are mono-, di- or triglycidyl ethers of C 6 -C 4 -monoalcohols or alkylphenols and the monoglycidyl ethers of cashew nut shell oil, diglycidyl ethers of ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1, 2-propylene glycol, 1, 4- Butylene glycols, 1, 5-pentanediol, 1, 6-hexanediol, cyclohexanedimethanol, triglycidyl ether of tri-methylolpropans and the glycidyl esters of C ⁇ - to C2 4 - carboxylic acids or mixtures thereof.
  • thermally expandable plastic is preferably one-component and should be curable in the heat, it preferably contains a latent curing agent and / or additionally one or more accelerators.
  • thermally activatable or latent hardeners for an epoxy resin binder system guanidines, substituted guanidines, substituted ureas, melamine resins, guanamine derivatives, cyclic tertiary amines, aromatic amines and / or mixtures thereof can be used.
  • the hardeners may be involved stoichiometrically in the curing reaction, but they may also be catalytically active.
  • substituted guanidines are methylguanidine, dimethylguanidine, th-methylguanidine, tetramethylguanidine, methylisobiguanidine, dimethylisobiguanidine, tetramethylisobiguanidine, hexamethylisobiguanidine, hepamethylisobiguanidine, and more particularly cyanoguanidine (dicyandiamide).
  • Suitable representatives of suitable guanamine derivatives are alkylated benzoguanamine resins, benzoguanamine resins or methoxymethyl-ethoxymethylbenzoguanamine.
  • thermosetting plastic compositions are the low solubility of these substances at room temperature in the resin system, so that solid, finely ground hardeners are preferred, in particular dicyandiamide is suitable. This ensures good storage stability of the tailpipes.
  • catalytically active substituted ureas can be used. These are in particular: p-chlorophenyl-N, N-dimethylurea (monuron), 3-phenyl-1, 1-di-methylurea (Fenuron) or 3,4-dichlorophenyl-N, N-dimethylurea (diuron).
  • catalytically active tertiary acrylic or alkyl amines such as, for example, benzyldimethylamine, ths (dimethylamino) phenol, piperidine or piperidine derivatives, but these have too high a solubility in the binder system, so that here no useful storage stability of the one-component system is achieved.
  • various, preferably solid, imidazole derivatives can be used as catalytically active accelerators.
  • Representative examples include 2-ethyl-2-methylimidazole, N-butylimidazole, benzimidazole and N-C1 to C12-alkylimidazoles or N-arylimidazoles, triazine derivatives and imidazole / triazine compounds (eg C11 -Z-azines). It is also possible to use combinations of hardener and accelerator in the form of so-called accelerated dicyandiamides in finely ground form. As a result, the separate addition of catalytically active accelerators to the epoxy curing system is sometimes unnecessary.
  • the thermally expandable plastic may contain at least one finely divided thermoplastic polymer powder.
  • These thermoplastic polymer powders may, in principle, be selected from a large number of finely divided polymer powders; examples include vinyl acetate homopolymer, vinyl acetate copolymer, ethylene vinyl acetate copolymer, vinyl chloride homopolymer (PVC) or copolymers of vinyl chloride with vinyl acetate and / or (meth) acrylates, styrene homopolymers or copolymers, (meth) acrylate homo- or copolymers or polyvinyl butyral.
  • thermoplastic polymers contain functional groups such as carboxyl groups, carboxylic anhydride groups or imidazole groups and have a core / shell structure, wherein the shell of these polymers have a low swelling behavior at room temperature compared to plasticizers or reactive diluents.
  • these core / shell polymers swell up very rapidly and, after the extruded mass cools, immediately cause a tack-free surface of the expandable tailpipes.
  • These polymer powders should have an average particle size of less than 1 mm, preferably less than 350 ⁇ m and most preferably less than 100 ⁇ m.
  • the thermally expandable plastic further contains per se known fillers such as the various ground or precipitated crayons, carbon black, calcium magnesium carbonates, barite and in particular silicatic fillers of the type of aluminum-magnesium-calcium silicate, z. B. wollastonite, chlorite.
  • fillers such as the various ground or precipitated crayons, carbon black, calcium magnesium carbonates, barite and in particular silicatic fillers of the type of aluminum-magnesium-calcium silicate, z. B. wollastonite, chlorite.
  • the thermally expandable plastic preferably contains, in addition to the abovementioned "normal" fillers, so-called lightweight fillers which can be selected from the group of hollow metal spheres, such as, for example, As hollow steel balls, glass bubbles, fly ash (Fillite), plastic hollow spheres based on phenolic resins, epoxy resins or polyesters, expanded hollow microspheres with wall material of (meth) acrylic acid ester copolymers, poly-styrene, styrene (meth) acrylate copolymers and in particular Polyvinylidene chloride and copolymers of vinylidene chloride with acrylonitrile and / or (meth) acrylic acid esters, ceramic hollow spheres or organic light fillers of natural origin such as ground nutshells, such as the shells of cashew nuts, coconuts or peanut shells and cork powder or coke powder.
  • lightweight fillers which can be selected from the group of hollow metal spheres, such as, for example, As hollow steel balls
  • blowing agent (component b) are in principle all known blowing agents such. "Chemical blowing agents" which release gases by decomposition, or “physical blowing agents", i. expanding hollow spheres.
  • “Chemical blowing agents” which release gases by decomposition, or “physical blowing agents”, i. expanding hollow spheres.
  • the former blowing agents are azobisisobutyronitrile, azodicarbonamide, di-nitroso-pentamethylenetetramine, 4,4'-oxybis (benzenesulfonic acid hydrazide), diphenylsulfone-3,3'-disulfohydrazide, benzene-1,3-disulfohydrazide, p-toluenesulfonyl semicarbazide.
  • the expandable Kunststoffmikrohohlkugeln based on polyvinylidenchlohdcopolymeren or acrylonitrile / (meth) acrylate copolymers are particularly preferred, these are e.g. available under the names "Dualite®” and “Expancel®” from the companies Pierce & Stevens and Casco Nobel, respectively.
  • thermally expandable plastic common other auxiliaries and additives such.
  • plasticizers rheology aids, wetting agents, adhesion promoters, anti-aging agents, stabilizers and / or color pigments.
  • the present invention relates to a heat exchanger, the heat exchanger fins and in thermal contact with these substantially borrowed parallel metal tubes, wherein the metal tubes are arranged substantially perpendicular to the slats and having open ends and wherein each two adjacent metal tubes are connected at their open ends in an overlap region by a respective U-shaped tailpipe, characterized in that the tailpipe consists of an expanded thermally expandable plastic and plugged in the overlap area on the metal pipes or inserted into the metal pipes.
  • the present invention relates to a heat exchanger which is obtainable by the method according to the invention described above.
  • the present invention also relates to a U-shaped end tube made of a thermally expandable plastic, which is prepared so that it can be used for the above-described manufacturing method of a heat exchanger.
  • suitable and preferred materials for the thermally expandable plastic in turn apply the statements that have been made above in connection with the manufacturing method according to the invention. This also applies to the different embodiments of the tailpipes in the intended overlap area with the metal pipes. Description of the pictures:
  • Figure 1 shows the schematic structure of a heat exchanger with metal pipes (1), whose ends are bridged by U-shaped tailpipes (3), so that the heat transfer fluid can flow through metal pipes and U-shaped tailpipes. Perpendicular to the metal pipes run the heat-conducting connected to the metal pipes cooling fins (2) and connect the metal pipes together.
  • FIG. 2 shows a possible embodiment of the present invention.
  • the U-shaped tail pipe (3) is widened in the overlapping area (4).
  • For joining the U-shaped tail pipe (3) is pushed with its overlap region over the metal tubes (1).
  • FIG. 3 shows a further embodiment of the present invention.
  • the metal tubes (1) are widened bell-shaped in their end region (overlap region 4). The joining of the parts takes place in that the U-shaped end tube (3) is inserted with its overlap region in the widened end part (4) of the metal tube (1).
  • the metal tubes (1) in the overlapping region (4) not bell-shaped, but be conically widened and constrict the two ends of the tail pipe (3) in the overlap region truncated cone-like.
  • FIG. 4 shows a further possible embodiment.
  • the metal tubes (1) in the overlapping region (4) are flared.
  • the tail pipes (3) have a higher wall thickness than the metal pipes.
  • the wall thickness of the tailpipes tapers in the overlap region with the metal tubes, so that the tailpipes can be inserted into the conically widened overlapping region of the metal tubes without the flow cross section changing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Epoxy Resins (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft einen Wärmetauscher sowie ein Verfahren zur Herstellung eines Wärmetauschers, der Wärmetauscher-Lamellen und mit diesen in thermischem Kontakt stehende im wesentlichen parallele Metallrohre aufweist, wobei die Metallrohre im wesentlichen senkrecht zu den Lamellen angeordnet sind und offene Enden aufweisen und wobei je zwei benachbarte Metallrohre an ihren offenen Enden in einem Überlappungsbereich durch jeweils ein U-förmiges Endrohr miteinander ohne Verwendung eines Klebstoffs verbunden werden, welches dadurch gekennzeichnet ist, dass man: a) ein Endrohr verwendet, das aus einem thermisch expandierbaren Kunststoff besteht, und dieses im Überlappungsbereich auf die Metallrohre aufsteckt oder in die Metallrohre einsteckt und b) das Endrohr aus thermisch expandierbarem Kunststoff auf eine Expansionstemperatur erwärmt, bei welcher der Kunststoff expandiert, so dass sich das Endrohr im Überlappungsbereich an die Metallrohre anpresst. Ferner betrifft die Erfindung ein uförmiges Endrohr, welches für die Verwendung in dem erfindungsgemäßen Verfahren hergerichtet ist.

