JPH10237978A - Sound-absorbing material and manufacture thereof - Google Patents

Sound-absorbing material and manufacture thereof

Info

Publication number
JPH10237978A
JPH10237978A JP5828397A JP5828397A JPH10237978A JP H10237978 A JPH10237978 A JP H10237978A JP 5828397 A JP5828397 A JP 5828397A JP 5828397 A JP5828397 A JP 5828397A JP H10237978 A JPH10237978 A JP H10237978A
Authority
JP
Japan
Prior art keywords
fiber
core
powder
sheath structure
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5828397A
Other languages
Japanese (ja)
Inventor
Isato Inada
勇人 稲田
Koichi Nogami
晃一 野上
Seishiro Yamakawa
清志郎 山河
Kenji Onishi
兼司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP5828397A priority Critical patent/JPH10237978A/en
Publication of JPH10237978A publication Critical patent/JPH10237978A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sound-absorbing material, which has excellent sound- absorbing characteristics even in a low frequency band and in which the deterioration of sound-absorbing performance due to deviation by the movement, etc., of powder can be prevented. SOLUTION: Powder 4 is mixed with fiber collecting materials 7, in which fibers 3 having core sheath structure, in which the surfaces of core materials are covered with covering materials having the melting point lower than the melting point of the core materials, and fibers 6 having shape restoring force larger than the fibers 3 having the core sheath structure coexist. The fibers and the fibers and at least parts of powder 4 and the fibers are fused by the covering materials of the fibers 3 having core sheath structure. The movement of the powder 4 can be prevented by fusing the powder to the fibers 3. The sound-absorbing material, in which bulkiness is held by the fibers 6 having large shape restoring force can be acquired.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リスニングルーム
や楽器練習室等の音響処理や、空調ダクト内を伝搬する
騒音の低減等のために使用される吸音材及びその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sound absorbing material used for sound processing in a listening room, a musical instrument practice room, and the like, and for reducing noise propagating in an air conditioning duct, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】吸音材は、室内の音響特性が問題になる
リスニングルームや楽器練習室等において室内残響特性
や反射特性等を制御する内装材や、遮音性能が要求され
る部屋の二重構造に形成した壁や天井に充填される充填
材や、空調ダクトの側に張って騒音の伝搬を防ぐ内張り
材や、騒音を発生する機器の防音カバーの内側に張る内
張り材等として使用されている。
2. Description of the Related Art A sound-absorbing material is used in a listening room or a musical instrument practice room or the like where the acoustic characteristics of a room are problematic. It is used as a filling material that fills the walls and ceiling formed in the building, a lining material that stretches to the side of the air conditioning duct to prevent the propagation of noise, and a lining material that stretches inside the soundproof cover of equipment that generates noise. .

【0003】このような用途に使用される吸音材として
は、グラスウール、ロックウール、発泡ポリウレタン等
の多孔質吸音材が従来から主として使用されている。こ
れらの多孔質吸音材は内部に連通した空隙を有するため
に、空隙内に音波が入射すると、空隙内を伝播する途中
でファイバーの表面やウレタン気泡壁面との間で粘性摩
擦等が生じ、音波エネルギーが材料内に吸収されること
によって吸音がなされるのである。
As a sound absorbing material used in such applications, porous sound absorbing materials such as glass wool, rock wool, and polyurethane foam have been mainly used. Since these porous sound-absorbing materials have voids that communicate with each other, when sound waves enter the voids, viscous friction occurs between the surface of the fiber and the wall surface of the urethane bubble during propagation in the voids, and the acoustic wave Sound is absorbed by absorbing energy into the material.

【0004】しかし、これらの多孔質吸音材は高周波域
では十分な吸音率を有するが、音の周波数が低くなるに
つれて吸音率が低くなり、低周波域では十分な吸音率を
得ることができないという問題がある。多孔質吸音材の
厚みを増せば低周波域の吸音率は高くなるが、吸音材が
非常に嵩高になり、例えば部屋の内装材として使用する
場合には部屋が狭くなる等の問題が生じ、空調ダクトの
内張りとして使用する場合には空気の通路が狭くなる等
の問題が生じる。
[0004] However, these porous sound absorbing materials have a sufficient sound absorption coefficient in a high frequency range, but the sound absorption rate decreases as the sound frequency decreases, and it is not possible to obtain a sufficient sound absorption rate in a low frequency range. There's a problem. Increasing the thickness of the porous sound-absorbing material increases the sound absorption rate in the low-frequency range, but the sound-absorbing material becomes extremely bulky, and, for example, when used as an interior material for a room, there is a problem that the room becomes narrow, When used as the lining of an air-conditioning duct, problems such as a narrow air passage arise.

【0005】そこで、厚みが薄くても低周波域で優れた
吸音性能を有する吸音材として、シリカ粉体等の粉体層
から形成したものが提供されている。この吸音材では、
粉体層に音が入射すると粉体粒子が振動し、音波エネル
ギーがこの振動に吸収されて吸音作用が発現するもので
ある。しかしながら、この粉体を材料とする吸音材は、
例えば箱状の容器中に粉体を充填して粉体層を形成し、
音波透過性が良好なフィルム等で蓋をすることによって
形成することができるが、容器に粉体を均一に充填して
も使用過程で粉体が徐々に移動して粉体が偏り、吸音性
能が変化するおそれがあるという問題がある。またグラ
スウール等の非常に目の粗い多孔質材の空隙に粉体を充
填して保持させることによって吸音材を形成することも
できるが、この場合も、当初は粉体を均一に充填してあ
っても使用過程で粉体が徐々に移動して偏り、同様に吸
音性能が変化するおそれがある。
Accordingly, a sound absorbing material formed of a powder layer such as silica powder has been provided as a sound absorbing material having excellent sound absorbing performance in a low frequency range even though it is thin. In this sound absorbing material,
When sound is incident on the powder layer, the powder particles vibrate, and the sound wave energy is absorbed by the vibration, thereby exhibiting a sound absorbing effect. However, the sound absorbing material made of this powder is
For example, filling a powder in a box-shaped container to form a powder layer,
It can be formed by covering with a film etc. with good sound transmission, but even if the container is evenly filled with powder, the powder gradually moves in the process of use and the powder is biased, and the sound absorption performance There is a problem that may change. Also, the sound absorbing material can be formed by filling and holding the powder in the pores of a very coarse porous material such as glass wool, but also in this case, the powder is initially filled uniformly. Even in this case, there is a possibility that the powder gradually moves and becomes unbalanced in the use process, and the sound absorbing performance similarly changes.

【0006】さらに特開平5−323973号公報、特
開平6−110468号公報、特開平6−158748
号公報等に、粉体層を繊維層と交互に積層した構造の吸
音材が提供されている。しかしこのものでも粉体層の粉
体はフリーな状態のままであり、粉体の移動による問題
は解決されていない。これらに対して、特開平8−39
596号公報では、繊維の空隙に発泡性樹脂バインダー
を介在させ、この発泡性樹脂バインダーで粉体を保持す
るようにした吸音材が提供されている。しかしこのもの
では、吸音材中に占める粉体の割合が発泡性樹脂バイン
ダーによって小さくなるために、粉体による低周波域で
の吸音特性が低下するという問題があり、また繊維と粉
体の他に発泡性樹脂バインダーを用いるために、製造が
煩雑になるという問題もあった。
Further, JP-A-5-323973, JP-A-6-110468, and JP-A-6-158748
Japanese Patent Application Publication No. JP-A-2005-64139 and the like provide a sound absorbing material having a structure in which a powder layer is alternately laminated with a fiber layer. However, even in this case, the powder in the powder layer remains in a free state, and the problem due to the movement of the powder has not been solved. In contrast, Japanese Patent Application Laid-Open No. 8-39
No. 596 discloses a sound-absorbing material in which a foamable resin binder is interposed in the voids of fibers, and the powder is held by the foamable resin binder. However, in this case, since the ratio of the powder in the sound absorbing material is reduced by the foamable resin binder, there is a problem that the sound absorbing characteristics in a low frequency range due to the powder are deteriorated. There is also a problem that the production becomes complicated because a foamable resin binder is used.

【0007】[0007]

【発明が解決しようとする課題】従って本発明は、低周
波数域においても良好な吸音特性を有し、粉体の移動等
による偏りによって吸音性能が劣化することを防ぐこと
ができる吸音材を提供することを目的とし、またこのよ
うな吸音材を容易に製造することができる吸音材の製造
方法を提供することを目的とするものである。
Accordingly, the present invention provides a sound-absorbing material which has good sound-absorbing characteristics even in a low-frequency range, and which can prevent the sound-absorbing performance from deteriorating due to bias due to powder movement or the like. It is another object of the present invention to provide a method of manufacturing a sound absorbing material that can easily manufacture such a sound absorbing material.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1に係る
吸音材は、芯材1の表面を芯材1の融点よりも低い融点
の被覆材2で被覆した芯鞘構造の繊維3と、この芯鞘構
造の繊維3より形状復元力の大きい繊維6とが共存する
繊維集合材7に粉体4が混合され、芯鞘構造の繊維3の
被覆材2によって繊維と繊維及び粉体4の少なくとも一
部と繊維が融着されていることを特徴とするものであ
る。
According to a first aspect of the present invention, there is provided a sound-absorbing material comprising a core-sheath structure fiber in which the surface of a core is coated with a coating having a melting point lower than the melting point of the core. The powder 4 is mixed with the fiber aggregate 7 in which the fiber 6 having a greater shape restoring force than the fiber 3 having the core-sheath structure coexists. Characterized in that at least a part of the fiber is fused to the fiber.

【0009】本発明の請求項2に係る吸音材は、芯材1
の表面を芯材1の融点よりも低い融点の被覆材2で被覆
した芯鞘構造の繊維3と、この芯鞘構造の繊維3より形
状復元力の大きい繊維6とが共存する繊維集合材7に粉
体4が混合され、芯鞘構造の繊維3の被覆材2によって
繊維と繊維及び粉体4の少なくとも一部と繊維が融着接
合されていると共に、繊維集合材7の表面に表面材8が
接合されていることを特徴とするものである。
The sound absorbing material according to claim 2 of the present invention is a core material 1
A fiber aggregate 7 in which a core-sheath structure fiber 3 whose surface is covered with a coating material 2 having a melting point lower than the melting point of the core material 1 and a fiber 6 having a greater shape restoring force than the core-sheath structure fiber 3 coexist The fibers 4 are mixed with the fibers 4 and the fibers and at least a part of the powders 4 are fusion-bonded to each other by the covering material 2 of the fibers 3 having the core-sheath structure. 8 are joined.

