WO2009125577A1 - 撮像装置、撮像システムおよび撮像方法 - Google Patents

撮像装置、撮像システムおよび撮像方法 Download PDF

Info

Publication number
WO2009125577A1
WO2009125577A1 PCT/JP2009/001598 JP2009001598W WO2009125577A1 WO 2009125577 A1 WO2009125577 A1 WO 2009125577A1 JP 2009001598 W JP2009001598 W JP 2009001598W WO 2009125577 A1 WO2009125577 A1 WO 2009125577A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
temperature
image
lens
shielding wall
Prior art date
Application number
PCT/JP2009/001598
Other languages
English (en)
French (fr)
Inventor
飯島友邦
玉木悟史
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2009539554A priority Critical patent/JP4456180B2/ja
Priority to US12/598,292 priority patent/US8212912B2/en
Publication of WO2009125577A1 publication Critical patent/WO2009125577A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • H04N25/633Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current by using optical black pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/673Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction by using reference sources

Definitions

  • the present invention relates to a small and highly accurate image pickup apparatus, and more particularly to an image pickup apparatus provided with a plurality of lenses.
  • FIG. 1 As a conventional imaging apparatus, there is an imaging apparatus including a lens array in which a plurality of lenses are integrally formed (see, for example, Patent Document 1).
  • Patent Document 1 the imaging apparatus of Patent Document 1 will be described with reference to FIGS. 30 and 31.
  • FIG. 1 the imaging apparatus of Patent Document 1 will be described with reference to FIGS. 30 and 31.
  • FIG. 30 is an exploded perspective view of the imaging device 901 of Patent Document 1.
  • FIG. 31 is a diagram illustrating an imaging block of the imaging device 901 of Patent Document 1.
  • the imaging device 901 includes a diaphragm member 902, an optical block array 903, a light blocking block 904, an optical filter 906, an imaging unit 907, a drive circuit 908, a parallax calculation circuit 909, and a semiconductor substrate 910. Prepare.
  • the diaphragm member 902 is a member that adjusts the amount of light incident on the optical block array 903, and has a plurality of openings 902a, 902b, 902c, and 902d.
  • the optical block array 903 is a so-called lens array, and is a member in which a plurality of optical blocks 903a, 903b, 903c, and 903d whose optical axes are substantially parallel to each other are integrally formed.
  • Each optical block 903a, 903b, 903c, and 903d is disposed corresponding to each opening 902a, 902b, 902c, and 902d of the diaphragm member 902.
  • the light shielding block 904 is a member that prevents light incident from each opening of the diaphragm member 902 from reaching an imaging block other than the corresponding imaging block.
  • the optical filter 906 is a member composed of an optical low-pass filter, an infrared cut filter, and the like.
  • the imaging unit 907 includes a solid-state imaging device such as a CCD sensor or a CMOS sensor, and imaging blocks 907a, 907b, 907c corresponding to each of the plurality of optical blocks 903a, 903b, 903c, and 903d included in the optical block array 903, and 907d.
  • a solid-state imaging device such as a CCD sensor or a CMOS sensor
  • the drive circuit 908 is a circuit that is installed on the semiconductor substrate 910 and drives the imaging unit 907.
  • the parallax calculation circuit 909 is a circuit for calculating the parallax of the image formed on each imaging block.
  • the semiconductor substrate 910 is a substrate on which the imaging unit 907, the drive circuit 908, the parallax calculation circuit 909, and the like are installed.
  • Light that has passed through the openings 902a, 902b, 902c, and 902d of the aperture member 902 is refracted by the optical blocks 903a, 903b, 903c, and 903d, and then passes through the light shielding block 904 and the optical filter 906.
  • the images are formed on the imaging blocks 907a, 907b, 907c, and 907d.
  • the parallax calculation circuit 909 calculates the similarity between blocks of the image obtained from the imaging block 907a and the image obtained from the imaging block 907b by block matching calculation. Then, the parallax calculation circuit 909 obtains the parallax d based on the calculated similarity. Then, the parallax calculation circuit 909 calculates the distance L from the parallax d using Equation (1).
  • f is the focal length of the optical blocks 903a and 903b.
  • B is the distance between the optical axis of the optical block 903a and the optical axis of the optical block 903b.
  • p is the pixel interval of the imaging unit 907 in the direction connecting the optical axes of the optical block 903a and the optical block 903b.
  • the imaging device 901 including the optical block array 903 can calculate the distance to the subject.
  • the shape of the optical block array 903 changes as the temperature changes. That is, when the temperature changes, the distance between the optical axes changes, and there is a problem that the error of the distance calculated by the equation (1) becomes large.
  • the change amount z of the distance between the optical axes is calculated using Equation (2).
  • aL is the coefficient of thermal expansion of the optical block array
  • aS is the coefficient of thermal expansion of the imaging unit.
  • T0 is a reference temperature
  • B is a distance of the optical axis between the optical blocks at the reference temperature T0.
  • the imaging apparatus corrects the image obtained by each imaging block using the change amount z of the distance between the optical axes obtained in this way.
  • the imaging apparatus uses the images I2, I3, and I4 obtained by the imaging blocks 907b, 907c, and 907d as the expressions. Correction is performed using (4), (5), and (6).
  • optical axes of the optical block 903a and the optical block 903b and the optical axes of the optical block 903c and the optical block 903d are arranged at a distance B from each other in the x-axis direction.
  • the optical axes of the optical block 903a and the optical block 903c and the optical axes of the optical block 903b and the optical block 903d are arranged at a distance B apart from each other in the y-axis direction.
  • I1 (x, y), I2 (x, y), I3 (x, y), and I4 (x, y) represent the luminance of the image before and after correction at the coordinates (x, y). Show.
  • the imaging apparatus corrects I2 (x, y) so as to move by z / p in the x-axis direction as in Expression (4).
  • the imaging apparatus corrects I3 (x, y) so as to move by z / p in the y-axis direction as in Expression (5).
  • the imaging apparatus corrects I4 (x, y) so as to move by z / p pixels in the x-axis direction and z / p pixels in the y-axis direction, as in Expression (6).
  • the distance measurement accuracy of the imaging apparatus can be improved by calculating the distance to the subject using the image corrected in this way.
  • an object of the present invention is to reduce the number of temperature sensors mounted in an imaging apparatus that requires temperature measurement.
  • an imaging apparatus is an imaging apparatus that captures an image of a subject, and is provided with a lens array having a plurality of lenses, a predetermined distance from the lens array, and the plurality of lenses An imaging element having an imaging area corresponding to each of the lenses, and between the lens array and the imaging element so that light passing through each lens does not reach an imaging area different from the imaging area corresponding to the lens.
  • a light shielding wall that divides the space, an imaging signal input unit that generates an imaging signal obtained by converting an electrical signal output by the imaging element into a digital value, and the imaging signal projected onto the imaging surface of the imaging element from the imaging signal
  • a temperature estimation unit that identifies a length of the image of the light shielding wall and estimates the first temperature using the identified length of the image of the light shielding wall.
  • the imaging apparatus can measure the temperature without including a temperature sensor for detecting the temperature.
  • the imaging device is further arranged near the lens array and detects the second temperature, and the reliability of the second temperature is determined based on the first temperature and the second temperature. You may provide the reliability calculation part to calculate. Specifically, the reliability calculation unit may calculate the reliability so that the reliability of the second temperature decreases as the difference between the first temperature and the second temperature increases.
  • the imaging apparatus further estimates a change amount of a distance between the optical axes of the plurality of lenses when the temperature changes from a predetermined temperature to the second temperature, and uses the estimated change amount to perform the imaging.
  • a temperature compensation calculation unit that corrects information obtained from the signal and information corrected by the temperature compensation calculation unit are used to calculate the parallax of the images captured in the plurality of imaging regions and the distance to the subject. You may provide a distance calculating part.
  • the imaging apparatus further notifies the outside when the reliability calculated by the reliability calculation unit exceeds a predetermined value and thus it is determined that the reliability of the second temperature is low. You may provide the alerting
  • the imaging apparatus further includes a cylindrical barrel installed so as to surround the light shielding wall between the lens array and the imaging element, and the barrel is at least a pair of inner wall surfaces.
  • the light shielding wall is a rectangular plate-like member that is installed with its side end fitted into the groove of the lens barrel and that extends from the imaging surface of the image sensor toward the lens array. Yes, having at least two protrusions protruding from the same plate surface of the plate-like member, and the temperature estimation part estimates the first temperature using the length of the image between the protrusions. Good.