Description

Wärmetauscher mit expandierbaren Kunststoff-Endrohren
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Wärmetauschers, wobei der Begriff „Herstellung" auch die Instandsetzung eines gebrauchten Wärmetauschers mit Hilfe der erfindungsgemäßen Verfahrensschritte umfasst. Weiterhin betrifft die Erfindung einen entsprechend hergestellten Wärmetauscher sowie Endrohre, die bei seiner Herstellung verwendet werden können.
Abbildung 1 zeigt den schematischen Aufbau eines Wärmetauschers, der nach dem erfindungsgemäßen Verfahren hergestellt werden kann. Diese Abbildung ist dem Dokument JP 2006/194543 entnommen. Dieser Wärmetauscher besteht aus metallischen Rohrstücken (1 ), die durch senkrecht zu den Rohrstücken verlaufende Kühllamellen (2) miteinander verbunden sind. Offene Enden benachbarter Metallrohre (1 ) werden in einem Überlappungsbereich durch U-förmige Endrohre miteinander verbunden, wofür gemäß dem zitierten Dokument ein flüssiger wärmehärtbarer Klebstoff verwendet wird. Das Auftragen eines flüssigen Klebstoffs im Fertigungsbereich der Wärmetauscher hat den Nachteil, dass hierfür spezielle Applikationssysteme zur Verfügung gestellt werden müssen. Fehlfunktionen der Applikationssysteme können zu einer Verschmutzung von Arbeitsbereich und Werkstücken mit Klebstoff führen. Die vorliegende Erfindung schlägt eine Lösung dieses Problems vor.
Im Gegensatz zu dieser Lehre wird erfindungsgemäß ein Verfahren zur Herstellung eines Wärmetauschers beschrieben, bei dem man a) ein Endrohr verwendet, das aus einem thermisch expandierbaren Kunststoff besteht, und dieses im Überlappungsbereich auf die Metallrohre aufsteckt oder in die Metallrohre einsteckt und b) das Endrohr aus thermisch expandierbarem Kunststoff auf eine Expansionstemperatur erwärmt, bei welcher der Kunststoff expandiert, so dass sich das Endrohr im Überlappungsbereich an die Metallrohre anpresst. Die Erfindung umfasst weiterhin einen entsprechend ausgeführten Wärmetauscher sowie vorgefertigte Endrohre, die für das erfindungsgemäße Verfahren verwendet werden können.
Ein erster Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines Wärmetauschers, der Wärmetauscher-Lamellen und mit diesen in thermischem Kontakt stehende im wesentlichen parallele Metallrohre aufweist, wobei die Metallrohre im wesentlichen senkrecht zu den Lamellen angeordnet sind und offene Enden aufweisen und wobei je zwei benachbarte Metallrohre an ihren offenen Enden in einem Überlappungsbereich durch jeweils ein U-förmiges Endrohr miteinander ohne Verwendung eines Klebstoffs verbunden werden, dadurch gekennzeichnet, dass man: a) ein Endrohr verwendet, das aus einem thermisch expandierbaren Kunststoff besteht, und dieses im Überlappungsbereich auf die Metallrohre aufsteckt oder in die Metallrohre einsteckt und b) das Endrohr aus thermisch expandierbarem Kunststoff auf eine Expansionstemperatur erwärmt, bei welcher der Kunststoff expandiert, so dass sich das Endrohr im Überlappungsbereich an die Metallrohre anpresst.
Nach diesem Verfahren kann beispielsweise ein Wärmetauscher hergestellt werden, wie er schematisch in Figur 1 dargestellt ist. Dabei ist es im Gegensatz zum Stand der Technik nicht mehr erforderlich, Endrohr und Metallrohre mit einem Klebstoff miteinander zu verbinden. Vielmehr können vorgefertigte lager- und versandfähige Endrohre hergestellt werden, die zur Fertigung des Wärmetauschers einfach auf die Metallrohre aufgesteckt oder in diese eingesteckt werden. Durch Erhitzen auf die Expansionstemperatur dehnt sich das Material des Endrohrs irreversibel aus, so dass sich das Endrohr im Überlappungsbereich an die Metallrohre anpresst und sich auf diese Weise mechanisch fest mit den Metallrohren verbindet.
In einer Ausführungsform dieser Erfindung verfährt man so, dass man i) bei der Herstellung des Endrohrs zumindest im Überlappungsbereich in dieses einen Heizfaden oder Heizdraht einbettet und ii) im Schritt b) das Endrohr zumindest im Überlappungsbereich mit Hilfe des Heizfadens oder Heizdrahts auf die Expansionstemperatur erwärmt. Dabei sorgt man dafür, dass die Enden des Heizfadens oder Heizdrahts aus dem Endrohr heraus ragen, so dass sie mit elektrischen Kontakten verbunden werden können. Zum Erwärmen verbindet man in dieser Ausführungsform die beiden aus dem Endrohr herausstehenden Enden des Heizfadens mit einer Stromquelle und leitet durch den Heizfaden oder Heizdraht einen Strom von einer solchen Stärke, dass der thermisch aktivierbare Kunststoff auf seine Aktivierungstemperatur erwärmt wird. Die erforderliche Stromstärke bzw. -Spannung kann in Vorversuchen ermittelt und an der Stromquelle fest eingestellt werden. Sofern nicht ein einziger Heizfaden oder Heizdraht verwendet wird, der das gesamte Endrohr durchzieht, sondern zwei getrennte Heizfäden oder Heizdrähte, die sich jeweils nur im Überlappungsbereich des Endrohrs befinden, hat man in jedem Überlappungsbereich einen Heizfaden oder Heizdraht, dessen Enden man aus dem Endrohr herausragen lässt, so dass sie mit einer Spannungsquelle verbunden werden können.
Nach der Expansion des Kunststoffs löst man die Enden des Heizfadens oder Heizdrahts wieder von der Stromquelle. Falls diese freien Enden die weitere Produktion stören, können sie abgeschnitten werden. Vorteilhafterweise belässt man sie jedoch an dem Endrohr, so dass sie bei der im folgenden beschriebenen Trennung der der Endrohre von den beiden Metallrohren für Reparaturzwecke wieder verwendet werden können.
Bei der Herstellung der Endrohre durch Extrusion oder im Spritzgussverfahren kann der Heizfaden bzw. Heizdraht in der Spritzgussform vorgelegt bzw. mit eingespritzt werden.