【0010】また請求項3の発明は、上記の粉体4はタ
ルクであることを特徴とするものである。また請求項4
の発明は、上記の粉体4はシラスバルーンであることを
特徴とするものである。また請求項5の発明は、上記の
吸音材が、多孔質材料9と積層されていることを特徴と
するものである。
The invention according to claim 3 is characterized in that the powder 4 is talc. Claim 4
The present invention is characterized in that the powder 4 is a shirasu balloon. The invention according to claim 5 is characterized in that the above-mentioned sound absorbing material is laminated with a porous material 9.

【0011】本発明の請求項6に係る吸音材の製造方法
は、芯材1の表面を芯材1の融点よりも低い融点の被覆
材2で被覆した芯鞘構造の繊維3と、この芯鞘構造の繊
維3より形状復元力の大きい繊維6とが共存する繊維集
合材7に粉体4を混合し、これを芯鞘構造の繊維3の被
覆材2の溶融温度以上の温度で加熱することによって、
繊維と繊維及び粉体4の少なくとも一部と繊維を被覆材
2の融着によって接合させることを特徴とするものであ
る。
According to a sixth aspect of the present invention, there is provided a method of manufacturing a sound-absorbing material, comprising: a core-sheath fiber 3 in which the surface of a core material 1 is coated with a coating material 2 having a melting point lower than the melting point of the core material 1; The powder 4 is mixed with the fiber aggregate 7 in which the fiber 6 having a larger shape restoring force than the fiber 3 having the sheath structure coexists, and this is heated at a temperature equal to or higher than the melting temperature of the coating material 2 of the fiber 3 having the core-sheath structure. By
At least a part of the fiber and the fiber and the powder 4 are bonded to the fiber by fusing the coating material 2.

【0012】本発明の請求項7に係る吸音材の製造方法
は、芯材1の表面を芯材1の融点よりも低い融点の被覆
材2で被覆した芯鞘構造の繊維3と、この芯鞘構造の繊
維3より形状復元力の大きい繊維6とが共存する繊維集
合材7に粉体4を混合し、さらにこの繊維集合材7の表
面に表面材8を重ね、これを芯鞘構造の繊維3の被覆材
2の溶融温度以上の温度で加熱することによって、繊維
と繊維及び粉体4の少なくとも一部と繊維を被覆材2の
融着によって接合させると共に繊維集合材7の表面に表
面材8を接合させることを特徴とするものである。
According to a seventh aspect of the present invention, there is provided a method of manufacturing a sound-absorbing material, comprising: a core-sheath structure fiber in which the surface of a core material is coated with a coating material having a melting point lower than the melting point of the core material; The powder 4 is mixed with the fiber aggregate 7 in which the fiber 6 having a larger shape restoring force than the fiber 3 having the sheath structure coexists, and the surface material 8 is further superimposed on the surface of the fiber aggregate 7 to form a core-sheath structure. By heating the fiber 3 at a temperature equal to or higher than the melting temperature of the coating material 2, the fiber is bonded to at least a part of the fiber and the powder 4 by the fusion of the coating material 2 and the surface of the fiber aggregate 7 is bonded to the surface. It is characterized in that the members 8 are joined.

【0013】本発明の請求項8に係る吸音材の製造方法
は、芯材1の表面を芯材1の融点よりも低い融点の被覆
材2で被覆した芯鞘構造の繊維3と、この芯鞘構造の繊
維3より形状復元力の大きい繊維6とが共存する繊維集
合材7の片側の表面に表面材8を接着した後、この繊維
集合材7に粉体4を混合し、これを芯鞘構造の繊維3の
被覆材2の溶融温度以上の温度で加熱することによっ
て、繊維と繊維及び粉体4の少なくとも一部と繊維を被
覆材2の融着によって接合させることを特徴とするもの
である。
[0013] The method for producing a sound absorbing material according to claim 8 of the present invention comprises a core-sheath structure fiber 3 in which the surface of a core material 1 is coated with a coating material 2 having a melting point lower than the melting point of the core material 1; After adhering a surface material 8 to one surface of a fiber aggregate 7 in which a fiber 6 having a greater shape restoring force than the fiber 3 having a sheath structure coexists, a powder 4 is mixed with the fiber aggregate 7, and this is used as a core. By heating at a temperature equal to or higher than the melting temperature of the coating material 2 of the sheathed fiber 3, the fiber is bonded to at least a part of the fiber and the powder 4 by fusion of the coating material 2. It is.

【0014】また請求項9の発明は、芯材1の表面を芯
材1の融点よりも低い融点の被覆材2で被覆した芯鞘構
造の繊維3と、この芯鞘構造の繊維3より形状復元力の
大きい繊維6とが共存する繊維集合材7を、その厚み方
向で繊維密度が変化するものとして作製し、この繊維集
合材7に粉体4を混合することを特徴とするものであ
る。
According to a ninth aspect of the present invention, there is provided a fiber 3 having a core-sheath structure in which the surface of a core material 1 is coated with a coating material 2 having a melting point lower than the melting point of the core material 1, and a shape formed by the fiber 3 having the core-sheath structure. It is characterized in that a fiber aggregate 7 in which fibers 6 having a large restoring force coexist is produced as a material whose fiber density changes in the thickness direction, and a powder 4 is mixed with the fiber aggregate 7. .

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。本発明で用いる芯鞘構造の繊維3は、繊維本体と
なる芯材1の外周に被覆材2を被覆することによって図
2のように2層構造に形成したものである。芯材1は有
機繊維や無機繊維で形成することができるものであり、
有機繊維としてはポリエステル、ナイロン、ポリアクリ
ロニトリル、ポリプロピレン、ポリエチレン、ポリ塩化
ビニル等の合成樹脂繊維や、木質ファイバー、木綿、
麻、竹、リンター、絹、羊毛等の天然繊維や、レーヨン
等の再生繊維を例示することができ、無機繊維としては
ロックファイバー、ガラス、アルミナ、炭化ケイ素、炭
素、スチール等の繊維を例示することができる。
Embodiments of the present invention will be described below. The fiber 3 having a core-sheath structure used in the present invention is formed into a two-layer structure as shown in FIG. 2 by coating the outer periphery of a core material 1 serving as a fiber main body with a coating material 2. The core material 1 can be formed of organic fibers or inorganic fibers,
Organic fibers include synthetic resin fibers such as polyester, nylon, polyacrylonitrile, polypropylene, polyethylene, and polyvinyl chloride, wood fibers, cotton,
Natural fibers such as hemp, bamboo, linter, silk, wool and the like and regenerated fibers such as rayon can be exemplified. As inorganic fibers, fibers such as rock fiber, glass, alumina, silicon carbide, carbon, steel and the like are exemplified. be able to.

【0016】この有機繊維や無機繊維からなる芯材1に
被覆される被覆材2は、芯材1の融点よりも低い融点を
有する材料で形成されるものである。被覆材2は芯材1
よりも融点が低い材料であれば特に制限されるものでは
なく、例えば上記の有機繊維材料で形成することができ
るが、被覆材2の融点が芯材1の融点よりも10〜10
0℃程度低いものであることが好ましく、40〜60℃
低いものであることがより好ましい。芯鞘構造の繊維3
の芯材1と被覆材2は、30:70〜50:50の範囲
の重量比率のものが好ましい。
The coating material 2 coated on the core material 1 made of organic fibers or inorganic fibers is formed of a material having a melting point lower than the melting point of the core material 1. Coating material 2 is core material 1
The material is not particularly limited as long as the material has a lower melting point than the above. For example, the material may be formed of the above-mentioned organic fiber material.
It is preferably about 0 ° C. lower, and 40 to 60 ° C.
More preferably, it is low. Core sheath fiber 3
It is preferable that the core material 1 and the coating material 2 have a weight ratio of 30:70 to 50:50.

【0017】またこの芯材1の外周に被覆材2を被覆し
た芯鞘構造の繊維3は、特に限定されるものではない
が、1〜15デニールの範囲の繊維径のものを用いるの
が好ましく、繊維長は5〜100mmの範囲のものを用
いるのが好ましい。一方、この芯鞘構造の繊維3よりも
形状復元力が大きい繊維6とは、芯鞘構造の繊維3より
もいわゆる腰が強いものであり、例えば、芯鞘構造の繊
維3の芯材1を構成する繊維と同材質の繊維であって、
芯鞘構造の繊維3よりもデニールが大きいものを用いる
ことができる。
The fiber 3 having a core-sheath structure in which the outer periphery of the core material 1 is coated with the coating material 2 is not particularly limited, but preferably has a fiber diameter in the range of 1 to 15 denier. The fiber length is preferably in the range of 5 to 100 mm. On the other hand, the fiber 6 having a larger shape restoring force than the core-sheath structure fiber 3 has a higher so-called stiffness than the core-sheath structure fiber 3. Fibers of the same material as the constituent fibers,
A fiber having a higher denier than the core-sheath structure fiber 3 can be used.

【0018】一方、本発明において粉体4としては、特
に制限されることなく使用することができるが、金マイ
カ、シリカ、アクリル樹脂、タルク、シラスバルーン、
珪酸カルシウム、フッ素樹脂、パーライト、溶融シリ
カ、黒鉛、結晶セルロース、炭化ケイ素、珪藻土、ナイ
ロン、ポリエステル、炭素繊維、二酸化チタン、炭酸カ
ルシウム、ポリ塩化ビニル、ポリメタクル酸メチル、バ
リウムフェライト、シリコーン等の粉末を例示すること
ができ、これらの中から1種あるいは複数種を組み合わ
せて用いることができる。これらの中でも低周波数域の
吸音効果を高く得る上で、粉体4としてタルクを用いる
のが好ましい。またシラスバルーンを用いることによっ
て、特に中低周波数域の吸音効果を高く得ることができ
る。これらの粉体4は粒径が0.1〜1000μmの範
囲のものが好ましく、粉体4の嵩密度は0.1〜1.5
g/cm3 程度の範囲が好ましい。
On the other hand, the powder 4 in the present invention can be used without any particular limitation, but includes gold mica, silica, acrylic resin, talc, shirasu balloon,
Powders of calcium silicate, fluororesin, perlite, fused silica, graphite, crystalline cellulose, silicon carbide, diatomaceous earth, nylon, polyester, carbon fiber, titanium dioxide, calcium carbonate, polyvinyl chloride, polymethyl methacrylate, barium ferrite, silicone, etc. These can be exemplified, and one or more of these can be used in combination. Of these, talc is preferably used as the powder 4 in order to obtain a high sound absorbing effect in a low frequency range. In addition, by using a shirasu balloon, it is possible to obtain a high sound absorbing effect particularly in a middle and low frequency range. The powder 4 preferably has a particle size in the range of 0.1 to 1000 μm, and the bulk density of the powder 4 is 0.1 to 1.5 μm.
The range is preferably about g / cm 3 .

