WO2009125742A1 - Sound-absorbing composite structure - Google Patents

Sound-absorbing composite structure Download PDF

Info

Publication number
WO2009125742A1
WO2009125742A1 PCT/JP2009/057058 JP2009057058W WO2009125742A1 WO 2009125742 A1 WO2009125742 A1 WO 2009125742A1 JP 2009057058 W JP2009057058 W JP 2009057058W WO 2009125742 A1 WO2009125742 A1 WO 2009125742A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound absorbing
skin layer
layer
absorbing structure
flow resistance
Prior art date
Application number
PCT/JP2009/057058
Other languages
French (fr)
Japanese (ja)
Inventor
一嘉 飯田
青滋 霊田
亮一 和田
Original Assignee
ブリヂストンケービージー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブリヂストンケービージー株式会社 filed Critical ブリヂストンケービージー株式会社
Priority to JP2010507233A priority Critical patent/JP5501959B2/en
Priority to CN200980112651.7A priority patent/CN101999145B/en
Publication of WO2009125742A1 publication Critical patent/WO2009125742A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Laminated Bodies (AREA)

Abstract

A sound-absorbing composite structure obtained by combining and uniting a skin layer constituted of one layer or two or more superposed layers of a nonwoven fabric comprising a polymeric material, e.g., a polyester, polyethylene, or nylon, and having a diameter of 11-35 µm in terms of equivalent single-fiber diameter (flow resistance, 3.5×105 to 7×106 N⋅sec/m4) with a base layer consisting mainly of a porous material constituted of polymer fibers (flow resistance, 0.5×104 to 3.5×104 N⋅sec/m4). This composite has a unit-area flow resistance of 1×104 to 7×104 N⋅sec/m4.