Wählt man diese Ausführungsform der vorliegenden Erfindung, erwärmt also das Endrohr zumindest im Überlappungsbereich mit Hilfe eines Heizfadens oder Heizdrahtes, kann dies bei geeigneter Ausführung eine spätere Reparatur erleichtern. Dabei wählt man vorzugsweise das Material des Endrohrs so, dass es bei starkem Erwärmen wieder erweicht. Die hierfür erforderliche Temperatur kann höher sein als diejenige, die erforderlich war, um den nicht expandierten Kunststoff zu aktivieren. Zum Trennen des Endrohrs von den beiden Metallrohren verbindet man die noch vorhandenen Enden des Heizfadens oder Heizdrahtes wiederum mit einer Stromquelle und leitet durch den Heizfaden bzw. den Heizdraht einen Strom von einer solchen Stärke, dass der Kunststoff erweicht. In diesem Zustand lässt sich das Endrohr leicht aus den Metallrohren heraus- ziehen. Sie werden hierbei nicht beschädigt, so dass sie nach der Reparatur wieder miteinander nach dem erfindungsgemäßen Verfahren verbunden werden können.
Wie bei Wärmetauschern üblich, ist das Material der Metallrohre vorzugsweise ausgewählt aus Kupfer oder einer Kupferlegierung oder aus Aluminium oder einer Aluminiumlegierung. Sofern die Metallrohre aus Aluminium oder einer Aluminiumlegierung bestehen, können sie zumindest im Überlappungsbereich vor dem Auf- oder Einstecken des Endrohrs einer chemischen Oberflächenbehandlung unterzogen werden. Für Einzelheiten wird auf die Ausführungen in GB 2008462 verwiesen. Anstelle der dort bevorzugt eingesetzten Chromatierung wird jedoch aus Umweltgründen ein chromfreies Konversionsverfahren bevorzugt, beispielsweise eine Behandlung der Aluminiumoberflächen mit einer sauren wässrigen Lösung komplexer Fluoride mindestens eines der Elemente B, Si, Ti, Zr. Hierfür können beispielsweise Verfahren eingesetzt werden, wie sie in EP 754 251 oder im dort einleitend zitierten Stand der Technik vorgeschlagen werden.
Eine mögliche Ausführungsform der vorliegenden Erfindung ist in Figur 2 dargestellt. Hierbei ist vorgesehen, dass das U-förmige Endrohr (3) auf die Metallrohre (1 ) aufgesteckt wird, so dass sich im Überlappungsbereich das Metallrohr innerhalb des U- förmigen Endrohrs befindet. Vorzugsweise ist dabei das U-förmige Endrohr im Überlappungsbereich aufgeweitet, so dass es über das Metallrohr geschoben werden kann, ohne dass eine Einengung des Strömungsquerschnitts im Metallrohr und im U-förmigen Endrohr eintritt.
Figur 3 ist ein Beispiel für eine alternative Ausführungsform, wobei das U-förmige Endrohr (3) in die Metallrohre (1 ) eingesteckt wird, so dass sich im Überlappungsbereich das U-förmige Endrohr (3) innerhalb des Metallrohrs (1 ) befindet. Vorzugsweise ist in diesem Fall das Metallrohr im Überlappungsbereich aufgeweitet, so dass das U-förmige Endrohr in das Metallrohr eingesteckt werden kann, ohne dass eine Verengung des Strömungsquerschnitts im Metallrohr und im U-förmigen Endrohr eintritt.
Figur 4 zeigt eine weitere mögliche Ausführungsform. Hierbei sind die Metallrohre (1 ) im Überlappungsbereich (4) konisch erweitert. Die Endrohre (3) weisen eine höhere Wandstärke als die Metallrohre auf. Dabei verjüngt sich die Wandstärke der Endrohre im Überlappungsbereich mit den Metallrohren, so dass die Endrohre in den kegelförmig aufgeweiteten Überlappungsbereich der Metallrohre eingeschoben werden können, ohne dass sich der Strömungsquerschnitt verändert.
Für das erfindungsgemäße Verfahren verwendet man als Material der Endrohre vorzugsweise einen thermisch expandierbaren Kunststoff, der sein Volumen beim Erwärmen auf Expansionstemperatur um 0,5 bis 50 %, vorzugsweise um 1 bis 25 % vergrößert. Hierunter ist zu verstehen, dass der Kunststoff zusätzlich zur normalen und reversiblen thermischen Ausdehnung gemäß seinem thermischen Ausdehnungskoeffizienten sein Volumen im Vergleich zum Ausgangsvolumen bei Raumtemperatur (22 0C) beim Erwärmen auf die Expansionstemperatur irreversibel derart vergrößert, dass es nach dem Wiederabkühlen auf Raumtemperatur um 0,5 bis 50 %, vorzugsweise um 1 bis 25 % größer ist als zuvor. Der angegebene Expansionsgrad bezieht sich also auf das Volumen des Kunststoffs bei Raumtemperatur vor und nach dem vorübergehenden Erhitzen auf Expansionstemperatur.
Vorzugsweise verwendet man einen thermisch expandierbaren Kunststoff, dessen Expansionstemperatur im Bereich von 130 bis 220 0C liegt. Man erwärmt dann im Schritt b) zumindest das Endrohr auf eine Temperatur, die größer als oder gleich der Expansionstemperatur ist. Als Obergrenze gilt diejenige Temperatur, bei welcher der Kunststoff thermisch geschädigt wird oder so stark erweicht, dass sich die Endrohre auf unerwünschte Weise verformen. In der Praxis ist es nicht erforderlich, eine Temperatur von 250 0C zu überschreiten. Das Erwärmen kann beispielsweise dadurch erfolgen, dass man den gesamten zusammengefügten Wärmetauscher in einen entsprechend erwärmten Heizofen einbringt und zumindest so lange darin belässt, bis die Endrohre die Expansionstemperatur des Kunststoffs angenommen haben. Danach entnimmt man den Wärmetauscher und lässt ihn auf Umgebungstemperatur abkühlen. Erwünschten- falls kann das Abkühlen beschleunigt werden, beispielsweise durch Abblasen mit Luft oder durch Eintauchen in ein Kühlmedium wie beispielsweise Wasser.
Vorzugsweise enthält der thermisch expandierbare Kunststoff mindestens die folgenden Komponenten: a) mindestens ein reaktives Präpolymer, b) mindestens ein (chemisches oder physikalisches) latentes Treibmittel. Je nach chemischer Natur des Präpolymers kann die Masse zusätzlich enthalten: c) mindestens einen latenten Härter für das reaktive Präpolymer.
