WO2009125869A1 - Near-infrared-shielding structure and optical filter for display employing the same - Google Patents

Near-infrared-shielding structure and optical filter for display employing the same Download PDF

Info

Publication number
WO2009125869A1
WO2009125869A1 PCT/JP2009/057458 JP2009057458W WO2009125869A1 WO 2009125869 A1 WO2009125869 A1 WO 2009125869A1 JP 2009057458 W JP2009057458 W JP 2009057458W WO 2009125869 A1 WO2009125869 A1 WO 2009125869A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
infrared
tungsten oxide
infrared shielding
adhesive
Prior art date
Application number
PCT/JP2009/057458
Other languages
French (fr)
Japanese (ja)
Inventor
悠 桑山
頼信 石井
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009071267A external-priority patent/JP2009271515A/en
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2009125869A1 publication Critical patent/WO2009125869A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/44Optical arrangements or shielding arrangements, e.g. filters, black matrices, light reflecting means or electromagnetic shielding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses
    • H01J2211/446Electromagnetic shielding means; Antistatic means

Definitions

  • the present invention relates to a near-infrared shield having a near-infrared shielding function and a display optical filter having a near-infrared shielding function suitable for a plasma display panel (PDP) and the like.
  • PDP plasma display panel
  • a front filter is always used for PDP.
  • This front filter is used for the purpose of near-infrared cut, color reproducibility improvement (light emission color purity improvement), electromagnetic wave shield, bright place contrast improvement (antireflection), light emission panel protection, heat insulation from the light emission panel, etc. .
  • the near-infrared light emitted from the PDP light-emitting panel needs to be reduced in order to avoid malfunctioning the remote control used for home TV and video.
  • color reproducibility light emission color purity improvement
  • even when the display product is directly touched by hand it is desirable that the heat generated by the light emitting panel of the PDP is cut off in order to avoid a situation where the user is surprised by the high temperature.
  • optical filters having various functions such as antireflection, near-infrared shielding, and electromagnetic wave shielding are used as optical filters for PDPs that meet the above-mentioned purpose.
  • it is used as an optical filter for PDP by bonding optical filters having respective functions and optical filters having two functions in an appropriate combination.
  • the near-infrared rays emitted from the above-mentioned plasma display may cause malfunctions of peripheral electronic devices, so that particularly effective blocking is required.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-133624 discloses a transparent near infrared ray containing a transparent resin film layer (1) and a diimonium-based compound as a near infrared ray absorbent. It has a multilayer structure in which a shielding layer (2), a transparent resin film layer (3), and a transparent color tone compensation layer (4) containing a color material that compensates the color tone of the transparent near-infrared shielding layer (2) are laminated.
  • the near-infrared shielding film characterized by this is disclosed.
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-287236 proposes a tungsten oxide and a composite tungsten oxide (hereinafter also referred to as (composite) tungsten oxide) excellent in near-infrared blocking properties.
  • the above (composite) tungsten oxide has strong absorption in the near infrared and is extremely effective in preventing malfunction of the peripheral electronic device.
  • Such (composite) tungsten oxide is generally commercially available as a dispersion in which fine particles are dispersed in a medium.
  • the fine particles of (composite) tungsten oxide are likely to aggregate due to these mixing, It has been found that the obtained near-infrared shielding layer cannot obtain a predetermined near-infrared absorbing ability.
  • an object of the present invention is to provide a near-infrared shield having excellent near-infrared shielding properties and durability that retains its function over a long period of time.
  • Another object of the present invention is to provide an optical filter for a display that has excellent near-infrared shielding properties and durability that retains its function for a long period of time, and has improved display characteristics.
  • an object of the present invention is to provide an optical filter for a plasma display panel which has excellent near-infrared shielding properties and durability for maintaining its function for a long period of time, and has further improved display characteristics.
  • the pressure-sensitive adhesive that easily causes aggregation of fine particles of (composite) tungsten oxide is a general neutral pressure-sensitive adhesive and has an acidic group (particularly a carboxylic acid group). It has been clarified that the problem of aggregation is solved by using.
  • a near-infrared shield comprising a tungsten oxide and / or a composite tungsten oxide and an adhesive having an acidic group; It is in.
  • the adhesive means an adhesive resin and is preferably used together with a curing agent.
  • Preferred embodiments of the near-infrared shield of the present invention are as follows.
  • the acid value of the pressure-sensitive adhesive is 0.5 KOH mg / g or more. Tungsten oxide and / or composite tungsten oxide can be well dispersed.
  • the pressure-sensitive adhesive is an acrylic resin-based pressure-sensitive adhesive.
  • the acidic group of the pressure-sensitive adhesive is a carboxyl group. Tungsten oxide and / or composite tungsten oxide can be well dispersed.
  • the near-infrared shield further includes a dye having a maximum absorption in the wavelength range of 560 to 610 nm (neon cut dye).
  • the near-infrared shielding property and the durability thereof can be further improved.
  • tungsten oxide and / or composite tungsten oxide have a near-infrared shielding layer containing both tungsten oxide and / or composite tungsten oxide and a dye having maximum absorption in the wavelength range of 560 to 610 nm.
  • a resin especially acrylic resin
  • the tungsten oxide and / or the composite tungsten oxide is in the form of fine particles. Good near-infrared shielding effect.
  • the average particle size of the fine particles is 400 nm or less. Good near-infrared shielding effect.
  • the tungsten oxide is represented by the general formula WyOz (where W represents tungsten, O represents oxygen, and 2.2 ⁇ z / y ⁇ 2.999),
  • the composite tungsten oxide has the general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, One or more elements selected from V, Mo, Ta, Re, Be, Hf, Os, Bi, I, W represents tungsten, O represents oxygen, and 0.001 ⁇ x / y ⁇ 1,2. 0.2 ⁇ z / y ⁇ 3).
  • a composite tungsten oxide is preferable because of its excellent near-infrared ab
  • the near-infrared shield of the present invention is suitably used as a display optical filter, particularly as a plasma display panel filter.
  • the near-infrared shield of the present invention contains a tungsten oxide and / or a composite tungsten oxide that efficiently cuts near infrared rays, and contains an adhesive (binder resin) having an acidic group.
  • the (composite) tungsten oxide is uniformly dispersed as fine fine particles in the pressure-sensitive adhesive, and exhibits excellent near-infrared shielding properties. Therefore, when such a near-infrared shield is used as an optical filter for display, particularly an optical filter for a PDP, the display image of the obtained PDP is effectively cut off from near-infrared light. Remarkably prevent malfunction. Furthermore, such a near-infrared cut function can be maintained for a long time.
  • the near-infrared shield of the present invention has excellent near-infrared shielding properties and durability, and exhibits excellent display characteristics. Moreover, since the near-infrared shielding body of this invention has the outstanding near-infrared shielding property as mentioned above, it is useful also for uses other than a display, for example, a window glass, a showcase, etc. from the same viewpoint.
  • the near-infrared shield (display optical filter) of the present invention will be described with reference to the drawings.
  • FIG. 1 is a schematic cross-sectional view of the basic configuration of the near-infrared shield of the present invention.
  • the near-infrared shield of the present invention is provided with a transparent substrate 11, an antireflection layer 12 formed on one surface of the transparent substrate 11, and a near-infrared shielding layer 13 formed on the other surface of the transparent substrate 11. It has a configuration.
  • the near-infrared shielding layer 13 includes both tungsten oxide and / or composite tungsten oxide and an adhesive having an acidic group. Since the near-infrared shielding layer 13 has tungsten oxide and / or composite tungsten oxide dispersed finely in a pressure-sensitive adhesive having an acidic group, harmful near-infrared rays are efficiently cut.
  • Such a near-infrared shield generally has a minimum value of transmittance of near-infrared light in the wavelength region of 800 to 1100 nm of 30% or less. It is preferable that the near-infrared shielding layer 13 is made sticky and used to adhere to another optical film or the display surface. In applications that do not require the antireflection function, the antireflection layer 12 may be omitted.
  • FIG. 2 shows a schematic sectional view of an example of a preferred embodiment of the near-infrared shield of the present invention.
  • This near-infrared shield is provided with a transparent substrate 21A, an antireflection layer 22 formed on one surface of the transparent substrate 21A, and an adhesive near-infrared shield layer 23 formed on the other surface of the transparent substrate 21A.
  • Layered body (the same mode as the previous FIG. 1), another transparent substrate 21B, a mesh-like conductive layer 24 formed on one surface of the transparent substrate 21B, and neon formed on the other surface of the transparent substrate 21B
  • Another laminated body provided with the pressure-sensitive adhesive layer 25 containing the cut pigment has a configuration in which it is adhered via a near-infrared shielding layer 23 having adhesiveness.
  • the near-infrared shielding layer 23 includes both tungsten oxide and / or composite tungsten oxide and an adhesive having an acidic group. Since the near-infrared shielding layer 23 has tungsten oxide and / or composite tungsten oxide dispersed in a pressure-sensitive adhesive having fine particles and uniform acidic groups, harmful near-infrared rays are efficiently cut off.
  • Such a near-infrared shield generally has a minimum value of transmittance of near-infrared light in the wavelength region of 800 to 1100 nm of 30% or less. For this reason, a display provided with such a near-infrared shield as an optical filter, particularly a PDP, exhibits excellent display characteristics.
  • Such a near-infrared shield is generally adhered to the display surface via the pressure-sensitive adhesive layer 25, or is adhered to a glass plate via the pressure-sensitive adhesive layer 25 and disposed on the front surface of the PDP.
  • FIG. 3 shows an example of another preferred embodiment of the near-infrared shield of the present invention.
  • a mesh-like conductive layer (electromagnetic wave shielding layer) 34 is provided on one surface of the transparent substrate 31, an antireflection layer 32 is further provided on the conductive layer 34, and a near-infrared shielding layer is provided on the other surface of the transparent substrate 31. 33 is provided. Therefore, only one transparent substrate 31 is used as the substrate, and a thin substrate can be obtained as compared with the near-infrared shield in FIG.
  • the near-infrared shielding layer 33 is composed of tungsten oxide and / or composite tungsten oxide dispersed finely in a pressure-sensitive adhesive having an acidic group. Cut well.
  • Such a near-infrared shield generally has a minimum value of transmittance of near-infrared light in the wavelength region of 800 to 1100 nm of 30% or less.
  • the antireflection layer in the near-infrared shield can be omitted depending on the application.
  • FIG. An example of another preferred embodiment of such a near-infrared shield of the present invention is shown in FIG.
  • a transparent substrate 41A a near-infrared shielding layer 43 formed on one surface of the transparent substrate 41A, and a mesh adhered to the other surface of the transparent substrate 41A via an adhesive layer 46
  • the laminated body having the conductive layer 44 and the transparent substrate 41 ⁇ / b> B are laminated via the near infrared shielding layer 43.
  • the near-infrared shield has a simplified configuration because it does not have an antireflection layer, and is easy to manufacture.
  • Such a near-infrared shielding body can be arrange
  • the near-infrared shielding layer 43 includes both tungsten oxide and / or composite tungsten oxide and an adhesive having an acidic group. Therefore, the tungsten oxide and / or the composite tungsten oxide are uniformly finely dispersed in the near infrared shielding layer, and the near infrared can be cut efficiently.
  • Such a near-infrared shield generally has a minimum value of the transmittance of near-infrared light in the wavelength region of 800 to 1100 nm as described above.
  • FIG. 1 An example of still another preferred embodiment of the near-infrared shield of the present invention is shown in FIG.
  • the near-infrared shield was formed on the transparent substrate 51A, the mesh-like conductive layer 54 pasted on one surface of the transparent substrate 51A via the adhesive layer 56, and the mesh-like conductive layer 54.
  • the laminated body which has the near-infrared shielding layer 53, and the transparent substrate 51B have the structure laminated
  • the near-infrared shield has a simplified configuration because it does not have an antireflection layer, and is easy to manufacture.
  • Such a near-infrared shielding body can also be arrange
  • the near-infrared shielding layer 53 includes both tungsten oxide and / or composite tungsten oxide and an adhesive having an acidic group. Therefore, the tungsten oxide and / or the composite tungsten oxide are uniformly finely dispersed in the near infrared shielding layer, and the near infrared can be cut efficiently.
  • Such a near-infrared shield generally has a minimum value of the transmittance of near-infrared light in the wavelength region of 800 to 1100 nm as described above.
  • the near-infrared shield of the present invention preferably further contains a dye (neon cut dye) having a maximum absorption in the wavelength range of 560 to 610 nm.
  • a dye non cut dye
  • By using a neon cut pigment unnecessary light derived from neon gas that can be generated from PDP or the like can be cut, and the visibility of a display image can be improved.
  • the neon cut pigment may be contained in any layer used for the near-infrared shield. Therefore, the near-infrared shielding layer, the pressure-sensitive adhesive layer, and the like may contain a neon cut pigment. Moreover, you may further use the neon cut layer containing a neon cut pigment
  • the neon cut layer generally contains a dye having a maximum absorption in a wavelength region of 560 to 610 nm and a binder resin for dispersing the dye. In such a neon cut layer, since the dye is uniformly dissolved and / or dispersed in the resin, light from harmful neon gas is efficiently cut.
  • FIG. 6 shows a preferred embodiment of a near-infrared shield having a neon cut layer.
  • the near-infrared shield includes a transparent substrate 61, an antireflection layer 62 formed on one surface of the transparent substrate 61, and a neon cut layer 64 and a near-infrared shield layer 63 that are sequentially stacked on the other surface of the transparent substrate 61. Consists of
  • FIG. 1 Another preferred embodiment of the near-infrared shield having a neon cut layer is shown in FIG.
  • This near-infrared shield is a transparent substrate 71A, an antireflection layer 72 formed on one surface of the transparent substrate 71A, and neon (may have adhesiveness) formed on the other surface of the transparent substrate 71A.
  • FIG. 8 Another preferred embodiment of the near-infrared shield having a neon cut layer is shown in FIG. 8 (embodiment using one transparent substrate).
  • a mesh-like conductive layer (electromagnetic wave shielding layer) 85 is provided on one surface of the transparent substrate 81, and an antireflection layer 82 is further provided on the conductive layer 85.
  • a neon cut layer 84 and a near-infrared shielding layer 83 having adhesiveness may be provided.
  • An adhesive layer 86 may be further provided on the near-infrared shielding layer 83.
  • this near-infrared shield only one transparent substrate 81 is used as a substrate, and a thin substrate can be obtained as compared with the near-infrared shield in FIG.
  • an adhesive near-infrared shielding layer 83 and an adhesive neon-cut layer 84 are provided on a mesh-like conductive layer (electromagnetic wave shielding layer) 85, and the neon-cut layer 84 and the near-infrared shielding layer 83 are provided.
  • an antireflection layer 82 may be provided.
  • the near-infrared shielding layers 63, 73, and 83 include tungsten oxide and / or composite tungsten oxide and an adhesive having an acidic group. Therefore, the tungsten oxide and / or the composite tungsten oxide are uniformly finely dispersed in the near infrared shielding layer, and the near infrared can be cut efficiently.
  • the neon cut layers 64, 74, and 84 include a dye having a maximum absorption in a wavelength region of 560 to 610 nm and a binder resin that disperses the dye. In such a neon cut layer, since the dye is uniformly dissolved and / or dispersed in the resin, light from harmful neon gas is efficiently cut.
  • the near-infrared shielding body of the present invention has any configuration as long as it includes a layer in which tungsten oxide and / or composite tungsten oxide is dispersed in a pressure-sensitive adhesive that is finely divided and has acidic groups.
  • a layer having a configuration other than that shown in FIGS. 1 to 8, for example, the position of the layer shown above may be appropriately changed.
  • the minimum value of the transmittance in the near-infrared ray in the wavelength range of 800 to 1100 nm is preferably 30% or less in the wavelength range.
  • the minimum transmittance of visible light in the wavelength range of 560 to 610 nm is 60% or less in the wavelength range.
  • the neon cut pigment may be contained in an appropriate layer such as an adhesive layer or a near infrared shielding layer, or a neon cut layer containing a neon cut pigment may be used.
  • the near-infrared shield of the present invention can efficiently cut harmful near-infrared rays, and can maintain excellent near-infrared cutability over a long period of time. At the same time, the visibility of the display image is excellent. Therefore, the near-infrared shield of the present invention is preferably used as an optical filter for display, particularly as an optical filter for plasma panel display.
  • the antireflection layer is a hard coat layer; it is composed of a hard coat layer and a low refractive index layer having a refractive index lower than that of the hard coat layer (in this case, the hard coat layer is in contact with the metal conductive layer). Or a hard coat layer, a high refractive index layer having a higher refractive index than the hard coat layer, and a low refractive index layer having a lower refractive index than the hard coat layer (in this case, the hard coat layer is in contact with the metal conductive layer). ).
  • the antireflection layer comprises an antiglare layer, or an antiglare layer and a low refractive index layer having a lower refractive index than the antiglare layer (the antiglare layer is in contact with the metal conductive layer).
  • the antiglare layer is a so-called antiglare layer, generally has an excellent antireflection effect, and it is often unnecessary to provide an antireflection layer such as a low refractive index layer.
  • the near-infrared shielding layer and the adhesive layer show examples of the near-infrared shielding layer and the adhesive layer, but a near-infrared shielding layer, a neon cut layer, and an adhesive layer may be used. Or it consists of the transparent adhesive layer which has a near-infrared absorption function and a neon cut function, or consists of the near-infrared shielding layer which has a neon cut function, and an adhesive layer (it is provided on the transparent substrate in this order). Or it is also preferable that it consists of a near-infrared shielding layer, a neon cut layer, and an adhesive layer (provided on the transparent substrate in this order).
  • a mesh-like metal layer or a metal-containing layer is shown above, but a metal oxide layer (dielectric layer) or an alternately laminated film of a metal oxide layer and a metal layer may also be used.
  • the mesh-like metal layer or metal-containing layer is generally formed by etching or printing, or is a metal fiber layer. This makes it easy to obtain low resistance.
  • the mesh gap of the mesh-like metal layer or metal-containing layer is filled with an adhesive (or an adhesive near-infrared shielding layer). This improves transparency. When not filled with an adhesive, it may be filled with another layer, for example, a hard coat layer or the like, or a transparent resin layer dedicated thereto.
  • the near-infrared shielding layer has a function of blocking unnecessary light from the PDP.
  • it is a layer containing the tungsten oxide and / or composite tungsten oxide of the present invention (including a compound having a maximum absorption in a wavelength region of 300 to 500 nm if necessary).
  • the pressure-sensitive adhesive layer is provided for easy mounting on the display.
  • a release sheet may be provided on the transparent adhesive layer.
  • the neon cut layer generally contains a dye having a maximum absorption in a wavelength region of 560 to 610 nm and a binder resin for dispersing the dye.
  • a resin particularly acrylic resin
  • each function can be efficiently performed by using a resin (particularly acrylic resin) excellent in compatibility with each compound. Since it can be exhibited, it is possible to achieve both a near infrared ray blocking function and a neon cut function at a high level.
  • a near-infrared shielding function and a neon cut function are provided as a single layer, such as a near-infrared shielding layer further containing a dye having a maximum absorption in the wavelength region of 300 to 500 nm, it is compatible with both compounds.
  • an excellent resin particularly acrylic resin
  • the near-infrared shield of the present invention is obtained, for example, by forming an antireflection layer over the entire surface of the transparent substrate, and forming a near-infrared shielding layer on the back surface of the transparent substrate and a transparent adhesive layer thereon. . Further, for example, a mesh-like metal conductive layer is formed over the entire surface of the transparent substrate, then an antireflection layer is formed over the entire mesh-like metal conductive layer, and a near-infrared shielding layer and a back surface of the transparent substrate are formed. It can also be obtained by forming a transparent adhesive layer thereon.
  • an antireflection layer on the front surface and an adhesive near-infrared surface on the back surface It can also be obtained by laminating and bonding a transparent substrate having a shielding layer via a near-infrared shielding layer.
  • an antireflection layer such as a mesh-like metal conductive layer, an antiglare layer and a low refractive index layer is provided in this order on the surface of the transparent substrate, and the near infrared shielding layer and the upper layer are provided on the surface of another transparent substrate.
  • a transparent pressure-sensitive adhesive layer is provided on the surface, and the surfaces of the two transparent substrates that are not provided are bonded to each other. In this case, the former laminate is produced by the method of the present invention.
  • the near-infrared shield of the present invention is obtained, for example, by forming an antireflection layer over the entire surface of the transparent substrate, and forming a neon cut layer on the back surface of the transparent substrate and a near-infrared shielding layer thereon. It is done. Also, for example, a mesh-like metal conductive layer is formed over the entire surface of the transparent substrate, then an antireflection layer is formed over the entire mesh-like metal conductive layer, and a neon cut layer and its It can also be obtained by forming an adhesive near-infrared shielding layer on top.
  • a transparent substrate having a mesh-like conductive layer generally having an adhesive layer or the like on the back surface
  • an antireflection layer on the front surface and a neon cut layer and adhesive on the back surface.
  • It can also be obtained by laminating and adhering a transparent substrate having a near-infrared shielding layer via the near-infrared shielding layer.
  • the substrate is generally a transparent substrate, and is particularly preferably a transparent plastic film.
  • the material is not particularly limited as long as it is transparent (meaning “transparent to visible light”).
  • plastic films include polyester ⁇ eg, polyethylene terephthalate (PET), polybutylene terephthalate ⁇ , polymethyl methacrylate (PMMA), acrylic resin, polycarbonate (PC), polystyrene, triacetate resin, polyvinyl alcohol, polyvinyl chloride, poly Examples thereof include vinylidene chloride, polyethylene, ethylene-vinyl acetate copolymer, polyvinyl butyral, metal ion crosslinked ethylene-methacrylic acid copolymer, polyurethane, and cellophane.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • PET is preferable because it has excellent processability.
  • glass plates such as green glass, silicate glass, inorganic glass plate, and non-colored transparent glass plate are also preferable.
  • the thickness of the transparent substrate varies depending on the use of the near-infrared shield, but is generally preferably 1 ⁇ m to 10 mm, 1 ⁇ m to 5 mm, and particularly preferably 25 to 250 ⁇ m.
  • the surface resistance value of the metal conductive layer of the present invention is generally set to 10 ⁇ / ⁇ or less, preferably in the range of 0.001 to 5 ⁇ / ⁇ , particularly 0.005 to 5 ⁇ / ⁇ .
  • a mesh (lattice) conductive layer is preferred.
  • the conductive layer may be a layer obtained by a vapor deposition method (a transparent conductive thin film of metal oxide (ITO or the like)). Further, it may be an alternate laminate of a metal oxide dielectric film such as ITO and a metal layer such as Ag (eg, ITO / silver / ITO / silver / ITO laminate).
  • the mesh-like metal conductive layer is made of metal fibers and metal-coated organic fibers made of a metal, or a copper foil layer on a transparent substrate is etched into a mesh to provide openings, on a transparent substrate Examples thereof include a conductive ink printed in a mesh shape.
  • the mesh preferably has a line width of 1 ⁇ m to 1 mm made of metal fibers and / or metal-coated organic fibers and an aperture ratio of 50% or more.
  • a more preferable wire diameter is 10 to 500 ⁇ m, and an aperture ratio is 50 to 95%.
  • the line width exceeds 1 mm, the electromagnetic wave shielding property is improved, but the aperture ratio is lowered and cannot be compatible. If it is less than 1 ⁇ m, the strength as a mesh is lowered and handling becomes difficult. Further, if the aperture ratio exceeds 95%, it is difficult to maintain the shape as a mesh. If the aperture ratio is less than 50%, the light transmittance decreases and the light amount from the display also decreases.
  • the aperture ratio of the conductive mesh refers to the area ratio occupied by the opening portion in the projected area of the conductive mesh.
  • the metal fibers constituting the mesh-like conductive layer and the metal of the metal-coated organic fiber include copper, stainless steel, aluminum, nickel, titanium, tungsten, tin, lead, iron, silver, carbon or alloys thereof, preferably copper, Stainless steel and nickel are used.
  • Polyester nylon, vinylidene chloride, aramid, vinylon, cellulose, etc. are used as the organic material for the metal-coated organic fiber.
  • a conductive foil such as a metal foil is subjected to pattern etching
  • copper, stainless steel, aluminum, nickel, iron, brass, or an alloy thereof preferably copper, stainless steel, or aluminum is used as the metal of the metal foil.
  • the thickness of the metal foil is too thin, it is not preferable in terms of handleability and workability of pattern etching, and if it is too thick, it affects the thickness of the film obtained, and the time required for the etching process becomes long. It is preferably about 1 to 200 ⁇ m.
  • the shape of the etching pattern is not particularly limited, and examples thereof include a grid-like metal foil in which square holes are formed, and a punching metal-like metal foil in which circular, hexagonal, triangular or elliptical holes are formed. It is done. Further, the holes are not limited to those regularly arranged, and may be a random pattern.
  • the area ratio of the opening on the projection surface of the metal foil is preferably 20 to 95%. Further, those having an aperture ratio of 50% or more are preferable, and particularly 50% or more and 95% or less.
  • the line width is preferably 10 to 500 ⁇ m.
  • a mesh-shaped metal conductive layer dots are formed on the film surface by a material soluble in a solvent, and a conductive material layer made of a conductive material insoluble in a solvent is formed on the film surface.
  • a mesh-like metal conductive layer obtained by removing the dots and the conductive material layer on the dots by bringing the film surface into contact with a solvent may be used.
  • the conductive layer may be provided directly on the substrate, or may be provided via an adhesive layer or an adhesive layer.
  • this pressure-sensitive adhesive layer or adhesive layer the same layer as described later as an adhesive layer for adhering the optical film to the display is used.
  • a metal plating layer may be further provided on the mesh-like metal conductive layer in order to improve conductivity (particularly, in the case of forming dots with a material soluble in the solvent).
  • the metal plating layer can be formed by a known electrolytic plating method or electroless plating method.
  • the metal used for plating generally, copper, copper alloy, nickel, aluminum, silver, gold, zinc, tin or the like can be used, preferably copper, copper alloy, silver, or nickel, In particular, it is preferable to use copper or a copper alloy from the viewpoint of economy and conductivity.
  • antiglare performance may be imparted.
  • a blackening treatment may be performed on the surface of the (mesh) conductive layer.
  • oxidation treatment of a metal film, black plating such as chromium alloy, application of black or dark ink, and the like can be performed.
  • the antireflection layer of the present invention is generally a composite film of a hard coat layer and a low refractive index layer having a lower refractive index than the hard coat layer provided thereon, or a hard coat layer and a low refractive index layer. It is a composite film in which a high refractive index layer is further provided therebetween. The antireflection film is effective even if it is only a hard coat layer having a refractive index lower than that of the substrate.
  • the hard coat layer is a layer mainly composed of a synthetic resin such as an acrylic resin layer, an epoxy resin layer, a urethane resin layer, or a silicon resin layer. Usually, the thickness is 1 to 50 ⁇ m, preferably 1 to 10 ⁇ m.
  • the synthetic resin is generally a thermosetting resin or an ultraviolet curable resin, and an ultraviolet curable resin is preferable. The ultraviolet curable resin is preferable because it can be cured in a short time and has excellent productivity.
  • thermosetting resin examples include phenol resin, resorcinol resin, urea resin, melamine resin, epoxy resin, acrylic resin, urethane resin, furan resin, and silicon resin.
  • a cured layer of a layer mainly composed of an ultraviolet curable resin composition (consisting of an ultraviolet curable resin (monomer and / or oligomer), a photopolymerization initiator, etc.) is preferable, and the thickness thereof is usually The thickness is 1 to 50 ⁇ m, preferably 1 to 10 ⁇ m.
  • Examples of the ultraviolet curable resin include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-ethylhexyl polyethoxy (meth) acrylate.
  • the hard coat layer among the above UV curable resins (monomer, oligomer), pentaerythritol tri (meth) acrylate, pentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, trimethylolpropane It is preferable to mainly use a hard polyfunctional monomer such as tri (meth) acrylate.
  • any compound suitable for the properties of the ultraviolet curable resin can be used.
  • acetophenone such as 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropane-1
  • Benzoin such as benzyldimethyl ketal, benzophenone, 4-phenylbenzophenone, benzophenone, such as hydroxybenzophenone, thioxanthone, such as isopropylthioxanthone, 2-4-diethylthioxanthone, and other special types include methylphenyl glyoxylate Etc.
  • 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropane-1 examples include benzophenone.
  • These photopolymerization initiators may be optionally selected from one or more known and commonly used photopolymerization accelerators such as a benzoic acid system such as 4-dimethylaminobenzoic acid or a tertiary amine system. It can be used by mixing at a ratio. Moreover, it can be used by 1 type, or 2 or more types of mixture of only a photoinitiator.
  • 1-hydroxycyclohexyl phenyl ketone Irgacure 184, manufactured by Ciba Specialty Chemicals.
  • the amount of the photopolymerization initiator is generally 0.1 to 10% by mass, preferably 0.1 to 5% by mass, based on the resin composition.
  • the hard coat layer may contain a small amount of an ultraviolet absorber, an infrared absorber, an anti-aging agent, a paint processing aid, a colorant and the like.
  • an ultraviolet absorber for example, a benzotriazole-based ultraviolet absorber or a benzophenone-based ultraviolet absorber
  • the amount thereof is generally 0.1 to 10% by mass, preferably 0.1 to 5% by mass, based on the resin composition.
  • the high refractive index layer is made of a polymer (preferably UV curable resin composition), ITO, ATO, Sb 2 O 3 , SbO 2 , In 2 O 3 , SnO 2 , ZnO, Al-doped ZnO, TiO 2. It is preferable to use a layer in which is dispersed (cured layer).
  • the metal oxide fine particles preferably have an average particle size of 10 to 10,000 nm, preferably 10 to 50 nm.
  • ITO especially having an average particle diameter of 10 to 50 nm
  • Those having a refractive index of 1.64 or more are suitable.
  • the film thickness is generally in the range of 10 to 500 nm, preferably 20 to 200 nm.
  • the minimum reflectance of the surface reflectance of the antireflection film should be within 1.5% by setting the refractive index of the high refractive index layer to 1.64 or more. By setting the value to 1.69 or more, preferably 1.69 to 1.82, the minimum reflectance of the surface reflectance of the antireflection film can be within 1.0%.
  • the low refractive index layer is a layer (cured) in which fine particles such as silica and fluororesin, preferably 10 to 40% by mass (preferably 10 to 30% by mass) of hollow silica are dispersed in a polymer (preferably UV curable resin). Layer).
  • the refractive index of the low refractive index layer is preferably 1.45 or less. When the refractive index is more than 1.45, the antireflection characteristic of the antireflection film is deteriorated.
  • the film thickness is generally in the range of 10 to 500 nm, preferably 20 to 200 nm.
  • hollow silica those having an average particle diameter of 10 to 100 nm, preferably 10 to 50 nm, and a specific gravity of 0.5 to 1.0, preferably 0.8 to 0.9 are preferable.
  • the hard coat layer preferably has a visible light transmittance of 70% or more. Both the visible light transmittance of the high refractive index layer and the low refractive index layer are preferably 85% or more.
  • the thickness of the hard coat layer is 2 to 20 ⁇ m
  • the thickness of the high refractive index layer is 50 to 150 nm
  • the thickness of the low refractive index layer is A thickness of 50 to 150 nm is preferable.
  • each layer of the antireflection layer for example, as described above, the above-mentioned fine particles are blended with a polymer (preferably an ultraviolet curable resin) as necessary, and the obtained coating liquid is used as the transparent substrate. After coating on the surface and then drying, it may be cured by irradiation with ultraviolet rays. In this case, each layer may be applied and cured one by one, or all the layers may be applied and then cured together.
  • a polymer preferably an ultraviolet curable resin
  • a method of coating a coating solution in which an ultraviolet curable resin containing an acrylic monomer or the like is made into a solution with a solvent such as toluene is coated with a gravure coater, and then dried, and then cured by ultraviolet rays.
  • This wet coating method has the advantage that the film can be uniformly formed at high speed at low cost. After this coating, for example, by irradiating and curing with ultraviolet rays, the effect of improving the adhesion and increasing the hardness of the film can be obtained.
  • the conductive layer can be formed similarly.
  • the laminate may be preheated to 40 to 120 ° C. and irradiated with ultraviolet rays.
  • an antiglare layer instead of the hard coat layer. What has a large antireflection effect is easily obtained.
  • the antiglare layer for example, an antiglare layer obtained by applying and drying a liquid in which a transparent filler (preferably an average particle size of 1 to 10 ⁇ m) such as polymer fine particles (eg, acrylic beads) is dispersed in a binder, Or the anti-glare layer which has the hard-coat function which apply
  • the layer thickness of the antiglare layer is generally in the range of 0.01 to 20 ⁇ m.
  • the near-infrared shield of the present invention has a near-infrared shielding layer containing tungsten oxide and / or composite tungsten oxide that efficiently cuts near infrared rays and a resin having an acidic group.
  • tungsten oxide and / or composite tungsten oxide can be uniformly dispersed in the resin in the form of fine particles, whereby the near infrared cut function of (composite) tungsten oxide. Can be fully exhibited.
  • (composite) tungsten oxide is commercially available in a dispersed state, and when the resin having an acidic group of the present invention is not used, it easily aggregates and a uniform dispersed state cannot be obtained. It is difficult to obtain an infrared cut function.
  • the compound having the maximum absorption in the wavelength region of 300 to 500 nm is preferably contained in any layer.
  • the tungsten oxide is an oxide represented by the general formula WyOz (W is tungsten, O is oxygen, 2.2 ⁇ z / y ⁇ 2.999), and the composite tungsten oxide is the tungsten oxide.
  • the element M (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, 1 or more elements selected from Ta, Re, Be, Hf, Os, Bi, and I).
  • composite tungsten oxide is preferable.
  • the preferable composition range of tungsten and oxygen is When the composition ratio of oxygen is less than 3 and the infrared shielding material is described as WyOz, 2.2 ⁇ z / y ⁇ 2.999. If the value of z / y is 2.2 or more, it is possible to avoid the appearance of a crystal phase of WO 2 which is not intended in the infrared shielding material and to obtain chemical stability as a material. Therefore, it can be applied as an effective infrared shielding material. On the other hand, if the value of z / y is 2.999 or less, a required amount of free electrons is generated and an efficient infrared shielding material can be obtained.
  • the composite tungsten oxide fine particles are generally MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, One or more elements selected from Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, (0.001 ⁇ x / Y ⁇ 1, 2.2 ⁇ z / y ⁇ 3)
  • the alkali metal is a group 1 element of the periodic table excluding hydrogen
  • the alkaline earth metal is the second element of the periodic table.
  • Group elements and rare earth elements are Sc, Y and lanthanoid elements
  • the M element is one or more of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. Some are preferred.
  • the composite tungsten oxide is preferably treated with a silane coupling agent. Excellent dispersibility is obtained, and an excellent infrared cut function and transparency are obtained.
  • the value of x / y indicating the amount of element M added is greater than 0.001, a sufficient amount of free electrons is generated, and a sufficient infrared shielding effect can be obtained.
  • the value of x / y is saturated at about 1.
  • the value of x / y is smaller than 1, it is preferable because an impurity phase can be prevented from being generated in the fine particle-containing layer.
  • the composite tungsten oxide fine particles have a hexagonal crystal structure, the transmission of the fine particles in the visible light region is improved and the absorption in the near infrared region is improved.
  • the cation of the element M When the cation of the element M is added to the hexagonal void, the transmission in the visible light region is improved and the absorption in the near infrared region is improved.
  • the element M having a large ionic radius when added, the hexagonal crystal is formed.
  • other elements may be added as long as the additive element M exists in the hexagonal void formed by the WO 6 unit, and is not limited to the above elements.
  • the addition amount of the additive element M is preferably 0.2 or more and 0.5 or less in terms of x / y, more preferably 0. .33.
  • the value of x / y is 0.33, it is considered that the additive element M is arranged in all of the hexagonal voids.
  • tetragonal and cubic tungsten bronzes also have an infrared shielding effect. These crystal structures tend to change the absorption position in the near infrared region, and the absorption position tends to move to the longer wavelength side in the order of cubic ⁇ tetragonal ⁇ hexagonal. Further, the accompanying absorption in the visible light region is small in the order of hexagonal crystal ⁇ tetragonal crystal ⁇ cubic crystal. For this reason, it is preferable to use hexagonal tungsten bronze for applications that transmit light in the visible light region and shield light in the infrared region.
  • the particle diameter of the composite tungsten oxide fine particles used in the present invention preferably has a particle diameter (average particle diameter) of 800 nm or less from the viewpoint of maintaining transparency. This is because particles smaller than 800 nm do not completely block light due to scattering, can maintain visibility in the visible light region, and at the same time can efficiently maintain transparency. In particular, when importance is attached to transparency in the visible light region, it is preferable to further consider scattering by particles. When importance is attached to the reduction of scattering by the particles, the particle size is 400 nm or less, preferably 200 nm or less.
  • the surface of the composite tungsten oxide fine particles of the present invention is coated with an oxide containing one or more of Si, Ti, Zr, and Al.
  • the composite tungsten oxide fine particles of the present invention are produced, for example, as follows.
  • the tungsten oxide fine particles represented by the general formula WyOz and / or the composite tungsten oxide fine particles represented by MxWyOz are obtained by heat-treating a tungsten compound starting material in an inert gas atmosphere or a reducing gas atmosphere. Can do.
  • the tungsten compound starting material is obtained by dissolving tungsten trioxide powder, tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungstate powder, or tungsten hexachloride in alcohol and then drying.
  • tungsten oxide fine particles when producing tungsten oxide fine particles, it is preferable to use tungsten oxide hydrate powder or tungsten compound powder obtained by drying an ammonium tungstate aqueous solution from the viewpoint of the ease of the production process. More preferably, when producing the composite tungsten oxide fine particles, an ammonium tungstate aqueous solution or a tungsten hexachloride solution is further used from the viewpoint that each element can be easily and uniformly mixed when the starting material is a solution. preferable. These raw materials are used and heat-treated in an inert gas atmosphere or a reducing gas atmosphere to obtain tungsten oxide fine particles and / or composite tungsten oxide fine particles having the above-mentioned particle diameter.
  • the composite tungsten oxide fine particles represented by the general formula MxWyOz containing the element M are the same as the tungsten compound starting material of the tungsten oxide fine particles represented by the general formula WyOz described above.
  • a tungsten compound contained in the form of a simple substance or a compound is used as a starting material.
  • the tungsten compound starting material containing the element M is dissolved in a solvent such as water or an organic solvent.
  • a solvent such as water or an organic solvent.
  • examples thereof include tungstate, chloride, nitrate, sulfate, oxalate, oxide, and the like containing element M, but are not limited to these and are preferably in the form of a solution.
  • the heat treatment condition in the inert atmosphere is preferably 650 ° C. or higher.
  • the starting material heat-treated at 650 ° C. or higher has sufficient coloring power and is efficient as infrared shielding fine particles.
  • an inert gas such as Ar or N 2 is preferably used.
  • the heat treatment conditions in the reducing atmosphere first, the starting material is heat-treated at 100 to 650 ° C. in a reducing gas atmosphere, and then heat-treated at a temperature of 650 to 1200 ° C. in an inert gas atmosphere. .
  • the reducing gas at this time is not particularly limited, but H 2 is preferable.
  • H 2 is used as the reducing gas
  • the volume ratio of H 2 is preferably 0.1% or more, more preferably 2% or more, as the composition of the reducing atmosphere. If it is 0.1% or more, the reduction can proceed efficiently.
  • the raw material powder reduced with hydrogen contains a magnetic phase, exhibits good infrared shielding properties, and can be used as infrared shielding particles in this state.
  • hydrogen contained in tungsten oxide is unstable, application may be limited in terms of weather resistance. Therefore, a more stable infrared shielding fine particle can be obtained by heat-treating the tungsten oxide compound containing hydrogen at 650 ° C. or higher in an inert atmosphere.
  • the atmosphere during the heat treatment at 650 ° C. or higher is not particularly limited, but N 2 and Ar are preferable from an industrial viewpoint.
  • the composite tungsten oxide fine particles of the present invention are preferably surface-treated with a coupling agent such as a silane coupling agent, a titanate coupling agent, or an aluminum coupling agent.
  • a coupling agent such as a silane coupling agent, a titanate coupling agent, or an aluminum coupling agent.
  • Silane coupling agents are preferred.
  • middle layer, a hard-coat layer, and a heat ray cut layer becomes favorable, and various physical properties improve other than transparency and heat ray cut property.
  • silane coupling agents include ⁇ -chloropropylmethoxysilane, vinylethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, ⁇ -glycidoxypropyltrimethoxy Silane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltrichlorosilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ Examples include-(aminoethyl) - ⁇ -aminopropyltrimethoxysilane and trimethoxyacrylsilane.
  • Vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, and trimethoxyacrylsilane are preferred. These silane coupling agents may be used alone or in combination of two or more.
  • the content of the above compound is preferably 5 to 20 parts by mass with respect to 100 parts by mass of the fine particles.
  • tungsten oxide fine particles are generally commercially available in the form of a dispersion (particularly an aqueous dispersion) as described above.
  • any pressure-sensitive adhesive having an acidic group can be used as the pressure-sensitive adhesive (adhesive resin) having an acidic group constituting the near-infrared shielding layer of the present invention.
  • the acidic group include a carboxyl group, a sulfo group, a sulfino group, a phosphoric acid group, a phosphonic acid group, and a sulfuric acid group.
  • a carboxyl group and a sulfo group are preferable, and a carboxyl group is particularly preferable. It is easy to obtain a good dispersion state of the (composite) tungsten oxide fine particles.
  • the acidic group should have an acid group in the adhesive resin so that the acid value of the adhesive is generally 0.5 KOH mg / g or more, preferably 2 to 50 KOH mg / g, particularly preferably 2 to 20 KOH mg / g. Is appropriate.
  • any resin having an acidic group may be used, and examples thereof include synthetic resins such as acrylic resin, polyester resin, urethane resin, epoxy resin, and silicon resin. These resins are preferably used in combination with a curing agent.
  • the pressure-sensitive adhesive having an acidic group constituting the near-infrared shielding layer is preferably an acrylic resin-based pressure-sensitive adhesive.
  • the resin used for the neon cut layer include synthetic resins such as acrylic resin, polyester resin, urethane resin, epoxy resin, and silicon resin. These resins are also preferably used in combination with a curing agent.
  • the resin used for the neon cut layer preferably has adhesiveness, and an acrylic resin (particularly an acrylic resin-based adhesive) is preferable from such a viewpoint.
  • Examples of the structural component (monomer) of the acrylic resin suitably used for the near-infrared shielding layer and the neon cut layer include the following compounds.
  • (meth) acrylic acid alkyl esters alkyl groups having 1 to 12 carbon atoms which may be branched, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth ) Acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) ) Acrylate, dodecyl (meth) acrylate, lauryl (meth) acrylate ((meth) acrylate means both acrylate and methacrylate).
  • ethyl (meth) acrylate butyl (meth) acrylate, but
  • (meth) acrylic acid alkoxyalkyl ester examples include methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate.
  • Preferred examples of aromatic ring-containing monomers include: phenyl acrylate, phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, ethylene Examples thereof include oxide-modified nonylphenol (meth) acrylate, hydroxyethylated ⁇ -naphthol acrylate, biphenyl (meth) acrylate, styrene, vinyltoluene, ⁇ -methylstyrene, and the like.
  • phenyl acrylate, phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, and phenoxydiethylene glycol (meth) acrylate are preferable.
  • hydroxyl-containing monomers examples include: 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) ) Acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, chloro-2-hydroxypropyl acrylate, diethylene glycol mono (meth) acrylate, allyl alcohol and the like.
  • 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate are preferable.
  • the monomer having a carboxyl group in the molecule include (meth) acrylic acid, 2-carboxyethyl (meth) acrylate, 3-carboxypropyl (meth) acrylate, 4-carboxybutyl (meth) acrylate, itacon Examples thereof include acid, crotonic acid, maleic acid, fumaric acid and maleic anhydride. In particular, (meth) acrylic acid is preferred.
  • amino group-containing monomer examples include aminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, vinyl pyridine and the like.
  • dimethylaminoethyl (meth) acrylate is preferable.
  • the monomer component is appropriately employed in accordance with the desired physical properties, but in the present invention, it is preferable to use a monomer having a carboxyl group for the acrylic resin of the near-infrared shielding layer.
  • the blending amount of the monomer mixture of the acrylic resin of the present invention is preferably (meth) acrylic acid alkyl ester and / or (meth) acrylic acid alkoxyalkyl ester: 4.5 to 89% by mass (particularly 22.7 to 69% by mass). %), Aromatic ring-containing monomer 10 to 85 mass% (especially 30 to 70 mass%), hydroxyl group-containing monomer: 1 to 10 mass% (especially 0.05 to 0.5 mass%), monomer having a carboxyl group: as appropriate Amino group-containing monomer: Appropriate.
  • the blending amount of the monomer mixture of the acrylic resin of the preferred near-infrared shielding layer is (meth) acrylic acid alkyl ester and / or (meth) acrylic acid alkoxyalkyl ester: 4.5 to 89% by mass (particularly 22.7 to 69% by mass), aromatic ring-containing monomer 10 to 85% by mass (particularly 30 to 70% by mass), hydroxyl group-containing monomer: 1 to 10% by mass (particularly 0.05 to 0.5% by mass), a monomer having a carboxyl group : 0.05 to 10% by mass (particularly 0.05 to 5% by mass), and amino group-containing monomer 0 to 0.5% by mass (particularly 0 to 0.3% by mass).
  • other monomers may be mixed as necessary.
  • examples of other monomers include epoxy group-containing (meth) acrylates such as glycidyl (meth) acrylate; acetoacetyl group-containing (meth) acrylates such as acetoacetoxyethyl (meth) acrylate; vinyl acetate, vinyl chloride and ( And (meth) acrylonitrile.
  • the mixing ratio of other monomers can be included at a ratio of 0 to 10% by mass.
  • the acrylic resin can be produced by a conventionally known polymerization method such as a solution polymerization method, a bulk polymerization method, an emulsion polymerization method and a suspension polymerization method, but does not contain a polymerization stabilizer such as an emulsifier or a suspending agent. What was manufactured by the polymerization method and the block polymerization method is preferable.
  • the acrylic polymer has a weight average molecular weight (Mw) by gel permeation chromatography (GPC) of from 800,000 to 1,600,000, preferably from 800,000 to 1,500,000.
  • the ratio (Mw / Mn) of the weight average molecular weight to the number average molecular weight (Mn) is preferably 10-50. Further, it is preferably 20 to 50. If the ratio (Mw / Mn) becomes too large, the low molecular weight polymer increases and foaming tends to occur. Conversely, if the ratio (Mw / Mn) becomes too small, the stress relaxation property tends to decrease.
  • the acrylic resin is preferably used together with a curing agent.
  • the curing agent include an epoxy compound-based crosslinking agent, an isocyanate compound-based crosslinking agent, a metal chelate compound-based crosslinking agent, an aziridine compound-based crosslinking agent, and an amino resin-based crosslinking agent.
  • an epoxy compound-based crosslinking agent having two or more epoxy groups in the molecule, an isocyanate compound-based crosslinking agent having two or more isocyanate groups in the molecule, and an aziridine compound-based crosslinking agent are preferable.
  • a crosslinking agent is preferred.
  • Examples of the epoxy compound-based crosslinking agent having two or more epoxy groups in the molecule include 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N′-tetraglycyl-m- Xylylenediamine, N, N, N ′, N′-tetraglycidylaminophenylmethane, triglycidyl isocyanurate, mN, N-diglycidylaminophenylglycidyl ether, N, N-diglycidyltoluidine, N, N -Compounds having two or more epoxy groups such as diglycidyl aniline, pentaerythritol polyglycidyl ether, 1,6-hexanediol diglycidyl ether are preferred.
  • isocyanate compounds include isocyanate monomers such as tolylene diisocyanate, chlorophenylene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, and the like.
  • Isocyanate compounds obtained by adding these isocyanate monomers with trimethylolpropane, isocyanurates, burette type compounds, and urethane prepolymer type products such as polyether polyols, polyester polyols, acrylic polyols, polybutadiene polyols, polyisoprene polyols, etc.
  • An isocyanate etc. can be mentioned.
  • examples of the aziridine compound-based crosslinking agent include trimethylolpropane tri- ⁇ -aziridinylpropionate, trimethylolpropane tri- ⁇ - (2-methylaziridine) propionate, tetramethylolmethanetri- ⁇ -aziridinini.
  • examples include lupropionate and triethylenemelamine.
  • the blending amount of the crosslinking agent is preferably 0.0001 to 2.0 parts by weight with respect to 100 parts by weight of the acrylic resin.
  • the pressure-sensitive adhesive composition containing an acrylic resin preferably used in the present invention is an ultraviolet absorber, an antioxidant, an antiseptic and an antifungal agent as long as the transparency, visibility and the effects of the present invention are not impaired.
  • Tackifier resins, plasticizers, antifoaming agents, wettability adjusting agents and the like may be blended.
  • the near-infrared shielding layer is generally a layer mainly composed of the above tungsten oxide or composite tungsten oxide and a resin having an acidic group (preferably the above acrylic resin).
  • the near-infrared shielding layer is obtained, for example, by coating, drying, and curing, if necessary, a coating solution containing the above (composite) tungsten oxide and a binder resin. Alternatively, it can also be obtained by applying a coating liquid containing the above (composite) tungsten oxide and a binder resin and simply drying it.
  • it is generally a near infrared cut film, for example, a film containing (composite) tungsten oxide.
  • a dye may be used if necessary.
  • the dye generally has an absorption maximum at a wavelength of 800 to 1200 nm.
  • Examples include phthalocyanine dyes, metal complex dyes, nickel dithiolene complex dyes, cyanine dyes, squarylium dyes, polymethine dyes, Examples thereof include azomethine dyes, azo dyes, polyazo dyes, diimonium dyes, aminium dyes, and anthraquinone dyes, and cyanine dyes, phthalocyanine dyes, and diimonium dyes are particularly preferable. These dyes can be used alone or in combination.
  • the near-infrared shielding layer is preferably an adhesive layer, and examples of the adhesive resin include thermoplastic resins such as acrylic resins.
  • the near-infrared shielding layer preferably contains the above (composite) tungsten oxide in an amount of 0.1 to 20 parts by weight, more preferably 1 to 20 parts by weight, and particularly 1 to 10 parts by weight with respect to 100 parts by weight of the binder resin.
  • the thickness of the near infrared shielding layer is generally 1 to 50 ⁇ m, preferably 5 to 50 ⁇ m.
  • a neon cut layer is provided together with a near-infrared shielding layer.
  • the near-infrared shielding layer may contain a neon cut pigment (a pigment capable of imparting a neon emission absorption function) to have a neon emission absorption function.
  • the neon cut dye a dye having a maximum absorption in the wavelength range of 560 to 610 nm is particularly preferably used.
  • the near infrared blocking function and the neon cutting function can be compatible at a high level, The near-infrared shielding property and durability of the infrared shielding body can be further improved.
  • the light derived from unnecessary neon gas is effectively cut, it is possible to improve the visibility of a display image such as a PDP and to remarkably prevent malfunction of surrounding electronic devices.
  • Examples of the dye ⁇ neon cut dye (neon emission selective absorption dye) ⁇ having maximum absorption in the wavelength range of 560 to 610 nm of the present invention include cyanine dyes, squarylium dyes, anthraquinone dyes, phthalocyanine dyes, polymethine dyes And polyazo dyes, azulenium dyes, diphenylmethane dyes, triphenylmethane dyes, and dyes having a polyphyllin ring structure.
  • a dye having a porphine ring structure is preferred (particularly a structure in which a porphine ring is coordinated to a metal such as Fe or Mg).
  • the dye having a porphyrin ring structure are commercially available from Yamada Chemical Co., Ltd. under trade names such as TAP-2, TAP-18, and TAP-45.
  • Such a selective absorption dye is required to have a selective absorption of neon emission at around 585 nm and a small absorption at other visible light wavelengths. Therefore, the absorption maximum wavelength is 560 to 610 nm, and the absorption spectrum half width is small. What is 40 nm or less is preferable.
  • the maximum absorption can be measured using, for example, a spectrophotometer UV3100PC (manufactured by Shimadzu Corporation).
  • coloring pigments may be further added.
  • the neon cut layer is generally a layer mainly composed of the neon cut dye and a binder resin (preferably the acrylic resin).
  • the neon cut layer is obtained, for example, by applying a coating solution containing the above neon cut and binder resin, and if necessary, drying and curing. Alternatively, it can also be obtained by coating a coating liquid containing the neon cut and the binder resin, and simply drying.
  • the layer containing the neon cut pigment is 0.1 to 20 parts by mass of neon cut pigment with respect to 100 parts by mass of binder resin (resin for adhesive). Further, it is preferable to contain 1 to 20 parts by mass, particularly 1 to 10 parts by mass.
  • the thickness of such a layer is generally 1 to 50 ⁇ m, preferably 5 to 50 ⁇ m, particularly preferably 10 to 50 ⁇ m.
  • the neon cut dye is preferably contained in an amount of 0.1 to 5 parts by mass, and more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the binder resin (adhesive resin).
  • the thickness of the layer is generally 1 to 20 ⁇ m, preferably 1 to 10 ⁇ m.
  • the above-mentioned or normal pressure-sensitive adhesive layer is mainly a layer for adhering the optical film of the present invention to a display, and any resin can be used as long as it has an adhesive function.
  • acrylic adhesives, rubber adhesives, thermoplastic elastomers (TPE) such as SEBS (styrene / ethylene / butylene / styrene) and SBS (styrene / butadiene / styrene), which are formed from butyl acrylate, are the main components.
  • TPE-based pressure-sensitive adhesives and adhesives can also be used.
  • the layer thickness is generally preferably 5 to 500 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the near-infrared shield can be equipped by generally pressing the pressure-sensitive adhesive layer on a glass plate of a display.
  • the minimum transmittance in the near-infrared wavelength range of 800 to 1100 nm is preferably 30% or less, particularly 20% or less. preferable.
  • the near-infrared shield has a minimum value of luminous transmittance of visible light in the wavelength range of 560 to 610 nm, 80% or less, more preferably 60% or less, particularly 40% or less in the wavelength range.
  • the orange color having a peak at 560 to 610 nm is a cause of deteriorating the color reproducibility, so it has the effect of absorbing the orange wavelength, thereby improving the redness and improving the color The reproducibility is improved.
  • the light transmitted through the L * a * b * display system of the near-infrared shielding material b * is -15 or more.
  • these adhesions may be, for example, ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, acrylic resin (eg, ethylene- ( (Meth) acrylic acid copolymer, ethylene-ethyl (meth) acrylate copolymer, ethylene- (meth) methyl acrylate copolymer, metal ion crosslinked ethylene- (meth) acrylic acid copolymer), partially saponified ethylene -Ethylene copolymers such as vinyl acetate copolymer, carboxylated ethylene-vinyl acetate copolymer, ethylene- (meth) acryl-maleic anhydride copolymer, ethylene-vinyl acetate- (meth) acrylate copolymer ("(Meth) acryl" indicates "acryl or methacryl").
  • acrylic resin eg, ethylene- ( (Meth) acrylic acid copolymer, ethylene-ethyl (meth) acrylate
  • PVB polyvinyl butyral
  • epoxy resin epoxy resin
  • phenol resin phenol resin
  • silicon resin polyester resin
  • urethane resin phenol resin
  • rubber adhesive thermoplastic elastomers
  • SEBS thermoplastic elastomers
  • the layer thickness is preferably in the range of 10 to 100 ⁇ m.
  • the near-infrared shield can be equipped by generally pressing the pressure-sensitive adhesive layer on a glass plate of a display.
  • EVA When EVA is also used as the material for the pressure-sensitive adhesive layer, EVA having a vinyl acetate content of 5 to 50% by mass, preferably 15 to 40% by mass is used.
  • the vinyl acetate content is less than 5% by mass, there is a problem in transparency, and when it exceeds 40% by mass, the mechanical properties are remarkably deteriorated and the film formation becomes difficult and the films tend to block each other.
  • an organic peroxide is suitable, and is selected in consideration of sheet processing temperature, crosslinking temperature, storage stability, and the like.
  • the organic peroxide is usually kneaded with EVA using an extruder, a roll mill or the like, but may be dissolved in an organic solvent, a plasticizer, a vinyl monomer or the like and added to the EVA film by an impregnation method.
  • the pressure-sensitive adhesive layer for the above-mentioned adhesion is, for example, a mixture of EVA and the above-mentioned additives, kneaded with an extruder, roll, etc., and then formed into a predetermined shape by a film forming method such as calendar, roll, T-die extrusion, inflation, etc. It is manufactured by forming a sheet.
  • a protective layer may be provided on the antireflection layer.
  • the protective layer is preferably formed in the same manner as the hard coat layer.
  • a transparent polymer having a glass transition temperature of 50 ° C. or higher is preferable.
  • polyesters such as polyethylene terephthalate, polycyclohexylene terephthalate, and polyethylene naphthalate.
  • polyamide resins such as resin, nylon 46, modified nylon 6T, nylon MXD6, polyphthalamide, ketone resins such as polyphenylene sulfide and polythioether sulfone, and sulfone resins such as polysulfone and polyether sulfone.
  • Mainly composed of polymers such as ether nitrile, polyarylate, polyetherimide, polyamideimide, polycarbonate, polymethyl methacrylate, triacetyl cellulose, polystyrene, polyvinyl chloride Resin can be used.
  • polycarbonate, polymethyl methacrylate, polyvinyl chloride, polystyrene, and polyethylene terephthalate can be suitably used.
  • the thickness is preferably 10 to 200 ⁇ m, particularly preferably 30 to 100 ⁇ m.
  • the near-infrared shield of the present invention is preferably used as an optical filter for display.
  • FIG. 9 shows an example of a state in which the near-infrared shield (display optical filter) of the present invention is attached to the image display surface of a plasma display panel which is a kind of display.
  • An optical filter is bonded to the surface of the display surface of the display panel 90 via a near-infrared shielding layer 93 having adhesiveness. That is, a mesh-like conductive layer 94, a hard coat layer 92A, and a low refractive index layer 92B are provided in this order on one surface of the transparent substrate 91, and a near-infrared shielding layer 93 is provided on the other surface of the transparent substrate 91.
  • the optical filter is provided on the display surface.
  • the mesh-like conductive layer 94 ' is exposed at the edge (side edge) of the filter (for example, obtained by removing each layer at the end with a laser).
  • the exposed mesh-like conductive layer 94 ′ is brought into contact with a metal cover 99 provided around the plasma display panel 90 through shield fingers (plate spring-like metal parts) 98.
  • a conductive gasket or the like may be used instead of the shield finger (plate spring-like metal part).
  • the metal cover 99 may be a metal frame or a frame.
  • the mesh-shaped conductive layer 93 faces the viewer side.
  • the near-infrared shield of the present invention can be directly bonded to the surface of the glass plate, as described above. When one substrate is used, it can contribute to reducing the weight, thickness and cost of the PDP itself. Compared with the case where a front plate made of a transparent molded body is installed on the front side of the PDP, an air layer having a low refractive index can be eliminated between the PDP and the PDP filter, so that visible light reflection due to interface reflection can be achieved. Problems such as an increase in rate and double reflection can be solved, and the visibility of the PDP can be further improved.
  • the near-infrared shielding body of the present invention has at least the near-infrared shielding layer described above, and may further have a functional layer such as a transparent substrate, an adhesive layer, or an antireflection layer, if necessary. good.
  • Example 1 ⁇ Preparation of optical filter for display> (Preparation of film with near-infrared shielding layer)
  • a coating solution for forming an adhesive near infrared shielding layer having the following composition was applied using an applicator so that the thickness would be 25 ⁇ m after drying. And dried in an oven at 80 ° C. for 2 minutes.
  • optical filter for displays which has an adhesive near-infrared shielding layer (thickness 25 micrometers) on a laminated body.
  • Acrylic resin-based adhesive (trade name: SK Dyne 1501BS4, manufactured by Soken Chemical Co., Ltd., acid value: 4.7 KOHmg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name: L-45E , Manufactured by Soken Chemical Co., Ltd.) 1 part by mass Cs 0.33 WO 3 (Average particle size 80 nm, solid content 20% by mass, MIBK solution) 5 parts by mass [Comparative Example 1] ⁇ Preparation of optical filter for display> An optical filter for display was obtained in the same manner as in Example 1 except that the following coating liquid for forming an adhesive near-infrared shielding layer was used.
  • Acrylic adhesive (trade name SK Dyne 1811L, manufactured by Soken Chemical Co., Ltd., Acid value: 0.0 KOH mg / g, solid content 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name L-45, manufactured by Soken Chemical Co., Ltd.) 1 part by mass Cs 0.33 WO 3 (Average particle size 80 nm, solid content 20% by mass, MIBK solution) 5 parts by mass
  • an acrylic adhesive and Cs 0.33 WO 3 dispersion were mixed, they became cloudy but were used as they were to produce an optical filter for display. did.
  • Example 2 ⁇ Preparation of film with mesh conductive layer> A copper foil was laminated on one surface of a PET film (thickness: 100 ⁇ m) via an adhesive layer, and then the copper foil was etched by a photolithography method. Thereby, a film having a mesh-like conductive layer (average height 10 ⁇ m, average width 20 ⁇ m, pitch 250 ⁇ m, aperture ratio 85%) was obtained.
  • a coating solution for forming an adhesive near-infrared shielding layer having the following composition was applied using an applicator so as to have a thickness of 25 ⁇ m after drying, and in an oven at 80 ° C. And dried for 2 minutes.
  • the PET film having a mesh-like conductive layer laminated on one surface via an adhesive layer and an adhesive near-infrared shielding layer (thickness 25 ⁇ m) on the other surface (FIG. 4). ) was produced.
  • Acrylic resin-based adhesive (trade name: SK Dyne 1501BS4, manufactured by Soken Chemical Co., Ltd., acid value: 4.7 KOHmg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name: L-45E 1 part by weight Cs 0.33 WO 3 manufactured by Soken Chemical Co., Ltd.
  • Example 3 ⁇ Preparation of film with mesh conductive layer> In the same manner as in Example 2, a film having a mesh-like conductive layer (average height 10 ⁇ m, average width 20 ⁇ m, pitch 250 ⁇ m, aperture ratio 85%) was obtained.
  • An adhesive near-infrared shielding layer (thickness 25 ⁇ m) was produced in the same manner as in Example 2, except that the adhesive liquid for forming an adhesive near-infrared shielding layer was applied onto the mesh-shaped conductive layer produced above. .
  • the PET having a mesh-like conductive layer laminated on one surface via an adhesive layer, and an adhesive near-infrared shielding layer (thickness 25 ⁇ m) laminated on the mesh-like conductive layer A film (FIG. 5) was produced.
  • Example 2 an optical filter for display was obtained in the same manner except that the following coating liquid for forming an adhesive near-infrared shielding layer was used.
  • Acrylic adhesive trade name SK Dyne 1811L, manufactured by Soken Chemical Co., Ltd., Acid value: 0.0 KOH mg / g, solid content 20% by mass, ethyl acetate solution
  • Isocyanate curing agent trade name L-45, manufactured by Soken Chemical Co., Ltd.
  • Cs 0.33 WO 3 Average particle size 80 nm, solid content 20% by mass, MIBK solution
  • an acrylic adhesive and Cs 0.33 WO 3 dispersion were mixed, they became cloudy but were used as they were to produce an optical filter for display.
  • the optical filter for display obtained in Example 1 has a high total light transmittance, low haze, and excellent transparency.
  • the minimum value of the transmittance of 800 to 1100 nm is low, an effective near-infrared cut is achieved. Indicates the function. This is considered because Cs 0.33 WO 3 particles are finely and uniformly dispersed.
  • the optical filter for display obtained in Comparative Example 1 does not have a high total light transmittance and has a high haze, so that the transparency is not sufficient, and the minimum value of 800-1100 nm transmittance is high. The cutting function is not satisfactory. This is considered because Cs 0.33 WO 3 particles are not uniformly dispersed.
  • Example 4 ⁇ Preparation of film with antireflection layer and near infrared shielding layer>
  • a hard coat layer forming coating solution solid content concentration: 40 mass%; viscosity: 25 ° C., 100 cP
  • the film was applied to a thickness of about 12 ⁇ m, dried in an oven at 80 ° C. for 1 minute, and then cured by irradiating with an ultraviolet ray with an integrated light quantity of 1000 mJ / cm 2 .
  • composition of hard coat layer forming coating solution Dipentaerythritol hexaacrylate 100 parts by weight TiO 2 particles (average particle size 0.1 ⁇ m) 10 parts by weight Polymerization initiator (Irquagua 184, manufactured by Ciba Specialty Chemicals) 7 parts by weight Isopropyl alcohol (IPA) 50 parts by weight Methyl ethyl ketone (MEK) 100 parts by mass Cyclohexanone (CAN) 25 parts by mass
  • IPA Isopropyl alcohol
  • MEK Methyl ethyl ketone
  • Cyclohexanone CAN 25 parts by mass
  • the following composition (Composition of coating solution for forming low refractive index layer) Opstar JN-7212 (manufactured by Nippon Synthetic Rubber Co., Ltd.) 100 parts by weight Methyl ethyl ketone 117 parts by weight Methyl isobutyl ketone 117 parts by weight was applied onto the hard coat layer
  • the following composition (Coating solution for forming near-infrared shielding layer with neon cut function) Acrylic resin-based adhesive (trade name: SK Dyne 1501BS4, manufactured by Soken Chemical Co., Ltd., acid value: 4.7 KOHmg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name: L-45E 1 part by weight Cs 0.33 WO 3 manufactured by Soken Chemical Co., Ltd.
  • Acrylic resin-based adhesive (trade name: SK Dyne 1501BS4, manufactured by Soken Chemical Co., Ltd., acid value: 4.7 KOHmg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass
  • Isocyanate curing agent (trade name: L-45E 1 part by weight Cs 0.33 WO 3 manufactured by Soken Chemical Co., Ltd.
  • Neon cut dye (maximum absorption at 560 to 610 nm: 592 nm)
  • the following composition (Coating liquid for forming adhesive layer) Acrylic resin adhesive (trade name SK Dyne 1811L, manufactured by Soken Chemical Co., Ltd., solid content 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name L-45, manufactured by Soken Chemical Co., Ltd.) 1
  • the coating solution obtained by mixing the mass parts was applied using an applicator and dried in an oven at 80 ° C. for 5 minutes. This formed the 25-micrometer-thick adhesive layer in the back surface of a mesh-like conductive layer film.
  • the mesh-like conductive layer film with the pressure-sensitive adhesive layer obtained above is placed on the glass plate so that the pressure-sensitive adhesive layer and the glass plate surface face each other, and further reflected on the conductive layer of the mesh-like conductive layer film.
  • the film with a near-infrared shielding layer with a prevention layer and a neon cut function was placed so that the conductive layer and the near-infrared shielding layer were in contact, and these were pressure-bonded. Thereby, an optical filter for display was obtained.
  • Example 5 ⁇ Preparation of film with antireflection layer and near infrared shielding layer>
  • an antireflection layer comprising a hard coat layer and a low refractive index layer obtained in the same manner as in Example 4, the following composition: (Coating solution for neon cut layer formation) The following formulation: Polymethyl methacrylate (solid content: 100% by mass) 30 parts by mass Methyl ethyl ketone 152 parts by mass Methyl isobutyl ketone 182 parts by mass Neon cut dye (maximum absorption at 560 to 610 nm: 592 nm A coating solution obtained by mixing 0.3 part by mass of a trade name TAP-2 (manufactured by Yamada Chemical Co., Ltd.) was applied using a bar coater to a thickness of 5 ⁇ m after drying, and an oven at 80 ° C.
  • TAP-2 trade name
  • the mixture was dried for 2 minutes to form a neon cut layer.
  • Near-infrared shielding layer forming coating solution The following formulation: Acrylic resin-based adhesive (trade name: SK Dyne 1501BS4, manufactured by Soken Chemical Co., Ltd., acid value: 4.7 KOHmg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name: L-45E 1 part by weight Cs 0.33 WO 3 manufactured by Soken Chemical Co., Ltd. (Average particle size 80 nm, solid content 20% by mass, MIBK solution) A coating solution obtained by mixing 5 parts by mass was coated on the neon cut layer using an applicator so that the thickness after drying was 25 ⁇ m. And dried in an oven at 80 ° C. for 2 minutes.
  • an optical filter for display having an adhesive neon cut layer and a near-infrared shielding layer (thickness 25 ⁇ m) on the laminate was produced.
  • the following composition (Coating liquid for forming adhesive layer) Acrylic resin adhesive (trade name SK Dyne 1811L, manufactured by Soken Chemical Co., Ltd., solid content 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name L-45, manufactured by Soken Chemical Co., Ltd.) 1
  • the coating solution obtained by mixing the mass parts was applied using a bar coater and dried in an oven at 80 ° C. for 5 minutes. This formed the 25-micrometer-thick adhesive layer in the back surface of a mesh-like conductive layer film.
  • the mesh-like conductive layer film with the pressure-sensitive adhesive layer obtained above is placed on the glass plate so that the pressure-sensitive adhesive layer and the glass plate surface face each other, and further reflected on the conductive layer of the mesh-like conductive layer film.
  • the prevention layer and the film with a near-infrared shielding layer were placed so that the conductive layer and the near-infrared shielding layer were in contact, and these were pressure-bonded.
  • Example 4 an optical filter for display was obtained in the same manner except that the following coating liquid for forming a near-infrared shielding layer with a neon cut function was used.
  • Acrylic resin adhesive (trade name: SK Dyne 1811L, manufactured by Soken Chemical Co., Ltd., acid value: 0.0 KOHmg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name: L-45 1 part by weight Cs 0.33 WO 3 manufactured by Soken Chemical Co., Ltd.
  • Example 6 ⁇ Preparation of film with mesh conductive layer> A copper foil was laminated on one surface of a PET film (thickness: 100 ⁇ m) via an adhesive layer, and then the copper foil was etched by a photolithography method. As a result, a PET film having a mesh-like conductive layer (average height 10 ⁇ m, average width 20 ⁇ m, pitch 250 ⁇ m, aperture ratio 85%) was obtained.
  • a coating solution for forming a near-infrared shielding layer with a neon cut function having the following composition was applied using an applicator so as to have a thickness of 25 ⁇ m after drying. Dry in oven for 2 minutes. Thereby, it has a mesh-like conductive layer laminated on one surface via an adhesive layer, and has a sticky neon-cutting function near-infrared shielding layer (thickness 25 ⁇ m) on the other surface.
  • a PET film (FIG. 6) was produced.
  • Acrylic resin-based adhesive (trade name: SK Dyne 1501BS4, manufactured by Soken Chemical Co., Ltd., acid value: 4.7 KOH mg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name: L-45E 1 part by weight Cs 0.33 WO 3 manufactured by Soken Chemical Co., Ltd.
  • Example 7 ⁇ Preparation of film with mesh conductive layer> In the same manner as in Example 6, a film having a mesh-like conductive layer (average height 10 ⁇ m, average width 20 ⁇ m, pitch 250 ⁇ m, aperture ratio 85%) was obtained.
  • a near-infrared shielding layer with a neon-cut function (thickness 25 ⁇ m) was formed in the same manner as in Example 6 except that the adhesive near-infrared shielding layer forming coating solution was applied onto the mesh-shaped conductive layer prepared above. Produced. Thereby, a mesh-like conductive layer laminated on one surface via an adhesive layer, and a sticky near-infrared shielding layer with a neon cut function (thickness 25 ⁇ m) laminated on the mesh-like conductive layer
  • Example 6 an optical filter for display was obtained in the same manner except that the following coating liquid for forming a near-infrared shielding layer with a neon cut function was used.
  • Coating solution for forming near-infrared shielding layer with neon cut function Acrylic resin adhesive (trade name: SK Dyne 1811L, manufactured by Soken Chemical Co., Ltd., acid value: 0.0 KOHmg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name: L-45 1 part by weight Cs 0.33 WO 3 manufactured by Soken Chemical Co., Ltd.
  • the luminous transmittance (definition JIS Z8105-1982) is spectrophotometer UV3100PC (manufactured by Shimadzu Corporation) ), The Y of the tristimulus value of the XYZ color system was calculated, and the luminous transmittance (Y) was obtained.
  • the calculation method was performed with a C light source of 2 ° (JIS Z8722-2000).
  • optical filters for displays obtained in Examples 4 and 5 have low visible transmittance of visible light of 560 to 610 nm, light from neon gas is sufficiently cut, and at the same time, the minimum transmittance of 800 to 1100 nm It also shows an excellent near-infrared cut function because of its low value. This can be said to be a remarkable effect of using Cs 0.33 WO 3 and a neon cut dye at the same time. Similar results were obtained in Examples 6 and 7 and Comparative Example 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)

