JP2011241550A - Track surface sound absorption structure and method of molding multi-layer sound absorption material used for the same - Google Patents

Track surface sound absorption structure and method of molding multi-layer sound absorption material used for the same Download PDF

Info

Publication number
JP2011241550A
JP2011241550A JP2010112480A JP2010112480A JP2011241550A JP 2011241550 A JP2011241550 A JP 2011241550A JP 2010112480 A JP2010112480 A JP 2010112480A JP 2010112480 A JP2010112480 A JP 2010112480A JP 2011241550 A JP2011241550 A JP 2011241550A
Authority
JP
Japan
Prior art keywords
sound
sound absorption
absorbing material
sound absorbing
polyester fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010112480A
Other languages
Japanese (ja)
Inventor
Yukinori Hansaka
征則 半坂
Mitsuru Hosoda
充 細田
Shogo Mamada
祥吾 間々田
Daigo Sato
大悟 佐藤
Kazuyoshi Iida
一嘉 飯田
Seiji Tamada
青滋 霊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Bridgestone KBG Co Ltd
Original Assignee
Railway Technical Research Institute
Bridgestone KBG Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Bridgestone KBG Co Ltd filed Critical Railway Technical Research Institute
Priority to JP2010112480A priority Critical patent/JP2011241550A/en
Publication of JP2011241550A publication Critical patent/JP2011241550A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a track surface sound absorption structure as a noise countermeasure for a non-ballast track by developing a sound absorption material which has a thickness that meets the construction limit on the track structure and whose sound absorption performance is 0.7 (70%) or more of reverberation room method sound absorption coefficient in a broad band.SOLUTION: The track surface sound absorption structure inhibits the reflection of the noise on the non-ballast track surface. The sound absorption material used therein is complexed by layering in the order from the incident side of acoustic energy, thermally compressing and then fusing the plural sheets of polyester fiber nonwoven cloth and a polyester fiber nonwoven cloth base material, and the sound absorption material having 0.7 (70%) or more of a reverberation room method sound absorption coefficient in 500 Hz to 2 KHz of a frequency band, is laid on the surface of the track.

Description

本発明は、省力化軌道としての非バラスト軌道(スラブ軌道)において、列車走行時に車輪がレール上を転動する際に生じる転動音や補器類の騒音がスラブ軌道面で反射し騒音を増幅することとなる。
本発明は、かかる騒音のスラブ軌道面での反射を抑えるための軌道面吸音構造、及びこれに用いる多層吸音材の成型法に関するものである。
According to the present invention, in a non-ballast track (slab track) as a labor-saving track, rolling noise generated when a wheel rolls on a rail during train traveling and noise of auxiliary equipment are reflected on the slab track surface to reduce noise. It will be amplified.
The present invention relates to a track surface sound absorbing structure for suppressing reflection of such noise on a slab track surface, and a molding method of a multilayer sound absorbing material used therefor.

近年、鉄道もメンテナンスなど省力化の一環として、新幹線鉄道はもとより在来線鉄道も非バラスト化が進み、スラブ軌道や弾性直結枕木軌道などが増えてきている。   In recent years, as a part of labor saving such as railway maintenance, not only Shinkansen railways but also conventional railways have become non-ballasted, and the number of slab tracks and elastic directly connected sleeper tracks has increased.

かかる時代の流れの中で、次世代での展開を目指した軌道構造の検討が進められている。即ち、省メンテナンス、優環境性をコンセプトに、締結装置におけるメンテナンスが省力化できるような軌道構造を有するものであって、図1にその一例を示す。即ち、レール1をコンクリート構造物2の中にゴムプレート3などを介して設置し、これをレール用押さえブロック4をもって連続支持する形態の軌道である。レール1をコンクリート構造物2の中に埋め込むことによって、レール1からの放射音が沿線に伝搬される量を低減し、環境にも優れた軌道となることが期待される。   In this era, the orbital structure aimed at the next generation is being studied. That is, it has a track structure that can save labor in the fastening device based on the concepts of maintenance and environmental friendliness. An example is shown in FIG. That is, the rail 1 is installed in the concrete structure 2 via the rubber plate 3 or the like, and this is a track in which the rail 1 is continuously supported by the rail holding block 4. By embedding the rail 1 in the concrete structure 2, it is expected that the amount of sound radiated from the rail 1 is reduced along the line, and the track is excellent in the environment.

一方、列車の車輪がレール1上を転動するときに発生する騒音は、スラブ軌道面で反射し騒音を増幅する傾向にあるため、環境問題で問題を起こすことがあることも考えられ、沿線住民の生活環境を悪化させてしまうことも考えなくてはならない。そのために、軌道面に吸音材を敷設することは環境を守るためには必要不可欠である。
しかるに、レール1の頭部近くまでコンクリート部材が配置されているために、この軌道面に吸音材を敷設しようとする場合には、吸音材を建築限界内に収める必要がでてくる。そのためには、吸音材の厚さは、許容される25mm未満(安全を見て20mm以下)にする必要がある。
On the other hand, noise generated when a train wheel rolls on the rail 1 tends to be reflected by the slab track surface and amplify the noise, which may cause problems due to environmental problems. It must also be considered that the living environment of residents is deteriorated. Therefore, laying a sound absorbing material on the track surface is indispensable for protecting the environment.
However, since the concrete member is arranged close to the head of the rail 1, when the sound absorbing material is to be laid on the raceway surface, it is necessary to keep the sound absorbing material within the building limit. For that purpose, the thickness of the sound absorbing material needs to be less than 25 mm (20 mm or less in view of safety).

