WO2016103646A1 - Sound-absorbing material - Google Patents

Sound-absorbing material Download PDF

Info

Publication number
WO2016103646A1
WO2016103646A1 PCT/JP2015/006267 JP2015006267W WO2016103646A1 WO 2016103646 A1 WO2016103646 A1 WO 2016103646A1 JP 2015006267 W JP2015006267 W JP 2015006267W WO 2016103646 A1 WO2016103646 A1 WO 2016103646A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fiber
fabric structure
sound
thickness
Prior art date
Application number
PCT/JP2015/006267
Other languages
French (fr)
Japanese (ja)
Inventor
谷 直幸
悠 中嶋
徹 藤澤
俊文 名木野
基 畑中
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016103646A1 publication Critical patent/WO2016103646A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials

Definitions

  • the present invention relates to a sound absorbing material.
  • a sound absorbing material is used, and as a kind of the sound absorbing material, for example, a structure (nonwoven fabric structure) made of nonwoven fabric fibers is used.
  • the nonwoven fabric structure is used not only for sound absorbing materials but also for various applications.
  • a nonwoven fabric structure having a fiber body in which resin nanofibers having a fiber diameter of less than 1 ⁇ m are entangled is known (see, for example, Patent Documents 1 to 7).
  • Patent Documents 1 to 7 a nonwoven fabric structure in which the fibrous body has a thickness of 10 mm or more is known (see, for example, Patent Documents 3 to 7).
  • JP 2013-139655 A Japanese Unexamined Patent Publication No. 2014-111850 JP 2014-015042 A JP 2009-512578 A JP 2013-50397A Special table 2011-508113 gazette JP 2013-147771 A
  • the nonwoven fabric structure is expected to have various functions due to the fine fiber diameter of the nanofiber.
  • the production of nanofibers is still more difficult than that of microfibers, and the structural conditions (for example, thickness, density, etc.) of the above-mentioned fibrous body using nanofibers have not been sufficiently studied.
  • the thickness none of the above-mentioned patent documents discloses knowledge about the function provided by the above-described fibrous body that is thicker than 10 mm.
  • non-woven fabric structure is expected to be used for various purposes, there is still room for study on the function expressed by the structural conditions of the non-woven fabric structure.
  • An object of the present invention is to provide a sound-absorbing material having excellent sound-absorbing characteristics using nanofibers.
  • the present invention is a sound-absorbing material including a nonwoven fabric structure having a fiber body in which fibers are entangled, and the fiber includes a nanofiber made of polypropylene having a fiber diameter of less than 1 ⁇ m, and the thickness of the fiber body Is 20 mm or more and 36 mm or less, the fiber density of the fiber body is 10 kg / m 3 or more and less than 50 kg / m 3 , and the content ratio of the nanofibers in the fiber body is 0.5 or more by mass ratio.
  • a sound-absorbing material having a sound absorption coefficient of 1 kHz sound of 0.59 or more and 0.84 or less and a sound absorption coefficient of 6 kHz sound of 0.80 or more and 0.96 or less.
  • the sound-absorbing material according to the present invention is superior in the sound-absorbing property of the sound in the low frequency range as compared with the non-woven structure including the fiber body made of microfiber. Moreover, the nonwoven fabric product containing this nonwoven fabric structure can express the expected function other than a sound absorption characteristic, and said outstanding sound absorption characteristic.
  • Drawing 1A is a figure showing typically the 1st mode of the nonwoven fabric structure concerning a 1st embodiment of the present invention
  • Drawing 1B is a figure showing typically the 2nd mode of the above-mentioned nonwoven fabric structure
  • 1C is a diagram schematically showing a third aspect of the nonwoven fabric structure
  • FIG. 1D is a diagram schematically showing a fourth aspect of the nonwoven structure
  • FIG. 7 is a diagram schematically showing a fifth aspect of the nonwoven fabric structure. It is a figure which shows the sound absorption characteristic of the nonwoven fabric structures 1 and 2 and the nonwoven fabric structure C1.
  • FIG. 1A is a figure showing typically the 1st mode of the nonwoven fabric structure concerning a 1st embodiment of the present invention
  • Drawing 1B is a figure showing typically the 2nd mode of the above-mentioned nonwoven fabric structure
  • 1C is a diagram schematically showing a third aspect of the nonwoven fabric structure
  • FIG. 1D is a diagram schematically showing a fourth aspect of the
  • FIG. 3A is a scanning electron microscope (SEM) photograph showing a part of an example of a fiber body using nanofibers in the present invention at 200 times magnification
  • FIG. 3B is a part of an example of the fiber body of 2000 It is a SEM photograph enlarged and shown twice.
  • FIG. 4A is an SEM photograph showing a part of an example of a fiber body in which nanofibers and microfibers are mixed in the present invention at 200 times magnification
  • FIG. 4B is a part of an example of the fiber body 2000 It is a SEM photograph enlarged and shown twice.
  • the sound absorbing material according to the present embodiment includes a nonwoven fabric structure.
  • the nonwoven fabric structure has a fiber body in which fibers are entangled.
  • the fiber body is, for example, a nonwoven fabric.
  • the fiber includes nanofibers having a fiber diameter of less than 1 ⁇ m.
  • the fiber diameter of the nanofiber is a value representative of the thickness of the nanofiber, and may be an average value, a median value, or a mode value, for example. Good. When the fiber diameter of the nanofiber is 1 ⁇ m or more, the fiber does not correspond to the nanofiber, and the sound absorption effect described later may be insufficient.
  • the fiber diameter is preferably 0.20 to 0.95 ⁇ m, more preferably 0.20 to 0.70 ⁇ m, from the viewpoint of sound absorption effect and prevention of collapse of the non-planted structure.
  • the fiber diameter can be obtained by observing an enlarged image of the fiber body.
  • a lump containing the fiber body of about 3 mm square is stuck on a carbon tape, Au is evaporated on the fiber body for about 2 minutes, and a scanning electron microscope VE-7800 (manufactured by Keyence Corporation) is used.
  • VE-7800 scanning electron microscope
  • the nanofiber is made of resin.
  • the resin can be appropriately selected from resins used as raw materials for chemical fibers.
  • the resin may be one kind or more, and examples thereof include general-purpose plastic, engineering plastic, and super engineering plastic.
  • general-purpose plastic include polypropylene (PP), polyethylene (PE), polyurethane (PU), polylactic acid (PLA), and acrylic resin (for example, PMMA).
  • engineering plastic include polyethylene terephthalate (PET), nylon 6 (N6), nylon 6,6 (N66), and nylon 12 (N12).
  • the super engineering plastic include polyphenylene sulfide (PPS) and liquid crystal polymer (LCP).
  • the said resin is a polypropylene from the viewpoint of making the sound absorption effect and the versatility with respect to the sound of the low frequency range represented by the sound absorption rate of 1 kHz compatible.
  • the thickness of the fibrous body is 10 mm or more.
  • the thickness of the fibrous body is measured at an appropriate portion according to the shape of the fibrous body. For example, if the shape of the fibrous body is a sheet, it is the average thickness of the flat portion of the fibrous body. Moreover, when the shape of the said fiber body contains an unevenness
  • the thickness of the fiber body is the sum of the thicknesses of the fiber bodies in the stacking direction.
  • the thickness of the fiber body may be the thickness of the fiber body on the support, and the thickness of the support body is that of the fiber body.
  • the thickness is sufficiently small with respect to the thickness (for example, the thickness of the support is 200 ⁇ m or less), the thickness of the support may be included.
  • the thickness is less than 10 mm, the absorption rate of sound waves having a frequency of 1 kHz or less may be insufficient.
  • the thickness can be obtained, for example, by measuring the thickness at any of a plurality of locations in the fibrous body and averaging them.
  • the said thickness can be suitably determined according to the use of the said nonwoven fabric structure.
  • There is no upper limit on the sound absorption effect depending on the thickness but the shape and size of the nonwoven fabric structure may be limited in the space in which the sound absorbing material is installed depending on, for example, in-vehicle use. In addition, it may be limited by the usage environment of the nonwoven fabric structure. Therefore, the upper limit value of the thickness of the nonwoven fabric structure is usually determined as appropriate according to the application.
  • the thickness of the fibrous body is preferably 20 mm or more from the viewpoint of exhibiting a sufficient sound absorbing effect, and the sound absorbing material can be arranged according to the application. From the viewpoint of space saving, it is preferably 36 mm or less, and more preferably 30 mm or less. For example, from the above viewpoint, the thickness of the fibrous body may be 20 mm.
  • the sound absorbing effect of the sound absorbing material can be defined by the sound absorption rate of 1 kHz sound and the sound absorption rate of 6 kHz sound.
  • the sound absorption rate of the 1 kHz sound is preferably 0.59 or more, and more preferably 0.68 or more. 0.72 or more is more preferable, and 0.82 or more is even more preferable. Further, from the viewpoint of the balance between the sound absorbing effect and the space saving, the sound absorption rate of the 1 kHz sound may be 0.84 or less, for example, 0.82.
  • the sound absorption coefficient of 1 kHz sound can be increased, for example, by increasing the mass ratio of nanofibers in the fibrous body.
  • the sound absorption rate of 6 kHz sound may be, for example, 0.80, preferably 0.80 or more, and preferably 0.84 or more. More preferably, it is more preferably 0.88 or more. Further, from the viewpoint of the balance between the sound absorption effect and the space saving, the sound absorption rate of the 6 kHz sound may be 0.96 or less, or 0.93 or less.
  • a sound absorption coefficient of 6 kHz sound can be achieved, for example, by a sufficient thickness and fiber density of the fiber body.
  • the fiber density of the fiber body is 10 kg / m 3 or more and less than 50 kg / m 3 . If the fiber density is less than 10 kg / m 3 , the sound absorbing effect described below may be insufficient for both sound having a frequency of 1 kHz or less and sound having a higher frequency. When the fiber density is 50 kg / m 3 or more, the sound absorption effect of a sound in a high frequency region having a frequency of 4 kHz or more (for example, 6 kHz), or a sound in the vicinity of a frequency of 1 kHz may be insufficient.
  • the fiber density is 10 to 25 kg / m 3 , in addition to the sound absorption effect for sound with a frequency of 1 kHz or less, and for sound in a high frequency range (for example, 2 to 6 kHz) having a higher frequency. It is preferable from the viewpoint of producing and enhancing a sound absorbing effect.
  • the fiber density is obtained by dividing the basis weight of the fiber body by the thickness.
  • the basis weight is the mass of fibers per unit area in the fiber body.
  • the basis weight is determined, for example, by calculating the mass per unit area from the mass of the fibrous body.
  • the fiber density can be adjusted by one or both of the basis weight and the thickness.
  • the fiber body may be composed of only nanofibers or may further include microfibers in addition to nanofibers.
  • the microfiber is, for example, a fiber having a fiber diameter of 2 to 50 ⁇ m. It is preferable that the fibrous body contains the microfiber from the viewpoint of further increasing the strength of the fibrous body and maintaining the shape of the fibrous body (suppressing deformation due to compression of the fibrous body).
  • the type of microfiber may be one or more. If the content of the microfiber in the fiber body is too large, the sound absorption effect by the fiber body may be insufficient. If the content is too small, the effect of improving the strength of the fiber body due to the mixing of the microfiber is obtained. It may be insufficient. From the viewpoint of the sound absorption effect and the strength improvement effect, the content ratio of the nanofiber in the fiber body is 0.5 or more in terms of mass ratio.
  • the above-mentioned content ratio can be appropriately determined within a range that can sufficiently absorb a sound in a lower frequency range than a conventional sound absorbing material represented by a sound of 1 kHz.
  • the content ratio may be 0.5, 0.75, or 1.0.
  • nanofibers are sufficiently present in the thickness direction of the fibrous body from the viewpoint of expressing the sound absorption effect of the nanofibers.
  • the fiber diameter and the content of the microfiber can be obtained by observing an enlarged image of the fiber body.
  • the fiber diameter of the microfiber can be obtained in the same manner as the fiber diameter of the nanofiber described above except that the magnification in the enlarged image is appropriately adjusted (for example, 100 times).
  • the magnification in the enlarged image is appropriately adjusted (for example, 100 times).
  • the content of the microfiber can be obtained from the ratio of the occupied area of the nanofiber and the occupied area of the microfiber in the enlarged image.
  • the content of the microfiber can be determined from the difference in mass of the sample before and after the removal by separating and removing the microfiber or nanofiber from the sample of the fibrous body having a known mass.
  • the distribution width of the fiber diameter distribution of the nanofiber is narrower than the distribution width of the fiber diameter distribution of the microfiber, and appropriately controls the sound absorption effect by the nanofiber and the strength improvement effect by the microfiber. It is preferable from the viewpoint.
  • the fiber diameter distribution of the nanofiber can be appropriately determined within a range where the fiber diameter of the nanofiber is less than 1 ⁇ m.
  • the non-woven fabric structure may be configured by directly arranging the fibrous body at an intended site, but may further include a support for supporting the fibrous body. It is preferable that the nonwoven fabric structure has the support from the viewpoint of maintaining the desired shape of the fibrous body.
  • the support is a sheet-like member, for example.
  • the material of the support can be appropriately selected within the range where the effects of the present embodiment are exhibited. Examples of the support include a nonwoven fabric, a woven fabric, a film, paper, and a foam layer. It is preferable that the support is sufficiently thin as compared with the fiber body and further excellent in air permeability or liquid permeability from the viewpoint of sufficiently expressing the intended function of the fiber body.
  • the thickness of the support is, for example, 20 to 500 ⁇ m.
  • the support may be one or more.
  • the fiber body may be supported by the support body on one side, or may be supported by being sandwiched between two support bodies.
  • the said nonwoven fabric structure may have the said 2 or more said fiber body, and may have the said support body at least between the said fiber bodies.
  • two fiber bodies may be supported on each of both surfaces of one support.
  • the structure in which the support is arranged between the fibrous bodies greatly increases the strength against deformation (for example, collapse) of the fibrous body due to the flexibility of the nanofiber, and deformation or destruction (for example, tearing) in the planar direction. It is effective from the viewpoint of improving it.
  • the fiber body can be manufactured using a known manufacturing method of nanofibers as described in Patent Document 2, for example.
  • the fibrous body can be manufactured by a melt spinning apparatus using high-speed air.
  • the melt spinning apparatus includes, for example, a melt extruder that melts and transports a thermoplastic resin, a spinning nozzle that discharges the transported molten resin into a fiber shape, and an air nozzle that blows high-temperature heated air near the spinning nozzle. .
  • the fiber body can be produced by using the melt spinning apparatus to quickly stretch the thermoplastic resin with the high-speed air stream.
  • the melt spinning device may further include a voltage applying device that applies a high voltage to the molten resin discharged from the spinning nozzle, if necessary. By having the voltage applying device, the melt spinning device can further adjust the fiber diameter in the fiber body.
  • the fiber body further including the microfibers may be obtained by simultaneously spinning a plurality of the melt spinning apparatuses that utilize high-speed air in the longitudinal direction, the lateral direction, or in both directions, and spinning the nanofibers.
  • This method spins nanofiber and microfiber simultaneously. For this reason, it is possible to produce the fiber body in which the nanofibers and the microfibers are substantially uniform, and the nanofibers are sufficiently present and intertwined with the microfibers (see FIGS. 4A and 4B). Said method is preferable from a viewpoint of making a nanofiber fully exist in the thickness direction of a fibrous body.
  • the fiber body supported by the support body generates, for example, an air flow from the air nozzle toward the surface of the support body, and is provided from one or both of the first spinning nozzle and the second spinning nozzle. It is possible to manufacture by discharging the material of the period and collecting the produced fiber on the surface of the support.
  • the nonwoven fabric structure composed of a plurality of stacked fiber bodies supported by the support body includes a plurality of the support bodies, or the fibers of the fiber body supported on the support body. It is possible to manufacture by combining the bodies or the support and the fibrous body and bonding, welding, or fixing a part thereof as necessary.
  • the melt spinning apparatus utilizing the high-speed air
  • a known method such as a melt blown method or an electrospinning method is not desirable from the viewpoint of stable productivity, but is used for manufacturing the fibrous body. It is possible. Further, the nanofiber and the microfiber may be manufactured by the same method or may be manufactured by different methods.
  • FIG. 1A is a diagram schematically illustrating a first aspect of the nonwoven fabric structure
  • FIG. 1B is a diagram schematically illustrating a second aspect of the nonwoven fabric structure
  • FIG. 1C is a diagram illustrating the nonwoven fabric
  • FIG. 1D is a diagram schematically showing a fourth aspect of the nonwoven fabric structure
  • FIG. 1E is a fifth diagram of the nonwoven fabric structure. It is a figure which shows an aspect typically.
  • the non-woven fabric structure 10A is composed of only the fiber body 1 as shown in FIG. 1A.
  • the fiber body 1 is configured to satisfy the above-described thickness and density with only nanofibers or with nanofibers and microfibers.
  • the nonwoven fabric structure 10B is comprised from the fiber body 1 and the support body 2, as FIG. 1B shows.
  • the support 2 is, for example, a resin nonwoven fabric sheet.
  • the fiber body 1 is supported on one surface of the support 2.
  • the nonwoven fabric structure 1B is produced, for example, by forming the fiber body 1 on one surface of the support 2.
  • the nonwoven fabric structure 10C is composed of a fiber body 1 and two supports 2 that sandwich the fiber body 1 from both sides in the thickness direction.
  • the nonwoven fabric structure 10C is produced, for example, by combining the fiber bodies 1 of the two nonwoven fabric structures 1B.
  • the nonwoven fabric structure 10 ⁇ / b> D is configured such that the fiber body 1 is supported on each of both surfaces of a single support body 2.
  • the nonwoven fabric structure 1D is produced, for example, by forming the fiber body 1 simultaneously on both surfaces of a single support 2 or sequentially on one surface of the support 2.
  • the nonwoven fabric structure 1E is composed of a plurality of fibrous bodies 1 and a plurality of supports 2 as shown in FIG. 1E.
  • the support body 2 is arrange
  • the nonwoven fabric structure 1E is produced, for example, by appropriately stacking one or more of the nonwoven fabric structures 1B, 1C, 1D.
  • the non-woven fabric structure is excellent in both sound absorption performance with a frequency higher than 1 kHz and sound absorption performance with a frequency of 1 kHz or less. The reason is considered as follows.
  • the above-mentioned fibrous body is composed of fibers sufficiently containing nanofibers, and has a sufficient thickness and an appropriate fiber density. Very minute voids are formed inside the fibrous body. Sound that is vibration (sound waves) of air passes through the fiber body.
  • the nanofibers are thin and rich in flexibility. Therefore, the nanofibers resonate due to the vibration of the air. For this reason, the nanofiber vibrates and heat is generated by friction between the nanofibers. Thus, the sound energy that vibrates the nanofibers is converted into thermal energy by vibrating the nanofibers through the fiber body.
  • a sound absorption effect of sound in a low frequency range of 1 kHz or less is more likely to occur compared to a conventional fibrous body. This is not only because the nanofibers are sufficiently flexible and exist with sufficient fiber density, so that not only the higher frequency, more vibration energy, but also the lower frequency, lower vibration energy. This is probably because it can be converted into thermal energy.
  • the sound absorbing material includes a nonwoven fabric structure having a fiber body in which fibers are entangled, and the fiber includes a nanofiber made of polypropylene having a fiber diameter of less than 1 ⁇ m,
  • the thickness of the fiber body is 20 mm or more and 36 mm or less
  • the fiber density of the fiber body is 10 kg / m 3 or more and less than 50 kg / m 3
  • the content ratio of the nanofiber in the fiber body is 0.5 by mass ratio. Since the sound absorption coefficient of 1 kHz sound is 0.59 or more and 0.84 or less and the sound absorption coefficient of 6 kHz sound is 0.80 or more and 0.96 or less, the sound in the low frequency range is excellent. Appears sound absorbing properties.