Description

複合吸音構造体Composite sound absorbing structure
 本発明は、繊維系多孔質材料を用いた吸音構造体に関する新規な発明に関する。 The present invention relates to a novel invention relating to a sound absorbing structure using a fibrous porous material.
 従来より、吸音材として各種の多孔質材料が提案されているが、その中でも母材として最も一般的に使用されているものに繊維系吸音材がある。繊維系吸音材としては、古くからグラスウールが好んで用いられているが、最近では、環境問題、リサイクル、吸音性能、作業環境保全や長期耐久性などからポリエステル繊維系吸音材が使用されている。このポリエステル繊維系吸音材は、大抵の場合、撥水性、耐久性や吸音特性の調整のため、通常、ポリエステル繊維からなる不織布にホットメルト材を処理し、母材層に熱融着し、不織布側の面を音の入射側に配して用いられている。 Conventionally, various porous materials have been proposed as sound absorbing materials, and among them, fiber-based sound absorbing materials are the most commonly used as a base material. Glass wool has long been preferred as a fiber-based sound absorbing material, but recently, polyester fiber-based sound absorbing materials have been used because of environmental problems, recycling, sound absorbing performance, work environment preservation, long-term durability, and the like. In most cases, this polyester fiber-based sound absorbing material is treated with a non-woven fabric composed of polyester fibers to adjust the water repellency, durability, and sound absorbing properties, and the heat-melt material is heat-sealed to the base material layer. It is used by arranging the side surface on the sound incident side.
 母材層と表皮層による総合的な単位面積流れ抵抗(以下、単に「流れ抵抗」という場合がある。)を調整し、吸音特性を出してはいるが、強度、耐久性、加工性など実用面では課題もあり、吸音性能も最適化された内容になっていないのが現状であり、吸音性能面では、ある限定された厚さの中でより高い吸音性能を得ようとするのに限界があった。 Although the overall unit area flow resistance (hereinafter sometimes referred to simply as "flow resistance") due to the base material layer and the skin layer is adjusted to provide sound absorption characteristics, practical use such as strength, durability, processability, etc. In terms of sound absorption performance, there are problems in terms of sound absorption performance as well, but in terms of sound absorption performance, there is a limit in trying to obtain higher sound absorption performance within a certain limited thickness. was there.
 一般に、グラスウールやポリエステル繊維などの多孔質材料が吸音特性を発揮するのは、多孔質材料の表面から入射した音波が繊維間の複層した三次元的に形成された隙間にある空気を振動させることで粘性抵抗を生じ、入射してくる音響エネルギーが熱エネルギーとして消費され、その結果、反射音響エネルギーが抑制されるのが主たる吸音メカニズムである。 In general, porous materials such as glass wool and polyester fibers exhibit sound absorption properties because sound waves incident from the surface of the porous material vibrate air in a three-dimensionally formed interstice between fibers. As a result, viscous resistance is generated, and incident acoustic energy is consumed as heat energy, and as a result, it is the main sound absorption mechanism that reflected acoustic energy is suppressed.
 それは流れ抵抗と密接な関係があり、より高い吸音性能が得られる適切な流れ抵抗をどのように調整するかが開発のポイントとなっている。流れ抵抗が小さ過ぎれば楽に空気が動き、流れ抵抗が大き過ぎれば、空気が動きにくくなり、入射音響エネルギーから熱エネルギーへの変換効率が落ち、高い吸音性能は得られず、現時点では、まだまだ最適化されているとは言えず、新規構造の開発の可能性が十分残されているといえる。その他、主要因ではないが、構成繊維間でのフリクション、繊維自体の内部減衰なども熱エネルギーへの変換には寄与していると思われる。 It is closely related to the flow resistance, and the point of development is how to adjust the appropriate flow resistance to obtain higher sound absorption performance. If the flow resistance is too small, the air will move easily, if the flow resistance is too large, the air will not move, the conversion efficiency from incident acoustic energy to thermal energy will be reduced, and high sound absorption performance can not be obtained. It can be said that the possibility of development of a new structure still remains. In addition, although not a main factor, it is thought that the friction between constituent fibers, the internal attenuation of the fibers themselves, etc. also contribute to the conversion to thermal energy.
 尚、単位面積流れ抵抗とは、材料の表面に垂直方向に一定の微少空気流Vを流した時の速度と材料両面間の圧力差とから次式で定義される。
 R=ΔP/(V・d)
 R:単位面積流れ抵抗[N・sec/m ]
 ΔP:材料両面間の圧力差
 V:単位面積当たりの空気流量[m /(m/sec)]
 d:試料の厚み(m)
The unit area flow resistance is defined by the following equation from the velocity when a constant minute air flow V flows in the direction perpendicular to the surface of the material and the pressure difference between the two surfaces of the material.
R = ΔP / (V · d)
R: Unit area flow resistance [N · sec / m 4 ]
ΔP: Pressure difference between both sides of the material V: Air flow rate per unit area [m 3 / (m 2 / sec)]
d: Thickness of sample (m)
 単位面積流れ抵抗の測定方法は、φ29mmの金属製の管に、φ30mm、厚み30mmの吸音材を挿入し、カトーテック(株)KES-F8-API通気度試験機(流速4×10-2m/sec)で測定した。 To measure the unit area flow resistance, insert a sound absorbing material of φ30 mm and thickness 30 mm into a metal tube of φ29 mm and use Kato Tech KES-F8-API Permeability Tester (flow velocity 4 × 10 −2 m / Sec).
 表面層と母材層を複合した複合吸音構造体の場合、複合体の流れ抵抗が吸音材の吸音率を決めることになるが、この流れ抵抗は、a:母材層である多孔質材料の密度を変えること、b:多孔質材料を構成する繊維の径や配合率を変えること、c:多孔質材料を構成する繊維特性を変えること、d:表皮層の不織布(例えば、スパンボンド)の特性、仕様を変えることなどでコントロールできるが、従来技術では最適化されているとは言えないのが現状である。 In the case of a composite sound absorbing structure in which the surface layer and the base material layer are combined, the flow resistance of the composite determines the sound absorption coefficient of the sound absorbing material. This flow resistance is a: of the porous material which is a base material layer Changing the density, b: changing the diameter or blending ratio of fibers constituting the porous material, c: changing the fiber characteristics constituting the porous material, d: non-woven fabric of the skin layer (for example, spunbond) It can be controlled by changing characteristics and specifications, but at present it can not be said that it is optimized in the prior art.
 従来技術の知見では、例えば、吸音性能を良くするには、表皮層の不織布を構成する単繊維径は10μm以下、出来れば5μm以下を推奨している(日本国特許第3494332号)。しかし、この場合、吸音性能は得やすくとも、実用上は強度、耐久性、母材層との複合化製造、加工面(シワになりやすいなど)で取り扱いにくいなど極めて不都合な面が多い。 According to the knowledge of the prior art, for example, in order to improve the sound absorbing performance, the diameter of the single fiber constituting the nonwoven fabric of the skin layer is recommended to be 10 μm or less, preferably 5 μm or less (Japanese Patent No. 3494332). However, in this case, although it is easy to obtain the sound absorbing performance, there are many extremely inconvenient aspects such as strength, durability, composite manufacture with the base material layer, and difficulty in handling on a processed surface (such as wrinkles) in practical use.
 尚、高分子系多孔質材料の吸音性能を高める方法として、表面層と母材層の間に、膜構造を挿入したり、形成したりすることもあり、中低周波数帯域の吸音性能はかなり向上するが、一方で、高周波数帯域の吸音性能は低下するのが一般的で、中低周波数帯域から高周波数帯域まで広い周波数帯域で吸音性能を向上させようとする目的には適さない。 In addition, as a method of enhancing the sound absorption performance of the polymeric porous material, a film structure may be inserted or formed between the surface layer and the base material layer, and the sound absorption performance in the middle and low frequency bands is considerable. Although it improves, on the other hand, the sound absorption performance in the high frequency band generally decreases, and it is not suitable for the purpose of improving the sound absorption performance in a wide frequency band from the middle and low frequency bands to the high frequency band.
 本発明は以上のような従来の技術に鑑みてなされたものであり、その目的は、特定の単繊維径を用いた不織布を用い、その不織布を1枚又は複数枚で構成した表皮層とポリエステル繊維あるいはそれを主体とする母材層とを複合し、吸音構造体としてボリュームを厚くすることなく、吸音性能が中低域から高帯域までの広い周波数帯域でより一層向上した多孔質吸音材を適切なコストで提供することにある。 The present invention has been made in view of the prior art as described above, and its object is to use a non-woven fabric using a specific single fiber diameter, and a skin layer and polyester made of one or more non-woven fabric. A porous sound absorbing material in which the sound absorbing performance is further improved in a wide frequency band from low to high bands without complexing the fiber or the matrix layer mainly composed thereof and thickening the volume as a sound absorbing structure It is to provide at an appropriate cost.
 本発明の第1の要旨は、ポリエステル、ポリエチレン、ナイロンなどの高分子材料の不織布を1層以上重ねた表皮層と、高分子繊維系多孔質材料を主体とする母材層を、複合一体化したことを特徴とする複合吸音構造体であり、好ましくは表皮層と母材層との複合体の単位面積流れ抵抗が、1×10~7×10 N・sec/m である。 The first aspect of the present invention is a composite integration of a skin layer on which at least one non-woven fabric of a polymeric material such as polyester, polyethylene, nylon, etc. is laminated, and a matrix layer mainly composed of a porous polymer fiber material. The composite sound absorbing structure is characterized in that the unit area flow resistance of the composite of the skin layer and the base material layer is preferably 1 × 10 4 to 7 × 10 4 N · sec / m 4 .
 母材層の高分子繊維系多孔質材料は、ポリエステル繊維が主体であり、この材料の配向は、縦配向、横配向、不規則配向のいずれかである。又、かかる高分子繊維系多孔質材料は、100~200℃に融点を有するメルトファイバーで繊維径が2~20デニールのものを適宜混合して、面密度を500~2500g/m に一体に熱成型したものが例示でき、母材層の単位面積流れ抵抗が0.5×10~3.5×10N・sec/m である。 The polymer fiber-based porous material of the matrix layer is mainly made of polyester fibers, and the orientation of this material is either longitudinal orientation, transverse orientation, or irregular orientation. In addition, the polymer fiber-based porous material is a melt fiber having a melting point at 100 to 200 ° C. and one having a fiber diameter of 2 to 20 denier appropriately mixed to have an area density of 500 to 2500 g / m 2 integrally. A heat-molded product is exemplified, and the unit area flow resistance of the base material layer is 0.5 × 10 4 to 3.5 × 10 4 N · sec / m 4 .