【0019】上記の芯鞘構造の繊維3と形状復元力が大
きい繊維6と粉体4を用いて吸音材Aを製造するにあた
っては、まず芯鞘構造の繊維3と形状復元力が大きい繊
維6を絡み合わせるようにして集合させてウェブ(シー
ト)にし、芯鞘構造の繊維3と形状復元力の大きい繊維
6とが共存する繊維集合材7を調製する。次にこのウェ
ブ状の繊維集合材7に粉体4を上方から振りかけ、繊維
集合材7に機械的な振動を与えることによって粉体4を
繊維集合材7の内部の空隙へと充填させ、繊維集合材7
の繊維3,6と粉体4とを混合する。
In manufacturing the sound absorbing material A using the above-mentioned fiber 3 having the core-sheath structure, the fiber 6 having a large shape restoring force, and the powder 4, first, the fiber 3 having the core-sheath structure and the fiber 6 having a large shape restoring force are used. Are entangled to form a web (sheet), and a fiber aggregate 7 in which fibers 3 having a core-sheath structure and fibers 6 having a large shape restoring force coexist is prepared. Next, the powder 4 is sprinkled from above onto the web-like fiber aggregate 7 and mechanical vibration is applied to the fiber aggregate 7 so that the powder 4 is filled into the voids inside the fiber aggregate 7, Assembly material 7
And the powder 4 are mixed.

【0020】ここで、芯鞘構造の繊維3のみを集合させ
てウェブ状の繊維集合材7を調製する場合、芯鞘構造の
繊維3は表面の融点の低い被覆材2の影響で腰が弱く形
状復元力が小さいために、繊維集合材7は厚みを保持す
ることができず厚みが薄くなって嵩高さが小さくなる。
従ってこのものでは繊維集合材7の繊維間の空隙が小さ
くなって、粉体4は繊維集合材7内に入っていき難くな
り、繊維集合材7内に粉体4を均一に分散させて混合す
ることが難しくなる。そこで本発明では、芯鞘構造の繊
維3より形状復元力の大きい繊維6を共存させて繊維集
合材7を調製するようにしており、形状復元力の大きい
繊維6によって繊維集合材7の厚みを保持して、繊維集
合材7の嵩高さを高くすることができるようにしてあ
る。従って本発明の繊維集合材7は繊維間の空隙が大き
くなっており、粉体4は繊維集合材7の内部に容易に入
るようになり、繊維集合材7内に粉体4を均一に分散さ
せて混合することができるものである。芯鞘構造の繊維
3と形状復元力の大きい繊維6との混合比率は、重量比
で5:5〜3:7の範囲が好ましい。
Here, in the case of preparing a web-like fiber aggregate 7 by assembling only the fibers 3 having a core-sheath structure, the fibers 3 having a core-sheath structure become weak due to the influence of the coating material 2 having a low melting point on the surface. Since the shape restoring force is small, the fiber aggregate 7 cannot maintain the thickness, and the thickness becomes thin and the bulkiness becomes small.
Therefore, in this material, the gap between the fibers of the fiber aggregate 7 becomes small, and the powder 4 becomes difficult to enter the fiber aggregate 7, and the powder 4 is uniformly dispersed and mixed in the fiber aggregate 7. It becomes difficult to do. Therefore, in the present invention, the fiber aggregate 7 is prepared by coexisting the fiber 6 having a larger shape restoring force than the fiber 3 having the core-sheath structure, and the fiber 6 having the large shape restoring force reduces the thickness of the fiber aggregate 7. By holding, the bulkiness of the fiber aggregate 7 can be increased. Therefore, in the fiber aggregate 7 of the present invention, the voids between the fibers are large, and the powder 4 can easily enter the inside of the fiber aggregate 7, and the powder 4 is uniformly dispersed in the fiber aggregate 7. And can be mixed. The mixing ratio of the fiber 3 having a core-sheath structure and the fiber 6 having a large shape restoring force is preferably in the range of 5: 5 to 3: 7 by weight.

【0021】またウェブ状の繊維集合材7に対する粉体
4の混合量は、繊維集合材7が100重量部に対して粉
体4が100〜5000重量部の範囲になるように設定
するのが好ましい。上記のように繊維集合材7に粉体4
を混合した後、これを芯鞘構造の繊維3の被覆材2の融
点よりも30〜40℃程度高い温度で加熱する。加熱温
度は芯鞘構造の繊維3の芯材1の融点や形状復元力の大
きい繊維6の融点よりも低い温度(且つ粉体4の融点よ
りも低い温度)に設定されるものであり、芯材1や形状
復元力の大きい繊維6は溶融しないが、被覆材2は溶融
するので、絡み合っている繊維3,6はその交点におい
て被覆材2が融着し、繊維3,6同士を接合させてミク
ロなネットワーク構造に形成することができる。またこ
の加熱による被覆材2の溶融で粉体4は被覆材2に融着
し、繊維3に付着して保持される。粉体4の総てが繊維
3に融着保持されることが理想的であるが、必ずしもそ
の必要はない。少なくとも一部の粉体4が繊維3に融着
されていればよく、粉体4のうち10重量%程度以上の
ものが繊維3に融着保持されていればよい。
The mixing amount of the powder 4 with respect to the web-like fiber aggregate 7 is set so that the amount of the powder 4 is in the range of 100 to 5000 parts by weight with respect to 100 parts by weight of the fiber aggregate 7. preferable. Powder 4 is added to fiber aggregate 7 as described above.
Is heated at a temperature about 30 to 40 ° C. higher than the melting point of the coating material 2 of the core-sheath structure fiber 3. The heating temperature is set at a temperature lower than the melting point of the core material 1 of the core-sheath fiber 3 and the melting point of the fiber 6 having a large shape restoring force (and lower than the melting point of the powder 4). Although the material 1 and the fiber 6 having a large shape restoring force do not melt, the coating material 2 melts, so that the entangled fibers 3 and 6 are fused at the intersection of the coating material 2 and the fibers 3 and 6 are joined together. Can be formed into a microscopic network structure. The powder 4 is fused to the coating material 2 by the melting of the coating material 2 by this heating, and is adhered to the fiber 3 and held. Ideally, all of the powder 4 is fused and held to the fiber 3, but this is not necessary. It is sufficient that at least a part of the powder 4 is fused to the fiber 3, and it is sufficient that about 10% by weight or more of the powder 4 is fused and held to the fiber 3.

【0022】上記のようにして、繊維3,6同士及び繊
維3と粉体4の少なくとも一部を融着させた図1のよう
な吸音材Aを得ることができるものであり、この吸音材
Aでは粉体4が繊維集合材7の空隙内に保持されてお
り、使用過程での振動によって粉体4が移動することを
抑制することができ、粉体4による低周波吸音特性を活
かしながら、粉体4の移動・偏りによる吸音性能の劣化
を防ぐことができるものである。またこの吸音材Aの繊
維集合材7には芯鞘構造の繊維3より形状復元力の大き
い繊維6が共存しているため、吸音材Aは嵩高い厚みを
保持することができ、吸音材Aの厚みが薄くなって吸音
特性が劣化することを防ぐことができるものである。
As described above, it is possible to obtain a sound absorbing material A as shown in FIG. 1 in which the fibers 3 and 6 and at least a part of the fiber 3 and the powder 4 are fused. In A, the powder 4 is held in the voids of the fiber aggregate 7, so that the movement of the powder 4 due to vibration during use can be suppressed, and the low frequency sound absorbing characteristics of the powder 4 can be utilized. In addition, it is possible to prevent the sound absorbing performance from deteriorating due to the movement and bias of the powder 4. Further, since the fiber 6 having a larger shape restoring force than the fiber 3 having the core-sheath structure coexists with the fiber aggregate 7 of the sound absorbing material A, the sound absorbing material A can maintain a bulky thickness. It is possible to prevent the sound absorbing characteristic from deteriorating due to the reduction in thickness.

【0023】図3は繊維集合材7の表面に表面材8を接
合して作製した吸音材Aの実施の形態の一例を示すもの
である。表面材8は粉体4を通過させることがないもの
であれば何でもよく、合成樹脂繊維やガラス繊維の不織
布や、紙、フィルムなどのシート材を用いることができ
る。また表面材8は繊維集合材7の片面に接合するよう
にしても、繊維集合材7の両面に接合するようにしても
いずれでもよいが、両面を表面材7で覆うようにするの
が好ましい。
FIG. 3 shows an embodiment of a sound absorbing material A produced by joining a surface material 8 to the surface of a fiber aggregate 7. The surface material 8 may be anything as long as it does not allow the powder 4 to pass through, and a nonwoven fabric of synthetic resin fiber or glass fiber, or a sheet material such as paper or film can be used. The surface material 8 may be bonded to one surface of the fiber aggregate 7 or to both surfaces of the fiber aggregate 7, but both surfaces are preferably covered with the surface material 7. .

【0024】このように繊維集合材7の表面を表面材8
で覆った吸音材Aは、繊維集合材7の表面において繊維
3,6間の空隙が表面材8で塞がれており、粉体4が繊
維集合材7の空隙から脱落したり移動したりすることを
防ぐことができ、粉体4の移動による偏りを一層低減す
ることができるものである。また表面材8は繊維集合材
7の表面において繊維3,6に接合しているために各繊
維3,6につなぎ止められており、表面材8が弛むこと
によって繊維3,6との間に生じる空間に粉体4が移動
することを防ぐことができ、粉体4の偏りをこの点でさ
らに低減することができるものである。
As described above, the surface of the fiber aggregate 7 is
In the sound absorbing material A covered with, the gap between the fibers 3 and 6 on the surface of the fiber aggregate 7 is closed by the surface material 8, and the powder 4 may fall off or move from the gap of the fiber aggregate 7. Can be prevented, and the bias due to the movement of the powder 4 can be further reduced. Further, the surface material 8 is bonded to the fibers 3 and 6 on the surface of the fiber aggregate 7 so that the surface material 8 is tied to the fibers 3 and 6. It is possible to prevent the powder 4 from moving to the generated space, and to further reduce the bias of the powder 4 in this respect.