  • the said nonwoven fabric structure further has the support body which supports the said fiber body from a viewpoint of maintaining the original shape of the said fiber body, and the viewpoint of raising the intensity
  • the nonwoven fabric structure may be supported by the fiber body supported by the support on one side or sandwiched between the two supports, or the nonwoven fabric.
  • the structure may have two or more of the fiber bodies, and may have the support body at least between the fiber bodies.
  • the support is at least one selected from the group consisting of a nonwoven fabric, a woven fabric, a film, paper, and a foam layer, and is more effective from the viewpoint of easy availability and enhancing the productivity of the nonwoven fabric structure. It is.
  • the fibrous body further includes microfibers having a fiber diameter of 2 to 50 ⁇ m. It is.
  • the distribution width of the fiber diameter distribution of the nanofiber is narrower than the distribution width of the fiber diameter distribution of the microfiber, from the viewpoint of designing the sound absorption effect of the low-frequency sound and the strength improvement effect. More effective.
  • the nonwoven fabric structure generally has the above-described unique sound absorption characteristics and also has air permeability or liquid permeability. Therefore, the said nonwoven fabric structure can be employ
  • the nonwoven fabric structure is suitably used as a constituent member of nonwoven fabric products such as a sound absorbing material, a sound insulating material, a filtering material, a heat insulating material, an insulating separator, an oil adsorbing material, a surface cleaning cloth, and a medical covering material. Used.
  • Example 1 Air of high speed and high temperature (for example, 200 m / sec, 300 ° C.) is ejected in one direction from the air nozzle, and a nonwoven fabric made of polypropylene is installed as a support downstream of the high speed and high temperature airflow from the air nozzle.
  • the nonwoven fabric is a nonwoven fabric produced by a spunlace method, and its basis weight is 20 g / m 3 and its thickness is 140 ⁇ m.
  • polypropylene (PP, “Prime Polypro J106G” manufactured by Prime Polymer Co., Ltd.) is passed through a spinning nozzle adjusted to 300 ° C. and sufficiently melted, and then the melted PP is passed from the spinning nozzle to the high-speed high-temperature air flow.
  • the nanofibers having a fiber diameter of 0.50 ⁇ m and a fiber length of 100 cm are produced and collected on the surface of the nonwoven fabric on the downstream side.
  • a fiber body of nanofibers having a fiber diameter of 0.50 ⁇ m (500 nm), a basis weight of 350 g / m 2 , and a fiber density of 17.5 kg / m 3 is supported on the surface of the nonwoven fabric, as shown in FIG. 1B.
  • a sheet-like nonwoven fabric structure 1 was prepared.
  • the thickness of the nonwoven fabric structure 1 is 20 mm.
  • the thickness of the nonwoven fabric structure 1 is the average value of the total thickness of the nonwoven fabric and the fibrous body, and the average value of the total thickness measured at any five locations in the plane direction of the nonwoven fabric structure 1. It is.
  • the fiber diameter was measured by attaching a fiber body 1 sample of about 3 mm square on a carbon tape, then depositing Au on the sample for about 2 minutes, and then scanning electron microscope VE-7800 (Keyence Corporation). The above-mentioned sample was observed at a magnification of 3000 times using a manufactured product, the fiber diameters of arbitrary 10 nanofibers in the obtained enlarged image were measured, and the average value thereof was obtained.
  • the weight per unit area was calculated from the fibrous body cut into a square having a planar shape of 10 cm ⁇ 10 cm, the weight was measured, and the area in the planar direction (100 cm 2 ). Moreover, the said fiber density was calculated
  • the nanofiber is uniform and uniform in both the planar direction and the thickness direction of the fibrous body. It is confirmed that a dense fiber body is formed.
  • the fiber diameter of the fibrous body in the nonwoven fabric structure 2 is 0.35 ⁇ m, the basis weight is 390 g / m 2 , and the fiber density is 17.7 kg / m 3 .
  • the thickness of the nonwoven fabric structure 2 is 22 mm.
  • the fiber diameter of the fibrous body in the nonwoven fabric structure 3 is 0.50 ⁇ m, the basis weight is 350 g / m 2 , and the fiber density is 35.0 kg / m 3 .
  • the thickness of the nonwoven fabric structure 3 is 10 mm.
  • the fiber diameter of the fibrous body in the nonwoven fabric structure 4 is 0.50 ⁇ m, the basis weight is 756 g / m 2 , and the fiber density is 47.3 kg / m 3 .
  • the thickness of the nonwoven fabric structure 4 is 16 mm.
  • the fiber diameter of the fibrous body in the nonwoven fabric structure 5 is 0.50 ⁇ m, the basis weight is 500 g / m 2 , and the fiber density is 27.8 kg / m 3 .
  • the thickness of the nonwoven fabric structure 5 is 18 mm.
  • the fiber diameter of the fibrous body in the nonwoven fabric structure 6 is 0.50 ⁇ m, the basis weight is 453 g / m 2 , and the fiber density is 25.2 kg / m 3 .
  • the thickness of the nonwoven fabric structure 6 is 18 mm.
  • Fiber diameter of the fibrous body in a nonwoven structure 7 is 0.35 .mu.m, basis weight is 190 g / m 2, the fiber density is 19.0 kg / m 3. Moreover, the thickness of the nonwoven fabric structure 7 is 10 mm.
  • the fiber diameter is 0.50 ⁇ m (500 nm) on the surface of the nonwoven fabric in the same manner as the nonwoven fabric structure 1 except that the temperature of the spinning nozzle, the discharge amount of PP, and the flow rate of the high-speed high-temperature airflow are adjusted as necessary.
  • the thickness of the nonwoven fabric structure unit 8 is 4 mm.
  • a nonwoven fabric structure 8 having three layers of the fibrous body as shown in FIG. 1E is obtained by stacking three nonwoven fabric structure units 8 and further stacking the nonwoven fabric on the uppermost portion and fixing them appropriately. Produced.
  • the thickness of the nonwoven fabric structure 8 is 12 mm.
  • a nonwoven fabric structure 9 was produced in the same manner as the nonwoven fabric structure 8 except that four nonwoven fabric structure units 8 were stacked.
  • the nonwoven fabric structure 10 was produced in the same manner as the nonwoven fabric structure 8 except that five nonwoven fabric structure units 8 were stacked.
  • the thickness of the nonwoven fabric structure 9 is 16 mm, and the thickness of the nonwoven fabric structure 10 is 20 mm.
  • Example 11 and Reference Example 12 A melted polyethylene terephthalate (PET, “TRN-8550T” manufactured by Teijin Ltd.) from the second spinning nozzle adjusted to 280 ° C. arranged toward the high-speed and high-temperature air stream is simultaneously added to the PP.
  • a nonwoven fabric structure 11 was produced in the same manner as the nonwoven fabric structure 1 except that it was discharged into a high-speed high-temperature air stream.
  • the fibrous body of the nonwoven fabric structure 11 is a mixture of PP nanofibers and PET microfibers in a mass ratio of 1: 1.
  • the fiber diameter of the nanofiber in the fiber body of the nonwoven fabric structure 11 is 0.50 ⁇ m, and the fiber diameter of the microfiber is 11 ⁇ m.
  • the basis weight of the fibrous body is 1140 g / m 2 and the fiber density is 49.6 kg / m 3 .
  • the thickness of the nonwoven fabric structure 11 is 23 mm.
  • the fiber diameter of the microfiber was determined by measuring in the same manner as the fiber diameter of the nanofiber, except that the magnification in the enlarged image was 100 times.
  • the nanofibers and the microfibers are uniformly mixed in both the planar direction and the thickness direction of the fibrous body.
  • a fiber body in which the nanofibers are sufficiently present between the microfibers is configured.
  • the nonwoven fabric structure 12 was produced in the same manner as the nonwoven fabric structure 11 except that the above steps were performed as necessary.
  • the basis weight of the fibrous body of the nonwoven fabric structure 12 is 760 g / m 2 , and the fiber density is 47.5 kg / m 3 .
  • the thickness of the nonwoven fabric structure 12 is 16 mm.
  • a nonwoven fabric structure 13 was produced in the same manner as the nonwoven fabric structure 11 except that it was performed as necessary.
  • the fiber diameter of the nanofiber in the fiber body of the nonwoven fabric structure 13 is 0.50 ⁇ m, and the fiber diameter of the microfiber is 20 ⁇ m.
  • the basis weight of the fibrous body is 331 g / m 2 and the fiber density is 18.4 kg / m 3 .
  • the thickness of the nonwoven fabric structure 13 is 18 mm.
  • PP nanofibers and PET microfibers are mixed at a mass ratio of 1: 1.
  • the nonwoven fabric structures 14 to 17 were produced in the same manner as the nonwoven fabric structure 13 except that the above steps were performed as necessary.
  • the fiber diameters of the nanofibers in the nonwoven fabric structures 14 to 17 are all 0.50 ⁇ m, and the fiber diameters of the microfibers are all 20 ⁇ m.
  • the fabric weight of the nonwoven fabric structure 14 is 691 g / m 2 , and the fiber density is 19.2 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 14 is 36 mm.
  • the basis weight of the fibrous body of the nonwoven fabric structure 15 is 691 g / m 2 , and the fiber density is 34.6 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 15 is 20 mm.
  • the basis weight of the fibrous body of the nonwoven fabric structure 16 is 509 g / m 2 , and the fiber density is 17.0 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 16 is 30 mm.
  • the basis weight of the fibrous body of the nonwoven fabric structure 17 is 509 g / m 2 , and the fiber density is 36.4 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 17 is 14 mm.
  • Examples 18 to 20 Adjustment of spinning nozzle temperature, adjustment of PP discharge amount, adjustment of PET discharge amount, adjustment of flow rate of high-speed and high-temperature air flow, adjustment of collection time of generated fiber and compression in the thickness direction of the fiber body
  • a nonwoven fabric structure 18 was produced in the same manner as the nonwoven fabric structure 11 except that it was performed as necessary.
  • the fiber diameter of the nanofiber in the fiber body of the nonwoven fabric structure 18 is 0.50 ⁇ m, and the fiber diameter of the microfiber is 21 ⁇ m.
  • the basis weight of the fibrous body is 480 g / m 2 and the fiber density is 16.0 kg / m 3 .
  • the thickness of the nonwoven fabric structure 18 is 30 mm.
  • nanofibers made of PP and microfibers made of PET are mixed at a mass ratio of 3: 1.
  • Nonwoven fabric structures 19 and 20 were respectively produced in the same manner as the nonwoven fabric structure 18 except that it was performed as necessary.
  • the fiber diameter of the nanofiber is 0.50 ⁇ m
  • the fiber diameter of the microfiber is 21 ⁇ m.
  • the thickness of the nonwoven fabric structure 19 is 27 mm
  • the fiber density of the fibrous body is 17.8 kg / m 3 .
  • the thickness of the nonwoven fabric structure 20 is 20 mm, and the fiber density of the fibrous body is 24.0 kg / m 3 .
  • the fiber body of the nonwoven fabric structure unit 21 is a mixture of PP nanofibers and PET microfibers in a mass ratio of 1: 1, and the fiber diameter of the nanofibers in the fiber body is 0.50 ⁇ m, The fiber diameter of the microfiber is 11 ⁇ m.
  • the basis weight of the fibrous body is 190 g / m 2 and the fiber density is 47.5 kg / m 3 .
  • the thickness of the nonwoven fabric structure unit 21 is 4 mm.
  • the nonwoven fabric structure 21 having three layers of the fibrous body was produced by stacking three nonwoven fabric structure units 21 and further stacking the nonwoven fabric on the uppermost portion and fixing them appropriately.
  • the thickness of the nonwoven fabric structure 21 is 12 mm.
  • Nonwoven fabric structures 22 and 23 were produced in the same manner as the nonwoven fabric structure 21 except that 5 and 6 nonwoven fabric structure units 21 were stacked, respectively.
  • the thickness of the nonwoven fabric structure 22 is 20 mm, and the thickness of the nonwoven fabric structure 23 is 24 mm.
  • the nonwoven fabric structure C1 has a fiber body in which polypropylene microfibers 1 and polyester microfibers 2 are mixed.
  • the fiber diameter of the microfiber 1 is about 2 ⁇ m, and the fiber diameter of the microfiber 2 is about 25 ⁇ m.
  • the ratio (MF1: MF2) of the mass (MF1) of the microfiber 1 and the mass (MF2) of the microfiber 2 is about 65:35.
  • the fabric weight of the nonwoven fabric structure C1 in the fiber body is 315 g / m 2
  • the fiber density is 17.5 kg / m 3 .
  • the thickness of the nonwoven fabric structure C1 is 18 mm.
  • the fiber density of the fibrous body of the nonwoven fabric structure C2 is 50.0 kg / m 3 , and the thickness of the nonwoven fabric structure C2 is 7 mm. Moreover, the fiber density of the fibrous body of the nonwoven fabric structure C3 is 87.5 kg / m 3 , and the thickness of the nonwoven fabric structure C3 is 4 mm.
  • the fiber density of the fibrous body of the nonwoven fabric structure C4 is 75.6 kg / m 3 , and the thickness of the nonwoven fabric structure C4 is 10 mm.
  • the fiber density of the fibrous body of the nonwoven fabric structure C5 is 55.6 kg / m 3 , and the thickness of the nonwoven fabric structure C5 is 9 mm.
  • the fiber density of the fibrous body of the nonwoven fabric structure C6 is 50.3 kg / m 3 , and the thickness of the nonwoven fabric structure C6 is 9 mm.
  • the nonwoven fabric structure unit 8 was designated as a nonwoven fabric structure C7. Moreover, the nonwoven fabric structure C8 was produced in the same manner as the nonwoven fabric structure 8 except that the number of the nonwoven fabric structure units stacked was two. The thickness of the nonwoven fabric structure C8 is 8 mm.
  • Non-woven fabric structures C9 and C10 were respectively produced in the same manner as the non-woven fabric structure 11 except for the case where necessary.
  • the thickness of the nonwoven fabric structure C9 is 7 mm, the basis weight of the fibrous body is 380 g / m 2 , and the fiber density is 54.3 kg / m 3 .
  • the thickness of the nonwoven fabric structure C10 is 4 mm, the basis weight of the fibrous body is 190 g / m 2 , and the fiber density is 47.5 kg / m 3 .
  • the basis weight and fiber density of the nonwoven fabric structure C10 are equivalent to those of the nonwoven fabric structure unit 21.
  • a nonwoven fabric structure C11 was produced in the same manner as the nonwoven fabric structure 13 except that it was carried out as necessary.
  • the thickness of the nonwoven fabric structure C11 is 7 mm
  • the basis weight of the fibrous body is 331 g / m 2
  • the fiber density is 47.3 kg / m 3 .
  • a nonwoven fabric structure C12 was produced in the same manner as the nonwoven fabric structure 18 except that it was performed as necessary.
  • the thickness of the nonwoven fabric structure C12 is 9 mm
  • the basis weight of the fibrous body is 480 g / m 2
  • the fiber density is 53.3 kg / m 3 .
  • the sound absorption coefficient (perpendicular incident absorption coefficient) of sound having a frequency of 200 Hz to 6 kHz from the direction perpendicular to the plane direction of the nonwoven structure is measured with an acoustic impedance tube. It was measured using the vertical sound absorption system used (“DS-200” manufactured by Ono Sokki Co., Ltd.).
  • the structures and physical properties of the nonwoven fabric structures 1 to 23 and C1 to C12 and the measurement results of the normal incidence sound absorption coefficient are shown in Tables 1 to 3, respectively.
  • FIG. 2 shows the normal incidence sound absorption coefficient of the nonwoven fabric structures 1 and 2 and the nonwoven fabric structure C1.
  • the solid line indicates the normal incident sound absorption coefficient of the nonwoven fabric structure 1
  • the one-dot chain line indicates the non-woven structure 2
  • the broken line indicates the normal incident sound absorption coefficient of the nonwoven structure C1, respectively.
  • the nonwoven fabric structure C1 having a fibrous body composed of microfibers has an insufficient sound absorption coefficient of about 0.1 in a frequency range of about 1 kHz or less, from about 1 kHz to about 1 kHz.
  • the sound absorption rate gradually increases in the frequency range up to 5 kHz, and a sufficient sound absorption rate of 0.9 or more is shown at a frequency of about 5 kHz or more.
  • the nonwoven fabric structures 1 to 6 having a thickness of 10 mm or more and a fiber density of 10 kg / m 3 or more and less than 50 kg / m 3.
  • Each of the nonwoven fabric structures 8 to 23 has a high sound absorption coefficient higher than that of the nonwoven fabric structure C1 in a frequency range up to about 3 kHz, specifically 0.2 or more at 1 kHz and 0.2 at 2 kHz. A sound absorption coefficient of 0.7 or more is exhibited even at 5 or more and 3 kHz. And these nonwoven fabric structures have a sufficiently high sound absorption coefficient even at a frequency of about 4 kHz or higher.
  • the above-described nonwoven fabric structure is superior in sound absorption of sound in a lower frequency range than the nonwoven fabric structure using microfibers. This is presumably because, as described above, the efficiency of conversion of sound into thermal energy due to viscosity in the fiber body of the nanofiber is increased, and the sound absorption effect due to resonance of the fiber body itself is likely to occur.
  • the effect is particularly remarkable in the nonwoven fabric structures 1 and 2 having a thickness of 16 mm or more and a high ratio of nanofibers, and is 0.8 or more at 1 kHz and 0.7 at 2 kHz. As described above, a sound absorption coefficient of 0.7 or more is shown even at 3 kHz.
  • the thickness of the nonwoven fabric structure 7 is 10 ⁇ m
  • the basis weight is 190 g / m 2 , which is a sufficiently small value compared to those of the nonwoven fabric structure C1.
  • the sound absorbing effect equivalent to that of the conventional microfiber nonwoven fabric structure is provided. Therefore, by constituting the fibrous body with nanofibers, the same sound absorbing effect can be obtained with a lighter and thinner nonwoven fabric structure as compared with a nonwoven fabric structure including a fibrous body composed of conventional microfibers.
  • the smaller fiber diameter of the fiber body is effective from the viewpoint of further improving the sound absorption characteristics in the frequency range of 5 kHz or less. .
  • the above-mentioned fibrous body composed of more flexible nanofibers is less rigid, and the nanofibers are more likely to resonate.
  • the sound absorption effect in the low frequency range is increased. ,it is conceivable that.
  • the sound absorption coefficient is reduced by stacking the nonwoven structure units 8 having a low sound absorption coefficient in the vicinity of 1 kHz due to insufficient thickness. It can be seen that it can be increased.
  • the support layer is disposed between the fiber layers, the deformation (for example, collapse) of the nonwoven fabric structure in the thickness direction by the nanofibers and the planar direction
  • the strength against deformation (for example, tearing) or the like is greatly improved as compared with the nonwoven fabric structure 1 or the like that does not have such a support between layers.
  • the fiber density of the nonwoven fabric structure becomes more stable over time due to the suppression of crushing. Even if the fiber density in the fiber body is high, it is expected that the loss of the fiber body when a fluid such as gas or liquid passes through the fiber body is suppressed. In addition, it is expected that the sound absorption effect due to resonance in each layer of the fiber body and the resonance effect due to reflection absorption in a part of the wavelength region between the fiber body layers are also generated. Therefore, it is expected that the degree of freedom in designing the sound absorption characteristics in the nonwoven fabric structure can be increased so that the optimum sound absorption characteristics are expressed with a wider fiber density.
  • the mass ratio of the nanofibers is within the range of 0.5 or more. It can be seen that the same effect as the above sound absorption effect by the fiber body can be obtained.
  • the presence of the microfiber is expected to further improve the strength of the fiber body itself and further suppress deformation of the fiber body itself.
  • the nonwoven fabric structures C7, C8, C10, and C11 all had insufficient sound absorption characteristics in a frequency range of at least 1 kHz or less. This is presumably because the density of the fibrous body is in a predetermined range, but the thickness of the fibrous body is less than 10 mm, so that the sound absorption effect due to the resonance described above was not sufficiently exhibited.
  • the sound absorption coefficient was 0.7 or less in a frequency range of at least 4 kHz, and the sound absorption characteristics were insufficient. Furthermore, in the nonwoven fabric structures C3, C9, and C12, the sound absorption coefficient is 0.15 or less near 1 kHz, and the sound absorption characteristics are insufficient even in the frequency range. As is apparent from the comparison between the nonwoven fabric structure 1 and the nonwoven fabric structure C2 and the nonwoven fabric structure C3 in particular, the fiber density of the fiber body is too high, and the reflection of sound on the inside of the fiber body or on the surface of the fiber body becomes strong.
  • the non-woven fabric structures C3, C9 and C12 have a sufficient sound absorption effect due to the above-described resonance due to the decrease in thickness. This is probably because it was not expressed.
  • the non-woven fabric structure according to the present invention has an effect specific to a fiber body using nanofibers, which is excellent in sound absorption characteristics in a low frequency range. Therefore, in addition to the effects unique to the nonwoven fabric structure such as air permeability, liquid permeability, and heat insulation, the nonwoven fabric structure is expected to have an additional effect of preventing the transmission of vibrations of low-frequency fluid. The Therefore, the non-woven fabric structure is expected to be used in applications as a sound absorbing material for absorbing lower frequency sound, and in various fields where prevention of the low frequency vibration is expected. It is expected to be used in various applications as a covering material, a separating material, a partition member, etc. that also have sound absorption characteristics.