このように、現在想定されるあらゆる軌道構造に適用可能な軌道面吸音構造を実現するためには、従来難しかった25mm未満の厚さで、高い吸音性能を実現する必要がでてきた。尚、レール埋め込み構造の軌道は路面電車では既に一部実用化されているが、この既設の軌道に吸音材を適用する場合にも、同様に建築限界を満たすために、25mm未満の厚さにすることが求められている。   Thus, in order to realize a track surface sound absorbing structure that can be applied to all currently assumed track structures, it has been necessary to realize high sound absorbing performance with a thickness of less than 25 mm, which has been difficult in the past. In addition, although the track with the rail embedded structure has already been partly put into practical use in the tramway, when a sound absorbing material is applied to this existing track, the thickness is less than 25 mm in order to satisfy the construction limit. It is requested to do.

吸音の目的でいえば、従来技術としてバラストが散布される方法があるが、吸音性能を高めるためには、可なり細粒化したバラストとする必要がある。それでも細粒化には限度もあるので、500Hz〜2kHzという広帯域で残響室法吸音率を0.7(70%)以上を確保することは難しい。しかも、細粒化すると飛散するおそれも出てくるという問題も出てくる。又、バラストの採取には環境破壊にもつながる恐れもあり、メンテナンスの負担も大きく時流にあった手段ではない。   For the purpose of sound absorption, as a conventional technique, there is a method in which ballast is dispersed. However, in order to improve the sound absorption performance, it is necessary to make the ballast finely divided. Nevertheless, since there is a limit to the refinement, it is difficult to secure a reverberation chamber method sound absorption rate of 0.7 (70%) or more in a wide band of 500 Hz to 2 kHz. In addition, there is a problem that if the particles are made finer, they may be scattered. Also, collecting ballasts may lead to environmental destruction, and the burden of maintenance is large and is not a means that is in current trend.

その他の固形吸音材の適用が考えられるが、鉄道軌道では信号システムのための電気が流されており、軌道面に敷設する固形吸音材は良好な電気的絶縁性能を有することが求められる。このため、軌道面に敷設する固形吸音材として、グラスウールや軟質ウレタンフォームあるいはセラミックス系のものが考えられてはいる。   Although application of other solid sound absorbing materials is conceivable, electricity for the signal system is flowing on the railway track, and the solid sound absorbing material laid on the track surface is required to have good electrical insulation performance. For this reason, glass wool, flexible urethane foam, or ceramics are considered as the solid sound absorbing material laid on the raceway surface.

しかし、前二つは、長期間屋外に暴露すると耐候性や耐水性に問題があり、表面から材料の一部が剥離され、周囲に飛散する恐れがある。又、経年変化のため吸音性能が低下するとともに、内部も切断・変形されるなどの危険性も想定される。更に、三つ目のセラミックス系は吸音性能、重量やコストの面などでそれぞれ問題を持っており、実用的な軌道面吸音材としては使いにくい。   However, the former two have problems in weather resistance and water resistance when exposed outdoors for a long period of time, and part of the material may be peeled off from the surface and scattered around. In addition, sound absorption performance is deteriorated due to secular change, and there is a risk that the inside is also cut and deformed. Furthermore, the third ceramic system has problems in sound absorption performance, weight and cost, and is difficult to use as a practical track surface sound absorbing material.

本発明は、以上のような従来技術が有している課題を解決するためになされたもので、次世代軌道構造やスラブ軌道など非バラスト軌道の騒音対策としての軌道面吸音構造及びこれに用いる多層吸音材を提供するものである。具体的には、あらゆる形式の軌道構造の建築限界を満たすような適用範囲の広い軌道面吸音構造とするために、吸音材の厚さは25mm未満に抑え、しかも、吸音性能が500Hz〜2kHzの帯域で残響室法吸音率が0.7(70%)以上となる、耐久性のある新しい吸音材の成型法を提供するものである。   The present invention has been made to solve the above-described problems of the prior art, and is used for a track surface sound absorbing structure as a noise countermeasure for a non-ballast track such as a next-generation track structure or a slab track and the like. A multilayer sound-absorbing material is provided. Specifically, in order to achieve a wide track surface sound absorbing structure that satisfies the building limits of all types of track structures, the thickness of the sound absorbing material is suppressed to less than 25 mm, and the sound absorbing performance is 500 Hz to 2 kHz. The present invention provides a new molding method of a durable sound-absorbing material that has a reverberation chamber method sound absorption coefficient of 0.7 (70%) or more in a band.

本発明の第1の要旨は、非バラスト軌道面における列車通過時の騒音の反射を抑制するための軌道面吸音構造であって、各種鉄道軌道に対する建築限界を満たすよう制御された形状であり、鉄道騒音の主要周波数帯域500Hz〜2kHzに対して、少なくとも厚さ20mmで残響室法吸音率が0.7(70%)以上の吸音率を有する吸音材を軌道面の表面に敷設したことを特徴とするものである。   The first gist of the present invention is a track surface sound absorbing structure for suppressing the reflection of noise at the time of passing a train on a non-ballast track surface, and is a shape controlled to satisfy the building limit for various railway tracks, A sound absorbing material having a sound absorption rate of at least 20 mm in thickness and a reverberation chamber method sound absorption rate of 0.7 (70%) or more is laid on the surface of the track surface for the main frequency band of railway noise of 500 Hz to 2 kHz. It is what.