 表皮層に用いる不織布は、単繊維の断面形状が円形状あるいは扁平状で等価単繊維径が11~35μm、面密度が50~130g/m であり、裏面にパウダー状あるいは蜘蛛の巣(網目)状などのホットメルト材を予め塗布あるいは転写した一層の不織布とするか、不織布を二枚以上複数枚重ね、熱融着により一層の不織布としたものである。そして、表皮層の単位面積流れ抵抗が、3.5×10~7×10 N・sec/m である。尚、不織布は同種のものは勿論であるが異種のものを用いることも可能である。 The nonwoven fabric used for the skin layer has a cross-sectional shape of single fiber of circular or flat shape, equivalent single fiber diameter is 11 to 35 μm, and area density is 50 to 130 g / m 2 Or a single layer of non-woven fabric which is coated or transferred in advance, or two or more non-woven fabrics are laminated and heat-sealed to form a single-layer non-woven fabric. The unit area flow resistance of the skin layer is 3.5 × 10 5 to 7 × 10 6 N · sec / m 4 . The non-woven fabric is, of course, the same type but it is also possible to use different types.
 ホットメルト材は、目付けが20~120g/m であるポリエステル、ポリエチレン、又はナイロンが選択される。 As the hot melt material, polyester, polyethylene or nylon having a basis weight of 20 to 120 g / m 2 is selected.
 本発明の第2の複合吸音構造体は、更に第1の発明を特徴付けたものであり、高分子材料の不織布からなる表皮層と、高分子繊維系多孔質材料からなる母材層とを、ホットメルト材を介して重ね合わせ、加熱・加圧し、熱融着して一体複合化し、不織布の表皮層が音の入射側に配された複合吸音構造体であって、前記表皮層は、単繊維の断面形状が円形状あるいは扁平状で等価単繊維径が11~35μm、面密度が50~130g/m にあるポリエステル、ポリエチレン、及びナイロンから選ばれた不織布であり、その裏面に目付けが20~120g/mのパウダー状あるいはくもの巣(網目)状としたポリエステル、ポリエチレン、及びナイロンから選ばれたホットメルト材を予め塗布あるいは転写して得られ、単位面積流れ抵抗を3.5×10~7×10 N・sec/m とした表皮層であり、前記母材層は、ポリエステル繊維を主体とした高分子繊維系多孔質材料であり、この多孔質材料の単位面積流れ抵抗が0.5×10~3.5×10N・sec/m である母材層であり、得られた複合体の単位面積流れ抵抗が1×10~7×10N・sec/m となるように調整した複合吸音構造体である。尚、表皮層は、裏面にパウダー状あるいはくもの巣状(網目状)などのホットメルト材を予め塗布あるいは転写した二枚以上の不織布を重ね、熱融着により一体化したものが好ましい。 The second composite sound absorbing structure of the present invention is characterized in that the first invention is further characterized, and it comprises an outer skin layer made of a non-woven fabric of a polymeric material and a matrix layer made of a porous polymer fiber material. A composite sound absorbing structure in which a skin layer of a non-woven fabric is disposed on the incident side of sound, and the skin layer is A non-woven fabric selected from polyester, polyethylene, and nylon with a cross-sectional shape of single fiber of circular or flat shape, equivalent single fiber diameter of 11 to 35 μm, and surface density of 50 to 130 g / m 2. Obtained by applying or transferring in advance a hot melt material selected from powdery or comb-like (network) shape of 20 to 120 g / m 2 and having a unit area flow resistance of 3 .5 × 10 5 to 7 × 10 6 N · sec / m 4, and the matrix layer is a polymeric fiber-based porous material mainly composed of polyester fibers, It is a base material layer having a unit area flow resistance of 0.5 × 10 4 to 3.5 × 10 4 N · sec / m 4 , and a unit area flow resistance of the obtained composite is 1 × 10 4 to 7 × It is a composite sound absorbing structure adjusted to be 10 4 N · sec / m 4 . The skin layer is preferably formed by laminating two or more non-woven fabrics on which a hot melt material such as powdery or comb-like (reticulated) is previously applied or transferred on the back surface and integrated by heat fusion.
 本発明は、例えば表皮層になる不織布を11μm以上の単繊維径で構成し、実用に耐え、軽量化、スペースの狭あい化などのニーズにも応えられる、吸音性能のよいポリエステル繊維系吸音材を実用に供するべく、表皮層、母材層、及び複合構造体のそれぞれの流れ抵抗を最適な吸音体とするために特定したものであり、適用分野においても、建設機械、自動車をはじめ、種々の分野で適用ができ、更に、吸音構造体として、厚さをできるだけ抑えた吸音特性の優れた吸音材を提供できる。 The present invention is, for example, a polyester fiber-based sound absorbing material with good sound absorbing performance, which comprises a non-woven fabric to be a skin layer with a single fiber diameter of 11 μm or more, withstands practical use, and meets needs such as weight reduction and space narrowing. In order to make the flow resistance of each of the skin layer, the base material layer, and the composite structure an optimal sound absorber, and various construction fields, including construction machines and automobiles, in the field of application. The present invention can be applied in the field of (1), and can provide a sound absorbing material excellent in sound absorbing characteristics with a thickness reduced as much as possible.
吸音材Aを剛壁面Pに取り付けた状態を示す概略図である。It is the schematic which shows the state which attached the sound absorbing material A to the rigid wall surface P. FIG. 本発明の複合吸音構造体の第1例を示す斜視図である。It is a perspective view showing the 1st example of the compound sound absorption structure of the present invention. 本発明の複合吸音構造体の第2例を示す斜視図である。(A)同種の不織布を3枚重ねて形成した表皮層を有する複合吸音構造体 (B)異種の不織布を2枚重ねて形成した表皮層を有する複合吸音構造体It is a perspective view which shows the 2nd example of the compound sound absorption structure of this invention. (A) Composite sound absorbing structure having a skin layer formed by stacking three non-woven fabrics of the same kind (B) Composite sound absorbing structure having a skin layer formed by stacking two different non-woven fabrics サンプルA、Bの吸音性能を示すグラフである。It is a graph which shows the sound absorption performance of samples A and B. サンプルA、B、C1の吸音性能を示すグラフである。It is a graph which shows the sound absorption performance of sample A, B, C1. サンプルB、BC、BSの吸音性能を示すグラフである。It is a graph which shows the sound absorption performance of sample B, BC, and BS. サンプルB、C2、Dの吸音性能を示すグラフである。It is a graph which shows the sound absorption performance of sample B, C2, and D. サンプルB、B25-3の吸音性能を示すグラフである。It is a graph which shows the sound absorption performance of sample B, B25-3. サンプルB25-3、B25-2の吸音性能を示すグラフである。It is a graph which shows the sound absorption performance of sample B25-3, B25-2.
 前記したように、表皮層の不織布と母材層との構成からなる吸音材料として、日本国特許第3494332号が既に存在している。しかるに、表皮層を構成する単繊維径は10μm以下、出来れば5μm以下が良いとされている。確かに、繊維径が細いと流れ抵抗が大きくなるので、吸音性能は比較的良くなることは言えるが、実用上は、強度、耐久性、母材層との複合化製造、加工面(シワになりやすいなど)で取り扱いにくいこと、コスト面で問題があるなど、不都合な面が多い。そして、表皮層の不織布をホットメルトで母材層と複合する時に、繊維径が小さいために、目詰まりを起こしやすい。このため、高音域を中心に吸音率が低下する方向になりやすいし、ちょっとしたことで、デ-タが変わりやすいという問題点がある。 As described above, Japanese Patent No. 3494332 has already been present as a sound absorbing material composed of the non-woven fabric of the skin layer and the matrix layer. However, the diameter of the single fiber constituting the skin layer is preferably 10 μm or less, preferably 5 μm or less. Certainly, when the fiber diameter is thin, the flow resistance is increased, so it can be said that the sound absorbing performance is relatively improved, but practically, the strength, the durability, the composite production with the base material layer, the processed surface There are many inconveniences, such as being difficult to handle and difficult to handle, and having problems with cost. When the nonwoven fabric of the skin layer is composited with the base material layer by hot melt, the fiber diameter is small, and clogging easily occurs. For this reason, the sound absorption coefficient tends to decrease in the high tone range, and there is a problem that the data is easily changed by a small amount.
 本発明は、吸音材料として極めて実用性の高い構造体を提供することを目的としたものであり、表皮層の不織布として実用性の面で優れ、入手性のよい、かつ、好ましくはコストの安価な単繊維径が11~35μmのものを用い、母材層との複合時に表面層に特殊な手法を適用することで、吸音特性を大幅に向上でき、より優れた、かつ、安価な複合吸音構造体を提供できたものである。 The present invention is intended to provide a highly practicable structure as a sound absorbing material, and is excellent in practicality as a non-woven fabric of the skin layer, good in availability, and preferably inexpensive. The sound absorption characteristics can be greatly improved by applying a special method to the surface layer when composited with the base material layer, using a single fiber diameter of 11 to 35 μm, and a superior and inexpensive composite sound absorption It is possible to provide a structure.
 即ち、本発明の技術の主要部は、表皮層として、強度、耐久性、加工性、外観がよいなど実用に耐え得る単繊維径が11~35μmで構成される不織布を用い、ポリエステル繊維あるいはそれを主体とした母材との複合の仕方を工夫することで、中低周波数帯域から高周波数帯域まで安定した吸音特性を得ることができるものであり、上記のニーズに応えられる手段を提供することにある。 That is, the main part of the technology of the present invention is a polyester fiber or a nonwoven fabric having a single fiber diameter of 11 to 35 μm which can withstand practical use, such as good strength, durability, processability and appearance as a skin layer. It is possible to obtain stable sound absorption characteristics from middle to low frequency bands to high frequency bands by devising a method of combining with a base material mainly composed of It is in.