Abstract

The sound-absorbing material according to the present invention comprises a nonwoven-fabric structure including a fibrous object made up of entangled fibers. The fibers include nanofibers which are constituted of polypropylene and have a fiber diameter smaller than 1 µm. The fibrous object has a thickness of 20-36 mm. The fibrous object has a fiber density of 10 kg/m3 or higher but less than 50 kg/m3, and the content of the nanofibers in the fibrous object is 0.5 or higher in terms of ratio by mass. The sound-absorbing material has a sound absorption coefficient for 1-kHz sound of 0.59-0.84 and a sound absorption coefficient for 6-kHz sound of 0.80-0.96.

Description

吸音材Sound absorbing material
 本発明は、吸音材に関する。 The present invention relates to a sound absorbing material.
 近年、車内環境などの身近な環境において、騒音に関する対策の必要性が増している。当該対策の一つとして吸音材が用いられており、当該吸音材の一種として、例えば、不織布繊維による構造体(不織布構造体)が用いられている。当該不織布構造体は、吸音材だけでなく種々の用途に用いられている。当該不織布構造体には、繊維径が1μm未満の樹脂製のナノファイバーが絡み合わされてなる繊維体を有する不織布構造体が知られている(例えば、特許文献1~7参照)。その中には、当該繊維体の厚さが10mm以上である不織布構造体が知られている(例えば、特許文献3~7参照)。 In recent years, there is an increasing need for noise countermeasures in familiar environments such as in-car environments. As one of the countermeasures, a sound absorbing material is used, and as a kind of the sound absorbing material, for example, a structure (nonwoven fabric structure) made of nonwoven fabric fibers is used. The nonwoven fabric structure is used not only for sound absorbing materials but also for various applications. As the nonwoven fabric structure, a nonwoven fabric structure having a fiber body in which resin nanofibers having a fiber diameter of less than 1 μm are entangled is known (see, for example, Patent Documents 1 to 7). Among them, a nonwoven fabric structure in which the fibrous body has a thickness of 10 mm or more is known (see, for example, Patent Documents 3 to 7).
特開2013-139655号公報JP 2013-139655 A 特開2014-111850号公報Japanese Unexamined Patent Publication No. 2014-111850 特開2014-015042号公報JP 2014-015042 A 特表2009-512578号公報JP 2009-512578 A 特表2013-503979号公報JP 2013-50397A 特表2011-508113号公報Special table 2011-508113 gazette 特開2013-147771号公報JP 2013-147771 A
 上記不織布構造体には、上記ナノファイバーの繊維径の細さに起因する様々な機能が期待される。しかしながら、ナノファイバーの製造は、マイクロファイバーのそれに比べて未だ難しく、ナノファイバーによる上記繊維体の構造上の条件(例えば、厚さや密度など)の検討は、未だ十分になされていない。たとえば、厚さについては、上記特許文献のいずれにも、ナノファイバーによる、10mmを超えるほど厚い上記繊維体がもたらす機能についての知見は示されていない。 The nonwoven fabric structure is expected to have various functions due to the fine fiber diameter of the nanofiber. However, the production of nanofibers is still more difficult than that of microfibers, and the structural conditions (for example, thickness, density, etc.) of the above-mentioned fibrous body using nanofibers have not been sufficiently studied. For example, regarding the thickness, none of the above-mentioned patent documents discloses knowledge about the function provided by the above-described fibrous body that is thicker than 10 mm.
 このように、上記不織布構造体は、種々の用途が期待されているにも関わらず、上記不織布構造体の構造上の条件によって発現される機能については、未だ検討の余地が残されている。 Thus, although the non-woven fabric structure is expected to be used for various purposes, there is still room for study on the function expressed by the structural conditions of the non-woven fabric structure.
 本発明は、ナノファイバーによる、吸音特性に優れる吸音材を提供することを目的とする。 An object of the present invention is to provide a sound-absorbing material having excellent sound-absorbing characteristics using nanofibers.
 本発明は、繊維が絡み合わされてなる繊維体を有する不織布構造体を含む吸音材であって、前記繊維は、その繊維径が1μm未満のポリプロピレン製のナノファイバーを含み、前記繊維体の厚さは、20mm以上36mm以下であり、前記繊維体の繊維密度は、10kg/m以上50kg/m未満であり、前記繊維体における前記ナノファイバーの含有比率は、質量比で0.5以上であり、1kHzの音の吸音率が0.59以上0.84以下であり、かつ、6kHzの音の吸音率が0.80以上0.96以下である吸音材、を提供する。 The present invention is a sound-absorbing material including a nonwoven fabric structure having a fiber body in which fibers are entangled, and the fiber includes a nanofiber made of polypropylene having a fiber diameter of less than 1 μm, and the thickness of the fiber body Is 20 mm or more and 36 mm or less, the fiber density of the fiber body is 10 kg / m 3 or more and less than 50 kg / m 3 , and the content ratio of the nanofibers in the fiber body is 0.5 or more by mass ratio. And a sound-absorbing material having a sound absorption coefficient of 1 kHz sound of 0.59 or more and 0.84 or less and a sound absorption coefficient of 6 kHz sound of 0.80 or more and 0.96 or less.
 本発明に係る吸音材は、マイクロファイバーによる繊維体を含む不織布構造体に比べて、低周波数域の音の吸音特性により優れている。また、この不織布構造体を含む不織布製品は、吸音特性以外の他の所期の機能と上記の優れた吸音特性とを発現することができる。 The sound-absorbing material according to the present invention is superior in the sound-absorbing property of the sound in the low frequency range as compared with the non-woven structure including the fiber body made of microfiber. Moreover, the nonwoven fabric product containing this nonwoven fabric structure can express the expected function other than a sound absorption characteristic, and said outstanding sound absorption characteristic.
図1Aは、本発明の第1の実施形態に係る不織布構造体の第1の態様を模式的に示す図であり、図1Bは、上記不織布構造体の第2の態様を模式的に示す図であり、図1Cは、上記不織布構造体の第3の態様を模式的に示す図であり、図1Dは、上記不織布構造体の第4の態様を模式的に示す図であり、図1Eは、上記不織布構造体の第5の態様を模式的に示す図である。Drawing 1A is a figure showing typically the 1st mode of the nonwoven fabric structure concerning a 1st embodiment of the present invention, and Drawing 1B is a figure showing typically the 2nd mode of the above-mentioned nonwoven fabric structure. 1C is a diagram schematically showing a third aspect of the nonwoven fabric structure, FIG. 1D is a diagram schematically showing a fourth aspect of the nonwoven structure, and FIG. FIG. 7 is a diagram schematically showing a fifth aspect of the nonwoven fabric structure. 不織布構造体1、2および不織布構造体C1の吸音特性を示す図である。It is a figure which shows the sound absorption characteristic of the nonwoven fabric structures 1 and 2 and the nonwoven fabric structure C1. 図3Aは、本発明におけるナノファイバーによる繊維体の一例の一部を200倍に拡大して示す走査型電子顕微鏡(SEM)写真であり、図3Bは、当該繊維体の一例の一部を2000倍に拡大して示すSEM写真である。FIG. 3A is a scanning electron microscope (SEM) photograph showing a part of an example of a fiber body using nanofibers in the present invention at 200 times magnification, and FIG. 3B is a part of an example of the fiber body of 2000 It is a SEM photograph enlarged and shown twice. 図4Aは、本発明におけるナノファイバーとマイクロファイバーとが混在する繊維体の一例の一部を200倍に拡大して示すSEM写真であり、図4Bは、当該繊維体の一例の一部を2000倍に拡大して示すSEM写真である。FIG. 4A is an SEM photograph showing a part of an example of a fiber body in which nanofibers and microfibers are mixed in the present invention at 200 times magnification, and FIG. 4B is a part of an example of the fiber body 2000 It is a SEM photograph enlarged and shown twice.
 以下、本発明の実施の形態を説明する。
 本実施の形態に係る吸音材は、不織布構造体を含む。当該不織布構造体は、繊維が絡み合わされてなる繊維体を有する。当該繊維体は、例えば不織布である。
Embodiments of the present invention will be described below.
The sound absorbing material according to the present embodiment includes a nonwoven fabric structure. The nonwoven fabric structure has a fiber body in which fibers are entangled. The fiber body is, for example, a nonwoven fabric.
 上記繊維は、その繊維径が1μm未満のナノファイバーを含む。当該ナノファイバーの繊維径は、当該ナノファイバーの繊維の太さを代表する値であり、例えば、平均値であってもよいし、メディアン値であってもよいし、最頻値であってもよい。当該ナノファイバーの繊維径が1μm以上であると、その繊維はナノファイバーには該当せず、また、後述の吸音効果が不十分になることがある。当該繊維径は、吸音効果と不植布構造体のつぶれ防止の観点から、0.20~0.95μmであることが好ましく、0.20~0.70μmであることがより好ましい。 The fiber includes nanofibers having a fiber diameter of less than 1 μm. The fiber diameter of the nanofiber is a value representative of the thickness of the nanofiber, and may be an average value, a median value, or a mode value, for example. Good. When the fiber diameter of the nanofiber is 1 μm or more, the fiber does not correspond to the nanofiber, and the sound absorption effect described later may be insufficient. The fiber diameter is preferably 0.20 to 0.95 μm, more preferably 0.20 to 0.70 μm, from the viewpoint of sound absorption effect and prevention of collapse of the non-planted structure.
 上記繊維径は、上記繊維体の拡大画像の観察によって求めることが可能である。たとえば、上記繊維径は、カーボンテープ上に3mm角程度の上記繊維体を含む塊を貼り、当該繊維体にAuを2分間程度蒸着し、走査型電子顕微鏡 VE-7800(株式会社キーエンス製)を用いて上記繊維体を3000倍の倍率で観察し、任意の10本のナノファイバーの繊維径を測定し、それらの平均値として求めることができる。 The fiber diameter can be obtained by observing an enlarged image of the fiber body. For example, for the fiber diameter, a lump containing the fiber body of about 3 mm square is stuck on a carbon tape, Au is evaporated on the fiber body for about 2 minutes, and a scanning electron microscope VE-7800 (manufactured by Keyence Corporation) is used. Using the above, the fiber body is observed at a magnification of 3000 times, and the fiber diameters of arbitrary 10 nanofibers can be measured and obtained as an average value thereof.
 上記ナノファイバーは、樹脂製である。当該樹脂は、化学繊維の原料に使用される樹脂から適宜に選択することが可能である。当該樹脂は、一種でもそれ以上でもよく、その例には、汎用プラスチック、エンジニアリングプラスチックおよびスーパーエンジニアリングプラスチックが含まれる。当該汎用ブラスチックの例には、ポリプロピレン(PP)、ポリエチレン(PE)、ポリウレタン(PU)、ポリ乳酸(PLA)およびアクリル樹脂(例えばPMMA)が含まれる。上記エンジニアリングプラスチックの例には、ポリエチレンテレフタラート(PET)、ナイロン6(N6)、ナイロン6,6(N66)およびナイロン12(N12)が含まれる。上記スーパーエンジニアリングプラスチックの例には、ポリフェニレンスルフィド(PPS)および液晶ポリマー(LCP)が含まれる。中でも、当該樹脂がポリプロピレンであることは、1kHzの吸音率で表される低周波数域の音に対する吸音効果と汎用性とを両立させる観点から好ましい。 The nanofiber is made of resin. The resin can be appropriately selected from resins used as raw materials for chemical fibers. The resin may be one kind or more, and examples thereof include general-purpose plastic, engineering plastic, and super engineering plastic. Examples of the general-purpose plastic include polypropylene (PP), polyethylene (PE), polyurethane (PU), polylactic acid (PLA), and acrylic resin (for example, PMMA). Examples of the engineering plastic include polyethylene terephthalate (PET), nylon 6 (N6), nylon 6,6 (N66), and nylon 12 (N12). Examples of the super engineering plastic include polyphenylene sulfide (PPS) and liquid crystal polymer (LCP). Especially, it is preferable that the said resin is a polypropylene from the viewpoint of making the sound absorption effect and the versatility with respect to the sound of the low frequency range represented by the sound absorption rate of 1 kHz compatible.
 上記繊維体の厚さは、10mm以上である。当該繊維体の厚さは、繊維体の形状に応じた適当な部分で測定される。たとえば、上記繊維体の形状がシート状であれば、当該繊維体の平坦部の平均厚さである。また、上記繊維体の形状が凹凸を含む場合には、一番深い凹部(繊維体の厚さが最小になる部分)における平均厚さであり、あるいは当該凹部の平面方向における面積占有率が低い(例えば50%未満)である場合では、上記繊維体の表面形状の高低差を均した値である。 The thickness of the fibrous body is 10 mm or more. The thickness of the fibrous body is measured at an appropriate portion according to the shape of the fibrous body. For example, if the shape of the fibrous body is a sheet, it is the average thickness of the flat portion of the fibrous body. Moreover, when the shape of the said fiber body contains an unevenness | corrugation, it is the average thickness in the deepest recessed part (part where the thickness of a fiber body becomes the minimum), or the area occupation rate in the plane direction of the said recessed part is low In the case of (for example, less than 50%), it is a value obtained by leveling the height difference of the surface shape of the fibrous body.
 また、後述する、複数積み重ねられている繊維体を含む不織布構造体では、上記繊維体の厚さとは、積み重ね方向における繊維体の厚さの総和である。上記繊維体が後述する一以上の支持体に支持されている場合、上記繊維体の厚さは、支持体上の繊維体の厚さであってもよく、支持体の厚さが繊維体の厚さに対して十分に小さい場合(例えば、支持体の厚さが200μm以下)には、支持体の厚さを含んでいてもよい。 Moreover, in the nonwoven fabric structure including a plurality of stacked fiber bodies, which will be described later, the thickness of the fiber body is the sum of the thicknesses of the fiber bodies in the stacking direction. When the fiber body is supported by one or more supports described later, the thickness of the fiber body may be the thickness of the fiber body on the support, and the thickness of the support body is that of the fiber body. When the thickness is sufficiently small with respect to the thickness (for example, the thickness of the support is 200 μm or less), the thickness of the support may be included.
 当該厚さが10mm未満であると、1kHz以下の周波数の音波の吸収率が不十分となることがある。当該厚さは、例えば、上記繊維体における任意の複数箇所の厚さを測定し、それらの平均値として求めることができる。上記厚さは、上記不織布構造体の用途に応じて適宜に決めることができる。吸音効果については、厚みによる上限はないが、上記不織布構造体の形状や大きさなどは、例えば、車載用などの用途によっては吸音材が設置される空間が制限される場合があり、このように上記不織布構造体の使用環境によって制限されることがある。したがって、上記不織布構造体の厚さの上限値は、通常、その用途に応じて適宜に決められる。 If the thickness is less than 10 mm, the absorption rate of sound waves having a frequency of 1 kHz or less may be insufficient. The thickness can be obtained, for example, by measuring the thickness at any of a plurality of locations in the fibrous body and averaging them. The said thickness can be suitably determined according to the use of the said nonwoven fabric structure. There is no upper limit on the sound absorption effect depending on the thickness, but the shape and size of the nonwoven fabric structure may be limited in the space in which the sound absorbing material is installed depending on, for example, in-vehicle use. In addition, it may be limited by the usage environment of the nonwoven fabric structure. Therefore, the upper limit value of the thickness of the nonwoven fabric structure is usually determined as appropriate according to the application.
 たとえば、車載用として使用可能な吸音材であれば、上記繊維体の厚さは、20mm以上であることが、十分な吸音効果を発現させる観点から好ましく、用途に応じた吸音材の配置を可能とする省スペース化の観点から、36mm以下であることが好ましく、30mm以下であることがより好ましい。たとえば、上記の観点から、上記繊維体の厚さは、20mmであってよい。 For example, if it is a sound absorbing material that can be used for in-vehicle use, the thickness of the fibrous body is preferably 20 mm or more from the viewpoint of exhibiting a sufficient sound absorbing effect, and the sound absorbing material can be arranged according to the application. From the viewpoint of space saving, it is preferably 36 mm or less, and more preferably 30 mm or less. For example, from the above viewpoint, the thickness of the fibrous body may be 20 mm.
 また、上記吸音材の吸音効果は、1kHzの音の吸音率と6kHzの音の吸音率とによって規定することが可能である。 The sound absorbing effect of the sound absorbing material can be defined by the sound absorption rate of 1 kHz sound and the sound absorption rate of 6 kHz sound.
 従来の吸音材に比べてより低い周波数域の音をも十分に吸収する観点から、1kHzの音の吸音率は、0.59以上であることが好ましく、0.68以上であることがより好ましく、0.72以上であることがさらに好ましく、0.82以上であることがより一層好ましい。また、上記吸音効果と上記省スペース化とのバランスの観点から、1kHzの音の吸音率は、0.84以下であってもよく、例えば0.82であってもよい。1kHzの音の吸音率は、例えば、繊維体におけるナノファイバーの質量比率を多くすることによって大きくすることができる。 From the viewpoint of sufficiently absorbing a sound in a lower frequency range as compared with the conventional sound absorbing material, the sound absorption rate of the 1 kHz sound is preferably 0.59 or more, and more preferably 0.68 or more. 0.72 or more is more preferable, and 0.82 or more is even more preferable. Further, from the viewpoint of the balance between the sound absorbing effect and the space saving, the sound absorption rate of the 1 kHz sound may be 0.84 or less, for example, 0.82. The sound absorption coefficient of 1 kHz sound can be increased, for example, by increasing the mass ratio of nanofibers in the fibrous body.