そして、前記吸音材は、音響エネルギーの入射側から、ポリエステル繊維系不織布複数枚とポリエステル繊維系不織布母材を重ねて、熱融着し複合化した多層吸音材が採用され、好ましくは、音波入射側の複数層の不織布の流れ抵抗が1×10〜3×10N・sec/m、母材の流れ抵抗が0.5×10〜3.5×10N・sec/m、複合化した多層吸音材の流れ抵抗が3.5×10〜7×10N・sec/mである軌道面吸音構造である。 The sound absorbing material employs a multilayer sound absorbing material in which a plurality of polyester fiber non-woven fabrics and a polyester fiber non-woven fabric base material are stacked and heat-bonded from the acoustic energy incident side. The flow resistance of the non-woven fabric of the plurality of layers is 1 × 10 6 to 3 × 10 6 N · sec / m 4 , and the flow resistance of the base material is 0.5 × 10 4 to 3.5 × 10 4 N · sec / m. 4 is a raceway sound absorbing structure in which the flow resistance of the composite multilayer sound absorbing material is 3.5 × 10 4 to 7 × 10 4 N · sec / m 4 .

本発明の第2の要旨は、非バラスト軌道面における列車通過時の騒音の反射を抑制するための多層吸音材の成型法であって、音響エネルギーの入射側から、流れ抵抗が1×10〜3×10N・sec/mのポリエステル繊維系不織布(複数枚)と、流れ抵抗が0.5×10〜3.5×10N・sec/mのポリエステル繊維系不織布母材を重ね、建築限界を満たす厚さの120〜150%の厚さに形成し、各層間にホットメルト材を散布し、170〜220℃にて圧縮して熱融着し、厚さが建築限界を超えないよう永久歪を付与して複合化し、複合化した多層吸音材の流れ抵抗を3.5×10〜7×10N・sec/mとなし、かつ、周波数帯域500Hz〜2kHzに対して、残響室法吸音率が0.7(70%)以上の吸音率を備えたことを特徴とする成型法である。 The second gist of the present invention is a method of molding a multilayer sound absorbing material for suppressing reflection of noise when passing through a train on a non-ballast track surface, and the flow resistance is 1 × 10 6 from the incident side of acoustic energy. -3 × 10 6 N · sec / m 4 polyester fiber non-woven fabric (several sheets) and flow resistance of 0.5 × 10 4 -3.5 × 10 4 N · sec / m 4 polyester fiber non-woven fabric mother Stacked materials, formed to a thickness of 120-150% of the thickness that satisfies the building limit, sprayed hot melt material between each layer, compressed at 170-220 ° C and heat-sealed, the thickness is building A permanent distortion is applied so as not to exceed the limit, and the composite multilayer sound-absorbing material has a flow resistance of 3.5 × 10 4 to 7 × 10 4 N · sec / m 4 and a frequency band of 500 Hz to With respect to 2 kHz, the reverberation room method sound absorption coefficient is 0.7 (70%). It is a molding method characterized by having a sound absorption coefficient of the above.

本発明の多層吸音材は、厚さが規定内に抑えられながら、吸音性能は従来のものを超える優れた特徴と備えたものであり、環境問題、リサイクル性、耐久性にも優れた材質からなっている。更に、これを軌道面に用いた吸音構造は軌道面での騒音の反射を防ぐことが可能となったものであり、従来の材料とは比較にならない特徴を有している。   The multilayer sound-absorbing material of the present invention is provided with excellent characteristics that exceed the conventional sound absorption performance while keeping the thickness within the specified range, and is made from a material excellent in environmental problems, recyclability, and durability. It has become. Furthermore, the sound absorbing structure using this for the raceway surface can prevent the reflection of noise on the raceway surface, and has characteristics that cannot be compared with conventional materials.

図1は次世代軌道構造の概略を示す図である。FIG. 1 is a diagram showing an outline of a next-generation orbit structure. 図2は本発明の多層吸音材と騒音源である入射波との関係を示す図である。FIG. 2 is a diagram showing the relationship between the multilayer sound absorbing material of the present invention and an incident wave as a noise source. 図3は本発明の多層吸音材の残響室法吸音率を示す図である。FIG. 3 is a diagram showing the reverberation chamber method sound absorption coefficient of the multilayer sound absorbing material of the present invention. 図4は本発明の多層吸音材と従来から用いられているグラスウールの残響室法吸音率を示す図である。FIG. 4 is a diagram showing the sound absorption coefficient of the multilayer sound absorbing material of the present invention and the conventionally used glass wool reverberation chamber method. 図5は本発明の多層吸音材を適用した軌道面吸音構造の吸音率を示すグラフである。FIG. 5 is a graph showing the sound absorption rate of the track surface sound absorbing structure to which the multilayer sound absorbing material of the present invention is applied.

さて、新幹線を含めて列車走行時に発生する騒音(転動音)は500Hz〜2kHzが主要帯域であり、スラブ面での反射を完全に無くすためには100%の吸音率が要求される。逆に、スラブ面で完全に反射すると(吸音率0%)少なくとも騒音は1回の反射で3dB、車両側あるいは壁などとの間で多重反射するとさらに数dB増幅する可能性がある。 しかるに、吸音率として70%を確保すれば1回の反射で1dB以下となり、多重反射での増幅は抑えられることから、本発明の吸音材の目的を残響室法吸音率を0.7(70%)以上としたものであり、しかも、厚さが20mm程度の吸音材で、500Hz〜2kHzで70%(特に500Hz〜800Hz)の吸音率を確保することは、従来の考えによる吸音材では極めて困難なことから、本発明はこの両立を狙ったものである。   Now, the noise (rolling sound) generated when the train including the Shinkansen is in the main band is 500 Hz to 2 kHz, and a sound absorption coefficient of 100% is required to completely eliminate reflection on the slab surface. On the contrary, if it is completely reflected on the slab surface (sound absorption rate 0%), at least noise may be amplified by 3 dB by one reflection, and if it is multiple-reflected between the vehicle side or the wall, it may be further amplified by several dB. However, if 70% is ensured as the sound absorption coefficient, it becomes 1 dB or less in one reflection and amplification by multiple reflection can be suppressed. Therefore, the purpose of the sound absorption material of the present invention is to set the sound absorption coefficient of the reverberation chamber method to 0.7 (70 In addition, a sound absorbing material having a thickness of about 20 mm and a sound absorption rate of 70% (especially 500 Hz to 800 Hz) at 500 Hz to 2 kHz is extremely high for a sound absorbing material based on the conventional idea. Since it is difficult, the present invention aims to achieve both.