 それを実現するために、第1に表皮層の流れ抵抗に注目し、これをコントロールすることが有効であり、好ましくは表皮層と母材の複合構造体の流れ抵抗が1×10~7×10 N・sec/m であり、特に広帯域で優れた吸音性能を引き出すには、複合体としての流れ抵抗が好ましくは2×10~3.5×10N・sec/m になるように調整することが目的を達成するために極めて有効であることの知見を得、本発明に至ったものである。吸音材料として、複合体とした時の流れ抵抗が重要であるが、その場合でも、表皮層で流れ抵抗を調整する方が吸音性能の向上には有効である。 In order to realize that, it is effective to first pay attention to the flow resistance of the skin layer and to control this, preferably the flow resistance of the composite structure of the skin layer and the base material is 1 × 10 4 to 7 × 10 4 is N · sec / m 4, particularly draws excellent sound absorbing performance in a wide band, preferably the flow resistance of the complex 2 × 10 4 ~ 3.5 × 10 4 N · sec / m 4 It has been found that it is extremely effective to achieve the object to achieve the object, and the present invention has been made. As a sound absorbing material, the flow resistance when made into a composite is important, but even in that case, it is more effective to improve the sound absorbing performance by adjusting the flow resistance in the skin layer.
 複合体の流れ抵抗が1×10 N・sec/mより小さい値になると高音域は維持されるが、低音域の吸音性能はかなり低下し、逆に、7×10 N・sec/m より大きな値になると高音域の吸音性能がかなり落ち、いびつな吸音特性を示すようになり易い。そして、好ましくは、2×10~3.5×10N・sec/m になるように調整するのがよく、複合体の流れ抵抗が2×10 N・sec/m未満では低音域の吸音性能がやや低下する傾向があり、3.5×10 N・sec/m を超えると低音域の吸音性能は向上するが、高音域の吸音性能が劣化する傾向が見られる。 When the flow resistance of the composite becomes smaller than 1 × 10 4 N · sec / m 4 , the high range is maintained, but the sound absorption performance in the low range is considerably reduced, conversely, 7 × 10 4 N · sec / When the value is larger than m 4, the sound absorption performance of the high-pitched range is considerably reduced, and it tends to exhibit irregular sound absorption characteristics. And preferably, it is preferable to adjust to 2 × 10 4 to 3.5 × 10 4 N · sec / m 4, and when the flow resistance of the composite is less than 2 × 10 4 N · sec / m 4 There is a tendency for the sound absorption performance in the low range to slightly decrease, and when it exceeds 3.5 × 10 4 N · sec / m 4 , the sound absorption performance in the low range improves but the sound absorption in the high range tends to deteriorate .
 以下、本発明のポイント及び流れ抵抗を調整するための手段を記載する。
(ポイント1)
 発明の構成材料は、主としてポリエステル繊維系の材料であり、新規で、広帯域で優れた吸音性能が発揮され、強度、耐久性、経済性などで実用性が高く、リサイクル性、環境保全、安全性などの観点から選択されたものである。尚、ポリエチレン、ナイロンなど他の高分子繊維系の材料でも同様の効果をあげることが出来る。
In the following, the points of the invention and the means for adjusting the flow resistance are described.
(Point 1)
The constituent material of the invention is mainly a polyester fiber material, which exhibits a novel, wide band and excellent sound absorbing performance, is highly practical in strength, durability, economy and the like, and is recyclable, environmental protection, safety And so on. The same effect can be obtained with other polymer fiber materials such as polyethylene and nylon.
(ポイント2)
 発明の基本構成は、表皮層(スパンボンド不織布)と母材をホットメルト材(ハウダー状、くもの巣状など)を介して、加熱・加圧して、複合した吸音構造体である。
(Point 2)
The basic configuration of the invention is a sound absorbing structure in which a skin layer (spun-bonded non-woven fabric) and a base material are heated and pressed through a hot melt material (hower-like, spider-like, etc.) to form a composite.
(ポイント3)
 表面強度、耐久性、加工・製造のしやすさ、外観性など実用面から、表皮層を構成するスパンボンド不織布は、単繊維径あるいは等価単繊維径が11~35μmのものを用いるもので、15μm前後が特に実用性が高い。繊維径が10μm以下では、細く、母材層との複合の際にしわなどが出やすく、ハンドリングや加工性が良くなく、又、35μmを越えると、不織布にごわごわ感が出てきて、母材層との複合後の剛性が上がり、曲面部などへ沿わせる際に適応性が悪くなってしまう。
(Point 3)
From the practical point of surface strength, durability, easiness of processing and manufacturing, appearance, etc., the spunbonded nonwoven fabric constituting the skin layer is one having a single fiber diameter or an equivalent single fiber diameter of 11 to 35 μm, The practicality is particularly high around 15 μm. If the fiber diameter is 10 μm or less, it is thin, and wrinkles etc. are easily generated when combined with the base material layer, and handling and processability are not good, and if it exceeds 35 μm, the nonwoven fabric feels fluffy and the base material The rigidity after compounding with the layer is increased, and the adaptability becomes worse when being made to follow a curved surface part or the like.
(ポイント4)
 (ポイント3)のスパンボンド不織布を用いると、従来技術では、吸音性能上は不利になるといわれている点を、本発明では次の二つの手段で音の入射側に配する表皮層に手を打ち、母材を含めた複合吸音構造体として流れ抵抗を調整することで解決できることを発見し、その流れ抵抗を好ましくは2×10~3.5×10 N・sec/m 位に調整すれば、広い周波数帯域で優れた吸音特性を有する複合吸音構造体を提供できることを実証した。
(Point 4)
In the prior art, it is said that the use of the spunbond nonwoven fabric of (point 3) is disadvantageous in terms of sound absorption performance in the prior art, and the present invention uses the following two means to the skin layer disposed on the sound incident side We found that it can be solved by adjusting the flow resistance as a composite sound absorbing structure including a base material, and the flow resistance is preferably set to 2 × 10 4 to 3.5 × 10 4 N · sec / m 4 . By adjusting, it has been demonstrated that a composite sound absorbing structure having excellent sound absorbing properties in a wide frequency band can be provided.
 流れ抵抗の調整手段1
 表皮層としてスパンボンド不織布一枚の裏に、目付け(単位面積あたりの重量)が20~120g/mの高分子系ホットメルト材を塗布あるいは転写して、母材層の上に配し、加熱・加圧し、一体化した複合後の流れ抵抗が所望の値になるように調整する。
Flow resistance adjustment means 1
As a skin layer, a polymeric hot melt material with a basis weight (weight per unit area) of 20 to 120 g / m 2 is applied or transferred to the back of one spun bond nonwoven fabric and disposed on the base material layer, Heat and pressure are adjusted to adjust the integrated combined flow resistance to a desired value.
 流れ抵抗の調整手段2
 表皮層としてスパンボンド不織布を二枚以上複数枚重ね、母材層の上に配し、加熱・加圧し、一体化した複合後の流れ抵抗が所望の値になるように調整する。
 複数枚のスパンボンド不織布は同じ仕様のものでも良いし、異なった仕様のものを組み合わせても良い。例えば、二枚でも、表皮層の一番上のスパンボンド不織布を繊維の断面が円形状のもの(面密度100g/m、単繊維径15μm)とし、第二層目のスパンボンド不織布を繊維の断面を扁平状(面密度90g/m 、等価単繊維径14.5μm)とした二枚の異なったスパンボンド不織布を母材に重ね、加熱・加圧し、複合したものであり、流れ抵抗が2.7×10N・sec/m である複合吸音構造体にすれば、広い周波数帯域で優れた吸音性能が得られる。尚、表皮層として複数枚の不織布を用いる場合、表皮層以外の不織布として本発明で特定される以外の繊維径を用いることができることは勿論である。
Flow resistance adjustment means 2
Two or more spun bond non-woven fabrics are laminated as a skin layer, placed on a base material layer, heated and pressed, and integrated so that the flow resistance after combined becomes a desired value.
The plurality of spunbonded nonwoven fabrics may have the same specifications or may have different specifications in combination. For example, the number of two spunbond nonwoven fabrics on the top of the skin layer is a fiber whose cross section is circular (area density 100 g / m 2 , single fiber diameter 15 μm), and the second spunbond nonwoven fabric is a fiber Two different spunbond non-woven fabrics having a flat cross section (area density 90 g / m 2 , equivalent single fiber diameter 14.5 μm) superimposed on a base material, heated and pressed, and composited; If the composite sound absorbing structure has a value of 2.7 × 10 4 N · sec / m 4 , excellent sound absorbing performance can be obtained in a wide frequency band. In addition, when using multiple sheets of nonwoven fabric as a skin layer, it is needless to say that fiber diameters other than those specified in the present invention can be used as nonwoven fabrics other than the skin layer.
 図1は、多孔質材料からなる吸音材Aを剛壁面Pに取り付けた状態を示す。1は表皮層、2は母材層、3は両者を一体化するためのホットメルト材を示すものである。図1の左側(表皮層1側)より音波が入射すると、空気粒子の速度は剛壁面Pで0、剛壁面Pから左にc/4f(c:空気中の音速(cm/sec)、f:入射音波の周波数は[Hz])離れた位置で最大となる。しかるに、騒音で実際に問題になる500~2000Hzの帯域では、40mm以上のところで空気粒子の速度は最大になるので、厚さが40mm位までは表皮層1で流れ抵抗を調整した方が、粘性抵抗により、音響反射エネルギーから熱エネルギーヘの変換効率が高くなり、効率よく、吸音性能を高めることができることとなる。 FIG. 1 shows a state in which a sound absorbing material A made of a porous material is attached to a hard wall surface P. As shown in FIG. Reference numeral 1 denotes a skin layer, 2 denotes a base material layer, and 3 denotes a hot melt material for integrating the two. When sound waves are incident from the left side (skin layer 1 side) of FIG. 1, the velocity of the air particle is 0 at the hard wall P and c / 4f (c: sound velocity in air (cm / sec), f from the hard wall P to the left) : The frequency of the incident sound wave is maximum at a distant position [Hz]). However, in the 500 to 2000 Hz band, where noise is a real problem, the velocity of the air particles is maximum at 40 mm or more, so adjusting the flow resistance with the skin layer 1 up to about 40 mm thick is more viscous By the resistance, the conversion efficiency from acoustic reflection energy to heat energy becomes high, and the sound absorption performance can be efficiently enhanced.
 この表皮層1の流れ抵抗をコントロールする方法の本発明の一つが、図2に示す吸音材であって、表皮層1に用いる一層の不織布、即ち、単繊維の断面形状が円形状あるいは扁平状で、等価単繊維径が11~35μm、面密度が50~130g/m、より好ましくは80~100g/m であり、その裏面に、パウダー状あるいはくもの巣状(網目状)などのホットメルト材3を予め塗布あるいは転写し、表皮層としての流れ抵抗が3.5×10~7×10 N・sec/m となるような組み合わせである。 One of the methods of controlling the flow resistance of the skin layer 1 according to the present invention is a sound absorbing material shown in FIG. 2, which is a single layer non-woven fabric used for the skin layer 1, that is, the cross section of single fiber is circular or flat. With an equivalent single fiber diameter of 11 to 35 μm and a surface density of 50 to 130 g / m 2 , more preferably 80 to 100 g / m 2 , such as powdery or comb-like (reticulated) The hot melt material 3 is previously applied or transferred, and the flow resistance as the skin layer is a combination such that 3.5 × 10 5 to 7 × 10 6 N · sec / m 4 .