Abstract

A near-infrared-shielding structure is provided which is excellent in the property of shielding near infrared rays and in the durability of the property. The near-infrared-shielding structure is characterized by having a near-infrared-shielding layer (13) comprising: a tungsten oxide and/or a composite tungsten oxide; and a pressure-sensitive adhesive having acid groups.

Description

近赤外線遮蔽体、及びこれを用いたディスプレイ用光学フィルタNear-infrared shield and optical filter for display using the same
 本発明は、近赤外線遮断機能を有する近赤外線遮蔽体、及びプラズマディスプレイパネル(PDP)等に好適な近赤外線遮断機能を有するディスプレイ用光学フィルタに関する。 The present invention relates to a near-infrared shield having a near-infrared shielding function and a display optical filter having a near-infrared shielding function suitable for a plasma display panel (PDP) and the like.
 PDPには通常必ず前面フィルタが使用される。この前面フィルタは、近赤外線カット、色再現性向上(発光色純度向上)、電磁波シールド、明所コントラスト向上(反射防止)、発光パネルの保護、発光パネルからの熱遮断等を目的として使用される。 A front filter is always used for PDP. This front filter is used for the purpose of near-infrared cut, color reproducibility improvement (light emission color purity improvement), electromagnetic wave shield, bright place contrast improvement (antireflection), light emission panel protection, heat insulation from the light emission panel, etc. .
 PDPの発光パネルの発する近赤外線は、家庭用テレビやビデオ等に使用されるリモコンに誤作動を与えることを避けるために、これを低減することが必要である。またPDPの発光パネルの発する電磁波は、人体や精密機器への悪影響を避けるためにこれを抑制することも必要である。またPDPの発光パネルからの発光を、人間の視覚にとって自然な色に感じられるように、フィルタでの補正によって色再現性向上(発光色純度向上)の工夫も求められている。さらにディスプレイの表示は、明るい室内等の明所においても外部からの光の反射等によって妨げられることなく、十分なコントラストで視認されることが望ましい。加えて、ディスプレイ製品に直接に手で触れたような場合でも、使用者がその高温に驚かされるような事態を避けるために、PDPの発光パネルの発する熱が遮断されることが望ましい。 The near-infrared light emitted from the PDP light-emitting panel needs to be reduced in order to avoid malfunctioning the remote control used for home TV and video. In addition, it is necessary to suppress the electromagnetic waves emitted by the light emitting panel of the PDP in order to avoid adverse effects on the human body and precision equipment. Further, in order to make the light emitted from the light emitting panel of the PDP feel a natural color for human vision, there is a demand for improvement in color reproducibility (light emission color purity improvement) by correction with a filter. Furthermore, it is desirable that the display on the display be visually recognized with sufficient contrast without being hindered by reflection of light from the outside even in a bright place such as a bright room. In addition, even when the display product is directly touched by hand, it is desirable that the heat generated by the light emitting panel of the PDP is cut off in order to avoid a situation where the user is surprised by the high temperature.
 上記の目的に沿ったPDP用光学フィルタとして、一般に、反射防止、近赤外線遮断、電磁波遮蔽等の各種機能を有する光学フィルタが用いられている。しかしながら、実際は、それぞれの機能を有する光学フィルタ及び2個の機能を有する光学フィルタを、適宜組み合わせて貼り合わせることによりPDP用光学フィルタとして使用されている。 In general, optical filters having various functions such as antireflection, near-infrared shielding, and electromagnetic wave shielding are used as optical filters for PDPs that meet the above-mentioned purpose. However, in actuality, it is used as an optical filter for PDP by bonding optical filters having respective functions and optical filters having two functions in an appropriate combination.
 前述のプラズマディスプレイから放射される近赤外線は、周辺の電子機器の誤動作の原因となるため、特に有効な遮断が求められている。 The near-infrared rays emitted from the above-mentioned plasma display may cause malfunctions of peripheral electronic devices, so that particularly effective blocking is required.
 例えば、近赤外線遮断の機能を有する光学フィルタとして、特許文献1(特開2001-133624号公報)に、透明樹脂フィルム層(1)と、近赤外線吸収剤としてジイモニウム系化合物を含有する透明近赤外線遮蔽層(2)と、透明樹脂フィルム層(3)と、前記透明近赤外線遮蔽層(2)の色調を補整する色材を含有する透明色調補整層(4)とを積層した多層構造を有することを特徴とする近赤外線遮蔽フィルムが開示されている。 For example, as an optical filter having a function of blocking near infrared rays, Patent Document 1 (Japanese Patent Laid-Open No. 2001-133624) discloses a transparent near infrared ray containing a transparent resin film layer (1) and a diimonium-based compound as a near infrared ray absorbent. It has a multilayer structure in which a shielding layer (2), a transparent resin film layer (3), and a transparent color tone compensation layer (4) containing a color material that compensates the color tone of the transparent near-infrared shielding layer (2) are laminated. The near-infrared shielding film characterized by this is disclosed.
特開2001-133624号公報JP 2001-133624 A 特開2006-287236号公報(後述)JP 2006-287236 A (described later)
 上記光学フィルタにおいては、その構成の簡素化のため、粘着剤層に種々の機能を付与させて、フィルタを構成する層数の低減を要望する声が大きくなっている。 In order to simplify the structure of the optical filter, there are increasing demands for reducing the number of layers constituting the filter by giving the adhesive layer various functions.
 一方、上記近赤外線遮蔽効果については、特許文献1に記載されているような、近赤外線吸収剤としてジイモニウム系化合物を含有する近赤外線遮蔽層を用いた場合、近赤外線の吸収機能を長期に保持する、耐久性が十分と言えないことが本発明者の検討により明らかとなっている。また、特許文献2(特開2006-287236号公報)には、近赤外線の遮断性に優れたタングステン酸化物、複合タングステン酸化物(以下(複合)タングステン酸化物とも言う)が提案されている。 On the other hand, with respect to the near-infrared shielding effect, when a near-infrared shielding layer containing a diimonium compound as a near-infrared absorber as described in Patent Document 1 is used, the near-infrared absorbing function is maintained for a long time. However, it has been revealed by the inventor that the durability is not sufficient. Patent Document 2 (Japanese Patent Laid-Open No. 2006-287236) proposes a tungsten oxide and a composite tungsten oxide (hereinafter also referred to as (composite) tungsten oxide) excellent in near-infrared blocking properties.
 上記(複合)タングステン酸化物は、近赤外線に強力な吸収を有し、前記周辺の電子機器の誤動作を防止するのに極めて有効である。このような(複合)タングステン酸化物は、一般にその微粒子を媒体中に分散させた分散液として市販されている。近赤外線遮断層を形成するために、この分散液と粘着剤と混合する必要があるが、本発明者の検討によれば、これらの混合により(複合)タングステン酸化物の微粒子が凝集し易く、得られる近赤外線遮断層が所定の近赤外線の吸収能を得ることができないことが判明した。 The above (composite) tungsten oxide has strong absorption in the near infrared and is extremely effective in preventing malfunction of the peripheral electronic device. Such (composite) tungsten oxide is generally commercially available as a dispersion in which fine particles are dispersed in a medium. In order to form the near-infrared blocking layer, it is necessary to mix this dispersion and the pressure-sensitive adhesive, but according to the study of the present inventors, the fine particles of (composite) tungsten oxide are likely to aggregate due to these mixing, It has been found that the obtained near-infrared shielding layer cannot obtain a predetermined near-infrared absorbing ability.
 従って、本発明の目的は、近赤外線遮断性及びその機能を長期に保持する耐久性に優れた近赤外線遮断体を提供することにある。 Therefore, an object of the present invention is to provide a near-infrared shield having excellent near-infrared shielding properties and durability that retains its function over a long period of time.
 また、本発明の目的は、近赤外線遮断性及びその機能を長期に保持する耐久性に優れ、さらに向上した表示特性を有するディスプレイ用光学フィルタを提供することにある。 Another object of the present invention is to provide an optical filter for a display that has excellent near-infrared shielding properties and durability that retains its function for a long period of time, and has improved display characteristics.
 さらに、本発明の目的は、近赤外線遮断性及びその機能を長期に保持する耐久性に優れ、さらに向上した表示特性を有するプラズマディスプレイパネル用光学フィルタを提供することにある。 Furthermore, an object of the present invention is to provide an optical filter for a plasma display panel which has excellent near-infrared shielding properties and durability for maintaining its function for a long period of time, and has further improved display characteristics.
 本発明者のさらなる検討によれば、(複合)タングステン酸化物の微粒子の凝集を起こし易い粘着剤は、一般的な中性の粘着剤であり、酸性基(特にカルボン酸基)を有する粘着剤を用いることにより、上記凝集の問題が解決されることが明らかとなった。 According to further studies by the present inventors, the pressure-sensitive adhesive that easily causes aggregation of fine particles of (composite) tungsten oxide is a general neutral pressure-sensitive adhesive and has an acidic group (particularly a carboxylic acid group). It has been clarified that the problem of aggregation is solved by using.
 本発明は、
 タングステン酸化物及び/又は複合タングステン酸化物及び酸性基を有する粘着剤を含むことを特徴とする近赤外線遮蔽体;
にある。
The present invention
A near-infrared shield comprising a tungsten oxide and / or a composite tungsten oxide and an adhesive having an acidic group;
It is in.
 本発明では、粘着剤とは粘着性樹脂を意味し、硬化剤と共に使用することが好ましい。 In the present invention, the adhesive means an adhesive resin and is preferably used together with a curing agent.
 本発明の近赤外線遮蔽体の好適態様は以下の通りである。
(1)粘着剤の酸価が0.5KOHmg/g以上である。タングステン酸化物及び/又は複合タングステン酸化物を良好に分散させ得る。
(2)粘着剤がアクリル樹脂系粘着剤である。
(3)粘着剤の酸性基がカルボキシル基である。タングステン酸化物及び/又は複合タングステン酸化物を良好に分散させ得る。
(4)近赤外線遮蔽体は、560~610nmの波長範囲に極大吸収を有する色素(ネオンカット色素)をさらに含む。(複合)タングステン酸化物及びネオンカット色素を併用することにより、近赤外線遮蔽性及びその耐久性をさらに向上させることができる。
(5)タングステン酸化物及び/又は複合タングステン酸化物を含む近赤外線遮蔽層、及び560~610nmの波長範囲に極大吸収を有する色素を含むネオンカット層を有する。それぞれの化合物と相溶性に優れた樹脂(特にアクリル樹脂)を用いることにより、それぞれの機能が効率よく発揮させることができるので、近赤外線遮断機能とネオンカット機能を高いレベルで、両立させることが可能である。
(6)タングステン酸化物及び/又は複合タングステン酸化物及び560~610nmの波長範囲に極大吸収を有する色素の両方を含む近赤外線遮蔽層を有する。両方の化合物と相溶性に優れた樹脂(特にアクリル樹脂)を用いることにより、近赤外線遮断機能とネオンカット機能を高いレベルで、両立させることが可能である。
(7)タングステン酸化物及び/又は複合タングステン酸化物が微粒子状である。良好な近赤外線遮断効果を示す。
(8)微粒子の平均粒径が400nm以下である。良好な近赤外線遮断効果を示す。
(9)タングステン酸化物が、一般式WyOz(但し、Wはタングステン、Oは酸素を表し、そして2.2≦z/y≦2.999である)で表され、
 複合タングステン酸化物が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iうちから選択される1種類以上の元素、Wはタングステン、Oは酸素を表し、そして0.001≦x/y≦1、2.2≦z/y≦3である)で表される。複合タングステン酸化物が近赤外線吸収性に優れており好ましい。
Preferred embodiments of the near-infrared shield of the present invention are as follows.
(1) The acid value of the pressure-sensitive adhesive is 0.5 KOH mg / g or more. Tungsten oxide and / or composite tungsten oxide can be well dispersed.
(2) The pressure-sensitive adhesive is an acrylic resin-based pressure-sensitive adhesive.
(3) The acidic group of the pressure-sensitive adhesive is a carboxyl group. Tungsten oxide and / or composite tungsten oxide can be well dispersed.
(4) The near-infrared shield further includes a dye having a maximum absorption in the wavelength range of 560 to 610 nm (neon cut dye). By using a (composite) tungsten oxide and a neon cut pigment in combination, the near-infrared shielding property and the durability thereof can be further improved.
(5) a near-infrared shielding layer containing tungsten oxide and / or composite tungsten oxide, and a neon cut layer containing a dye having a maximum absorption in the wavelength range of 560 to 610 nm. By using a resin (especially acrylic resin) excellent in compatibility with each compound, each function can be exhibited efficiently, so that both the near-infrared blocking function and the neon cut function can be achieved at a high level. Is possible.
(6) It has a near-infrared shielding layer containing both tungsten oxide and / or composite tungsten oxide and a dye having maximum absorption in the wavelength range of 560 to 610 nm. By using a resin (especially acrylic resin) excellent in compatibility with both compounds, it is possible to achieve both a near-infrared blocking function and a neon cut function at a high level.
(7) The tungsten oxide and / or the composite tungsten oxide is in the form of fine particles. Good near-infrared shielding effect.
(8) The average particle size of the fine particles is 400 nm or less. Good near-infrared shielding effect.
(9) The tungsten oxide is represented by the general formula WyOz (where W represents tungsten, O represents oxygen, and 2.2 ≦ z / y ≦ 2.999),
The composite tungsten oxide has the general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, One or more elements selected from V, Mo, Ta, Re, Be, Hf, Os, Bi, I, W represents tungsten, O represents oxygen, and 0.001 ≦ x / y ≦ 1,2. 0.2 ≦ z / y ≦ 3). A composite tungsten oxide is preferable because of its excellent near-infrared absorptivity.
 本発明の近赤外線遮蔽体は、ディスプレイ用光学フィルタ、特にプラズマディスプレイパネル用フィルタとして好適に用いられる。 The near-infrared shield of the present invention is suitably used as a display optical filter, particularly as a plasma display panel filter.
 本発明の近赤外線遮蔽体は、近赤外線を効率よくカットするタングステン酸化物及び/又は複合タングステン酸化物を含み、且つ酸性基を有する粘着剤(バインダ樹脂)を含有している。このため、(複合)タングステン酸化物は、粘着剤中に微細な微粒子状で均一に分散しており、優れた近赤外線遮断性を示す。従って、このような近赤外線遮蔽体を、ディスプレイ用光学フィルタ、特にPDPの光学フィルタとして使用した場合、得られるPDPの表示画像は、近赤外線が有効にカットされているので、周辺の電子機器の誤動作を顕著に防止する。さらに、このような近赤外線カット機能を長期に維持することができる。また同時に、表示画像の視認性にも優れたものである。このため、本発明の近赤外線遮蔽体は、優れた近赤外線遮断性、耐久性を有し、優れた表示特性を示す。
また、本発明の近赤外線遮蔽体は、上記のように優れた近赤外線遮断性を有するので、同様な観点から、ディスプレイ以外の用途、例えば、窓ガラス、ショーケース等にも有用である。
The near-infrared shield of the present invention contains a tungsten oxide and / or a composite tungsten oxide that efficiently cuts near infrared rays, and contains an adhesive (binder resin) having an acidic group. For this reason, the (composite) tungsten oxide is uniformly dispersed as fine fine particles in the pressure-sensitive adhesive, and exhibits excellent near-infrared shielding properties. Therefore, when such a near-infrared shield is used as an optical filter for display, particularly an optical filter for a PDP, the display image of the obtained PDP is effectively cut off from near-infrared light. Remarkably prevent malfunction. Furthermore, such a near-infrared cut function can be maintained for a long time. At the same time, the visibility of the display image is excellent. For this reason, the near-infrared shield of the present invention has excellent near-infrared shielding properties and durability, and exhibits excellent display characteristics.
Moreover, since the near-infrared shielding body of this invention has the outstanding near-infrared shielding property as mentioned above, it is useful also for uses other than a display, for example, a window glass, a showcase, etc. from the same viewpoint.
本発明の近赤外線遮蔽体の代表的な1例の概略断面図である。It is a schematic sectional drawing of one typical example of the near-infrared shielding body of this invention. 本発明の近赤外線遮蔽体の好適態様の1例の概略断面図である。It is a schematic sectional drawing of one example of the suitable aspect of the near-infrared shielding body of this invention. 本発明の近赤外線遮蔽体の好適態様の別の1例の概略断面図である。It is a schematic sectional drawing of another example of the suitable aspect of the near-infrared shielding body of this invention. 本発明の近赤外線遮蔽体の好適態様の別の1例の概略断面図である。It is a schematic sectional drawing of another example of the suitable aspect of the near-infrared shielding body of this invention. 本発明の近赤外線遮蔽体の好適態様の別の1例の概略断面図である。It is a schematic sectional drawing of another example of the suitable aspect of the near-infrared shielding body of this invention. 本発明の近赤外線遮蔽体の好適態様の別の1例の概略断面図である。It is a schematic sectional drawing of another example of the suitable aspect of the near-infrared shielding body of this invention. 本発明の近赤外線遮蔽体の好適態様の別の1例の概略断面図である。It is a schematic sectional drawing of another example of the suitable aspect of the near-infrared shielding body of this invention. 本発明の近赤外線遮蔽体の好適態様の別の1例の概略断面図である。It is a schematic sectional drawing of another example of the suitable aspect of the near-infrared shielding body of this invention. 本発明の近赤外線遮蔽体が、ディスプレイの1種であるプラズマディスプレイパネルの画像表示面に貼付された状態の1例の概略断面図である。It is a schematic sectional drawing of one example of the state in which the near-infrared shielding body of this invention was affixed on the image display surface of the plasma display panel which is 1 type of a display.
 本発明の近赤外線遮蔽体(ディスプレイ用光学フィルタ)について図を用いて説明する。 The near-infrared shield (display optical filter) of the present invention will be described with reference to the drawings.
 図1は、本発明の近赤外線遮蔽体の基本構成の概略断面図である。 FIG. 1 is a schematic cross-sectional view of the basic configuration of the near-infrared shield of the present invention.
 本発明の近赤外線遮蔽体は、透明基板11、透明基板11の一方の表面に形成された反射防止層12、及び透明基板11の他方の表面に形成された近赤外線遮蔽層13が設けられた構成を有する。本発明では、近赤外線遮蔽層13に、タングステン酸化物及び/又は複合タングステン酸化物と酸性基を有する粘着剤の両方を含んでいる。近赤外線遮蔽層13は、タングステン酸化物及び/又は複合タングステン酸化物が微粒子状で均一に酸性基を有する粘着剤中に分散しているため、有害な近赤外線が効率よくカットされる。このような近赤外線遮蔽体は、一般に800~1100nmの波長領域の近赤外線の光の透過率の最小値が30%以下である。近赤外線遮蔽層13に粘着性を持たせてこれを用いて、他の光学フィルム、或いはディスプレイ表面に接着することが好ましい。反射防止機能を必要としない用途では、反射防止層12は無くても良い。 The near-infrared shield of the present invention is provided with a transparent substrate 11, an antireflection layer 12 formed on one surface of the transparent substrate 11, and a near-infrared shielding layer 13 formed on the other surface of the transparent substrate 11. It has a configuration. In the present invention, the near-infrared shielding layer 13 includes both tungsten oxide and / or composite tungsten oxide and an adhesive having an acidic group. Since the near-infrared shielding layer 13 has tungsten oxide and / or composite tungsten oxide dispersed finely in a pressure-sensitive adhesive having an acidic group, harmful near-infrared rays are efficiently cut. Such a near-infrared shield generally has a minimum value of transmittance of near-infrared light in the wavelength region of 800 to 1100 nm of 30% or less. It is preferable that the near-infrared shielding layer 13 is made sticky and used to adhere to another optical film or the display surface. In applications that do not require the antireflection function, the antireflection layer 12 may be omitted.
 図2に、本発明の近赤外線遮蔽体の好適態様の1例の概略断面図を示す。この近赤外線遮蔽体は、透明基板21A、透明基板21Aの一方の表面に形成された反射防止層22、及び透明基板21Aの他方の表面に形成された粘着性を有する近赤外線遮蔽層23が設けられた積層体(前図1と同じ態様)と、別の透明基板21B、透明基板21Bの一方の表面に形成されたメッシュ状導電層24、及び透明基板21Bの他方の表面に形成されたネオンカット色素を含む粘着剤層25が設けられた別の積層体とが、粘着性を有する近赤外線遮蔽層23を介して接着された構成を有する。本発明では、近赤外線遮蔽層23に、タングステン酸化物及び/又は複合タングステン酸化物と酸性基を有する粘着剤の両方を含んでいる。近赤外線遮蔽層23は、タングステン酸化物及び/又は複合タングステン酸化物が微粒子状で均一に酸性基を有する粘着剤中に分散しているため、有害な近赤外線が効率よくカットされる。このような近赤外線遮蔽体は、一般に800~1100nmの波長領域の近赤外線の光の透過率の最小値が30%以下である。このため、このような近赤外線遮蔽体が光学フィルタとして設けられたディスプレイ、特にPDPは優れた表示特性を示す。 FIG. 2 shows a schematic sectional view of an example of a preferred embodiment of the near-infrared shield of the present invention. This near-infrared shield is provided with a transparent substrate 21A, an antireflection layer 22 formed on one surface of the transparent substrate 21A, and an adhesive near-infrared shield layer 23 formed on the other surface of the transparent substrate 21A. Layered body (the same mode as the previous FIG. 1), another transparent substrate 21B, a mesh-like conductive layer 24 formed on one surface of the transparent substrate 21B, and neon formed on the other surface of the transparent substrate 21B Another laminated body provided with the pressure-sensitive adhesive layer 25 containing the cut pigment has a configuration in which it is adhered via a near-infrared shielding layer 23 having adhesiveness. In the present invention, the near-infrared shielding layer 23 includes both tungsten oxide and / or composite tungsten oxide and an adhesive having an acidic group. Since the near-infrared shielding layer 23 has tungsten oxide and / or composite tungsten oxide dispersed in a pressure-sensitive adhesive having fine particles and uniform acidic groups, harmful near-infrared rays are efficiently cut off. Such a near-infrared shield generally has a minimum value of transmittance of near-infrared light in the wavelength region of 800 to 1100 nm of 30% or less. For this reason, a display provided with such a near-infrared shield as an optical filter, particularly a PDP, exhibits excellent display characteristics.
 このような近赤外線遮蔽体は、粘着剤層25を介してディスプレイ表面に接着されるか、粘着剤層25を介してガラス板に接着されPDPの前面に配置されるのが一般的である。 Such a near-infrared shield is generally adhered to the display surface via the pressure-sensitive adhesive layer 25, or is adhered to a glass plate via the pressure-sensitive adhesive layer 25 and disposed on the front surface of the PDP.
 本発明の近赤外線遮蔽体の別の好適態様の一例を図3に示す。透明基板31の一方の表面にメッシュ状の導電層(電磁波シールド層)34が設けられ、さらに導電層34の上に反射防止層32が設けられ、透明基板31の他方の表面に近赤外線遮蔽層33が設けられている。従って、基板として透明基板31を1枚のみ使用しており、図2の近赤外線遮蔽体に比較して薄いものが得られる。この近赤外線遮蔽体では、近赤外線遮蔽層33は、タングステン酸化物及び/又は複合タングステン酸化物が微粒子状で均一に酸性基を有する粘着剤中に分散しているため、有害な近赤外線が効率よくカットされる。このような近赤外線遮蔽体は、一般に800~1100nmの波長領域の近赤外線の光の透過率の最小値が30%以下である。 FIG. 3 shows an example of another preferred embodiment of the near-infrared shield of the present invention. A mesh-like conductive layer (electromagnetic wave shielding layer) 34 is provided on one surface of the transparent substrate 31, an antireflection layer 32 is further provided on the conductive layer 34, and a near-infrared shielding layer is provided on the other surface of the transparent substrate 31. 33 is provided. Therefore, only one transparent substrate 31 is used as the substrate, and a thin substrate can be obtained as compared with the near-infrared shield in FIG. In this near-infrared shielding body, the near-infrared shielding layer 33 is composed of tungsten oxide and / or composite tungsten oxide dispersed finely in a pressure-sensitive adhesive having an acidic group. Cut well. Such a near-infrared shield generally has a minimum value of transmittance of near-infrared light in the wavelength region of 800 to 1100 nm of 30% or less.
 また、上述した通り、近赤外線遮蔽体において反射防止層は用途に応じて省略することができる。このような本発明の近赤外線遮蔽体の別の好適態様の一例を図4に示す。この近赤外線遮蔽体では、透明基板41A、透明基板41Aの一方の表面に形成された近赤外線遮蔽層43、及び透明基板41Aの他方の表面上に接着剤層46を介して貼着されたメッシュ状の導電層44を有する積層体と、透明基板41Bとが、近赤外線遮蔽層43を介して積層された構成を有する。近赤外線遮蔽体は、反射防止層を有していないことから簡素化された構成を有し、製造が容易である。また、このような近赤外線遮蔽体は、そのまま、PDPの前面に配置することができる。近赤外線遮蔽層43はタングステン酸化物及び/又は複合タングステン酸化物と酸性基を有する粘着剤の両方を含んでいる。したがって、近赤外線遮蔽層中にタングステン酸化物及び/又は複合タングステン酸化物が均一に微分散されており、近赤外線を効率よくカットすることができる。このような近赤外線遮蔽体も、前述したように、一般に、800~1100nmの波長領域の近赤外線の光の透過率の最小値が30%以下である。 Also, as described above, the antireflection layer in the near-infrared shield can be omitted depending on the application. An example of another preferred embodiment of such a near-infrared shield of the present invention is shown in FIG. In this near-infrared shield, a transparent substrate 41A, a near-infrared shielding layer 43 formed on one surface of the transparent substrate 41A, and a mesh adhered to the other surface of the transparent substrate 41A via an adhesive layer 46 The laminated body having the conductive layer 44 and the transparent substrate 41 </ b> B are laminated via the near infrared shielding layer 43. The near-infrared shield has a simplified configuration because it does not have an antireflection layer, and is easy to manufacture. Moreover, such a near-infrared shielding body can be arrange | positioned as it is in front of PDP. The near-infrared shielding layer 43 includes both tungsten oxide and / or composite tungsten oxide and an adhesive having an acidic group. Therefore, the tungsten oxide and / or the composite tungsten oxide are uniformly finely dispersed in the near infrared shielding layer, and the near infrared can be cut efficiently. Such a near-infrared shield generally has a minimum value of the transmittance of near-infrared light in the wavelength region of 800 to 1100 nm as described above.
 本発明の近赤外線遮蔽体のさらに別の好適態様の一例を図5に示す。この近赤外線遮蔽体では、透明基板51A、透明基板51Aの一方の表面上に接着剤層56を介して貼着されたメッシュ状の導電層54、及びメッシュ状の導電層54上に形成された近赤外線遮蔽層53を有する積層体と、透明基板51Bとが、近赤外線遮蔽層53と透明基板51Bとが隣接するように積層された構成を有する。近赤外線遮蔽体は、反射防止層を有していないことから簡素化された構成を有し、製造が容易である。また、このような近赤外線遮蔽体も、そのまま、PDPの前面に配置することができる。近赤外線遮蔽層53はタングステン酸化物及び/又は複合タングステン酸化物と酸性基を有する粘着剤の両方を含んでいる。したがって、近赤外線遮蔽層中にタングステン酸化物及び/又は複合タングステン酸化物が均一に微分散されており、近赤外線を効率よくカットすることができる。このような近赤外線遮蔽体も、前述したように、一般に、800~1100nmの波長領域の近赤外線の光の透過率の最小値が30%以下である。 An example of still another preferred embodiment of the near-infrared shield of the present invention is shown in FIG. The near-infrared shield was formed on the transparent substrate 51A, the mesh-like conductive layer 54 pasted on one surface of the transparent substrate 51A via the adhesive layer 56, and the mesh-like conductive layer 54. The laminated body which has the near-infrared shielding layer 53, and the transparent substrate 51B have the structure laminated | stacked so that the near-infrared shielding layer 53 and the transparent substrate 51B may adjoin. The near-infrared shield has a simplified configuration because it does not have an antireflection layer, and is easy to manufacture. Moreover, such a near-infrared shielding body can also be arrange | positioned as it is on the front surface of PDP. The near-infrared shielding layer 53 includes both tungsten oxide and / or composite tungsten oxide and an adhesive having an acidic group. Therefore, the tungsten oxide and / or the composite tungsten oxide are uniformly finely dispersed in the near infrared shielding layer, and the near infrared can be cut efficiently. Such a near-infrared shield generally has a minimum value of the transmittance of near-infrared light in the wavelength region of 800 to 1100 nm as described above.
 本発明の近赤外線遮蔽体は、560~610nmの波長範囲に極大吸収を有する色素(ネオンカット色素)をさらに含有するのが好ましい。ネオンカット色素を使用することにより、PDPなどから発生し得るネオンガス由来の不要な光をカットすることができ、表示画像の視認性を向上させることも可能となる。 The near-infrared shield of the present invention preferably further contains a dye (neon cut dye) having a maximum absorption in the wavelength range of 560 to 610 nm. By using a neon cut pigment, unnecessary light derived from neon gas that can be generated from PDP or the like can be cut, and the visibility of a display image can be improved.
 ネオンカット色素は、近赤外線遮蔽体に用いられるいずれかの層に含まれればよい。したがって、近赤外線遮蔽層や粘着剤層などがネオンカット色素を含んでいてもよい。また、ネオンカット色素を含むネオンカット層を近赤外線遮蔽体にさらに用いてもよい。ネオンカット層は、一般に、560~610nmの波長領域に極大吸収を有する色素、及びこれを分散させるバインダ樹脂を含んでいる。このようなネオンカット層は、上記色素が均一に樹脂中に溶解及び/又は分散しているため、有害なネオンガスによる光が効率よくカットされる。 The neon cut pigment may be contained in any layer used for the near-infrared shield. Therefore, the near-infrared shielding layer, the pressure-sensitive adhesive layer, and the like may contain a neon cut pigment. Moreover, you may further use the neon cut layer containing a neon cut pigment | dye for a near-infrared shield. The neon cut layer generally contains a dye having a maximum absorption in a wavelength region of 560 to 610 nm and a binder resin for dispersing the dye. In such a neon cut layer, since the dye is uniformly dissolved and / or dispersed in the resin, light from harmful neon gas is efficiently cut.
 ネオンカット層を有する近赤外線遮蔽体の好適態様を図6に示す。この近赤外線遮蔽体は、透明基板61、透明基板61の一方の表面に形成された反射防止層62、及び透明基板61の他方の表面に順に積層されたネオンカット層64及び近赤外線遮蔽層63から構成される。 FIG. 6 shows a preferred embodiment of a near-infrared shield having a neon cut layer. The near-infrared shield includes a transparent substrate 61, an antireflection layer 62 formed on one surface of the transparent substrate 61, and a neon cut layer 64 and a near-infrared shield layer 63 that are sequentially stacked on the other surface of the transparent substrate 61. Consists of
 ネオンカット層を有する近赤外線遮蔽体の別の好適態様を図7に示す。この近赤外線遮蔽体は、透明基板71A、透明基板71Aの一方の表面に形成された反射防止層72、及び透明基板71Aの他方の表面に形成された(粘着性を有しても良い)ネオンカット層74及び粘着性を有する近赤外線遮蔽層73から構成される積層体(前図1と同じ態様)と、別の透明基板71B、透明基板71Bの一方の表面に形成されたメッシュ状導電層75、及び透明基板71Bの他方の表面に形成された粘着剤層76から構成される別の積層体とが、粘着性を有する近赤外線遮蔽層73を介して接着された構成を有する。 Another preferred embodiment of the near-infrared shield having a neon cut layer is shown in FIG. This near-infrared shield is a transparent substrate 71A, an antireflection layer 72 formed on one surface of the transparent substrate 71A, and neon (may have adhesiveness) formed on the other surface of the transparent substrate 71A. A laminate composed of a cut layer 74 and a near-infrared shielding layer 73 having adhesiveness (the same mode as in the previous FIG. 1), another transparent substrate 71B, and a mesh-like conductive layer formed on one surface of the transparent substrate 71B 75 and another laminate composed of the pressure-sensitive adhesive layer 76 formed on the other surface of the transparent substrate 71B have a configuration in which they are bonded via a near-infrared shielding layer 73 having adhesiveness.
 ネオンカット層を有する近赤外線遮蔽体の別の好適態様を図8に示す(透明基板を1枚使用した態様)。透明基板81の一方の表面にメッシュ状の導電層(電磁波シールド層)85が設けられ、さらに導電層85の上に反射防止層82が設けられ、透明基板81の他方の表面に(粘着性を有しても良い)ネオンカット層84及び粘着性を有する近赤外線遮蔽層83が設けられている。近赤外線遮蔽層83の上にさらに粘着剤層86が設けられても良い。この近赤外線遮蔽体では、基板として透明基板81を1枚のみ使用しており、図7の近赤外線遮蔽体に比較して薄いものが得られる。或いは、メッシュ状の導電層(電磁波シールド層)85の上に、粘着性を有する近赤外線遮蔽層83及び粘着性を有するネオンカット層84を設け、そしてネオンカット層84及び近赤外線遮蔽層83の代わりに反射防止層82を設けても良い。 Another preferred embodiment of the near-infrared shield having a neon cut layer is shown in FIG. 8 (embodiment using one transparent substrate). A mesh-like conductive layer (electromagnetic wave shielding layer) 85 is provided on one surface of the transparent substrate 81, and an antireflection layer 82 is further provided on the conductive layer 85. A neon cut layer 84 and a near-infrared shielding layer 83 having adhesiveness may be provided. An adhesive layer 86 may be further provided on the near-infrared shielding layer 83. In this near-infrared shield, only one transparent substrate 81 is used as a substrate, and a thin substrate can be obtained as compared with the near-infrared shield in FIG. Alternatively, an adhesive near-infrared shielding layer 83 and an adhesive neon-cut layer 84 are provided on a mesh-like conductive layer (electromagnetic wave shielding layer) 85, and the neon-cut layer 84 and the near-infrared shielding layer 83 are provided. Instead, an antireflection layer 82 may be provided.
 図6~8において、近赤外線遮蔽層63、73、83は、タングステン酸化物及び/又は複合タングステン酸化物と、酸性基を有する粘着剤とを含んでいる。したがって、近赤外線遮蔽層中にタングステン酸化物及び/又は複合タングステン酸化物が均一に微分散されており、近赤外線を効率よくカットすることができる。このような図6~8の近赤外線遮蔽体も、前述したように、一般に、800~1100nmの波長領域の近赤外線の光の透過率の最小値が30%以下である。また、ネオンカット層64、74、84は、560~610nmの波長領域に極大吸収を有する色素及びこれを分散させるバインダ樹脂を含んでいる。このようなネオンカット層では、上記色素が均一に樹脂中に溶解及び/又は分散しているため、有害なネオンガスによる光が効率よくカットされる。 6 to 8, the near-infrared shielding layers 63, 73, and 83 include tungsten oxide and / or composite tungsten oxide and an adhesive having an acidic group. Therefore, the tungsten oxide and / or the composite tungsten oxide are uniformly finely dispersed in the near infrared shielding layer, and the near infrared can be cut efficiently. 6 to 8 as described above, as described above, generally, the minimum value of the transmittance of near infrared light in the wavelength region of 800 to 1100 nm is 30% or less. The neon cut layers 64, 74, and 84 include a dye having a maximum absorption in a wavelength region of 560 to 610 nm and a binder resin that disperses the dye. In such a neon cut layer, since the dye is uniformly dissolved and / or dispersed in the resin, light from harmful neon gas is efficiently cut.
 本発明の近赤外線遮蔽体は、タングステン酸化物及び/又は複合タングステン酸化物が微粒子状で均一に酸性基を有する粘着剤中に分散した層を含んでいればどのような構成を有していても良く、図1~8に示した以外の構成を有するもの、例えば、上記で示した層の位置は適宜変更したものであっても良い。 The near-infrared shielding body of the present invention has any configuration as long as it includes a layer in which tungsten oxide and / or composite tungsten oxide is dispersed in a pressure-sensitive adhesive that is finely divided and has acidic groups. Alternatively, a layer having a configuration other than that shown in FIGS. 1 to 8, for example, the position of the layer shown above may be appropriately changed.
 本発明の近赤外線遮蔽体は、800~1100nmの波長範囲の近赤外線における透過率の最小値が、当該波長範囲において30%以下であることが好ましい。これにより、有害な近赤外線が効率よくカットされる。特に、560~610nmの波長範囲の可視光線における透過率の最小値が、当該波長範囲において60%以下であることがさらに好ましい。これはネオンカット色素を粘着層、近赤外線遮蔽層等の適当な層に含有させるか、ネオンカット色素を含むネオンカット層を用いればよい。 In the near-infrared shield of the present invention, the minimum value of the transmittance in the near-infrared ray in the wavelength range of 800 to 1100 nm is preferably 30% or less in the wavelength range. Thereby, harmful near infrared rays are efficiently cut. In particular, it is more preferable that the minimum transmittance of visible light in the wavelength range of 560 to 610 nm is 60% or less in the wavelength range. The neon cut pigment may be contained in an appropriate layer such as an adhesive layer or a near infrared shielding layer, or a neon cut layer containing a neon cut pigment may be used.