【0025】このような繊維集合材7の表面に表面材8
を接合した吸音材Aを作製するにあたっては、上記のよ
うに繊維集合材7に粉体4を混合した後、繊維集合材7
の片側あるいは両側の表面に表面材8を重ね、この状態
で芯鞘構造の繊維3の被覆材2の融点よりも高い温度
(且つ芯鞘構造の繊維3の芯材1、形状復元力の大きい
繊維6、粉体4、表面材8の融点よりも低い温度)で加
熱することによって行なうことができるものであり、芯
鞘構造の繊維3を表面材8に融着させて繊維集合材7の
表面に表面材8を接合することができるものである。勿
論、このように芯鞘構造の繊維3に対する融着を利用し
て繊維集合材7の表面に表面材8を接合する他、接着剤
を用いて繊維集合材7の表面に表面材8を接着するよう
にしてもよい。
The surface material 8 is applied to the surface of the fiber aggregate 7.
In producing the sound absorbing material A in which the powder 4 is mixed with the fiber aggregate 7 as described above,
The surface material 8 is superimposed on one or both surfaces of the core material, and in this state, the temperature is higher than the melting point of the coating material 2 of the core-sheath structure fiber 3 (and the core material 1 of the core-sheath structure fiber 3 has a large shape restoring force). This can be performed by heating at a temperature lower than the melting points of the fibers 6, the powder 4, and the surface material 8). The surface material 8 can be joined to the surface. Of course, the surface material 8 is bonded to the surface of the fiber aggregate 7 using the fusion to the fiber 3 having the core-sheath structure, and the surface material 8 is bonded to the surface of the fiber aggregate 7 using an adhesive. You may make it.

【0026】また繊維集合材7の表面に表面材8を接合
した吸音材Aを作製するにあたっては、まず上記のよう
に芯鞘構造の繊維3と形状復元力の大きい繊維6とを混
合して両繊維3,6が共存するウェブ状の繊維集合材7
を調製した後、この繊維集合材7の片面に表面材8を接
合接着し、そしてこの表面材8を下側にして、繊維集合
材7に上方から粉体4を散布して混合し、この後に、必
要に応じて繊維集合材7に上面に他の表面材8を重ね、
これを芯鞘構造の繊維3の被覆材2の融点よりも高い温
度(且つ芯鞘構造の繊維3の芯材1、形状復元力の大き
い繊維6、粉体4、表面材8の融点よりも低い温度)で
加熱することによって行なうようにしてもよい。このよ
うに繊維集合材7に粉体4を散布混合するに先立って、
繊維集合材7の下面側に予め表面材8を接合しておけ
ば、繊維集合材7に上面側から散布した粉体4が繊維集
合材7を通過して繊維集合材7と表面材8の間に浸入し
て、芯鞘構造の繊維3の被覆材2の融着による繊維集合
材7と表面材8の接合が阻害されることを防止すること
ができるものである。このため、繊維集合材7と表面材
8の接合が確実に達成され、表面材8が弛むことによっ
て繊維3,6との間に生じる空間に粉体4が移動するこ
とを防いで粉体4の偏りを防止することができるもので
ある。
In producing the sound absorbing material A in which the surface material 8 is joined to the surface of the fiber aggregate 7, first, the fiber 3 having the core-sheath structure and the fiber 6 having a large shape restoring force are mixed as described above. Web-like fiber aggregate 7 in which both fibers 3 and 6 coexist
Is prepared, a surface material 8 is bonded and bonded to one surface of the fiber aggregate 7 and the powder 4 is sprayed from above onto the fiber aggregate 7 with the surface material 8 facing downward, and mixed. Later, if necessary, another surface material 8 is stacked on the upper surface of the fiber aggregate 7,
This temperature is higher than the melting point of the coating material 2 of the core-sheath structure fiber 3 (and the melting point of the core material 1 of the core-sheath structure fiber 3, the fiber 6 having a large shape restoring force, the powder 4, and the surface material 8). It may be performed by heating at a low temperature. Before the powder 4 is sprinkled and mixed with the fiber aggregate 7 in this way,
If the surface material 8 is previously bonded to the lower surface side of the fiber aggregate 7, the powder 4 scattered from the upper surface side to the fiber aggregate 7 passes through the fiber aggregate 7 and forms the fiber aggregate 7 and the surface material 8. It is possible to prevent the fiber aggregate 7 and the surface material 8 from being hindered due to the fusion of the coating material 2 with the fiber 3 having the core-sheath structure. For this reason, the bonding of the fiber aggregate 7 and the surface material 8 is reliably achieved, and the powder 4 is prevented from moving to the space created between the fibers 3 and 6 due to the loosening of the surface material 8, Can be prevented.

【0027】芯鞘構造の繊維3と形状復元力の大きい繊
維6とが共存するウェブ状(不織布状)の繊維集合材7
として、その厚み方向で繊維密度が変化するものを用い
ることができる。そしてこの厚み方向で繊維密度が変化
するように作製した繊維集合材7は、その繊維密度が高
い側を下に、その繊維密度が低い側を上にして配置し、
繊維集合材7に上方から粉体4を散布して繊維集合材7
内に粉体4を分散・混合させるようにするものであり、
繊維集合材7は上部が繊維密度が低く粗であって繊維間
の空隙が大きいために、粉体4は良好に繊維集合材7内
に入り込んで分散されると共に、繊維集合材7は下部が
繊維密度が高く密であって繊維間の空隙が小さいため
に、粉体4が繊維集合材7の下部に局所的に溜まるよう
なことがなく、繊維集合材7に粉体4を均一に分散混合
することができるものである。
Web-shaped (non-woven) fiber aggregate 7 in which fibers 3 having a core-sheath structure and fibers 6 having a large shape restoring force coexist.
A material whose fiber density changes in the thickness direction can be used. Then, the fiber aggregate 7 manufactured so that the fiber density changes in the thickness direction is arranged with the fiber density high side down and the fiber density low side up,
The powder 4 is sprayed from above onto the fiber aggregate 7 to
In order to disperse and mix the powder 4 inside,
Since the upper part of the fiber aggregate 7 has a low fiber density and is coarse and the gap between the fibers is large, the powder 4 is favorably introduced into the fiber aggregate 7 and dispersed, and the lower part of the fiber aggregate 7 is Since the fiber density is high and dense and the gap between the fibers is small, the powder 4 does not locally accumulate under the fiber aggregate 7 and the powder 4 is uniformly dispersed in the fiber aggregate 7. What can be mixed.

【0028】繊維密度の変化は、例えば0.5g/cm
3 と0.01g/cm3 の間で変化させるようにするこ
とができる。またこのような厚み方向で繊維密度が変化
する繊維集合材7は例えば次のようにして作製すること
ができる。すなわち、芯鞘構造の繊維3と形状復元力の
大きい繊維6とを混合したウェブを2枚のプレートで挟
んで、一方のプレートは例えば150℃程度の温度で加
熱すると共に他方のプレートは加熱しないで、0.35
〜1.0g/cm2 程度の圧力で加圧することによっ
て、加熱したプレートの側では繊維集合材7中の芯鞘構
造の繊維3の被覆材2で繊維3,6が融着されるために
繊維密度が高くなり、加熱しないプレートの側の繊維密
度は低くなる。このようにして厚み方向で繊維密度が変
化する繊維集合材7を作製することができるものであ
る。
The change in fiber density is, for example, 0.5 g / cm
It can be varied between 3 and 0.01 g / cm 3 . The fiber aggregate 7 in which the fiber density changes in the thickness direction can be manufactured, for example, as follows. That is, a web in which fibers 3 having a core-sheath structure and fibers 6 having a large shape restoring force are mixed is sandwiched between two plates, and one plate is heated at a temperature of, for example, about 150 ° C. and the other plate is not heated. And 0.35
By applying a pressure of about 1.0 g / cm 2 , the fibers 3 and 6 are fused with the coating material 2 of the core-sheath structure fiber 3 in the fiber aggregate 7 on the heated plate side. The fiber density is higher and the fiber density on the unheated plate side is lower. Thus, the fiber aggregate 7 whose fiber density changes in the thickness direction can be manufactured.

【0029】図4の吸音材Bは、図3のように得られた
吸音材Aをグラスウールやロックウール、発泡ポリウレ
タン、フェルト、不織布、紙などの多孔質材料9と積層
して作製したものである。高周波数域の吸音特性は優れ
ているが低周波数域の吸音特性が低い多孔質材料7に、
低周波数域の吸音特性が高い上記の吸音材Aを積層する
ことによって、低周波数域から、高周波数域に至るまで
吸音特性に優れた吸音材Bを得ることができるものであ
る。またこのように多孔質材料9を積層一体化すること
によって、吸音材Bの機械的強度を高めることもできる
ものであり、さらに多孔質材料9が背後空気層としての
作用をして低周波数域の吸音特性を一層向上させること
ができるものである。ここで吸音材Aと多孔質材料9と
は、接着剤等で接着して積層一体化するようにしても、
単に重ね合わせて積層するようにしても、いずれでもよ
い。またこの吸音材Bは図2で得た表面材8付きの吸音
材Aの代わりに、図1で得た表面材8のない吸音材Aを
積層して形成することもできる。
The sound absorbing material B shown in FIG. 4 is obtained by laminating the sound absorbing material A obtained as shown in FIG. 3 with a porous material 9 such as glass wool, rock wool, foamed polyurethane, felt, nonwoven fabric, paper and the like. is there. The porous material 7 which has excellent sound absorption characteristics in the high frequency range but has low sound absorption characteristics in the low frequency range,
By laminating the above-mentioned sound absorbing material A having high sound absorbing characteristics in a low frequency range, it is possible to obtain a sound absorbing material B having excellent sound absorbing characteristics from a low frequency range to a high frequency range. Further, by laminating and integrating the porous material 9 in this manner, the mechanical strength of the sound absorbing material B can be increased. Further, the porous material 9 acts as a back air layer so that the low frequency band can be obtained. Can be further improved. Here, even if the sound absorbing material A and the porous material 9 are laminated and integrated by bonding with an adhesive or the like,
Any of them may be simply superimposed and laminated. The sound absorbing material B can be formed by laminating the sound absorbing material A without the surface material 8 obtained in FIG. 1 instead of the sound absorbing material A with the surface material 8 obtained in FIG.