  • the imaging apparatus further includes a cylindrical barrel installed so as to surround the light shielding wall between the lens array and the imaging element, and the barrel is at least a pair of inner wall surfaces.
  • the light shielding wall can be stably installed, and the accuracy of calculating the length of the image of the light shielding wall projected on the imaging surface can be improved, thereby improving the accuracy of temperature estimation. Is possible.
  • the imaging system includes the imaging device and a system control unit that performs predetermined control based on the distance to the subject and the reliability calculated by the imaging device.
  • an imaging method includes a lens array having a plurality of lenses, an imaging element that is installed at a predetermined distance from the lens array and has an imaging region corresponding to each of the plurality of lenses, Imaging used in an imaging apparatus including a light shielding wall that partitions a space between the lens array and the imaging element so that light that has passed through the lens does not reach an imaging area different from the imaging area corresponding to the lens.
  • An image pickup signal input step for generating an image pickup signal obtained by converting an electric signal output from the image pickup element into a digital value, and an image of the light shielding wall projected from the image pickup signal onto the image pickup surface of the image pickup element.
  • a temperature estimation step of estimating the temperature using the identified length of the image of the light shielding wall.
  • the present invention can also be realized as a program for executing the steps included in such an imaging method.
  • a program can be distributed via a recording medium such as a CD-ROM (Compact Disc-Read Only Memory) or a communication network such as the Internet.
  • the present invention makes it possible to reduce the number of temperature sensors mounted in an imaging apparatus that requires temperature measurement.
  • FIG. 1 is a cross-sectional view showing a configuration of an imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view of the imaging apparatus according to Embodiment 1 of the present invention with the lens barrel and lens array removed.
  • FIG. 3 is a plan view of a lens array provided in the imaging apparatus according to the present invention.
  • FIG. 4 is a perspective view of a light shielding wall provided in the imaging apparatus according to the present invention.
  • FIG. 5 is a plan view of an image sensor provided in the image pickup apparatus according to the present invention.
  • FIG. 6 is a diagram for explaining an image of the light shielding wall projected onto the image sensor included in the imaging apparatus according to the present invention.
  • FIG. 1 is a cross-sectional view showing a configuration of an imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view of the imaging apparatus according to Embodiment 1 of the present invention with the lens barrel and lens array removed.
  • FIG. 3 is
  • FIG. 7 is a block diagram showing a characteristic functional configuration of the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 8 is a flowchart showing a flow of processing relating to temperature estimation executed by the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 9 is a cross-sectional view showing the configuration of the imaging apparatus according to Embodiment 2 of the present invention.
  • FIG. 10 is a plan view of the imaging apparatus according to Embodiment 2 of the present invention with the lens barrel and lens array removed.
  • FIG. 11 is a circuit diagram of a temperature sensor provided in the imaging apparatus according to Embodiment 2 of the present invention.
  • FIG. 12 is a block diagram showing a characteristic functional configuration of the imaging apparatus according to Embodiment 2 of the present invention.
  • FIG. 13 is a diagram for explaining the imaging position of an object image at infinity in the imaging apparatus according to Embodiment 2 of the present invention.
  • FIG. 14 is a diagram for explaining the imaging position of an object image at a finite distance in the imaging apparatus according to Embodiment 2 of the present invention.
  • FIG. 15 is a flowchart showing the operation of the imaging apparatus according to Embodiment 2 of the present invention.
  • FIG. 16 is a diagram for explaining a cut-out position of the image pickup signal of the image pickup apparatus according to Embodiment 2 of the present invention.
  • FIG. 17 is a flowchart showing the operation of the distance calculation unit provided in the imaging apparatus according to Embodiment 2 of the present invention.
  • FIG. 18 is a diagram for explaining block division in the imaging apparatus according to Embodiment 2 of the present invention.
  • FIG. 19 is a diagram for explaining a calculation area of parallax evaluation values according to Embodiment 2 of the present invention.
  • FIG. 20 is a diagram for explaining the relationship between the shift amount and the parallax evaluation value according to Embodiment 2 of the present invention.
  • FIG. 21 is a flowchart showing the temperature estimation operation of the imaging apparatus according to Embodiment 2 of the present invention.
  • FIG. 22 is a diagram for explaining a position and a dark part where an imaging signal corresponding to a light-shielding wall is cut out among imaging signals of the imaging apparatus according to Embodiment 2 of the present invention.
  • FIG. 23 is a block diagram showing a configuration of an imaging system according to Embodiment 3 of the present invention.
  • FIG. 24 is a perspective view of a lens barrel according to a modification of the present invention.
  • FIG. 25A is a perspective view of a light shielding wall according to a modification of the present invention.
  • FIG. 25B is a perspective view of a light shielding wall according to a modification of the present invention.
  • FIG. 26A is a diagram for explaining an image of a light shielding wall according to a modification of the present invention.
  • FIG. 26B is a diagram for explaining an image of a light shielding wall according to a modification of the present invention.
  • FIG. 27A is a plan view of a lens of the imaging apparatus according to the present invention.
  • FIG. 27B is a plan view of the lens of the imaging device according to the present invention.
  • FIG. 28A is a perspective view of a light shielding wall of the imaging apparatus according to the present invention.
  • FIG. 28B is a perspective view of the light shielding wall of the imaging device according to the present invention.
  • FIG. 29A is a diagram showing an imaging signal of the light shielding wall according to the present invention.
  • FIG. 29B is a diagram showing an imaging signal of the light shielding wall according to the present invention.
  • FIG. 30 is an exploded perspective view of a conventional imaging device.
  • FIG. 31 is a diagram illustrating an imaging block of a conventional imaging device.
  • Embodiment 1 The imaging apparatus according to Embodiment 1 of the present invention is capable of calculating the amount of change due to the temperature of the image of the light shielding wall projected onto the imaging surface of the image sensor, and estimating the temperature using the calculated amount of change. Has characteristics.
  • FIG. 1 is a cross-sectional view showing a configuration of an imaging apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view of the imaging apparatus 100 according to Embodiment 1 of the present invention with the lens barrel 111 and the lens array 112 removed.
  • the imaging apparatus 100 includes a lens module unit 110 and a circuit unit 120.
  • the lens module unit 110 includes a lens barrel 111, a lens array 112, and a light shielding wall 113
  • the circuit unit 120 includes a substrate 121, an image sensor 122, and a system LSI (hereinafter referred to as SLSI) 123.
  • SLSI system LSI
  • the lens barrel 111 is a rectangular parallelepiped cylindrical member formed integrally with resin, and is installed at a position surrounding the periphery of the lens array 112 and the image sensor 122. Further, the inner wall surface of the lens barrel 111 is matte black to prevent irregular reflection of light.
  • the lens array 112 is made of glass, transparent resin, or the like, and includes a first lens unit 112a, a second lens unit 112b, a third lens unit 112c, and a fourth lens unit 112d.
  • the lens array 112 is bonded to the upper part of the inner wall of the lens barrel 111 using an adhesive or the like. Details of the lens array 112 will be described later with reference to FIG.
  • the light shielding wall 113 provides a space between the lens array 112 and the image sensor 122 so that light that has passed through each lens unit of the lens array 112 does not reach an imaging region different from the imaging region corresponding to the lens unit. It is a member to divide. Details of the light shielding wall 113 will be described later with reference to FIG.
  • the substrate 121 is a resin plate-like member that constitutes an electronic circuit by fixing components such as the image sensor 122 and the SLSI 123 to the surface and connecting the components with wiring.
  • the bottom surface of the lens barrel 111 is bonded to the top surface of the substrate 121 with an adhesive or the like.
  • the image sensor 122 is a solid-state image sensor such as a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, and is arranged at a predetermined distance from the lens array 112.
  • the imaging element 122 has an imaging area corresponding to each lens portion of the lens array 112. These imaging regions are arranged so as to be substantially perpendicular to the optical axes of the corresponding lens units.
  • the image sensor 122 is electrically connected to the SLSI 123 via the gold wire 125 and the substrate 121. Details of the image sensor 122 will be described later with reference to FIG.
  • the SLSI 123 drives the image sensor 122 and acquires an electric signal from the driven image sensor 122. Furthermore, temperature is estimated based on the acquired electrical signal.
  • FIG. 3 is a plan view of the lens array 112 provided in the imaging apparatus according to the present invention.
  • the lens array 112 includes a first lens part 112a, a second lens part 112b, a third lens part 112c, and a fourth lens part 112d arranged in a grid pattern.
  • one of the arrangement directions of the lens portions is set as an x axis and the other is set as a y axis.