吸音材に用いられる材料はいろいろな種類、構造のものがあるが、中でも多孔質材料が最もよく使われる材料である。最近では、環境問題、リサイクル性、吸音性能や長期耐久性等の面からポリエステル繊維系吸音材が適用されるケースも増えてきている。このポリエステル繊維系吸音材は他の材料に比べて優れた特徴を有しており、かつ、環境に優しい高性能吸音材である。即ち、比較的シンプルな構造で優れた吸音性能を有すること、耐候性・耐久性に優れ・長期の使用に最適であること、リサイクル性が確立されており地球環境に優しいこと、など多くの特徴を有している。本発明はかかる特徴を利用し、特に、鉄道軌道の吸音性を狙って開発したものである。   There are various types and structures of materials used for the sound absorbing material, but among these, porous materials are the most commonly used materials. Recently, there have been an increasing number of cases in which polyester fiber sound absorbing materials are applied from the viewpoints of environmental problems, recyclability, sound absorbing performance, long-term durability, and the like. This polyester fiber-based sound absorbing material has superior characteristics compared to other materials and is a high-performance sound absorbing material that is friendly to the environment. In other words, it has a relatively simple structure, excellent sound absorption performance, excellent weather resistance / durability / optimum for long-term use, recyclability has been established, and it is friendly to the global environment. have. The present invention has been developed by utilizing such characteristics and particularly aiming at sound absorption of a railway track.

尚、本発明で用いるポリエステル繊維系吸音材は、好ましくはエンドレスの長繊維を利用したスパンボンド法によって得られるものが好適であるが、特にこれに限定されるものではなく、例えば、サーマルボンド法、ケミカルボンド法、ニードルパンチ法、ステッチボンド法などによって得られるものであってもよい。尚、スパンボンドとは溶融押出成型により長繊維化・高密度化した不織布である。   The polyester fiber-based sound absorbing material used in the present invention is preferably one obtained by a spunbond method using endless long fibers, but is not particularly limited to this, for example, a thermal bond method. , A chemical bond method, a needle punch method, a stitch bond method, or the like. Spunbond is a non-woven fabric that has been made long and dense by melt extrusion molding.

さて、図2は本発明の第1で用いる多層吸音材と騒音源である入射波との関係を示す図であり、多層吸音材20は、入射波側に対して2層のポリエステル繊維系不織布21、22(多層化)と、母材であるポリエステル繊維系不織布23とからなり、これらの間にホットメルトパウダー(図示しない)をもって熱融着したものである。かかる母材23は剛壁25に貼り付けられている。   FIG. 2 is a diagram showing the relationship between the multilayer sound-absorbing material used in the first aspect of the present invention and an incident wave as a noise source. The multilayer sound-absorbing material 20 is a two-layer polyester fiber nonwoven fabric with respect to the incident wave side. 21 and 22 (multi-layered) and a polyester fiber nonwoven fabric 23 as a base material, and hot-melt powder (not shown) between them is heat-sealed. The base material 23 is attached to the rigid wall 25.

さて、入射波に対し、その波長の1/4の位置にポリエステル繊維系不織布21、22を配置するものであり、この位置は粒子速度が最大(音圧0)であり、剛壁25に至り粒子速度が0(音圧最大)となるように設計される。   Now, the polyester fiber nonwoven fabrics 21 and 22 are arranged at 1/4 of the wavelength of the incident wave. The particle velocity is maximum (sound pressure 0) at this position, and the rigid wall 25 is reached. The particle velocity is designed to be 0 (maximum sound pressure).

母材はポリエステル系の繊維を原料とする不織布である。かかる不織布は、繊維を織り込んで布状としたものではなく、単に集めて部分的に融着させて固形体としたものである。このような繊維の集合体においては繊維間に隙間があるために、その中に音波が進入し、進行する間に空気の粘性抵抗などにより音波の音響エネルギーが減衰される。即ち、入射してくる音響エネルギーが、吸音構造体の中で粘性抵抗を主体に熱エネルギーに変換される仕組みとなっている。このように、不織布を用いることで加工しやすく材料コストの低廉化が図れる。又、織り込んでないために空気の流れ抵抗の調整が容易となる。母材の繊維配向については、横、縦、ランダムいずれでもよいが圧縮強度面から縦配向が望ましい。   The base material is a non-woven fabric made from polyester fibers. Such a non-woven fabric is not a fabric formed by weaving fibers, but is simply collected and partially fused to form a solid body. In such a fiber assembly, since there is a gap between the fibers, the sound wave enters therein, and the acoustic energy of the sound wave is attenuated by the viscous resistance of air and the like as it travels. That is, the incident acoustic energy is converted into thermal energy mainly by viscous resistance in the sound absorbing structure. Thus, by using a nonwoven fabric, it is easy to process and material cost can be reduced. Further, since the air flow resistance is not woven, adjustment of the air flow resistance becomes easy. The fiber orientation of the base material may be any of lateral, longitudinal and random, but longitudinal orientation is desirable from the viewpoint of compressive strength.