 母材層2は、ポリエステル繊維を主体とする不織布であり、流れ抵抗が0.5×10~3.5×10 N・sec/m である。 The base material layer 2 is a non-woven fabric mainly composed of polyester fibers, and has a flow resistance of 0.5 × 10 4 to 3.5 × 10 4 N · sec / m 4 .
 例えば、不織布の裏面に、パウダー状あるいはくもの巣(網目)状などのホットメルト材を予め塗布あるいは転写するが、この塗布あるいは転写量は、目付け20~120g/mで流れ抵抗を調整することとなる。 For example, a hot melt material such as powdery or comb-like (mesh) shape is applied or transferred in advance to the back surface of the non-woven fabric, and the application or transfer amount is adjusted with a fabric weight of 20 to 120 g / m 2 It will be.
 本実施形態は、表皮層1及び母材層2をホットメルト材3を介して重ね、加熱・加圧し、両者を熱融着して一体複合化し、複合体としての流れ抵抗が1×10~7×10 N・sec/m になるようにした吸音構造体である。尚、広い周波数域の吸音性能を出すためには、上記流れ抵抗が2×10~3.5×10N・sec/m となるように調整すればよい。 In the present embodiment, the skin layer 1 and the base material layer 2 are stacked via the hot melt material 3, heated and pressed, and the two are thermally fused to form an integral composite, and the flow resistance as a composite is 1 × 10 4 It is a sound absorbing structure set to 7 to 10 × 10 4 N · sec / m 4 . In order to obtain sound absorption performance in a wide frequency range, the flow resistance may be adjusted to 2 × 10 4 to 3.5 × 10 4 N · sec / m 4 .
 又、表皮層の流れ抵抗をコントロールする方法の本発明のもう一つが、図3に示すように、流れ抵抗が0.5×10~3.5×10N ・sec/m である高分子繊維系多孔質材料からなる母材層2と、単繊維の断面形状が円形状あるいは扁平状で等価単繊維径が11~35μm、面密度が50~130g/mの不織布1の裏面に、パウダーあるいはくもの巣(網目)状などのホットメルト材を予め塗布あるいは転写し、二枚以上複数枚(図3(A)に示す例では図2にて説明した不織布と同じものを3枚(1a、1b、1c))重ね、熱融着により複層一体化した場合の表皮層1の流れ抵抗が3.5×10~7×10 N・sec/m となるように調整した不織布である。そして、両者を重ね、加熱・加圧し、熱融着一体複合化し、複合体としての流れ抵抗が1×10~7×10N・sec/m になるようにして、吸音率を高めた吸音構造体である。勿論、本実施形態も、表面層1を音の入射側に配して用いるものである。 In addition, another method of controlling the flow resistance of the skin layer is, as shown in FIG. 3, a flow resistance of 0.5 × 10 4 to 3.5 × 10 4 N · sec / m 4 . The back surface of a base material layer 2 made of a polymer fiber-based porous material and a non-woven fabric 1 having a single fiber with a circular or flat cross section and an equivalent single fiber diameter of 11 to 35 μm and a surface density of 50 to 130 g / m 2 2 or more sheets (in the example shown in FIG. 3 (A), the same non-woven fabric as described in FIG. 2 is used). The flow resistance of the skin layer 1 is 3.5 × 10 5 to 7 × 10 6 N · sec / m 4 when the sheets (1a, 1b, 1c) are stacked and integrated by heat fusion into multiple layers. It is a non-woven fabric adjusted. Then, the two are stacked, heated and pressurized, and heat fusion integrated into a composite, so that the flow resistance as the composite is 1 × 10 4 to 7 × 10 4 N · sec / m 4 to increase the sound absorption coefficient. Sound absorption structure. Of course, also in the present embodiment, the surface layer 1 is used on the sound incident side.
 尚、表皮層1は異種の不織布を用いることも可能であり、図3(B)に示す複合体は、表面側は図2にて説明した不織布と同じもの1aを用い、二枚目の不織布1dとして断面が扁平形状で、その等価単繊維径11~35μm、面密度50~130g/m のものを用い、裏面に同様のホットメルト処理を施したものを用いた例である。 In addition, it is also possible to use different types of non-woven fabrics as the skin layer 1, and the composite shown in FIG. 3B uses the same non-woven fabric 1a as the non-woven fabric described in FIG. As an example 1d, one having a flat cross section, an equivalent single fiber diameter of 11 to 35 μm, and an area density of 50 to 130 g / m 2 and using the same hot melt treatment on the back surface is used.
 尚、いずれの方法にあっても、母材に密度勾配がある場合には、密度の高い面に、表皮層を適用した方がより高い吸音性能を得ることができるのも新しい発見である。又、実際の使用に当たっては、雨水等の浸入を防ぐために、周囲側面を不織布にて囲うことができることは言うまでもなく、この場合、ホットメルトフィルム等を介して加熱・加圧し、額縁のように仕上げてもよく、あるいはホットメルトフィルムの代わりに、両面接着シ-トを用いてもよい。 In any of the methods, it is a new discovery that higher sound absorbing performance can be obtained by applying the skin layer to the surface having high density when there is a density gradient in the base material. Also, in actual use, it goes without saying that the surrounding side can be surrounded with a non-woven fabric in order to prevent the infiltration of rain water etc. In this case, heating and pressing through a hot melt film etc. A double-sided adhesive sheet may be used instead of the hot melt film.
(吸音試験1)
 主として本発明の複合吸音構造体の吸音性能が有効であることを証明する。
(Sound absorption test 1)
It proves mainly that the sound absorption performance of the composite sound absorption structure of the present invention is effective.
 ポリエステル繊維で構成された母材層2(かさ密度44kg/m 、厚さ35mm、流れ抵抗1×10 N・sec/m )のみで構成された吸音構造体Aと、本発明品として、単繊維径が約15μmのポリエステル繊維系で構成されたスパンボンド不織布(面密度100g/m)1を用い、この裏面にパウダー状ホットメルト材(目付け20g/m )を塗布し、同上の母材層2とを重ね、加熱・加圧し、一体化した複合吸音構造体B(流れ抵抗1.5×10N・sec/m )とを比較して示した。 Sound absorbing structure A composed only of matrix layer 2 (bulk density 44 kg / m 3 , thickness 35 mm, flow resistance 1 × 10 4 N · sec / m 4 ) composed of polyester fiber, and the product of the present invention Using a spunbond non-woven fabric (area density 100 g / m 2 ) 1 composed of a polyester fiber system having a single fiber diameter of about 15 μm, and applying a powdery hot melt material (20 g / m 2 basis weight) on the back side; The composite sound absorbing structure B (flow resistance: 1.5 × 10 4 N · sec / m 4 ) is shown in comparison with the base material layer 2 of (1) by overlapping, heating and pressurizing, and integrated.
 図4は上記の二つのサンプルA、Bの吸音性能を示すグラフである。
 本発明品Bにあって、単繊維径が15μmという実用上十分な繊維太さのポリエステル繊維系不織布を用いた場合でも、これを適切に処理し、かつ、適当な母材層2と複合化すれば、大きく吸音性能を出すことが可能であることを証明している。
 この吸音性能は、例えば、標準的に吸音材として使われているグラスウール(かさ密度32kg/m、厚さ40~50mm)に匹敵する。尚、吸音性能は、垂直入射法(ISO 10543・2)で計測したもので示した。
FIG. 4 is a graph showing the sound absorption performance of the two samples A and B described above.
Even in the case of the product B of the present invention, even when using a polyester fiber non-woven fabric having a fiber thickness of 15 μm which is practically sufficient for single fiber diameter, it is appropriately treated and composited with an appropriate matrix layer 2 It proves that it is possible to obtain a large sound absorption performance if it is done.
This sound absorbing performance is, for example, comparable to glass wool (bulk density 32 kg / m 3 , thickness 40 to 50 mm) which is normally used as a sound absorbing material. The sound absorption performance is shown by the measurement by the normal incidence method (ISO 10543 · 2).
 図5では、図4のサンプルBのパウダー状のホットメルト材を2倍に増量(目付け40g/m)した一枚とサンプルAの母材とを複合し、その複合体の流れ抵抗を3.2×10 N・sec/mとした複合吸音構造体C1の吸音性能を比較して示しているが、サンプルAより、さらに中低周波数帯域の吸音性能が大幅に向上していることがわかる。 In FIG. 5, the powdery hot-melt material of sample B shown in FIG. 4 is doubled in weight (40 g / m 2 basis weight) and one sample of sample A is composited, and the flow resistance of the composite is 3 The sound absorption performance of the composite sound absorption structure C1 with 2 × 10 4 N · sec / m 4 is shown by comparison, but the sound absorption performance in the middle and low frequency bands is significantly improved compared to Sample A. I understand.
 このように、単繊維径が15μmのポリエステル繊維系スパンボンド不織布1を用いても、その裏面のホットメルト材の塗布量で複合吸音構造体としての流れ抵抗を3×10N・sec/m 前後に調整すれば、広い周波数帯域で優れた吸音特性を得ることが出来る。勿論、更に流れ抵抗を上げれば、低周波数側にシフトすることも可能である。このように、本発明は極めて実用性があり、なおかつ優れた吸音性能が得られる本発明の優位性、更には自在性・適用性を実証するものである。 As described above, even if the polyester fiber spunbond non-woven fabric 1 having a single fiber diameter of 15 μm is used, the flow resistance of the composite sound absorbing structure is 3 × 10 4 N · sec / m by the application amount of the hot melt material on the back surface. By adjusting to around 4 , excellent sound absorption characteristics can be obtained in a wide frequency band. Of course, if the flow resistance is further increased, it is also possible to shift to the low frequency side. Thus, the present invention demonstrates the superiority, flexibility, and applicability of the present invention which is extremely practical and still provides excellent sound absorption performance.
(吸音試験2)
 主として、音の入射側に一番近い表皮層1を二枚以上複数枚重ね、加熱・加圧して一体化した複合吸音構造体の吸音性能が有効であることを証明する。
(Sound absorption test 2)
It is mainly proved that the sound absorbing performance of the composite sound absorbing structure in which two or more skin layers 1 closest to the sound incident side are stacked and integrated by heating and pressing is effective.
 図4のサンプルBよりも、更に高周波数帯域の吸音性能を維持しつつ、中低周波数帯域の吸音性能を向上させるには、複合吸音構造体の流れ抵抗を調整することになるが、図6は、殆ど同じ流れ抵抗でも母材層2の中間にスパンボンド不織布1(サンプルBの表皮層1と同じもので、ホットメルト処理も同じ)を挿入することよりも、表皮層1と母材層2との間に挿入し、表皮層1の流れ抵抗を増大させた方が有効であることを示している。 In order to improve the sound absorption performance in the middle and low frequency bands while maintaining the sound absorption performance in the high frequency band further than the sample B in FIG. 4, the flow resistance of the composite sound absorption structure is adjusted. The skin layer 1 and the base material layer are more than inserting the spunbond non-woven fabric 1 (the same as the skin layer 1 of sample B and the same hot melt treatment) in the middle of the base material layer 2 even with almost the same flow resistance. It is shown that it is more effective to insert between the two and increase the flow resistance of the skin layer 1.