Dabei bedeutet „latent", dass die erwünschte Reaktion der jeweiligen Komponente nicht unterhalb von 80 0C, jedoch im Temperaturbereich von 130 bis 220 0C eintritt.
Insbesondere enthält der thermisch expandierbare Kunststoff vorzugsweise mindestens: a) ein bei Temperaturen im Bereich von 130 bis 220 0C mit sich selbst oder mit anderen Bestandteilen der Masse (z.B. einem gegebenenfalls zugesetzem Härter) vernetzendes Harz (im weiteren auch als „Bindemittel" bezeichnet), b) ein Treibmittel, das bei einer Temperatur im Bereich von 130 bis 220 0C unter Volumenvergrößerung oder Gasentwicklung reagiert und hierdurch das Volumen der Masse mindestens im weiter oben angegebenen Ausmaß vergrößert.
In einer besonders bevorzugten Ausführungsform enthalten die Zusammensetzungen für den thermisch expandierbare Kunststoff zusätzlich Fasern, beispielsweise auf der Basis von Aramidfasern, Kohlenstoff-Fasern, Metallfasern - z.B. aus Aluminium-, Glasfasern, Polyamidfasern, Polyethylenfasern oder Polyesterfasern, wobei diese Fasern vorzugsweise Pulpfasern oder Stapelfasern sind, die eine Faserlänge zwischen 0,5 und 6 mm und einen Durchmesser von 5 bis 20 μm haben. Die Fasern können jedoch auch länger als 6 mm sein, beispielsweise bis zu 20 mm oder darüber, und sie können als Fasergebilde wie beispielsweise ein Fasergewirke oder -gewebe vorliegen.
Das härtbare Harz a) kann beispielsweise ausgewählt sein aus: Polyurethanen mit freien oder blockierten Isocyanatgruppen, ungesättigten Polyester-/Styrolsystemen, PoIy- ester-/Polyolmischungen, Polymercaptanen, Siloxan-funktionellen reaktiven Harzen o- der Kautschuke, Harzen auf Benzoxazin-Basis sowie Harzen auf Basis von reaktiven Epoxidgruppen. Aufgrund der mechanischen Eigenschaften ist es bevorzugt, als härtbares Harz a) ein Polyurethanharz oder ein Vorläufer hiervon oder ein Harz auf Basis von reaktiven Epoxidgruppen zu verwenden. Ist das reaktive Präpolymer a) ein Polyurethanharz oder ein Polyurethanharz-Vorläufer, stellt der latente Härter c) einen Härter für Polyurethanharze dar. Wählt man als reaktives Präpolymer a) ein Epoxidharz, stellt der latente Härter c) einen Härter für Epoxidharze dar. Beispiele hierfür folgen weiter unten.
Weitere geeignete polymere Basisbindemittel („Harze") für den thermisch expandierbaren Kunststoff sind beispielsweise Ethylenvinylacetat-Copolymere (EVA), Copolymere des Ethylens mit (Meth)acrylatestern, die gegebenenfalls noch anteilig (Meth)acrylsäure einpolymehsiert enthalten, statistische oder Blockcopolymere des Styrols mit Butadien oder Isopren oder deren Hydrierungsprodukte. Letztere können auch Triblockcopolyme- re vom Typ SBS, SIS oder deren Hydrierungsprodukte SEBS oder SEPS sein. Zusätzlich können die Bindemittel noch Vernetzer, Haftvermittler, klebrig machende Harze („tackifier"), Weichmacher sowie weitere Hilfs- und Zusatzstoffe wie z. B. niedermolekulare Oligomere enthalten.
Nachfolgend wird ein Bindemittelsystem („Harz) für den thermisch expandierbaren Kunststoff auf Basis von Epoxidharzen und Härtern beschrieben, wie sie beispielsweise in der WO 00/52086, WO 2003/054069 sowie WO 2004/065485 offenbart sind:
Als Epoxidharze eignen sich eine Vielzahl von Polyepoxiden, die mindestens 2 1 ,2- Epoxigruppen pro Molekül haben. Das Epoxid-Äquivalent dieser Polyepoxide kann zwischen 150 und 50000, vorzugsweise zwischen 170 und 5000 variieren. Die Polyepoxide können grundsätzlich gesättigte, ungesättigte, cyclische oder acyclische, aliphatische, alicyclische, aromatische oder heterocyclische Polyepoxidverbindungen sein. Beispiele für geeignete Polyepoxide schließen die Polyglycidylether ein, die durch Reaktion von Epichlorhydrin oder Epibromhydrin mit einem Polyphenol in Gegenwart von Alkali hergestellt werden. Hierfür geeignete Polyphenole sind beispielsweise Resorcin, Brenzka- techin, Hydrochinon, Bisphenol A (Bis-(4-Hydroxy-phe-nyl)-2,2-propan)), Bisphenol F (Bis(4-hydroxyphenyl)methan), Bis(4-hy-droxyphenyl)-1 ,1 -isobutan, 4,4'-Dihydroxy- benzophenon, Bis(4-hydroxyphe-nyl)-1 ,1 -ethan, 1 ,5-Hydroxy-naphthalin. Weitere geeignete Polyphenole als Basis für die Polyglycidylether sind die bekannten Kondensationsprodukte aus Phenol und Formaldehyd oder Acetaldehyd vom Typ der Novolak- Harze.
Weitere Polyepoxide sind Polyglycidylester von Polycarbonsäuren, beispielsweise Umsetzungsprodukte von Glycidol oder Epichlorhydrin mit aliphatischen oder aromatischen Polycarbonsäuren wie Oxalsäure, Bernsteinsäure, Glutarsäure, Terephthalsäure oder Dinnerfettsäure.
Weitere Epoxide leiten sich von den Epoxidierungsprodukten olefinisch un-gesättigter cycloaliphatischer Verbindungen oder von nativen Ölen und Fetten ab.
Ganz besonders bevorzugt werden die Epoxidharze, die sich durch Reaktion von Bisphenol A oder Bisphenol F und Epichlorhydrin ableiten.
Als Flexibilisierungsmittel können flexibilisierend wirkende Epoxidharze wie die an sich bekannten Addukte aus Carboxyl-terminierten Butadienacrylnitrilcopolymeren (CTBN) und flüssigen Epoxidharzen auf der Basis des Diglycidylethers vom Bisphenol A eingesetzt werden. Konkrete Beispiele sind die Umsetzungsprodukte der Hycar CTBN 1300 X8, 1300 X13 oder 1300 X15 der Firma B. F. Goodrich mit flüssigen Epoxidharzen. Weiterhin lassen sich auch die Umsetzungsprodukte von aminoterminierten Polyalkylengly- kolen (Jeffamine) mit einem Überschuss an flüssigen Polyepoxiden einsetzen. Grundsätzlich können auch Umsetzungsprodukte von Mercapto-funktionellen Präpolymeren oder flüssige Thiokol-Polymere mit einem Überschuss an Polyepoxiden als flexibilisie- rende Epoxidharze eingesetzt werden. Weitere geeignete Beispiele sind die Umsetzungsprodukte von polymeren Fettsäuren, insbesondere der Dimerfettsäure mit Epichlorhydrin, Glycidol oder insbesondere Diglycidylether des Bisphenols A (DGBA). Weiterhin eignen sich die Copolymeren des Acrylnitrils mit Butadien und oder Isopren und ggf. (Meth)acrylsäure mit einem Acrylnitrilgehalt zwischen 10 und 50 Gew.-%, vorzugsweise zwischen 20 und 40 Gew.% und einem (Meth)acrylsäuregehalt zwischen 0,0 und 1 Gew.%, vorzugsweise zwischen 0,0 und 0,1 Gew.% als Flexibilisierungsmittel. Es können auch Mischungen der vorgenannten Flexibilisierungsmittel eingesetzt werden.