 従来の吸音材と同等またはそれ以上の吸音特性を発現させる観点から、6kHzの音の吸音率は、たとえば0.80であってよく、0.80以上であることが好ましく、0.84以上であることがより好ましく、0.88以上であることがさらに好ましい。また、上記吸音効果と上記省スペース化とのバランスの観点から、6kHzの音の吸音率は、0.96以下であってもよく、0.93以下であってもよい。6kHzの音の吸音率は、例えば、繊維体の十分な厚さおよび繊維密度によって実現され得る。 From the viewpoint of expressing sound absorption characteristics equivalent to or higher than those of conventional sound absorbing materials, the sound absorption rate of 6 kHz sound may be, for example, 0.80, preferably 0.80 or more, and preferably 0.84 or more. More preferably, it is more preferably 0.88 or more. Further, from the viewpoint of the balance between the sound absorption effect and the space saving, the sound absorption rate of the 6 kHz sound may be 0.96 or less, or 0.93 or less. A sound absorption coefficient of 6 kHz sound can be achieved, for example, by a sufficient thickness and fiber density of the fiber body.
 上記繊維体の繊維密度は、10kg/m以上50kg/m未満である。上記繊維密度が10kg/m未満であると、周波数1kHz以下の音およびそれより大きな周波数の音の両方における後述の吸音効果が不十分となることがある。上記繊維密度が50kg/m以上であると、周波数が4kHz以上(例えば6kHz)の高周波域の音、さらには周波数1kHz近傍の音、の当該吸音効果が不十分となることがある。 The fiber density of the fiber body is 10 kg / m 3 or more and less than 50 kg / m 3 . If the fiber density is less than 10 kg / m 3 , the sound absorbing effect described below may be insufficient for both sound having a frequency of 1 kHz or less and sound having a higher frequency. When the fiber density is 50 kg / m 3 or more, the sound absorption effect of a sound in a high frequency region having a frequency of 4 kHz or more (for example, 6 kHz), or a sound in the vicinity of a frequency of 1 kHz may be insufficient.
 さらに、上記繊維密度は、10~25kg/mであることが、周波数1kHz以下の音に対する吸音効果に加えて、それよりもより高い周波数を有する高周波数域(例えば2~6kHz)の音に対する吸音効果を奏し、高める観点から好ましい。 Further, the fiber density is 10 to 25 kg / m 3 , in addition to the sound absorption effect for sound with a frequency of 1 kHz or less, and for sound in a high frequency range (for example, 2 to 6 kHz) having a higher frequency. It is preferable from the viewpoint of producing and enhancing a sound absorbing effect.
 上記繊維密度は、上記繊維体の目付け量を上記厚さで除することにより求められる。当該目付け量は、上記繊維体における単位面積当たりの繊維の質量である。上記目付け量は、例えば、上記繊維体の質量から単位面積当たりの質量を算出することにより求められる。上記繊維密度は、上記目付け量および上記厚さの一方または両方によって調整することが可能である。 The fiber density is obtained by dividing the basis weight of the fiber body by the thickness. The basis weight is the mass of fibers per unit area in the fiber body. The basis weight is determined, for example, by calculating the mass per unit area from the mass of the fibrous body. The fiber density can be adjusted by one or both of the basis weight and the thickness.
 上記繊維体は、ナノファイバーのみから構成されていてもよいし、ナノファイバーに加えてマイクロファイバーをさらに含んでいてもよい。当該マイクロファイバーとは、例えば、その繊維径が2~50μmである繊維である。上記繊維体が当該マイクロファイバーを含むことは、繊維体の強度をより高め、繊維体の形状を保つ(繊維体の圧迫による変形を抑制する)観点から好ましい。 The fiber body may be composed of only nanofibers or may further include microfibers in addition to nanofibers. The microfiber is, for example, a fiber having a fiber diameter of 2 to 50 μm. It is preferable that the fibrous body contains the microfiber from the viewpoint of further increasing the strength of the fibrous body and maintaining the shape of the fibrous body (suppressing deformation due to compression of the fibrous body).
 上記マイクロファイバーは一種でもそれ以上でもよい。上記繊維体における当該マイクロファイバーの含有量は、多すぎると、上記繊維体による吸音効果が不十分になることがあり、少なすぎると、上記マイクロファイバーの混入による上記繊維体の強度の向上効果が不十分となることがある。上記吸音効果と上記強度向上効果の観点から、上記繊維体における上記ナノファイバーの含有比率は、質量比で0.5以上である。 The type of microfiber may be one or more. If the content of the microfiber in the fiber body is too large, the sound absorption effect by the fiber body may be insufficient. If the content is too small, the effect of improving the strength of the fiber body due to the mixing of the microfiber is obtained. It may be insufficient. From the viewpoint of the sound absorption effect and the strength improvement effect, the content ratio of the nanofiber in the fiber body is 0.5 or more in terms of mass ratio.
 上記含有比率は、1kHzの音に代表される、従来の吸音材に比べてより低い周波数域の音をも十分に吸収可能な範囲で適宜に決めることができる。たとえば、上記の観点から、上記含有率比は、0.5であってもよく、0.75であってもよく、1.0であってもよい。 The above-mentioned content ratio can be appropriately determined within a range that can sufficiently absorb a sound in a lower frequency range than a conventional sound absorbing material represented by a sound of 1 kHz. For example, from the above viewpoint, the content ratio may be 0.5, 0.75, or 1.0.
 なお、マイクロファイバーを含む場合、上記繊維体の厚み方向において、十分にナノファイバーが存在することが、ナノファイバーによる吸音効果を発現させる観点から好ましい。 When microfibers are included, it is preferable that nanofibers are sufficiently present in the thickness direction of the fibrous body from the viewpoint of expressing the sound absorption effect of the nanofibers.
 上記マイクロファイバーの繊維径および上記含有量は、上記繊維体の拡大画像の観察によって求めることが可能である。たとえば、上記マイクロファイバーの繊維径は、拡大画像における倍率を適宜に(例えば100倍に)調整する以外は、前述したナノファイバーの繊維径と同様に求めることが可能である。なお、マイクロファイバーの繊維径の測定では、走査型電子顕微鏡以外の光学顕微鏡の拡大画像においてマイクロファイバーを十分に確認可能であれば、金を蒸着させなくてもよい。 The fiber diameter and the content of the microfiber can be obtained by observing an enlarged image of the fiber body. For example, the fiber diameter of the microfiber can be obtained in the same manner as the fiber diameter of the nanofiber described above except that the magnification in the enlarged image is appropriately adjusted (for example, 100 times). In the measurement of the fiber diameter of the microfiber, it is not necessary to deposit gold if the microfiber can be sufficiently confirmed in an enlarged image of an optical microscope other than the scanning electron microscope.
 また、上記マイクロファイバーの含有量は、上記拡大画像におけるナノファイバーの占有面積とマイクロファイバーの占有面積との比から求めることが可能である。あるいは、上記マイクロファイバーの含有量は、既知質量の上記繊維体の試料からマイクロファイバーまたはナノファイバーを分別、除去し、当該除去前後における試料の質量差から求めることが可能である。 Further, the content of the microfiber can be obtained from the ratio of the occupied area of the nanofiber and the occupied area of the microfiber in the enlarged image. Alternatively, the content of the microfiber can be determined from the difference in mass of the sample before and after the removal by separating and removing the microfiber or nanofiber from the sample of the fibrous body having a known mass.
 上記ナノファイバーの繊維径分布の分布幅は、上記マイクロファイバーの繊維径分布の分布幅よりも狭いことが、ナノファイバーによる吸音効果と、上記マイクロファイバーによる強度向上効果とのそれぞれを適宜に制御する観点から好ましい。上記ナノファイバーの繊維径分布は、ナノファイバーの上記繊維径が1μm未満となる範囲において、適宜に決めることが可能である。 The distribution width of the fiber diameter distribution of the nanofiber is narrower than the distribution width of the fiber diameter distribution of the microfiber, and appropriately controls the sound absorption effect by the nanofiber and the strength improvement effect by the microfiber. It is preferable from the viewpoint. The fiber diameter distribution of the nanofiber can be appropriately determined within a range where the fiber diameter of the nanofiber is less than 1 μm.
 上記不織布構造体は、上記繊維体が所期の部位に直接配置されることによって構成されていてもよいが、上記繊維体を支持する支持体をさらに有していてもよい。上記不織布構造体が上記支持体を有することは、上記繊維体の所期の形状を維持する観点から好ましい。上記支持体は、例えばシート状の部材である。上記支持体の材料は、本実施形態の効果が奏される範囲において、適宜に選ぶことが可能である。上記支持体の例には、不織布、織布、フィルム、紙および発泡体層が含まれる。上記支持体は、上記繊維体に比べて充分に薄く、さらには通気性または通液性に優れていることが、上記繊維体の所期の機能を十分に発現させる観点から好ましい。当該支持体の厚さは、例えば20~500μmである。 The non-woven fabric structure may be configured by directly arranging the fibrous body at an intended site, but may further include a support for supporting the fibrous body. It is preferable that the nonwoven fabric structure has the support from the viewpoint of maintaining the desired shape of the fibrous body. The support is a sheet-like member, for example. The material of the support can be appropriately selected within the range where the effects of the present embodiment are exhibited. Examples of the support include a nonwoven fabric, a woven fabric, a film, paper, and a foam layer. It is preferable that the support is sufficiently thin as compared with the fiber body and further excellent in air permeability or liquid permeability from the viewpoint of sufficiently expressing the intended function of the fiber body. The thickness of the support is, for example, 20 to 500 μm.
 上記支持体は、一つでもそれ以上でもよい。たとえば、上記繊維体は、その片面で上記支持体に支持されていてもよいし、二つの当該支持体で挟まれて支持されていてもよい。また、上記不織布構造体は、二以上の上記繊維体を有し、かつ少なくとも当該繊維体の間に上記支持体を有していてもよい。たとえば、一つの支持体の両面のそれぞれに二つの上記繊維体が支持されていてもよい。繊維体間に支持体が配置される構造は、ナノファイバーの柔軟性による繊維体の厚さ方向へ変形(例えばつぶれ)や、の平面方向への変形あるいは破壊(例えば破れ)などに対する強度を大幅に向上させる観点から効果的である。 The support may be one or more. For example, the fiber body may be supported by the support body on one side, or may be supported by being sandwiched between two support bodies. Moreover, the said nonwoven fabric structure may have the said 2 or more said fiber body, and may have the said support body at least between the said fiber bodies. For example, two fiber bodies may be supported on each of both surfaces of one support. The structure in which the support is arranged between the fibrous bodies greatly increases the strength against deformation (for example, collapse) of the fibrous body due to the flexibility of the nanofiber, and deformation or destruction (for example, tearing) in the planar direction. It is effective from the viewpoint of improving it.
 上記繊維体は、例えば特許文献2に記載されているような、ナノファイバーの公知の製造方法を利用して製造することが可能である。たとえば、上記繊維体は、高速エアを活用した溶融紡糸装置により製造することが可能である。当該溶融紡糸装置は、例えば、熱可塑性樹脂を溶融して搬送する溶融押出機と、搬送された溶融樹脂を繊維状に吐出する紡糸ノズルと、紡糸ノズル近傍に高温の加熱エアを吹き出すエアノズルを備える。上記繊維体は、上記溶融紡糸装置を用いて、上記熱可塑性樹脂を高速の当該気流によってすばやく引き延ばすことによって、製造することが可能である。ここで、上記溶融紡糸装置は、必要に応じて、紡糸ノズルから吐出する溶融樹脂に高電圧を印加する電圧付与装置をさらに有していてもよい。当該電圧付与装置を有することにより、上記溶融紡糸装置は、上記繊維体における繊維径のさらなる調整が可能となる。 The fiber body can be manufactured using a known manufacturing method of nanofibers as described in Patent Document 2, for example. For example, the fibrous body can be manufactured by a melt spinning apparatus using high-speed air. The melt spinning apparatus includes, for example, a melt extruder that melts and transports a thermoplastic resin, a spinning nozzle that discharges the transported molten resin into a fiber shape, and an air nozzle that blows high-temperature heated air near the spinning nozzle. . The fiber body can be produced by using the melt spinning apparatus to quickly stretch the thermoplastic resin with the high-speed air stream. Here, the melt spinning device may further include a voltage applying device that applies a high voltage to the molten resin discharged from the spinning nozzle, if necessary. By having the voltage applying device, the melt spinning device can further adjust the fiber diameter in the fiber body.
 また、上記マイクロファイバーをさらに含む上記繊維体は、高速エアを活用する上記の溶融紡糸装置の複数を、縦方向に、または横方向に、または両方向に並べて、同時に紡糸し、ナノファイバーの上記気流に合流させることで、異なる樹脂、繊維径の繊維を集合、複合化させることにより製造可能である。 In addition, the fiber body further including the microfibers may be obtained by simultaneously spinning a plurality of the melt spinning apparatuses that utilize high-speed air in the longitudinal direction, the lateral direction, or in both directions, and spinning the nanofibers. Can be manufactured by collecting and combining fibers of different resins and fiber diameters.
 この方法は、ナノファイバーとマイクロファイバーを同時に紡糸する。このため、ナノファイバーとマイクロファイバーとがほぼ均一に、そしてマイクロファイバーに対してナノファイバーが十分に存在し、かつ絡み合う上記繊維体を作製することが可能である(図4A、4B参照)。上記の方法は、繊維体の厚み方向において十分にナノファイバーを存在させる観点から好ましい。 This method spins nanofiber and microfiber simultaneously. For this reason, it is possible to produce the fiber body in which the nanofibers and the microfibers are substantially uniform, and the nanofibers are sufficiently present and intertwined with the microfibers (see FIGS. 4A and 4B). Said method is preferable from a viewpoint of making a nanofiber fully exist in the thickness direction of a fibrous body.
 さらに、上記支持体に支持された上記繊維体は、例えば、上記エアノズルから気流を支持体の表面に向けて発生させ、上記第1の紡糸ノズルおよび上記第2の紡糸ノズルの一方または両方から所期の材料などを吐出させ、生成する繊維を支持体の表面で捕集することにより、製造することが可能である。 Further, the fiber body supported by the support body generates, for example, an air flow from the air nozzle toward the surface of the support body, and is provided from one or both of the first spinning nozzle and the second spinning nozzle. It is possible to manufacture by discharging the material of the period and collecting the produced fiber on the surface of the support.
 さらに、上記支持体に支持された、複数の積み重ねられた繊維体で構成される不織布構造体は、支持体とその上に支持された上記繊維体の複数の、当該支持体同士、あるいは当該繊維体同士、あるいは当該支持体と当該繊維体と、を合わせ、一部分で必要に応じて接着、溶着あるいは固定することによって製造することが可能である。 Furthermore, the nonwoven fabric structure composed of a plurality of stacked fiber bodies supported by the support body includes a plurality of the support bodies, or the fibers of the fiber body supported on the support body. It is possible to manufacture by combining the bodies or the support and the fibrous body and bonding, welding, or fixing a part thereof as necessary.
 また、上記繊維体の製造には、上記の高速エアを活用した溶融紡糸装置以外にも、メルトブローン法や電界紡糸法などの公知の方法を、安定した生産性の観点では望ましくないが、利用することが可能である。また、上記ナノファイバーと上記マイクロファイバーは、同じ方法で作製されてもよいし、異なる方法で作製されてもよい。 In addition to the melt spinning apparatus utilizing the high-speed air, a known method such as a melt blown method or an electrospinning method is not desirable from the viewpoint of stable productivity, but is used for manufacturing the fibrous body. It is possible. Further, the nanofiber and the microfiber may be manufactured by the same method or may be manufactured by different methods.
 上記不織布構造体の具体例を図示する。図1Aは、上記不織布構造体の第1の態様を模式的に示す図であり、図1Bは、上記不織布構造体の第2の態様を模式的に示す図であり、図1Cは、上記不織布構造体の第3の態様を模式的に示す図であり、図1Dは、上記不織布構造体の第4の態様を模式的に示す図であり、図1Eは、上記不織布構造体の第5の態様を模式的に示す図である。 A specific example of the nonwoven fabric structure is illustrated. FIG. 1A is a diagram schematically illustrating a first aspect of the nonwoven fabric structure, FIG. 1B is a diagram schematically illustrating a second aspect of the nonwoven fabric structure, and FIG. 1C is a diagram illustrating the nonwoven fabric. FIG. 1D is a diagram schematically showing a fourth aspect of the nonwoven fabric structure, and FIG. 1E is a fifth diagram of the nonwoven fabric structure. It is a figure which shows an aspect typically.
 不織布構造体10Aは、図1Aに示されるように、繊維体1のみから構成されている。繊維体1は、ナノファイバーのみ、あるいはナノファイバーとマイクロファイバーとによって、前述した厚みと密度を満たすように構成されている。 The non-woven fabric structure 10A is composed of only the fiber body 1 as shown in FIG. 1A. The fiber body 1 is configured to satisfy the above-described thickness and density with only nanofibers or with nanofibers and microfibers.
 不織布構造体10Bは、図1Bに示されるように、繊維体1および支持体2とから構成されている。支持体2は、例えば樹脂製の不織布のシートである。繊維体1は、支持体2の一表面に支持されている。不織布構造体1Bは、例えば、支持体2の一表面に繊維体1を形成することによって作製される。 The nonwoven fabric structure 10B is comprised from the fiber body 1 and the support body 2, as FIG. 1B shows. The support 2 is, for example, a resin nonwoven fabric sheet. The fiber body 1 is supported on one surface of the support 2. The nonwoven fabric structure 1B is produced, for example, by forming the fiber body 1 on one surface of the support 2.
 不織布構造体10Cは、図1Cに示されるように、繊維体1と、繊維体1を厚さ方向の両側から挟む二枚の支持体2とから構成されている。不織布構造体10Cは、例えば、二つの不織布構造体1Bの繊維体1同士を合わせることによって作製される。 As shown in FIG. 1C, the nonwoven fabric structure 10C is composed of a fiber body 1 and two supports 2 that sandwich the fiber body 1 from both sides in the thickness direction. The nonwoven fabric structure 10C is produced, for example, by combining the fiber bodies 1 of the two nonwoven fabric structures 1B.
 不織布構造体10Dは、図1Dに示されるように、一枚の支持体2の両面のそれぞれに繊維体1が支持されて構成されている。不織布構造体1Dは、例えば、一枚の支持体2の両面に同時に、あるいは支持体2の片面に逐次、繊維体1を形成することによって作製される。 As shown in FIG. 1D, the nonwoven fabric structure 10 </ b> D is configured such that the fiber body 1 is supported on each of both surfaces of a single support body 2. The nonwoven fabric structure 1D is produced, for example, by forming the fiber body 1 simultaneously on both surfaces of a single support 2 or sequentially on one surface of the support 2.