一方、音響エネルギーの入射面である表層として、二層のポリエステル系繊維不織布(スパンボンド不織布)を配することによって吸音性能の向上を図ったものである。表層はスパンボンド不織布であり、スパンボンド不織布ー母材間に摩擦抵抗が生じるなどの理由から音波のエネルギーに対する減衰が増幅される。音波のエネルギーは振幅が大きな箇所で減衰が大きいとより大きく低減するが、スパンボンドを配した箇所はこの材料が音に影響を与えるエリアでは音の振幅が最大の箇所であり、この位置にスパンボンドを配することによって音波に対する減衰性能・吸音性能が高められることとなる。尚、スパンボンドは2種類適用し、外気側に溌水処理したものを用い、もう1種類は溌水処理しないものを用いるのがよい。   On the other hand, a two-layer polyester fiber non-woven fabric (spunbond non-woven fabric) is provided as a surface layer which is an incident surface for acoustic energy, thereby improving sound absorption performance. The surface layer is a spunbonded non-woven fabric, and attenuation of sound wave energy is amplified for the reason that a frictional resistance is generated between the spunbonded non-woven fabric and the base material. The energy of the sonic wave is greatly reduced when the attenuation is large at the location where the amplitude is large, but the location where the spunbond is placed is the location where the sound amplitude is maximum in the area where this material affects the sound, and the span is located at this position. By disposing the bond, the attenuation performance and sound absorption performance against sound waves are enhanced. Note that two types of spunbond are applied, one that has been subjected to a soaking treatment on the outside air side, and the other type that is not subjected to the soaking treatment should be used.

このことから、母材及び表層の流れ抵抗をいかにコントロールし、それらを複合した多層吸音材としての流れ抵抗を最適に調整することがポイントとなる。即ち、表層近くで流れ抵抗を出来るだけ大きく取り、多層吸音材(二層スパンボンド不織布+母材)の流れ抵抗が特定の範囲に入るように組み合わせるのが本発明の狙いの一つである。
そのためには、それぞれの構成材料の流れ抵抗として、音波入射側の複数層のスパンボンド不織布の流れ抵抗が1×10〜3×10N・sec/m、母材の流れ抵抗が0.5×10〜3.5×10N・sec/mの範囲のものを組み合わせて、これらを熱融着した多層吸音材として総合的な流れ抵抗が3.5×10〜7×10N・sec/mに収まるように調整したものである。こうして得られた多層吸音材をさらに熱プレスで所定の厚さに成型して本発明の軌道用吸音構造が実現される。多層吸音材として、この下限値を下回ると500Hz〜800Hz位の帯域の吸音性能が低下し、この上限値を超えると2kHz前後の吸音率が低下してしまう結果となる。
From this, it is important to control the flow resistance of the base material and the surface layer, and to optimally adjust the flow resistance as a multilayer sound absorbing material combining them. That is, one of the aims of the present invention is to combine the flow resistance of the multilayer sound-absorbing material (two-layer spunbond nonwoven fabric + base material) so as to fall within a specific range as much as possible near the surface layer.
For that purpose, the flow resistance of each of the constituent materials is 1 × 10 6 to 3 × 10 6 N · sec / m 4 , and the flow resistance of the base material is 0. .5 × 10 4 to 3.5 × 10 4 N · sec / m 4 are combined, and these are heat-sealed as a multilayer sound-absorbing material, and the overall flow resistance is 3.5 × 10 4 to 7 × 10 4 N · sec / m 4 is adjusted so as to be contained. The multilayer sound-absorbing material thus obtained is further molded to a predetermined thickness by hot pressing to realize the sound-absorbing structure for tracks of the present invention. As a multilayer sound-absorbing material, if the lower limit value is not reached, the sound absorbing performance in the band of about 500 Hz to 800 Hz is lowered, and if this upper limit value is exceeded, the sound absorption coefficient at around 2 kHz is lowered.

本発明の軌道面吸音構造(第1発明)の中核となる多層吸音材(第2発明)は、500Hz〜2kHzの広帯域に亘って残響室法吸音率を0.7(70%)以上の吸音率を得るものであって、ポリエステル繊維系からなる多層吸音材とし、総合的な流れ抵抗が3.5×10〜7×10N・sec/mとなるように調整すること、そして、多層吸音材を所定の厚さに仕上げるために、所定の厚さ以上の多層構造を先ず作り、これを熱プレス圧縮して永久歪をかけて所定の厚さに仕上げることとなる。
具体的には、ポリエステル繊維系の材料を用いることから、好ましくは、所定の厚さの120〜150%の厚さの多層吸音材を先ず製作し、その後所定の厚さまで熱プレスで圧縮成型することからなるもので、リサイクル性などの容易性から吸音材全体をポリエステル繊維系の材料で構成し、軌道面吸音材としての多くの課題を克服したものである。尚、各層をパウダー状ホットメルトで熱融着させるのが好適である。
The multilayer sound-absorbing material (second invention), which is the core of the orbital surface sound-absorbing structure of the present invention (second invention), has a sound absorption coefficient of 0.7 (70%) or higher in the reverberation chamber method over a wide band of 500 Hz to 2 kHz. A multilayer sound-absorbing material made of polyester fiber, and adjusted so that the overall flow resistance is 3.5 × 10 4 to 7 × 10 4 N · sec / m 4 , and In order to finish the multilayer sound-absorbing material to a predetermined thickness, a multilayer structure having a predetermined thickness or more is first made, and this is hot-press-compressed to be permanently set and finished to a predetermined thickness.
Specifically, since a polyester fiber-based material is used, preferably, a multilayer sound-absorbing material having a thickness of 120 to 150% of a predetermined thickness is first manufactured and then compression-molded to a predetermined thickness with a hot press. Therefore, the entire sound-absorbing material is made of a polyester fiber material for ease of recyclability and the like, and many problems as a track surface sound-absorbing material are overcome. Each layer is preferably heat-sealed with a powdery hot melt.

