JP5320002B2 - Storage structure for composite sound absorbing structure and composite sound absorbing structure disposed in the storage structure - Google Patents

Storage structure for composite sound absorbing structure and composite sound absorbing structure disposed in the storage structure Download PDF

Info

Publication number
JP5320002B2
JP5320002B2 JP2008249934A JP2008249934A JP5320002B2 JP 5320002 B2 JP5320002 B2 JP 5320002B2 JP 2008249934 A JP2008249934 A JP 2008249934A JP 2008249934 A JP2008249934 A JP 2008249934A JP 5320002 B2 JP5320002 B2 JP 5320002B2
Authority
JP
Japan
Prior art keywords
sound absorbing
composite
absorbing structure
composite sound
cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008249934A
Other languages
Japanese (ja)
Other versions
JP2010079164A (en
Inventor
浩一 伊藤
靖 高野
大輔 武藤
渡辺  誠
貴裕 眺野
一嘉 飯田
青滋 霊田
浩二 池田
亮一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Bridgestone KBG Co Ltd
Original Assignee
Hitachi Ltd
Bridgestone KBG Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Bridgestone KBG Co Ltd filed Critical Hitachi Ltd
Priority to JP2008249934A priority Critical patent/JP5320002B2/en
Publication of JP2010079164A publication Critical patent/JP2010079164A/en
Application granted granted Critical
Publication of JP5320002B2 publication Critical patent/JP5320002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound sound absorbing structure improving sound absorbing performance by compounding a surface layer and a main material layer, and by combining them with nonwoven fabric in which a porous sound absorbing material is used as a base, and also to provide a storage structure using the same. <P>SOLUTION: The compound sound absorbing structure 10 is constituted by combining a base structure 1 obtained by compounding the surface layer 3 in which two nonwoven fabrics A and B being cloth materials such as span bond are used and the main material 2 which is composed of a polyester fabric or is mainly composed of the polyester fabric, with the nonwoven fabric 4 on which fire proofing/water proofing treatment is applied, a mesh structure 5 of a metallic system such as a metal mesh, and a punching metal 6 as a protective cover. By controlling flow resistance on the surface layer 3, it is effective for sound absorbing performance to adjust the flow resistance of the base structure 1 to be (2.0 to 5)&times;10<SP>4</SP>(N sec)/m<SP>4</SP>, and it is lightweight with a thickness of 40 to 50 mm, and it is also used as an all-weather type. The stable sound absorbing performance is provided from a low/middle frequency band to a high frequency band, especially around 400 Hz. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、鉄道など交通機関に用いられる複合吸音構造体の収納構造及びこの収納構造に配置される複合吸音構造体に関する。 The present invention relates to a composite sound absorbing structure disposed in the housing structure and the stowing structure is that double if the sound absorbing structure using the transportation railway.

従来、屋外で使用される吸音材として各種の材料・構造が提案されているが、その中でもコアになる母材として最も一般的に使用されているものに繊維系吸音材がある。繊維系吸音材としては、古くから最もポピュラ−に使われているものにグラスウ−ルがあり、鉄道や道路などの防音壁用の全天候型吸音材として用いられている。   Conventionally, various materials and structures have been proposed as a sound-absorbing material used outdoors. Among them, a fiber-based sound-absorbing material is most commonly used as a base material that becomes a core. As a fiber-based sound absorbing material, glass wool is one of the most popular ones for a long time, and is used as an all-weather sound absorbing material for soundproof walls such as railways and roads.

しかし、グラスウ−ルは飛散防止や表面保護のために薄いフィルムやガラスクロスで包む必要があり、製作過程の作業環境性や長期耐久性などで課題を抱えている。最近それらに変わるものとして、最近では、環境問題、リサイクル、吸音性能、作業環境保全や長期耐久性などの観点から、ポリエステル繊維系吸音材が使用される機会が増えてきている。このポリエステル繊維系吸音材は、大抵の場合、撥水性、耐久性や吸音特性の調整のため、通常、ポリエステル繊維からなる不織布にホットメルト材を処理し、母材に熱融着し、その面を音の入射側に配して用いる。   However, glass wool needs to be wrapped with a thin film or glass cloth to prevent scattering and protect the surface, and has problems in terms of work environment and long-term durability during the manufacturing process. Recently, as an alternative, polyester fiber-based sound absorbing materials are increasingly used from the viewpoints of environmental problems, recycling, sound absorption performance, work environment preservation and long-term durability. This polyester fiber-based sound absorbing material is usually treated with a non-woven fabric made of polyester fiber with a hot melt material and heat-bonded to the base material to adjust water repellency, durability and sound absorption characteristics. Is used on the sound incident side.

この場合、母材層と表皮層による総合的な流れ抵抗を調整し、吸音特性を出すのが一般的であるが、現状では必ずしも吸音性能も最適化された内容になっておらず、ある限定された厚さの中でより高い吸音性能を得ようとするのに限界があった。   In this case, it is common to adjust the overall flow resistance of the base material layer and the skin layer to produce sound absorption characteristics, but at present the sound absorption performance is not necessarily optimized, and there is a certain limitation There was a limit in trying to obtain higher sound absorption performance within the specified thickness.