 このように本発明の近赤外線遮蔽体は、有害な近赤外線を効率よくカットすることができ、優れた近赤外線カット性を長期間に亘り維持することができる。また、同時に表示画像の視認性にも優れる。したがって、本発明の近赤外線遮蔽体は、ディスプレイ用光学フィルタ、特にプラズマパネルディスプレイ用光学フィルタとして用いられるのが好ましい。 As described above, the near-infrared shield of the present invention can efficiently cut harmful near-infrared rays, and can maintain excellent near-infrared cutability over a long period of time. At the same time, the visibility of the display image is excellent. Therefore, the near-infrared shield of the present invention is preferably used as an optical filter for display, particularly as an optical filter for plasma panel display.
 本発明では、一般に、反射防止層は、ハードコート層であるか;ハードコート層とハードコート層より屈折率の低い低屈折率層とからなるか(この場合ハードコート層が金属導電層と接している)或いは、ハードコート層、ハードコート層より屈折率の高い高屈折率層及びハードコート層より屈折率の低い低屈折率層からなる(この場合ハードコート層が金属導電層と接している)。層が多いほど、一般により良好な反射防止性が得られる。あるいは、反射防止層が防眩層、又は防眩層と防眩層より屈折率の低い低屈折率層とからなる(防眩層が金属導電層と接している)ことも好ましい。防眩層は、いわゆるアンチグレア層であり、一般に優れた反射防止効果を有し、低屈折率層等の反射防止層を設けなくて良い場合が多い。 In the present invention, generally, the antireflection layer is a hard coat layer; it is composed of a hard coat layer and a low refractive index layer having a refractive index lower than that of the hard coat layer (in this case, the hard coat layer is in contact with the metal conductive layer). Or a hard coat layer, a high refractive index layer having a higher refractive index than the hard coat layer, and a low refractive index layer having a lower refractive index than the hard coat layer (in this case, the hard coat layer is in contact with the metal conductive layer). ). The more layers, the better the antireflection properties are generally obtained. Alternatively, it is also preferable that the antireflection layer comprises an antiglare layer, or an antiglare layer and a low refractive index layer having a lower refractive index than the antiglare layer (the antiglare layer is in contact with the metal conductive layer). The antiglare layer is a so-called antiglare layer, generally has an excellent antireflection effect, and it is often unnecessary to provide an antireflection layer such as a low refractive index layer.
 図2、3では、近赤外線遮蔽層及び粘着剤層の例を示したが、近赤外線遮蔽層、ネオンカット層及び粘着剤層を用いても良い。あるいは、近赤外線吸収機能及びネオンカット機能を有する透明粘着剤層からなるか、或いはネオンカット機能を有する近赤外線遮蔽層、及び粘着剤層(この順で透明基板上に設けられている)からなるか、或いは近赤外線遮蔽層、ネオンカット層及び粘着剤層(この順で透明基板上に設けられている)からなることも好ましい。 2 and 3 show examples of the near-infrared shielding layer and the adhesive layer, but a near-infrared shielding layer, a neon cut layer, and an adhesive layer may be used. Or it consists of the transparent adhesive layer which has a near-infrared absorption function and a neon cut function, or consists of the near-infrared shielding layer which has a neon cut function, and an adhesive layer (it is provided on the transparent substrate in this order). Or it is also preferable that it consists of a near-infrared shielding layer, a neon cut layer, and an adhesive layer (provided on the transparent substrate in this order).
 上記導電層としては、上記ではメッシュ状の金属層又は金属含有層を示したが、そのほかに金属酸化物層(誘電体層)、又は金属酸化物層と金属層との交互積層膜でも勿論良い。メッシュ状の金属層又は金属含有層は、一般に、エッチングにより、又は印刷法により形成されているか、金属繊維層である。これにより低抵抗を得られやすい。一般に、メッシュ状の金属層又は金属含有層のメッシュの空隙は、粘着剤(或いは粘着性近赤外線遮蔽層)で埋められている。これにより透明性が向上する。粘着剤で埋めない場合は、他の層、例えばハードコート層等或いはそれ専用の透明樹脂層で埋められていても良い。 As the conductive layer, a mesh-like metal layer or a metal-containing layer is shown above, but a metal oxide layer (dielectric layer) or an alternately laminated film of a metal oxide layer and a metal layer may also be used. . The mesh-like metal layer or metal-containing layer is generally formed by etching or printing, or is a metal fiber layer. This makes it easy to obtain low resistance. In general, the mesh gap of the mesh-like metal layer or metal-containing layer is filled with an adhesive (or an adhesive near-infrared shielding layer). This improves transparency. When not filled with an adhesive, it may be filled with another layer, for example, a hard coat layer or the like, or a transparent resin layer dedicated thereto.
 上記近赤外線遮蔽層は、PDPからの不要な光を遮断する機能を有する。一般に本発明のタングステン酸化物及び/又は複合タングステン酸化物(必要により300~500nmの波長領域に極大吸収を有する化合物も)を含む層である。粘着剤層はディスプレイへ容易に装着するために設けられている。透明粘着剤層の上に剥離シートを設けても良い。 The near-infrared shielding layer has a function of blocking unnecessary light from the PDP. In general, it is a layer containing the tungsten oxide and / or composite tungsten oxide of the present invention (including a compound having a maximum absorption in a wavelength region of 300 to 500 nm if necessary). The pressure-sensitive adhesive layer is provided for easy mounting on the display. A release sheet may be provided on the transparent adhesive layer.
 ネオンカット層は、一般に560~610nmの波長領域に極大吸収を有する色素及びこれを分散させるバインダ樹脂を含んでいる。図6~8のように、近赤外線遮蔽機能とネオンカット機能を別層として設けた場合、それぞれの化合物と相溶性に優れた樹脂(特にアクリル樹脂)を用いることにより、それぞれの機能が効率よく発揮させることができるので、近赤外線遮断機能とネオンカット機能を高いレベルで、両立させることが可能である。また、300~500nmの波長領域に極大吸収を有する色素をさらに含む近赤外線遮蔽層など、近赤外線遮蔽機能とネオンカット機能を単一層として設けた場合であっても、両方の化合物と相溶性に優れた樹脂(特にアクリル樹脂)を用いることにより、近赤外線遮断機能とネオンカット機能をかなり高いレベルで、両立させることが可能である。 The neon cut layer generally contains a dye having a maximum absorption in a wavelength region of 560 to 610 nm and a binder resin for dispersing the dye. As shown in FIGS. 6 to 8, when the near-infrared shielding function and the neon cut function are provided as separate layers, each function can be efficiently performed by using a resin (particularly acrylic resin) excellent in compatibility with each compound. Since it can be exhibited, it is possible to achieve both a near infrared ray blocking function and a neon cut function at a high level. Even when a near-infrared shielding function and a neon cut function are provided as a single layer, such as a near-infrared shielding layer further containing a dye having a maximum absorption in the wavelength region of 300 to 500 nm, it is compatible with both compounds. By using an excellent resin (particularly acrylic resin), it is possible to achieve both a near-infrared blocking function and a neon cut function at a considerably high level.
 本発明の近赤外線遮蔽体は、例えば、透明基板の表面の全域に、反射防止層を形成し、透明基板の裏面に近赤外線遮蔽層及びその上に透明粘着剤層を形成することにより得られる。また、例えば、透明基板の表面の全域に、メッシュ状の金属導電層を形成し、次いで、メッシュ状の金属導電層の全域に反射防止層を形成し、透明基板の裏面に近赤外線遮蔽層及びその上に透明粘着剤層を形成することによっても得られる。或いは、透明基板を2枚用いて、例えば、メッシュ状導電層を有する透明基板(一般に裏面に粘着剤層等有する)の導電層上に、表面に反射防止層及び裏面に粘着性の近赤外遮蔽層を有する透明基板を、近赤外線遮蔽層を介して積層、接着することによっても得られる。或いは、透明基板の表面に、メッシュ状の金属導電層、防眩層及び低屈折率層等の反射防止層がこの順で設けられ、別の透明基板の表面には近赤外線遮蔽層及びその上に透明粘着剤層が設けられ、2枚の透明基板の層が設けられていない表面同士で接着された構成を有する。この場合、前者の積層体が、本発明の方法により製造される。 The near-infrared shield of the present invention is obtained, for example, by forming an antireflection layer over the entire surface of the transparent substrate, and forming a near-infrared shielding layer on the back surface of the transparent substrate and a transparent adhesive layer thereon. . Further, for example, a mesh-like metal conductive layer is formed over the entire surface of the transparent substrate, then an antireflection layer is formed over the entire mesh-like metal conductive layer, and a near-infrared shielding layer and a back surface of the transparent substrate are formed. It can also be obtained by forming a transparent adhesive layer thereon. Alternatively, using two transparent substrates, for example, on the conductive layer of a transparent substrate having a mesh-like conductive layer (generally having a pressure-sensitive adhesive layer or the like on the back surface), an antireflection layer on the front surface and an adhesive near-infrared surface on the back surface It can also be obtained by laminating and bonding a transparent substrate having a shielding layer via a near-infrared shielding layer. Alternatively, an antireflection layer such as a mesh-like metal conductive layer, an antiglare layer and a low refractive index layer is provided in this order on the surface of the transparent substrate, and the near infrared shielding layer and the upper layer are provided on the surface of another transparent substrate. A transparent pressure-sensitive adhesive layer is provided on the surface, and the surfaces of the two transparent substrates that are not provided are bonded to each other. In this case, the former laminate is produced by the method of the present invention.
 また、本発明の近赤外線遮蔽体は、例えば、透明基板の表面の全域に、反射防止層を形成し、透明基板の裏面にネオンカット層及びその上に近赤外線遮蔽層を形成することにより得られる。また、例えば、透明基板の表面の全域に、メッシュ状の金属導電層を形成し、次いで、メッシュ状の金属導電層の全域に反射防止層を形成し、透明基板の裏面にネオンカット層及びその上に粘着性近赤外線遮蔽層を形成することによっても得られる。或いは、透明基板を2枚用いて、例えば、メッシュ状導電層を有する透明基板(一般に裏面に粘着剤層等有する)の導電層上に、表面に反射防止層及び裏面にネオンカット層及び粘着性の近赤外遮蔽層を有する透明基板を、近赤外線遮蔽層を介して積層、接着することによっても得られる。 The near-infrared shield of the present invention is obtained, for example, by forming an antireflection layer over the entire surface of the transparent substrate, and forming a neon cut layer on the back surface of the transparent substrate and a near-infrared shielding layer thereon. It is done. Also, for example, a mesh-like metal conductive layer is formed over the entire surface of the transparent substrate, then an antireflection layer is formed over the entire mesh-like metal conductive layer, and a neon cut layer and its It can also be obtained by forming an adhesive near-infrared shielding layer on top. Alternatively, using two transparent substrates, for example, on the conductive layer of a transparent substrate having a mesh-like conductive layer (generally having an adhesive layer or the like on the back surface), an antireflection layer on the front surface and a neon cut layer and adhesive on the back surface. It can also be obtained by laminating and adhering a transparent substrate having a near-infrared shielding layer via the near-infrared shielding layer.
 本発明の近赤外線遮蔽体に使用される材料について以下に説明する。 The materials used for the near-infrared shield of the present invention will be described below.
 基板は、一般に透明基板であり、特に透明なプラスチックフィルムであることが好ましい。その材料としては、透明(「可視光に対して透明」を意味する。)であれば特に制限はない。プラスチックフィルムの例としては、ポリエステル{例、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート}、ポリメチルメタクリレート(PMMA)、アクリル樹脂、ポリカーボネート(PC)、ポリスチレン、トリアセテート樹脂、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、エチレン-酢酸ビニル共重合体、ポリビニルブチラール、金属イオン架橋エチレン-メタクリル酸共重合体、ポリウレタン、セロファン等を挙げることができる。これらの中でも、加工時の負荷(熱、溶剤、折り曲げ等)に対する耐性が高く、透明性が特に高い等の点で、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)等が好ましい。特に、PETが、加工性に優れているので好ましい。この他、グリーンガラス、珪酸塩ガラス、無機ガラス板、無着色透明ガラス板などのガラス板も好ましく挙げられる。 The substrate is generally a transparent substrate, and is particularly preferably a transparent plastic film. The material is not particularly limited as long as it is transparent (meaning “transparent to visible light”). Examples of plastic films include polyester {eg, polyethylene terephthalate (PET), polybutylene terephthalate}, polymethyl methacrylate (PMMA), acrylic resin, polycarbonate (PC), polystyrene, triacetate resin, polyvinyl alcohol, polyvinyl chloride, poly Examples thereof include vinylidene chloride, polyethylene, ethylene-vinyl acetate copolymer, polyvinyl butyral, metal ion crosslinked ethylene-methacrylic acid copolymer, polyurethane, and cellophane. Among these, polyethylene terephthalate (PET), polycarbonate (PC), polymethyl methacrylate (PMMA), etc. are highly resistant to loads during processing (heat, solvent, bending, etc.) and particularly highly transparent. preferable. In particular, PET is preferable because it has excellent processability. In addition, glass plates such as green glass, silicate glass, inorganic glass plate, and non-colored transparent glass plate are also preferable.
 透明基板の厚さとしては、近赤外線遮蔽体の用途等によっても異なるが、一般に1μm~10mm、1μm~5mm、特に25~250μmが好ましい。 The thickness of the transparent substrate varies depending on the use of the near-infrared shield, but is generally preferably 1 μm to 10 mm, 1 μm to 5 mm, and particularly preferably 25 to 250 μm.
 本発明の金属導電層の表面抵抗値は、一般に10Ω/□以下、好ましくは0.001~5Ω/□の範囲、特に0.005~5Ω/□のとなるように設定される。メッシュ(格子)状の導電層が好ましい。或いは、導電層は、気相成膜法により得られる層(金属酸化物(ITO等)の透明導電薄膜)でも良い。さらに、ITO等の金属酸化物の誘電体膜とAg等の金属層との交互積層体(例、ITO/銀/ITO/銀/ITOの積層体)であっても良い。 The surface resistance value of the metal conductive layer of the present invention is generally set to 10Ω / □ or less, preferably in the range of 0.001 to 5Ω / □, particularly 0.005 to 5Ω / □. A mesh (lattice) conductive layer is preferred. Alternatively, the conductive layer may be a layer obtained by a vapor deposition method (a transparent conductive thin film of metal oxide (ITO or the like)). Further, it may be an alternate laminate of a metal oxide dielectric film such as ITO and a metal layer such as Ag (eg, ITO / silver / ITO / silver / ITO laminate).
 メッシュ状の金属導電層としては金属繊維及び金属被覆有機繊維の金属を網状にしたもの、透明基板上の銅箔等の層を網状にエッチング加工し、開口部を設けたもの、透明基板上に導電性インクをメッシュ状に印刷したもの、等を挙げることができる。 The mesh-like metal conductive layer is made of metal fibers and metal-coated organic fibers made of a metal, or a copper foil layer on a transparent substrate is etched into a mesh to provide openings, on a transparent substrate Examples thereof include a conductive ink printed in a mesh shape.
 メッシュ状の金属導電層の場合、メッシュとしては、金属繊維及び/又は金属被覆有機繊維よりなる線幅1μm~1mm、開口率50%以上のものが好ましい。より好ましい線径は10~500μm、開口率は50以上95%以下である。メッシュ状の導電層において、線幅が1mmを超えると電磁波シールド性が向上するが、開口率が低下し両立させることができない。1μm未満では、メッシュとしての強度が下がり取扱いが困難となる。また開口率が95%を超えるとメッシュとしての形状を維持することが困難であり、50%未満では光透過性が低下し、ディスプレイからの光量も低下する。 In the case of a mesh-like metal conductive layer, the mesh preferably has a line width of 1 μm to 1 mm made of metal fibers and / or metal-coated organic fibers and an aperture ratio of 50% or more. A more preferable wire diameter is 10 to 500 μm, and an aperture ratio is 50 to 95%. In a mesh-like conductive layer, when the line width exceeds 1 mm, the electromagnetic wave shielding property is improved, but the aperture ratio is lowered and cannot be compatible. If it is less than 1 μm, the strength as a mesh is lowered and handling becomes difficult. Further, if the aperture ratio exceeds 95%, it is difficult to maintain the shape as a mesh. If the aperture ratio is less than 50%, the light transmittance decreases and the light amount from the display also decreases.
 なお、導電性メッシュの開口率とは、当該導電性メッシュの投影面積における開口部分が占める面積割合を言う。 Note that the aperture ratio of the conductive mesh refers to the area ratio occupied by the opening portion in the projected area of the conductive mesh.
 メッシュ状の導電層を構成する金属繊維及び金属被覆有機繊維の金属としては、銅、ステンレス、アルミニウム、ニッケル、チタン、タングステン、錫、鉛、鉄、銀、炭素或いはこれらの合金、好ましくは銅、ステンレス、ニッケルが用いられる。 The metal fibers constituting the mesh-like conductive layer and the metal of the metal-coated organic fiber include copper, stainless steel, aluminum, nickel, titanium, tungsten, tin, lead, iron, silver, carbon or alloys thereof, preferably copper, Stainless steel and nickel are used.
 金属被覆有機繊維の有機材料としては、ポリエステル、ナイロン、塩化ビニリデン、アラミド、ビニロン、セルロース等が用いられる。 Polyester, nylon, vinylidene chloride, aramid, vinylon, cellulose, etc. are used as the organic material for the metal-coated organic fiber.
 金属箔等の導電性の箔をパターンエッチングしたもの場合、金属箔の金属としては、銅、ステンレス、アルミニウム、ニッケル、鉄、真鍮、或いはこれらの合金、好ましくは銅、ステンレス、アルミニウムが用いられる。 In the case where a conductive foil such as a metal foil is subjected to pattern etching, copper, stainless steel, aluminum, nickel, iron, brass, or an alloy thereof, preferably copper, stainless steel, or aluminum is used as the metal of the metal foil.
 金属箔の厚さは、薄過ぎると取扱い性やパターンエッチングの作業性等の面で好ましくなく、厚過ぎると得られるフィルムの厚さに影響を及ぼし、エッチング工程の所要時間が長くなることから、1~200μm程度とするのが好ましい。 If the thickness of the metal foil is too thin, it is not preferable in terms of handleability and workability of pattern etching, and if it is too thick, it affects the thickness of the film obtained, and the time required for the etching process becomes long. It is preferably about 1 to 200 μm.
 エッチングパターンの形状には特に制限はなく、例えば四角形の孔が形成された格子状の金属箔や、円形、六角形、三角形又は楕円形の孔が形成されたパンチングメタル状の金属箔等が挙げられる。また、孔は規則的に並んだものに限らず、ランダムパターンとしても良い。この金属箔の投影面における開口部分の面積割合は、20~95%であることが好ましい。さらに開口率50%以上のものが好ましく、特に50%以上95%以下である。また線幅は10~500μmが好ましい。 The shape of the etching pattern is not particularly limited, and examples thereof include a grid-like metal foil in which square holes are formed, and a punching metal-like metal foil in which circular, hexagonal, triangular or elliptical holes are formed. It is done. Further, the holes are not limited to those regularly arranged, and may be a random pattern. The area ratio of the opening on the projection surface of the metal foil is preferably 20 to 95%. Further, those having an aperture ratio of 50% or more are preferable, and particularly 50% or more and 95% or less. The line width is preferably 10 to 500 μm.
 上記の他に、メッシュ状の金属導電層として、フィルム面に、溶剤に対して可溶な材料によってドットを形成し、フィルム面に溶剤に対して不溶な導電材料からなる導電材料層を形成し、フィルム面を溶剤と接触させてドット及びドット上の導電材料層を除去することによって得られるメッシュ状金属導電層を用いても良い。 In addition to the above, as a mesh-shaped metal conductive layer, dots are formed on the film surface by a material soluble in a solvent, and a conductive material layer made of a conductive material insoluble in a solvent is formed on the film surface. A mesh-like metal conductive layer obtained by removing the dots and the conductive material layer on the dots by bringing the film surface into contact with a solvent may be used.
 導電層は、基材上に直接設けられてもよく、粘着剤層もしくは接着剤層を介して設けられてもよい。この粘着剤層もしくは接着剤層としては、光学フィルムをディスプレイに接着するための接着剤層として後述するものと同じものが用いられる。 The conductive layer may be provided directly on the substrate, or may be provided via an adhesive layer or an adhesive layer. As this pressure-sensitive adhesive layer or adhesive layer, the same layer as described later as an adhesive layer for adhering the optical film to the display is used.
 メッシュ状金属導電層上に、さらに金属メッキ層を、導電性を向上させるために設けても良い(特に、上記溶剤に対して可溶な材料によってドットを形成する方法の場合)。金属メッキ層は、公知の電解メッキ法、無電解メッキ法により形成することができる。メッキに使用される金属としては、一般に銅、銅合金、ニッケル、アルミ、銀、金、亜鉛又はスズ等を使用することが可能であり、好ましくは銅、銅合金、銀、又はニッケルであり、特に経済性、導電性の点から、銅又は銅合金を使用することが好ましい。 A metal plating layer may be further provided on the mesh-like metal conductive layer in order to improve conductivity (particularly, in the case of forming dots with a material soluble in the solvent). The metal plating layer can be formed by a known electrolytic plating method or electroless plating method. As the metal used for plating, generally, copper, copper alloy, nickel, aluminum, silver, gold, zinc, tin or the like can be used, preferably copper, copper alloy, silver, or nickel, In particular, it is preferable to use copper or a copper alloy from the viewpoint of economy and conductivity.
 また、防眩性能を付与させても良い。この防眩化処理を行う場合、(メッシュ)導電層の表面に黒化処理を行っても良い。例えば、金属膜の酸化処理、クロム合金等の黒色メッキ、黒又は暗色系のインクの塗布等を行うことができる。 Also, antiglare performance may be imparted. When this anti-glare treatment is performed, a blackening treatment may be performed on the surface of the (mesh) conductive layer. For example, oxidation treatment of a metal film, black plating such as chromium alloy, application of black or dark ink, and the like can be performed.
 本発明の反射防止層は、一般にハードコート層とその上に設けられたハードコート層より屈折率の低い低屈折率層との複合膜であるか、或いはハードコート層と低屈折率層との間にさらに高屈折率層が設けられた複合膜である。反射防止膜は基板より屈折率の低いハードコート層のみであっても有効である。 The antireflection layer of the present invention is generally a composite film of a hard coat layer and a low refractive index layer having a lower refractive index than the hard coat layer provided thereon, or a hard coat layer and a low refractive index layer. It is a composite film in which a high refractive index layer is further provided therebetween. The antireflection film is effective even if it is only a hard coat layer having a refractive index lower than that of the substrate.
 ハードコート層としては、アクリル樹脂層、エポキシ樹脂層、ウレタン樹脂層、シリコン樹脂層等の合成樹脂を主成分とする層である。通常その厚さは1~50μm、好ましくは1~10μmである。合成樹脂は、一般に熱硬化性樹脂、紫外線硬化性樹脂であり、紫外線硬化性樹脂が好ましい。紫外線硬化性樹脂は、短時間で硬化させることができ、生産性に優れているので好ましい。 The hard coat layer is a layer mainly composed of a synthetic resin such as an acrylic resin layer, an epoxy resin layer, a urethane resin layer, or a silicon resin layer. Usually, the thickness is 1 to 50 μm, preferably 1 to 10 μm. The synthetic resin is generally a thermosetting resin or an ultraviolet curable resin, and an ultraviolet curable resin is preferable. The ultraviolet curable resin is preferable because it can be cured in a short time and has excellent productivity.
 熱硬化性樹脂としては、フェノール樹脂、レゾルシノール樹脂、尿素樹脂、メラミン樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、フラン樹脂、シリコン樹脂などを挙げることができる。 Examples of the thermosetting resin include phenol resin, resorcinol resin, urea resin, melamine resin, epoxy resin, acrylic resin, urethane resin, furan resin, and silicon resin.
 ハードコート層としては、紫外線硬化性樹脂組成物(紫外線硬化性樹脂(モノマー及び/又はオリゴマー)、光重合開始剤等からなる)を主成分とする層の硬化層が好ましく、通常その厚さは1~50μm、好ましくは1~10μmである。 As the hard coat layer, a cured layer of a layer mainly composed of an ultraviolet curable resin composition (consisting of an ultraviolet curable resin (monomer and / or oligomer), a photopolymerization initiator, etc.) is preferable, and the thickness thereof is usually The thickness is 1 to 50 μm, preferably 1 to 10 μm.
 紫外線硬化性樹脂(モノマー、オリゴマー)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-エチルヘキシルポリエトキシ(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェニルオキシエチル(メタ)アクリレート、トリシクロデカンモノ(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アクリロイルモルホリン、N-ビニルカプロラクタム、2-ヒドロキシ-3-フェニルオキシプロピル(メタ)アクリレート、o-フェニルフェニルオキシエチル(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールジプロポキシジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリス〔(メタ)アクリロキシエチル〕イソシアヌレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の(メタ)アクリレートモノマー類;ポリオール化合物(例えば、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、トリメチロールプロパン、ジエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1,4-ジメチロールシクロヘキサン、ビスフェノールAポリエトキシジオール、ポリテトラメチレングリコール等のポリオール類、前記ポリオール類とコハク酸、マレイン酸、イタコン酸、アジピン酸、水添ダイマー酸、フタル酸、イソフタル酸、テレフタル酸等の多塩基酸又はこれらの酸無水物類との反応物であるポリエステルポリオール類、前記ポリオール類とε-カプロラクトンとの反応物であるポリカプロラクトンポリオール類、前記ポリオール類と前記、多塩基酸又はこれらの酸無水物類のε-カプロラクトンとの反応物、ポリカーボネートポリオール、ポリマーポリオール等)と有機ポリイソシアネート(例えば、トリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジシクロペンタニルジイソシアネート、ヘキサメチレンジイソシアネート、2,4,4’-トリメチルヘキサメチレンジイソシアネート、2,2’-4-トリメチルヘキサメチレンジイソシアネート等)と水酸基含有(メタ)アクリレート(例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェニルオキシプロピル(メタ)アクリレート、シクロヘキサン-1,4-ジメチロールモノ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセリンジ(メタ)アクリレート等)の反応物であるポリウレタン(メタ)アクリレート、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂と(メタ)アクリル酸の反応物であるビスフェノール型エポキシ(メタ)アクリレート等の(メタ)アクリレートオリゴマー類等を挙げることができる。これら化合物は1種又は2種以上、混合して使用することができる。これらの紫外線硬化性樹脂を、熱重合開始剤とともに用いて熱硬化性樹脂として使用してもよい。 Examples of the ultraviolet curable resin (monomer, oligomer) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-ethylhexyl polyethoxy (meth) acrylate. , Benzyl (meth) acrylate, isobornyl (meth) acrylate, phenyloxyethyl (meth) acrylate, tricyclodecane mono (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, acryloylmorpholine N-vinylcaprolactam, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, o-phenylphenyloxyethyl (meth) acrylate, neopentyl Cold di (meth) acrylate, neopentyl glycol dipropoxy di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, tricyclodecane dimethylol di (meth) acrylate, 1,6-hexanediol di (meth) Acrylate, nonanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, tris [(meth) acryloxyethyl] isocyanurate, ditrimethylolpropane (Meth) acrylate monomers such as tetra (meth) acrylate; polyol compounds (eg, ethylene glycol, propylene glycol, neopentyl glycol) 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butyl-1,3-propanediol, trimethylolpropane, diethylene glycol, dipropylene glycol, Polyols such as polypropylene glycol, 1,4-dimethylolcyclohexane, bisphenol A polyethoxydiol, polytetramethylene glycol, the polyols and succinic acid, maleic acid, itaconic acid, adipic acid, hydrogenated dimer acid, phthalic acid, Polyester polyols which are reaction products of polybasic acids such as isophthalic acid and terephthalic acid or their acid anhydrides, polycaprolactone polyols which are reaction products of the polyols and ε-caprolactone, the polyols and the above A polybasic acid or Reaction products of these acid anhydrides with ε-caprolactone, polycarbonate polyol, polymer polyol, etc.) and organic polyisocyanates (eg, tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, diphenylmethane-4,4′-diisocyanate, Dicyclopentanyl diisocyanate, hexamethylene diisocyanate, 2,4,4′-trimethylhexamethylene diisocyanate, 2,2′-4-trimethylhexamethylene diisocyanate, etc.) and a hydroxyl group-containing (meth) acrylate (for example, 2-hydroxyethyl ( (Meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate Relate, cyclohexane-1,4-dimethylol mono (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerin di (meth) acrylate, etc.) (Meth) such as bisphenol type epoxy (meth) acrylate, which is a reaction product of bisphenol type epoxy resin such as polyurethane (meth) acrylate, bisphenol A type epoxy resin, bisphenol F type epoxy resin and (meth) acrylic acid which is a reaction product Examples include acrylate oligomers. These compounds can be used alone or in combination. These ultraviolet curable resins may be used as a thermosetting resin together with a thermal polymerization initiator.
 ハードコート層とするには、上記の紫外線硬化性樹脂(モノマー、オリゴマー)の内、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等の硬質の多官能モノマーを主に使用することが好ましい。 For the hard coat layer, among the above UV curable resins (monomer, oligomer), pentaerythritol tri (meth) acrylate, pentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, trimethylolpropane It is preferable to mainly use a hard polyfunctional monomer such as tri (meth) acrylate.
 紫外線硬化性樹脂の光重合開始剤として、紫外線硬化性樹脂の性質に適した任意の化合物を使用することができる。例えば、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1などのアセトフェノン系、ベンジルジメチルケタールなどのベンゾイン系、ベンゾフェノン、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノンなどのベンゾフェノン系、イソプロピルチオキサントン、2-4-ジエチルチオキサントンなどのチオキサントン系、その他特殊なものとしては、メチルフェニルグリオキシレートなどが使用できる。特に好ましくは、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1、ベンゾフェノン等が挙げられる。これら光重合開始剤は、必要に応じて、4-ジメチルアミノ安息香酸のごとき安息香酸系叉は、第3級アミン系などの公知慣用の光重合促進剤の1種または2種以上を任意の割合で混合して使用することができる。また、光重合開始剤のみの1種または2種以上の混合で使用することができる。特に1-ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティケミカルズ社製、イルガキュア184)が好ましい。 As the photopolymerization initiator for the ultraviolet curable resin, any compound suitable for the properties of the ultraviolet curable resin can be used. For example, acetophenone such as 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropane-1 Benzoin, such as benzyldimethyl ketal, benzophenone, 4-phenylbenzophenone, benzophenone, such as hydroxybenzophenone, thioxanthone, such as isopropylthioxanthone, 2-4-diethylthioxanthone, and other special types include methylphenyl glyoxylate Etc. can be used. Particularly preferably, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropane-1, Examples include benzophenone. These photopolymerization initiators may be optionally selected from one or more known and commonly used photopolymerization accelerators such as a benzoic acid system such as 4-dimethylaminobenzoic acid or a tertiary amine system. It can be used by mixing at a ratio. Moreover, it can be used by 1 type, or 2 or more types of mixture of only a photoinitiator. Particularly preferred is 1-hydroxycyclohexyl phenyl ketone (Irgacure 184, manufactured by Ciba Specialty Chemicals).
 光重合開始剤の量は、樹脂組成物に対して一般に0.1~10質量%、好ましくは0.1~5質量%である。 The amount of the photopolymerization initiator is generally 0.1 to 10% by mass, preferably 0.1 to 5% by mass, based on the resin composition.
 さらに、ハードコート層は、紫外線吸収剤、赤外線吸収剤、老化防止剤、塗料加工助剤、着色剤等を少量含んでいても良い。特に、紫外線吸収剤(例、ベンゾトリアゾール系紫外線吸収剤又はベンゾフェノン系紫外線吸収剤)を含むことが好ましく、これによりフィルタの黄変等の防止が効率的に行うことができる。その量は、樹脂組成物に対して一般に0.1~10質量%、好ましくは0.1~5質量%である。 Furthermore, the hard coat layer may contain a small amount of an ultraviolet absorber, an infrared absorber, an anti-aging agent, a paint processing aid, a colorant and the like. In particular, it is preferable to contain an ultraviolet absorber (for example, a benzotriazole-based ultraviolet absorber or a benzophenone-based ultraviolet absorber), whereby yellowing of the filter can be efficiently prevented. The amount thereof is generally 0.1 to 10% by mass, preferably 0.1 to 5% by mass, based on the resin composition.
 高屈折率層は、ポリマー(好ましくは紫外線硬化性樹脂組成物)中に、ITO,ATO,Sb23,SbO2,In23,SnO2,ZnO、AlをドープしたZnO、TiO2が分散した層(硬化層)とすることが好ましい。金属酸化物微粒子としては、平均粒径10~10000nm、好ましくは10~50nmのものが好ましい。特にITO(特に平均粒径10~50nmのもの)が好ましい。屈折率を1.64以上としたものが好適である。膜厚は一般に10~500nmの範囲、好ましくは20~200nmである。 The high refractive index layer is made of a polymer (preferably UV curable resin composition), ITO, ATO, Sb 2 O 3 , SbO 2 , In 2 O 3 , SnO 2 , ZnO, Al-doped ZnO, TiO 2. It is preferable to use a layer in which is dispersed (cured layer). The metal oxide fine particles preferably have an average particle size of 10 to 10,000 nm, preferably 10 to 50 nm. In particular, ITO (especially having an average particle diameter of 10 to 50 nm) is preferred. Those having a refractive index of 1.64 or more are suitable. The film thickness is generally in the range of 10 to 500 nm, preferably 20 to 200 nm.
 なお、高屈折率層が導電層である場合、この高屈折率層の屈折率を1.64以上とすることにより反射防止フィルムの表面反射率の最小反射率を1.5%以内にすることができ、1.69以上、好ましくは1.69~1.82とすることにより反射防止フィルムの表面反射率の最小反射率を1.0%以内にすることができる。 When the high refractive index layer is a conductive layer, the minimum reflectance of the surface reflectance of the antireflection film should be within 1.5% by setting the refractive index of the high refractive index layer to 1.64 or more. By setting the value to 1.69 or more, preferably 1.69 to 1.82, the minimum reflectance of the surface reflectance of the antireflection film can be within 1.0%.
 低屈折率層は、シリカ、フッ素樹脂等の微粒子、好ましくは中空シリカを10~40質量%(好ましくは10~30質量%)がポリマー(好ましくは紫外線硬化性樹脂)中に分散した層(硬化層)であることが好ましい。この低屈折率層の屈折率は、1.45以下が好ましい。この屈折率が1.45超であると、反射防止フィルムの反射防止特性が低下する。膜厚は一般に10~500nmの範囲、好ましくは20~200nmである。 The low refractive index layer is a layer (cured) in which fine particles such as silica and fluororesin, preferably 10 to 40% by mass (preferably 10 to 30% by mass) of hollow silica are dispersed in a polymer (preferably UV curable resin). Layer). The refractive index of the low refractive index layer is preferably 1.45 or less. When the refractive index is more than 1.45, the antireflection characteristic of the antireflection film is deteriorated. The film thickness is generally in the range of 10 to 500 nm, preferably 20 to 200 nm.
 中空シリカとしては、平均粒径10~100nm、好ましくは10~50nm、比重0.5~1.0、好ましくは0.8~0.9のものが好ましい。 As the hollow silica, those having an average particle diameter of 10 to 100 nm, preferably 10 to 50 nm, and a specific gravity of 0.5 to 1.0, preferably 0.8 to 0.9 are preferable.
 ハードコート層は、可視光線透過率が70%以上であることが好ましい。高屈折率層及び低屈折率層の可視光線透過率も、いずれも85%以上であることが好ましい。 The hard coat layer preferably has a visible light transmittance of 70% or more. Both the visible light transmittance of the high refractive index layer and the low refractive index layer are preferably 85% or more.
 反射防止層がハードコート層と上記2層より構成される場合、例えば、ハードコート層の厚さは2~20μm、高屈折率層の厚さは50~150nm、低屈折率層の厚さは50~150nmであることが好ましい。 When the antireflection layer is composed of the hard coat layer and the above two layers, for example, the thickness of the hard coat layer is 2 to 20 μm, the thickness of the high refractive index layer is 50 to 150 nm, and the thickness of the low refractive index layer is A thickness of 50 to 150 nm is preferable.