  • the optical axes of the four lens units are installed so as to be substantially parallel to each other, and are installed so as to be substantially perpendicular to the imaging surface of the imaging device 122.
  • FIG. 4 is a perspective view of the light shielding wall 113 of the imaging apparatus according to the present invention.
  • the light shielding wall 113 is a member formed by combining two rectangular resin plates in a cross shape, and is fixed to the bottom surface of the lens array 112 with an adhesive or the like. Further, the wall surface of the light shielding wall 113 is black with a matte finish to prevent irregular reflection of light.
  • the light shielding wall 113 is integrally formed by injection molding of resin.
  • the light shielding wall 113 is disposed between the lens array 112 and the image sensor 122 so as to divide the first lens unit 112a, the second lens unit 112b, the third lens unit 112c, and the fourth lens unit 112d.
  • the light emitted from each lens unit is shielded so as not to interfere.
  • the shape of the light shielding wall 113 changes as the temperature changes.
  • the size of the light shielding wall increases in proportion to the temperature.
  • the light shielding wall 113 may be a combination of two rectangular resin plates instead of integral molding.
  • the light shielding wall 113 is not limited to resin. That is, the light shielding wall 113 only needs to be a material that shields light and deforms as the temperature changes.
  • FIG. 5 is a plan view of the image sensor 122 provided in the imaging apparatus according to the present invention.
  • the image sensor 122 corresponds to four lens parts (a first lens part 112a, a second lens part 112b, a third lens part 112c, and a fourth lens part 112d) included in the lens array 112. It has four imaging areas (a first imaging area 122a, a second imaging area 122b, a third imaging area 122c, and a fourth imaging area 122d).
  • each of these imaging areas only light from the subject that has passed through the corresponding lens section forms an image. That is, the light that has passed through each lens unit does not reach an imaging region different from the imaging region corresponding to the lens unit. That is, the light emitted from the first lens unit 112a is incident only on the first imaging region 122a. This is because the light shielding wall 113 blocks the light emitted from the first lens unit 112a from entering the second imaging region, the third imaging region, and the fourth imaging region.
  • the image sensor 122 has a horizontal central imaging region 122x and a vertical central imaging region 122y corresponding to the position of the light shielding wall 113.
  • FIG. 6 is a diagram for explaining an image of the light shielding wall 113 projected onto the image sensor 122.
  • the light shielding wall 113 is projected as dark portions 113qx and 113qy on the horizontal central imaging region 122x and the vertical central imaging region 122y of the image sensor 122.
  • the lengths of the dark portions 113qx and 113qy are defined as lengths Qx and Qy, respectively.
  • FIG. 7 is a block diagram showing a characteristic functional configuration of the imaging apparatus 100 according to Embodiment 1 of the present invention.
  • the imaging apparatus 100 includes an imaging signal input unit 133, a temperature estimation unit 143, a storage unit 146, and an input / output unit 135.
  • the imaging signal input unit 133 is configured by an ADC (Analog / Digital Converter: Analog Digital Converter) or the like, and generates an imaging signal obtained by converting an electrical signal acquired from the imaging element 122 into a digital value.
  • ADC Analog / Digital Converter: Analog Digital Converter
  • the temperature estimation unit 143 uses the imaging signal generated by the imaging signal input unit 133 to calculate the length of the image of the light shielding wall 113 projected onto the imaging surface of the image sensor 122, thereby determining the temperature of the light shielding wall 113. presume.
  • the storage unit 146 includes a flash memory or the like, and stores an image length and a thermal expansion coefficient of the light shielding wall 113 when the light shielding wall 113 is projected onto the imaging surface of the image sensor 122 at a predetermined temperature. Specifically, the temperature T0, the image length Qx0 of the light shielding wall 113 in the x-axis direction and the image length Qy0 of the light shielding wall 113 at the temperature T0, and the thermal linear expansion coefficient kq of the light shielding wall 113 are stored.
  • the input / output unit 135 outputs the temperature estimated by the temperature estimation unit 143.
  • the input / output unit 135 inputs a command from another device.
  • FIG. 8 is a flowchart showing a flow of processing relating to temperature estimation executed by the imaging apparatus 100 according to Embodiment 1 of the present invention.
  • the imaging signal input unit 133 generates an imaging signal obtained by converting the electrical signal acquired from the imaging element 122 into a digital value (step S100).
  • the temperature estimation unit 143 cuts out the horizontal center imaging signal corresponding to the horizontal center imaging region 122x shown in FIGS. 5 and 6 from the imaging signals generated by the imaging signal input unit 133 (step S101). .
  • the temperature estimation unit 143 cuts out a vertical center imaging signal corresponding to the vertical center imaging region 122y shown in FIGS. 5 and 6 from the imaging signals generated by the imaging signal input unit 133 (step S102). .
  • the temperature estimation unit 143 detects the length of the dark portion 113qx, that is, the length Qx in the x-axis direction of the image of the light shielding wall 113, from the cut out horizontal center image signal (step S103). Specifically, the temperature estimation unit 143 binarizes the horizontal center image signal, and detects the length Qx from the coordinates of one end and the other end of the black portion using the binarized image signal.
  • the temperature estimation unit 143 detects the length of the dark portion 113qy, that is, the length Qy of the image of the light shielding wall 113 in the y-axis direction from the vertical center image pickup signal (step S104).
  • the temperature estimation unit 143 calculates the detected lengths Qx and Qy and the image lengths Qx0 and y-axis direction images of the light shielding wall 113 stored in the storage unit 146 in the x-axis direction at the temperature T0. Using the length Qy0 and the thermal expansion coefficient kq of the light shielding wall 113, an estimated temperature is calculated according to a predefined relational expression (step S105).
  • the temperature estimation unit 143 calculates the temperatures Tx and Ty using the equations (7) and (8) obtained by formulating the change due to the temperature of the light shielding wall 113. And like Formula (9), the temperature estimation part 143 calculates the arithmetic mean value of temperature Tx and Ty as estimated temperature Te.
  • kq is the coefficient of thermal expansion of the light shielding wall 113, and is a value determined by the material of the light shielding wall 113.
  • the imaging apparatus can estimate the temperature using the shape change caused by the temperature change of the light shielding wall that is generally provided in the imaging apparatus having the lens array. That is, the imaging apparatus according to the present invention can estimate the temperature without including a temperature sensor for detecting the temperature.
  • the estimated temperature estimated in this way can be used for temperature compensation when measuring the distance to the subject using the parallax between a plurality of images. Further, the estimated temperature can be used simply as a temperature displayed on a thermometer or the like.
  • the temperature estimation unit 143 estimates the temperature using Expression (9), but stores the correspondence between the temperature and the length of the image of the light shielding wall for a plurality of temperatures.
  • the temperature corresponding to the detected image length of the light shielding wall may be estimated by referring to the temperature estimation table.
  • the storage unit 146 stores a temperature estimation table.
  • the temperature estimation unit 143 may calculate the temperature using an equation different from the equation (9). For example, the temperature estimation unit 143 may calculate the temperature according to a second-order or higher-order polynomial having the length of the light shielding wall as a variable.
  • the storage unit 146 stores polynomial coefficients. The coefficient of this polynomial is not limited to the coefficient of thermal expansion, the reference temperature, and the length of the light shielding wall at the reference temperature.
  • the temperature estimation unit 143 estimates the temperature using the data stored in the storage unit 146. However, the temperature estimation unit 143 obtains data held in a device other than the imaging device 100 and calculates the temperature. It may be estimated.
  • Embodiment 2 The imaging apparatus according to Embodiment 2 of the present invention compares the temperature estimated by the same method as in Embodiment 1 with the temperature obtained from the temperature sensor, thereby improving the reliability of the temperature obtained from the temperature sensor. It is characterized in that it can be evaluated.
  • Embodiment 2 of the present invention will be described with reference to the drawings. Note that the same components as those in Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 9 is a cross-sectional view showing a configuration of the imaging apparatus 101 according to Embodiment 2 of the present invention.
  • FIG. 10 is a plan view showing a state in which the lens barrel 111 and the lens array 112 provided in the imaging apparatus 101 according to Embodiment 2 of the present invention are removed.
  • the imaging apparatus 101 of the second embodiment is different from the imaging apparatus 100 of the first embodiment in that a temperature sensor 124 is provided, but other components are the first embodiment.
  • the temperature sensor 124 will be described.
  • the temperature sensor 124 includes a thermistor and is a circuit that can detect the temperature. Specifically, it is configured as shown in FIG.