即ち、このスパンボンドを導入することによって、これまで実現が難しかった厚さ20mmでの高い吸音性能は実現されたのである。
そして、所定の厚さ、例えば、20mmに仕上げるためには、28〜30mmの厚さの複合品を作り、それをさらに熱圧縮して20mmの厚さに仕上げるのである。
That is, by introducing this spunbond, a high sound absorption performance at a thickness of 20 mm, which has been difficult to realize so far, was realized.
And in order to finish it to a predetermined thickness, for example, 20 mm, a composite product having a thickness of 28 to 30 mm is made, and it is further thermally compressed to finish it to a thickness of 20 mm.

(実施例1・多層吸音材の特徴)
本発明の第2の多層吸音材を次のように成型した。表層はポリエステル繊維スパンボンド不織布を2層とし、母材をポリエステル繊維系不織布(縦配向)28mm厚さ、面密度800gr/mとして複合し、所定厚み例20mmに熱プレスで圧縮成型したもので、総合的な流れ抵抗が約4×10N・sec/mに調整した。表層の流れ抵抗は約1.5×10N・sec/m、母材の流れ抵抗は約0.5×10N・sec/mであり、これらを重ね合わせる際に各層間にホットメルトパウダーを散布し、180℃にて熱プレスを行った。
(Example 1-Characteristics of multilayer sound absorbing material)
The second multilayer sound absorbing material of the present invention was molded as follows. The surface layer is composed of two layers of polyester fiber spunbond nonwoven fabric, the base material is a polyester fiber nonwoven fabric (longitudinal orientation) 28 mm thick and is composited with a surface density of 800 gr / m 2 and compression molded to a predetermined thickness of 20 mm by hot pressing. The overall flow resistance was adjusted to about 4 × 10 4 N · sec / m 4 . The surface layer has a flow resistance of about 1.5 × 10 6 N · sec / m 4 , and the base material has a flow resistance of about 0.5 × 10 4 N · sec / m 4. Hot melt powder was sprayed and hot pressing was performed at 180 ° C.

図3に、得られた多層吸音材の残響室法吸音率を示した。尚、圧縮する前の多層吸音材のベース母材との対比とともに示したものである。この結果、圧縮後の多層吸音材にあっても、500Hz〜2kHzの広い帯域に亘って残響室法吸音率で0.7(70%)以上の吸音を達成した。   FIG. 3 shows the reverberation chamber method sound absorption coefficient of the obtained multilayer sound-absorbing material. In addition, it shows with the comparison with the base preform | base_material of the multilayer sound-absorbing material before compressing. As a result, even in the multilayered sound absorbing material after compression, sound absorption of 0.7 (70%) or more was achieved in the reverberation chamber method sound absorption rate over a wide band of 500 Hz to 2 kHz.

更に、吸音材として最もよく用いられているグラスウール(かさ密度32kg/m)と比較して図4に示す。厚さが50mmグラスウールに対して、本発明品は20mmの厚さでグラスウールの吸音性能を凌駕した結果となっており、本発明品の軌道面吸音材としての優位性が立証されたものである。 Further, it is shown in FIG. 4 in comparison with glass wool (bulk density 32 kg / m 3 ) that is most often used as a sound absorbing material. Compared to glass wool with a thickness of 50 mm, the product of the present invention exceeds the sound absorption performance of glass wool with a thickness of 20 mm, and the superiority of the product of the present invention as a track surface sound absorbing material has been proved. .

(実施例2・軌道面吸音構造としての特徴)
実際の適用例として、図1に示した次世代軌道へ実施例1にて得られた本発明の多層吸音材を適用した。多層吸音材は建築限界の関係から厚さ20mmとしたものである。図1に示す次世代軌道構造のA〜C面に多層吸音材を貼り付けて軌道面吸音構造としたものである。
(Example 2-Features as a raceway sound absorbing structure)
As an actual application example, the multilayer sound-absorbing material of the present invention obtained in Example 1 was applied to the next-generation orbit shown in FIG. The multilayer sound-absorbing material has a thickness of 20 mm because of the construction limit. A multilayer sound-absorbing material is attached to the A to C surfaces of the next-generation track structure shown in FIG.

実車走行試験結果を、多層吸音材の非適用例とともに図5に示す。500Hz〜2kHzの広い帯域を含む315Hz以上で約3dBの低減効果となり、その結果、騒音レベルも敷設前の95dBが本発明品の敷設後は92dBとなり、約3dBの低減効果が得られ、本発明品により軌道面での反射成分が低減され、その有効性が証明された。   The actual vehicle running test results are shown in FIG. 5 together with a non-application example of the multilayer sound absorbing material. The reduction effect is about 3 dB above 315 Hz including a wide band of 500 Hz to 2 kHz. As a result, the noise level is 95 dB before laying down to 92 dB after laying the product of the present invention, and the reduction effect of about 3 dB is obtained. The product reduces the reflection component on the raceway and proves its effectiveness.

本発明は以上の通りであり、鉄道や道路など交通分野、産業設備機器や建築設備機器分野など幅広い環境保全分野で利用可能で、環境、居住空間などの静粛化に貢献できる。   The present invention is as described above, and can be used in a wide range of environmental conservation fields such as the transportation field such as railways and roads, the industrial equipment and building equipment fields, and can contribute to the quietness of the environment and living space.