一般に、グラスウ−ルやポリエステル繊維などの多孔質材料が吸音特性を発揮するのは、多孔質材料の表面から入射した音波が繊維間の複層した三次元的に形成された隙間を進行する際にその隙間に存在する空気が振動するときに粘性抵抗を生じ、入射してくる音響エネルギーを熱エネルギーとして消費し、その結果、反射音響エネルギーが抑制されるのが主な吸音メカニズムである。そして、それは流れ抵抗と密接な関係があり、狙った周波数帯域で高い吸音性能が得られるよう適切な流れ抵抗をどのように調整するかが開発のポイントとなっている。流れ抵抗が小さ過ぎれば楽に空気が動き、流れ抵抗が大き過ぎれば、空気が動きにくくなり、入射音響エネルギーから熱エネルギーへの変換効率が落ち、高い吸音性能は得られない。現時点では、吸音性能がまだ最適化しているとは言えず、新規構造の開発の可能性が十分残されているといえる。その他、主要因ではないが、構成繊維間でのフリクション、繊維自体の内部減衰なども熱エネルギーへの変換には寄与していると思われる。   In general, porous materials such as glass wool and polyester fibers exhibit sound absorption characteristics when sound waves incident from the surface of the porous material travel through a three-dimensionally formed gap between the fibers. When the air existing in the gap vibrates, viscous resistance is generated, and incident acoustic energy is consumed as thermal energy. As a result, reflected acoustic energy is suppressed as a main sound absorbing mechanism. It is closely related to flow resistance, and the key to development is how to adjust the appropriate flow resistance so that high sound absorption performance can be obtained in the targeted frequency band. If the flow resistance is too small, the air moves easily, and if the flow resistance is too large, the air becomes difficult to move, the conversion efficiency from incident acoustic energy to thermal energy decreases, and high sound absorption performance cannot be obtained. At present, the sound absorption performance has not been optimized yet, and it can be said that the possibility of development of a new structure is still sufficient. In addition, although not a main factor, it is considered that friction between constituent fibers and internal attenuation of the fiber itself contribute to the conversion to thermal energy.

流れ抵抗は、材料の表面に垂直方向に一定の微少空気流Vを流した時の速度と材料両面間の圧力差とから次式で定義される。
R=ΔP/(V・d)
R:流れ抵抗[ N・sec/m
ΔP:材料両面間の圧力差
V:単位面積当たりの空気流量[m/(m/sec)]
d:資料の厚み(m)
単位面積流れ抵抗の測定方法は、図9に示すように、φ29mmの金属製の管にφ30mm、厚み30mmの吸音材を挿入し、カト−テック(株)KES−F8−API通気度試験機(流速4×10−2m/sec)などで測定できる。
The flow resistance is defined by the following equation from the speed when a small air flow V flows in the direction perpendicular to the surface of the material and the pressure difference between both surfaces of the material.
R = ΔP / (V · d)
R: Flow resistance [N · sec / m 4 ]
ΔP: Pressure difference between both sides of the material
V: air flow rate per unit area [m 3 / (m 2 / sec)]
d: Material thickness (m)
As shown in FIG. 9, the unit area flow resistance is measured by inserting a sound absorbing material with a diameter of 30 mm and a thickness of 30 mm into a metal pipe with a diameter of 29 mm, and Kate-Tech KES-F8-API air permeability tester ( It can be measured at a flow rate of 4 × 10 −2 m / sec).

表面層と母材層を複合した場合の流れ抵抗が吸音材の吸音率を決めることになるが、この流れ抵抗は、a:母材層である多孔質材料の密度を変えること、b:多孔質材料を構成する繊維の径や配合率を変えること、c:多孔質材料を構成する繊維特性を変えること、d:表皮層の不織布(例えば、スパンボンド)の特性・仕様を変える、などでコントロ−ルできるが、従来技術では最適化されているとは言えない。   The flow resistance when the surface layer and the base material layer are combined determines the sound absorption rate of the sound absorbing material. The flow resistance is changed by: a: changing the density of the porous material as the base material layer, b: porous By changing the diameter and blending ratio of the fibers that make up the porous material, c: changing the properties of the fibers that make up the porous material, d: changing the properties and specifications of the non-woven fabric (for example, spunbond) of the skin layer, etc. Although it can be controlled, it cannot be said that it has been optimized by the prior art.

本発明は以上のような従来の技術に鑑みてなされたものであり、その目的は、表皮層と母材層とを複合し、多孔質吸音材をベースにした不織布を組み合わせることで、400Hz付近の吸音性能をさらに向上し、軽量で実用性を高め、全天候型としても使用可能な複合構造吸音体の収納構造及びこの収納構造に配置される複合吸音構造体を提供することにある。 The present invention has been made in view of the prior art as described above, and its purpose is to combine a skin layer and a base material layer, and combine a nonwoven fabric based on a porous sound absorbing material, and at around 400 Hz. It is intended to provide a storage structure for a composite structure sound absorber that can be used as an all-weather type, and a composite sound absorption structure disposed in the storage structure .

適用分野においても、鉄道車両、鉄道や道路の防音壁、建設機械など屋外で用いる分野で、ポリエステル繊維系吸音材の適用が拡大しており、厚さをできるだけ抑え、スペ−スファクタ−の良い吸音特性の優れた吸音材の要求が高まっている。   In the field of application, the use of polyester fiber-based sound absorbing materials is expanding in fields such as railway vehicles, railway and road noise barriers, construction machinery, etc., and the sound absorption with good space factor is minimized. There is an increasing demand for sound-absorbing materials with excellent characteristics.

本発明においては、表皮層の流れ抵抗に注目し、当該流れ抵抗をコントロ−ルすることで、表皮層と母材の複合構造体の流れ抵抗が(2.0〜5)×10N・sec/mになるように調整することが大変有効であることを発見した。この知見に基づいて、本発明による複合吸音構造体は、表皮層に2枚の不織布を用い、ポリエステル繊維あるいはそれを主体とした母材との複合の仕方を工夫し、さらに、パンチングメタル、金属系網目構造体、不織布の組み合わせで構成されており、中低周波数帯域から高周波数帯域まで安定した吸音性能が得られ、上記のニ−ズに応えられる実用性の高い手段を提供している。 In the present invention, focusing on the flow resistance of the skin layer, and controlling the flow resistance, the flow resistance of the composite structure of the skin layer and the base material is (2.0 to 5) × 10 4 N · It has been found that adjusting to sec / m 4 is very effective. Based on this knowledge, the composite sound-absorbing structure according to the present invention uses two non-woven fabrics for the skin layer, devised a method of compounding with polyester fibers or a base material mainly composed thereof, and further, punching metal, metal It is composed of a combination of a network structure and a non-woven fabric, provides a sound absorption performance that is stable from the middle to low frequency band to the high frequency band, and provides a highly practical means that can meet the above needs.