  • FIG. 11 is a circuit diagram of the temperature sensor 124 provided in the imaging apparatus 101 according to Embodiment 2 of the present invention.
  • the temperature sensor 124 is a circuit in which a first fixed resistor 124a, a thermistor 124b, and a second fixed resistor 124c are sequentially connected in series.
  • the end of the first fixed resistor 124a that is not connected to the thermistor 124b is connected to a power supply 124d (eg, 3.3V, a power supply different from the SLSI).
  • the end of the second fixed resistor 124c that is not connected to the thermistor 124b is connected to the ground 124e (for example, 0 V, the same potential as the ground of the SLSI 123).
  • a connection point 124 f between the first fixed resistor 124 a and the thermistor 124 b is connected to the SLSI 123.
  • FIG. 12 is a block diagram showing a characteristic functional configuration of the imaging apparatus 101 according to Embodiment 2 of the present invention.
  • the imaging apparatus 101 includes a system control unit 131, an imaging element driving unit 132, an imaging signal input unit 133, a temperature sensor signal input unit 134, an input / output unit 135, a temperature compensation calculation unit 141, and a distance calculation unit. 142, a temperature estimation unit 143, a temperature sensor signal reliability calculation unit 144, a notification unit 145, and a storage unit 146.
  • the system control unit 131 includes a CPU (Central Processing Unit), a logic circuit, and the like, and controls the entire SLSI 123.
  • CPU Central Processing Unit
  • logic circuit and the like, and controls the entire SLSI 123.
  • the image sensor driving unit 132 includes a logic circuit and the like, generates a signal for driving the image sensor 122 according to a command from the system control unit 131, and applies a voltage corresponding to the generated signal to the image sensor 122.
  • a CDS circuit correlated double sampling circuit: Correlated Double Sampling Circuit
  • AGC automatic gain controller: Automatic Gain Controller
  • ADC analog / digital converter: Analog Digital Converter
  • the temperature sensor signal input unit 134 is composed of an ADC or the like, and outputs a temperature sensor signal Ts obtained by converting a temperature sensor signal that is an analog voltage signal into a digital signal.
  • the input / output unit 135 outputs the image data, the distance data, and the notification data to the outside of the imaging device 101.
  • the temperature compensation calculation unit 141 performs distortion correction of the imaging signal using the temperature sensor signal Ts. Specifically, the temperature compensation calculation unit 141 calculates the movement distance of the center of the optical axis of each lens unit as the temperature rises, and corrects the coordinate conversion table based on the calculated movement distance.
  • the distance calculation unit 142 calculates distance data and the first imaging signal using the imaging signal and the coordinate conversion table.
  • the first imaging signal is a signal corresponding to an image formed by the first lens unit in the first imaging region. The principle of distance data calculation will be described later with reference to FIGS.
  • the temperature estimation unit 143 uses the imaging signal I0 output from the imaging signal input unit 133, and the length of the image of the light shielding wall 113 projected onto the imaging surface of the imaging element 122.
  • the temperature of the light shielding wall 113 is estimated by calculating the height.
  • the temperature sensor signal reliability calculation unit 144 calculates the temperature sensor signal reliability so that the reliability decreases as the difference between the sensor temperature signal and the estimated temperature increases.
  • the temperature sensor signal reliability is defined such that the lower the reliability, the larger the value.
  • the notification unit 145 sets the value of the notification data to 1 when the temperature sensor signal reliability is equal to or higher than the set value, and sets the value of the notification data to 0 when the temperature sensor signal reliability is lower than the set value. That is, the notification unit 145 generates notification data having a value of 1 when the reliability is low.
  • the storage unit 146 includes a flash memory or the like, and stores a predetermined temperature and the length of the image of the light shielding wall 113 at the predetermined temperature. Specifically, the temperature T0, the length Qx0 in the x-axis direction, the length Qy0 in the y-axis direction, and the thermal linear expansion coefficient kq of the light shielding wall 113 at the temperature T0 are stored.
  • reporting part 145 only produces
  • reporting part 145 may be provided with a means to alert
  • the notification unit 145 may include an LED (Light Emitting Diode), and when the value of the notification data is 1, the LED may be turned on.
  • FIG. 13 is a diagram for explaining the imaging position of an object image at infinity in the imaging apparatus 101 according to Embodiment 2 of the present invention.
  • Typical incident light L1 to the first lens portion 112a of light from the object 10 at infinity is parallel to typical incident light L2 to the second lens portion 112b.
  • two objects 10 are drawn.
  • the object 10 is a single object. That is, the incident light L1 and the incident light from the object 10 at infinity.
  • L2 is parallel, two objects 10 at infinity are drawn.
  • the optical axis of the first lens unit 112a and the optical axis of the second lens unit 112b are drawn. The distance between them is equal to the distance between the position at which the object image 11a is formed on the image sensor 122 and the position at which the object image 11b is formed. That is, the parallax that is the difference between the distance between the optical axes and the distance between the imaging positions does not occur.
  • FIG. 14 is a diagram for explaining an imaging position of an object image at a finite distance in the imaging apparatus 101 according to Embodiment 2 of the present invention.
  • the typical incident light L1 to the first lens part 112a of the light from the object 12 at a finite distance is not parallel to the typical incident light L2 to the second lens part 112b. Therefore, compared with the distance between the optical axis of the first lens unit 112a and the optical axis of the second lens unit 112b, the position where the object image 13a is formed on the image sensor 122 and the object image 13b are formed.
  • the distance to the location is long. That is, parallax occurs.
  • the distance (subject distance) from the principal point of the first lens unit 112a to the object image 12 is A
  • the distance between the optical axes of the first lens unit 112a and the second lens unit 112b is D
  • the first lens unit 112a is the distance between the optical axes of the first lens unit 112a and the second lens unit 112b.
  • the focal length of the second lens unit 112b is f.
  • the relative positions of the four object images formed by the four lens portions 112a, 112b, 112c, and 112d change according to the subject distance.
  • the parallax value ⁇ increases. Therefore, the subject distance A can be obtained from the parallax value ⁇ by solving the equation (10) for the subject distance A as shown in the equation (11).
  • ddx is the amount of change in the x-axis direction of the interval between the optical axes as the temperature rises, and the unit is the interval between the light receiving elements of the image sensor 122.
  • ddy is the amount of change in the y-axis direction of the interval between the optical axes due to temperature rise, and the unit is the interval between the light receiving elements of the image sensor 122.
  • Dx is the distance between the optical axes between the lenses in the x-axis direction at the reference temperature T0
  • Dy is the distance between the optical axes between the lenses in the y-axis direction at the reference temperature T0.
  • aL is the coefficient of thermal expansion of the lens array 112
  • aS is the coefficient of thermal expansion of the image sensor 122.
  • T is a temperature
  • T0 is a reference temperature
  • P is the interval between the light receiving elements of the image sensor 122.
  • the center of the optical axis of each lens unit is half of the change in the distance between the optical axes between the lenses as the temperature rises ( It moves by p * ddx / 2 in the x-axis direction and p * ddy / 2) in the y-axis direction. That is, the optical axis center of the first lens unit 112a moves by ⁇ p * ddx / 2 in the x-axis direction and by ⁇ p * ddy / 2 in the y-axis direction.
  • the center of the optical axis of the second lens portion 112b moves by + p * ddx / 2 in the x-axis direction and ⁇ p * ddy / 2 in the y-axis direction.
  • the center of the optical axis of the third lens portion 112c moves by ⁇ p * ddx / 2 in the x-axis direction and + p * ddy / 2 in the y-axis direction.
  • the optical axis center of the fourth lens portion 112d moves by + p * ddx / 2 in the x-axis direction and + p * ddy / 2 in the y-axis direction.
  • the imaging apparatus can estimate the moving distance of the optical axis of each lens of the lens array 112 using the change amounts ddx and ddy obtained from the detected temperature T.
  • the imaging apparatus can perform various types of compensation using the estimated movement distance of the optical axis.
  • the imaging apparatus can reduce the influence of expansion of the lens array 112 due to temperature change, and obtain accurate parallax. That is, the imaging apparatus can obtain an accurate distance from an accurate parallax.
  • FIG. 15 is a flowchart showing the operation of the imaging apparatus 101 according to Embodiment 2 of the present invention.
  • the imaging apparatus 101 starts the following operation.
  • the imaging signal input unit 133 generates an imaging signal I0 from an electrical signal obtained from the imaging element 122 by a CDS circuit, AGC, and ADC (step S1020).