【0030】[0030]

【実施例】次に、本発明を実施例によって具体的に説明
する。 (実施例1)芯鞘構造の繊維として芯材がポリエステル
(融点150℃)、被覆材が低融点ポリエステル(融点
110℃)のユニチカ株式会社製「メルティ<4080
>」(繊維径4デニール、平均長さ51mm)を用い、
また形状復元力の大きい繊維としてユニチカ株式会社製
ポリエステル繊維「コンジュ捲縮線<H38F>」(繊
維径6デニール、平均長さ51mmのポリエステル繊維
28.6重量%と、繊維径13デニール、平均長さ51
mmのポリエステル繊維72.4重量%からなる)を用
い、芯鞘構造の繊維を30重量%、形状復元力の大きい
繊維を70重量%の割合で混合して集積することによっ
て、面密度が800g/m2 のウェブ状の繊維集合材を
形成した。この繊維集合材の上に平均粒径20μmのタ
ルク粉を6500g/m2 の散布量で均一に散布し、さ
らに機械的に振動させてタルク粉を繊維集合材の内部へ
落とし込むようにした。次にこの繊維集合材とタルク粉
との混合体を厚み30mmになるように加圧しながら1
50℃で30分間加熱処理することによって、図1のよ
うな厚み30mmの吸音材を得た。
Next, the present invention will be described specifically with reference to examples. (Example 1) "Melty <4080" manufactured by Unitika Ltd., whose core material is polyester (melting point 150 ° C.) and coating material is low melting point polyester (melting point 110 ° C.) as the core-sheath structure fiber.
> ”(Fiber diameter 4 denier, average length 51 mm)
As a fiber having a large shape restoring force, a polyester fiber "Conju Crimped Wire <H38F>" manufactured by Unitika Ltd. (28.6% by weight of a polyester fiber having a fiber diameter of 6 denier and an average length of 51 mm, a fiber diameter of 13 denier and an average length of 13 mm) Sa51
mm of 72.4% by weight of polyester fiber), 30% by weight of fibers having a core-sheath structure and 70% by weight of fibers having a large shape restoring force are collected and accumulated, so that the areal density is 800 g. / M 2 of a web-like fiber aggregate was formed. A talc powder having an average particle diameter of 20 μm was evenly sprayed on the fiber aggregate at a spray amount of 6500 g / m 2 , and further mechanically vibrated to drop the talc powder into the fiber aggregate. Next, while pressing the mixture of the fiber aggregate and the talc powder to a thickness of 30 mm,
By performing a heat treatment at 50 ° C. for 30 minutes, a sound absorbing material having a thickness of 30 mm as shown in FIG. 1 was obtained.

【0031】(実施例2)実施例1と同様にして作製し
た繊維集合材とタルク粉との混合体の上下両面を、ポリ
エステル不織布(ユニチカ株式会社製「メルティ<40
80>」(繊維径1.5デニール、平均長さ50mm)
を114℃の熱ロール処理して作製した面密度が70g
/m2 のもの)からなる表面材で挟み、そしてこれを厚
み30mmになるように加圧しながら150℃で30分
間加熱処理することによって、図3のような表面材で被
覆した厚み30mmの吸音材を得た。
Example 2 The upper and lower surfaces of a mixture of a fiber aggregate and talc powder prepared in the same manner as in Example 1 were coated on a polyester nonwoven fabric (“Melty <40” manufactured by Unitika Co., Ltd.).
80>"(fiber diameter 1.5 denier, average length 50mm)
Has a surface density of 70 g produced by hot roll treatment at 114 ° C.
/ M 2 ), and heat-treating at 150 ° C. for 30 minutes while applying pressure to a thickness of 30 mm to obtain a 30 mm thick sound absorbing material covered with the surface material as shown in FIG. Wood was obtained.

【0032】(実施例3)実施例1と同じ芯鞘構造の繊
維を30重量%、実施例1と同じ形状復元力の大きい繊
維を70重量%の割合で混合して集積することによっ
て、面密度が100g/m2 のウェブ状の繊維集合材を
形成した。この繊維集合材の上に平均粒径20μmのタ
ルク粉を1000g/m2 の散布量で均一に散布し、さ
らに機械的に振動させてタルク粉を繊維集合材の内部へ
落とし込むようにした。この繊維集合材とタルク粉との
混合体の上下両面を、実施例2と同じポリエステル不織
布からなる表面材で挟み、これを厚み3mmになるよう
に加圧しながら150℃で30分間加熱処理することに
よって図3の構造の厚み3mmの吸音材を得た。そして
この吸音材を連続気泡の発泡ポリウレタン(密度16k
g/m3 、厚さ30mm)からなる多孔質材料の上に重
ねることによって、図4のような合計厚み33mmの吸
音材を得た。
Example 3 A fiber having the same core-sheath structure as in Example 1 was mixed at a ratio of 30% by weight, and a fiber having a large shape restoring force as in Example 1 was mixed at a ratio of 70% by weight and accumulated. A web-like fiber aggregate having a density of 100 g / m 2 was formed. A talc powder having an average particle diameter of 20 μm was evenly sprayed on the fiber aggregate at a spray amount of 1000 g / m 2 , and further mechanically vibrated to drop the talc powder into the fiber aggregate. Upper and lower surfaces of the mixture of the fiber aggregate and the talc powder are sandwiched between surface materials made of the same polyester nonwoven fabric as in Example 2, and the mixture is heated at 150 ° C. for 30 minutes while being pressed to a thickness of 3 mm. Thus, a 3 mm thick sound absorbing material having the structure shown in FIG. 3 was obtained. Then, this sound absorbing material is made of open-cell foamed polyurethane (density 16k).
(g / m 3 , thickness 30 mm) to obtain a sound absorbing material having a total thickness of 33 mm as shown in FIG.

【0033】(実施例4)実施例1と同じ芯鞘構造の繊
維を30重量%、実施例1と同じ形状復元力の大きい繊
維を70重量%の割合で混合して集積することによっ
て、面密度が100g/m2 のウェブ状の繊維集合材を
形成した。この繊維集合材の上に平均粒径200μmの
シラスバルーン粉を500g/m2 の散布量で均一に散
布し、さらに機械的に振動させてシラスバルーン粉を繊
維集合材の内部へ落とし込むようにした。この繊維集合
材とシラスバルーン粉との混合体の上下両面を、実施例
2と同じポリエステル不織布からなる表面材で挟み、こ
れを厚み5mmになるように加圧しながら150℃で3
0分間加熱処理することによって図3の構造の厚み5m
mの吸音材を得た。そしてこの吸音材を実施例3と同じ
発泡ポリウレタン(密度16kg/m3 、厚み30m
m)からなる多孔質材料の上に重ねることによって、図
4のような合計厚み35mmの吸音材を得た。
(Example 4) By mixing and accumulating 30% by weight of fibers having the same core-sheath structure as in Example 1 and 70% by weight of fibers having a large shape restoring force as in Example 1, the surface area is increased. A web-like fiber aggregate having a density of 100 g / m 2 was formed. Shirasu balloon powder having an average particle diameter of 200 μm was evenly sprayed on the fiber aggregate at a spraying amount of 500 g / m 2 , and further mechanically vibrated to drop the Shirasu balloon powder into the fiber aggregate. . The upper and lower surfaces of the mixture of the fiber aggregate and the shirasu balloon powder are sandwiched between surface materials made of the same polyester non-woven fabric as in Example 2, and pressed at 150 ° C. while pressing to a thickness of 5 mm.
By heating for 0 minutes, the thickness of the structure of FIG.
m of the sound absorbing material was obtained. Then, this sound absorbing material was made of the same foamed polyurethane as in Example 3 (density: 16 kg / m 3 , thickness: 30 m).
m), a sound absorbing material with a total thickness of 35 mm as shown in FIG. 4 was obtained.

【0034】(実施例5)実施例1と同じ芯鞘構造の繊
維を30重量%、実施例1と同じ形状復元力の大きい繊
維を70重量%の割合で混合して集積することによっ
て、面密度が100g/m2 のウェブを形成した。この
ウェブの片面に実施例2と同じポリエステル不織布から
なる表面材を重ね、これを2枚の金属プレートの間に挟
み、0.55kg/cm2 の圧力で加圧しながら表面材
の側の金属プレートを150℃の温度で1分間加熱する
ことによって、片面に表面材を接着すると共に、表面材
を接着した側の繊維密度が高く反対側の繊維密度が低く
なるように繊維密度が厚み方向で変化する繊維集合材を
作製した。この繊維集合材を表面材が下側になるように
配置して、繊維集合材の上に平均粒径20μmのタルク
粉末を1000g/m2の散布量で均一に散布し、さら
に機械的に振動させてタルク粉末を繊維集合材の内部へ
落とし込むようにした。さらにこの繊維集合材の上面に
実施例2と同じ表面材を重ね、これを厚み3mmになる
ように加圧しながら150℃で30分間加熱処理するこ
とによって図3の構造の厚み3mmの吸音材を得た。
(Example 5) The fibers having the same core-sheath structure as in Example 1 were mixed at a ratio of 30% by weight and the fibers having the same shape restoring force as in Example 1 at a ratio of 70% by weight to be accumulated. A web having a density of 100 g / m 2 was formed. A surface material made of the same polyester non-woven fabric as in Example 2 was placed on one side of this web, sandwiched between two metal plates, and pressed with a pressure of 0.55 kg / cm 2 to form a metal plate on the side of the surface material. Is heated at a temperature of 150 ° C. for 1 minute to bond the surface material to one side and change the fiber density in the thickness direction so that the fiber density on the side to which the surface material is bonded is high and the fiber density on the other side is low. A fiber assembly material was produced. This fiber aggregate is arranged such that the surface material is on the lower side, and talc powder having an average particle diameter of 20 μm is evenly sprayed on the fiber aggregate at a spray amount of 1000 g / m 2 and further mechanically vibrated. Then, the talc powder was dropped into the fiber aggregate. Further, the same surface material as in Example 2 was overlaid on the upper surface of the fiber aggregate, and was heated at 150 ° C. for 30 minutes while being pressed so as to have a thickness of 3 mm, whereby the sound absorbing material having the structure of FIG. Obtained.

【0035】(比較例1)厚み30mmの連続気泡の発
泡ポリウレタン(密度16kg/m3 )をそのまま吸音
材とした。 (比較例2)2枚のポリエステル不織布(ユニチカ株式
会社製「エルベス」;50g/m2)の間にタルク粉末
(平均粒径20μm)の嵩密度0.5g/cm3 の層を
30mmの厚みで挟むことによって、吸音材を得た。
Comparative Example 1 An open-cell foamed polyurethane (density: 16 kg / m 3 ) having a thickness of 30 mm was directly used as a sound absorbing material. Comparative Example 2 A layer having a bulk density of 0.5 g / cm 3 of talc powder (average particle size: 20 μm) having a thickness of 30 mm was placed between two polyester nonwoven fabrics (“Elves” manufactured by Unitika Ltd .; 50 g / m 2 ). To obtain a sound absorbing material.