本発明による複合吸音構造体は、不織布(スパンボンド)などの布状材料2枚で構成した表皮層とポリエステル繊維あるいはそれを主体とする母材層とを複合し、40〜50mmの厚さで、吸音性能が中低域から広帯域までの広い周波数帯域で、吸音率を大きく向上した多孔質吸音材をベースにして、さらに、金属系の網目構造体、及び難燃処理、撥水処理を施した不織布を組み合わせることで、400Hz付近の吸音性能をさらに向上し、軽量で実用性を高め、全天候型としても使用可能な複合構造吸音体を提供している。
なお、本発明の吸音構造体の高音域の吸性能は多少犠牲にしても低音域の吸音性能を高めために、表面層と母材層の間に膜を挿入することは有効であり、本発明の中で対応可能な構造である。
The composite sound-absorbing structure according to the present invention is composed of a skin layer composed of two cloth-like materials such as nonwoven fabric (spunbond) and a polyester fiber or a base material layer mainly composed of it, and has a thickness of 40 to 50 mm. Based on a porous sound-absorbing material with a greatly improved sound absorption rate in a wide frequency range from mid to low range to a wide band, and a metal network structure, flame retardant treatment and water repellent treatment By combining these non-woven fabrics, the sound absorbing performance near 400 Hz is further improved, and the composite structure sound absorbing body that can be used as an all-weather type is provided.
Note that it is effective to insert a film between the surface layer and the base material layer in order to enhance the sound absorption performance in the low sound range even if the sound absorption performance in the sound absorption structure of the present invention is somewhat sacrificed. It is a structure that can be dealt with in the invention.

この発明による複合吸音構造体によれば、鉄道車両、鉄道や道路の防音壁、建設機械など屋外の分野で、厚さをできるだけ抑え、スペ−スファクタ−の良い吸音特性の優れた吸音材が得られ、しかも、中低周波数帯域から高周波数帯域まで、特に400Hz付近の吸音率が大きくなって、吸音性能が更に安定・向上し、軽量で実用性が高く、全天候型としても使用可能な複合構造吸音体を得ることができる。   According to the composite sound-absorbing structure according to the present invention, a sound-absorbing material having excellent sound-absorbing characteristics with a small space factor and a good space factor can be obtained in outdoor fields such as railway vehicles, railway and road noise barriers, and construction machinery. Moreover, from the mid-low frequency band to the high frequency band, especially in the vicinity of 400 Hz, the sound absorption rate is increased, the sound absorption performance is further stabilized and improved, light weight, high practicality, and a composite structure that can be used as an all-weather type A sound absorber can be obtained.

また、この発明による複合吸音構造体の収容構造によれば、音波の入射面以外を略密閉された収納体内に配置し、前記収納体の音波の入射面に略直交する面と前記吸音構造体との間に隙間を設けているので、高音域の吸音性能を落とすことなく中低音域の吸音特性を更に大きく向上させることができる。   Further, according to the housing structure for the composite sound absorbing structure according to the present invention, the sound absorbing structure is disposed in a substantially sealed housing other than the sound wave incident surface, and the surface substantially orthogonal to the sound wave incident surface of the housing Therefore, the sound absorption characteristics in the mid-low range can be further improved without reducing the sound absorption performance in the high range.

本発明による複合吸音構造体の一実施例が図1に模式的に示されている。図1の(a)は断面図、同(b)は斜視図である。図1に示すように、複合吸音構造体のベース構造1は母材2と表皮層3とを備えており、表皮層3の流れ抵抗を最適にコントロ−ルする方法を提供するものである。複合吸音構造体のベース構造1は、流れ抵抗が、(1.5〜3.5)×10N・sec/mである高分子系多孔質材料から成る母材2の上に、異種の2枚の不織布A,Bから構成される表皮層3を重ね、複合化した構造である。ベース構造1は、例えば、表皮層3に用いる一枚の不織布A(等価単繊維径が11〜25μm、面密度が60〜130g/m)の裏面にパウダー状又はくもの巣(網目状)などのホットメルト材を予め塗布あるいは転写して母材2に重ね、加熱・加圧して母材2と熱融着一体複合化し、その上に別な一枚の不織布B(等価単繊維径が11〜25μm、面密度が60〜130g/m)を重ねることで形成される。ベース構造1は、その複合体としての流れ抵抗が(2.0〜5.0)×10N・sec/mになるようにしたものである。 An embodiment of a composite sound absorbing structure according to the present invention is schematically shown in FIG. 1A is a sectional view, and FIG. 1B is a perspective view. As shown in FIG. 1, a base structure 1 of a composite sound absorbing structure includes a base material 2 and a skin layer 3, and provides a method for optimally controlling the flow resistance of the skin layer 3. The base structure 1 of the composite sound absorbing structure is formed on a base material 2 made of a polymer porous material having a flow resistance of (1.5 to 3.5) × 10 4 N · sec / m 4. The skin layer 3 composed of the two non-woven fabrics A and B is superposed and combined. The base structure 1 is, for example, a powder or spider web (network) on the back surface of a single nonwoven fabric A (equivalent single fiber diameter of 11 to 25 μm, surface density of 60 to 130 g / m 2 ) used for the skin layer 3. A hot melt material such as is applied or transferred in advance and superimposed on the base material 2 and heated and pressurized to form an integral composite with the base material 2, and another nonwoven fabric B (with an equivalent single fiber diameter of 11 to 25 μm and the surface density is 60 to 130 g / m 2 ). The base structure 1 has a flow resistance of (2.0 to 5.0) × 10 4 N · sec / m 4 as a composite.