 図6中、サンプルBCは、サンプルBの母材中央部に表皮層と同じスパンボンド不織布を挿入した複合吸音構造体であり、複合体の流れ抵抗は2.0×10 N・sec/m であった。又、サンプルBSは、サンプルBの表面層と母材との間に、表皮層と同じスパンボンド不織布を挿入し、二枚重ねた複合吸音構造体であり、その複合体の流れ抵抗は2.2×10N・sec/m であった。 In FIG. 6, sample BC is a composite sound absorbing structure in which the same spunbond nonwoven fabric as the skin layer is inserted in the center of the base material of sample B, and the flow resistance of the composite is 2.0 × 10 4 N · sec / m It was four . Sample BS is a composite sound absorbing structure in which the same spunbond non-woven fabric as the skin layer is inserted between the surface layer of sample B and the base material, and the two sheets are laminated, and the flow resistance of the composite is 2.2 × It was 10 4 N · sec / m 4 .
(吸音試験3)
 更に、本発明の有効性を図7に示す。図4に示したサンプルBの広い周波数帯域の吸音特性を向上させるのに、サンプルBの表皮層1のスパンボンド不織布と母材層2との間に、同じスパンボンド不織布(裏面のホットメルト処理も同じ)を二枚挿入して重ね、加熱・加圧して複合吸音構造体C2とし、その流れ抵抗を2.9×10 N・sec/m としたものであるが、サンプルBよりさらに吸音性能が広い周波数帯域で飛躍的に向上していることが分かり、本発明の方法の有効性が実証されている。
(Sound absorption test 3)
Further, the effectiveness of the present invention is illustrated in FIG. The same spunbonded nonwoven fabric between the spunbonded nonwoven fabric and the base material layer 2 of the skin layer 1 of the sample B (hot-melt treatment on the back surface) to improve the sound absorption characteristics of the wide frequency band of the sample B shown in FIG. The same applies to two sheets inserted and stacked, heated and pressurized to form a composite sound absorbing structure C2, and its flow resistance is set to 2.9 × 10 4 N · sec / m 4. It can be seen that the sound absorption performance is dramatically improved in a wide frequency band, demonstrating the effectiveness of the method of the present invention.
 又、複合吸音構造体Dは、同じスパンボンド不織布を四枚挿入し、複合吸音体としての流れ抵抗を3.9×10 N・sec/m としたもので、400Hz前後の帯域の吸音性能は向上しているが、630Hz以上の帯域の吸音率は低下する傾向が見られる。 Also, the composite sound absorbing structure D is a structure in which four sheets of the same spunbond non-woven fabric are inserted and the flow resistance as the composite sound absorber is 3.9 × 10 4 N · sec / m 4. Although the performance is improved, the sound absorption coefficient in the band of 630 Hz or higher tends to decrease.
 従って、実用的な複合吸音構造体としての流れ抵抗の調整範囲は、1×10~7×10 N・sec/m であり、広帯域に吸音性能を向上させるには、2×10~3.5×10N・sec/m が望ましい。しかし、特定の周波数、例えば400Hz以下あるいは2kHz以上などの吸音性能を向上させるには、流れ抵抗1×10~7×10N・sec/m の範囲で調整すればよい。即ち、低周波数の吸音性能を向上させる場合には流れ抵抗を大きく、高周波数の吸音性能を向上させる場合は流れ抵抗を小さくすることとなる。このことは先に述べたもう一つの方法でも同じことが言える。いずれにしても本発明の二つの手法で、適切な母材を選択し、後は、表皮層で、複合吸音構造体の流れ抵抗を調整し、適切な吸音性能を有する吸音材を提供できることとなった。 Therefore, the adjustment range of the flow resistance as a practical composite sound absorbing structure is 1 × 10 4 to 7 × 10 4 N · sec / m 4 , and 2 × 10 4 to improve sound absorbing performance in a wide band. It is desirable that the value be 3.5 to 10 4 N · sec / m 4 . However, in order to improve the sound absorption performance at a specific frequency, for example, 400 Hz or less or 2 kHz or more, the flow resistance may be adjusted in the range of 1 × 10 4 to 7 × 10 4 N · sec / m 4 . That is, the flow resistance is increased to improve the low frequency sound absorption performance, and the flow resistance is decreased to improve the high frequency sound absorption performance. This is true of the other method described above. In any case, with the two methods of the present invention, an appropriate base material can be selected, and thereafter, the skin layer can adjust the flow resistance of the composite sound absorbing structure to provide a sound absorbing material having appropriate sound absorbing performance. became.
(吸音試験4)
 吸音試験1では、本発明の表皮層を形成するスパンボンド不織布一枚の裏面に母材と複合するためのホットメルト材の塗布量で流れ抵抗を調整してなる複合吸音構造体とし、吸音試験2及び3では、表皮層を形成するスパンボンド不織布(裏面はホットメルト材を塗布)を二枚以上複数枚を母材に重ね、流れ抵抗を調整してなる複合吸音構造体としたが、いずれも複合吸音構造体としての流れ抵抗を特に2×10~3.5×10 N・sec/m に調整すれば、低周波数帯域~高周波数帯域まで広い帯域で優れた吸音性能が得られることを明らかにした。このことは、図8に示すように、標準的に使われているグラスウール(かさ密度32kg/m、厚さ40~50mm)に匹敵する本発明の一例であるサンプルBでも、本発明で提案した手法の一つを適用して表皮層を同じスパンボンド不織布三枚をサンプルBと同じ母材(厚さ25mm)上に重ねて得た複合吸音構造体サンプルB25-3(流れ抵抗2.6×10N・sec/m )と同等以上の吸音性能を出せることになり、本発明の大きな利点を示すものといえる。これは、スペースファクターのよい吸音材を提供できることになり、社会のニーズにも応えることになる。
(Sound absorption test 4)
In the sound absorption test 1, a composite sound absorption structure is formed by adjusting the flow resistance with the application amount of the hot melt material for compounding with the base material on the back surface of one spun bond nonwoven fabric forming the skin layer of the present invention In 2 and 3, two or more spunbond non-woven fabrics (on the back surface coated with a hot melt material) that form the skin layer are laminated on the base material to form a composite sound absorbing structure with flow resistance adjusted. In particular, if the flow resistance of the composite sound absorbing structure is adjusted to 2 × 10 4 to 3.5 × 10 4 N · sec / m 4 , excellent sound absorbing performance can be obtained in a wide range from low frequency band to high frequency band. Revealed that This is because, as shown in FIG. 8, the sample B according to the present invention, which is an example of the present invention, is comparable to the commonly used glass wool (bulk density 32 kg / m 3 , thickness 40 to 50 mm). Composite sound absorbing structure sample B25-3 (flow resistance 2.6) obtained by overlapping the skin layer with three same spunbond nonwoven fabrics on the same base material (thickness 25 mm) as sample B by applying one of the methods described above Sound absorption performance equal to or higher than 10 4 N · sec / m 4 ) can be obtained, which can be said to show a great advantage of the present invention. This will be able to provide sound absorbing materials with a good space factor, and will also meet the needs of society.
(吸音試験5)
 表皮層のスパンボンド不織布として、表皮一枚目に図8のサンプルB25-3と同じもの(面密度:100g/m、単繊維径:円形状15μm)、二枚目に異なった仕様のスパンボンド不織布(面密度:90g/m 、等価単繊維径:扁平形状14.5μm)を重ね、この二枚のスパンボンド不織布と、サンプルB25-3と同じ母材とで複合吸音構造体B25-2を形成した。図9に示すように、サンプルB25-3、サンプルB25-2の複合吸音構造体としての流れ抵抗は前者が2.6×10N・sec/m に調整してあるのに対して、後者もほぼ同じ2.7×10 N・sec/m に調整してあることにより、両者はほぼ同じ吸音性能(後者がやや上回っている)が得られ、表皮層として異種のスパンボンド不織布を組み合わせることで二枚のスパンボンド不織布でもサンプルB25-3をさらに上回る吸音材を提供できるのである。このことは実用面での強度、広い周波数帯域での吸音性能に優れるだけでなく、経済性でも貢献している。
 本発明で用いる材料は、表皮層、母材とも標準的にはポリエステル繊維系を用いるので、リサイクル性、環境性にも優れている。
(Sound absorption test 5)
The same spunbond nonwoven fabric of the skin layer as sample B25-3 shown in FIG. 8 on the first skin (area density: 100 g / m 2 , single fiber diameter: circular 15 μm), span of a specification different from the second sheet A composite non-woven fabric (surface density: 90 g / m 2 , equivalent single fiber diameter: flat shape 14.5 μm) is stacked, and a composite sound absorbing structure B 25-is formed of the two spun bond non-woven fabrics and the same base material as sample B 25-3. 2 was formed. As shown in FIG. 9, the flow resistance of the sample B25-3 and the sample B25-2 as a composite sound absorbing structure is adjusted to 2.6 × 10 4 N · sec / m 4 as the former, By adjusting the latter to approximately the same 2.7 × 10 4 N · sec / m 4 , the two can obtain approximately the same sound absorption performance (the latter slightly exceeds), and different spunbond nonwoven fabrics as the skin layer By combining the two, it is possible to provide a sound absorbing material which is even more superior to the sample B25-3 even with two spunbonded nonwoven fabrics. This not only excels in practical strength and sound absorption performance in a wide frequency band, but also contributes to economy.
The material used in the present invention is excellent in recyclability and environment because both the skin layer and the base material use a polyester fiber system as a standard.
 本発明は、従来の多孔質吸音材に比べて、厚さは薄くて、広帯域で高い吸音性能を有する実用性の高い吸音材を提供することが出来る。また、本発明の複合吸音構造体は軽量化、リサイクル性、経済性、環境保全性などの面でも優性の高いものであり、汎用性も高いので、建築機械、農業機械、空圧機械など産業分野、鉄道、道路、各種工事など土木分野、建築分野、家電分野など幅広い分野で利用できる。 The present invention can provide a highly practical sound absorbing material having a thin thickness, a wide band, and high sound absorbing performance as compared with the conventional porous sound absorbing material. In addition, the composite sound absorbing structure of the present invention is superior in weight reduction, recyclability, economy, environmental conservation, etc., and has high versatility, so it can be used in construction machinery, agricultural machinery, pneumatic machinery and other industries. It can be used in a wide range of fields, including civil engineering, such as fields, railways, roads, and various construction works, construction fields, and home appliances.