 不織布構造体1Eは、図1Eに示されるように、複数の繊維体1と複数の支持体2とによって構成されている。支持体2は、各繊維体1の厚さ方向における両側に配置されている。不織布構造体1Eは、例えば、不織布構造体1B、1C、1Dの一以上を適宜に積み重ねることによって作製される。 The nonwoven fabric structure 1E is composed of a plurality of fibrous bodies 1 and a plurality of supports 2 as shown in FIG. 1E. The support body 2 is arrange | positioned at the both sides in the thickness direction of each fiber body 1. FIG. The nonwoven fabric structure 1E is produced, for example, by appropriately stacking one or more of the nonwoven fabric structures 1B, 1C, 1D.
 上記不織布構造体は、周波数が1kHzよりも大きな音の吸収性能と、周波数が1kHz以下の音の吸収性能との両方に優れている。その理由は、以下のように考えられる。 The non-woven fabric structure is excellent in both sound absorption performance with a frequency higher than 1 kHz and sound absorption performance with a frequency of 1 kHz or less. The reason is considered as follows.
 上記繊維体は、ナノファイバーを十分に含む繊維で構成され、十分な厚さと適度な繊維密度を有する。当該繊維体の内部には、非常に微小な空隙が形成されている。空気の振動(音波)である音が、当該繊維体内を通過する。 The above-mentioned fibrous body is composed of fibers sufficiently containing nanofibers, and has a sufficient thickness and an appropriate fiber density. Very minute voids are formed inside the fibrous body. Sound that is vibration (sound waves) of air passes through the fiber body.
 上記ナノファイバーの繊維が細いことから柔軟性に富み、よって、ナノファイバーは、上記空気の振動により共振する。このため、ナノファイバーが振動し、ナノファイバー同士の摩擦によって熱が生じる。こうして、ナノファイバーを振動させる音のエネルギーは、繊維体内を通過することでナノファイバーを振動させ、熱エネルギーに変換される。 The nanofibers are thin and rich in flexibility. Therefore, the nanofibers resonate due to the vibration of the air. For this reason, the nanofiber vibrates and heat is generated by friction between the nanofibers. Thus, the sound energy that vibrates the nanofibers is converted into thermal energy by vibrating the nanofibers through the fiber body.
 10mm以上の厚さを有する上記繊維体では、 従来の繊維体に比べて、1kHz以下の低周波数域の音の吸音効果が、より一層起こりやすい。これは、ナノファイバーが十分に柔軟であり、かつ十分な繊維密度で存在するので、より高周波数域の、振動エネルギーのより大きな音だけでなく、より低周波数域の、振動エネルギーのより小さな音までも、熱エネルギーに変えることができるため、と考えられる。 In the above-mentioned fibrous body having a thickness of 10 mm or more, a sound absorption effect of sound in a low frequency range of 1 kHz or less is more likely to occur compared to a conventional fibrous body. This is not only because the nanofibers are sufficiently flexible and exist with sufficient fiber density, so that not only the higher frequency, more vibration energy, but also the lower frequency, lower vibration energy. This is probably because it can be converted into thermal energy.
 なお、上記繊維体の繊維密度が前述の範囲よりも低いと、ナノファイバーの共振が十分に発生せず、1kHz以下の低周波数域の音の吸音効果が不十分となることがある。また、上記繊維体の繊維密度が前述の範囲よりも高いと、繊維体の表面部での音の反射が生じやすくなり、繊維体内における上記低周波数域の音の吸音効果が不十分となることがある。その一方で、上記繊維体の繊維密度を10~25kg/mとすると、上記低周波数域の音の吸音効果が十分に得られるとともに、前述した中周波数域の音の吸音効果が十分に得られることがある。 In addition, when the fiber density of the said fiber body is lower than the above-mentioned range, resonance of a nanofiber does not fully generate | occur | produce and the sound absorption effect of the sound of the low frequency range below 1 kHz may become inadequate. Further, if the fiber density of the fibrous body is higher than the above range, sound reflection at the surface of the fibrous body is likely to occur, and the sound absorption effect of the sound in the low frequency range in the fibrous body becomes insufficient. There is. On the other hand, when the fiber density of the fibrous body is 10 to 25 kg / m 3 , the sound absorption effect of the low frequency range sound can be sufficiently obtained, and the sound absorption effect of the medium frequency range sound can be sufficiently obtained. May be.
 以上の説明から明らかなように、上記吸音材は、繊維が絡み合わされてなる繊維体を有する不織布構造体を含み、当該繊維は、その繊維径が1μm未満のポリプロピレン製のナノファイバーを含み、当該繊維体の厚さは20mm以上36mm以下であり、当該繊維体の繊維密度は10kg/m以上50kg/m未満であり、上記繊維体における上記ナノファイバーの含有比率は質量比で0.5以上であり、かつ1kHzの音の吸音率が0.59以上0.84以下であり、6kHzの音の吸音率が0.80以上0.96以下であることから、低周波数域の音の優れた吸音特性を発現する。 As is clear from the above description, the sound absorbing material includes a nonwoven fabric structure having a fiber body in which fibers are entangled, and the fiber includes a nanofiber made of polypropylene having a fiber diameter of less than 1 μm, The thickness of the fiber body is 20 mm or more and 36 mm or less, the fiber density of the fiber body is 10 kg / m 3 or more and less than 50 kg / m 3 , and the content ratio of the nanofiber in the fiber body is 0.5 by mass ratio. Since the sound absorption coefficient of 1 kHz sound is 0.59 or more and 0.84 or less and the sound absorption coefficient of 6 kHz sound is 0.80 or more and 0.96 or less, the sound in the low frequency range is excellent. Appears sound absorbing properties.
 また、上記不織布構造体が上記繊維体を支持する支持体をさらに有することは、上記繊維体の所期の形状を維持する観点および不織布構造体の強度を高める観点から、より一層効果的である。また、上記の観点から、上記不織布構造体は、上記繊維体が、その片面で上記支持体に支持されているか、または二つの上記支持体で挟まれて支持されていてもよいし、上記不織布構造体が、二以上の上記繊維体を有し、かつ少なくとも当該繊維体の間に上記支持体を有していてもよい。 Moreover, it is much more effective that the said nonwoven fabric structure further has the support body which supports the said fiber body from a viewpoint of maintaining the original shape of the said fiber body, and the viewpoint of raising the intensity | strength of a nonwoven fabric structure. . In addition, from the above viewpoint, the nonwoven fabric structure may be supported by the fiber body supported by the support on one side or sandwiched between the two supports, or the nonwoven fabric. The structure may have two or more of the fiber bodies, and may have the support body at least between the fiber bodies.
 また、上記支持体が不織布、織布、フィルム、紙および発泡体層からなる群から選ばれる一以上であることは、入手が容易であり不織布構造体の生産性を高める観点からより一層効果的である。 Further, the support is at least one selected from the group consisting of a nonwoven fabric, a woven fabric, a film, paper, and a foam layer, and is more effective from the viewpoint of easy availability and enhancing the productivity of the nonwoven fabric structure. It is.
 また、上記繊維体は、その繊維径が2~50μmであるマイクロファイバーをさらに含むことは、当該繊維体の所期の形状を維持する観点および当該繊維体の強度を高める観点からより一層効果的である。 In addition, it is more effective from the viewpoint of maintaining the desired shape of the fibrous body and increasing the strength of the fibrous body that the fibrous body further includes microfibers having a fiber diameter of 2 to 50 μm. It is.
 また、上記ナノファイバーの繊維径分布の分布幅が上記マイクロファイバーの繊維径分布の分布幅よりも狭いことが、上記低周波数域の音の吸音効果と上記強度向上効果との設計の観点からより一層効果的である。 In addition, the distribution width of the fiber diameter distribution of the nanofiber is narrower than the distribution width of the fiber diameter distribution of the microfiber, from the viewpoint of designing the sound absorption effect of the low-frequency sound and the strength improvement effect. More effective.
 上記繊維体には、連続する微細な空隙を有する構造が形成されており、上記支持体にも、通常、そのような構造を有する部材が使用される。よって、上記不織布構造体は、一般に、前述した独特の吸音特性を有するとともに、通気性または通液性を兼ね備える。したがって、上記不織布構造体は、例えば、上記の吸音特性を要する用途、および、当該吸音特性とそれ以外の他の機能との両方を要する用途、のいずれにも採用することができる。また、上記不織布構造体は、上記の他の機能のみの用途で採用することも可能である。このような観点から、当該不織布構造体は、吸音材、遮音材、ろ過材、断熱材、絶縁セパレータ、オイル吸着材、表面洗浄用布および医療用被覆材などの不織布製品の構成部材として好適に用いられる。 A structure having continuous fine voids is formed in the fibrous body, and a member having such a structure is usually used for the support. Therefore, the nonwoven fabric structure generally has the above-described unique sound absorption characteristics and also has air permeability or liquid permeability. Therefore, the said nonwoven fabric structure can be employ | adopted for both the use which requires said sound-absorbing characteristic, and the use which requires both the said sound-absorbing characteristic and another function other than that, for example. Moreover, the said nonwoven fabric structure can also be employ | adopted for the use only of said other function. From such a viewpoint, the nonwoven fabric structure is suitably used as a constituent member of nonwoven fabric products such as a sound absorbing material, a sound insulating material, a filtering material, a heat insulating material, an insulating separator, an oil adsorbing material, a surface cleaning cloth, and a medical covering material. Used.
 <実施例1>
 まず、高速・高温(例えば200m/sec、300℃)のエアをエアノズルから一方向に噴き出し、また、エアノズルからの高速高温気流の下流側に、ポリプロピレン製の不織布を支持体として設置する。当該不織布は、スパンレース法によって製造された不織布であり、その目付け量は20g/mであり、またその厚さは140μmである。
<Example 1>
First, air of high speed and high temperature (for example, 200 m / sec, 300 ° C.) is ejected in one direction from the air nozzle, and a nonwoven fabric made of polypropylene is installed as a support downstream of the high speed and high temperature airflow from the air nozzle. The nonwoven fabric is a nonwoven fabric produced by a spunlace method, and its basis weight is 20 g / m 3 and its thickness is 140 μm.
 次いで、ポリプロピレン(PP、株式会社プライムポリマー製「プライムポリプロ J106G」)を、300℃に調整された紡糸ノズルに通過させて充分に溶融し、次いで当該溶融したPPを紡糸ノズルから上記高速高温気流へ吐出させ、繊維径が0.50μm、繊維長が100cmのナノファイバーを作製するとともに下流側の上記不織布の表面に捕集する。こうして、繊維径が0.50μm(500nm)、目付け量が350g/m、繊維密度が17.5kg/mのナノファイバーによる繊維体が上記不織布の表面に支持されている、図1Bに示されるようなシート状の不織布構造体1を作製した。 Next, polypropylene (PP, “Prime Polypro J106G” manufactured by Prime Polymer Co., Ltd.) is passed through a spinning nozzle adjusted to 300 ° C. and sufficiently melted, and then the melted PP is passed from the spinning nozzle to the high-speed high-temperature air flow. The nanofibers having a fiber diameter of 0.50 μm and a fiber length of 100 cm are produced and collected on the surface of the nonwoven fabric on the downstream side. Thus, a fiber body of nanofibers having a fiber diameter of 0.50 μm (500 nm), a basis weight of 350 g / m 2 , and a fiber density of 17.5 kg / m 3 is supported on the surface of the nonwoven fabric, as shown in FIG. 1B. A sheet-like nonwoven fabric structure 1 was prepared.
 また、不織布構造体1の厚さは、20mmである。不織布構造体1の厚さは、上記不織布と上記繊維体の厚さの総和の平均値であり、当該不織布構造体1の平面方向における任意の5箇所で測定された厚さの総和の平均値である。 Moreover, the thickness of the nonwoven fabric structure 1 is 20 mm. The thickness of the nonwoven fabric structure 1 is the average value of the total thickness of the nonwoven fabric and the fibrous body, and the average value of the total thickness measured at any five locations in the plane direction of the nonwoven fabric structure 1. It is.
 上記繊維径は、前述したように、カーボンテープ上に3mm角程度の繊維体1の試料を貼り、次いで当該試料にAuを2分間程度蒸着し、次いで走査型電子顕微鏡 VE-7800(株式会社キーエンス製)を用いて上記試料を3000倍の倍率で観察し、得られた拡大画像中の任意の10本のナノファイバーの繊維径を測定し、それらの平均値として求めた。 As described above, the fiber diameter was measured by attaching a fiber body 1 sample of about 3 mm square on a carbon tape, then depositing Au on the sample for about 2 minutes, and then scanning electron microscope VE-7800 (Keyence Corporation). The above-mentioned sample was observed at a magnification of 3000 times using a manufactured product, the fiber diameters of arbitrary 10 nanofibers in the obtained enlarged image were measured, and the average value thereof was obtained.
 上記目付け量は、上記繊維体を、その平面形状が10cm×10cmの正方形に切断し、その重量を測定し、当該重量と平面方向における面積(100cm)とから算出した。また、上記繊維密度は、上記目付け量および下記不織布構造体の厚さとの積により求めた。 The weight per unit area was calculated from the fibrous body cut into a square having a planar shape of 10 cm × 10 cm, the weight was measured, and the area in the planar direction (100 cm 2 ). Moreover, the said fiber density was calculated | required by the product of the said fabric weight and the thickness of the following nonwoven fabric structure.
 なお、上記繊維体を走査型電子顕微鏡(SEM)で観察することにより、図3Aおよび3Bに示されるように、当該繊維体の平面方向および厚さ方向のいずれにおいても、上記ナノファイバーによる均一かつ緻密な繊維体が構成されていることが確認される。 In addition, by observing the fibrous body with a scanning electron microscope (SEM), as shown in FIGS. 3A and 3B, the nanofiber is uniform and uniform in both the planar direction and the thickness direction of the fibrous body. It is confirmed that a dense fiber body is formed.
 <実施例2、参考例4および比較例3、5~7>
 紡糸ノズルの温度の調整、PPの吐出量の調整、高速高温気流の流量の調整、生成する繊維の捕集時間の調整、および繊維体の厚さ方向への圧縮、を必要に応じて行う以外は不織布構造体1と同様にして、不織布構造体2~7をそれぞれ作製した。
<Example 2, Reference Example 4 and Comparative Examples 3, 5 to 7>
Other than adjusting the temperature of the spinning nozzle, adjusting the discharge amount of PP, adjusting the flow rate of the high-speed and high-temperature air flow, adjusting the collection time of the fiber to be generated, and compressing the fiber body in the thickness direction as necessary Produced nonwoven fabric structures 2 to 7 in the same manner as nonwoven fabric structure 1, respectively.
 不織布構造体2における繊維体の繊維径は0.35μmであり、目付け量は390g/mであり、繊維密度は17.7kg/mである。また、不織布構造体2の厚さは22mmである。不織布構造体3における繊維体の繊維径は0.50μmであり、目付け量は350g/mであり、繊維密度は35.0kg/mである。また、不織布構造体3の厚さは10mmである。不織布構造体4における繊維体の繊維径は0.50μmであり、目付け量は756g/mであり、繊維密度は47.3kg/mである。また、不織布構造体4の厚さは16mmである。不織布構造体5における繊維体の繊維径は0.50μmであり、目付け量は500g/mであり、繊維密度は27.8kg/mである。また、不織布構造体5の厚さは18mmである。不織布構造体6における繊維体の繊維径は0.50μmであり、目付け量は453g/mであり、繊維密度は25.2kg/mである。また、不織布構造体6の厚さは18mmである。不織布構造体7における繊維体の繊維径は0.35μmであり、目付け量は190g/mであり、繊維密度は19.0kg/mである。また、不織布構造体7の厚さは10mmである。 The fiber diameter of the fibrous body in the nonwoven fabric structure 2 is 0.35 μm, the basis weight is 390 g / m 2 , and the fiber density is 17.7 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 2 is 22 mm. The fiber diameter of the fibrous body in the nonwoven fabric structure 3 is 0.50 μm, the basis weight is 350 g / m 2 , and the fiber density is 35.0 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 3 is 10 mm. The fiber diameter of the fibrous body in the nonwoven fabric structure 4 is 0.50 μm, the basis weight is 756 g / m 2 , and the fiber density is 47.3 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 4 is 16 mm. The fiber diameter of the fibrous body in the nonwoven fabric structure 5 is 0.50 μm, the basis weight is 500 g / m 2 , and the fiber density is 27.8 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 5 is 18 mm. The fiber diameter of the fibrous body in the nonwoven fabric structure 6 is 0.50 μm, the basis weight is 453 g / m 2 , and the fiber density is 25.2 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 6 is 18 mm. Fiber diameter of the fibrous body in a nonwoven structure 7 is 0.35 .mu.m, basis weight is 190 g / m 2, the fiber density is 19.0 kg / m 3. Moreover, the thickness of the nonwoven fabric structure 7 is 10 mm.
 <参考例8、9および実施例10>
 紡糸ノズルの温度、PPの吐出量、および高速高温気流の流量を必要に応じて調整する以外は不織布構造体1と同様にして、上記不織布の表面に、繊維径が0.50μm(500nm)、目付け量が187g/m、繊維密度が46.8kg/mの繊維体が支持されてなる、図1Bに示されるような不織布構造体ユニット8を作製した。不織布構造体ユニット8の厚さは4mmである。
<Reference Examples 8, 9 and Example 10>
The fiber diameter is 0.50 μm (500 nm) on the surface of the nonwoven fabric in the same manner as the nonwoven fabric structure 1 except that the temperature of the spinning nozzle, the discharge amount of PP, and the flow rate of the high-speed high-temperature airflow are adjusted as necessary. A nonwoven fabric structure unit 8 as shown in FIG. 1B in which a fiber body having a basis weight of 187 g / m 2 and a fiber density of 46.8 kg / m 3 was supported was produced. The thickness of the nonwoven fabric structure unit 8 is 4 mm.
 不織布構造体ユニット8を三枚重ね、さらにその最上部に上記不織布を重ね、適宜に固定することにより、図1Eに示されるような、三層の上記繊維体の層を有する不織布構造体8を作製した。不織布構造体8の厚さは12mmである。 A nonwoven fabric structure 8 having three layers of the fibrous body as shown in FIG. 1E is obtained by stacking three nonwoven fabric structure units 8 and further stacking the nonwoven fabric on the uppermost portion and fixing them appropriately. Produced. The thickness of the nonwoven fabric structure 8 is 12 mm.