図2は本発明による吸音構造体を模式的に示す図であり、図2(a)は本発明による吸音構造体の一例を示す断面図、図2(b)は吸音構造体のベース構造の断面図である。図2(a)に示すように、ベース構造1の上に、難燃性・撥水性など実用性能を高めた不織布4、更に金属網目構造体を形成する#100の金属性メッシュ5を重ねることで実用性を高めた吸音構造体10となっている。これらの不織布4と金属性メッシュ5は、開孔径が小さく流れ抵抗が大きいと、長期間の屋外使用による細かいほこり、再塗料等による目詰まりで流れ抵抗が著しく増加する可能性があるため、ベース構造1を構成する不織布A,Bよりも開孔率を大きくして流れ抵抗を小さくしている。このように構成することにより、複合吸音構造体10において経年変化による吸音率の劣化を防ぐことができる。   FIG. 2 is a view schematically showing a sound absorbing structure according to the present invention. FIG. 2 (a) is a cross-sectional view showing an example of the sound absorbing structure according to the present invention, and FIG. 2 (b) is a base structure of the sound absorbing structure. It is sectional drawing. As shown in FIG. 2A, on the base structure 1, a non-woven fabric 4 having improved practical performance such as flame retardancy and water repellency, and a # 100 metallic mesh 5 forming a metal network structure are stacked. Thus, the sound absorbing structure 10 is improved in practicality. These non-woven fabrics 4 and metallic meshes 5 have a small opening diameter and a high flow resistance, so that there is a possibility that the flow resistance may increase remarkably due to fine dust due to long-term outdoor use, clogging due to repainting, etc. The open area ratio is made larger than that of the nonwoven fabrics A and B constituting the structure 1 to reduce the flow resistance. By configuring in this way, it is possible to prevent deterioration of the sound absorption rate due to secular change in the composite sound absorption structure 10.

実際の適用に当たっては、更に流れ抵抗の低いパンチングメタル(開孔率20%以上)6などの保護カバーの下に2〜10mm程度の空隙7を設けて、パンチングメタル6が音の入射側になるように配して、複合吸音構造体10が設置されることが多い。また、図2(b)のように、不織布Aにも不織布Bと同じようなホットメルト処理を施し、不織布Bと母材を重ね、加熱・加圧し一体複合化しても良い。不織布Aと不織布Bの仕様は同じでも異なっても良い。   In actual application, an air gap 7 of about 2 to 10 mm is provided under a protective cover such as a punching metal (opening ratio 20% or more) 6 having a lower flow resistance, and the punching metal 6 becomes the sound incident side. Thus, the composite sound absorbing structure 10 is often installed. Further, as shown in FIG. 2B, the non-woven fabric A may be subjected to the same hot-melt treatment as the non-woven fabric B, and the non-woven fabric B and the base material may be overlapped, heated and pressurized to be integrated into an integral composite. The specifications of the nonwoven fabric A and the nonwoven fabric B may be the same or different.

多孔質吸音材(母材2)を剛壁面に取り付けた状態を図3に示すが、図3の左側(表皮側)より音波が入射すると、空気粒子の速度は剛壁面で0、剛壁面から左にc/4f(c:空気中の音速[cm/sec]、f:入射音波の周波数[Hz])離れた位置で最大となる。鉄道や道路の騒音で問題になりやすい400〜2000Hzの帯域では、40mm以上のところで空気粒子の速度は最大になるので、厚さが50mm位までは表皮層3で流れ抵抗を調整した方が、粘性抵抗により音響反射エネルギーから熱エネルギーへの変換効率が高くなり、効率良く吸音性能を高めることができる。   FIG. 3 shows a state where the porous sound absorbing material (base material 2) is attached to the rigid wall surface. When sound waves are incident from the left side (skin side) of FIG. 3, the velocity of air particles is 0 on the rigid wall surface, and from the rigid wall surface. It becomes maximum at a position c / 4f (c: speed of sound in air [cm / sec], f: frequency of incident sound wave [Hz]) on the left. In the 400-2000 Hz band, which is likely to be a problem due to railway and road noise, the velocity of air particles is maximum at 40 mm or more, so it is better to adjust the flow resistance with the skin layer 3 until the thickness is about 50 mm. The viscous resistance increases the efficiency of conversion from acoustic reflection energy to thermal energy, and can efficiently improve the sound absorption performance.

[ポイント1]本発明による全天候型吸音構造体の最良の形態として、パンチングメタル、空隙、金属網目構造体、難燃性・撥水性が付与されたスパンボンド不織布、2枚のスパンボンド不織布とポリエステル繊維系不織布を母材とする複合体の組み合わせとなる。本発明の最大のポイントは構造体全体の流れ抵抗を母材の表面部分に重ねた二枚のスパンボンド不織布により、特に(2.0〜5.0)×10N・sec/mに納めるように調整すれば、中低周波数帯域から高周波数帯域まで幅広い吸音性能を実現でき、尚且つ軽く、コンパクトなど実用性の高い全天候型の吸音構造体を実現できる。
[Point 1] As the best mode of the all-weather sound absorbing structure according to the present invention, punched metal, voids, metal network structure, spunbond nonwoven fabric imparted with flame retardancy and water repellency, two spunbond nonwoven fabrics and polyester It is a combination of composites using a fiber-based nonwoven fabric as a base material. The most important point of the present invention is that the flow resistance of the entire structure is made of two spunbonded nonwoven fabrics laminated on the surface of the base material, and in particular, (2.0 to 5.0 ) × 10 4 N · sec / m 4 . If adjusted so that it can be accommodated, a wide range of sound absorption performance can be realized from the mid-low frequency band to the high frequency band, and it is possible to realize a light-weight and compact all-weather sound absorption structure that is highly practical.