  • the imaging signal input unit 133 receives the imaging signal I0 (x, y) having H0 pixels in the x-axis direction and V0 pixels in the y-axis direction as I0 (0,0), I0 (1,0), I0. Output in the order of (2, 0),..., I0 (H0-1, V0-1).
  • the temperature sensor signal input unit 134 converts the temperature sensor signal, which is an analog voltage signal, into a digital value, and outputs the converted signal as the temperature sensor signal Ts (step S1030).
  • the temperature compensation calculation unit 141 performs distortion correction of the imaging signal using the temperature sensor signal Ts (step S1100). Specifically, as shown in FIG. 3, the coordinate conversion table is calculated based on the distance (p * ddx / 2, p * ddy / 2) that the center of the optical axis of each lens unit moves with the temperature rise. to correct.
  • step S1100 a specific example of the process performed by the temperature compensation calculation unit 141 in step S1100 will be described with reference to FIG.
  • FIG. 16 is a diagram for explaining a cut-out position of the image pickup signal of the image pickup apparatus 101 according to Embodiment 2 of the present invention.
  • the temperature compensation calculation unit 141 uses the conversion tables tx1 (x, y) and ty1 (x, y) for the first imaging signal I1 (x, y) using the equations (14), (15), and (16). Create.
  • (x01, y01) is an origin coordinate when there is no distortion in the imaging signal I0.
  • (xc1, yc1) is the optical axis center coordinates at the reference temperature T0 in the imaging signal I1 (x, y).
  • ( ⁇ ddx / 2, ⁇ ddy / 2) is the amount of movement of the optical axis center due to temperature rise
  • kd2 and kd4 are distortion coefficients.
  • the temperature compensation calculation unit 141 converts the conversion tables tx2 (x, y) and ty2 (x, y) for the second imaging signal I2 (x, y) into equations (17), (18), and (19). Create using.
  • (x02, y02) is the origin coordinates when there is no distortion in the imaging signal I0.
  • (xc2, yc2) is the optical axis center coordinates at the reference temperature T0 in the imaging signal I2 (x, y).
  • (+ ddx / 2, -ddy / 2) is the amount of movement of the optical axis center due to temperature rise
  • kd2 and kd4 are distortion coefficients.
  • the temperature compensation calculation unit 141 converts the conversion tables tx3 (x, y) and ty3 (x, y) for the third imaging signal I3 (x, y) into equations (20), (21), and (22). Create using.
  • (x03, y03) is an origin coordinate when there is no distortion in the image signal I0.
  • (xc3, yc3) is the optical axis center coordinate at the reference temperature T0 in the imaging signal I3 (x, y).
  • ( ⁇ ddx / 2, + ddy / 2) is the amount of movement of the optical axis center due to temperature rise
  • kd2 and kd4 are distortion coefficients.
  • the temperature compensation calculation unit 141 converts the conversion tables tx4 (x, y) and ty4 (x, y) for the fourth imaging signal I4 (x, y) into equations (23), (24), and (25).
  • (x04, y04) is the origin coordinates when there is no distortion in the image signal I0.
  • (xc4, yc4) is the optical axis center coordinate at the reference temperature T0 in the imaging signal I4 (x, y) I4 (x, y).
  • (+ ddx / 2, + ddy / 2) is the amount of movement of the optical axis center due to temperature rise
  • kd2 and kd4 are distortion coefficients.
  • the distance calculation unit 142 captures the imaging signal I0 and the coordinate conversion tables tx1 (x, y), ty1 (x, y), tx2 (x, y), ty2 (x, y), tx3 (x, y ), Ty3 (x, y), tx4 (x, y), and ty4 (x, y) are used to generate the distance data DIS and the first imaging signal I1 (step S1200). Details of this processing will be described later with reference to FIG.
  • the temperature estimation unit 143 estimates the estimated temperature Te using the imaging signal I0 (step S1300). Details of this processing will be described later with reference to FIG.
  • the temperature sensor signal reliability calculation unit 144 calculates the temperature sensor signal reliability Tsr so that the reliability of the sensor temperature signal Ts decreases as the difference between the sensor temperature signal Ts and the estimated temperature Te increases (Ste S1400). Specifically, the temperature sensor signal reliability calculation unit 144 calculates the temperature sensor signal reliability Tsr using Expression (34).
  • Te0 and Ts0 are offset values. Further, since the temperature sensor signal reliability Tsr is defined as in the equation (34), the temperature sensor signal reliability Tsr indicates that the smaller the value, the higher the reliability, and the higher the value, the lower the reliability. Indicates.
  • the notification unit 145 sets the value of the notification data DDE to 1 when the temperature sensor signal reliability Tsr is greater than or equal to the set value Tsr0, and sets the value of the notification data DDE when the temperature sensor signal reliability Tsr is less than the set value Tsr0. Is set to 0.
  • the notification data DDE is generated using Expression (35) (step S1500). That is, when the notification data DDE is 1, it indicates that the reliability of the temperature sensor signal Ts is low. On the other hand, when the notification data DDE is 0, it indicates that the temperature sensor signal Ts has high reliability.
  • the input / output unit 135 outputs image data, distance data, reliability data, notification data, and the like to the outside of the imaging apparatus 101 (step S1910).
  • the image data is the imaging signal I0 or the first imaging signal I1.
  • the distance data is distance data DIS calculated by the distance calculation unit 142.
  • the reliability data is the temperature sensor signal reliability Tsr calculated by the temperature sensor signal reliability calculation unit 144.
  • the notification data is notification data DDE generated by the notification unit 145.
  • the system control unit 131 determines whether or not to end the process (step S1920). For example, the system control unit 131 communicates with a host CPU (not shown) via the input / output unit 135 and requests an instruction as to whether or not to end the operation. Then, when an end command is received from the host CPU, the system control unit 131 determines to end the process.
  • a host CPU not shown
  • the system control unit 131 determines to end the process.
  • Step S1920 when it is determined that the processing is not ended (N in Step S1920), the system control unit 131 repeats the processing from Step S1020 again. On the other hand, when it is determined that the process is to be ended (Y in step S1920), the system control unit 131 ends the process.
  • step S1200 shown in FIG. 15 will be described with reference to FIG.
  • FIG. 17 is a flowchart showing the operation of the distance calculation unit 142 included in the imaging apparatus 101 according to Embodiment 2 of the present invention.
  • the distance calculation unit 142 cuts out the image of the subject image formed by each lens unit from the imaging signal I0 (step S1220). In this image cutout process, a distortion correction process is also performed at the same time. That is, the distance calculation unit 142 includes the first imaging signal I1 (x, y) corresponding to the first lens unit 112a, the second imaging signal I2 (x, y) corresponding to the second lens unit 112b, and the third lens unit. A third imaging signal I3 (x, y) corresponding to 112c and a fourth imaging signal II4 (x, y) corresponding to the fourth lens unit 112d are created.
  • the distance calculation unit 142 calculates the first from the imaging signal I0 (x, y) based on the coordinate conversion tables tx1 (x, y) and ty1 (x, y) as shown in Expression (36).
  • An imaging signal I1 (x, y) is created. That is, the imaging signal I0 at the coordinate (tx1 (x, y), ty1 (x, y)) is set as the first imaging signal I1 (x, y).
  • the coordinates (tx1 (x, y), ty1 (x, y)) need not be integers. In that case, if the integer part of the coordinate conversion table tx1 (x, y) is tx1i (x, y) and the decimal part is tx1f (x, y), four pixels are used as shown in Expression (37). First imaging signal I1 (x, y) is created.
  • the distance calculation unit 142 obtains the second imaging signal from the imaging signal I0 (x, y) based on the coordinate conversion tables tx2 (x, y) and ty2 (x, y) as shown in Expression (38). I2 (x, y) is created.
  • the distance calculation unit 142 calculates the third value from the imaging signal I0 (x, y) based on the coordinate conversion tables tx3 (x, y) and ty3 (x, y) as in Expression (39). An imaging signal I3 (x, y) is created.
  • the distance calculation unit 142 performs the fourth calculation from the imaging signal I0 (x, y) based on the coordinate conversion tables tx4 (x, y) and ty4 (x, y) as in Expression (40).
  • An imaging signal I4 (x, y) is created.
  • the first image signal I1 (x, y) is obtained by moving the image signal I0 from the origin (x01, y01) to the x-axis direction. This is an image of a region cut out by H1 pixels and V1 pixels in the y-axis direction.
  • the second image signal I2 (x, y) is an image of an area obtained by cutting the image signal I0 from the origin (x02, y02) by H1 pixels in the x-axis direction and V1 pixels in the y-axis direction.