 さらに、不織布構造体ユニット8を四枚重ねる以外は不織布構造体8と同様にして、不織布構造体9を作製した。また、不織布構造体ユニット8を五枚重ねる以外は不織布構造体8と同様にして、不織布構造体10を作製した。不織布構造体9の厚さは16mmであり、不織布構造体10の厚さは20mmである。 Furthermore, a nonwoven fabric structure 9 was produced in the same manner as the nonwoven fabric structure 8 except that four nonwoven fabric structure units 8 were stacked. Moreover, the nonwoven fabric structure 10 was produced in the same manner as the nonwoven fabric structure 8 except that five nonwoven fabric structure units 8 were stacked. The thickness of the nonwoven fabric structure 9 is 16 mm, and the thickness of the nonwoven fabric structure 10 is 20 mm.
 <実施例11および参考例12>
 上記高速高温気流に向けて配置されている、280℃に調整された第2の紡糸ノズルから、溶融したポリエチレンテレフタラート(PET、帝人株式会社製「TRN-8550T」)を、上記PPと同時に上記高速高温気流へ吐出させる以外は、不織布構造体1と同様にして、不織布構造体11を作製した。不織布構造体11の繊維体は、PP製のナノファイバーとPET製のマイクロファイバーとが質量比1:1で混在している。
<Example 11 and Reference Example 12>
A melted polyethylene terephthalate (PET, “TRN-8550T” manufactured by Teijin Ltd.) from the second spinning nozzle adjusted to 280 ° C. arranged toward the high-speed and high-temperature air stream is simultaneously added to the PP. A nonwoven fabric structure 11 was produced in the same manner as the nonwoven fabric structure 1 except that it was discharged into a high-speed high-temperature air stream. The fibrous body of the nonwoven fabric structure 11 is a mixture of PP nanofibers and PET microfibers in a mass ratio of 1: 1.
 不織布構造体11の繊維体におけるナノファイバーの繊維径は0.50μmであり、マイクロファイバーの繊維径は11μmである。上記繊維体の目付け量は1140g/mであり、繊維密度は49.6kg/mである。また、不織布構造体11の厚さは23mmである。 The fiber diameter of the nanofiber in the fiber body of the nonwoven fabric structure 11 is 0.50 μm, and the fiber diameter of the microfiber is 11 μm. The basis weight of the fibrous body is 1140 g / m 2 and the fiber density is 49.6 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 11 is 23 mm.
 なお、上記マイクロファイバーの繊維径は、上記の拡大画像における倍率を100倍とする以外はナノファイバーの繊維径と同様に測定して求めた。 The fiber diameter of the microfiber was determined by measuring in the same manner as the fiber diameter of the nanofiber, except that the magnification in the enlarged image was 100 times.
 また、上記繊維体をSEMで観察することにより、図4Aおよび4Bに示されるように、当該繊維体の平面方向および厚さ方向のいずれにおいても、上記ナノファイバーと上記マイクロファイバーとが均一に混在し、かつ上記マイクロファイバー間に上記ナノファイバーが十分に存在する繊維体が構成されていることが確認される。 Further, by observing the fibrous body with an SEM, as shown in FIGS. 4A and 4B, the nanofibers and the microfibers are uniformly mixed in both the planar direction and the thickness direction of the fibrous body. In addition, it is confirmed that a fiber body in which the nanofibers are sufficiently present between the microfibers is configured.
 また、紡糸ノズルの温度の調整、PPの吐出量の調整、PETの吐出量の調整、高速高温気流の流量の調整、生成する繊維の捕集時間の調整 および繊維体の厚さ方向への圧縮、を必要に応じて行う以外は不織布構造体11と同様にして不織布構造体12を作製した。不織布構造体12の繊維体の目付け量は760g/mであり、繊維密度は47.5kg/mである。また、不織布構造体12の厚さは16mmである。 Also, adjustment of spinning nozzle temperature, adjustment of PP discharge amount, adjustment of PET discharge amount, adjustment of flow rate of high-speed and high-temperature air current, adjustment of collection time of generated fiber and compression in the thickness direction of the fiber body The nonwoven fabric structure 12 was produced in the same manner as the nonwoven fabric structure 11 except that the above steps were performed as necessary. The basis weight of the fibrous body of the nonwoven fabric structure 12 is 760 g / m 2 , and the fiber density is 47.5 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 12 is 16 mm.
 <参考例13、15、17および実施例14、16>
 紡糸ノズルの温度の調整、PPの吐出量の調整、PETの吐出量の調整、高速高温気流の流量の調整、生成する繊維の捕集時間の調整 および繊維体の厚さ方向への圧縮、を必要に応じて行う以外は不織布構造体11と同様にして不織布構造体13を作製した。不織布構造体13の繊維体におけるナノファイバーの繊維径は0.50μmであり、マイクロファイバーの繊維径は20μmである。また、当該繊維体の目付け量は331g/mであり、繊維密度は18.4kg/mである。さらに、不織布構造体13の厚さは18mmである。不織布構造体13~17の繊維体では、PP製のナノファイバーとPET製のマイクロファイバーとが質量比1:1で混在している。
<Reference Examples 13, 15, and 17 and Examples 14 and 16>
Adjustment of spinning nozzle temperature, adjustment of PP discharge amount, adjustment of PET discharge amount, adjustment of flow rate of high-speed and high-temperature air flow, adjustment of collection time of generated fiber and compression in the thickness direction of the fiber body A nonwoven fabric structure 13 was produced in the same manner as the nonwoven fabric structure 11 except that it was performed as necessary. The fiber diameter of the nanofiber in the fiber body of the nonwoven fabric structure 13 is 0.50 μm, and the fiber diameter of the microfiber is 20 μm. The basis weight of the fibrous body is 331 g / m 2 and the fiber density is 18.4 kg / m 3 . Furthermore, the thickness of the nonwoven fabric structure 13 is 18 mm. In the fibrous bodies of the nonwoven fabric structures 13 to 17, PP nanofibers and PET microfibers are mixed at a mass ratio of 1: 1.
 また、紡糸ノズルの温度の調整、PPの吐出量の調整、PETの吐出量の調整、高速高温気流の流量の調整、生成する繊維の捕集時間の調整 および繊維体の厚さ方向への圧縮、を必要に応じて行う以外は不織布構造体13と同様にして不織布構造体14~17を作製した。不織布構造体14~17の繊維体におけるナノファイバーの繊維径は、いずれも0.50μmであり、マイクロファイバーの繊維径は、いずれも20μmである。 Also, adjustment of spinning nozzle temperature, adjustment of PP discharge amount, adjustment of PET discharge amount, adjustment of flow rate of high-speed and high-temperature air flow, adjustment of collection time of generated fiber, and compression in the thickness direction of the fiber body The nonwoven fabric structures 14 to 17 were produced in the same manner as the nonwoven fabric structure 13 except that the above steps were performed as necessary. The fiber diameters of the nanofibers in the nonwoven fabric structures 14 to 17 are all 0.50 μm, and the fiber diameters of the microfibers are all 20 μm.
 不織布構造体14の繊維体の目付け量は691g/mであり、繊維密度は19.2kg/mである。また、不織布構造体14の厚さは36mmである。不織布構造体15の繊維体の目付け量は691g/mであり、繊維密度は34.6kg/mである。また、不織布構造体15の厚さは20mmである。不織布構造体16の繊維体の目付け量は509g/mであり、繊維密度は17.0kg/mである。また、不織布構造体16の厚さは30mmである。不織布構造体17の繊維体の目付け量は509g/mであり、繊維密度は36.4kg/mである。また、不織布構造体17の厚さは14mmである。 The fabric weight of the nonwoven fabric structure 14 is 691 g / m 2 , and the fiber density is 19.2 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 14 is 36 mm. The basis weight of the fibrous body of the nonwoven fabric structure 15 is 691 g / m 2 , and the fiber density is 34.6 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 15 is 20 mm. The basis weight of the fibrous body of the nonwoven fabric structure 16 is 509 g / m 2 , and the fiber density is 17.0 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 16 is 30 mm. The basis weight of the fibrous body of the nonwoven fabric structure 17 is 509 g / m 2 , and the fiber density is 36.4 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure 17 is 14 mm.
 <実施例18~20>
 紡糸ノズルの温度の調整、PPの吐出量の調整、PETの吐出量の調整、高速高温気流の流量の調整、生成する繊維の捕集時間の調整 および繊維体の厚さ方向への圧縮、を必要に応じて行う以外は不織布構造体11と同様にして不織布構造体18を作製した。不織布構造体18の繊維体におけるナノファイバーの繊維径は0.50μmであり、マイクロファイバーの繊維径は21μmである。また、当該繊維体の目付け量は480g/mであり、繊維密度は16.0kg/mである。さらに、不織布構造体18の厚さは30mmである。不織布構造体18~20の繊維体では、PP製のナノファイバーとPET製のマイクロファイバーとが質量比3:1で混在している。
<Examples 18 to 20>
Adjustment of spinning nozzle temperature, adjustment of PP discharge amount, adjustment of PET discharge amount, adjustment of flow rate of high-speed and high-temperature air flow, adjustment of collection time of generated fiber and compression in the thickness direction of the fiber body A nonwoven fabric structure 18 was produced in the same manner as the nonwoven fabric structure 11 except that it was performed as necessary. The fiber diameter of the nanofiber in the fiber body of the nonwoven fabric structure 18 is 0.50 μm, and the fiber diameter of the microfiber is 21 μm. The basis weight of the fibrous body is 480 g / m 2 and the fiber density is 16.0 kg / m 3 . Furthermore, the thickness of the nonwoven fabric structure 18 is 30 mm. In the fibrous body of the nonwoven fabric structures 18 to 20, nanofibers made of PP and microfibers made of PET are mixed at a mass ratio of 3: 1.
 紡糸ノズルの温度の調整、PPの吐出量の調整、PETの吐出量の調整、高速高温気流の流量の調整、生成する繊維の捕集時間の調整 および繊維体の厚さ方向への圧縮、を必要に応じて行う以外は不織布構造体18と同様にして、不織布構造体19、20をそれぞれ作製した。不織布構造体19および20の繊維体のいずれも、ナノファイバーの繊維径は0.50μmであり、マイクロファイバーの繊維径は21μmである。また、不織布構造体19の厚さは27mmであり、その繊維体の繊維密度は17.8kg/mである。さらに、不織布構造体20の厚さは20mmであり、その繊維体の繊維密度は24.0kg/mである。 Adjustment of spinning nozzle temperature, adjustment of PP discharge amount, adjustment of PET discharge amount, adjustment of flow rate of high-speed and high-temperature air flow, adjustment of collection time of generated fiber and compression in the thickness direction of the fiber body Nonwoven fabric structures 19 and 20 were respectively produced in the same manner as the nonwoven fabric structure 18 except that it was performed as necessary. In both of the nonwoven fabric structures 19 and 20, the fiber diameter of the nanofiber is 0.50 μm, and the fiber diameter of the microfiber is 21 μm. Moreover, the thickness of the nonwoven fabric structure 19 is 27 mm, and the fiber density of the fibrous body is 17.8 kg / m 3 . Furthermore, the thickness of the nonwoven fabric structure 20 is 20 mm, and the fiber density of the fibrous body is 24.0 kg / m 3 .
 <参考例21および実施例22、23>
 紡糸ノズルの温度の調整、PPの吐出量の調整、PETの吐出量の調整、高速高温気流の流量の調整、生成する繊維の捕集時間の調整 および繊維体の厚さ方向への圧縮、を必要に応じて行う以外は不織布構造体11と同様にして、不織布構造体ユニット21を作製した。
<Reference Example 21 and Examples 22 and 23>
Adjustment of spinning nozzle temperature, adjustment of PP discharge amount, adjustment of PET discharge amount, adjustment of flow rate of high-speed and high-temperature air flow, adjustment of collection time of generated fiber and compression in the thickness direction of the fiber body A nonwoven fabric structure unit 21 was produced in the same manner as the nonwoven fabric structure 11 except that it was performed as necessary.
 不織布構造体ユニット21の繊維体は、PP製のナノファイバーとPET製のマイクロファイバーとが質量比1:1で混在しており、その繊維体におけるナノファイバーの繊維径は0.50μmであり、マイクロファイバーの繊維径は11μmである。また、上記繊維体の目付け量は190g/mであり、繊維密度は47.5 kg/mである。さらに、不織布構造体ユニット21の厚さは4mmである。 The fiber body of the nonwoven fabric structure unit 21 is a mixture of PP nanofibers and PET microfibers in a mass ratio of 1: 1, and the fiber diameter of the nanofibers in the fiber body is 0.50 μm, The fiber diameter of the microfiber is 11 μm. The basis weight of the fibrous body is 190 g / m 2 and the fiber density is 47.5 kg / m 3 . Furthermore, the thickness of the nonwoven fabric structure unit 21 is 4 mm.
 不織布構造体ユニット21を3枚重ね、さらにその最上部に上記不織布を重ね、適宜に固定することにより、3層の上記繊維体の層を有する不織布構造体21を作製した。不織布構造体21の厚さは12mmである。 The nonwoven fabric structure 21 having three layers of the fibrous body was produced by stacking three nonwoven fabric structure units 21 and further stacking the nonwoven fabric on the uppermost portion and fixing them appropriately. The thickness of the nonwoven fabric structure 21 is 12 mm.
 不織布構造体ユニット21をそれぞれ、5枚および6枚重ねる以外は不織布構造体21と同様にして、不織布構造体22、23をそれぞれ作製した。不織布構造体22の厚さは20mmであり、不織布構造体23の厚さは24mmである。 Nonwoven fabric structures 22 and 23 were produced in the same manner as the nonwoven fabric structure 21 except that 5 and 6 nonwoven fabric structure units 21 were stacked, respectively. The thickness of the nonwoven fabric structure 22 is 20 mm, and the thickness of the nonwoven fabric structure 23 is 24 mm.
 <比較例1>
 スリーエム ジャパン株式会社製「シンサレート TAI3047」(「シンサレート」は同社の登録商標)を用意し、これを不織布構造体C1とした。不織布構造体C1は、ポリプロピレン製のマイクロファイバー1とポリエステル製のマイクロファイバー2とが混在した繊維体を有する。マイクロファイバー1の繊維径は約2μmであり、マイクロファイバー2の繊維径は約25μmである。また、マイクロファイバー1の質量(MF1)とマイクロファイバー2の質量(MF2)との比(MF1:MF2)は約65:35である。また、不織布構造体C1の繊維体における目付け量は315g/mであり、繊維密度は17.5kg/mである。また、不織布構造体C1の厚さは18mmである。
<Comparative Example 1>
“Thin Sulate TAI3047” (“Thin Sulate” is a registered trademark of the company) manufactured by 3M Japan Ltd. was prepared, and this was designated as a nonwoven fabric structure C1. The nonwoven fabric structure C1 has a fiber body in which polypropylene microfibers 1 and polyester microfibers 2 are mixed. The fiber diameter of the microfiber 1 is about 2 μm, and the fiber diameter of the microfiber 2 is about 25 μm. Further, the ratio (MF1: MF2) of the mass (MF1) of the microfiber 1 and the mass (MF2) of the microfiber 2 is about 65:35. Moreover, the fabric weight of the nonwoven fabric structure C1 in the fiber body is 315 g / m 2 , and the fiber density is 17.5 kg / m 3 . Moreover, the thickness of the nonwoven fabric structure C1 is 18 mm.
 <比較例2、3>
 紡糸ノズルの温度の調整、PPの吐出量の調整、高速高温気流の流量の調整、生成する繊維の捕集時間の調整 および繊維体の厚さ方向への圧縮、を必要に応じて行う以外は不織布構造体1と同様にして、繊維密度および厚さが異なる以外は不織布構造体1と同様の不織布構造体C2、C3をそれぞれ作製した。
<Comparative Examples 2 and 3>
Except for adjusting the temperature of the spinning nozzle, adjusting the discharge rate of PP, adjusting the flow rate of the high-speed and high-temperature air flow, adjusting the collection time of the produced fiber, and compressing the fiber body in the thickness direction, as necessary In the same manner as the nonwoven fabric structure 1, nonwoven fabric structures C2 and C3 similar to the nonwoven fabric structure 1 were produced except that the fiber density and thickness were different.
 不織布構造体C2の繊維体の繊維密度は50.0kg/mであり、不織布構造体C2の厚さは7mmである。また、不織布構造体C3の繊維体の繊維密度は87.5kg/mであり、不織布構造体C3の厚さは4mmである。 The fiber density of the fibrous body of the nonwoven fabric structure C2 is 50.0 kg / m 3 , and the thickness of the nonwoven fabric structure C2 is 7 mm. Moreover, the fiber density of the fibrous body of the nonwoven fabric structure C3 is 87.5 kg / m 3 , and the thickness of the nonwoven fabric structure C3 is 4 mm.
 <比較例4~6>
 紡糸ノズルの温度の調整、PPの吐出量の調整、高速高温気流の流量の調整、生成する繊維の捕集時間の調整 および繊維体の厚さ方向への圧縮、を必要に応じて行う以外は不織布構造体4~6のそれぞれと同様にして、繊維密度および厚さが異なる以外は不織布構造体4~6のそれぞれと同様の不織布構造体C4~C6をそれぞれ作製した。
<Comparative Examples 4 to 6>
Except for adjusting the temperature of the spinning nozzle, adjusting the discharge rate of PP, adjusting the flow rate of the high-speed and high-temperature air flow, adjusting the collection time of the produced fiber, and compressing the fiber body in the thickness direction, as necessary In the same manner as each of the nonwoven fabric structures 4 to 6, nonwoven fabric structures C4 to C6 that were the same as the nonwoven fabric structures 4 to 6 except that the fiber density and thickness were different were produced.
 不織布構造体C4の繊維体の繊維密度は75.6kg/mであり、不織布構造体C4の厚さは10mmである。不織布構造体C5の繊維体の繊維密度は55.6kg/mであり、不織布構造体C5の厚さは9mmである。不織布構造体C6の繊維体の繊維密度は50.3kg/mであり、不織布構造体C6の厚さは9mmである。 The fiber density of the fibrous body of the nonwoven fabric structure C4 is 75.6 kg / m 3 , and the thickness of the nonwoven fabric structure C4 is 10 mm. The fiber density of the fibrous body of the nonwoven fabric structure C5 is 55.6 kg / m 3 , and the thickness of the nonwoven fabric structure C5 is 9 mm. The fiber density of the fibrous body of the nonwoven fabric structure C6 is 50.3 kg / m 3 , and the thickness of the nonwoven fabric structure C6 is 9 mm.
 <比較例7、8>
 不織布構造体ユニット8を不織布構造体C7とした。また、不織布構造体ユニットの重ね枚数を二枚とする以外は不織布構造体8と同様にして、不織布構造体C8を作製した。不織布構造体C8の厚さは8mmである。
<Comparative Examples 7 and 8>
The nonwoven fabric structure unit 8 was designated as a nonwoven fabric structure C7. Moreover, the nonwoven fabric structure C8 was produced in the same manner as the nonwoven fabric structure 8 except that the number of the nonwoven fabric structure units stacked was two. The thickness of the nonwoven fabric structure C8 is 8 mm.
 <比較例9、10>