Der thermisch expandierbare Kunststoff kann zum Einstellen einer erwünschten Viskosität für beispielsweise einen Spritzgussprozess reaktive Verdünner enthalten. Reaktive Verdünner im Sinne dieser Erfindung sind Epoxidgruppen enthaltende, niederviskose Substanzen (Glycidylether oder Glycidylester) mit aliphatischer oder aromatischer Struktur. Diese Reaktivverdünner dienen einerseits zur Viskositätserniedrigung des Bindemittel-Systems oberhalb des Erweichungspunktes, andererseits steuern sie den Vorgelierungsprozess im Spritzguss. Typische Beispiele für erfindungsgemäß einzuset- zende Reaktivverdünner sind Mono-, Di- oder Triglycidylether von Cβ- bis Ci4- Monoalkoholen oder Alkylphenolen sowie die Monoglycidylether des Cashewnuss- Schalenöls, Diglycidylether des Ethylenglycols, Diethylenglycols, Triethylenglycols, Tet- raethylenglykols, 1 ,2-Propylenglycols, 1 ,4-Butylenglycols, 1 ,5-Pentandiols, 1 ,6- Hexandiols, Cyclohexandimethanols, Triglycidylether des Tri-methylolpropans sowie die Glycidylester von Cβ- bis C24- Carbonsäuren oder deren Mischungen.
Da der thermisch expandierbare Kunststoff vorzugsweise einkomponentig ausgebildet ist und in der Hitze härtbar sein soll, enthält er vorzugsweise einen latenten Härter und/oder zusätzlich einen oder mehrere Beschleuniger.
Als thermisch aktivierbare oder latente Härter für ein Epoxidharz-Bindemit-telsystem können Guanidine, substituierte Guanidine, substituierte Harnstoffe, Melaminharze, Guanamin-Derivate, cyclische tertiäre Amine, aromatische Amine und/oder deren Mischungen eingesetzt werden. Dabei können die Härter sowohl stöchiometrisch mit in die Härtungsreaktion einbezogen sein, sie können jedoch auch katalytisch wirksam sein. Beispiele für substituierte Guanidine sind Methylguanidin, Dimethylguanidin, Th- methylguanidin, Tetramethylguanidin, Methylisobiguanidin, Dimethylisobiguanidin, Tetramethylisobiguanidin, Hexamethylisobiguanidin, Hepamethylisobiguanidin und ganz besonders Cyanoguanidin (Dicyandiamid). Als Vertreter für geeignete Guanamin- Derivate seien alkylierte Benzoguanamin-Harze, Benzoguanamin-Harze oder Methoxi- methyl-ethoxymethylbenzoguanamin genannt. Für die einkomponentigen, hitzehärtenden Kunststoff-Massen ist selbstverständlich das Auswahlkriterium die niedrige Löslichkeit dieser Stoffe bei Raumtemperatur in dem Harzsystem, so dass hier feste, fein ver- mahlene Härter den Vorzug haben, insbesondere ist Dicyandiamid geeignet. Damit ist eine gute Lagerstabilität der Endrohre gewährleistet.
Zusätzlich oder anstelle von den vorgenannten Härtern können katalytisch wirksame substituierte Harnstoffe eingesetzt werden. Dies sind insbesondere: p-Chlorphenyl-N,N- dimethylharnstoff (Monuron), 3-Phenyl-1 ,1 -di-methylharnstoff (Fenuron) oder 3,4- Dichlorphenyl-N,N-dimethylharnstoff (Diuron). Prinzipiell können auch katalytisch wirksame tertiäre Acryl- oder Alkyl-Amine, wie beispielsweise das Benzyldimethylamin, Ths(dimethylamino)phenol, Piperidin oder Piperidinderivate eingesetzt werden, diese haben jedoch vielfach eine zu hohe Löslichkeit in dem Bindemittelsystem, so dass hier keine brauchbare Lagerstabilität des einkomponentigen Systems erreicht wird. Weiterhin können diverse, vorzugsweise feste, Imidazoldehvate als katalytisch wirksame Beschleuniger eingesetzt werden. Stellvertretend genannt seien 2-Ethyl-2-methylimidazol, N-Butylimidazol, Benzimidazol sowie N-C1- bis C12-Alkylimidazole oder N-Aryl- imidazole, Triazindehvate sowie Imidazol/Triazinverbindungen (z.B. C11 -Z-Azine). Es können auch Kombinationen aus Härter und Beschleuniger in Form von sog. beschleunigten Dicyandiamiden in fein vermahlener Form verwendet werden. Dadurch erübrigt sich gelegentlich der separate Zusatz von katalytisch wirksamen Beschleunigern zu dem Epoxid-Härtungssystem.
Für besonders reaktive Systeme können auch fein vermahlene pulverförmige Härtungsbeschleuniger auf der Basis von Addukten von Aminen an Epoxydharze verwendet werden, diese Addukte weisen tertiäre Aminogruppen und Epoxigruppen auf. Diese latenten, pulverförmigen Beschleuniger können in Kombination mit den vorgenannten latenten Härtern und/oder Beschleunigern eingesetzt werden.
Weiterhin kann der thermisch expandierbare Kunststoff mindestens ein feinteiliges thermoplastisches Polymerpulver enthalten. Diese thermoplastischen Polymerpulver können im Prinzip aus einer Vielzahl von feinteiligen Polymerpulvern ausgewählt werden, beispielhaft erwähnt seien Vinylacetat-Homopolymer, Vinylacetatcopolymer, Ethy- lenvinylacetat-Copolymer, Vinylchlorid-Homopolymer (PVC) oder Copolymere des Vi- nylchlorids mit Vinylacetat und/oder (Meth)acrylaten, Styrol-Homo- oder -Copolymere, (Meth)acrylat-Homo- oder -Copolymere oder Polyvinylbutyral. Besonders bevorzugte thermoplastische Polymere enthalten funktionelle Gruppen wie Carboxylgruppen, Carbonsäureanhydridgruppen oder Imidazolgruppen und haben eine Kern/Schale Struktur, wobei die Schale dieser Polymeren bei Raumtemperatur gegenüber Weichmachern o- der Reaktivverdünnern ein geringes Quellungsverhalten aufweisen. Bei der Vorgelie- rungsreaktion während eines Spritzgussprozesses des thermisch expandierbaren Kunststoffs quellen diese Kern/Schalepolymere sehr rasch auf und bewirken nach dem Abkühlen der extrudierten Masse sofort eine klebfreie Oberfläche der expandierbaren Endrohre. Diese Polymerpulver sollen eine mittlere Korngröße unter 1 mm, vorzugsweise unter 350 μm und ganz besonders bevorzugt unter 100 μm aufweisen. In der Regel enthält der thermisch expandierbare Kunststoff weiterhin an sich bekannte Füllstoffe wie zum Beispiel die diversen gemahlenen oder gefällten Kreiden, Ruß, CaI- cium-Magnesiumcarbonate, Schwerspat sowie insbesondere silicatische Füllstoffe vom Typ des Aluminium-Magnesium-Calcium-Silicats, z. B. Wollastonit, Chlorit.