【0036】(比較例3)2枚のポリエステル不織布
(ユニチカ株式会社製「エルベス」;50g/m2)の
間にシラスバルーン粉末(平均粒径200μm)の嵩密
度0.2g/cm3の層を30mmの厚みで挟むことに
よって、吸音材を得た。 (比較例4)芯鞘構造の繊維として芯材がポリエステル
(融点150℃)、被覆材が低融点ポリエチレン(融点
115℃)のユニチカ株式会社製「メルティ<6080
>」(繊維径2デニール、平均長さ51mm)を用い、
これを集積して面密度100g/m2 のウェブを形成し
た。このウェブの上に平均粒径20μmのタルク粉を1
000g/m2 の散布量で均一に散布し、さらに機械的
に振動させてタルク粉をウェブの内部へ落とし込むよう
にした。このウェブとタルク粉との混合体の上下両面
を、ポリエステル不織布(ユニチカ株式会社製「エルベ
ス」;50g/m2 )からなる表面材で挟み、これを厚
み3mmになるように加圧しながら150℃で30分間
加熱処理することによって厚み3mmの吸音材を得た。
Comparative Example 3 A layer having a bulk density of 0.2 g / cm 3 of shirasu balloon powder (average particle size: 200 μm) between two polyester nonwoven fabrics (“Elves” manufactured by Unitika Ltd .; 50 g / m 2 ). Was sandwiched with a thickness of 30 mm to obtain a sound absorbing material. (Comparative Example 4) "Melty <6080" manufactured by Unitika Co., Ltd., whose core material is polyester (melting point 150 ° C.) and coating material is low melting point polyethylene (melting point 115 ° C.)
> ”(2 denier fiber diameter, 51 mm average length)
This was integrated to form a web having an areal density of 100 g / m 2 . A talc powder having an average particle diameter of 20 μm
The talc powder was evenly sprayed at a spraying rate of 000 g / m 2 and further mechanically vibrated so that the talc powder was dropped into the web. Both upper and lower surfaces of the mixture of the web and the talc powder are sandwiched between surface materials made of a polyester nonwoven fabric (“Elves” manufactured by Unitika Ltd .; 50 g / m 2 ), and pressed at 150 ° C. to a thickness of 3 mm. For 30 minutes to obtain a sound absorbing material having a thickness of 3 mm.

【0037】上記の実施例1〜4及び比較例1〜3で得
た各吸音材について、吸音特性をJIS A 1405
「管内法による建築材料の垂直入射吸音率測定方法」に
基づいて測定した。結果を図5、図6、図7に示す。図
5、図6、図7にみられるように、実施例1〜4のもの
はいずれも、多孔質吸音材である比較例1のものよりも
低周波数域で優れた吸音特性を示している。比較例2及
び3では粉体のみで吸音材を構成しているため、いずれ
も吸音特性が特定の周波数で鋭いピークを示すものにな
っており、特に比較例2は吸音ピーク周波数が特に低
く、吸音率も高いが、吸収する周波数の幅が極端に狭
い。これに対して、実施例1及び2の吸音材では、比較
例2と同様のタルク粉末を用いているが、吸音ピークの
周波数が高くなりはするものの吸音特性が広い周波数範
囲に及んでいる。さらに実施例3及び4においても同様
のことが言え、また、吸音率も大幅に向上している。さ
らに、実施例1及び2は、約7kg/m2 の重さである
が、同様にタルク粉末を用いる比較例2の重さは30m
m厚で約15kg/m2 の重量である。また、実施例3
及び4においては発泡ポリウレタンとの組み合わせによ
り、厚さ約3mmから5mmで優れた吸音特性を発現
し、大幅な重量の軽減を達成するとともに、大幅な吸音
特性の向上が認められた。特に、実施例4は約0.7k
g/m2 の重さであり、実施例1、2及び3と比較して
も大きく軽量化することができる。また、比較例2、3
及び4は粉体をポリエステル不織布で挟んだだけである
ので、傾けたり、揺すったりすると粉体が偏ったり飛び
散ったりするが、各実施例の吸音材では内部の粉体の偏
り、飛散は認められず、安定した特性が得られた。
The sound absorbing properties of each of the sound absorbing materials obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were measured according to JIS A 1405.
The measurement was carried out based on "Method of measuring normal incidence sound absorption coefficient of building material by pipe method". The results are shown in FIGS. 5, 6, and 7. As shown in FIGS. 5, 6, and 7, all of Examples 1 to 4 show superior sound absorption characteristics in a low frequency range as compared with that of Comparative Example 1 which is a porous sound absorbing material. . In Comparative Examples 2 and 3, since the sound-absorbing material was composed only of the powder, the sound-absorbing characteristics showed a sharp peak at a specific frequency, and in Comparative Example 2 particularly, the sound-absorbing peak frequency was particularly low. Although the sound absorption coefficient is high, the width of the frequency to be absorbed is extremely narrow. On the other hand, in the sound absorbing materials of Examples 1 and 2, the same talc powder as that of Comparative Example 2 was used. However, although the frequency of the sound absorbing peak was increased, the sound absorbing characteristics extended over a wide frequency range. Further, the same can be said for Examples 3 and 4, and the sound absorption coefficient is also significantly improved. Further, Examples 1 and 2 weigh about 7 kg / m 2 , while Comparative Example 2 using talc powder also weighs 30 m / m 2.
It is about 15 kg / m 2 in thickness m. Example 3
In No. 4 and No. 4, excellent sound absorbing properties were exhibited at a thickness of about 3 mm to 5 mm in combination with the foamed polyurethane, and a great reduction in weight was achieved, and a significant improvement in sound absorbing properties was recognized. In particular, Example 4 is about 0.7 k
g / m 2 , and can be greatly reduced in weight as compared with Examples 1, 2 and 3. Comparative Examples 2 and 3
In Nos. 4 and 4, the powder is only sandwiched between polyester non-woven fabrics, so that the powder is biased or scattered when tilted or shaken. And stable characteristics were obtained.

【0038】また、実施例5及び比較例4の吸音材から
縦10cm、横10cm、厚さ3mmのサンプルを作製
し、サンプルの面方向と平行にレシプロシェーカーにて
5分間の震動を与え、加震前と加震後の各サンプルに光
を透過させ、この透過光を撮影することによって、粉体
の移動の様子を観察した。この撮影写真をコンピュータ
で画像処理して濃淡の階調を段階的に表現したものを図
6に示す。図6において濃い箇所が粉体の多い部分であ
り、薄い箇所が粉体の少ない部分である。実施例5では
ウェブ内部で粉体粒子が均一に分散し、繊維と繊維、繊
維と粉体が有効に接合しているため、内部の粉体が移動
した様子はほとんど認められないが、比較例4では粉体
のウェブ内部での分散性が悪く、局所的に粉体が存在す
るため繊維と繊維の接合を阻害され、しかも繊維と粉体
との有効な接合が十分に形成されないため、5分間の加
震で粉体がかなり移動している様子が認められる。
A sample having a length of 10 cm, a width of 10 cm and a thickness of 3 mm was prepared from the sound absorbing materials of Example 5 and Comparative Example 4 and subjected to vibration for 5 minutes by a reciprocating shaker in parallel with the surface direction of the sample. Light was transmitted through each sample before and after the quake, and the transmitted light was photographed to observe the movement of the powder. FIG. 6 shows an image of the photographed image processed by a computer to express gradations of gradation in a stepwise manner. In FIG. 6, a dark portion is a portion with a large amount of powder, and a thin portion is a portion with a small amount of powder. In Example 5, since the powder particles were uniformly dispersed inside the web and the fibers and the fibers, and the fibers and the powder were effectively bonded, almost no movement of the powder inside was observed. In the case of No. 4, the dispersibility of the powder inside the web is poor, and the local presence of the powder hinders the fiber-fiber bonding. In addition, the effective bonding between the fiber and the powder is not sufficiently formed. It can be seen that the powder has moved considerably after a minute of shaking.

【0039】上記のように、各実施例の吸音材は、従釆
の吸音材に対して、低周波数域においても良好な吸音特
性を示し、粉体のこぼれ、偏り等による性能劣化を生じ
難いものであった。
As described above, the sound-absorbing materials of the respective embodiments show good sound-absorbing characteristics even in the low-frequency range with respect to the conventional sound-absorbing materials, and are unlikely to cause performance deterioration due to powder spillage, unevenness and the like. Was something.

【0040】[0040]

【発明の効果】上記のように本発明の請求項1に係る吸
音材は、芯材の表面を芯材の融点よりも低い融点の被覆
材で被覆した芯鞘構造の繊維と、この芯鞘構造の繊維よ
り形状復元力の大きい繊維とが共存する繊維集合材に粉
体が混合され、芯鞘構造の繊維の被覆材によって繊維と
繊維及び粉体の少なくとも一部と繊維が融着されている
ことを特徴とするものであり、繊維に粉体を融着させる
ことによって粉体の移動を防ぐことができ、粉体による
低周波数域の吸音特性を生かしながら、粉体の偏りによ
る吸音特性の劣化を防止することができると共に、さら
に形状復元力の大きい繊維によって嵩高さを保持した吸
音材を得ることができ、嵩高さの低下によって吸音特性
が劣化することを防ぐこともできるものである。
As described above, the sound-absorbing material according to claim 1 of the present invention comprises a fiber having a core-sheath structure in which the surface of a core material is coated with a coating material having a melting point lower than the melting point of the core material. Powder is mixed with a fiber aggregate in which fibers having a greater shape restoring force than the fibers of the structure coexist, and the fibers are fused with at least a part of the fibers and the fibers and the powder by the coating material of the core-sheath structure fibers. It is characterized by the fact that the powder can be prevented from moving by fusing the powder to the fiber. Can be prevented, and a sound-absorbing material having a high bulk can be obtained by a fiber having a large shape restoring force, and the sound absorbing characteristics can be prevented from deteriorating due to a decrease in the bulk. .

【0041】本発明の請求項2に係る吸音材は、芯材の
表面を芯材の融点よりも低い融点の被覆材で被覆した芯
鞘構造の繊維と、この芯鞘構造の繊維より形状復元力の
大きい繊維とが共存する繊維集合材に粉体が混合され、
芯鞘構造の繊維の被覆材によって繊維と繊維及び粉体の
少なくとも一部と繊維が融着接合されていると共に、繊
維集合材の表面に表面材が接合されていることを特徴と
するものであり、繊維に粉体を融着させることによって
粉体の移動を防ぐことができると共に、繊維間の空隙を
表面材で塞いで粉体が繊維間から脱落したりすることを
防ぐことができ、粉体の偏りによる吸音特性の劣化を効
果高く防止することができると共に、さらに形状復元力
の大きい繊維によって嵩高さを保持した吸音材を得るこ
とができ、嵩高さの低下によって吸音特性が劣化するこ
とを防ぐこともできるものである。
The sound-absorbing material according to claim 2 of the present invention has a core-sheath structure fiber in which the surface of a core material is coated with a coating material having a melting point lower than the melting point of the core material, and a shape-recovery structure obtained from the core-sheath structure fiber. Powder is mixed with fiber aggregate that coexists with strong fibers,
At least a part of the fiber and the fiber and the powder are fusion-bonded to the fiber by the sheath material of the core-sheath structure, and the surface material is bonded to the surface of the fiber aggregate. In addition, it is possible to prevent the movement of the powder by fusing the powder to the fiber, and to prevent the powder from falling off from between the fibers by closing the gap between the fibers with the surface material, Deterioration of the sound absorption characteristics due to the bias of the powder can be effectively prevented, and a sound absorbing material having a high bulkiness can be obtained by a fiber having a large shape restoring force, and the sound absorption characteristics deteriorate due to the decrease in the bulkiness. It can also prevent things.