 反射防止層の、各層を形成するには、例えば、前記の通り、ポリマー(好ましくは紫外線硬化性樹脂)に必要に応じ上記の微粒子を配合し、得られた塗工液を、前記の透明基板表面に塗工し、次いで乾燥した後、紫外線照射して硬化すればよい。この場合、各層を1層ずつ塗工し硬化させてもよく、全層を塗工した後、まとめて硬化させてもよい。 In order to form each layer of the antireflection layer, for example, as described above, the above-mentioned fine particles are blended with a polymer (preferably an ultraviolet curable resin) as necessary, and the obtained coating liquid is used as the transparent substrate. After coating on the surface and then drying, it may be cured by irradiation with ultraviolet rays. In this case, each layer may be applied and cured one by one, or all the layers may be applied and then cured together.
 塗工の具体的な方法としては、アクリル系モノマー等を含む紫外線硬化性樹脂をトルエン等の溶媒で溶液にした塗工液をグラビアコータ等によりコーティングし、その後乾燥し、次いで紫外線により硬化する方法を挙げることができる。このウェットコーティング法であれば、高速で均一に且つ安価に成膜できるという利点がある。このコーティング後に例えば紫外線を照射して硬化することにより密着性の向上、膜の硬度の上昇という効果が得られる。前記導電層も同様に形成することができる。 As a specific method of coating, a method of coating a coating solution in which an ultraviolet curable resin containing an acrylic monomer or the like is made into a solution with a solvent such as toluene is coated with a gravure coater, and then dried, and then cured by ultraviolet rays. Can be mentioned. This wet coating method has the advantage that the film can be uniformly formed at high speed at low cost. After this coating, for example, by irradiating and curing with ultraviolet rays, the effect of improving the adhesion and increasing the hardness of the film can be obtained. The conductive layer can be formed similarly.
 紫外線硬化の場合は、光源として紫外~可視領域に発光する多くのものが採用でき、例えば超高圧、高圧、低圧水銀灯、ケミカルランプ、キセノンランプ、ハロゲンランプ、マーキュリーハロゲンランプ、カーボンアーク灯、白熱灯、レーザ光等を挙げることができる。照射時間は、ランプの種類、光源の強さによって一概には決められないが、数秒~数分程度である。また、硬化促進のために、予め積層体を40~120℃に加熱し、これに紫外線を照射してもよい。 In the case of ultraviolet curing, many light sources that emit light in the ultraviolet to visible range can be used as the light source. For example, ultra-high pressure, high pressure, low pressure mercury lamp, chemical lamp, xenon lamp, halogen lamp, mercury lamp, carbon arc lamp, incandescent lamp And laser light. Irradiation time is not generally determined by the type of lamp and the intensity of the light source, but it is about several seconds to several minutes. In order to accelerate curing, the laminate may be preheated to 40 to 120 ° C. and irradiated with ultraviolet rays.
 前述のようにハードコート層の代わりに防眩層を設けることも好ましい。反射防止効果が大きいものが得られやすい。防眩層としては、例えば、ポリマー微粒子(例、アクリルビーズ)等の透明フィラー(好ましくは平均粒径1~10μm)をバインダに分散させた液を塗布、乾燥することにより得られる防眩層、或いは、前述のハードコート層形成用材料に透明フィラー(ポリマー微粒子;例、アクリルビーズ)を加えた液を塗布、硬化させた、ハードコート機能を有する防眩層を挙げることができ、好ましい。防眩層の層厚は、一般に0.01~20μmの範囲である。 As described above, it is also preferable to provide an antiglare layer instead of the hard coat layer. What has a large antireflection effect is easily obtained. As the antiglare layer, for example, an antiglare layer obtained by applying and drying a liquid in which a transparent filler (preferably an average particle size of 1 to 10 μm) such as polymer fine particles (eg, acrylic beads) is dispersed in a binder, Or the anti-glare layer which has the hard-coat function which apply | coated and hardened the liquid which added the transparent filler (polymer fine particle; for example, acrylic beads) to the above-mentioned hard-coat layer formation material can be mentioned, and is preferable. The layer thickness of the antiglare layer is generally in the range of 0.01 to 20 μm.
 本発明の近赤外線遮蔽体は、前述のように、近赤外線を効率よくカットするタングステン酸化物及び/又は複合タングステン酸化物及び酸性基を有する樹脂を含有する近赤外線遮蔽層を有する。酸性基を有する粘着剤を用いることにより、タングステン酸化物及び/又は複合タングステン酸化物が微粒子の状態で均一に樹脂中に分散させることができ、これにより(複合)タングステン酸化物の近赤外線カット機能を十分に発揮させることができる。一般に、(複合)タングステン酸化物は、分散状態で市販されており、本発明の酸性基を有する樹脂を用いない場合は、容易に凝集し、均一な分散状態が得られないので、所定の近赤外線カット機能を得ることが困難である。 As described above, the near-infrared shield of the present invention has a near-infrared shielding layer containing tungsten oxide and / or composite tungsten oxide that efficiently cuts near infrared rays and a resin having an acidic group. By using a pressure-sensitive adhesive having an acidic group, tungsten oxide and / or composite tungsten oxide can be uniformly dispersed in the resin in the form of fine particles, whereby the near infrared cut function of (composite) tungsten oxide. Can be fully exhibited. In general, (composite) tungsten oxide is commercially available in a dispersed state, and when the resin having an acidic group of the present invention is not used, it easily aggregates and a uniform dispersed state cannot be obtained. It is difficult to obtain an infrared cut function.
 300~500nmの波長領域に極大吸収を有する化合物は、いずれかの層に含ませることが好ましい。 The compound having the maximum absorption in the wavelength region of 300 to 500 nm is preferably contained in any layer.
 上記タングステン酸化物は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表される酸化物であり、複合タングステン酸化物は、上記タングステン酸化物に、元素M(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素)を添加した組成を有するものである。これにより、z/y=3.0の場合も含めて、WyOz中に自由電子が生成され、近赤外線領域に自由電子由来の吸収特性が発現し、1000nm付近の近赤外線吸収材料として有効となる。本発明では、複合タングステン酸化物が好ましい。 The tungsten oxide is an oxide represented by the general formula WyOz (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999), and the composite tungsten oxide is the tungsten oxide. The element M (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, 1 or more elements selected from Ta, Re, Be, Hf, Os, Bi, and I). As a result, free electrons are generated in WyOz, including the case of z / y = 3.0, and free electron-derived absorption characteristics are expressed in the near infrared region, which is effective as a near infrared absorbing material near 1000 nm. . In the present invention, composite tungsten oxide is preferable.
 上述した一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物微粒子において、タングステンと酸素との好ましい組成範囲は、タングステンに対する酸素の組成比が3よりも少なく、さらには、当該赤外線遮蔽材料をWyOzと記載したとき、2.2≦z/y≦2.999である。このz/yの値が、2.2以上であれば、赤外線遮蔽材料中に目的以外であるWO2の結晶相が現れるのを回避することが出来るとともに、材料としての化学的安定性を得ることが出来るので有効な赤外線遮蔽材料として適用できる。一方、このz/yの値が、2.999以下であれば必要とされる量の自由電子が生成され効率よい赤外線遮蔽材料となり得る。 In the tungsten oxide fine particles represented by the general formula WyOz (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999), the preferable composition range of tungsten and oxygen is When the composition ratio of oxygen is less than 3 and the infrared shielding material is described as WyOz, 2.2 ≦ z / y ≦ 2.999. If the value of z / y is 2.2 or more, it is possible to avoid the appearance of a crystal phase of WO 2 which is not intended in the infrared shielding material and to obtain chemical stability as a material. Therefore, it can be applied as an effective infrared shielding material. On the other hand, if the value of z / y is 2.999 or less, a required amount of free electrons is generated and an efficient infrared shielding material can be obtained.
 複合タングステン酸化物の微粒子は、安定性の観点から、一般に、MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、(0.001≦x/y≦1、2.2≦z/y≦3)で表される酸化物であることが好ましい。アルカリ金属は、水素を除く周期表第1族元素、アルカリ土類金属は周期表第2族元素、希土類元素は、Sc、Y及びランタノイド元素である。 From the viewpoint of stability, the composite tungsten oxide fine particles are generally MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, One or more elements selected from Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, (0.001 ≦ x / Y ≦ 1, 2.2 ≦ z / y ≦ 3) The alkali metal is a group 1 element of the periodic table excluding hydrogen, and the alkaline earth metal is the second element of the periodic table. Group elements and rare earth elements are Sc, Y and lanthanoid elements
 特に、赤外線遮蔽材料としての光学特性、耐候性を向上させる観点から、M元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snのうちの1種類以上であるものが好ましい。また複合タングステン酸化物が、シランカップリング剤で処理されていることが好ましい。優れた分散性が得られ、優れた赤外線カット機能、透明性が得られる。 In particular, from the viewpoint of improving optical characteristics and weather resistance as an infrared shielding material, the M element is one or more of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. Some are preferred. The composite tungsten oxide is preferably treated with a silane coupling agent. Excellent dispersibility is obtained, and an excellent infrared cut function and transparency are obtained.
 元素Mの添加量を示すx/yの値が0.001より大きければ、十分な量の自由電子が生成され赤外線遮蔽効果を十分に得ることが出来る。元素Mの添加量が多いほど、自由電子の供給量が増加し、赤外線遮蔽効果も上昇するが、x/yの値が1程度で飽和する。また、x/yの値が1より小さければ、微粒子含有層中に不純物相が生成されるのを回避できるので好ましい。 If the value of x / y indicating the amount of element M added is greater than 0.001, a sufficient amount of free electrons is generated, and a sufficient infrared shielding effect can be obtained. As the amount of the element M added increases, the supply amount of free electrons increases and the infrared shielding effect also increases, but the value of x / y is saturated at about 1. Moreover, if the value of x / y is smaller than 1, it is preferable because an impurity phase can be prevented from being generated in the fine particle-containing layer.
 酸素量の制御を示すz/yの値については、MxWyOzで表記される複合タングステン酸化物においても、上述のWyOzで表記される赤外線遮蔽材料と同様の機構が働くことに加え、z/y=3.0においても、上述した元素Mの添加量による自由電子の供給があるため、2.2≦z/y≦3.0が好ましく、さらに好ましくは2.45≦z/y≦3.0である。 Regarding the value of z / y indicating the control of the amount of oxygen, in the composite tungsten oxide represented by MxWyOz, the same mechanism as that of the infrared shielding material represented by WyOz described above works, and z / y = Even in 3.0, since there is a supply of free electrons due to the addition amount of the element M described above, 2.2 ≦ z / y ≦ 3.0 is preferable, and 2.45 ≦ z / y ≦ 3.0 is more preferable. It is.
 さらに、複合タングステン酸化物微粒子が六方晶の結晶構造を有する場合、当該微粒子の可視光領域の透過が向上し、近赤外領域の吸収が向上する。 Furthermore, when the composite tungsten oxide fine particles have a hexagonal crystal structure, the transmission of the fine particles in the visible light region is improved and the absorption in the near infrared region is improved.
 この六角形の空隙に元素Mの陽イオンが添加されて存在するとき、可視光領域の透過が向上し、近赤外領域の吸収が向上する。ここで、一般的には、イオン半径の大きな元素Mを添加したとき当該六方晶が形成され、具体的には、Cs、K、Rb、Tl、In、Ba、Sn、Li、Ca、Sr、Feを添加したとき六方晶が形成されやすい。勿論これら以外の元素でも、WO6単位で形成される六角形の空隙に添加元素Mが存在すれば良く、上記元素に限定される訳ではない。 When the cation of the element M is added to the hexagonal void, the transmission in the visible light region is improved and the absorption in the near infrared region is improved. Here, generally, when the element M having a large ionic radius is added, the hexagonal crystal is formed. Specifically, Cs, K, Rb, Tl, In, Ba, Sn, Li, Ca, Sr, When Fe is added, hexagonal crystals are easily formed. Of course, other elements may be added as long as the additive element M exists in the hexagonal void formed by the WO 6 unit, and is not limited to the above elements.
 六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、添加元素Mの添加量は、x/yの値で0.2以上0.5以下が好ましく、更に好ましくは0.33である。x/yの値が0.33となることで、添加元素Mが、六角形の空隙の全てに配置されると考えられる。 When the composite tungsten oxide fine particles having a hexagonal crystal structure have a uniform crystal structure, the addition amount of the additive element M is preferably 0.2 or more and 0.5 or less in terms of x / y, more preferably 0. .33. When the value of x / y is 0.33, it is considered that the additive element M is arranged in all of the hexagonal voids.
 また、六方晶以外では、正方晶、立方晶のタングステンブロンズも赤外線遮蔽効果がある。そして、これらの結晶構造によって、近赤外線領域の吸収位置が変化する傾向があり、立方晶<正方晶<六方晶の順に、吸収位置が長波長側に移動する傾向がある。また、それに付随して可視光線領域の吸収が少ないのは、六方晶<正方晶<立方晶の順である。このため、より可視光領域の光を透過して、より赤外線領域の光を遮蔽する用途には、六方晶のタングステンブロンズを用いることが好ましい。 Besides hexagonal crystals, tetragonal and cubic tungsten bronzes also have an infrared shielding effect. These crystal structures tend to change the absorption position in the near infrared region, and the absorption position tends to move to the longer wavelength side in the order of cubic <tetragonal <hexagonal. Further, the accompanying absorption in the visible light region is small in the order of hexagonal crystal <tetragonal crystal <cubic crystal. For this reason, it is preferable to use hexagonal tungsten bronze for applications that transmit light in the visible light region and shield light in the infrared region.
 本発明で使用される複合タングステン酸化物微粒子の粒径は、透明性を保持する観点から、800nm以下の粒径(平均粒径)を有していることが好ましい。これは、800nmよりも小さい粒子は、散乱により光を完全に遮蔽することが無く、可視光線領域の視認性を保持し、同時に効率良く透明性を保持することができるからである。特に可視光領域の透明性を重視する場合は、さらに粒子による散乱を考慮することが好ましい。この粒子による散乱の低減を重視するとき、粒径は400nm以下、好ましくは200nm以下が良い。 The particle diameter of the composite tungsten oxide fine particles used in the present invention preferably has a particle diameter (average particle diameter) of 800 nm or less from the viewpoint of maintaining transparency. This is because particles smaller than 800 nm do not completely block light due to scattering, can maintain visibility in the visible light region, and at the same time can efficiently maintain transparency. In particular, when importance is attached to transparency in the visible light region, it is preferable to further consider scattering by particles. When importance is attached to the reduction of scattering by the particles, the particle size is 400 nm or less, preferably 200 nm or less.
 また、本発明の複合タングステン酸化物微粒子の表面が、Si、Ti、Zr、Alの一種類以上を含有する酸化物で被覆されていることは、耐候性の向上の観点から好ましい。 Moreover, it is preferable from the viewpoint of improving the weather resistance that the surface of the composite tungsten oxide fine particles of the present invention is coated with an oxide containing one or more of Si, Ti, Zr, and Al.
 本発明の複合タングステン酸化物微粒子は、例えば下記のようにして製造される。 The composite tungsten oxide fine particles of the present invention are produced, for example, as follows.
 上記一般式WyOzで表記されるタングステン酸化物微粒子、または/及び、MxWyOzで表記される複合タングステン酸化物微粒子は、タングステン化合物出発原料を不活性ガス雰囲気もしくは還元性ガス雰囲気中で熱処理して得ることができる。 The tungsten oxide fine particles represented by the general formula WyOz and / or the composite tungsten oxide fine particles represented by MxWyOz are obtained by heat-treating a tungsten compound starting material in an inert gas atmosphere or a reducing gas atmosphere. Can do.
 タングステン化合物出発原料には、3酸化タングステン粉末、もしくは酸化タングステンの水和物、もしくは、6塩化タングステン粉末、もしくはタングステン酸アンモニウム粉末、もしくは、6塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、もしくは、6塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、もしくはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末から選ばれたいずれか一種類以上であることが好ましい。 The tungsten compound starting material is obtained by dissolving tungsten trioxide powder, tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungstate powder, or tungsten hexachloride in alcohol and then drying. Tungsten oxide hydrate powder, or tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol and then adding water to precipitate and drying it, or ammonium tungstate It is preferable that it is at least one selected from a tungsten compound powder obtained by drying an aqueous solution and a metal tungsten powder.
 ここで、タングステン酸化物微粒子を製造する場合には製造工程の容易さの観点より、タングステン酸化物の水和物粉末、もしくはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、を用いることがさらに好ましく、複合タングステン酸化物微粒子を製造する場合には、出発原料が溶液であると各元素を容易に均一混合可能となる観点より、タングステン酸アンモニウム水溶液や、6塩化タングステン溶液を用いることがさらに好ましい。これら原料を用い、これを不活性ガス雰囲気もしくは還元性ガス雰囲気中で熱処理して、上述した粒径のタングステン酸化物微粒子、または/及び、複合タングステン酸化物微粒子を得ることができる。 Here, when producing tungsten oxide fine particles, it is preferable to use tungsten oxide hydrate powder or tungsten compound powder obtained by drying an ammonium tungstate aqueous solution from the viewpoint of the ease of the production process. More preferably, when producing the composite tungsten oxide fine particles, an ammonium tungstate aqueous solution or a tungsten hexachloride solution is further used from the viewpoint that each element can be easily and uniformly mixed when the starting material is a solution. preferable. These raw materials are used and heat-treated in an inert gas atmosphere or a reducing gas atmosphere to obtain tungsten oxide fine particles and / or composite tungsten oxide fine particles having the above-mentioned particle diameter.
 また、上記元素Mを含む一般式MxWyOzで表される複合タングステン酸化物微粒子は、上述した一般式WyOzで表されるタングステン酸化物微粒子のタングステン化合物出発原料と同様であり、さらに元素Mを、元素単体または化合物の形で含有するタングステン化合物を出発原料とする。ここで、各成分が分子レベルで均一混合した出発原料を製造するためには各原料を溶液で混合することが好ましく、元素Mを含むタングステン化合物出発原料が、水や有機溶媒等の溶媒に溶解可能なものであることが好ましい。例えば、元素Mを含有するタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、等が挙げられるが、これらに限定されず、溶液状になるものであれば好ましい。 The composite tungsten oxide fine particles represented by the general formula MxWyOz containing the element M are the same as the tungsten compound starting material of the tungsten oxide fine particles represented by the general formula WyOz described above. A tungsten compound contained in the form of a simple substance or a compound is used as a starting material. Here, in order to produce a starting material in which each component is uniformly mixed at the molecular level, it is preferable to mix each material with a solution, and the tungsten compound starting material containing the element M is dissolved in a solvent such as water or an organic solvent. Preferably it is possible. Examples thereof include tungstate, chloride, nitrate, sulfate, oxalate, oxide, and the like containing element M, but are not limited to these and are preferably in the form of a solution.
 ここで、不活性雰囲気中における熱処理条件としては、650℃以上が好ましい。650℃以上で熱処理された出発原料は、十分な着色力を有し赤外線遮蔽微粒子として効率が良い。不活性ガスとしてはAr、N2等の不活性ガスを用いることが良い。また、還元性雰囲気中の熱処理条件としては、まず出発原料を還元性ガス雰囲気中にて100~650℃で熱処理し、次いで不活性ガス雰囲気中で650~1200℃の温度で熱処理することが良い。この時の還元性ガスは、特に限定されないがH2が好ましい。また還元性ガスとしてH2を用いる場合は、還元雰囲気の組成として、H2が体積比で0.1%以上が好ましく、さらに好ましくは2%以上が良い。0.1%以上であれば効率よく還元を進めることができる。 Here, the heat treatment condition in the inert atmosphere is preferably 650 ° C. or higher. The starting material heat-treated at 650 ° C. or higher has sufficient coloring power and is efficient as infrared shielding fine particles. As the inert gas, an inert gas such as Ar or N 2 is preferably used. As the heat treatment conditions in the reducing atmosphere, first, the starting material is heat-treated at 100 to 650 ° C. in a reducing gas atmosphere, and then heat-treated at a temperature of 650 to 1200 ° C. in an inert gas atmosphere. . The reducing gas at this time is not particularly limited, but H 2 is preferable. When H 2 is used as the reducing gas, the volume ratio of H 2 is preferably 0.1% or more, more preferably 2% or more, as the composition of the reducing atmosphere. If it is 0.1% or more, the reduction can proceed efficiently.
 水素で還元された原料粉末はマグネリ相を含み、良好な赤外線遮蔽特性を示し、この状態で赤外線遮蔽微粒子として使用可能である。しかし、酸化タングステン中に含まれる水素が不安定であるため、耐候性の面で応用が限定される可能性がある。そこで、この水素を含む酸化タングステン化合物を、不活性雰囲気中、650℃以上で熱処理することで、さらに安定な赤外線遮蔽微粒子を得ることができる。この650℃以上の熱処理時の雰囲気は特に限定されないが、工業的観点から、N2、Arが好ましい。当該650℃以上の熱処理により、赤外線遮蔽微粒子中にマグネリ相が得られ耐候性が向上する。 The raw material powder reduced with hydrogen contains a magnetic phase, exhibits good infrared shielding properties, and can be used as infrared shielding particles in this state. However, since hydrogen contained in tungsten oxide is unstable, application may be limited in terms of weather resistance. Therefore, a more stable infrared shielding fine particle can be obtained by heat-treating the tungsten oxide compound containing hydrogen at 650 ° C. or higher in an inert atmosphere. The atmosphere during the heat treatment at 650 ° C. or higher is not particularly limited, but N 2 and Ar are preferable from an industrial viewpoint. By the heat treatment at 650 ° C. or higher, a Magneli phase is obtained in the infrared shielding fine particles, and the weather resistance is improved.
 本発明の複合タングステン酸化物微粒子は、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等のカップリング剤で表面処理されていることが好ましい。シランカップリング剤が好ましい。これにより中間層、ハードコート層、熱線カット層等のバインダとの親和性が良好となり、透明性、熱線カット性の他、各種物性が向上する。 The composite tungsten oxide fine particles of the present invention are preferably surface-treated with a coupling agent such as a silane coupling agent, a titanate coupling agent, or an aluminum coupling agent. Silane coupling agents are preferred. Thereby, affinity with binders, such as an intermediate | middle layer, a hard-coat layer, and a heat ray cut layer, becomes favorable, and various physical properties improve other than transparency and heat ray cut property.
 シランカップリング剤の例として、γ-クロロプロピルメトキシシラン、ビニルエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、トリメトキシアクリルシランを挙げることができる。ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、トリメトキシアクリルシランが好ましい。これらシランカップリング剤は、単独で使用しても、又は2種以上組み合わせて使用しても良い。また上記化合物の含有量は、微粒子100質量部に対して5~20質量部で使用することが好ましい。 Examples of silane coupling agents include γ-chloropropylmethoxysilane, vinylethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, γ-glycidoxypropyltrimethoxy Silane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltrichlorosilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β Examples include-(aminoethyl) -γ-aminopropyltrimethoxysilane and trimethoxyacrylsilane. Vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, and trimethoxyacrylsilane are preferred. These silane coupling agents may be used alone or in combination of two or more. The content of the above compound is preferably 5 to 20 parts by mass with respect to 100 parts by mass of the fine particles.
 (複合)タングステン酸化物微粒子は、前述のように、一般に分散液(特に水性分散液)の状態で市販されている。 (Composite) tungsten oxide fine particles are generally commercially available in the form of a dispersion (particularly an aqueous dispersion) as described above.
 本発明の近赤外線遮蔽層を構成する酸性基を有する粘着剤(粘着性樹脂)は、酸性基を有するものであればどのような粘着剤でも使用することができる。酸性基としては、カルボキシル基、スルホ基、スルフィノ基、リン酸基、ホスホン酸基、硫酸基とを挙げることができ、カルボキシル基、スルホ基が好ましく、特にカルボキシル基が好ましい。(複合)タングステン酸化物微粒子の良好な分散状態が得られやすい。そして酸性基は、粘着剤の酸価が、一般に0.5KOHmg/g以上、好ましくは2~50KOHmg/g、特に好ましくは2~20KOHmg/gの範囲となるよう、粘着剤の樹脂中に有することが適当である。 As the pressure-sensitive adhesive (adhesive resin) having an acidic group constituting the near-infrared shielding layer of the present invention, any pressure-sensitive adhesive having an acidic group can be used. Examples of the acidic group include a carboxyl group, a sulfo group, a sulfino group, a phosphoric acid group, a phosphonic acid group, and a sulfuric acid group. A carboxyl group and a sulfo group are preferable, and a carboxyl group is particularly preferable. It is easy to obtain a good dispersion state of the (composite) tungsten oxide fine particles. The acidic group should have an acid group in the adhesive resin so that the acid value of the adhesive is generally 0.5 KOH mg / g or more, preferably 2 to 50 KOH mg / g, particularly preferably 2 to 20 KOH mg / g. Is appropriate.
 粘着剤の樹脂の種類としては、酸性基を有する樹脂であれば良く、例えばアクリル樹脂、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、シリコン樹脂等の合成樹脂を挙げることができる。またこれらの樹脂は、硬化剤と組み合わせて使用することが好ましい。 As the type of the adhesive resin, any resin having an acidic group may be used, and examples thereof include synthetic resins such as acrylic resin, polyester resin, urethane resin, epoxy resin, and silicon resin. These resins are preferably used in combination with a curing agent.
 また近赤外線遮蔽層を構成する酸性基を有する粘着剤は、アクリル樹脂系粘着剤が好ましい。 The pressure-sensitive adhesive having an acidic group constituting the near-infrared shielding layer is preferably an acrylic resin-based pressure-sensitive adhesive.
 本発明の近赤外線遮蔽体がネオンカット層を有する場合、ネオンカット層に使用される樹脂としては、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、シリコン樹脂等の合成樹脂を挙げることができる。またこれらの樹脂も、硬化剤と組み合わせて使用することが好ましい。ネオンカット層に用いられる樹脂は、粘着性を有することが好ましく、このような観点からアクリル樹脂(特に、アクリル樹脂系粘着剤)が好ましい。 When the near-infrared shield of the present invention has a neon cut layer, examples of the resin used for the neon cut layer include synthetic resins such as acrylic resin, polyester resin, urethane resin, epoxy resin, and silicon resin. These resins are also preferably used in combination with a curing agent. The resin used for the neon cut layer preferably has adhesiveness, and an acrylic resin (particularly an acrylic resin-based adhesive) is preferable from such a viewpoint.
 近赤外線遮蔽層及びネオンカット層に好適に用いられるアクリル樹脂の構成成分(モノマー)として、下記の化合物を挙げることができる。 Examples of the structural component (monomer) of the acrylic resin suitably used for the near-infrared shielding layer and the neon cut layer include the following compounds.
 (メタ)アクリル酸アルキルエステルの好ましい例として;炭素数1~12の分岐していてもよいアルキル基、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレートを挙げることができる((メタ)アクリレートはアクリレートとメタクリレートの両方を意味する)。特に、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートが好ましい。 Preferred examples of (meth) acrylic acid alkyl esters; alkyl groups having 1 to 12 carbon atoms which may be branched, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth ) Acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) ) Acrylate, dodecyl (meth) acrylate, lauryl (meth) acrylate ((meth) acrylate means both acrylate and methacrylate). In particular, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate are preferable.
 (メタ)アクリル酸アルコキシアルキルエステルの特に好ましい例として;メトキシエチル(メタ)アクリレート及びエトキシエチル(メタ)アクリレート等を挙げることができる。 Particularly preferred examples of the (meth) acrylic acid alkoxyalkyl ester include methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate.
 芳香環含有モノマー(分子構造中に芳香族基を含む共重合可能な化合物)の好ましい例としては;フェニルアクリレート、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、エチレンオキサイド変性ノニルフェノール(メタ)アクリレート、ヒドロキシエチル化β-ナフトールアクリレート、ビフェニル(メタ)アクリレート、スチレン、ビニルトルエン、α-メチルスチレン等を挙げることができる。特に、フェニルアクリレート、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレートが好ましい。 Preferred examples of aromatic ring-containing monomers (copolymerizable compounds containing an aromatic group in the molecular structure) include: phenyl acrylate, phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, ethylene Examples thereof include oxide-modified nonylphenol (meth) acrylate, hydroxyethylated β-naphthol acrylate, biphenyl (meth) acrylate, styrene, vinyltoluene, α-methylstyrene, and the like. In particular, phenyl acrylate, phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, and phenoxydiethylene glycol (meth) acrylate are preferable.
 水酸基含有モノマーの例としては;2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、クロロ-2-ヒドロキシプロピルアクリレート、ジエチレングリコールモノ(メタ)アクリレート、アリルアルコール等を挙げることができる。特に、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートが好ましい。 Examples of hydroxyl-containing monomers include: 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) ) Acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, chloro-2-hydroxypropyl acrylate, diethylene glycol mono (meth) acrylate, allyl alcohol and the like. In particular, 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate are preferable.
 更に、分子内にカルボキシル基を有するモノマーの好ましい例としては、(メタ)アクリル酸、2-カルボキシエチル(メタ)アクリレート、3-カルボキシプロピル(メタ)アクリレート、4-カルボキシブチル(メタ)アクリレート、イタコン酸、クロトン酸、マレイン酸、フマル酸及び無水マレイン酸等を挙げることができる。特に、(メタ)アクリル酸が好ましい。 Further, preferred examples of the monomer having a carboxyl group in the molecule include (meth) acrylic acid, 2-carboxyethyl (meth) acrylate, 3-carboxypropyl (meth) acrylate, 4-carboxybutyl (meth) acrylate, itacon Examples thereof include acid, crotonic acid, maleic acid, fumaric acid and maleic anhydride. In particular, (meth) acrylic acid is preferred.
 また、アミノ基含有モノマーの好ましい例としては、アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ビニルピリジン等を挙げることができる。特に、ジメチルアミノエチル(メタ)アクリレートが好ましい。 Also, preferred examples of the amino group-containing monomer include aminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, vinyl pyridine and the like. In particular, dimethylaminoethyl (meth) acrylate is preferable.
 上記モノマー成分は、所望する物性に合わせて適宜採用されるが、本発明では、近赤外線遮蔽層のアクリル樹脂にはカルボキシル基を有するモノマーを用いるのが好ましい。 The monomer component is appropriately employed in accordance with the desired physical properties, but in the present invention, it is preferable to use a monomer having a carboxyl group for the acrylic resin of the near-infrared shielding layer.
 好ましい本発明のアクリル樹脂の単量体混合物の配合量は、(メタ)アクリル酸アルキルエステル及び/又は(メタ)アクリル酸アルコキシアルキルエステル:4.5~89質量%(特に22.7~69質量%)、芳香環含有モノマー10~85質量%(特に30~70質量%)、水酸基含有モノマー:1~10質量%(特に0.05~0.5質量%)、カルボキシル基を有するモノマー:適宜、アミノ基含有モノマー:適宜である。 The blending amount of the monomer mixture of the acrylic resin of the present invention is preferably (meth) acrylic acid alkyl ester and / or (meth) acrylic acid alkoxyalkyl ester: 4.5 to 89% by mass (particularly 22.7 to 69% by mass). %), Aromatic ring-containing monomer 10 to 85 mass% (especially 30 to 70 mass%), hydroxyl group-containing monomer: 1 to 10 mass% (especially 0.05 to 0.5 mass%), monomer having a carboxyl group: as appropriate Amino group-containing monomer: Appropriate.
 好ましい近赤外線遮蔽層のアクリル樹脂の単量体混合物の配合量は、(メタ)アクリル酸アルキルエステル及び/又は(メタ)アクリル酸アルコキシアルキルエステル:4.5~89質量%(特に22.7~69質量%)、芳香環含有モノマー10~85質量%(特に30~70質量%)、水酸基含有モノマー:1~10質量%(特に0.05~0.5質量%)、カルボキシル基を有するモノマー:0.05~10質量%(特に0.05~5質量%)、アミノ基含有モノマー0~0.5質量%(特に0~0.3質量%)である。 The blending amount of the monomer mixture of the acrylic resin of the preferred near-infrared shielding layer is (meth) acrylic acid alkyl ester and / or (meth) acrylic acid alkoxyalkyl ester: 4.5 to 89% by mass (particularly 22.7 to 69% by mass), aromatic ring-containing monomer 10 to 85% by mass (particularly 30 to 70% by mass), hydroxyl group-containing monomer: 1 to 10% by mass (particularly 0.05 to 0.5% by mass), a monomer having a carboxyl group : 0.05 to 10% by mass (particularly 0.05 to 5% by mass), and amino group-containing monomer 0 to 0.5% by mass (particularly 0 to 0.3% by mass).
 前記単量体混合物には、必要に応じて、その他の単量体を混合させても良い。その他の単量体の例としては、グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリレート;アセトアセトキシエチル(メタ)アクリレート等のアセトアセチル基含有(メタ)アクリレート;酢酸ビニル、塩化ビニル並びに(メタ)アクリロニトリル等を挙げることができる。その他の単量体の混合比は、0~10質量%の割合で含ませることができる。 In the monomer mixture, other monomers may be mixed as necessary. Examples of other monomers include epoxy group-containing (meth) acrylates such as glycidyl (meth) acrylate; acetoacetyl group-containing (meth) acrylates such as acetoacetoxyethyl (meth) acrylate; vinyl acetate, vinyl chloride and ( And (meth) acrylonitrile. The mixing ratio of other monomers can be included at a ratio of 0 to 10% by mass.
 上記アクリル樹脂は、溶液重合法、塊状重合法、乳化重合法及び懸濁重合法等の従来公知の重合法により製造することができるが、乳化剤や懸濁剤等の重合安定剤を含まない溶液重合法及び塊状重合法により製造したものが好ましい。また、前記アクリル系ポリマーのゲルパーミュエーションクロマトグラフィー(GPC)による重量平均分子量(Mw)は、80万~160万であり、好ましくは80万~150万である。Mwが、80万未満であると、硬化剤配合を好適な範囲に調製しても、熱時の粘着剤の凝集力が十分でなく、高温条件下での発泡が生じやすく、160万を超えると、粘着剤の応力緩和性が低下しやすい。重量平均分子量と数平均分子量(Mn)との比(Mw/Mn)が10~50であることが好ましい。さらに20~50であるのが好適である。前記比(Mw/Mn)が大きくなりすぎると、低分子量ポリマーが増加し、発泡が生じやすくなり、逆に前記比(Mw/Mn)が小さくなりすぎると、応力緩和性が低下しやすくなる。 The acrylic resin can be produced by a conventionally known polymerization method such as a solution polymerization method, a bulk polymerization method, an emulsion polymerization method and a suspension polymerization method, but does not contain a polymerization stabilizer such as an emulsifier or a suspending agent. What was manufactured by the polymerization method and the block polymerization method is preferable. The acrylic polymer has a weight average molecular weight (Mw) by gel permeation chromatography (GPC) of from 800,000 to 1,600,000, preferably from 800,000 to 1,500,000. If the Mw is less than 800,000, the cohesive strength of the pressure-sensitive adhesive is not sufficient even when the curing agent is blended in a suitable range, and foaming tends to occur under high temperature conditions, exceeding 1.6 million. And the stress relaxation property of an adhesive tends to fall. The ratio (Mw / Mn) of the weight average molecular weight to the number average molecular weight (Mn) is preferably 10-50. Further, it is preferably 20 to 50. If the ratio (Mw / Mn) becomes too large, the low molecular weight polymer increases and foaming tends to occur. Conversely, if the ratio (Mw / Mn) becomes too small, the stress relaxation property tends to decrease.