Sollen besonders leichte Endrohre hergestellt werden, enthält der thermisch expandierbare Kunststoff vorzugsweise zusätzlich zu den vorgenannten "normalen" Füllstoffen sog. Leichtfüllstoffe, die ausgewählt werden können aus der Gruppe der Metallhohlkugeln wie z. B. Stahlhohlkugeln, Glashohlkugeln, Flugasche (Fillite), Kunststoffhohlkugeln auf der Basis von Phenol-harzen, Epoxidharzen oder Polyestern, expandierte Microhohlkugeln mit Wandmaterial aus (Meth)acrylsäureester-Copolymeren, Poly-styrol, Styrol(meth)acrylat-Copolymeren sowie insbesondere aus Polyvinylidenchlorid sowie Copolymeren des Vinyliden-chlorids mit Acrylnitril und/oder (Meth)acrylsäureestern, keramische Hohlkugeln oder organische Leichtfüllstoffe natürlichen Ursprungs wie gemahlene Nussschalen, beispielsweise die Schalen von Cashewnüssen, Kokosnüssen oder Erdnuss-schalen sowie Korkmehl oder Kokspulver.
Als Treibmittel (Komponente b) eignen sich zwar im Prinzip alle bekannten Treibmittel wie z. B. "chemische Treibmittel", die durch Zersetzung Gase freisetzen, oder "physikalische Treibmittel", d.h. expandierende Hohlkugeln. Beispiele für die erstgenannten Treibmittel sind Azobisisobutyronitril, Azodicarbonamid, Di-Nitroso-pentamethylen- tetramin, 4,4'-Oxybis(benzolsulfonsäurehydrazid), Diphenylsulfon-3,3'-disulfohydrazid, Benzol-1 ,3-disulfohydrazid, p-Toluolsulfonylsemicarbazid. Besonders bevorzugt werden jedoch die expandierbaren Kunststoffmikrohohlkugeln auf der Basis von Polyvinyli- denchlohdcopolymeren oder Acrylnitril/(Meth)acrylat-Copolymeren, diese sind z.B. unter den Namen "Dualite®" bzw. "Expancel®" von den Firmen Pierce & Stevens bzw. Casco Nobel im Handel erhältlich.
Weiterhin kann der thermisch expandierbare Kunststoff gängige weitere Hilfs- und Zusatzmittel wie z. B. Weichmacher, Rheologie-Hilfsmittel, Netzmittel, Haftvermittler, Alterungsschutzmittel, Stabilisatoren und/oder Farbpigmente enthalten.
In einem weiteren Aspekt betrifft die vorliegende Erfindung einen Wärmetauscher, der Wärmetauscher-Lamellen und mit diesen in thermischem Kontakt stehende im wesent- liehen parallele Metallrohre aufweist, wobei die Metallrohre im wesentlichen senkrecht zu den Lamellen angeordnet sind und offene Enden aufweisen und wobei je zwei benachbarte Metallrohre an ihren offenen Enden in einem Überlappungsbereich durch jeweils ein U-förmiges Endrohr miteinander verbunden sind, dadurch gekennzeichnet, dass das Endrohr aus einem expandierten thermisch expandierbaren Kunststoff besteht und im Überlappungsbereich auf die Metallrohre aufgesteckt oder in die Metallrohre eingesteckt ist.
Für die geeigneten und bevorzugten Zusammensetzungen des thermisch expandierbaren Kunststoffes gelten die vorstehenden Ausführungen entsprechend, die zur Erläuterung des erfindungsgemäßen Verfahrens gemacht wurden.
Insbesondere betrifft die vorliegende Erfindung einen Wärmetauscher, der nach dem vorstehend beschriebenen erfindungsgemäßen Verfahren erhältlich ist. Dies gilt zum einen für die Zusammensetzung des thermisch expandierbaren Kunststoffes und zum anderen für die unterschiedlichen Weisen, wie die Endrohre auf die Metallrohre aufgesteckt oder in die Metallrohre eingesteckt sind. Aus der vorstehend gegebenen Verfahrensbeschreibung zur Herstellung des Wärmetauschers ergibt sich zwangsläufig, wie dieser ausgestaltet sein kann.
Ein Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass die Endrohre aus dem thermisch expandierbaren Kunststoff als solche unmittelbar verwendungsfähig hergestellt, gelagert und versandt werden können. Diese Endrohre stellen also selbst ein Wirtschaftsgut dar, das industriell hergestellt und an den Hersteller des fertigen Wärmetauschers geliefert werden kann. Daher betrifft die vorliegende Erfindung in einem weiteren Aspekt auch ein U-förmiges Endrohr aus einem thermisch expandierbaren Kunststoff, das so hergerichtet ist, dass es für das vorstehend beschriebene Herstellungsverfahren eines Wärmetauschers verwendet werden kann. Für geeignete und bevorzugte Materialien für den thermisch expandierbaren Kunststoff gelten wiederum die Ausführungen, die vorstehend im Zusammenhang mit dem erfindungsgemäßen Herstellungsverfahren gemacht wurden. Ebenso gilt dies für die unterschiedlichen Ausgestaltungen der Endrohre im vorgesehenen Überlappungsbereich mit den Metallrohren. Beschreibung der Abbildungen:
Figur 1 zeigt den schematischen Aufbau eines Wärmetauschers mit Metallrohren (1 ), deren Enden durch U-förmige Endrohre (3) überbrückt werden, so dass die Wärmeträgerflüssigkeit Metallrohre und U-förmige Endrohre durchströmen kann. Senkrecht zu den Metallrohren verlaufen die wärmeleitend mit den Metallrohren verbundenen Kühlrippen (2) und verbinden die Metallrohre miteinander.
Figur 2 zeigt eine mögliche Ausführungsform der vorliegenden Erfindung. Das U- förmige Endrohr (3) ist im Überlappungsbereich (4) aufgeweitet. Zum Zusammenfügen wird das U-förmige Endrohr (3) mit seinem Überlappungsbereich über die Metallrohre (1 ) geschoben.