 紡糸ノズルの温度の調整、PPの吐出量の調整、PETの吐出量の調整、高速高温気流の流量の調整、生成する繊維の捕集時間の調整 および繊維体の厚さ方向への圧縮、を必要に応じて行う以外は不織布構造体11と同様にして、不織布構造体C9、C10をそれぞれ作製した。
<Comparative Examples 9 and 10>
Adjustment of spinning nozzle temperature, adjustment of PP discharge amount, adjustment of PET discharge amount, adjustment of flow rate of high-speed and high-temperature air flow, adjustment of collection time of generated fiber and compression in the thickness direction of the fiber body Non-woven fabric structures C9 and C10 were respectively produced in the same manner as the non-woven fabric structure 11 except for the case where necessary.
 不織布構造体C9の厚さは7mmであり、その繊維体の目付け量は380g/mであり、繊維密度は54.3kg/mである。不織布構造体C10の厚さは4mmであり、その繊維体の目付け量は190g/mであり、繊維密度は47.5kg/mである。不織布構造体C10の目付け量および繊維密度は、不織布構造体ユニット21と同等である。 The thickness of the nonwoven fabric structure C9 is 7 mm, the basis weight of the fibrous body is 380 g / m 2 , and the fiber density is 54.3 kg / m 3 . The thickness of the nonwoven fabric structure C10 is 4 mm, the basis weight of the fibrous body is 190 g / m 2 , and the fiber density is 47.5 kg / m 3 . The basis weight and fiber density of the nonwoven fabric structure C10 are equivalent to those of the nonwoven fabric structure unit 21.
 <比較例11>
 紡糸ノズルの温度の調整、PPの吐出量の調整、PETの吐出量の調整、高速高温気流の流量の調整、生成する繊維の捕集時間の調整 および繊維体の厚さ方向への圧縮、を必要に応じて行う以外は不織布構造体13と同様にして、不織布構造体C11を作製した。不織布構造体C11の厚さは7mmであり、その繊維体の目付け量は331g/mであり、繊維密度は47.3kg/mである。
<Comparative Example 11>
Adjustment of spinning nozzle temperature, adjustment of PP discharge amount, adjustment of PET discharge amount, adjustment of flow rate of high-speed and high-temperature air flow, adjustment of collection time of generated fiber and compression in the thickness direction of the fiber body A nonwoven fabric structure C11 was produced in the same manner as the nonwoven fabric structure 13 except that it was carried out as necessary. The thickness of the nonwoven fabric structure C11 is 7 mm, the basis weight of the fibrous body is 331 g / m 2 , and the fiber density is 47.3 kg / m 3 .
 <比較例12>
 紡糸ノズルの温度の調整、PPの吐出量の調整、PETの吐出量の調整、高速高温気流の流量の調整、生成する繊維の捕集時間の調整 および繊維体の厚さ方向への圧縮、を必要に応じて行う以外は不織布構造体18と同様にして、不織布構造体C12を作製した。不織布構造体C12の厚さは9mmであり、その繊維体の目付け量は480g/mであり、繊維密度は53.3kg/mである。
<Comparative Example 12>
Adjustment of spinning nozzle temperature, adjustment of PP discharge amount, adjustment of PET discharge amount, adjustment of flow rate of high-speed and high-temperature air flow, adjustment of collection time of generated fiber and compression in the thickness direction of the fiber body A nonwoven fabric structure C12 was produced in the same manner as the nonwoven fabric structure 18 except that it was performed as necessary. The thickness of the nonwoven fabric structure C12 is 9 mm, the basis weight of the fibrous body is 480 g / m 2 , and the fiber density is 53.3 kg / m 3 .
 不織布構造体1~23およびC1~C12のそれぞれについて、不織布構造体の平面方向に対して垂直な方向からの、周波数200Hz~6kHzの音の吸音率(垂直入射吸音率)を、音響インピーダンス管を用いた垂直吸音システム(株式会社 小野測器製「DS-200」)を用いて測定した。不織布構造体1~23およびC1~C12の構造および物性と垂直入射吸音率の測定結果とを表1~3にそれぞれ示す。また、図2に、不織布構造体1、2および不織布構造体C1の垂直入射吸音率を示す。図中、実線は不織布構造体1の、一点鎖線は不織布構造体2の、そして破線は不織布構造体C1の垂直入射吸音率をそれぞれ示している。 For each of the nonwoven fabric structures 1 to 23 and C1 to C12, the sound absorption coefficient (perpendicular incident absorption coefficient) of sound having a frequency of 200 Hz to 6 kHz from the direction perpendicular to the plane direction of the nonwoven structure is measured with an acoustic impedance tube. It was measured using the vertical sound absorption system used (“DS-200” manufactured by Ono Sokki Co., Ltd.). The structures and physical properties of the nonwoven fabric structures 1 to 23 and C1 to C12 and the measurement results of the normal incidence sound absorption coefficient are shown in Tables 1 to 3, respectively. FIG. 2 shows the normal incidence sound absorption coefficient of the nonwoven fabric structures 1 and 2 and the nonwoven fabric structure C1. In the figure, the solid line indicates the normal incident sound absorption coefficient of the nonwoven fabric structure 1, the one-dot chain line indicates the non-woven structure 2, and the broken line indicates the normal incident sound absorption coefficient of the nonwoven structure C1, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3および図2から明らかなように、マイクロファイバーからなる繊維体を有する不織布構造体C1は、約1kH以下の周波数域では吸音率が約0.1程度と不十分であり、約1kHzから約5kHzまでの周波数域では吸音率が徐々に増加し、約5kHz以上の周波数では0.9以上の十分な吸音率を示している。 As is apparent from Table 3 and FIG. 2, the nonwoven fabric structure C1 having a fibrous body composed of microfibers has an insufficient sound absorption coefficient of about 0.1 in a frequency range of about 1 kHz or less, from about 1 kHz to about 1 kHz. The sound absorption rate gradually increases in the frequency range up to 5 kHz, and a sufficient sound absorption rate of 0.9 or more is shown at a frequency of about 5 kHz or more.
 表1、表2および図2から明らかなように、ナノファイバーによる繊維体において、厚みを10mm以上とし、かつ、繊維密度を10kg/m以上50kg/m未満とした不織布構造体1~6および不織布構造体8~23は、いずれも、約3kHzまでの周波数域で不織布構造体C1以上の高い吸音率を示しており、具体的には1kHzにて0.2以上、2kHzにて0.5以上、3kHzにおいても0.7以上の吸音率を示している。かつ、これらの不織布構造体は、約4kHz以上の周波数でも、十分に高い吸音率を示している。 As is apparent from Tables 1 and 2 and FIG. 2, in the fiber body using nanofibers, the nonwoven fabric structures 1 to 6 having a thickness of 10 mm or more and a fiber density of 10 kg / m 3 or more and less than 50 kg / m 3. Each of the nonwoven fabric structures 8 to 23 has a high sound absorption coefficient higher than that of the nonwoven fabric structure C1 in a frequency range up to about 3 kHz, specifically 0.2 or more at 1 kHz and 0.2 at 2 kHz. A sound absorption coefficient of 0.7 or more is exhibited even at 5 or more and 3 kHz. And these nonwoven fabric structures have a sufficiently high sound absorption coefficient even at a frequency of about 4 kHz or higher.
 このように、上記の不織布構造体は、マイクロファイバーによる不織布構造体に比べて、より低い周波数域の音の吸音性に優れていることがわかる。これは、先述のように、ナノファイバーの繊維体における粘性による音の熱エネルギーへの変換の効率が高くなり、また、当該繊維体自身の共振による吸音効果が起こりやすくなるため、と考えられる。 Thus, it can be seen that the above-described nonwoven fabric structure is superior in sound absorption of sound in a lower frequency range than the nonwoven fabric structure using microfibers. This is presumably because, as described above, the efficiency of conversion of sound into thermal energy due to viscosity in the fiber body of the nanofiber is increased, and the sound absorption effect due to resonance of the fiber body itself is likely to occur.
 その効果は、図2に示されるように、厚さが16mm以上でナノファイバーの比率の高い不織布構造体1および2において特に顕著であり、1kHzにて0.8以上、2kHzにて0.7以上、3kHzにおいても0.7以上の吸音率が示されている。 As shown in FIG. 2, the effect is particularly remarkable in the nonwoven fabric structures 1 and 2 having a thickness of 16 mm or more and a high ratio of nanofibers, and is 0.8 or more at 1 kHz and 0.7 at 2 kHz. As described above, a sound absorption coefficient of 0.7 or more is shown even at 3 kHz.
 また、不織布構造体7と不織布構造体C1との対比によれば、両者の吸音特性はほぼ同等と言える。しかしながら、不織布構造体7の厚さは10μmであり、その目付け量は190g/m、と不織布構造体C1のそれらに比べて、十分に小さな値となっている。このように、目付け量が200g/cm以下であり、厚さが15mm以下でも、従来のマイクロファイバーの不織布構造体と同等の吸音効果がもたらされる。よって、ナノファイバーで繊維体を構成することにより、従来のマイクロファイバーで構成された繊維体を含む不織布構造体に比べて、より軽くより薄い不織布構造体で同等の吸音効果が得られる。 Further, according to the comparison between the nonwoven fabric structure 7 and the nonwoven fabric structure C1, it can be said that the sound absorption characteristics of the two are almost equal. However, the thickness of the nonwoven fabric structure 7 is 10 μm, and the basis weight is 190 g / m 2 , which is a sufficiently small value compared to those of the nonwoven fabric structure C1. Thus, even when the basis weight is 200 g / cm 2 or less and the thickness is 15 mm or less, the sound absorbing effect equivalent to that of the conventional microfiber nonwoven fabric structure is provided. Therefore, by constituting the fibrous body with nanofibers, the same sound absorbing effect can be obtained with a lighter and thinner nonwoven fabric structure as compared with a nonwoven fabric structure including a fibrous body composed of conventional microfibers.
 また、不織布構造体1と不織布構造体2との対比によれば、繊維体の繊維径がより細いことが、5kHz以下の周波数域での吸音特性をより高める観点から効果的であることがわかる。これは、より柔軟なナノファイバーで構成される上記繊維体のそれ自身の剛性がより小さくなり、ナノファイバーの共振が起こり易くなり、その結果、低周波域での吸音効果がより高まっているため、と考えられる。 Further, according to the comparison between the nonwoven fabric structure 1 and the nonwoven fabric structure 2, it can be seen that the smaller fiber diameter of the fiber body is effective from the viewpoint of further improving the sound absorption characteristics in the frequency range of 5 kHz or less. . This is because the above-mentioned fibrous body composed of more flexible nanofibers is less rigid, and the nanofibers are more likely to resonate. As a result, the sound absorption effect in the low frequency range is increased. ,it is conceivable that.
 また、不織布構造体8~10と不織布構造体C8との対比によれば、厚さの不足のために1kHz近傍での吸音率が低かった不織布構造体ユニット8を積み重ねることによって、当該吸音率を高めることが可能であることがわかる。 Further, according to the comparison between the nonwoven fabric structures 8 to 10 and the nonwoven fabric structure C8, the sound absorption coefficient is reduced by stacking the nonwoven structure units 8 having a low sound absorption coefficient in the vicinity of 1 kHz due to insufficient thickness. It can be seen that it can be increased.
 さらに、不織布構造体8~10では、繊維体の層の間に支持体の層が配置されることから、ナノファイバーによる不織布構造体の厚さ方向への変形(例えばつぶれ)や、の平面方向への変形(例えば破れ)などに対する強度が、このような層間の支持体を有さない不織布構造体1などに比べて大幅に向上する。 Further, in the nonwoven fabric structures 8 to 10, since the support layer is disposed between the fiber layers, the deformation (for example, collapse) of the nonwoven fabric structure in the thickness direction by the nanofibers and the planar direction The strength against deformation (for example, tearing) or the like is greatly improved as compared with the nonwoven fabric structure 1 or the like that does not have such a support between layers.
 その結果、つぶれの抑制によって不織布構造体の繊維密度が経時的により安定する。繊維体における繊維密度が高くても、気体や液体などの流体が繊維体内を通過したときの繊維体の損失が抑制されることが期待される。加えて、繊維体の各層における共振による吸音効果と、繊維体の層同士での一部の波長域での反射吸収による共鳴効果も合わせて発生させることが期待される。よって、より一層幅広い繊維密度で最適な吸音特性が発現されるように、不織布構造体における吸音特性の設計の自由度が高められることが期待される。 As a result, the fiber density of the nonwoven fabric structure becomes more stable over time due to the suppression of crushing. Even if the fiber density in the fiber body is high, it is expected that the loss of the fiber body when a fluid such as gas or liquid passes through the fiber body is suppressed. In addition, it is expected that the sound absorption effect due to resonance in each layer of the fiber body and the resonance effect due to reflection absorption in a part of the wavelength region between the fiber body layers are also generated. Therefore, it is expected that the degree of freedom in designing the sound absorption characteristics in the nonwoven fabric structure can be increased so that the optimum sound absorption characteristics are expressed with a wider fiber density.
 さらに、不織布構造体11~23によれば、少なくともマイクロファイバーとナノファイバーとが混在する複合繊維の繊維体であっても、ナノファイバーの質量比が0.5以上の範囲で、ナノファイバーのみの繊維体による上記の吸音効果と同様の効果が得られることがわかる。当該複合繊維の繊維体では、前述の効果に加えて、マイクロファイバーの存在によって繊維体自身の強度がより向上し、繊維体自身の変形がより一層抑制されることが期待される。 Further, according to the nonwoven fabric structures 11 to 23, even if the fiber body is a composite fiber in which at least microfibers and nanofibers are mixed, the mass ratio of the nanofibers is within the range of 0.5 or more. It can be seen that the same effect as the above sound absorption effect by the fiber body can be obtained. In the fiber body of the composite fiber, in addition to the above-described effects, the presence of the microfiber is expected to further improve the strength of the fiber body itself and further suppress deformation of the fiber body itself.
 一方で、不織布構造体C7、C8、C10、C11は、いずれも、少なくとも1kHz以下の周波数域での吸音特性が不十分であった。これは、繊維体の密度は所定の範囲であるが、繊維体の厚さが10mm未満であるため、前述の共振による吸音効果が十分に発現されなかったため、と考えられる。 On the other hand, the nonwoven fabric structures C7, C8, C10, and C11 all had insufficient sound absorption characteristics in a frequency range of at least 1 kHz or less. This is presumably because the density of the fibrous body is in a predetermined range, but the thickness of the fibrous body is less than 10 mm, so that the sound absorption effect due to the resonance described above was not sufficiently exhibited.
 また、不織布構造体C2~C6および不織布構造体C9、C12においては、少なくとも4kHzの以上の周波数域で、吸音率が0.7以下となり、吸音特性が不十分であった。さらには、不織布構造体C3、C9、C12においては、1kHz近傍で、吸音率が0.15以下となり、当該周波数域でも吸音特性が不十分となっている。これは、特に不織布構造体1と不織布構造体C2および不織布構造体C3との対比から明らかなように、繊維体の繊維密度が高すぎ、繊維体内または繊維体表面での音の反射が強くなり、低周波域の音の繊維体への侵入および繊維体での吸収が不十分となったためと、加えて不織布構造体C3、C9およびC12では厚みに低下による前述の共振による吸音効果が十分に発現されなかったため、と考えられる。 Further, in the nonwoven fabric structures C2 to C6 and the nonwoven fabric structures C9 and C12, the sound absorption coefficient was 0.7 or less in a frequency range of at least 4 kHz, and the sound absorption characteristics were insufficient. Furthermore, in the nonwoven fabric structures C3, C9, and C12, the sound absorption coefficient is 0.15 or less near 1 kHz, and the sound absorption characteristics are insufficient even in the frequency range. As is apparent from the comparison between the nonwoven fabric structure 1 and the nonwoven fabric structure C2 and the nonwoven fabric structure C3 in particular, the fiber density of the fiber body is too high, and the reflection of sound on the inside of the fiber body or on the surface of the fiber body becomes strong. In addition, since the penetration of the low-frequency sound into the fiber body and the absorption by the fiber body are insufficient, the non-woven fabric structures C3, C9 and C12 have a sufficient sound absorption effect due to the above-described resonance due to the decrease in thickness. This is probably because it was not expressed.
 本出願は、2014年12月25日出願の特願2014-263389号に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2014-263389 filed on December 25, 2014. The contents described in the application specification and the drawings are all incorporated herein.
 本発明に係る不織布構造体は、低周波数域の吸音特性に優れるというナノファイバーによる繊維体に特有な効果を奏する。したがって、上記不織布構造体には、例えば通気性および通液性、断熱性などの不織布構造体に特有の効果に加えて、低周波の流体の振動の伝達を防止する付加的な効果が期待される。よって、上記不織布構造体は、より低周波数の音を吸収するための吸音材としての用途での利用が期待され、また上記の低周波の振動の防止が期待される様々な分野において、上記の吸音特性を兼ね備える被覆材や分離材、仕切部材などとして、種々の用途での利用が期待される。 The non-woven fabric structure according to the present invention has an effect specific to a fiber body using nanofibers, which is excellent in sound absorption characteristics in a low frequency range. Therefore, in addition to the effects unique to the nonwoven fabric structure such as air permeability, liquid permeability, and heat insulation, the nonwoven fabric structure is expected to have an additional effect of preventing the transmission of vibrations of low-frequency fluid. The Therefore, the non-woven fabric structure is expected to be used in applications as a sound absorbing material for absorbing lower frequency sound, and in various fields where prevention of the low frequency vibration is expected. It is expected to be used in various applications as a covering material, a separating material, a partition member, etc. that also have sound absorption characteristics.
 1 繊維体
 2 支持体
 10A~10E 不織布構造体
 