 上記アクリル樹脂(粘着剤)は、硬化剤と共に使用することが好ましい。硬化剤としては、エポキシ化合物系架橋剤、イソシアネート化合物系架橋剤、金属キレート化合物系架橋剤、アジリジン化合物系架橋剤及びアミノ樹脂系架橋剤を挙げることができる。中でも、分子内に2個以上のエポキシ基を有するエポキシ化合物系架橋剤、分子内に2個以上のイソシアネート基を有するイソシアネート化合物系架橋剤、及びアジリジン化合物系架橋剤が好ましく、特に、エポキシ化合物系架橋剤が好ましい。 The acrylic resin (adhesive) is preferably used together with a curing agent. Examples of the curing agent include an epoxy compound-based crosslinking agent, an isocyanate compound-based crosslinking agent, a metal chelate compound-based crosslinking agent, an aziridine compound-based crosslinking agent, and an amino resin-based crosslinking agent. Among them, an epoxy compound-based crosslinking agent having two or more epoxy groups in the molecule, an isocyanate compound-based crosslinking agent having two or more isocyanate groups in the molecule, and an aziridine compound-based crosslinking agent are preferable. A crosslinking agent is preferred.
 分子内に2個以上のエポキシ基を有するエポキシ化合物系架橋剤としては、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリジル-m-キシリレンジアミン、N,N,N’,N’-テトラグリジルアミノフェニルメタン、トリグリシジルイソシアヌレート、m-N,N-ジグリシジルアミノフェニルグリシジルエーテル、N,N-ジグリシジルトルイジン、N,N-ジグリシジルアニリン、ペンタエリスリトールポリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル等のエポキシ基を2個以上有する化合物が好ましい。 Examples of the epoxy compound-based crosslinking agent having two or more epoxy groups in the molecule include 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N′-tetraglycyl-m- Xylylenediamine, N, N, N ′, N′-tetraglycidylaminophenylmethane, triglycidyl isocyanurate, mN, N-diglycidylaminophenylglycidyl ether, N, N-diglycidyltoluidine, N, N -Compounds having two or more epoxy groups such as diglycidyl aniline, pentaerythritol polyglycidyl ether, 1,6-hexanediol diglycidyl ether are preferred.
 イソシアネート化合物の例としては、トリレンジイソシアネート、クロルフェニレンジイソシアナート、ヘキサメチレンジイソシアナート、テトラメチレンジイソシアナート、イソホロンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添されたジフェニルメタンジイソシアネートなどのイソシアネートモノマー及びこれらイソシアネートモノマーをトリメチロールプロパンなどと付加したイソシアネート化合物やイソシアヌレート化物、ビュレット型化合物、さらにはポリエーテルポリオールやポリエステルポリオール、アクリルポリオール、ポリブタジエンポリオール、ポリイソプレンポリオールなど付加反応させたウレタンプレポリマー型のイソシアネート等を挙げることができる。 Examples of isocyanate compounds include isocyanate monomers such as tolylene diisocyanate, chlorophenylene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, and the like. Isocyanate compounds obtained by adding these isocyanate monomers with trimethylolpropane, isocyanurates, burette type compounds, and urethane prepolymer type products such as polyether polyols, polyester polyols, acrylic polyols, polybutadiene polyols, polyisoprene polyols, etc. An isocyanate etc. can be mentioned.
 さらに、アジリジン化合物系架橋剤の例としては、トリメチロールプロパントリ-β-アジリジニルプロピオネート、トリメチロールプロパントリ-β-(2-メチルアジリジン)プロピオネート、テトラメチロールメタントリ-β-アジリジニルプロピオネート、トリエチレンメラミン等を挙げることができる。 Further, examples of the aziridine compound-based crosslinking agent include trimethylolpropane tri-β-aziridinylpropionate, trimethylolpropane tri-β- (2-methylaziridine) propionate, tetramethylolmethanetri-β-aziridinini. Examples include lupropionate and triethylenemelamine.
 上記架橋剤の配合量は、アクリル樹脂100重量部に対して0.0001~2.0重量部であることが好ましい。 The blending amount of the crosslinking agent is preferably 0.0001 to 2.0 parts by weight with respect to 100 parts by weight of the acrylic resin.
 本発明で好ましく使用されるアクリル樹脂を含む粘着剤組成物は、透明性、視認性及び本発明の効果を損なわない範囲で有れば、紫外線吸収剤、酸化防止剤、防腐剤、防黴剤、粘着付与樹脂、可塑剤、消泡剤及び濡れ性調製剤等を配合しても良い。 The pressure-sensitive adhesive composition containing an acrylic resin preferably used in the present invention is an ultraviolet absorber, an antioxidant, an antiseptic and an antifungal agent as long as the transparency, visibility and the effects of the present invention are not impaired. , Tackifier resins, plasticizers, antifoaming agents, wettability adjusting agents and the like may be blended.
 近赤外線遮蔽層は、一般に、上記タングステン酸化物又は複合タングステン酸化物及び酸性基を有する樹脂(好ましくは上記アクリル樹脂)を主成分とする層である。近赤外線遮蔽層は、例えば上記(複合)タングステン酸化物及びバインダ樹脂等を含む塗工液を塗工、必要により乾燥、そして硬化させることにより得られる。或いは上記(複合)タングステン酸化物及びバインダ樹脂等を含む塗工液を塗工、そして単に乾燥させることによっても得られる。フィルムとして使用する場合は、一般に近赤外線カットフィルムであり、例えば(複合)タングステン酸化物を含有するフィルムである。 The near-infrared shielding layer is generally a layer mainly composed of the above tungsten oxide or composite tungsten oxide and a resin having an acidic group (preferably the above acrylic resin). The near-infrared shielding layer is obtained, for example, by coating, drying, and curing, if necessary, a coating solution containing the above (composite) tungsten oxide and a binder resin. Alternatively, it can also be obtained by applying a coating liquid containing the above (composite) tungsten oxide and a binder resin and simply drying it. When used as a film, it is generally a near infrared cut film, for example, a film containing (composite) tungsten oxide.
 (複合)タングステン酸化物以外に必要により色素を使用することもできる。色素としては、一般に800~1200nmの波長に吸収極大を有するもので、例としては、フタロシアニン系色素、金属錯体系色素、ニッケルジチオレン錯体系色素、シアニン系色素、スクアリリウム系色素、ポリメチン系色素、アゾメチン系色素、アゾ系色素、ポリアゾ系色素、ジイモニウム系色素、アミニウム系色素、アントラキノン系色素、を挙げることができ、特にシアニン系色素又、フタロシアニン系色素、ジイモニウム系色素が好ましい。これらの色素は、単独又は組み合わせて使用することができる。近赤外線遮蔽層は粘着剤層であることが好ましく、粘着剤用樹脂の例としては、アクリル樹脂等の熱可塑性樹脂を挙げることができる。 In addition to the (composite) tungsten oxide, a dye may be used if necessary. The dye generally has an absorption maximum at a wavelength of 800 to 1200 nm. Examples include phthalocyanine dyes, metal complex dyes, nickel dithiolene complex dyes, cyanine dyes, squarylium dyes, polymethine dyes, Examples thereof include azomethine dyes, azo dyes, polyazo dyes, diimonium dyes, aminium dyes, and anthraquinone dyes, and cyanine dyes, phthalocyanine dyes, and diimonium dyes are particularly preferable. These dyes can be used alone or in combination. The near-infrared shielding layer is preferably an adhesive layer, and examples of the adhesive resin include thermoplastic resins such as acrylic resins.
 近赤外線遮蔽層は、上記(複合)タングステン酸化物をバインダ樹脂100質量部に対して、0.1~20質量部、さらに1~20質量部、特に1~10質量部含有することが好ましい。また近赤外線遮蔽層の厚さは、一般に1~50μm、好ましくは5~50μmである。 The near-infrared shielding layer preferably contains the above (composite) tungsten oxide in an amount of 0.1 to 20 parts by weight, more preferably 1 to 20 parts by weight, and particularly 1 to 10 parts by weight with respect to 100 parts by weight of the binder resin. The thickness of the near infrared shielding layer is generally 1 to 50 μm, preferably 5 to 50 μm.
 本発明では、近赤外線遮蔽層と共にネオンカット層が設けられる。あるいは、近赤外線遮蔽層にネオンカット色素(ネオン発光の吸収機能を付与することのできる色素)を含有させ、ネオン発光の吸収機能を持たせても良い。 In the present invention, a neon cut layer is provided together with a near-infrared shielding layer. Alternatively, the near-infrared shielding layer may contain a neon cut pigment (a pigment capable of imparting a neon emission absorption function) to have a neon emission absorption function.
 ネオンカット色素としては、560~610nmの波長範囲に極大吸収を有する色素が特に好ましく用いられる。本発明者等の検討によると、ネオンガス由来の発光をカットする前記色素と(複合)タングステン酸化物とを併用した場合、近赤外線遮断機能とネオンカット機能とが高いレベルで両立し得させ、近赤外線遮蔽体の近赤外線遮断性及びその耐久性をさらに向上させることができる。また、不要なネオンガス由来の光が有効にカットされることによって、PDPなどの表示画像の視認性を向上させ、周辺の電子機器の誤作動をも顕著に防止することが可能となる。 As the neon cut dye, a dye having a maximum absorption in the wavelength range of 560 to 610 nm is particularly preferably used. According to the study by the present inventors, when the dye that cuts off the light emission derived from neon gas and the (composite) tungsten oxide are used in combination, the near infrared blocking function and the neon cutting function can be compatible at a high level, The near-infrared shielding property and durability of the infrared shielding body can be further improved. In addition, since the light derived from unnecessary neon gas is effectively cut, it is possible to improve the visibility of a display image such as a PDP and to remarkably prevent malfunction of surrounding electronic devices.
 本発明の560~610nmの波長範囲に極大吸収を有する色素{ネオンカット色素(ネオン発光の選択吸収色素)}としては、シアニン系色素、スクアリリウム系色素、アントラキノン系色素、フタロシアニン系色素、ポリメチン系色素、ポリアゾ系色素、アズレニウム系色素、ジフェニルメタン系色素、トリフェニルメタン系色素、ポリフィリン環構造を有する色素を挙げることができる。ポルフィン環構造を有する色素が好ましい(特にポルフィン環がFe、Mg等の金属に配位した構造)。ポリフィリン環構造を有する色素としては、例えば、山田化学工業(株)からTAP-2、TAP-18、TAP-45等の商品名で市販されている。このような選択吸収色素は、585nm付近のネオン発光の選択吸収性とそれ以外の可視光波長において吸収が小さいことが必要であるため、吸収極大波長が560~610nmであり、吸収スペクトル半値幅が40nm以下であるものが好ましい。上記極大吸収は、例えば分光光度計UV3100PC(島津製作所(株)製)を用いて測定することができる。 Examples of the dye {neon cut dye (neon emission selective absorption dye)} having maximum absorption in the wavelength range of 560 to 610 nm of the present invention include cyanine dyes, squarylium dyes, anthraquinone dyes, phthalocyanine dyes, polymethine dyes And polyazo dyes, azulenium dyes, diphenylmethane dyes, triphenylmethane dyes, and dyes having a polyphyllin ring structure. A dye having a porphine ring structure is preferred (particularly a structure in which a porphine ring is coordinated to a metal such as Fe or Mg). Examples of the dye having a porphyrin ring structure are commercially available from Yamada Chemical Co., Ltd. under trade names such as TAP-2, TAP-18, and TAP-45. Such a selective absorption dye is required to have a selective absorption of neon emission at around 585 nm and a small absorption at other visible light wavelengths. Therefore, the absorption maximum wavelength is 560 to 610 nm, and the absorption spectrum half width is small. What is 40 nm or less is preferable. The maximum absorption can be measured using, for example, a spectrophotometer UV3100PC (manufactured by Shimadzu Corporation).
 また、光学特性に大きな影響を与えない限り、さらに着色用の色素、紫外線吸収剤、酸化防止剤等を加えても良い。 Further, as long as optical properties are not greatly affected, coloring pigments, ultraviolet absorbers, antioxidants and the like may be further added.
 ネオンカット層は、一般に、上記ネオンカット色素及びバインダ樹脂(好ましくは上記アクリル樹脂)を主成分とする層である。ネオンカット層は、例えば上記ネオンカット及びバインダ樹脂等を含む塗工液を塗工、必要により乾燥、そして硬化させることにより得られる。或いは上記ネオンカット及びバインダ樹脂等を含む塗工液を塗工、そして単に乾燥させることによっても得られる。 The neon cut layer is generally a layer mainly composed of the neon cut dye and a binder resin (preferably the acrylic resin). The neon cut layer is obtained, for example, by applying a coating solution containing the above neon cut and binder resin, and if necessary, drying and curing. Alternatively, it can also be obtained by coating a coating liquid containing the neon cut and the binder resin, and simply drying.
 ネオンカット色素を含む層(近赤外線遮蔽層、ネオンカット機能付き近赤外線遮蔽層)は、ネオンカット色素をバインダ樹脂(粘着剤用樹脂)100質量部に対して、0.1~20質量部、さらに1~20質量部、特に1~10質量部含有することが好ましい。またこのような層の厚さは、一般に1~50μm、好ましくは5~50μm、特に好ましくは10~50μmである。 The layer containing the neon cut pigment (near infrared shielding layer, near infrared shielding layer with neon cut function) is 0.1 to 20 parts by mass of neon cut pigment with respect to 100 parts by mass of binder resin (resin for adhesive). Further, it is preferable to contain 1 to 20 parts by mass, particularly 1 to 10 parts by mass. The thickness of such a layer is generally 1 to 50 μm, preferably 5 to 50 μm, particularly preferably 10 to 50 μm.
 但し、ネオンカット層の場合、上記ネオンカット色素をバインダ樹脂(粘着剤用樹脂)100質量部に対して、0.1~5質量部、さらに0.1~2質量部含有することが好ましい。また層の厚さは、一般に1~20μm、好ましくは1~10μmである。 However, in the case of a neon cut layer, the neon cut dye is preferably contained in an amount of 0.1 to 5 parts by mass, and more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the binder resin (adhesive resin). The thickness of the layer is generally 1 to 20 μm, preferably 1 to 10 μm.
 上記或いは通常の粘着剤層は、主として本発明の光学フィルムをディスプレイに接着するための層であり、接着機能を有するものであればどのような樹脂でも使用することができる。例えば、ブチルアクリレート等から形成されたアクリル系粘着剤、ゴム系粘着剤、SEBS(スチレン/エチレン/ブチレン/スチレン)及びSBS(スチレン/ブタジエン/スチレン)等の熱可塑性エラストマー(TPE)を主成分とするTPE系粘着剤及び接着剤等も用いることができる。 The above-mentioned or normal pressure-sensitive adhesive layer is mainly a layer for adhering the optical film of the present invention to a display, and any resin can be used as long as it has an adhesive function. For example, acrylic adhesives, rubber adhesives, thermoplastic elastomers (TPE) such as SEBS (styrene / ethylene / butylene / styrene) and SBS (styrene / butadiene / styrene), which are formed from butyl acrylate, are the main components. TPE-based pressure-sensitive adhesives and adhesives can also be used.
 その層厚は、一般に5~500μm、特に10~100μmの範囲が好ましい。近赤外線遮蔽体は、一般に上記粘着剤層をディスプレイのガラス板に圧着することにより装備することができる。 The layer thickness is generally preferably 5 to 500 μm, particularly preferably 10 to 100 μm. The near-infrared shield can be equipped by generally pressing the pressure-sensitive adhesive layer on a glass plate of a display.
 本発明の近赤外線遮蔽体の近赤外線吸収特性としては、800~1100nmの波長範囲の近赤外線における透過率の最小値が、当該波長範囲において30%以下であることが好ましく、特に20%以下が好ましい。これにより、周辺機器のリモコン等の誤作動が指摘されている波長領域の透過度を減少させる効果がある。特に、近赤外線遮蔽体は、560~610nmの波長範囲の可視光線における視感透過率の最小値が、当該波長範囲において80%以下、より好ましくは60%以下、特に40%以下とすることにより、上記効果に加えて、560~610nmにピークを持つオレンジ色が色再現性を悪化させる原因であることから、このオレンジ色の波長を吸収させる効果があり、これにより真赤性を高めて色の再現性を向上させたものである。 As the near-infrared absorption characteristics of the near-infrared shield of the present invention, the minimum transmittance in the near-infrared wavelength range of 800 to 1100 nm is preferably 30% or less, particularly 20% or less. preferable. As a result, there is an effect of reducing the transmittance in the wavelength region where malfunction of a peripheral device remote controller or the like is pointed out. In particular, the near-infrared shield has a minimum value of luminous transmittance of visible light in the wavelength range of 560 to 610 nm, 80% or less, more preferably 60% or less, particularly 40% or less in the wavelength range. In addition to the above effects, the orange color having a peak at 560 to 610 nm is a cause of deteriorating the color reproducibility, so it has the effect of absorbing the orange wavelength, thereby improving the redness and improving the color The reproducibility is improved.
 また前述したように、近赤外線遮蔽体の透過光のL***表示系のb*が-15以上であることが好ましい。 Further, as described above, it is preferable for the light transmitted through the L * a * b * display system of the near-infrared shielding material b * is -15 or more.
 本発明において透明基板2枚を使用する場合、これらの接着(粘着剤層)には、例えば、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸メチル共重合体、アクリル樹脂(例、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エチル共重合体、エチレン-(メタ)アクリル酸メチル共重合体、金属イオン架橋エチレン-(メタ)アクリル酸共重合体)、部分鹸化エチレン-酢酸ビニル共重合体、カルボキシル化エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル-無水マレイン酸共重合体、エチレン-酢酸ビニル-(メタ)アクリレート共重合体等のエチレン系共重合体を使用することができる(なお、「(メタ)アクリル」は「アクリル又はメタクリル」を示す。)。その他、ポリビニルブチラール(PVB)樹脂、エポキシ樹脂、フェノール樹脂、シリコン樹脂、ポリエステル樹脂、ウレタン樹脂、ゴム系粘着剤、SEBS及びSBS等の熱可塑性エラストマー等も用いることができるが、良好な接着性が得られやすいのはアクリル樹脂系粘着剤、エポキシ樹脂である。 When two transparent substrates are used in the present invention, these adhesions (adhesive layer) may be, for example, ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, acrylic resin (eg, ethylene- ( (Meth) acrylic acid copolymer, ethylene-ethyl (meth) acrylate copolymer, ethylene- (meth) methyl acrylate copolymer, metal ion crosslinked ethylene- (meth) acrylic acid copolymer), partially saponified ethylene -Ethylene copolymers such as vinyl acetate copolymer, carboxylated ethylene-vinyl acetate copolymer, ethylene- (meth) acryl-maleic anhydride copolymer, ethylene-vinyl acetate- (meth) acrylate copolymer ("(Meth) acryl" indicates "acryl or methacryl"). In addition, polyvinyl butyral (PVB) resin, epoxy resin, phenol resin, silicon resin, polyester resin, urethane resin, rubber adhesive, thermoplastic elastomers such as SEBS and SBS can be used, but good adhesion Acrylic resin adhesives and epoxy resins are easily obtained.
 その層厚は、10~100μmの範囲が好ましい。近赤外線遮蔽体は、一般に上記粘着剤層をディスプレイのガラス板に圧着することにより装備することができる。 The layer thickness is preferably in the range of 10 to 100 μm. The near-infrared shield can be equipped by generally pressing the pressure-sensitive adhesive layer on a glass plate of a display.
 前記粘着剤層の材料として、EVAも使用する場合、EVAとしては酢酸ビニル含有量が5~50質量%、好ましくは15~40質量%のものが使用される。酢酸ビニル含有量が5質量%より少ないと透明性に問題があり、また40質量%を超すと機械的性質が著しく低下する上に、成膜が困難となり、フィルム相互のブロッキングが生じ易い。 When EVA is also used as the material for the pressure-sensitive adhesive layer, EVA having a vinyl acetate content of 5 to 50% by mass, preferably 15 to 40% by mass is used. When the vinyl acetate content is less than 5% by mass, there is a problem in transparency, and when it exceeds 40% by mass, the mechanical properties are remarkably deteriorated and the film formation becomes difficult and the films tend to block each other.
 架橋剤としては加熱架橋する場合は、有機過酸化物が適当であり、シート加工温度、架橋温度、貯蔵安定性等を考慮して選ばれる。有機過酸化物は通常EVAに対し押出機、ロールミル等で混練されるが、有機溶媒、可塑剤、ビニルモノマー等に溶解し、EVAのフィルムに含浸法により添加しても良い。 As the crosslinking agent, in the case of heat crosslinking, an organic peroxide is suitable, and is selected in consideration of sheet processing temperature, crosslinking temperature, storage stability, and the like. The organic peroxide is usually kneaded with EVA using an extruder, a roll mill or the like, but may be dissolved in an organic solvent, a plasticizer, a vinyl monomer or the like and added to the EVA film by an impregnation method.
 上記接着のための粘着剤層は、例えばEVAと上述の添加剤とを混合し、押出機、ロール等で混練した後、カレンダー、ロール、Tダイ押出、インフレーション等の成膜法により所定の形状にシート成形することにより製造される。 The pressure-sensitive adhesive layer for the above-mentioned adhesion is, for example, a mixture of EVA and the above-mentioned additives, kneaded with an extruder, roll, etc., and then formed into a predetermined shape by a film forming method such as calendar, roll, T-die extrusion, inflation, etc. It is manufactured by forming a sheet.
 反射防止層上には、保護層を設けても良い。保護層は、前記ハードコート層と同様にして形成することが好ましい。 A protective layer may be provided on the antireflection layer. The protective layer is preferably formed in the same manner as the hard coat layer.
 粘着剤層上に設けられる剥離シートの材料としては、ガラス転移温度が50℃以上の透明のポリマーが好ましく、このような材料としては、ポリエチレンテレフタレート、ポリシクロヘキシレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ナイロン46、変性ナイロン6T、ナイロンMXD6、ポリフタルアミド等のポリアミド系樹脂、ポリフェニレンスルフィド、ポリチオエーテルサルフォン等のケトン系樹脂、ポリサルフォン、ポリエーテルサルフォン等のサルフォン系樹脂の他に、ポリエーテルニトリル、ポリアリレート、ポリエーテルイミド、ポリアミドイミド、ポリカーボネート、ポリメチルメタクリレート、トリアセチルセルロース、ポリスチレン、ポリビニルクロライド等のポリマーを主成分とする樹脂を用いることができる。これら中で、ポリカーボネート、ポリメチルメタアクリレート、ポリビニルクロライド、ポリスチレン、ポリエチレンテレフタレートが好適に用いることができる。厚さは10~200μmが好ましく、特に30~100μmが好ましい。 As the material of the release sheet provided on the pressure-sensitive adhesive layer, a transparent polymer having a glass transition temperature of 50 ° C. or higher is preferable. Examples of such a material include polyesters such as polyethylene terephthalate, polycyclohexylene terephthalate, and polyethylene naphthalate. In addition to polyamide resins such as resin, nylon 46, modified nylon 6T, nylon MXD6, polyphthalamide, ketone resins such as polyphenylene sulfide and polythioether sulfone, and sulfone resins such as polysulfone and polyether sulfone. Mainly composed of polymers such as ether nitrile, polyarylate, polyetherimide, polyamideimide, polycarbonate, polymethyl methacrylate, triacetyl cellulose, polystyrene, polyvinyl chloride Resin can be used. Of these, polycarbonate, polymethyl methacrylate, polyvinyl chloride, polystyrene, and polyethylene terephthalate can be suitably used. The thickness is preferably 10 to 200 μm, particularly preferably 30 to 100 μm.
 本発明の近赤外線遮蔽体は、ディスプレイ用光学フィルタとして用いられるのが好ましい。本発明の近赤外線遮蔽体(ディスプレイ用光学フィルタ)が、ディスプレイの1種であるプラズマディスプレイパネルの画像表示面に貼付された状態の1例を図9に示す。ディスプレイパネル90の表示面の表面に粘着性を有する近赤外線遮蔽層93を介して光学フィルタが接着されている。即ち、透明基板91の一方の表面に、メッシュ状導電層94、ハードコート層92A、低屈折率層92Bがこの順で設けられ、透明基板91の他方の表面には近赤外線遮蔽層93が設けられた光学フィルタが表示面に設けられている。そしてフィルタの縁部(側縁部)に、メッシュ状導電層94’が露出している(例えば、端部の各層をレーザにより除去することにより得られる)。この露出したメッシュ状導電層94’にプラズマディスプレイパネル90の周囲に設けられた金属カバー99にシールドフィンガー(板バネ状金属部品)98を介して接触状態にされている。シールドフィンガー(板バネ状金属部品)の代わりに、導電性ガスケット等が用いても良い。これにより、光学フィルタと金属カバー99が導通し、アースが達成される。金属カバー99は金属枠、フレームでも良い。図9から明らかなように、メッシュ状導電層93は、視聴者側を向いている。 The near-infrared shield of the present invention is preferably used as an optical filter for display. FIG. 9 shows an example of a state in which the near-infrared shield (display optical filter) of the present invention is attached to the image display surface of a plasma display panel which is a kind of display. An optical filter is bonded to the surface of the display surface of the display panel 90 via a near-infrared shielding layer 93 having adhesiveness. That is, a mesh-like conductive layer 94, a hard coat layer 92A, and a low refractive index layer 92B are provided in this order on one surface of the transparent substrate 91, and a near-infrared shielding layer 93 is provided on the other surface of the transparent substrate 91. The optical filter is provided on the display surface. The mesh-like conductive layer 94 'is exposed at the edge (side edge) of the filter (for example, obtained by removing each layer at the end with a laser). The exposed mesh-like conductive layer 94 ′ is brought into contact with a metal cover 99 provided around the plasma display panel 90 through shield fingers (plate spring-like metal parts) 98. A conductive gasket or the like may be used instead of the shield finger (plate spring-like metal part). As a result, the optical filter and the metal cover 99 are electrically connected, and grounding is achieved. The metal cover 99 may be a metal frame or a frame. As is clear from FIG. 9, the mesh-shaped conductive layer 93 faces the viewer side.
 本発明のPDPディスプレイは、一般に透明基板としてプラスチックフィルムを使用しているので、上記のように本発明の近赤外線遮蔽体をその表面であるガラス板表面に直接貼り合わせることができるため、特に透明基板を1枚使用した場合は、PDP自体の軽量化、薄型化、低コスト化に寄与できる。また、PDPの前面側に透明成形体からなる前面板を設置する場合に比べると、PDPとPDP用フィルタとの間に屈折率の低い空気層をなくすことができるため、界面反射による可視光反射率の増加、二重反射などの問題を解決でき、PDPの視認性をより向上させることができる。
本発明の近赤外線遮蔽体は、以上で説明した近赤外線遮蔽層を少なくとも有するものであり、さらに必要により、透明基板、その他、粘着剤層、反射防止層等の機能層を有していても良い。
Since the PDP display of the present invention generally uses a plastic film as a transparent substrate, the near-infrared shield of the present invention can be directly bonded to the surface of the glass plate, as described above. When one substrate is used, it can contribute to reducing the weight, thickness and cost of the PDP itself. Compared with the case where a front plate made of a transparent molded body is installed on the front side of the PDP, an air layer having a low refractive index can be eliminated between the PDP and the PDP filter, so that visible light reflection due to interface reflection can be achieved. Problems such as an increase in rate and double reflection can be solved, and the visibility of the PDP can be further improved.
The near-infrared shielding body of the present invention has at least the near-infrared shielding layer described above, and may further have a functional layer such as a transparent substrate, an adhesive layer, or an antireflection layer, if necessary. good.
 以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
 <ディスプレイ用光学フィルタの作製>
 (近赤外線遮蔽層付きフィルムの作製)
 PETフィルム(厚さ188μm、A4300;(株)東洋紡製)上に、下記組成を有する粘着性近赤外線遮蔽層形成用塗布液を、アプリケータを用いて乾燥後厚さが25μmとなるように塗布し、80℃のオーブン中で2分間乾燥させた。これにより積層体上に粘着性近赤外線遮蔽層(厚さ25μm)を有するディスプレイ用光学フィルタを作製した。
(粘着性近赤外線遮蔽層形成用塗布液の組成)
 アクリル樹脂系粘着剤(商品名SKダイン1501BS4、綜研化学(株)製、酸価:4.7KOHmg/g、固形分20質量%、酢酸エチル溶液)100質量部
 イソシアネート硬化剤(商品名L-45E、綜研化学(株)製)
1質量部
 Cs0.33WO3
 (平均粒径80nm、固形分20質量%、MIBK溶液)5質量部
[比較例1]
<ディスプレイ用光学フィルタの作製>
 実施例1において、粘着性近赤外線遮蔽層形成用塗布液として下記のものを用いた以外は同様にしてディスプレイ用光学フィルタを得た。
(粘着性近赤外線遮蔽層形成用塗布液の組成)
 アクリル系粘着剤(商品名SKダイン1811L、綜研化学(株)製、
  酸価:0.0KOHmg/g、固形分20質量%、酢酸エチル溶液)100質量部
 イソシアネート硬化剤(商品名L-45、綜研化学(株)製)
1質量部
 Cs0.33WO3
 (平均粒径80nm、固形分20質量%、MIBK溶液)5質量部
 尚、アクリル系粘着剤とCs0.33WO3分散液を混合した際、白濁したが、そのまま使用してディスプレイ用光学フィルタを作製した。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to a following example.
[Example 1]
<Preparation of optical filter for display>
(Preparation of film with near-infrared shielding layer)
On a PET film (thickness: 188 μm, A4300; manufactured by Toyobo Co., Ltd.), a coating solution for forming an adhesive near infrared shielding layer having the following composition was applied using an applicator so that the thickness would be 25 μm after drying. And dried in an oven at 80 ° C. for 2 minutes. This produced the optical filter for displays which has an adhesive near-infrared shielding layer (thickness 25 micrometers) on a laminated body.
(Composition of the coating liquid for forming the adhesive near-infrared shielding layer)
Acrylic resin-based adhesive (trade name: SK Dyne 1501BS4, manufactured by Soken Chemical Co., Ltd., acid value: 4.7 KOHmg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name: L-45E , Manufactured by Soken Chemical Co., Ltd.)
1 part by mass Cs 0.33 WO 3
(Average particle size 80 nm, solid content 20% by mass, MIBK solution) 5 parts by mass [Comparative Example 1]
<Preparation of optical filter for display>
An optical filter for display was obtained in the same manner as in Example 1 except that the following coating liquid for forming an adhesive near-infrared shielding layer was used.
(Composition of the coating liquid for forming the adhesive near-infrared shielding layer)
Acrylic adhesive (trade name SK Dyne 1811L, manufactured by Soken Chemical Co., Ltd.,
Acid value: 0.0 KOH mg / g, solid content 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name L-45, manufactured by Soken Chemical Co., Ltd.)
1 part by mass Cs 0.33 WO 3
(Average particle size 80 nm, solid content 20% by mass, MIBK solution) 5 parts by mass In addition, when an acrylic adhesive and Cs 0.33 WO 3 dispersion were mixed, they became cloudy but were used as they were to produce an optical filter for display. did.
 [実施例2]
 <メッシュ状導電層付きフィルムの作製>
 PETフィルム(厚さ100μm)の一方の表面上に、接着剤層を介して銅箔を積層した後、前記銅箔をフォトリソグラフィー法によってエッチングした。これにより、メッシュ状の導電層(平均高さ10μm、平均幅20μm、ピッチ250μm、開口率85%)を有するフィルムを得た。
[Example 2]
<Preparation of film with mesh conductive layer>
A copper foil was laminated on one surface of a PET film (thickness: 100 μm) via an adhesive layer, and then the copper foil was etched by a photolithography method. Thereby, a film having a mesh-like conductive layer (average height 10 μm, average width 20 μm, pitch 250 μm, aperture ratio 85%) was obtained.
 <近赤外線遮蔽層付き基板の作製>
 前記PETフィルムの他方の面上に、下記の組成を有する粘着性近赤外線遮蔽層形成用塗布液を、アプリケータを用いて乾燥後厚さが25μmとなるように塗布し、80℃のオーブン中で2分間乾燥させた。これにより、一方の表面上に接着剤層を介して積層されたメッシュ状の導電層を有し、他方の表面上に粘着性近赤外線遮蔽層(厚さ25μm)を有する前記PETフィルム(図4)を作製した。
(粘着性近赤外線遮蔽層形成用塗布液)
 アクリル樹脂系粘着剤(商品名SKダイン1501BS4、綜研化学(株)製、酸価:4.7KOHmg/g、固形分20質量%、酢酸エチル溶液)100質量部
 イソシアネート硬化剤(商品名L-45E、綜研化学(株)製)1質量部
 Cs0.33WO3
  (平均粒径80nm、固形分20質量%、MIBK溶液)5質量部
 <近赤外線遮蔽体の作製>
 フロートガラス(厚さ2.5mm)上に、上前記PETフィルムを、近赤外線遮蔽層とフロートガラスとが対向するように載置し、これらを圧着した。これにより、近赤外線遮蔽体(図4)を得た。
<Preparation of substrate with near-infrared shielding layer>
On the other surface of the PET film, a coating solution for forming an adhesive near-infrared shielding layer having the following composition was applied using an applicator so as to have a thickness of 25 μm after drying, and in an oven at 80 ° C. And dried for 2 minutes. Thus, the PET film having a mesh-like conductive layer laminated on one surface via an adhesive layer and an adhesive near-infrared shielding layer (thickness 25 μm) on the other surface (FIG. 4). ) Was produced.
(Coating liquid for forming adhesive near-infrared shielding layer)
Acrylic resin-based adhesive (trade name: SK Dyne 1501BS4, manufactured by Soken Chemical Co., Ltd., acid value: 4.7 KOHmg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name: L-45E 1 part by weight Cs 0.33 WO 3 manufactured by Soken Chemical Co., Ltd.
(Average particle size 80 nm, solid content 20 mass%, MIBK solution) 5 mass parts <Preparation of near-infrared shield>
On the float glass (thickness 2.5 mm), the upper PET film was placed so that the near-infrared shielding layer and the float glass face each other, and these were pressure-bonded. This obtained the near-infrared shield (FIG. 4).
 [実施例3]
 <メッシュ状導電層付きフィルムの作製>
 実施例2と同様にして、メッシュ状の導電層(平均高さ10μm、平均幅20μm、ピッチ250μm、開口率85%)を有するフィルムを得た。
[Example 3]
<Preparation of film with mesh conductive layer>
In the same manner as in Example 2, a film having a mesh-like conductive layer (average height 10 μm, average width 20 μm, pitch 250 μm, aperture ratio 85%) was obtained.
 <近赤外線遮蔽層付き基板の作製>
 粘着性近赤外線遮蔽層形成用塗布液を、上記で作製したメッシュ状の導電層上に塗布した以外は、実施例2と同様にして、粘着性近赤外線遮蔽層(厚さ25μm)を作製した。これにより、一方の表面上に接着剤層を介して積層されたメッシュ状の導電層、及び前記メッシュ状の導電層上に積層された粘着性近赤外線遮蔽層(厚さ25μm)を有する前記PETフィルム(図5)を作製した。
<Preparation of substrate with near-infrared shielding layer>
An adhesive near-infrared shielding layer (thickness 25 μm) was produced in the same manner as in Example 2, except that the adhesive liquid for forming an adhesive near-infrared shielding layer was applied onto the mesh-shaped conductive layer produced above. . Thereby, the PET having a mesh-like conductive layer laminated on one surface via an adhesive layer, and an adhesive near-infrared shielding layer (thickness 25 μm) laminated on the mesh-like conductive layer A film (FIG. 5) was produced.
 <ディスプレイ用光学フィルタの作製>
 フロートガラス(厚さ2.5mm)上に、上前記PETフィルムを、近赤外線遮蔽層とフロートガラスとが対向するように載置し、これらを圧着した。これにより、近赤外線遮蔽体(図5)を得た。
<Preparation of optical filter for display>
On the float glass (thickness 2.5 mm), the upper PET film was placed so that the near-infrared shielding layer and the float glass face each other, and these were pressure-bonded. This obtained the near-infrared shield (FIG. 5).
 [比較例2]
 実施例2において、粘着性近赤外線遮蔽層形成用塗布液として下記のものを用いた以外は同様にしてディスプレイ用光学フィルタを得た。
(粘着性近赤外線遮蔽層形成用塗布液の組成)
 アクリル系粘着剤(商品名SKダイン1811L、綜研化学(株)製、
  酸価:0.0KOHmg/g、固形分20質量%、酢酸エチル溶液)100質量部
 イソシアネート硬化剤(商品名L-45、綜研化学(株)製)
1質量部
 Cs0.33WO3
 (平均粒径80nm、固形分20質量%、MIBK溶液)5質量部
 尚、アクリル系粘着剤とCs0.33WO3分散液を混合した際、白濁したが、そのまま使用してディスプレイ用光学フィルタを作製した。
[ディスプレイ用光学フィルタの評価]
 実施例1~3、比較例1及び2で作製したディスプレイ用光学フィルタについて、下記(1)~(3)の評価を行った。結果を表1及び表2に示す。
(1)視感透過率
 ディスプレイ用光学フィルタについて、視感透過率(JIS-Z-8105-1982年)を分光光度計UV3100PC(島津製作所(株)製)により測定した。
(2)800~1100nmの近赤外線光の透過率の最小値
 ディスプレイ用光学フィルタについて、上記近赤外線光の透過率の最小値を分光光度計UV3100PC(島津製作所(株)製)により測定した。
(3)ヘイズ
 ディスプレイ用光学フィルタのヘイズ値を、JIS-K-7105(1981年)の手法に従い、全自動直読ヘイズコンピュータHGM-2DP(スガ試験機(株)製)を用いて測定した。
[Comparative Example 2]
In Example 2, an optical filter for display was obtained in the same manner except that the following coating liquid for forming an adhesive near-infrared shielding layer was used.
(Composition of the coating liquid for forming the adhesive near-infrared shielding layer)
Acrylic adhesive (trade name SK Dyne 1811L, manufactured by Soken Chemical Co., Ltd.,
Acid value: 0.0 KOH mg / g, solid content 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name L-45, manufactured by Soken Chemical Co., Ltd.)
1 part by mass Cs 0.33 WO 3
(Average particle size 80 nm, solid content 20% by mass, MIBK solution) 5 parts by mass In addition, when an acrylic adhesive and Cs 0.33 WO 3 dispersion were mixed, they became cloudy but were used as they were to produce an optical filter for display. did.
[Evaluation of optical filter for display]
For the optical filters for display produced in Examples 1 to 3 and Comparative Examples 1 and 2, the following evaluations (1) to (3) were performed. The results are shown in Tables 1 and 2.
(1) Luminous transmittance The luminous transmittance (JIS-Z-8105-1982) of the optical filter for display was measured with a spectrophotometer UV3100PC (manufactured by Shimadzu Corporation).
(2) Minimum value of transmittance of near infrared light of 800 to 1100 nm For the display optical filter, the minimum value of transmittance of near infrared light was measured with a spectrophotometer UV3100PC (manufactured by Shimadzu Corporation).
(3) Haze The haze value of the optical filter for display was measured using a fully automatic direct reading haze computer HGM-2DP (manufactured by Suga Test Instruments Co., Ltd.) according to the method of JIS-K-7105 (1981).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