1 レール
2 コンクリート構造物
3 ゴムプレート
4 押さえブロック
20 多層吸音材
21、22 表層(ポリエステル繊維系不織布)
23 母材(ポリエステル繊維系不織布)
25 剛壁
A〜C面 多層吸音材を貼り付ける軌道面
DESCRIPTION OF SYMBOLS 1 Rail 2 Concrete structure 3 Rubber plate 4 Holding block 20 Multi-layer sound-absorbing material 21, 22 Surface layer (polyester fiber nonwoven fabric)
23 Base material (polyester fiber nonwoven fabric)
25 Rigid wall A ~ C surface Track surface for adhering multilayer sound absorbing material

Claims (10)

非バラスト軌道面における列車通過時の騒音の反射を抑制するための軌道面吸音構造であって、各種鉄道軌道に対する建築限界を満たすよう制御された形状であり、鉄道騒音の主要周波数帯域500Hz〜2kHzに対して、少なくとも厚さ20mmで残響室法吸音率が0.7(70%)以上の吸音率を有する吸音材を軌道面の表面に敷設したことを特徴とする軌道面吸音構造。 A track surface sound absorbing structure for suppressing noise reflection when passing a train on a non-ballast track surface, having a shape controlled to satisfy the building limits for various railway tracks, and a main frequency band of railway noise of 500 Hz to 2 kHz. On the other hand, a track surface sound absorbing structure characterized in that a sound absorbing material having a sound absorption coefficient of at least 20 mm in thickness and having a sound absorption coefficient of 0.7 (70%) or more is laid on the surface of the track surface. 前記吸音材は、音響エネルギーの入射側から、ポリエステル繊維系不織布複数枚とポリエステル繊維系不織布母材を重ねて、熱融着し複合化した多層吸音材である請求項1記載の軌道面吸音構造。 2. The track-surface sound absorbing structure according to claim 1, wherein the sound absorbing material is a multilayer sound absorbing material in which a plurality of polyester fiber non-woven fabrics and a polyester fiber non-woven fabric base material are stacked and heat-bonded to form a composite material from the incident side of acoustic energy. . 入射側のポリエステル繊維系不織布は、スパンボンド法によって得られたものである請求項2記載の軌道面吸音構造。 The raceway sound-absorbing structure according to claim 2, wherein the polyester fiber nonwoven fabric on the incident side is obtained by a spunbond method. 各層間にホットメルト材を散布して熱融着させた請求項2又は3記載の軌道面吸音構造。 The raceway sound-absorbing structure according to claim 2 or 3, wherein a hot melt material is dispersed and thermally fused between the respective layers. 音波入射側の複数層の不織布の流れ抵抗が、1×10〜3×10N・sec/mであり、母材の流れ抵抗が0.5×10〜3.5×10N・sec/mであり、複合化した多層吸音材の流れ抵抗が3.5×10〜7×10N・sec/mである請求項2乃至4いずれか1記載の軌道面吸音構造。 The flow resistance of the multilayer nonwoven fabric on the sound wave incidence side is 1 × 10 6 to 3 × 10 6 N · sec / m 4 , and the flow resistance of the base material is 0.5 × 10 4 to 3.5 × 10 4. The track surface according to any one of claims 2 to 4 , wherein N · sec / m 4 and the composite multilayer sound absorbing material has a flow resistance of 3.5 × 10 4 to 7 × 10 4 N · sec / m 4. Sound absorbing structure. 多層吸音材は、建築限界を満たす厚さの120〜150%の厚さに形成しておき、厚さ方向に熱圧縮成型し、厚さが建築限界を超えないように永久歪を付与した請求項1乃至5いずれか1記載の軌道面吸音構造。 The multilayer sound-absorbing material is formed to a thickness of 120 to 150% of the thickness that satisfies the building limit, is subjected to heat compression molding in the thickness direction, and a permanent strain is applied so that the thickness does not exceed the building limit. Item 6. The track surface sound absorbing structure according to any one of Items 1 to 5. 熱圧縮成型は、170〜220℃にて永久歪を付与する請求項6記載の軌道面吸音構造。 The raceway sound-absorbing structure according to claim 6, wherein the thermal compression molding imparts permanent strain at 170 to 220 ° C. 熱圧縮成型した多層吸音材の側面周囲を、額縁状にポリエステル繊維系不織布を熱融着した請求項1乃至7いずれか1記載の軌道面吸音構造。 The track surface sound absorbing structure according to any one of claims 1 to 7, wherein a polyester fiber non-woven fabric is heat-sealed in a frame shape around the side surface of the heat-stressed multilayer sound absorbing material. 熱圧縮成型した多層吸音材の側面周囲を、額縁状に2枚以上のポリエステル繊維系不織布を熱融着し、少なくとも外気側のポリエステル繊維系不織布は溌水処理したものを用いた請求項8記載の軌道面吸音構造。 9. A heat-molded multilayer sound-absorbing material having a frame periphery in which two or more polyester fiber nonwoven fabrics are heat-sealed in a frame shape, and at least the outside air-side polyester fiber nonwoven fabric is subjected to a water-repellent treatment. The sound absorption structure of the raceway. 非バラスト軌道面における列車通過時の騒音の反射を抑制するための多層吸音材の成型法であって、音響エネルギーの入射側から、流れ抵抗が1×10〜3×10N・sec/mのポリエステル繊維系不織布複数枚と、流れ抵抗が0.5×10〜3.5×10N・sec/mのポリエステル繊維系不織布母材を重ね、建築限界を満たす厚さの120〜150%の厚さに形成し、各層間にホットメルト材を散布し、170〜220℃にて圧縮して熱融着し、厚さが建築限界を超えないよう永久歪を付与して複合化し、複合化した多層吸音材の流れ抵抗を3.5×10〜7×10N・sec/mとなし、かつ、周波数帯域500Hz〜2kHzに対して、残響室法吸音率が0.7(70%)以上の吸音率を備えたことを特徴とする多層吸音材の成型法。 A method for forming a multilayer sound absorbing material for suppressing reflection of noise at the time of passing a train on a non-ballast track surface, wherein the flow resistance is 1 × 10 6 to 3 × 10 6 N · sec / sec from the incident side of acoustic energy. a plurality polyester fiber based nonwoven m 4, flow resistance repeatedly 0.5 × 10 4 ~3.5 × 10 4 polyester fiber system of N · sec / m 4 nonwoven preform, the thickness of which satisfies the construction gauge Formed to a thickness of 120-150%, sprayed hot melt material between each layer, compressed at 170-220 ° C. and heat-sealed to give permanent distortion so that the thickness does not exceed the building limit The combined multi-layered sound absorbing material has a flow resistance of 3.5 × 10 4 to 7 × 10 4 N · sec / m 4 and has a reverberation chamber method sound absorption coefficient for a frequency band of 500 Hz to 2 kHz. Having a sound absorption coefficient of 0.7 (70%) or higher Molding method of the multi-layer sound-absorbing material to the butterflies.
JP2010112480A 2010-05-14 2010-05-14 Track surface sound absorption structure and method of molding multi-layer sound absorption material used for the same Pending JP2011241550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010112480A JP2011241550A (en) 2010-05-14 2010-05-14 Track surface sound absorption structure and method of molding multi-layer sound absorption material used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112480A JP2011241550A (en) 2010-05-14 2010-05-14 Track surface sound absorption structure and method of molding multi-layer sound absorption material used for the same