[ポイント2]ポイント1における2枚のスパンボンド不織布と母材からなる本発明中核となるベース構造は、それぞれをパウダー状又はくもの巣状のホットメルト材で熱融着して一体化した構造としても良いし、1枚のスパンボンド不織布と母材をホットメルト材で熱融着して一体化し、更にその上に、もう1枚のスパンボンド不織布を非接着で重ねただけの構造としても良い。   [Point 2] The base structure, which is the core of the present invention consisting of two spunbond nonwoven fabrics and a base material in Point 1, is a structure in which each is heat-fused and integrated with a powder-like or web-like hot-melt material. It is also possible to have a structure in which one spunbond nonwoven fabric and the base material are fused and integrated with a hot melt material, and then another spunbond nonwoven fabric is stacked on top of each other without bonding. good.

[ポイント3]ポイント2における2枚のスパンボンド不織布として異種のスペックのものを用いることによって、流れ抵抗の大きさを調整し易くすることができる。   [Point 3] By using two types of spunbond nonwoven fabrics at point 2 having different specifications, the flow resistance can be easily adjusted.

[ポイント4]本発明を構成する難燃性・撥水性付与のスパンボンド不織布、及びベース構造の二枚のスパンボンド不織布と母材とをすべてポリエステル繊維系でまとめれば、リサイクル性のある地球に優しい全天候型の複合吸音構造体を提供することができる。   [Point 4] A flame-retardant and water-repellent spunbond nonwoven fabric that constitutes the present invention, and two spunbond nonwoven fabrics with a base structure and a base material are all combined in a polyester fiber system to create a recyclable earth. A gentle all-weather composite sound absorbing structure can be provided.

[ポイント5]特に高い難燃性を要求されない場合は、ベース構造と金属系の網目構造体との間のスパンボンド不織布はなくても良い。   [Point 5] When particularly high flame retardancy is not required, there may be no spunbonded nonwoven fabric between the base structure and the metal network structure.

[ポイント6]保護カバーのパンチングメタルについては、パンチングメタル製作時の開口の打ち抜き方向と音波の入射方向とが逆となるように、いわゆるパンチングメタルの裏面を、吸音構造体の表側、即ち音波の入射側とするとよい。これは、加工時の変形により、パンチング孔が打ち抜き方向に径が減少するので、パンチングの表面の方が裏面よりも金属部の面積が少ない。このため、火災の炎などでパンチングメタルの一部が熱せられたとき、金属部の面積が狭い裏面の方が、より広がる力が大きくなり、結果としてパンチング孔の径が小さい側の裏面が凸となるように変形する。したがって、パンチングメタルと吸音構造体との隙間が大となる方向に変形する。これにより複合吸音構造体の耐火性能を向上することができる。   [Point 6] Regarding the punching metal of the protective cover, the back side of the so-called punching metal is placed on the front side of the sound absorbing structure, that is, the acoustic wave so that the punching direction of the opening at the time of punching metal manufacture and the incident direction of the sound wave are reversed. The incident side should be used. This is because the punching hole has a smaller diameter in the punching direction due to deformation during processing, so that the surface of the punching surface has a smaller area of the metal portion than the back surface. For this reason, when a part of the punching metal is heated due to a fire flame or the like, the back surface having a smaller metal part area has a larger spreading force, and as a result, the back surface on the side where the diameter of the punching hole is small is convex. It transforms to become. Therefore, the punching metal and the sound absorbing structure are deformed in a direction in which the gap becomes large. Thereby, the fireproof performance of the composite sound absorbing structure can be improved.

4は、吸音構造体にスパンボンド不織布を追加するときの周波数に対する吸音率の変化を示すグラフである。図4に示すサンプルB,BC,BSについては、次のとおりである。
サンプルB:スパンボンド不織布(ポリエステル繊維:面密度100g/m)一枚と流れ抵抗が1.0×10N・sec/mの母材(35mm厚)とを一体複合化した吸音構造体。流れ抵抗1.5×10N・sec/m
サンプルBC:サンプルBの母材中央部に表皮層と同じスパンボンド不織布を挿入した複合吸音構造体。流れ抵抗2.0×10N・sec/m
サンプルBS:サンプルBの表皮層と母材の間に、表皮と同じスパンボンド不織布を挿入し二枚重ねた複合吸音構造体。流れ抵抗2.2×10N・sec/m
ース構造として、従来構造であるスパンボド不織布一枚と母材とを複合した吸音構造(サンプルB)よりさらに、中低周波数帯域の吸音性能を向上させる(高周波数帯域の吸音性能を維持しつつ)には、複合吸音構造体の流れ抵抗を調整することになるが、図4に示すように、殆ど同じ流れ抵抗でも母材の中間にスパンボンド不織布(サンプルBの表皮層と同じもので、裏面のホットメルト処理も同じ)を挿入したもの(サンプルBC)より、表皮層と母材との間に挿入し、表皮層の流れ抵抗を増大させた方(サンプルBS)が有効であることを示している。
これは、図3で提案したことを実証するものであり、本発明の有効性を示すものでもある。また、これにより同じ吸音性能であれば、従来構造より薄くでき、軽量化、経済性、省スペースなど実用面でも有功である。
FIG. 4 is a graph showing a change in sound absorption rate with respect to frequency when a spunbond nonwoven fabric is added to the sound absorption structure. The samples B, BC, and BS shown in FIG. 4 are as follows.
Sample B: Sound-absorbing structure in which a spunbonded nonwoven fabric (polyester fiber: surface density 100 g / m 2 ) and a base material (thickness 35 mm) having a flow resistance of 1.0 × 10 4 N · sec / m 4 are integrally combined body. Flow resistance 1.5 × 10 4 N · sec / m 4
Sample BC: A composite sound-absorbing structure in which the same spunbonded nonwoven fabric as the skin layer is inserted in the center of the base material of sample B. Flow resistance 2.0 × 10 4 N · sec / m 4
Sample BS: A composite sound-absorbing structure in which the same spunbond nonwoven fabric as that of the skin is inserted between the skin layer and the base material of Sample B and two layers are stacked. Flow resistance 2.2 × 10 4 N · sec / m 4
As base over scan structure, the conventional structure in which Supanbo down de nonwoven piece and the base material and the composite was sound absorbing structure (Sample B) even more, the sound absorbing performance in a low frequency band of the sound absorbing performance is improved (high-frequency band While maintaining the flow resistance of the composite sound-absorbing structure, the spunbonded nonwoven fabric (same as the skin layer of sample B) is placed in the middle of the base material even with almost the same flow resistance as shown in FIG. It is more effective to insert between the skin layer and the base material and increase the flow resistance of the skin layer (sample BS) than the one with the same hot melt treatment on the back surface (sample BC). It shows that there is.
This proves what was proposed in FIG. 3 and also shows the effectiveness of the present invention. Moreover, if it is the same sound absorption performance by this, it can be thinner than the conventional structure, and it is effective also in practical use, such as weight reduction, economical efficiency, and space saving.