 実施例1で得られたディスプレイ用光学フィルタは、全光線透過率が高く、ヘイズが低く、優れた透明性を示しており、一方800~1100nm透過率の最小値が低いので有効な近赤外線カット機能を示している。これはCs0.33WO3粒子が微細且つ均一に分散しているためと考えられる。一方、比較例1で得られたディスプレイ用光学フィルタは、全光線透過率が余り高くなく、ヘイズも高いため、透明性が十分でなく、また800-1100nm透過率の最小値が高く、近赤外線カット機能も満足いかないものである。これはCs0.33WO3粒子が均一に分散していないためと考えられる。また、実施例2及び3、比較例2においても同様の結果が得られている。
[実施例4]
 <反射防止層及び近赤外線遮蔽層付きフィルムの作製>
 PETフィルム(厚さ188μm、A4300;(株)東洋紡製)上に、下記組成を有するハードコート層形成用塗布液(固形分濃度:40質量%;粘度:25℃、100cP)を、バーコータを用いて厚さが約12μmとなるように塗布し、80℃のオーブン中で1分間乾燥させた後、積算光量1000mJ/cm2の紫外線を照射させて硬化させた。これにより積層体上にハードコート層(厚さ6.9μm)を有するディスプレイ用光学フィルタを作製した。
(ハードコート層形成用塗布液の組成)
 ジペンタエリスリトールヘキサアクリレート 100質量部
 TiO2粒子(平均粒径0.1μm)10質量部
 重合開始剤(イルカギュア184、チバスペシャリティケミカル社製)7質量部
 イソプロピルアルコール(IPA)50質量部
 メチルエチルケトン(MEK)100質量部
 シクロヘキサノン(CAN)25質量部
 次いで、下記の組成:
(低屈折率層形成用塗布液の組成)
 オプスターJNー7212(日本合成ゴム(株)製)100質量部
 メチルエチルケトン 117質量部
 メチルイソブチルケトン 117質量部
を混合して得た塗布液を、上記ハードコート層上にバーコータを用いて塗布し、120℃のオーブン中で30分間乾燥させ、紫外線照射により硬化させた。これにより、ハードコート層上に厚さ90nmの低屈折率層(屈折率1.40)を形成した。
Figure JPOXMLDOC01-appb-T000002