Claims (17)

  1.  高分子材料の不織布を1層以上重ねた表皮層と、高分子繊維系多孔質材料を主体とする母材層を、複合一体化したことを特徴とする複合吸音構造体。 What is claimed is: 1. A composite sound absorbing structure comprising: a skin layer in which one or more non-woven layers of a polymeric material are laminated; and a matrix layer mainly composed of a porous polymer fiber material.
  2.  表皮層に用いる不織布の高分子材料が、ポリエステル、ポリエチレン、又はナイロンである請求項1記載の複合吸音構造体。 The composite sound absorbing structure according to claim 1, wherein the non-woven polymeric material used for the skin layer is polyester, polyethylene or nylon.
  3.  母材層の高分子繊維系多孔質材料が、ポリエステル繊維である請求項1記載の複合吸音構造体。 The composite sound absorbing structure according to claim 1, wherein the porous polymer fiber material of the matrix layer is a polyester fiber.
  4.  母材層の高分子繊維系多孔質材料の配向は、縦配向、横配向、又は、不規則配向のいずれかである請求項1記載の複合吸音構造体。 The composite sound absorbing structure according to claim 1, wherein the orientation of the polymeric fiber-based porous material of the matrix layer is any of longitudinal orientation, transverse orientation, or random orientation.
  5.  母材層は、ポリエステル繊維を主体として、100~200℃に融点を有するメルトファイバーで繊維径が2~20デニールのものを適宜混合して、面密度を500~2500g/mに一体に熱成型したものである請求項1記載の複合吸音構造体。 The base material layer is composed mainly of polyester fiber, melt fiber having a melting point at 100 to 200 ° C. and appropriately mixed one having a fiber diameter of 2 to 20 denier to have an area density of 500 to 2500 g / m 2 integrally. The composite sound absorbing structure according to claim 1, which is molded.
  6.  母材層の単位面積流れ抵抗が、0.5×10~3.5×10N・sec/m である請求項1記載の複合吸音構造体。 The composite sound absorbing structure according to claim 1, wherein the unit area flow resistance of the base material layer is 0.5 × 10 4 to 3.5 × 10 4 N · sec / m 4 .
  7.  表皮層に用いる不織布は、単繊維の断面形状が円形状あるいは扁平状で、等価単繊維径が11~35μm、面密度が50~130g/m である請求項1記載の複合吸音構造体。 The composite sound absorbing structure according to claim 1, wherein the cross-sectional shape of the single fiber of the non-woven fabric used for the skin layer is circular or flat, the equivalent single fiber diameter is 11 to 35 μm, and the surface density is 50 to 130 g / m 2 .
  8.  表皮層が、裏面にパウダー状、蜘蛛の巣状、又は網目状のホットメルト材を予め塗布あるいは転写した一層の不織布である請求項1記載の複合吸音構造体。 The composite sound absorbing structure according to claim 1, wherein the skin layer is a single layer non-woven fabric in which a powdery, honeycomb or network hot melt material is previously applied or transferred on the back surface.
  9.  表皮層が、裏面にパウダー状、蜘蛛の巣状、又は網目状のホットメルト材を予め塗布あるいは転写した一層の不織布である請求項7記載の複合吸音構造体。 8. The composite sound absorbing structure according to claim 7, wherein the outer skin layer is a single layer non-woven fabric having a powdery, comb-like or reticulated hot melt material applied or transferred on the back side in advance.
  10.  表皮層が、裏面にパウダー状、くもの巣状、又は網目状のホットメルト材を予め塗布あるいは転写した不織布を二枚以上複数枚重ね、熱融着したものである請求項1記載の複合吸音構造体。 The composite sound absorption according to claim 1, wherein the skin layer is formed by laminating two or more sheets of non-woven fabric on the back surface of which a powder-like, spider-like or network-like hot melt material is applied or transferred in advance. Structure.
  11.  表皮層が、裏面にパウダー状、くもの巣状、又は網目状のホットメルト材を予め塗布あるいは転写した不織布を二枚以上複数枚重ね、熱融着したものである請求項7記載の複合吸音構造体。 The composite sound absorption according to claim 7, wherein the skin layer is formed by laminating two or more sheets of non-woven fabric on the back surface of which a powder-like, spider-like or network-like hot melt material is previously applied or transferred. Structure.
  12.  表皮層が、異種又は同種の不織布を用いたものである請求項11記載の複合吸音構造体。 The composite sound absorbing structure according to claim 11, wherein the skin layer is a nonwoven fabric of different or the same kind.
  13.  表皮層の単位面積流れ抵抗が、3.5×10~7×10N・sec/m である請求項1記載の複合吸音構造体。 The composite sound absorbing structure according to claim 1, wherein the unit area flow resistance of the skin layer is 3.5 × 10 5 to 7 × 10 6 N · sec / m 4 .
  14.  表皮層と母材層を複合一体化するホットメルト材として、目付けが20~120g/mであるポリエステル、ポリエチレン、又はナイロンを用いる請求項1記載の複合吸音構造体。 The composite sound absorbing structure according to claim 1, wherein polyester, polyethylene or nylon having a basis weight of 20 to 120 g / m 2 is used as a hot melt material for combining and integrating the skin layer and the base material layer.
  15.  表皮層と母材層との複合体の単位面積流れ抵抗が、1×10~7×10N・sec/m である請求項1記載の複合吸音構造体。 The composite sound absorbing structure according to claim 1, wherein the unit area flow resistance of the composite of the skin layer and the base material layer is 1 × 10 4 to 7 × 10 4 N · sec / m 4 .
  16.  高分子材料の不織布からなる表皮層と、高分子繊維系多孔質材料からなる母材層とを、ホットメルト材を介して重ね合わせ、加熱・加圧し、熱融着して一体複合化し、不織布の表皮層が音の入射側に配される複合吸音構造体であって、
     前記表皮層は、単繊維の形状が円形状あるいは扁平状で等価単繊維径が11~35μm、面密度が50~130g/m にあるポリエステル、ポリエチレン、及びナイロンから選ばれた不織布であり、その裏面に、目付けが20~120g/mのパウダー状、蜘蛛の巣状、又は網目状としたポリエステル、ポリエチレン、及びナイロンから選ばれたホットメルト材を予め塗布あるいは転写して得られ、単位面積流れ抵抗が3.5×10~7×10 N・sec/m である表皮層であり、
     前記母材層は、ポリエステル繊維を主体とした高分子繊維系多孔質材料であり、この多孔質材料の単位面積流れ抵抗が0.5×10~3.5×10 N・sec/m である母材層であり、
     得られた複合体の単位面積流れ抵抗が1×10~7×10N・sec/m となるように調整したことを特徴とする複合吸音構造体。
    A skin layer made of a non-woven material of a polymer material and a matrix layer made of a porous material of a polymer fiber are superposed via a hot melt material, heated and pressed, and heat-fused to form an integral composite, non-woven fabric A composite sound absorbing structure in which the skin layer of the air conditioner is disposed on the sound incident side,
    The skin layer is a non-woven fabric selected from polyester, polyethylene, and nylon in which the shape of the single fiber is circular or flat and the equivalent single fiber diameter is 11 to 35 μm, and the surface density is 50 to 130 g / m 2 . Obtained by coating or transferring in advance a hot melt material selected from polyester, polyethylene, and nylon in the form of powder, web or net shape with a basis weight of 20 to 120 g / m 2 on the back surface, A skin layer with an area flow resistance of 3.5 × 10 5 to 7 × 10 6 N · sec / m 4 ,
    The matrix layer is a polymer fiber based porous material mainly made of polyester fiber, and the unit area flow resistance of this porous material is 0.5 × 10 4 to 3.5 × 10 4 N · sec / m. It is a matrix layer which is 4
    A composite sound absorbing structure characterized in that the unit area flow resistance of the obtained composite is adjusted to 1 × 10 4 to 7 × 10 4 N · sec / m 4 .
  17.  表皮層が、裏面にパウダー状、くもの巣状、又は網目状のホットメルト材を予め塗布あるいは転写した二枚以上の不織布を重ね、熱融着により一体化した表皮層である請求項16記載の複合吸音構造体。 The skin layer is a skin layer in which two or more non-woven fabrics on which a powder, spider web or mesh hot melt material is previously applied or transferred on the back surface are laminated and integrated by heat fusion. Complex sound absorption structure.
PCT/JP2009/057058 2008-04-10 2009-04-06 Sound-absorbing composite structure WO2009125742A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010507233A JP5501959B2 (en) 2008-04-10 2009-04-06 Composite sound absorbing structure
CN200980112651.7A CN101999145B (en) 2008-04-10 2009-04-06 Sound-absorbing composite structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-102806 2008-04-10
JP2008102806 2008-04-10