Figur 3 zeigt eine weitere Ausführungsform der vorliegenden Erfindung. In diesem Falle sind die Metallrohre (1 ) in ihrem Endbereich (Überlappungsbereich 4) glockenförmig aufgeweitet. Das Fügen der Teile geschieht dadurch, dass das U-förmige Endrohr (3) mit seinem Überlappungsbereich in den aufgeweiteten Endteil (4) des Metallrohrs (1 ) eingesteckt wird. Alternativ hierzu (nicht dargestellt) können die Metallrohre (1 ) im Überlappungsbereich (4) nicht glockenförmig, sondern konisch erweitert sein und sich die beiden Enden des Endrohrs (3) im Überlappungsbereich Kegelstumpf-artig verengen.
Figur 4 zeigt eine weitere mögliche Ausführungsform. Hierbei sind die Metallrohre (1 ) im Überlappungsbereich (4) konisch erweitert. Die Endrohre (3) weisen eine höhere Wandstärke als die Metallrohre auf. Dabei verjüngt sich die Wandstärke der Endrohre im Überlappungsbereich mit den Metallrohren, so dass die Endrohre in den kegelförmig aufgeweiteten Überlappungsbereich der Metallrohre eingeschoben werden können, ohne dass sich der Strömungsquerschnitt verändert.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Wärmetauschers, der Wärmetauscher-Lamellen und mit diesen in thermischem Kontakt stehende im wesentlichen parallele Metallrohre aufweist, wobei die Metallrohre im wesentlichen senkrecht zu den Lamellen angeordnet sind und offene Enden aufweisen und wobei je zwei benachbarte Metallrohre an ihren offenen Enden in einem Überlappungsbereich durch jeweils ein U- förmiges Endrohr miteinander ohne Verwendung eines Klebstoffs verbunden werden, dadurch gekennzeichnet, dass man: a) ein Endrohr verwendet, das aus einem thermisch expandierbaren Kunststoff besteht, und dieses im Überlappungsbereich auf die Metallrohre aufsteckt oder in die Metallrohre einsteckt und b) das Endrohr aus thermisch expandierbarem Kunststoff auf eine Expansionstemperatur erwärmt, bei welcher der Kunststoff expandiert, so dass sich das Endrohr im Überlappungsbereich an die Metallrohre anpresst.
2. Verfahren nach Anspruch 1 , wobei man i) bei der Herstellung des Endrohrs zumindest im Überlappungsbereich in dieses einen Heizfaden oder Heizdraht einbettet und ii) im Schritt b) das Endrohr zumindest im Überlappungsbereich mit Hilfe des Heizfadens oder Heizdrahts auf die Expansionstemperatur erwärmt.
3. Verfahren nach mindestens einem der Ansprüche 1 und 2, wobei das Material der Metallrohre ausgewählt ist aus Kupfer oder einer Kupferlegierung oder aus Aluminium oder einer Aluminiumlegierung.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Metallrohre aus A- luminium oder einer Aluminiumlegierung bestehen und dass sie zumindest im Überlappungsbereich vor dem Auf- oder Einstecken des Endrohrs einer chemischen O- berflächenbehandlung unterzogen werden.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Metallrohre im Überlappungsbereich aufgeweitet sind und dass man das Endrohr im Schritt a) in den aufgeweiteten Überlappungsbereich einsteckt.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man einen thermisch expandierbaren Kunststoff verwendet, der sein Volumen beim Erwärmen auf Expansionstemperatur um 0,5 bis 50 % vergrößert.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man einen thermisch expandierbaren Kunststoff verwendet, dessen Expansionstemperatur im Bereich von 130 bis 220 0C liegt, und dass man im Schritt b) das Endrohr auf eine Temperatur erwärmt, die größer als oder gleich der Expansionstemperatur ist.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der thermisch expandierbare Kunststoff mindestens die folgenden Komponenten enthält: a) mindestens ein reaktives Präpolymer, b) mindestens ein Treibmittel.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der thermisch expandierbare Kunststoff zusätzlich c) mindestens einen latenten Härter und/oder Beschleuniger für das reaktive Präpolymer enthält.
10.Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass der thermisch expandierbare Kunststoff zusätzlich d) Fasern oder Fasergebilde enthält.
11.Verfahren nach einem oder mehreren der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das reaktive Präpolymer a) ein Epoxidharz und dass der latente Härter c) einen Härter für Epoxidharze darstellt.
12. Verfahren nach einem oder mehreren der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das reaktive Präpolymer a) ein Polyurethanharz oder ein Polyurethanharz-Vorläufer und dass der latente Härter c) einen Härter für Polyurethanhar- ze darstellt.
13. Wärmetauscher, der Wärmetauscher-Lamellen und mit diesen in thermischem Kontakt stehende im wesentlichen parallele Metallrohre aufweist, wobei die Metallrohre im wesentlichen senkrecht zu den Lamellen angeordnet sind und offene Enden aufweisen und wobei je zwei benachbarte Metallrohre an ihren offenen Enden in einem Überlappungsbereich durch jeweils ein U-förmiges Endrohr miteinander verbunden sind, dadurch gekennzeichnet, dass das Endrohr aus einem expandierten thermisch expandierbaren Kunststoff besteht und im Überlappungsbereich auf die Metallrohre aufgesteckt oder in die Metallrohre eingesteckt ist.
14. Wärmetauscher nach Anspruch 13, der nach einem Verfahren nach einem oder mehreren der Ansprüche 1 bis 12 erhältlich ist.
15. U-förmiges Endrohr aus einem thermisch expandierbaren Kunststoff, das so hergerichtet ist, dass es für ein Verfahren nach einem oder mehreren der Ansprüche 1 bis 12 verwendet werden kann.
PCT/EP2009/054239 2008-04-18 2009-04-08 Wärmetauscher mit expandierbaren kunststoff-endrohren WO2009127578A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008019761A DE102008019761B3 (de) 2008-04-18 2008-04-18 Wärmetauscher mit expandierbaren Kunststoff-Endrohren
DE102008019761.0 2008-04-18