The optical filter for display obtained in Example 1 has a high total light transmittance, low haze, and excellent transparency. On the other hand, since the minimum value of the transmittance of 800 to 1100 nm is low, an effective near-infrared cut is achieved. Indicates the function. This is considered because Cs 0.33 WO 3 particles are finely and uniformly dispersed. On the other hand, the optical filter for display obtained in Comparative Example 1 does not have a high total light transmittance and has a high haze, so that the transparency is not sufficient, and the minimum value of 800-1100 nm transmittance is high. The cutting function is not satisfactory. This is considered because Cs 0.33 WO 3 particles are not uniformly dispersed. Similar results were obtained in Examples 2 and 3 and Comparative Example 2.
[Example 4]
<Preparation of film with antireflection layer and near infrared shielding layer>
On a PET film (thickness: 188 μm, A4300; manufactured by Toyobo Co., Ltd.), a hard coat layer forming coating solution (solid content concentration: 40 mass%; viscosity: 25 ° C., 100 cP) having the following composition was used with a bar coater. The film was applied to a thickness of about 12 μm, dried in an oven at 80 ° C. for 1 minute, and then cured by irradiating with an ultraviolet ray with an integrated light quantity of 1000 mJ / cm 2 . This produced the optical filter for displays which has a hard-coat layer (thickness 6.9 micrometers) on a laminated body.
(Composition of hard coat layer forming coating solution)
Dipentaerythritol hexaacrylate 100 parts by weight TiO 2 particles (average particle size 0.1 μm) 10 parts by weight Polymerization initiator (Irquagua 184, manufactured by Ciba Specialty Chemicals) 7 parts by weight Isopropyl alcohol (IPA) 50 parts by weight Methyl ethyl ketone (MEK) 100 parts by mass Cyclohexanone (CAN) 25 parts by mass Next, the following composition:
(Composition of coating solution for forming low refractive index layer)
Opstar JN-7212 (manufactured by Nippon Synthetic Rubber Co., Ltd.) 100 parts by weight Methyl ethyl ketone 117 parts by weight Methyl isobutyl ketone 117 parts by weight was applied onto the hard coat layer using a bar coater, 120 The film was dried in an oven at 30 ° C. for 30 minutes and cured by ultraviolet irradiation. Thereby, a low refractive index layer (refractive index 1.40) having a thickness of 90 nm was formed on the hard coat layer.
 ハードコート層及び低屈折率層からなる反射防止層が設けられたPETフィルムの裏面に、下記の組成:
(ネオンカット機能付き近赤外線遮蔽層形成用塗布液)
 アクリル樹脂系粘着剤(商品名SKダイン1501BS4、綜研化学(株)製、酸価:4.7KOHmg/g、固形分20質量%、酢酸エチル溶液)100質量部
 イソシアネート硬化剤(商品名L-45E、綜研化学(株)製)1質量部
 Cs0.33WO3
 (平均粒径80nm、固形分20質量%、MIBK溶液)5質量部
 ネオンカット色素(560~610nmの極大吸収:592nm)
  商品名TAP-2、山田化学工業(株)製)0.5質量部
を混合して得た塗布液を、アプリケータを用いて乾燥後厚さが25μmとなるように塗布し、80℃のオーブン中で2分間乾燥させた。これにより積層体上に粘着性のネオンカット機能付き近赤外線遮蔽層(厚さ25μm)を有するディスプレイ用光学フィルタを作製した。
On the back surface of the PET film provided with an antireflection layer comprising a hard coat layer and a low refractive index layer, the following composition:
(Coating solution for forming near-infrared shielding layer with neon cut function)
Acrylic resin-based adhesive (trade name: SK Dyne 1501BS4, manufactured by Soken Chemical Co., Ltd., acid value: 4.7 KOHmg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name: L-45E 1 part by weight Cs 0.33 WO 3 manufactured by Soken Chemical Co., Ltd.
(Average particle size 80 nm, solid content 20% by mass, MIBK solution) 5 parts by mass Neon cut dye (maximum absorption at 560 to 610 nm: 592 nm)
A coating solution obtained by mixing 0.5 parts by mass of a trade name TAP-2 (manufactured by Yamada Chemical Co., Ltd.) was applied using an applicator to a thickness of 25 μm after drying, Dry in oven for 2 minutes. This produced the optical filter for displays which has an adhesive near-infrared shielding layer with a neon cut function (thickness 25 micrometers) on a laminated body.
 これにより反射防止層及びネオンカット機能付き近赤外線遮蔽層を有するフィルムを得た。
<粘着剤層付きメッシュ状導電層フィルムの作製>
 PETフィルム(厚さ100μm、A4303;(株)東洋紡製)上に、平均高さが3.3μm、ピッチが165μmの銅からなるメッシュ状導電層フィルム(開口率85%)を用意した。
This obtained the film which has an antireflection layer and a near-infrared shielding layer with a neon cut function.
<Preparation of mesh conductive layer film with adhesive layer>
On a PET film (thickness 100 μm, A4303; manufactured by Toyobo Co., Ltd.), a mesh conductive layer film (opening ratio 85%) made of copper having an average height of 3.3 μm and a pitch of 165 μm was prepared.
 上記メッシュ状導電層フィルムの裏面に、下記組成:
(粘着剤層形成用塗布液)
 アクリル樹脂系粘着剤(商品名SKダイン1811L、綜研化学(株)製、固形分20質量%、酢酸エチル溶液)100質量部
 イソシアネート硬化剤(商品名L-45、綜研化学(株)製)1質量部
を混合して得た塗工液を、アプリケータを用いて塗布し、80℃のオーブン中で5分間乾燥させた。これにより、メッシュ状導電層フィルムの裏面に厚さ25μmの粘着剤層を形成した。
<ディスプレイ用光学フィルタの作製>
 ガラス板上に、上記で得た粘着剤層付きメッシュ状導電層フィルムを、粘着剤層とガラス板表面が対向するように載置し、さらにメッシュ状導電層フィルムの導電層の上に、反射防止層及びネオンカット機能付き近赤外線遮蔽層付きフィルムを、導電層と近赤外線遮蔽層が接触するように載置し、これらを圧着した。これにより、ディスプレイ用光学フィルタを得た。
[実施例5]
 <反射防止層及び近赤外線遮蔽層付きフィルムの作製>
 実施例4と同様にして得られたハードコート層及び低屈折率層からなる反射防止層が設けられたPETフィルムの裏面に、下記の組成:
(ネオンカット層形成用塗布液)
 下記の配合:
 ポリメチルメタクリレート(固形分100質量%)30質量部
 メチルエチルケトン 152質量部
 メチルイソブチルケトン 182質量部
 ネオンカット色素(560~610nmの極大吸収:592nm
  商品名TAP-2、山田化学工業(株)製)0.3質量部
を混合して得た塗布液を、バーコータを用いて乾燥後厚さが5μmとなるように塗布し、80℃のオーブン中で2分間乾燥させ、ネオンカット層を形成した。
(近赤外線遮蔽層形成用塗布液)
 下記の配合:
 アクリル樹脂系粘着剤(商品名SKダイン1501BS4、綜研化学(株)製、酸価:4.7KOHmg/g、固形分20質量%、酢酸エチル溶液)100質量部
 イソシアネート硬化剤(商品名L-45E、綜研化学(株)製)1質量部
 Cs0.33WO3
 (平均粒径80nm、固形分20質量%、MIBK溶液)5質量部
を混合して得た塗布液を、上記ネオンカット層上にアプリケータを用いて乾燥後厚さが25μmとなるように塗布し、80℃のオーブン中で2分間乾燥させた。
On the back surface of the mesh conductive layer film, the following composition:
(Coating liquid for forming adhesive layer)
Acrylic resin adhesive (trade name SK Dyne 1811L, manufactured by Soken Chemical Co., Ltd., solid content 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name L-45, manufactured by Soken Chemical Co., Ltd.) 1 The coating solution obtained by mixing the mass parts was applied using an applicator and dried in an oven at 80 ° C. for 5 minutes. This formed the 25-micrometer-thick adhesive layer in the back surface of a mesh-like conductive layer film.
<Preparation of optical filter for display>
The mesh-like conductive layer film with the pressure-sensitive adhesive layer obtained above is placed on the glass plate so that the pressure-sensitive adhesive layer and the glass plate surface face each other, and further reflected on the conductive layer of the mesh-like conductive layer film. The film with a near-infrared shielding layer with a prevention layer and a neon cut function was placed so that the conductive layer and the near-infrared shielding layer were in contact, and these were pressure-bonded. Thereby, an optical filter for display was obtained.
[Example 5]
<Preparation of film with antireflection layer and near infrared shielding layer>
On the back surface of the PET film provided with an antireflection layer comprising a hard coat layer and a low refractive index layer obtained in the same manner as in Example 4, the following composition:
(Coating solution for neon cut layer formation)
The following formulation:
Polymethyl methacrylate (solid content: 100% by mass) 30 parts by mass Methyl ethyl ketone 152 parts by mass Methyl isobutyl ketone 182 parts by mass Neon cut dye (maximum absorption at 560 to 610 nm: 592 nm
A coating solution obtained by mixing 0.3 part by mass of a trade name TAP-2 (manufactured by Yamada Chemical Co., Ltd.) was applied using a bar coater to a thickness of 5 μm after drying, and an oven at 80 ° C. The mixture was dried for 2 minutes to form a neon cut layer.
(Near-infrared shielding layer forming coating solution)
The following formulation:
Acrylic resin-based adhesive (trade name: SK Dyne 1501BS4, manufactured by Soken Chemical Co., Ltd., acid value: 4.7 KOHmg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name: L-45E 1 part by weight Cs 0.33 WO 3 manufactured by Soken Chemical Co., Ltd.
(Average particle size 80 nm, solid content 20% by mass, MIBK solution) A coating solution obtained by mixing 5 parts by mass was coated on the neon cut layer using an applicator so that the thickness after drying was 25 μm. And dried in an oven at 80 ° C. for 2 minutes.
 これにより積層体上に粘着性のネオンカット層及び近赤外線遮蔽層(厚さ25μm)を有するディスプレイ用光学フィルタを作製した。 Thereby, an optical filter for display having an adhesive neon cut layer and a near-infrared shielding layer (thickness 25 μm) on the laminate was produced.
 これにより反射防止層、ネオンカット層及び近赤外線遮蔽層を有するフィルムを得た。
<粘着剤層付きメッシュ状導電層フィルムの作製>
 PETフィルム(厚さ100μm、A4303;(株)東洋紡製)上に、平均高さが3.3μm、ピッチが165μmの銅からなるメッシュ状導電層フィルム(開口率85%)を用意した。
This obtained the film which has an antireflection layer, a neon cut layer, and a near-infrared shielding layer.
<Preparation of mesh conductive layer film with adhesive layer>
On a PET film (thickness 100 μm, A4303; manufactured by Toyobo Co., Ltd.), a mesh conductive layer film (opening ratio 85%) made of copper having an average height of 3.3 μm and a pitch of 165 μm was prepared.
 上記メッシュ状導電層フィルムの裏面に、下記組成:
(粘着剤層形成用塗布液)
 アクリル樹脂系粘着剤(商品名SKダイン1811L、綜研化学(株)製、固形分20質量%、酢酸エチル溶液)100質量部
 イソシアネート硬化剤(商品名L-45、綜研化学(株)製)1質量部
を混合して得た塗工液を、バーコータを用いて塗布し、80℃のオーブン中で5分間乾燥させた。これにより、メッシュ状導電層フィルムの裏面に厚さ25μmの粘着剤層を形成した。
<ディスプレイ用光学フィルタの作製>
 ガラス板上に、上記で得た粘着剤層付きメッシュ状導電層フィルムを、粘着剤層とガラス板表面が対向するように載置し、さらにメッシュ状導電層フィルムの導電層の上に、反射防止層及び近赤外線遮蔽層付きフィルムを、導電層と近赤外線遮蔽層が接触するように載置し、これらを圧着した。
On the back surface of the mesh conductive layer film, the following composition:
(Coating liquid for forming adhesive layer)
Acrylic resin adhesive (trade name SK Dyne 1811L, manufactured by Soken Chemical Co., Ltd., solid content 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name L-45, manufactured by Soken Chemical Co., Ltd.) 1 The coating solution obtained by mixing the mass parts was applied using a bar coater and dried in an oven at 80 ° C. for 5 minutes. This formed the 25-micrometer-thick adhesive layer in the back surface of a mesh-like conductive layer film.
<Preparation of optical filter for display>
The mesh-like conductive layer film with the pressure-sensitive adhesive layer obtained above is placed on the glass plate so that the pressure-sensitive adhesive layer and the glass plate surface face each other, and further reflected on the conductive layer of the mesh-like conductive layer film. The prevention layer and the film with a near-infrared shielding layer were placed so that the conductive layer and the near-infrared shielding layer were in contact, and these were pressure-bonded.
 これにより、ディスプレイ用光学フィルタ(図7参照)を得た。
[比較例3]
 実施例4において、ネオンカット機能付き近赤外線遮蔽層形成用塗布液として、下記のものを用いた以外は同様にしてディスプレイ用光学フィルタを得た。
(ネオンカット機能付き近赤外線遮蔽層形成用塗布液)
 アクリル樹脂系粘着剤(商品名SKダイン1811L、綜研化学(株)製、酸価:0.0KOHmg/g、固形分20質量%、酢酸エチル溶液)100質量部
 イソシアネート硬化剤(商品名L-45、綜研化学(株)製)1質量部
 Cs0.33WO3
 (平均粒径80nm、固形分20質量%、MIBK溶液)5質量部
 ネオンカット色素(560~610nmの極大吸収:592nm)
  商品名TAP-2、山田化学工業(株)製)0.5質量部
[実施例6]
 <メッシュ状導電層付きフィルムの作製>
 PETフィルム(厚さ100μm)の一方の表面上に、接着剤層を介して銅箔を積層した後、前記銅箔をフォトリソグラフィー法によってエッチングした。これにより、メッシュ状の導電層(平均高さ10μm、平均幅20μm、ピッチ250μm、開口率85%)を有するPETフィルムを得た。
Thereby, an optical filter for display (see FIG. 7) was obtained.
[Comparative Example 3]
In Example 4, an optical filter for display was obtained in the same manner except that the following coating liquid for forming a near-infrared shielding layer with a neon cut function was used.
(Coating solution for forming near-infrared shielding layer with neon cut function)
Acrylic resin adhesive (trade name: SK Dyne 1811L, manufactured by Soken Chemical Co., Ltd., acid value: 0.0 KOHmg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name: L-45 1 part by weight Cs 0.33 WO 3 manufactured by Soken Chemical Co., Ltd.
(Average particle size 80 nm, solid content 20% by mass, MIBK solution) 5 parts by mass Neon cut dye (maximum absorption at 560 to 610 nm: 592 nm)
Product name TAP-2, manufactured by Yamada Chemical Co., Ltd.) 0.5 parts by mass [Example 6]
<Preparation of film with mesh conductive layer>
A copper foil was laminated on one surface of a PET film (thickness: 100 μm) via an adhesive layer, and then the copper foil was etched by a photolithography method. As a result, a PET film having a mesh-like conductive layer (average height 10 μm, average width 20 μm, pitch 250 μm, aperture ratio 85%) was obtained.
 <近赤外線遮蔽層付き基板の作製>
 前記PETフィルムの他方の面上に、下記の組成を有するネオンカット機能付き近赤外線遮蔽層形成用塗布液を、アプリケータを用いて乾燥後厚さが25μmとなるように塗布し、80℃のオーブン中で2分間乾燥させた。これにより、一方の表面上に接着剤層を介して積層されたメッシュ状の導電層を有し、他方の表面上に粘着性のネオンカット機能付き近赤外線遮蔽層(厚さ25μm)を有する前記PETフィルム(図6)を作製した。
(ネオンカット機能付き近赤外線遮蔽層形成用塗布液)
 アクリル樹脂系粘着剤(商品名SKダイン1501BS4、綜研化学(株)製、酸価:4.7KOHmg/g、固形分20質量%、酢酸エチル溶液)100質量部
 イソシアネート硬化剤(商品名L-45E、綜研化学(株)製)1質量部
 Cs0.33WO3
  (平均粒径80nm、固形分20質量%、MIBK溶液)5質量部
 ネオンカット色素(560~610nmの極大吸収:592nm)
 商品名TAP-2、山田化学工業(株)製)0.5質量部
 <ディスプレイ用光学フィルタの作製>
 フロートガラス(厚さ2.5mm)上に、上前記PETフィルムを、近赤外線遮蔽層とフロートガラスとが対向するように載置し、これらを圧着した。これにより、ディスプレイ用光学フィルタ(図4参照)を得た。
[実施例7]
 <メッシュ状導電層付きフィルムの作製>
 実施例6と同様にして、メッシュ状の導電層(平均高さ10μm、平均幅20μm、ピッチ250μm、開口率85%)を有するフィルムを得た。
<Preparation of substrate with near-infrared shielding layer>
On the other surface of the PET film, a coating solution for forming a near-infrared shielding layer with a neon cut function having the following composition was applied using an applicator so as to have a thickness of 25 μm after drying. Dry in oven for 2 minutes. Thereby, it has a mesh-like conductive layer laminated on one surface via an adhesive layer, and has a sticky neon-cutting function near-infrared shielding layer (thickness 25 μm) on the other surface. A PET film (FIG. 6) was produced.
(Coating solution for forming near-infrared shielding layer with neon cut function)
Acrylic resin-based adhesive (trade name: SK Dyne 1501BS4, manufactured by Soken Chemical Co., Ltd., acid value: 4.7 KOH mg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name: L-45E 1 part by weight Cs 0.33 WO 3 manufactured by Soken Chemical Co., Ltd.
(Average particle size 80 nm, solid content 20% by mass, MIBK solution) 5 parts by mass Neon cut dye (maximum absorption at 560 to 610 nm: 592 nm)
Product name TAP-2, manufactured by Yamada Chemical Co., Ltd.) 0.5 parts by mass <Preparation of optical filter for display>
On the float glass (thickness 2.5 mm), the upper PET film was placed so that the near-infrared shielding layer and the float glass face each other, and these were pressure-bonded. Thereby, an optical filter for display (see FIG. 4) was obtained.
[Example 7]
<Preparation of film with mesh conductive layer>
In the same manner as in Example 6, a film having a mesh-like conductive layer (average height 10 μm, average width 20 μm, pitch 250 μm, aperture ratio 85%) was obtained.
 <近赤外線遮蔽層付き基板の作製>
 粘着性近赤外線遮蔽層形成用塗布液を、上記で作製したメッシュ状の導電層上に塗布した以外は、実施例6と同様にして、ネオンカット機能付き近赤外線遮蔽層(厚さ25μm)を作製した。これにより、一方の表面上に接着剤層を介して積層されたメッシュ状の導電層、及び前記メッシュ状の導電層上に積層された粘着性のネオンカット機能付き近赤外線遮蔽層(厚さ25μm)を有する前記PETフィルム(図7)を作製した。
<Preparation of substrate with near-infrared shielding layer>
A near-infrared shielding layer with a neon-cut function (thickness 25 μm) was formed in the same manner as in Example 6 except that the adhesive near-infrared shielding layer forming coating solution was applied onto the mesh-shaped conductive layer prepared above. Produced. Thereby, a mesh-like conductive layer laminated on one surface via an adhesive layer, and a sticky near-infrared shielding layer with a neon cut function (thickness 25 μm) laminated on the mesh-like conductive layer The PET film having FIG.
 <ディスプレイ用光学フィルタの作製>
 フロートガラス(厚さ2.5mm)上に、上前記PETフィルムを、近赤外線遮蔽層とフロートガラスとが対向するように載置し、これらを圧着した。これにより、ディスプレイ用光学フィルタ(図5参照)を得た。
<Preparation of optical filter for display>
On the float glass (thickness 2.5 mm), the upper PET film was placed so that the near-infrared shielding layer and the float glass face each other, and these were pressure-bonded. Thereby, an optical filter for display (see FIG. 5) was obtained.
 [比較例4]
 実施例6において、ネオンカット機能付き近赤外線遮蔽層形成用塗布液として、下記のものを用いた以外は同様にしてディスプレイ用光学フィルタを得た。
(ネオンカット機能付き近赤外線遮蔽層形成用塗布液)
 アクリル樹脂系粘着剤(商品名SKダイン1811L、綜研化学(株)製、酸価:0.0KOHmg/g、固形分20質量%、酢酸エチル溶液)100質量部
 イソシアネート硬化剤(商品名L-45、綜研化学(株)製)1質量部
 Cs0.33WO3
 (平均粒径80nm、固形分20質量%、MIBK溶液)5質量部
 ネオンカット色素(560~610nmの極大吸収:592nm)
商品名TAP-2、山田化学工業(株)製)0.5質量部
[ディスプレイ用光学フィルタの評価]
 実施例4~7、比較例3及び4で作製したディスプレイ用光学フィルタについて、下記(4)~(6)の評価を行った。結果を表3及び表4に示す。
(4)視感透過率
 ディスプレイ用光学フィルタについて、視感透過率(JIS-Z-8105-1982年)を分光光度計UV3100PC(島津製作所(株)製)により測定した。
(5)560~610nmの波長領域における可視光の、視感透過率に対する最小値
 ディスプレイ用光学フィルタについて、視感透過率(定義JIS Z8105-1982)を分光光度計UV3100PC(島津製作所(株)製)により測定したフィルタの透過スペクトルを用い、XYZ表色系の三刺激値のYを計算し、視感透過率(Y)を得た。計算方法は、C光源2°(JIS Z8722-2000)にて計算した。
(6)800~1100nmの波長領域における近赤外線光の透過率の最小値
 上記近赤外線光の透過率の最小値を分光光度計UV3100PC(島津製作所(株)製)により測定した。
[Comparative Example 4]
In Example 6, an optical filter for display was obtained in the same manner except that the following coating liquid for forming a near-infrared shielding layer with a neon cut function was used.
(Coating solution for forming near-infrared shielding layer with neon cut function)
Acrylic resin adhesive (trade name: SK Dyne 1811L, manufactured by Soken Chemical Co., Ltd., acid value: 0.0 KOHmg / g, solid content: 20% by mass, ethyl acetate solution) 100 parts by mass Isocyanate curing agent (trade name: L-45 1 part by weight Cs 0.33 WO 3 manufactured by Soken Chemical Co., Ltd.
(Average particle size 80 nm, solid content 20% by mass, MIBK solution) 5 parts by mass Neon cut dye (maximum absorption at 560 to 610 nm: 592 nm)
Product name TAP-2, manufactured by Yamada Chemical Co., Ltd.) 0.5 parts by mass [evaluation of optical filter for display]
For the optical filters for display produced in Examples 4 to 7 and Comparative Examples 3 and 4, the following evaluations (4) to (6) were performed. The results are shown in Tables 3 and 4.
(4) Luminous transmittance The luminous transmittance (JIS-Z-8105-1982) of the optical filter for display was measured with a spectrophotometer UV3100PC (manufactured by Shimadzu Corporation).
(5) Minimum value with respect to luminous transmittance of visible light in the wavelength region of 560 to 610 nm For the optical filter for display, the luminous transmittance (definition JIS Z8105-1982) is spectrophotometer UV3100PC (manufactured by Shimadzu Corporation) ), The Y of the tristimulus value of the XYZ color system was calculated, and the luminous transmittance (Y) was obtained. The calculation method was performed with a C light source of 2 ° (JIS Z8722-2000).
(6) Minimum value of near-infrared light transmittance in the wavelength range of 800 to 1100 nm The minimum value of the near-infrared light transmittance was measured with a spectrophotometer UV3100PC (manufactured by Shimadzu Corporation).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