  • the third imaging signal I3 (x, y) is an image of an area obtained by cutting out the imaging signal I0 from the origin (x03, y03) by H1 pixels in the x-axis direction and V1 pixels in the y-axis direction.
  • the fourth imaging signal I4 (x, y) is an image of an area obtained by cutting out the imaging signal I0 from the origin (x04, y04) by H1 pixels in the x-axis direction and V1 pixels in the y-axis direction.
  • FIG. 18 is a diagram for explaining block division in the imaging apparatus 101 according to Embodiment 2 of the present invention.
  • the first imaging signal I1 is divided into rectangular blocks having HB pixels in the x-axis direction and VB pixels in the y-axis direction, and Nh blocks in the x-axis direction and Nv blocks in the y-axis direction. Have.
  • the distance calculation unit 142 selects a block (step S1240).
  • the distance calculation unit 142 selects a block indicated by (0, 0).
  • the distance calculation unit 142 selects blocks shifted in order to the right.
  • the distance calculation unit 142 selects the rightmost block (blocks indicated by (Nh-1, 0), (Nh-1, 1),...) Shown in FIG.
  • the distance calculation unit 142 selects the leftmost block (the block indicated by (0, 1), (0, 2),%) In the next lower row.
  • the distance calculation unit 142 is represented by (i% Nh, int (i / Nh)) at the i-th.
  • i% Nh is a remainder when i is divided by Nh
  • int (i / Nh) is an integer part of a quotient when i is divided by Nh.
  • the block selected in this way is referred to as a selected block B (ih, iv).
  • the distance calculation unit 142 calculates a parallax (step S1250).
  • the distance calculation unit 142 calculates the parallax and the parallax reliability between the first imaging signal I1 and the second imaging signal I2. First, the distance calculation unit 142 calculates a parallax evaluation value R12 (kx) between the first imaging signal I1 and the second imaging signal I2.
  • FIG. 19 is a diagram for explaining the calculation area of the parallax evaluation value in the parallax calculation when the first imaging signal and the second imaging signal are used in the imaging apparatus 101 according to Embodiment 2 of the present invention.
  • an area indicated by I1 indicates an area selected by the selection block B (ih, iv) of the first imaging signal I1.
  • An area indicated by I2 is the second imaging signal I2 in an area shifted by kx in the x-axis direction from the coordinates of the selected block.
  • This parallax evaluation value R12 (kx) correlates how much the first imaging signal I1 of the selected block B (ih, iv) and the second imaging signal I2 in a region shifted by kx from the selected block in the x-axis direction. Indicates whether there is The smaller the parallax evaluation value R12 (kx), the greater the correlation (similarly).
  • FIG. 20 is a diagram for explaining the relationship between the shift amount and the parallax evaluation value in the parallax calculation when the first imaging signal I1 and the second imaging signal I2 of the imaging apparatus 101 according to Embodiment 2 of the present invention are used. is there.
  • the distance calculation unit 142 uses the parallax ⁇ as shown in Expression (42) to use the parallax value ⁇ 12 (ih) between the first imaging signal I1 and the second imaging signal I2 in the selected block B (ih, iv). , Iv) is calculated. Then, the distance calculation unit 142 uses the parallax evaluation value R12 ( ⁇ ) as shown in Expression (43), and parallax between the first imaging signal I1 and the second imaging signal I2 in the selected block B (ih, iv). A reliability C12 (ih, iv) is calculated.
  • the distance calculation unit 142 similarly calculates the parallax and the parallax reliability between the first imaging signal I1 and the third imaging signal I3.
  • the shifting direction is the y-axis direction, and the shifting amount is ky.
  • the distance calculation unit 142 calculates a parallax evaluation value R13 (ky) between the first imaging signal I1 and the third imaging signal I3 in the selected block B (ih, iv) as in Expression (44). That is, the distance calculation unit 142 calculates the parallax evaluation value R13 (ky) using the first imaging signal I1 as a reference.
  • the distance calculation unit 142 uses the shift amount that gives the minimum value, that is, the parallax ⁇ , as in Expression (45), the first imaging signal I1 and the third imaging signal I3 in the selected block B (ih, iv). And a parallax value ⁇ 13 (ih, iv) is calculated. Further, the distance calculation unit 142 uses the parallax evaluation value R13 ( ⁇ ) as shown in Expression (46) to trust the first imaging signal I1 and the third imaging signal I3 in the selected block B (ih, iv). The degree C13 (ih, iv) is calculated.
  • the distance calculation unit 142 similarly calculates the parallax and the parallax reliability between the first imaging signal I1 and the fourth imaging signal I4.
  • the shifting direction is an oblique direction (the direction connecting the optical axis of the first lens unit 112a and the optical axis of the fourth lens unit 112d), and the shifting amount is kx in the x-axis direction and kx * Dy / Dx in the y-axis direction.
  • the distance calculation unit 142 calculates a parallax evaluation value R14 (kx) between the first imaging signal I1 and the fourth imaging signal I4 in the selected block B (ih, iv) as in Expression (47). That is, the distance calculation unit 142 calculates the parallax evaluation value R14 (kx) using the first imaging signal I1 as a reference.
  • the distance calculation unit 142 uses the shift amount that gives the minimum value, that is, the parallax ⁇ , and the first imaging signal I1 and the fourth imaging signal I4 in the selection block B (ih, iv) as shown in Expression (48). And a parallax value ⁇ 14 (ih, iv) with respect to. Further, the distance calculation unit 142 uses the parallax evaluation value R14 ( ⁇ ) as shown in the equation (49) to trust the first imaging signal I1 and the fourth imaging signal I4 in the selected block B (ih, iv). The degree C14 (ih, iv) is calculated.
  • the imaging signal I4 is calculated from surrounding pixels using linear interpolation or the like.
  • Dx and Dy are the distance in the x-axis direction and the distance in the y-axis direction between the first lens portion 112a and the fourth lens portion 112d.
  • the distance calculation unit 142 compares the above three parallax reliability, and sets the parallax value having the highest reliability as the parallax value in this block. That is, the distance calculation unit 142 compares the three parallax reliability levels C12 (ih, iv), C13 (ih, iv), and C14 (ih, iv) as in Expression (50), and C12 (ih, iv) When iv) is the smallest, ⁇ 12 (ih, iv) is set as the parallax value ⁇ (ih, iv) in block B (ih, iv), and when C13 (ih, iv) is the smallest, ⁇ 13 (ih, iv) is changed to block B.
  • the disparity value ⁇ (ih, iv) at (ih, iv) is set, and when C14 (ih, iv) is the smallest, ⁇ 14 (ih, iv) is changed to the disparity value ⁇ (ih, iv) at block B (ih, iv). To do.
  • the distance calculation unit 142 calculates a distance from the parallax (step S1260).
  • equation (10) is solved for distance A, it is expressed as equation (11). Therefore, the distance DIS (x, y) of the region included in block B (ih, iv) is expressed by equation (51). Indicated.
  • f is the focal length of the four lens portions 112a, 112b, 112c, and 112d
  • p is the interval between the light receiving elements of the image sensor 122.
  • the unit of the parallax value ⁇ is a pixel. Therefore, in the formula (51), the interval p of the light receiving elements is multiplied so that the parallax value ⁇ is the same unit system as the focal length f and the like.
  • the distance calculation unit 142 determines whether or not to end the distance calculation (step S1270).
  • the distance calculation unit 142 determines whether or not to end the distance calculation (step S1270).
  • the step of FIG. The process of S1300 is executed.
  • it is not determined to end the distance calculation when all the blocks are not selected, that is, when the selected block is not B (Nh ⁇ 1, Nv ⁇ 1)) (N in step S1270) (N in step S1270) (N in step S1270), from step S1240 again. Execute the process.
  • step S1300 shown in FIG. 15 will be described with reference to FIG.
  • FIG. 21 is a flowchart showing the temperature estimation operation of the imaging apparatus 101 according to the second embodiment of the present invention.
  • the temperature estimation unit 143 cuts out the horizontal center image signal from the image signal I0 (step S1320).
  • FIG. 22 is a diagram for explaining a position and a dark part where an imaging signal corresponding to a light shielding wall is cut out among imaging signals of the imaging apparatus 101 according to Embodiment 2 of the present invention.
  • the temperature estimation unit 143 cuts out the horizontal center image signal I5x and the vertical center image signal I5y so as to surround the dark portions 113qx and 113qy corresponding to the light shielding wall 113. Specifically, the temperature estimator 143 captures an imaging signal of a region cut out from the origin (0, V0 / 2 ⁇ W5 / 2) by H0 pixels in the x-axis direction and W5 pixels in the y-axis direction. The imaging signal is I5x.