Publications (1)

Publication Number Publication Date
WO2009125742A1 true WO2009125742A1 (en) 2009-10-15

Family

ID=41161875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057058 WO2009125742A1 (en) 2008-04-10 2009-04-06 Sound-absorbing composite structure

Country Status (3)

Country Link
JP (1) JP5501959B2 (en)
CN (1) CN101999145B (en)
WO (1) WO2009125742A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241550A (en) * 2010-05-14 2011-12-01 Railway Technical Research Institute Track surface sound absorption structure and method of molding multi-layer sound absorption material used for the same
EP2754967A1 (en) * 2013-01-11 2014-07-16 Miele & Cie. KG Extractor hood
JP2014529524A (en) * 2011-08-25 2014-11-13 サン−ゴバンアドフォル Wall covering for thermal and acoustic comfort
EP3203467A4 (en) * 2014-09-30 2018-06-13 Compagnie Générale des Etablissements Michelin Sound absorbing body
JP2019516890A (en) * 2016-05-13 2019-06-20 リアヴェル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトLIAVER GmbH & CO. KG Sound absorption equipment and soundproof room
CN109949787B (en) * 2019-03-29 2024-04-30 保定市宏腾科技有限公司 PET sound absorbing cotton and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013006984B4 (en) * 2013-04-26 2022-03-10 Autonetworks Technologies, Ltd. Wiring equipped with a soundproofing material
DE102017126506A1 (en) * 2017-11-11 2019-05-16 Liaver Gmbh & Co. Kg Sound absorber arrangement and hall with reduced reverberation time
JP2019111714A (en) * 2017-12-22 2019-07-11 Jnc株式会社 Laminate sound absorber
JP6751278B1 (en) * 2019-06-21 2020-09-02 Jnc株式会社 Laminated sound absorbing material
TWI752540B (en) * 2020-06-30 2022-01-11 國立成功大學 Sound absorption device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293804A (en) * 1998-04-10 1999-10-26 Bridgestone Corp Fiber laminated sound absorbing material
JP2001271438A (en) * 2000-03-24 2001-10-05 Bridgestone Corp Outdoor sound absorbing material
JP2007512990A (en) * 2003-05-28 2007-05-24 クリオン アイルランド ホールディング リミテッド Sound absorber
JP2007334285A (en) * 2006-05-16 2007-12-27 Hitachi Ltd Sound absorbing structure and rail vehicle
JP2008008997A (en) * 2006-06-27 2008-01-17 Bridgestone Kbg Co Ltd Composite sound absorbing structural body
JP4217184B2 (en) * 2004-03-29 2009-01-28 パナホーム株式会社 Sound absorbing plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3533862B2 (en) * 1997-01-24 2004-05-31 日産自動車株式会社 Engine cover
DE10324257B3 (en) * 2003-05-28 2004-09-30 Clion Ireland Ltd., Newton Acoustic insulation material, especially for use in automobiles, is of two bonded nonwoven layers with structured layers towards and away from the sound source
JP2007083923A (en) * 2005-09-22 2007-04-05 Toyobo Co Ltd Dash insulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293804A (en) * 1998-04-10 1999-10-26 Bridgestone Corp Fiber laminated sound absorbing material
JP2001271438A (en) * 2000-03-24 2001-10-05 Bridgestone Corp Outdoor sound absorbing material
JP2007512990A (en) * 2003-05-28 2007-05-24 クリオン アイルランド ホールディング リミテッド Sound absorber
JP4217184B2 (en) * 2004-03-29 2009-01-28 パナホーム株式会社 Sound absorbing plate
JP2007334285A (en) * 2006-05-16 2007-12-27 Hitachi Ltd Sound absorbing structure and rail vehicle
JP2008008997A (en) * 2006-06-27 2008-01-17 Bridgestone Kbg Co Ltd Composite sound absorbing structural body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241550A (en) * 2010-05-14 2011-12-01 Railway Technical Research Institute Track surface sound absorption structure and method of molding multi-layer sound absorption material used for the same
JP2014529524A (en) * 2011-08-25 2014-11-13 サン−ゴバンアドフォル Wall covering for thermal and acoustic comfort
EP2754967A1 (en) * 2013-01-11 2014-07-16 Miele & Cie. KG Extractor hood
EP3260782A1 (en) * 2013-01-11 2017-12-27 Miele & Cie. KG Extractor hood
EP3203467A4 (en) * 2014-09-30 2018-06-13 Compagnie Générale des Etablissements Michelin Sound absorbing body
JP2019516890A (en) * 2016-05-13 2019-06-20 リアヴェル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトLIAVER GmbH & CO. KG Sound absorption equipment and soundproof room
CN109949787B (en) * 2019-03-29 2024-04-30 保定市宏腾科技有限公司 PET sound absorbing cotton and preparation method thereof

Also Published As

Publication number Publication date
JP5501959B2 (en) 2014-05-28
CN101999145B (en) 2012-08-29
JPWO2009125742A1 (en) 2011-08-04
CN101999145A (en) 2011-03-30

Similar Documents

Publication Publication Date Title
WO2009125742A1 (en) Sound-absorbing composite structure
US6296075B1 (en) Lightweight acoustical system
AU2008356694B2 (en) Sound absorption material and method of manufacturing sound absorption material
KR101408581B1 (en) Porous membrane
CN107206732B (en) Non-woven material with aluminized surface
CA2806773A1 (en) Duct insulation laminates and methods of manufacturing and installation
JP2005534538A (en) Low porosity exterior for soundproofing applications
JP2008008997A (en) Composite sound absorbing structural body
CN107667008A (en) More impedance composite materials
US11820102B2 (en) Nonpermeable composite material
JP4361202B2 (en) Sound-absorbing material including meltblown nonwoven fabric
JP2007034254A (en) Porous material-based sound absorbing material with improved sound absorbing performance
JP2007334285A (en) Sound absorbing structure and rail vehicle
JP4626969B2 (en) Vehicle interior material with excellent sound absorption performance
WO2004054795A1 (en) Laminated surface skin material and laminate for interior material
JP2006285086A (en) Sound absorbing heat insulating material
JP5320002B2 (en) Storage structure for composite sound absorbing structure and composite sound absorbing structure disposed in the storage structure
JP3133470U (en) Sound absorbing material
JP2004209975A (en) Laminated skin material and laminate for interior material using the same
US20220410525A1 (en) Layered sound-absorbing material
KR20140114468A (en) an automobile floor mat being improved soundproof
JP2002069823A (en) Sound absorbing material containing melt-blown nonwoven fabric
JP2005134769A (en) Soundproofing material
JP2004271797A (en) Sound absorbing material
JPH10237978A (en) Sound-absorbing material and manufacture thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112651.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731467

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010507233

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09731467

Country of ref document: EP

Kind code of ref document: A1