【0042】また請求項3の発明は、粉体としてタルク
を用いるので、特に低い周波数域の吸音効果を高く得る
ことができるものである。また請求項4の発明は、粉体
としてシラスバルーンを用いるので、特に中低周波数域
の吸音効果を高く得ることができるものである。また請
求項5の発明は、上記の吸音材を、多孔質材料と積層す
るようにしたので、多孔質材料による補強作用で機械的
強度の高い吸音材を得ることができるものであり、また
多孔質材料の持つ吸音特性と粉体の持つ吸音特性、さら
に多孔質材料による背後空気層の効果の相乗で、広い周
波数域で吸音特性を有する吸音材を得ることができるも
のである。
According to the third aspect of the present invention, since talc is used as the powder, a high sound absorbing effect can be obtained particularly in a low frequency range. According to the fourth aspect of the present invention, since a shirasu balloon is used as the powder, it is possible to obtain a high sound absorbing effect particularly in a middle and low frequency range. According to the invention of claim 5, since the above-described sound absorbing material is laminated with a porous material, a sound absorbing material having high mechanical strength can be obtained by the reinforcing effect of the porous material. The sound absorbing material having the sound absorbing characteristics in a wide frequency range can be obtained by synergistic effects of the sound absorbing characteristics of the porous material and the powder and the effect of the back air layer of the porous material.

【0043】本発明の請求項6に係る吸音材の製造方法
は、芯材の表面を芯材の融点よりも低い融点の被覆材で
被覆した芯鞘構造の繊維と、この芯鞘構造の繊維より形
状復元力の大きい繊維とが共存する繊維集合材に粉体を
混合し、これを芯鞘構造の繊維の被覆材の溶融温度以上
の温度で加熱することによって、繊維と繊維及び粉体の
少なくとも一部と繊維を被覆材の融着によって接合させ
ることを特徴とするものであり、繊維集合材に粉体を混
合して加熱するだけで、繊維と繊維及び粉体と繊維が融
着した吸音材を簡単な工程で製造することができるもの
であり、しかも形状復元力の大きい繊維によって繊維集
合材の嵩高さを保つことができ、繊維集合材の内部への
粉体の分散を容易に、かつ、均一に行うことができるも
のである。
According to a sixth aspect of the present invention, there is provided a method of manufacturing a sound-absorbing material, comprising: a core-sheath fiber in which the surface of a core material is coated with a coating material having a melting point lower than the melting point of the core material; By mixing powder with a fiber aggregate in which fibers having a larger shape restoring force coexist, and heating the mixture at a temperature equal to or higher than the melting temperature of the sheathing material of the core-sheath structure fiber, the fiber and the fiber and the powder are mixed. It is characterized in that at least a part and the fiber are bonded by fusion of the coating material, and the fiber and the fiber and the powder and the fiber are fused only by mixing and heating the powder to the fiber aggregate. The sound absorbing material can be manufactured in a simple process, and the fibers having a large shape restoring force can maintain the bulkiness of the fiber aggregate, facilitating the dispersion of the powder inside the fiber aggregate. And can be performed uniformly.

【0044】本発明の請求項7に係る吸音材の製造方法
は、芯材の表面を芯材の融点よりも低い融点の被覆材で
被覆した芯鞘構造の繊維と、この芯鞘構造の繊維より形
状復元力の大きい繊維とが共存する繊維集合材に粉体を
混合し、さらにこの繊維集合材の表面に表面材を重ね、
これを芯鞘構造の繊維の被覆材の溶融温度以上の温度で
加熱することによって、繊維と繊維及び粉体の少なくと
も一部と繊維を被覆材の融着によって接合させると共に
繊維集合材の表面に表面材を接合させることを特徴とす
るものであり、繊維集合材に粉体を混合すると共に繊維
集合材に表面材を重ねて加熱するだけで、繊維と繊維及
び粉体と繊維、さらに繊維集合材と表面材が融着した吸
音材を簡単な工程で製造することができるものであり、
しかも形状復元力の大きい繊維によって繊維集合材の嵩
高さを保つことができ、繊維集合材の内部への粉体の分
散を容易に、かつ、均一に行うことができるものであ
る。
According to a seventh aspect of the present invention, there is provided a method for producing a sound-absorbing material, comprising: a core-sheath structure fiber in which the surface of a core material is coated with a coating material having a melting point lower than the melting point of the core material; The powder is mixed with a fiber aggregate in which fibers having a larger shape restoring force coexist, and a surface material is further laminated on the surface of the fiber aggregate,
By heating this at a temperature equal to or higher than the melting temperature of the core-sheath fiber coating material, at least a part of the fiber and the fiber and the powder are bonded to the fiber by fusing the coating material, and the fiber is bonded to the surface of the fiber aggregate. It is characterized by joining the surface material, and the powder is mixed with the fiber aggregate and the surface material is superimposed on the fiber aggregate only by heating, and the fiber and the fiber and the powder and the fiber, and further the fiber aggregate It is possible to produce a sound absorbing material in which the material and the surface material are fused by a simple process,
Moreover, the bulkiness of the fiber aggregate can be maintained by the fibers having a large shape restoring force, and the powder can be easily and uniformly dispersed in the fiber aggregate.

【0045】本発明の請求項8に係る吸音材の製造方法
は、芯材の表面を芯材の融点よりも低い融点の被覆材で
被覆した芯鞘構造の繊維と、この芯鞘構造の繊維より形
状復元力の大きい繊維とが共存する繊維集合材の片側の
表面に表面材を接着した後、この繊維集合材に粉体を混
合し、これを芯鞘構造の繊維の被覆材の溶融温度以上の
温度で加熱することによって、繊維と繊維及び粉体の少
なくとも一部と繊維を被覆材の融着によって接合させる
ことを特徴とするものであり、繊維集合材に粉体を混合
する際に、表面材と繊維集合材の間に粉体が侵入するこ
とを妨ぐことができ、表面材と繊雑集積材の接合性が向
上し、これによって粉体が移動しうる空間を減少させて
扮体の移動や偏りを一層確実に防止することができるも
のである。
The method for producing a sound-absorbing material according to claim 8 of the present invention is characterized in that a core-sheath structure fiber in which the surface of a core material is coated with a coating material having a melting point lower than the melting point of the core material, After adhering a surface material to one surface of a fiber aggregate in which fibers having a larger shape restoring force coexist, a powder is mixed into the fiber aggregate, and this is a melting temperature of a core-sheath structure fiber coating material. By heating at the above temperature, at least a part of the fiber and the fiber and the powder and the fiber is bonded by fusion of the coating material, when mixing the powder to the fiber aggregate It can prevent the powder from entering between the surface material and the fiber aggregate, improving the bonding between the surface material and the delicate integrated material, thereby reducing the space in which the powder can move. This makes it possible to more reliably prevent the dressing body from moving or biasing.

【0046】また請求項9の発明は、芯材の表面を芯材
の融点よりも低い融点の被覆材で被覆した芯鞘構造の繊
維と、この芯鞘構造の繊維より形状復元力の大きい繊維
とが共存する繊維集合材を、その厚み方向で繊維密度が
変化するものとして作製し、この繊維集合材に粉体を混
合するようにしたので、繊維集合材を繊維密度が高い側
を下に、繊維密度が低い側を上にして、上方から粉体を
散布して繊維集合材内に粉体を分散・混合させるにあた
って、繊維密度が低く繊維間の空隙が大きい繊維集合材
の上部に粉体は良好に入り込んで分散されると共に、繊
維密度が高く繊維間の空隙が小さい繊維集合材の下部に
粉体が局所的に溜まるようなことがなく、繊維集合材に
粉体を均一に分散混合することができるものである。
The ninth aspect of the present invention provides a fiber having a core-sheath structure in which the surface of a core material is coated with a coating material having a melting point lower than the melting point of the core material, and a fiber having a greater shape restoring force than the fiber having the core-sheath structure. The fiber aggregate in which the fiber density changes in the thickness direction was prepared, and the powder was mixed with the fiber aggregate. When dispersing and mixing the powder in the fiber aggregate by spraying the powder from above with the low fiber density side up, the powder is placed on top of the fiber aggregate with a low fiber density and a large gap between the fibers. The body penetrates well and is dispersed, and the powder is uniformly dispersed in the fiber aggregate without the local accumulation of powder below the fiber aggregate where the fiber density is high and the gap between fibers is small. What can be mixed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示す概略図であ
る。
FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention.

【図2】本発明で用いる芯鞘構造の繊維の拡大した一部
切欠斜視図である。
FIG. 2 is an enlarged partially cutaway perspective view of a fiber having a core-sheath structure used in the present invention.

【図3】本発明の他の実施の形態の一例を示す概略図で
ある。
FIG. 3 is a schematic diagram showing an example of another embodiment of the present invention.

【図4】本発明のさらに他の実施の形態の一例を示す概
略図である。
FIG. 4 is a schematic diagram showing an example of still another embodiment of the present invention.

【図5】実施例1,2及び比較例1,2の吸音特性(吸
音率と周波数の関係)を示すグラフである。
FIG. 5 is a graph showing sound absorption characteristics (relation between sound absorption coefficient and frequency) of Examples 1 and 2 and Comparative Examples 1 and 2.

【図6】実施例3及び比較例1,2の吸音特性(吸音率
と周波数の関係)を示すグラフである。
FIG. 6 is a graph showing sound absorption characteristics (relation between sound absorption coefficient and frequency) of Example 3 and Comparative Examples 1 and 2.

【図7】実施例4及び比較例1,3の吸音特性(吸音率
と周波数の関係)を示すグラフである。
FIG. 7 is a graph showing sound absorption characteristics (relation between sound absorption coefficient and frequency) of Example 4 and Comparative Examples 1 and 3.

【図8】吸音材サンプルの透過光を撮影した写真をコン
ピュータで画像処理して印刷した図である。
FIG. 8 is a diagram in which a photograph of transmitted light of a sound absorbing material sample is image-processed and printed by a computer.