  • the temperature estimation unit 143 cuts out the vertical center image signal from the image signal I0 (step S1330). Specifically, as shown in FIG. 22, the temperature estimation unit 143 is an area extracted from the origin (H0 / 2 ⁇ W5 / 2, 0) by W5 pixels in the x-axis direction and V0 pixels in the y-axis direction. The imaging signal is assumed to be the vertical center imaging signal I5y.
  • the temperature estimation unit 143 detects the length Qx of the dark part 113qx in the horizontal direction from the cut out horizontal center image signal I5x (step S1340). Specifically, the temperature estimation unit 143 binarizes the horizontal center image signal I5x, and detects the length from the left end to the right end of the black portion using the binarized image signal.
  • the temperature estimation unit 143 detects the length Qy of the dark portion 113qy in the vertical direction from the extracted vertical center image signal I5y (step S1350). Specifically, the temperature estimation unit 143 binarizes the vertical center imaging signal I5y, and detects the length from the upper end to the lower end of the black portion using the binarized imaging signal.
  • the temperature estimation unit 143 calculates the estimated temperature Te (step S1360). Specifically, the temperature estimation unit 143 substitutes the length Qx of the dark portion 113qx in the horizontal direction and the length Qy of the dark portion 113qy in the vertical direction detected in Steps S1340 and S1350 into Expression (9). The estimated temperature Te is calculated.
  • the reference temperature T0, the thermal expansion coefficient kq of the light shielding wall 113, the length Qx0 of the dark portion 113qx in the horizontal direction at the reference temperature T0, and the length Qy0 of the dark portion 113qy in the vertical direction at the reference temperature T0 are stored in the storage unit 146. The value is used.
  • the imaging apparatus 101 uses the estimated temperature estimated by the temperature estimation unit 143 based on the length of the image of the light shielding wall 113, and the reliability of the temperature obtained from the temperature sensor 124. Therefore, it is possible to obtain the temperature sensor signal reliability obtained by quantifying the characteristics. That is, the notification unit 145 notifies the user that the reliability is low based on the obtained temperature sensor signal reliability, so that the user can avoid using the imaging device in a state where a malfunction or the like has occurred. It becomes possible.
  • the user can cause deterioration of the temperature sensor 124, failure of the temperature sensor 124, disconnection of the wiring between the temperature sensor 124 and the SLSI 123, disconnection of the temperature sensor signal line inside the SLSI 123, ADC of the temperature sensor signal input unit 134.
  • Drop of bit due to failure of component decrease of reference voltage to ADC of temperature sensor signal input unit 134 due to increase of load due to failure of other components, mixing of noise in wiring from temperature sensor 124 to SLSI 123, temperature sensor inside SLSI 123 It is possible to avoid using the imaging apparatus in a state where noise is mixed in the signal line.
  • the imaging apparatus of the present embodiment it is possible to improve the reliability of the imaging apparatus.
  • the imaging apparatus As described above, in an imaging apparatus that needs to improve reliability by adding a new temperature sensor, it is possible to improve reliability without adding a new temperature sensor. . In addition, since the imaging apparatus according to the present embodiment does not require a new temperature sensor, it is possible to reduce manufacturing costs and downsize the imaging apparatus.
  • the imaging apparatus 101 can calculate the distance to the subject by performing temperature compensation using the temperature of the temperature sensor 124 whose reliability has been evaluated. That is, it is possible to provide highly reliable distance information without adding a new temperature sensor. Further, a sensor is used by using a temperature sensor signal Ts that may cause an error due to a change in the reference voltage, and an estimated temperature Te that is obtained from the length of a dark part that is not affected even if the reference voltage changes and the image density changes. In order to create the temperature signal reliability Tsr, according to the imaging apparatus of the present embodiment, it is possible to provide an imaging apparatus that is more resistant to external noise, that is, robust.
  • the temperature compensation calculation unit 141 performs the temperature compensation by calculating the coordinate conversion tables tx1, ty1, tx2, ty2, tx3, ty3, tx4, and ty4. May be performed. For example, the temperature compensation calculation unit 141 subtracts the change in the interval between the optical axes of the lens units of the lens array 112 from the parallax calculated by the distance calculation unit 142, as shown in Expression (52), thereby compensating for the temperature. May be performed.
  • the temperature compensation calculation unit 141 may perform temperature compensation by correcting the distance DIS (x, y) calculated by the distance calculation unit 142 as shown in Expression (53).
  • the temperature sensor signal reliability calculation unit 144 calculates the temperature sensor signal reliability Tsr based on the difference between the two temperatures (the sensor temperature signal Ts and the estimated temperature Te). You may calculate based on ratio of two temperature. That is, it is only necessary to calculate the temperature sensor signal reliability Tsr so that the reliability of the temperature sensor signal Ts becomes lower as the degree of coincidence between the two temperatures is lower.
  • the notification unit 145 outputs the notification data DDE when the temperature sensor signal reliability is within a predetermined value range including 1. 0.
  • the notification unit 145 sets the notification data DDE to 1.
  • Embodiment 3 The imaging system according to Embodiment 3 of the present invention uses the imaging apparatus 101 according to Embodiment 2.
  • FIG. 23 is a block diagram showing a configuration of the imaging system 202 according to Embodiment 3 of the present invention.
  • the imaging system 202 includes the imaging apparatus 101 according to the second embodiment, a system control unit 203, a warning notification unit 204, an image recognition unit 205, a storage unit 206, and a communication unit 207.
  • the system control unit 203 includes a CPU and the like, and controls each function of the imaging system 202.
  • the imaging device 101 is the imaging device according to the second embodiment, and is controlled by the system control unit 203. In addition, the imaging device 101 outputs image data (for example, the first imaging signal I1), distance data DIS, and temperature sensor signal reliability Tsr.
  • image data for example, the first imaging signal I1
  • distance data DIS distance data
  • Tsr temperature sensor signal reliability
  • the warning notification unit 204 includes a red LED, a drive circuit, and the like.
  • the system control unit 203 turns off the LED of the warning notification unit 204.
  • the system control unit 203 turns on the LED of the warning notification unit 204 To do.
  • the user can know the reliability of the temperature sensor signal of the imaging apparatus 101.
  • the user can take measures such as discontinuation of use and notification to the manufacturing company, so that damage due to a malfunction of the imaging system 202 can be suppressed.
  • the image recognition unit 205 includes a CPU.
  • the system control unit 203 instructs the image recognition unit 205 to perform an image recognition method based on the temperature sensor signal reliability Tsr.
  • the image recognition unit 205 uses the image data I1 and the distance DIS. Perform image recognition.
  • the image recognition unit 205 does not use the distance data DIS. Image recognition using only the image data I1 is performed.
  • the image recognition unit 205 performs image recognition without using the distance DIS, for example. It can be avoided.
  • the storage unit 206 includes a nonvolatile memory such as a flash ROM.
  • a nonvolatile memory such as a flash ROM.
  • the time series information of the written temperature sensor signal reliability Tsr can be checked, so that it is possible to appropriately determine the replacement timing of the temperature sensor.
  • the communication unit 207 includes a wireless communication device and an antenna.
  • the system control unit 203 determines that the reliability is low based on the temperature sensor signal reliability Tsr (for example, when the temperature sensor signal reliability Tsr is equal to or higher than the set value Tsr0)
  • the system control unit 203 transmits the temperature sensor signal via the communication unit 207. Inform the management company of the malfunction, for example.
  • the management company can detect a malfunction of the temperature sensor, dispatch management personnel, report to the user, arrange parts, and the like. Therefore, it is possible to solve the problem of the imaging system 202 at an early stage.
  • the imaging system 202 According to the imaging system 202 according to Embodiment 3 of the present invention, it is possible to change the processing method such as image processing based on the temperature sensor signal reliability obtained from the imaging device 101. That is, the imaging system 202 can avoid the influence due to the malfunction of the temperature sensor.
  • the imaging device improves the accuracy of detecting the length of the image of the light shielding wall by changing the shapes of the light shielding wall and the lens barrel of the imaging device according to the above embodiment.
  • FIG. 24 is a perspective view of a lens barrel 111 according to a modification of the present invention.
  • 25A and 25B are perspective views of a light shielding wall 113 according to a modification of the present invention.
  • FIGS. 26A and 26B are diagrams for explaining an image of the light shielding wall 113 according to the modification of the present invention.
  • the lens barrel 111 has four groove portions 111m to which the light shielding wall 113 can be fitted.