Publications (1)

Publication Number Publication Date
JP2011241550A true JP2011241550A (en) 2011-12-01

Family

ID=45408492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112480A Pending JP2011241550A (en) 2010-05-14 2010-05-14 Track surface sound absorption structure and method of molding multi-layer sound absorption material used for the same

Country Status (1)

Country Link
JP (1) JP2011241550A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105127431A (en) * 2015-08-26 2015-12-09 西北有色金属研究院 Preparation method for low-frequency sound absorption material
JP2019028143A (en) * 2017-07-26 2019-02-21 株式会社E−Mon堂 Sound absorption material piece and decorative assembly using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790801A (en) * 1993-09-24 1995-04-04 Railway Technical Res Inst Sound absorbing structural body for slab track
JP2007334285A (en) * 2006-05-16 2007-12-27 Hitachi Ltd Sound absorbing structure and rail vehicle
WO2009125742A1 (en) * 2008-04-10 2009-10-15 ブリヂストンケービージー株式会社 Sound-absorbing composite structure
JP2010024613A (en) * 2008-06-17 2010-02-04 Toabo Material Co Ltd Sound-absorbing board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790801A (en) * 1993-09-24 1995-04-04 Railway Technical Res Inst Sound absorbing structural body for slab track
JP2007334285A (en) * 2006-05-16 2007-12-27 Hitachi Ltd Sound absorbing structure and rail vehicle
WO2009125742A1 (en) * 2008-04-10 2009-10-15 ブリヂストンケービージー株式会社 Sound-absorbing composite structure
JP2010024613A (en) * 2008-06-17 2010-02-04 Toabo Material Co Ltd Sound-absorbing board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105127431A (en) * 2015-08-26 2015-12-09 西北有色金属研究院 Preparation method for low-frequency sound absorption material
CN105127431B (en) * 2015-08-26 2017-09-22 西北有色金属研究院 A kind of preparation method of low frequency absorption material
JP2019028143A (en) * 2017-07-26 2019-02-21 株式会社E−Mon堂 Sound absorption material piece and decorative assembly using the same

Similar Documents

Publication Publication Date Title
JP2021500610A (en) Acoustic articles and related methods
JP2008008997A (en) Composite sound absorbing structural body
CN202530345U (en) Steel rail absorber
JP2009235761A (en) Flexible soundproof/sound-absorbing sheet
JP2017167251A (en) Soundproof cover
CN106758571A (en) A kind of track vibration damping denoising device
JP2011241550A (en) Track surface sound absorption structure and method of molding multi-layer sound absorption material used for the same
EP2945153B1 (en) Rail acoustic attenuator device
JP2007334285A (en) Sound absorbing structure and rail vehicle
TWI755432B (en) Sound insulation structure, and method for producing sound insulation structure
CN106494427A (en) A kind of high oise insulation factor pantograph region top board structure
KR101192879B1 (en) Noise absorptive panel for railway slab
CN207173609U (en) A kind of rail vehicle composite floor structure
JP2014514603A (en) Sound absorbing and soundproofing composite material
CN202996287U (en) Thin broadband sound-absorbing structure compounded with multi layers of mechanical impedance plates
WO2024021442A1 (en) Elevated double-track railway noise reduction system
CN1807756A (en) Dynamic vibration-absorbing multilayer damping-constraining steel rail silencer
KR100910171B1 (en) Noise absorptive concrete panel for railway slab
JP5997037B2 (en) Soundproofing device
JP2010089706A (en) Heat insulating and sound absorbing material for vehicle
CN203267395U (en) Magnetic-induction sound absorption product
JPH07113185B2 (en) Adiabatic sound absorbing material
CN207140490U (en) Complex sound insulation pad, sound-and-fire proof wall and auto sound floor
JP3651840B2 (en) Sound absorbing plate and manufacturing method thereof
CN109024952A (en) A kind of compound acoustic tile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141014