5(a)に従来吸音構造体の例(サンプルM:ベース構造を従来構造とした複合吸音構造体)と図5(b)に本発明の吸音構造体の例(サンプルN:ベース構造を本発明構造とした複合吸音構造体)を示すが、それらの吸音性能(垂直入射法吸音率)は図6のグラフに示すようになり、高音域の吸音性能を落とすことなく中低音域が従来品に比べて大きく向上し、本発明の優位性を立証している。
[仕様]
・パンチングメタル:孔径 2mm、ピッチ3.5mm、千鳥配置 開孔率30%
・金属網目構造体:ステンレススティ−ル(メッシュ:#100)−対燃焼性、対塗工性・スパンボンド不織布:ポリエステル繊維、高難燃性、撥水性付与、面密−80g/m
・ベース構造
・スパンボンド不織布:ポリエステル繊維(繊維形状円形)、面密度−100g/m
・スパンボンド不織布:ポリエステル繊維(繊維形状−楕円)、面密度−90g/m
・母材:ポリエステル繊維厚さ40mm、面密度−1800g/m
[流れ抵抗]
・サンプルM:1.7×10N・sec/m
・サンプルN:2.5×10N・sec/m
FIG. 5A shows an example of a conventional sound absorbing structure (sample M: a composite sound absorbing structure having a base structure as a conventional structure), and FIG. 5B shows an example of a sound absorbing structure of the present invention (sample N: a base structure). The composite sound absorbing structure having the structure of the present invention is shown, and the sound absorbing performance (normal incidence method sound absorption rate) is as shown in the graph of FIG. This is a significant improvement over the product and demonstrates the superiority of the present invention.
[specification]
・ Punching metal: Hole diameter 2mm, Pitch 3.5mm, Staggered arrangement Opening rate 30%
Metal network structure: Stainless steel (mesh: # 100)-Combustion resistance, coating resistance-Spunbond nonwoven fabric: Polyester fiber, high flame retardancy, water repellency, close contact-80 g / m 2
-Base structure-Spunbond nonwoven fabric: Polyester fiber (fiber shape - circular), surface density-100 g / m 2
Spunbond nonwoven fabric: polyester fiber (fiber shape-ellipse), surface density-90 g / m 2
Base material: polyester fiber thickness 40 mm, surface density −1800 g / m 2
[Flow resistance]
Sample M: 1.7 × 10 4 N · sec / m 4
Sample N: 2.5 × 10 4 N · sec / m 4

7(a)に本発明の複合吸音構造体10の周囲に隙間11を設けた収納構造20の例(収納構造のサイズ1170mm×470mm、隙間幅30mm)を示し、図7(b)に収納構造20の隙間11をライナ12で埋めた収納構造20aを示す。図7に示す収納構造についての残響室法による吸音率測定結果を図8に示す。隙間11を設けることにより、吸音構造体10と収納構造20の隙間11の空間と外部と連通する細い隙間により、一種のヘルムホルツ共鳴器が構成され、本吸音構造体10の吸音率が最大となる周波数帯域において、収納構造20としての吸音率は更に高められていることが判る。 FIG. 7 (a) shows an example of the storage structure 20 in which the gap 11 is provided around the composite sound absorbing structure 10 of the present invention (the size of the storage structure is 1170 mm × 470 mm, the gap width is 30 mm), and FIG. 7 (b) shows the storage structure. A storage structure 20 a in which a gap 11 of the structure 20 is filled with a liner 12 is shown. FIG. 8 shows the results of measuring the sound absorption rate by the reverberation chamber method for the storage structure shown in FIG. By providing the gap 11, a kind of Helmholtz resonator is constituted by the space between the sound absorbing structure 10 and the gap 11 of the storage structure 20 and the thin gap communicating with the outside, and the sound absorption rate of the sound absorbing structure 10 is maximized. It can be seen that the sound absorption rate of the storage structure 20 is further increased in the frequency band.

本発明は、従来の多孔質吸音材やレゾネ−タタイプの構造型吸音体などに比べて、比較的、厚さは薄くて、広帯域で高い吸音性能を有する全天候型吸音構造体を提供することが出来るので、軽量化、経済性、リサクル性などの面でも優位であり、汎用性も高いので、建設機械、農業機械、鉄道車両など産業・車両分野、鉄道、道路、工事など土木分野など幅広い分野で利用できる。 The present invention provides an all-weather type sound absorbing structure having a relatively thin thickness and high sound absorption performance in a wide band as compared with a conventional porous sound absorbing material or a resonator type structural sound absorbing body. since the can, weight reduction, economic efficiency, is the advantage in terms of, such as Lisa Lee cycle resistance, because the high versatility, construction machinery, agricultural machinery, industrial and vehicle areas such as railway vehicles, railway, road, such as civil engineering fields, such as construction work Can be used in a wide range of fields.