DESCRIPTION OF SYMBOLS 1 Fiber body 2 Support body 10A-10E Nonwoven fabric structure

Claims (6)

  1.  繊維が絡み合わされてなる繊維体を有する不織布構造体を含む吸音材であって、
     前記繊維は、その繊維径が1μm未満のポリプロピレン製のナノファイバーを含み、
     前記繊維体の厚さは、20mm以上36mm以下であり、
     前記繊維体の繊維密度は、10kg/m以上50kg/m未満であり、
     前記繊維体における前記ナノファイバーの含有比率は、質量比で0.5以上であり、
     1kHzの音の吸音率が0.59以上0.84以下であり、かつ、6kHzの音の吸音率が0.80以上0.96以下である、吸音材。
    A sound-absorbing material comprising a nonwoven fabric structure having a fibrous body in which fibers are entangled,
    The fiber includes a nanofiber made of polypropylene having a fiber diameter of less than 1 μm,
    The thickness of the fibrous body is 20 mm or more and 36 mm or less,
    The fiber density of the fibrous body is 10 kg / m 3 or more and less than 50 kg / m 3 ,
    The content ratio of the nanofiber in the fibrous body is 0.5 or more by mass ratio,
    A sound absorbing material having a sound absorption coefficient of 1 kHz sound of 0.59 to 0.84 and a sound absorption coefficient of 6 kHz sound of 0.80 to 0.96.
  2.  前記不織布構造体は、前記繊維体を支持する支持体をさらに有する、請求項1に記載の吸音材。 The sound absorbing material according to claim 1, wherein the nonwoven fabric structure further includes a support for supporting the fibrous body.
  3.  前記繊維体は、その片面で前記支持体に支持されているか、または二つの前記支持体で挟まれて支持されている、請求項2に記載の吸音材。 The sound-absorbing material according to claim 2, wherein the fibrous body is supported by the support on one side or sandwiched between the two supports.
  4.  前記不織布構造体は、二以上の前記繊維体を有し、かつ少なくとも前記繊維体の間に前記支持体を有する、請求項2または3に記載の吸音材。 The sound-absorbing material according to claim 2 or 3, wherein the nonwoven fabric structure has two or more fiber bodies, and has the support body at least between the fiber bodies.
  5.  前記支持体は、不織布、織布、フィルム、紙および発泡体層からなる群から選ばれる一以上である、請求項2~4のいずれか一項に記載の吸音材。 The sound absorbing material according to any one of claims 2 to 4, wherein the support is one or more selected from the group consisting of a nonwoven fabric, a woven fabric, a film, paper, and a foam layer.
  6.  前記繊維体は、その繊維径が2~50μmであるマイクロファイバーをさらに含む、請求項1~5のいずれか一項に記載の吸音材。
     
    The sound absorbing material according to any one of claims 1 to 5, wherein the fibrous body further includes microfibers having a fiber diameter of 2 to 50 袖 m.
PCT/JP2015/006267 2014-12-25 2015-12-16 Sound-absorbing material WO2016103646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-263389 2014-12-25
JP2014263389A JP5866625B1 (en) 2014-12-25 2014-12-25 Sound absorbing material

Publications (1)

Publication Number Publication Date
WO2016103646A1 true WO2016103646A1 (en) 2016-06-30

Family

ID=55347062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006267 WO2016103646A1 (en) 2014-12-25 2015-12-16 Sound-absorbing material

Country Status (2)

Country Link
JP (1) JP5866625B1 (en)
WO (1) WO2016103646A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3832641A4 (en) * 2018-08-02 2022-04-20 JNC Corporation Laminate sound-absorbing material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614450B2 (en) * 2016-05-11 2019-12-04 パナソニックIpマネジメント株式会社 Nonwoven fabric and sound absorbing material
JP2018124512A (en) 2017-02-03 2018-08-09 Jnc株式会社 Laminated sound absorbing material containing ultrafine fibers
JP2019111714A (en) 2017-12-22 2019-07-11 Jnc株式会社 Laminate sound absorber
JP6660035B2 (en) 2018-03-08 2020-03-04 Jnc株式会社 Laminated sound absorbing material
CN110255880A (en) * 2019-05-16 2019-09-20 宿迁南航新材料与装备制造研究院有限公司 A kind of preparation method of the super glass wool with super layer structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06259081A (en) * 1993-01-21 1994-09-16 Minnesota Mining & Mfg Co <3M> Nonwoven-fabric soundproof web and method for insulation of sound by it
US20130115837A1 (en) * 2011-11-09 2013-05-09 Dale S. Kitchen Nanofiber nonwovens and nanofiber nonwoven composites containing roped fiber bundles
JP2013147771A (en) * 2012-01-20 2013-08-01 Mitsui Chemicals Inc Melt-blown nonwoven fabric, application thereof and production method thereof
JP2014015042A (en) * 2005-10-19 2014-01-30 3M Innovative Properties Co Multilayer articles having acoustic absorption property, and manufacture and usage thereof
JP5503816B1 (en) * 2012-08-23 2014-05-28 三井化学株式会社 Meltblown nonwoven fabric and its use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405926B2 (en) * 2009-07-09 2014-02-05 帝人株式会社 Textile structures and textile products
KR101800034B1 (en) * 2009-09-01 2017-11-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Apparatus, system, and method for forming nanofibers and nanofiber webs
JP6021336B2 (en) * 2012-01-05 2016-11-09 帝人株式会社 Ultrafine fiber nonwoven fabric and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06259081A (en) * 1993-01-21 1994-09-16 Minnesota Mining & Mfg Co <3M> Nonwoven-fabric soundproof web and method for insulation of sound by it
JP2014015042A (en) * 2005-10-19 2014-01-30 3M Innovative Properties Co Multilayer articles having acoustic absorption property, and manufacture and usage thereof
US20130115837A1 (en) * 2011-11-09 2013-05-09 Dale S. Kitchen Nanofiber nonwovens and nanofiber nonwoven composites containing roped fiber bundles
JP2013147771A (en) * 2012-01-20 2013-08-01 Mitsui Chemicals Inc Melt-blown nonwoven fabric, application thereof and production method thereof
JP5503816B1 (en) * 2012-08-23 2014-05-28 三井化学株式会社 Meltblown nonwoven fabric and its use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3832641A4 (en) * 2018-08-02 2022-04-20 JNC Corporation Laminate sound-absorbing material

Also Published As

Publication number Publication date
JP5866625B1 (en) 2016-02-17
JP2016121426A (en) 2016-07-07

Similar Documents

Publication Publication Date Title
WO2016103646A1 (en) Sound-absorbing material
JP5586851B2 (en) Porous membrane
JP5319091B2 (en) Ventilation resistance film, manufacturing method thereof, and sound-absorbing laminated member using ventilation resistance film
JP2016122185A (en) Sound absorber
KR20080004481A (en) Layered sound absorptive non-woven fabric
CN107675354B (en) Method and device for preparing three-component sound-absorbing cotton by electrostatic spinning, melt blowing and dry method web forming
WO2016143857A1 (en) Laminated nonwoven fabric
EP3763521B1 (en) Laminated acoustic absorption member
Akasaka et al. Structure-sound absorption property relationships of electrospun thin silica fiber sheets: Quantitative analysis based on acoustic models
JP6362400B2 (en) Nonwoven web
WO2018143430A1 (en) Laminate sound-absorbing material including ultrafine fiber
JP5092144B2 (en) Sound absorbing material and manufacturing method thereof
WO2019107019A1 (en) Porous fiber sheet
WO2019124186A1 (en) Multilayer sound absorbing material
JP2018169555A (en) Laminated sound absorbing material including nanofibers
JP6781766B2 (en) Soundproof structure and manufacturing method of soundproof structure
JP6646267B1 (en) Laminated sound absorbing material
KR20090106211A (en) Ultra light acoustic absorbent and Preparing method thereof
WO2019059360A1 (en) Melt-blown nonwoven fabric, use of same, and method for producing same
JPWO2019026798A1 (en) Laminated sound absorbing material
JP2018199253A (en) Laminate sound absorber containing ultra-fine fiber
JP2019001012A (en) Laminate sound absorber containing ultra-fine fiber
JP2018146942A (en) Laminated sound absorption material including ultrafine fiber
JP3239417U (en) Filling member, filling member precursor, and filling structure
JP7468255B2 (en) Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872219

Country of ref document: EP

Kind code of ref document: A1