Publications (1)

Publication Number Publication Date
WO2009127578A1 true WO2009127578A1 (de) 2009-10-22

Family

ID=40586171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/054239 WO2009127578A1 (de) 2008-04-18 2009-04-08 Wärmetauscher mit expandierbaren kunststoff-endrohren

Country Status (2)

Country Link
DE (1) DE102008019761B3 (de)
WO (1) WO2009127578A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014222563A1 (de) * 2014-11-05 2016-05-12 Mahle International Gmbh Verfahren zum Herstellen einer Anordnung mit einem Rohrkörper und einem Bauteil
DE102017206687B4 (de) * 2017-04-20 2020-10-29 Zf Friedrichshafen Ag Verfahren zum Herstellen eines Fahrzeugbauteils und ein solches Fahrzeugbauteil, insbesondere Fahrwerkbauteil
DE102019112239A1 (de) * 2019-05-10 2020-11-12 Mahle International Gmbh Wärmeübertrager

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD263022A1 (de) * 1986-07-22 1988-12-21 Paolo Bonazelli Polyaethylenrohr mit integrierter widerstandserwaermung zum verbinden durch erwaermen
DE19546917A1 (de) * 1994-12-22 1996-06-27 Valeo Climatisation Wärmetauscher mit zusammengesteckten Rohrelementen, insbesondere für Kraftfahrzeuge, und Herstellungsverfahren
EP0727633A1 (de) * 1994-12-22 1996-08-21 Valeo Climatisation Wärmetauscher mit rohrförmigen, ineinandergesteckten Elementen, insbesondere für Kraftfahrzeuge, Und Verfahren zu seiner Herstellung
US5836621A (en) * 1996-05-28 1998-11-17 Campbell; Steve Method of and joint for electrofusion coupling of thermoplastic pipes
DE10114300C1 (de) * 2001-03-23 2002-10-31 Uponor Innovation Ab Fitting für den Anschluss eines Kunststoffrohres
DE10302298A1 (de) * 2003-01-22 2004-08-05 Henkel Kgaa Hitzehärtbare, thermisch expandierbare Zusammensetzung mit hohem Expansionsgrad

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196923A (en) * 1977-11-25 1980-04-08 Carrier Corporation Adhesive bonding of aluminum coils
DE3418110C2 (de) * 1984-05-16 1986-04-03 Dornier Gmbh, 7990 Friedrichshafen Verfahren zur Herstellung von ausgesteiften, tragenden Strukturen aus faserverstärktem härtbaren Kunststoff
DE4412138A1 (de) * 1994-04-08 1995-10-12 Henkel Kgaa Chromfreies Verfahren zur No-Rinse Behandlung von Aluminium und seinen Legierungen sowie hierfür geeignete wäßrige Badlösungen
DE19909270A1 (de) * 1999-03-03 2000-09-07 Henkel Teroson Gmbh Hitzehärtbarer, thermisch expandierbarer Formkörper
EP1456286B1 (de) * 2001-12-21 2012-06-13 Henkel AG & Co. KGaA Expandierbare epoxysysteme modifieziert mit thermoplastischen polymerzusammensetzungen
JP2006194543A (ja) * 2005-01-14 2006-07-27 Nagase Chemtex Corp 熱交換機の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD263022A1 (de) * 1986-07-22 1988-12-21 Paolo Bonazelli Polyaethylenrohr mit integrierter widerstandserwaermung zum verbinden durch erwaermen
DE19546917A1 (de) * 1994-12-22 1996-06-27 Valeo Climatisation Wärmetauscher mit zusammengesteckten Rohrelementen, insbesondere für Kraftfahrzeuge, und Herstellungsverfahren
EP0727633A1 (de) * 1994-12-22 1996-08-21 Valeo Climatisation Wärmetauscher mit rohrförmigen, ineinandergesteckten Elementen, insbesondere für Kraftfahrzeuge, Und Verfahren zu seiner Herstellung
US5836621A (en) * 1996-05-28 1998-11-17 Campbell; Steve Method of and joint for electrofusion coupling of thermoplastic pipes
DE10114300C1 (de) * 2001-03-23 2002-10-31 Uponor Innovation Ab Fitting für den Anschluss eines Kunststoffrohres
DE10302298A1 (de) * 2003-01-22 2004-08-05 Henkel Kgaa Hitzehärtbare, thermisch expandierbare Zusammensetzung mit hohem Expansionsgrad

Also Published As

Publication number Publication date
DE102008019761B3 (de) 2009-06-04

Similar Documents

Publication Publication Date Title
EP2084215B1 (de) Duktile strukturschäume
EP1590403B1 (de) Hitzehärtbare, thermisch expandierbare zusammensetzung mit hohem expansionsgrad
EP2435524B1 (de) Klebefolie oder klebeband auf basis von epoxiden
EP1346002B1 (de) Mehrschichtige metall-sandwich-materialien mit epoxidbasisierten klebersystemen
DE102007038659A1 (de) Expandierbares, extrudiertes Formteil und Verfahren zu seiner Herstellung
EP2462202B1 (de) Verfahren zum befestigen eines magneten auf oder in einem rotor oder stator
EP2350177B1 (de) Epoxid-basierter strukturschaum mit verbesserter zähigkeit
DE202014011009U1 (de) Wärmehärtende Klebstofffolien mit einem Faserträger
EP2566922B1 (de) 1k-epoxidharzzusammensetzung mit verringerter toxizität
EP1163288A2 (de) Hitzehärtbarer, thermisch expandierbarer epoxyharzformkörper
EP2831164B1 (de) Thermisch expandierbare zubereitungen
DE102014226826A1 (de) Epoxidharz-Zusammensetzung
DE102008053520A1 (de) Strukturschaum auf Epoxidbasis mit thermoplastischen Polyurethanen
DE102007059183A1 (de) Verfahren zur Verstärkung, Dämmung, Dämpfung und/oder Abdichtung von Hohlbauteilen
DE102006048739A1 (de) Expandierbare, thermisch härtbare Zusammensetzung auf Basis von Epoxidharzen mit verbesserten Fließeigenschaften
EP2491088B1 (de) Schlagzähe, bei raumtemperatur härtende zweikomponentige masse auf epoxidbasis
WO2009077212A1 (de) Thermoplast-haltige epoxidharze und deren verarbeitung durch extrusion oder spritzguss
DE102008019761B3 (de) Wärmetauscher mit expandierbaren Kunststoff-Endrohren
DE102010044116A1 (de) Verfahren zur Herstellung von Bauteilen
DE102008028638A1 (de) Kleb- und Dichtstoff oder Strukturschaum auf Epoxidbasis enthaltend anorganische Nanopartikel mit Acrylsäureester-haltiger Hülle
DE10163248A1 (de) Flächenversteifende Schichtkörper
DE102007025870A1 (de) Hitzehärtbarer, thermisch expandierbarer Formkörper mit Langfasern oder Fasergebilden
DE102007032631A1 (de) Individuelle Karosserieversteifung in der Lacklinie
DE10163253A1 (de) Hitzehärtbarer, thermisch expandierender Formkörper
DE102010044115A1 (de) Verfahren zur Herstellung von Rollstühlen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09732724

Country of ref document: EP

Kind code of ref document: A1