本発明による複合吸音構造体のベース構造を示す図。The figure which shows the base structure of the composite sound-absorbing structure by this invention. 本発明による複合吸音構造体の一例を示す図。The figure which shows an example of the composite sound absorption structure by this invention. 複合吸音構造体における吸音原理を説明する図。The figure explaining the sound absorption principle in a composite sound absorption structure. 本発明による複合吸音構造体の吸音特性の一例を示すグラフ。The graph which shows an example of the sound absorption characteristic of the composite sound absorption structure by this invention. 本発明による複合吸音構造体と従来の複合吸音構造体の断面図。Sectional drawing of the composite sound-absorbing structure by this invention, and the conventional composite sound-absorbing structure. 図5に示す複合吸音構造体の吸音特性の一例を示すグラフ。The graph which shows an example of the sound absorption characteristic of the composite sound absorption structure shown in FIG. 本発明による複合吸音構造体を用いた収納構造の一例を示す断面図。Sectional drawing which shows an example of the storage structure using the composite sound-absorbing structure by this invention. 図7に示す収納構造の吸音特性の一例を示すグラフ。The graph which shows an example of the sound absorption characteristic of the storage structure shown in FIG. 流れ抵抗の測定方法を示す模式図。The schematic diagram which shows the measuring method of flow resistance.

符号の説明Explanation of symbols

1 ベース構造 2 母材
3 表皮層 A,B 不織布
4 難燃性を高めた不織布
5 金属性メッシュ(金属製網目構造体) 6 パンチングメタル(保護カバー)
7 空隙
10 複合吸音構造体
11 隙間 12 ライナ
20 収納構造(隙間有り)
20a 収納構造(隙間無し。ライナ充填)
DESCRIPTION OF SYMBOLS 1 Base structure 2 Base material 3 Skin layer A, B Non-woven fabric 4 Non-woven fabric which improved flame retardance 5 Metal mesh (metal network structure) 6 Punching metal (protective cover)
7 Gap 10 Composite sound absorbing structure 11 Gap 12 Liner 20 Storage structure (with gap)
20a Storage structure (no gap. Liner filled)

Claims (8)

音波の入射面より、保護カバー、1枚又は複数の布状若しくは網目材料が密着した網目構造体、1枚又は複数の布状材料が密着した布状構造体、及び多孔質母材を音波の入射方向に順に配置し、空気の流れ抵抗が、前記保護カバー、前記網目構造体、前記布状構造体の順に増加する複合吸音構造体を、前記音波の入射面以外を略密閉された収納体内に配置し、前記収納体の音波の入射面に略直交する面と前記複合吸音構造体との間に、前記複合吸音構造体の周囲に形成される隙間が設けられていることを特徴とする複合吸音構造体の収納構造From the incident surface of the sound wave, the protective cover, the mesh structure in which one or more cloth-like or mesh materials are in close contact, the cloth-like structure in which one or more cloth-like materials are in close contact, and the porous base material are A composite sound-absorbing structure that is arranged in order in the incident direction and in which the air flow resistance increases in the order of the protective cover, the mesh structure, and the cloth-like structure is contained in a container that is substantially sealed except for the incident surface of the sound wave. And a gap formed around the composite sound absorbing structure is provided between a surface substantially orthogonal to a sound wave incident surface of the storage body and the composite sound absorbing structure. Storage structure for composite sound absorbing structure. 請求項1に記載の収納構造に配置される複合吸音構造体であって
前記布状構造体は少なくとも2層の前記布状材料を融着又は密着して成り、前記布状構造体を前記多孔質母材に密着又は融着させたことを特徴とする複合吸音構造体。
A composite sound absorbing structure disposed in the housing structure of claim 1,
The cloth-like structure is formed by fusing or closely adhering at least two layers of the cloth-like material, and the cloth-like structure is adhered or fused to the porous base material. .
請求項1に記載の収納構造に配置される複合吸音構造体であって
前記網目構造体を構成する前記材料のうち少なくとも一つは、金属性メッシュ又は難燃処理を施した布状材料であることを特徴とする複合吸音構造体。
A composite sound absorbing structure disposed in the housing structure of claim 1,
At least one of the materials constituting the mesh structure is a metallic mesh or a cloth-like material subjected to a flame retardant treatment.
請求項2または3に記載の複合吸音構造体において、
前記多孔質母材は流れ抵抗が(1.5〜3.5)×10N・sec/mである高分子繊維系多孔質材料であり、前記布状構造体はその裏面にパウダー状又はくもの巣(網目状)などのホットメルト材を予め塗布又は転写した不織布を二枚重とした構造体であり、前記布状構造体と前記多孔質母材とは共に加熱・加圧して熱融着一体複合化されてベース構造体を形成しており、さらに、その上に、前記網目構造体を重ねた複合体としての流れ抵抗が(2.0〜5.0)×10N・sec/mになるように調整し、その網目構造体の前に空間を置いて前記保護カバーとしてパンチングメタル又は開口を有する構造体を音の入射側に配したことを特徴とする複合吸音構造体。
In the composite sound-absorbing structure according to claim 2 or 3 ,
The porous base material is a polymer fiber-based porous material having a flow resistance of (1.5 to 3.5) × 10 4 N · sec / m 4 , and the cloth-like structure is powdery on the back surface. Or, it is a structure in which a nonwoven fabric obtained by applying or transferring a hot melt material such as a web of nests (network shape) in advance is doubled, and the cloth-like structure and the porous base material are heated and pressurized together. The base structure is formed by heat fusion integrated composite, and further, the flow resistance as a composite in which the network structure is stacked thereon is (2.0 to 5.0) × 10 4 N. · sec was adjusted to / m 4, characterized in that arranged structures having punching metal or aperture as the protective cover at a space in front of the structural network of that the incident side of the sound composite Sound absorbing structure.
請求項4に記載の複合吸音構造体において、
前記多孔質母材はその裏面にパウダー状又はくもの巣(網目状)などのホットメルト材を予め塗布又は転写した不織布を一枚重ね、加熱・加圧して熱融着一体複合化し、その上にもう一層の不織布を重ねただけのベ−ス構造体を形成し、さらに、その上に、不織布、網目材料を密着させた網目構造体を重ね、この複合体としての流れ抵抗が、(2.0〜5.0)×10N・sec/mになるように調整したことを特徴とする複合吸音構造体。
In the composite sound-absorbing structure according to claim 4,
The porous base material has a nonwoven fabric on which a hot melt material such as a powder or a web of web (network shape) is applied or transferred in advance on the back surface, and is heated and pressed to form a heat fusion integrated composite. A base structure formed by simply laminating another non-woven fabric is formed, and a network structure in which a non-woven fabric and a mesh material are adhered to each other is further superimposed thereon, and the flow resistance as this composite is (2 0.0 to 5.0) × 10 4 N · sec / m 4 .
請求項3に記載の複合吸音構造体において、
前記金属性メッシュは、SUSやアルミなど金属系で、メッシュ#40〜150としたことを特徴とする複合吸音構造体。
In the composite sound-absorbing structure according to claim 3,
The composite sound absorbing structure according to claim 1, wherein the metallic mesh is made of a metal such as SUS or aluminum and has meshes # 40 to 150.
請求項1に記載の収納構造に配置される複合吸音構造体において、
前記保護カバーは、SUSやアルミなど金属系で、開孔率20%以上となるように小開口が表面に分散していることを特徴とする複合吸音構造体。
In the composite sound absorbing structure disposed in the storage structure according to claim 1,
The composite sound absorbing structure according to claim 1, wherein the protective cover is made of a metal such as SUS or aluminum, and small openings are dispersed on the surface so that the opening ratio is 20% or more.
請求項1に記載の収納構造に配置される複合吸音構造体において、
前記保護カバーはパンチングメタルであり、パンチング製作時の打ち抜き方向と、保護カバーに対する音波の入射方向を逆方向としたことを特徴とする複合吸音構造体。
In the composite sound absorbing structure disposed in the storage structure according to claim 1,
The protective cover is a punching metal, and a composite sound absorbing structure characterized in that a punching direction at the time of punching manufacture and an incident direction of a sound wave to the protective cover are opposite to each other.
JP2008249934A 2008-09-29 2008-09-29 Storage structure for composite sound absorbing structure and composite sound absorbing structure disposed in the storage structure Active JP5320002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008249934A JP5320002B2 (en) 2008-09-29 2008-09-29 Storage structure for composite sound absorbing structure and composite sound absorbing structure disposed in the storage structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008249934A JP5320002B2 (en) 2008-09-29 2008-09-29 Storage structure for composite sound absorbing structure and composite sound absorbing structure disposed in the storage structure