 実施例4、5で得られたディスプレイ用光学フィルタは、560~610nmの可視光の視感透過率が低く、ネオンガス由来の光が十分にカットされており、それと共に800-1100nm透過率の最小値が低いので優れたな近赤外線カット機能も示している。これはCs0.33WO3とネオンカット色素を同時に使用した顕著な効果と言える。また、実施例6及び7、比較例4においても同様の結果が得られている。
Figure JPOXMLDOC01-appb-T000004

The optical filters for displays obtained in Examples 4 and 5 have low visible transmittance of visible light of 560 to 610 nm, light from neon gas is sufficiently cut, and at the same time, the minimum transmittance of 800 to 1100 nm It also shows an excellent near-infrared cut function because of its low value. This can be said to be a remarkable effect of using Cs 0.33 WO 3 and a neon cut dye at the same time. Similar results were obtained in Examples 6 and 7 and Comparative Example 4.
 11、21A、21B、31、41A、41B:透明基板
 51A、51B、61、71A、71B、81、91:透明基板
 12、22、32、62、72、82:反射防止層
 13、23、33、43、53、63、73、83、93:近赤外線遮蔽層
 64、74、84:ネオンカット層
 24、34、44、54、94:導電層
 75、85:導電層
 25、76:粘着剤層
 46、56:接着剤層
11, 21A, 21B, 31, 41A, 41B: Transparent substrate 51A, 51B, 61, 71A, 71B, 81, 91: Transparent substrate 12, 22, 32, 62, 72, 82: Antireflection layer 13, 23, 33 43, 53, 63, 73, 83, 93: Near- infrared shielding layer 64, 74, 84: Neon cut layer 24, 34, 44, 54, 94: Conductive layer 75, 85: Conductive layer 25, 76: Adhesive Layers 46 and 56: Adhesive layer

Claims (14)

  1.  タングステン酸化物及び/又は複合タングステン酸化物及び酸性基を有する粘着剤を含むことを特徴とする近赤外線遮蔽体。 A near-infrared shield comprising a tungsten oxide and / or a composite tungsten oxide and an adhesive having an acidic group.
  2.  粘着剤の酸価が0.5KOHmg/g以上である請求項1に記載の近赤外線遮蔽体。 The near-infrared shielding body according to claim 1, wherein the acid value of the pressure-sensitive adhesive is 0.5 KOHmg / g or more.
  3.  粘着剤がアクリル樹脂系粘着剤である請求項1又は2に記載の近赤外線遮蔽体。 The near-infrared shield according to claim 1 or 2, wherein the adhesive is an acrylic resin-based adhesive.
  4.  粘着剤の酸性基がカルボキシル基である請求項1~3のいずれか1項に記載の近赤外線遮蔽体。 The near-infrared shield according to any one of claims 1 to 3, wherein the acidic group of the pressure-sensitive adhesive is a carboxyl group.
  5.  560~610nmの波長範囲に極大吸収を有する色素をさらに含む請求項1~4のいずれか1項に記載の近赤外線遮蔽体。 The near-infrared shield according to any one of claims 1 to 4, further comprising a dye having a maximum absorption in a wavelength range of 560 to 610 nm.
  6.  タングステン酸化物及び/又は複合タングステン酸化物を含む近赤外線遮蔽層、及び560~610nmの波長範囲に極大吸収を有する色素を含むネオンカット層を有する請求項1~5のいずれか1項に記載の近赤外線遮蔽体。 6. The near-infrared shielding layer containing tungsten oxide and / or composite tungsten oxide, and a neon cut layer containing a dye having a maximum absorption in the wavelength range of 560 to 610 nm. Near-infrared shield.
  7.  タングステン酸化物及び/又は複合タングステン酸化物及び560~610nmの波長範囲に極大吸収を有する色素を含む近赤外線遮蔽層を有する請求項1~5のいずれか1項に記載の近赤外線遮蔽体。 6. The near-infrared shielding body according to claim 1, further comprising a near-infrared shielding layer containing tungsten oxide and / or composite tungsten oxide and a dye having a maximum absorption in a wavelength range of 560 to 610 nm.
  8.  基板の一方の表面に、導電層及び反射防止層がこの順で設けられ、且つ基板の他方の表面に近赤外線遮蔽層が設けられ、
     近赤外線遮蔽層がタングステン酸化物及び/又は複合タングステン酸化物及び酸性基を有する粘着剤を含む請求項1~5のいずれか1項に記載の近赤外線遮蔽体。
    A conductive layer and an antireflection layer are provided in this order on one surface of the substrate, and a near-infrared shielding layer is provided on the other surface of the substrate,
    The near-infrared shielding body according to any one of claims 1 to 5, wherein the near-infrared shielding layer contains tungsten oxide and / or composite tungsten oxide and an adhesive having an acidic group.
  9.  近赤外線遮蔽層が、560~610nmの波長範囲に極大吸収を有する色素をさらに含む請求項8に記載の近赤外線遮蔽体。 The near-infrared shielding body according to claim 8, wherein the near-infrared shielding layer further contains a pigment having a maximum absorption in a wavelength range of 560 to 610 nm.
  10.  タングステン酸化物及び/又は複合タングステン酸化物が、微粒子状である請求項1~9のいずれか1項に記載の近赤外線遮蔽体。 The near-infrared shield according to any one of claims 1 to 9, wherein the tungsten oxide and / or the composite tungsten oxide is in the form of fine particles.
  11.  微粒子の平均粒径が400nm以下である請求項8に記載の近赤外線遮蔽体。 The near-infrared shield according to claim 8, wherein the average particle diameter of the fine particles is 400 nm or less.
  12.  タングステン酸化物が、一般式WyOz(但し、Wはタングステン、Oは酸素を表し、そして2.2≦z/y≦2.999である)で表され、そして
     複合タングステン酸化物が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iうちから選択される1種類以上の元素、Wはタングステン、Oは酸素を表し、そして0.001≦x/y≦1、2.2≦z/y≦3である)で表される請求項1~11のいずれか1項に記載の近赤外線遮蔽体。
    Tungsten oxide is represented by the general formula WyOz (where W is tungsten, O represents oxygen and 2.2 ≦ z / y ≦ 2.999), and the composite tungsten oxide is represented by the general formula MxWyOz. (However, M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au. Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be One or more elements selected from Hf, Os, Bi, and I, W represents tungsten, O represents oxygen, and 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3 12. The vicinity of any one of claims 1 to 11 represented by External shield.
  13.  ディスプレイ用光学フィルタとして用いられる請求項1~12のいずれか1項に記載の近赤外線遮蔽体。 The near-infrared shielding body according to any one of claims 1 to 12, which is used as an optical filter for a display.
  14.  プラズマディスプレイパネル用フィルタとして用いられる請求項1~13のいずれか1項に記載の近赤外線遮蔽体。 The near-infrared shield according to any one of claims 1 to 13, which is used as a filter for a plasma display panel.
PCT/JP2009/057458 2008-04-11 2009-04-13 Near-infrared-shielding structure and optical filter for display employing the same WO2009125869A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-103439 2008-04-11
JP2008103439 2008-04-11
JP2008103393 2008-04-11
JP2008-103393 2008-04-11
JP2009-071267 2009-03-24
JP2009071267A JP2009271515A (en) 2008-04-11 2009-03-24 Near-infrared-shielding structure and optical filter for display employing the same

Publications (1)

Publication Number Publication Date
WO2009125869A1 true WO2009125869A1 (en) 2009-10-15

Family

ID=41162000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057458 WO2009125869A1 (en) 2008-04-11 2009-04-13 Near-infrared-shielding structure and optical filter for display employing the same

Country Status (1)

Country Link
WO (1) WO2009125869A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108350340A (en) * 2015-10-30 2018-07-31 住友金属矿山股份有限公司 Adhering agent layer, near-infrared shielding film, sandwich structural body, laminated body and adhesive composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090705A1 (en) * 2005-02-22 2006-08-31 Asahi Glass Company, Limited Pressure-sensitive adhesive composition, pressure-sensitive adhesive film, and optical filter
JP2007041575A (en) * 2005-07-08 2007-02-15 Dainippon Printing Co Ltd Filter for display, and display
JP2007328286A (en) * 2006-06-09 2007-12-20 Bridgestone Corp Method for manufacturing optical filter for display, optical filter for display, and display and plasma display panel equipped therewith
WO2008020578A1 (en) * 2006-08-18 2008-02-21 Dai Nippon Printing Co., Ltd. Front filter for plasma display, and plasma display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090705A1 (en) * 2005-02-22 2006-08-31 Asahi Glass Company, Limited Pressure-sensitive adhesive composition, pressure-sensitive adhesive film, and optical filter
JP2007041575A (en) * 2005-07-08 2007-02-15 Dainippon Printing Co Ltd Filter for display, and display
JP2007328286A (en) * 2006-06-09 2007-12-20 Bridgestone Corp Method for manufacturing optical filter for display, optical filter for display, and display and plasma display panel equipped therewith
WO2008020578A1 (en) * 2006-08-18 2008-02-21 Dai Nippon Printing Co., Ltd. Front filter for plasma display, and plasma display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108350340A (en) * 2015-10-30 2018-07-31 住友金属矿山股份有限公司 Adhering agent layer, near-infrared shielding film, sandwich structural body, laminated body and adhesive composition

Similar Documents

Publication Publication Date Title
JP5449659B2 (en) Near-infrared shield, laminate using the same, optical filter for display, and display
US20100172028A1 (en) Optical filter for display, and display and plasma display panel provided with the optical filter
JP4783301B2 (en) Display optical filter manufacturing method, display optical filter, display including the same, and plasma display panel
JP2008139839A (en) Optical filter for display, display with the same and plasma display panel
JP2009271515A (en) Near-infrared-shielding structure and optical filter for display employing the same
JP2008052088A (en) Antireflection film for display and display using the same
JP2009069477A (en) Optical filter for display, display equipped therewith, and plasma display panel
JP2009062409A (en) Near infrared-shielding material, laminate and optical filter for display using the same and display
JP2011007894A (en) Optical filter, and optical filter for display using the same
JP2008304798A (en) Near-infrared shielding filter, optical filter for display, and display and plasma display panel using the filter
JP2010079145A (en) Infrared absorbing laminate and optical filter
JP2010025959A (en) Optical filter for display, display with the same, and plasma display panel
JP4972368B2 (en) Optical filter for display, display having the same, and plasma display panel
JP2008041810A (en) Optical filter for display, method for manufacturing the same, display and plasma display panel provided therewith
JP2012042918A (en) Optical filter for display
JP2011187978A (en) Method of manufacturing optical filter for display, optical filter for display, and display and plasma display panel provided with such optical filter
WO2009125869A1 (en) Near-infrared-shielding structure and optical filter for display employing the same
JP2010014954A (en) Optical filter for display, display equipped therewith and plasma display panel
JP2009271514A (en) Optical filter for display and display employing the same
JP2007266565A (en) Optical filter for display and display provided therewith and plasma display panel
JP2010021480A (en) Optical filter for display, and display using the filter
JP2008151831A (en) Optical filter for display, display with the same and plasma display panel
JP2007328284A (en) Method of manufacturing optical filter for display, optical filter for display, display furnished with the same and plasma display panel
JP2009015155A (en) Optical filter for display and display using the same
JP2007233134A (en) Optical filter for display, method for manufacturing same, and display and plasma display panel equipped with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09730196

Country of ref document: EP

Kind code of ref document: A1