【符号の説明】[Explanation of symbols]

1 芯材 2 被覆材 3 芯鞘構造繊維 4 粉体 6 形状復元力が大きい繊維 7 繊維集合材 8 表面材 9 多孔質材料 DESCRIPTION OF SYMBOLS 1 Core material 2 Coating material 3 Core-sheath structure fiber 4 Powder 6 Fiber with large shape restoring force 7 Fiber aggregate 8 Surface material 9 Porous material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大西 兼司 大阪府門真市大字門真1048番地松下電工株 式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kenji Onishi 1048 Odakadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works, Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 芯材の表面を芯材の融点よりも低い融点
の被覆材で被覆した芯鞘構造の繊維と、この芯鞘構造の
繊維より形状復元力の大きい繊維とが共存する繊維集合
材に粉体が混合され、芯鞘構造の繊維の被覆材によって
繊維と繊維及び粉体の少なくとも一部と繊維が融着され
ていることを特徴とする吸音材。
1. A fiber assembly in which a fiber having a core-sheath structure in which the surface of a core material is coated with a coating material having a melting point lower than the melting point of the core material, and a fiber having a greater shape restoring force than the fiber having the core-sheath structure coexist. A sound-absorbing material, wherein a powder is mixed with a material, and the fiber is fused to at least a part of the fiber, the fiber, and the powder by a covering material of a fiber having a core-sheath structure.
【請求項2】 芯材の表面を芯材の融点よりも低い融点
の被覆材で被覆した芯鞘構造の繊維と、この芯鞘構造の
繊維より形状復元力の大きい繊維とが共存する繊維集合
材に粉体が混合され、芯鞘構造の繊維の被覆材によって
繊維と繊維及び粉体の少なくとも一部と繊維が融着接合
されていると共に、繊維集合材の表面に表面材が接合さ
れていることを特徴とする吸音材。
2. A fiber assembly in which a fiber having a core-sheath structure in which the surface of a core material is coated with a coating material having a melting point lower than the melting point of the core material and a fiber having a greater shape restoring force than the fiber having the core-sheath structure coexist. The powder is mixed with the material, and at least a part of the fiber and the fiber and the fiber are fusion-bonded to the fiber by the core-sheath fiber covering material, and the surface material is bonded to the surface of the fiber aggregate. A sound absorbing material characterized in that:
【請求項3】 粉体はタルクであることを特徴とする請
求項1又は2に記載の吸音材。
3. The sound-absorbing material according to claim 1, wherein the powder is talc.
【請求項4】 粉体はシラスバルーンであることを特徴
とする請求項1又は2に記載の吸音材。
4. The sound-absorbing material according to claim 1, wherein the powder is a shirasu balloon.
【請求項5】 請求項1乃至4のいずれかの吸音材が、
多孔質材料と積層されていることを特徴とする吸音材。
5. The sound-absorbing material according to claim 1, wherein
A sound absorbing material characterized by being laminated with a porous material.
【請求項6】 芯材の表面を芯材の融点よりも低い融点
の被覆材で被覆した芯鞘構造の繊維と、この芯鞘構造の
繊維より形状復元力の大きい繊維とが共存する繊維集合
材に粉体を混合し、これを芯鞘構造の繊維の被覆材の溶
融温度以上の温度で加熱することによって、繊維と繊維
及び粉体の少なくとも一部と繊維を被覆材の融着によっ
て接合させることを特徴とする請求項1に記載の吸音材
の製造方法。
6. A fiber assembly in which a fiber having a core-sheath structure in which the surface of a core material is coated with a coating material having a melting point lower than the melting point of the core material and a fiber having a greater shape restoring force than the fiber having the core-sheath structure coexist. By mixing powder into the material and heating it at a temperature equal to or higher than the melting temperature of the sheathing of the core-sheathed fiber, the fibers are bonded to at least a portion of the fiber and the powder by fusion of the sheathing. The method for producing a sound absorbing material according to claim 1, wherein:
【請求項7】 芯材の表面を芯材の融点よりも低い融点
の被覆材で被覆した芯鞘構造の繊維と、この芯鞘構造の
繊維より形状復元力の大きい繊維とが共存する繊維集合
材に粉体を混合し、さらにこの繊維集合材の表面に表面
材を重ね、これを芯鞘構造の繊維の被覆材の溶融温度以
上の温度で加熱することによって、繊維と繊維及び粉体
の少なくとも一部と繊維を被覆材の融着によって接合さ
せると共に繊維集合材の表面に表面材を接合させること
を特徴とする請求項2に記載の吸音材の製造方法。
7. A fiber assembly in which a fiber having a core-sheath structure in which the surface of a core material is coated with a coating material having a melting point lower than the melting point of the core material, and a fiber having a larger shape restoring force than the fiber having the core-sheath structure coexist. The powder is mixed with the material, and the surface material is further superimposed on the surface of the fiber aggregate material, and heated at a temperature equal to or higher than the melting temperature of the sheathing material of the core-sheath structure fiber, whereby the fiber and the fiber and the powder are mixed. The method for producing a sound absorbing material according to claim 2, wherein at least a part of the fiber is bonded to the fiber by fusing the coating material, and a surface material is bonded to a surface of the fiber aggregate.
【請求項8】 芯材の表面を芯材の融点よりも低い融点
の被覆材で被覆した芯鞘構造の繊維と、この芯鞘構造の
繊維より形状復元力の大きい繊維とが共存する繊維集合
材の片側の表面に表面材を接着した後、この繊維集合材
に粉体を混合し、これを芯鞘構造の繊維の被覆材の溶融
温度以上の温度で加熱することによって、繊維と繊維及
び粉体の少なくとも一部と繊維を被覆材の融着によって
接合させることを特徴とする請求項2に記載の吸音材の
製造方法。
8. A fiber assembly in which a fiber having a core-sheath structure in which the surface of a core material is coated with a coating material having a melting point lower than the melting point of the core material, and a fiber having a greater shape restoring force than the fiber having the core-sheath structure coexist. After adhering the surface material to one surface of the material, powder is mixed into the fiber aggregate, and heated at a temperature equal to or higher than the melting temperature of the sheathing material of the core-sheath structure fiber, whereby the fiber and the fiber and The method for producing a sound absorbing material according to claim 2, wherein at least a part of the powder and the fiber are joined by fusing the covering material.
【請求項9】 芯材の表面を芯材の融点よりも低い融点
の被覆材で被覆した芯鞘構造の繊維と、この芯鞘構造の
繊維より形状復元力の大きい繊維とが共存する繊維集合
材を、その厚み方向で繊維密度が変化するものとして作
製し、この繊維集合材に粉体を混合することを特徴とす
る請求項6乃至8のいずれかに記載の吸音材の製造方
法。
9. A fiber assembly in which a fiber having a core-sheath structure in which the surface of a core material is coated with a coating material having a melting point lower than the melting point of the core material, and a fiber having a greater shape restoring force than the fiber having the core-sheath structure coexist. The method for producing a sound absorbing material according to any one of claims 6 to 8, wherein the material is produced as a material whose fiber density changes in the thickness direction, and powder is mixed with the fiber aggregate.
JP5828397A 1997-02-25 1997-02-25 Sound-absorbing material and manufacture thereof Withdrawn JPH10237978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5828397A JPH10237978A (en) 1997-02-25 1997-02-25 Sound-absorbing material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5828397A JPH10237978A (en) 1997-02-25 1997-02-25 Sound-absorbing material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10237978A true JPH10237978A (en) 1998-09-08

Family

ID=13079873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5828397A Withdrawn JPH10237978A (en) 1997-02-25 1997-02-25 Sound-absorbing material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10237978A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179896A (en) * 2008-01-29 2009-08-13 Toyota Boshoku Corp Method for producing fiber composite
US9033101B2 (en) 2008-05-23 2015-05-19 Zephyros, Inc. Sound absorption material and method of manufacturing sound absorption material
US10113322B2 (en) 2014-12-08 2018-10-30 Zephyros, Inc. Vertically lapped fibrous flooring
US10460715B2 (en) 2015-01-12 2019-10-29 Zephyros, Inc. Acoustic floor underlay system
US10755686B2 (en) 2015-01-20 2020-08-25 Zephyros, Inc. Aluminized faced nonwoven materials
US11541626B2 (en) 2015-05-20 2023-01-03 Zephyros, Inc. Multi-impedance composite

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179896A (en) * 2008-01-29 2009-08-13 Toyota Boshoku Corp Method for producing fiber composite
US9033101B2 (en) 2008-05-23 2015-05-19 Zephyros, Inc. Sound absorption material and method of manufacturing sound absorption material
US10113322B2 (en) 2014-12-08 2018-10-30 Zephyros, Inc. Vertically lapped fibrous flooring
US11542714B2 (en) 2014-12-08 2023-01-03 Zephyros, Inc. Vertically lapped fibrous flooring
US10460715B2 (en) 2015-01-12 2019-10-29 Zephyros, Inc. Acoustic floor underlay system
US10755686B2 (en) 2015-01-20 2020-08-25 Zephyros, Inc. Aluminized faced nonwoven materials
US11541626B2 (en) 2015-05-20 2023-01-03 Zephyros, Inc. Multi-impedance composite

Similar Documents

Publication Publication Date Title
Seddeq Factors influencing acoustic performance of sound absorptive materials
US5886306A (en) Layered acoustical insulating web
JP5586851B2 (en) Porous membrane
JP5092144B2 (en) Sound absorbing material and manufacturing method thereof
KR20080004481A (en) Layered sound absorptive non-woven fabric
WO2009125742A1 (en) Sound-absorbing composite structure
JP2005534538A (en) Low porosity exterior for soundproofing applications
JP2021500610A (en) Acoustic articles and related methods
US4386676A (en) Sound-damping mat or drape
WO2016103646A1 (en) Sound-absorbing material
JPH10237978A (en) Sound-absorbing material and manufacture thereof
JPH10240269A (en) Sound absorber and its manufacture
Yilmaz Acoustic properties of biodegradable nonwovens
JPH04146250A (en) Felt
JPH09317046A (en) Sound absorption material and manufacture thereof
JPH11133980A (en) Sound absorbing material and manufacture thereof
JPH108845A (en) Soundproof door
JP2772217B2 (en) Sound insulation panel
JPH06308968A (en) Sound absorbing material
JPH09114468A (en) Powder-containing sheet-like material and sound absorbing material formed by using powder-containing sheet-like material
JPH09256503A (en) Sound absorbing material
US20230395056A1 (en) Acoustic articles and assemblies
JP2000282595A (en) Sound insulation panel
JP2003094583A (en) Sound absorbing and insulating material made of polyester fiber and its manufacturing method
JPH09111909A (en) Wall panel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511