Publications (2)

Publication Number Publication Date
JP2010079164A JP2010079164A (en) 2010-04-08
JP5320002B2 true JP5320002B2 (en) 2013-10-23

Family

ID=42209641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008249934A Active JP5320002B2 (en) 2008-09-29 2008-09-29 Storage structure for composite sound absorbing structure and composite sound absorbing structure disposed in the storage structure

Country Status (1)

Country Link
JP (1) JP5320002B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101616460B1 (en) * 2014-12-12 2016-04-28 삼성중공업 주식회사 Exterior panels for construction
JP2020106697A (en) * 2018-12-27 2020-07-09 ブリヂストンケービージー株式会社 Sound absorbing structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266386A (en) * 1997-03-28 1998-10-06 Kinki Sharyo Co Ltd Interior material
JP2000129816A (en) * 1998-10-22 2000-05-09 Kobe Steel Ltd Construction of sound absorbing board
JP2002137318A (en) * 2000-11-07 2002-05-14 Bridgestone Corp Sound absorption material and protective material for the same
JP2002201731A (en) * 2000-12-27 2002-07-19 Sumitomo Metal Steel Products Inc Sound insulating wall
JP2008008997A (en) * 2006-06-27 2008-01-17 Bridgestone Kbg Co Ltd Composite sound absorbing structural body

Also Published As

Publication number Publication date
JP2010079164A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5501959B2 (en) Composite sound absorbing structure
JP2008008997A (en) Composite sound absorbing structural body
US8770344B2 (en) Acoustic panel
US20150279345A1 (en) Acoustic metamaterial architectured composite layers, methods of manufacturing the same, and methods for noise control using the same
JP2001003322A (en) Sound-absorbing structure
JP6510653B2 (en) Soundproof structure
KR20080004481A (en) Layered sound absorptive non-woven fabric
JP2009235761A (en) Flexible soundproof/sound-absorbing sheet
KR20180095245A (en) Sound absorbing structure for anechoic chamber and anechoic chamber including the same
JP2007334285A (en) Sound absorbing structure and rail vehicle
JP5320002B2 (en) Storage structure for composite sound absorbing structure and composite sound absorbing structure disposed in the storage structure
RU2639213C2 (en) Multilayer acoustic panel
TWI755432B (en) Sound insulation structure, and method for producing sound insulation structure
RU144019U1 (en) SOUND ABSORBING COMPOSITE MATERIAL WITH SCREENING MEMBRANE (OPTIONS)
CZ201334A3 (en) Sound-absorbing means containing at least one acoustic resonance membrane comprised of layer of polymeric nanofiber layer
JP3932156B2 (en) Sound absorbing structure and sound absorbing plate
JP2006323204A (en) Double sound absorption structure
JP6958830B2 (en) Composite sound absorbing material
JPH02212895A (en) Sound absorber and sound absorbing structure
TWM259706U (en) Sound-absorptive composite material
JP5813290B2 (en) Sound absorption structure
JP2005134769A (en) Soundproofing material
RU2576264C1 (en) Kochetov(s noise absorber with sound reflecting layer
RU2716043C1 (en) Low-noise technical room
RU2652003C1 (en) Sound absorbing construction for industrial premises

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130712

R150 Certificate of patent or registration of utility model

Ref document number: 5320002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150