  • the light shielding wall 113 is fixed by inserting the light shielding wall 113 shown in FIGS. 25A and 25B into the groove 111m.
  • FIG. 25A shows an example of the light shielding wall 113 according to the modification. As shown in FIG. 25A, the light shielding wall 113 has a protrusion 113t at the lower portion.
  • the light shielding wall 113 according to this modification has the protrusions 113t on both sides of the plate surface, the light shielding wall 113 having the protrusions 113t only on one side may be used.
  • FIG. 26A shows an image of the light shielding wall 113 shown in FIG. 25A.
  • the temperature estimation unit estimates the temperature using the image lengths Qx and Qy between the protrusions 113t of the light shielding wall 113.
  • the oblique end of the image becomes unnecessary due to distortion correction. That is, a part of the image of the protrusion is present in the four imaging signals (first imaging signal 122a, second imaging signal 122b, third imaging signal 122c, and fourth imaging signal 122d). The unnecessary part of is used.
  • the light shielding wall 113 may have a shape as shown in FIG. 25B.
  • FIG. 25B shows an example of the light shielding wall 113 according to the modification.
  • the light shielding wall 113 has a first plate portion 113a in the upper portion and a second plate portion 113b in the lower portion.
  • the 1st board part 113a and the 2nd board part 113b are shape
  • FIG. 26B shows an image of the light shielding wall 113 shown in FIG. 25B.
  • the temperature estimation unit estimates the temperature using the image lengths Qx and Qy of the second plate portion 113b of the light shielding wall 113.
  • the light shielding wall 113 can be stably held by fixing the light shielding wall 113 using the groove 111m of the lens barrel 111. Further, if the light shielding wall 113 and the lens barrel 111 are made of the same material, the deformation due to temperature change is the same. That is, it is possible to accurately estimate the temperature rather than bonding to the lens array.
  • the light shielding wall 113 has the protruding portion 113t or the second plate portion 113a, it becomes easy to detect the length of the dark portion, and the detection accuracy of the length of the dark portion can be improved. That is, the accuracy of temperature estimation is improved.
  • the present invention is not limited to the above-mentioned embodiment and modification.
  • various modifications conceived by those skilled in the art are applied to the above-described embodiments and modifications, and forms constructed by combining components in different embodiments and modifications are also included in the present invention. It is included in the range.
  • the lens array 112 has four lens parts (a first lens part 112a, a second lens part 112b, a third lens part 112c, and a fourth lens part 112d).
  • the number of lens portions is not limited to four. A specific example in the case where the number of lens units is changed will be described below with reference to the drawings.
  • 27A and 27B are plan views of the lens of the imaging device according to the present invention.
  • 28A and 28B are perspective views of the light shielding wall of the imaging apparatus according to the present invention.
  • 29A and 29B are diagrams showing imaging signals of the light shielding walls according to the present invention.
  • the lens array included in the imaging apparatus may have two lens portions.
  • the light shielding wall is formed of a single plate in order to prevent interference between the light emitted from the two lens portions.
  • the image of the light shielding wall shown in FIG. 28A is a dark portion in FIG. 29A.
  • the temperature estimation unit detects the length Qy of the dark part corresponding to the light shielding wall from the vertical center imaging signal I5y.
  • a temperature estimation part calculates estimated temperature Te from detected length Qy using Formula (54).
  • the lens array included in the imaging apparatus may have nine lens portions.
  • the light shielding wall is configured by combining a plate with a well shape in order to prevent interference of light emitted from the nine lens portions.
  • the image of the light shielding wall shown in FIG. 28B is a dark part in FIG. 29B.
  • the imaging signals of the part surrounding the image of the light shielding wall are the first horizontal central imaging signal I5x1, the second horizontal central imaging signal I5x2, the first vertical central imaging signal I5y1, and the second vertical central imaging signal.
  • the temperature estimation unit detects the lengths Qx1, Qx2, Qy1, and Qy2 of the dark portions corresponding to the respective light shielding walls from the four central imaging signals.
  • a temperature estimation part calculates estimated temperature Te from detected length Qx1, Qx2, Qy1, and Qy2 using Formula (55).
  • Qx10 is the length of the dark part of the first horizontal center image signal I5x1 at the reference temperature T0.
  • Qx20 is the length of the dark part of the second horizontal center image signal I5x2 at the reference temperature T0.
  • Qy10 is the length of the dark portion of the first vertical center image signal I5y1 at the reference temperature T0.
  • Qy20 is the length of the dark part of the second vertical center image signal I5y2 at the reference temperature T0.
  • the imaging apparatus is an imaging apparatus capable of measuring temperature, for example, as a mobile phone having a camera function, a digital still camera, an in-vehicle camera, a monitoring camera, a three-dimensional measuring instrument, a stereoscopic image input camera, etc. Can be used.
  • the imaging system according to the present invention is used as an imaging system capable of measuring a distance to a subject, for example, a mobile phone, a digital still camera, an automobile, a monitoring system, a three-dimensional measuring instrument, a stereoscopic image input system, and the like. Can do.
  • SYMBOLS 100,101 Image pick-up device 110 Lens module part 111 Lens barrel 112 Lens array 113 Light-shielding wall 120 Circuit part 121 Substrate 122 Imaging element 123 SLSI 124 Temperature Sensor 125 Gold Wire 131 System Control Unit 132 Image Sensor Driving Unit 133 Imaging Signal Input Unit 134 Temperature Sensor Signal Input Unit 135 Input / Output Unit 141 Temperature Compensation Calculation Unit 142 Distance Calculation Unit 143 Temperature Estimation Unit 144 Temperature Sensor Signal Reliability Calculation Unit 145 Notification unit 146, 206 Storage unit 202 Imaging system 203 System control unit 204 Warning notification unit 205 Image recognition unit 207 Communication unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

 温度の測定を要する撮像装置において、温度センサの実装数を削減する。  複数のレンズを有するレンズアレイ(112)と、レンズアレイ(112)から所定の距離離れて設置され、複数のレンズのそれぞれに対応する撮像領域を有する撮像素子(122)と、各レンズを通過した光が、当該レンズに対応する撮像領域と異なる撮像領域に到達しないように、レンズアレイと撮像素子との間の空間を区画する遮光壁(113)と、撮像素子が出力する電気信号をデジタル値に変換した撮像信号を生成する撮像信号入力部(133)と、撮像信号から、撮像素子の撮像面に射影された遮光壁の像の長さを特定し、特定された遮光壁の像の長さを用いて、温度を推定する温度推定部(143)とを備えることを特徴とする。

Description

撮像装置、撮像システムおよび撮像方法
 本発明は、小型かつ高精度な撮像装置に関し、特に複数のレンズを備えた撮像装置に関する。
 従来の撮像装置として、複数のレンズが一体に形成されたレンズアレイを備えた撮像装置がある(例えば、特許文献1参照)。以下、特許文献1の撮像装置について、図30および図31を用いて説明する。
 図30は、特許文献1の撮像装置901の分解斜視図である。図31は、特許文献1の撮像装置901の撮像ブロックを説明する図である。
 図30および図31に示すように、撮像装置901は、絞り部材902、光学ブロックアレイ903、遮光ブロック904、光学フィルタ906、撮像ユニット907、駆動回路908、視差算出回路909、および半導体基板910を備える。
 絞り部材902は、光学ブロックアレイ903に入射する光の量を調整する部材であり、複数の開口部902a、902b、902c、および902dを有する。
 光学ブロックアレイ903は、いわゆるレンズアレイであり、光軸が互いに略平行である複数の光学ブロック903a、903b、903c、および903dが一体に形成された部材である。各光学ブロック903a、903b、903c、および903dは、絞り部材902が有する各開口部902a、902b、902c、および902dに対応して配置される。
 遮光ブロック904は、絞り部材902が有する各開口部から入射した光が、対応する撮像ブロック以外の撮像ブロックに到達することを防止する部材である。
 光学フィルタ906は、光学ローパスフィルタ、赤外線カットフィルタなどで構成される部材である。
 撮像ユニット907は、CCDセンサ、CMOSセンサなどの固体撮像素子からなり、光学ブロックアレイ903が有する複数の光学ブロック903a、903b、903c、および903dのそれぞれに対応する撮像ブロック907a、907b、907c、および907dを有する。
 駆動回路908は、半導体基板910上に設置され、撮像ユニット907を駆動する回路である。
 視差算出回路909は、各撮像ブロックに結像した像の視差を算出するための回路である。
 半導体基板910は、撮像ユニット907、駆動回路908、視差算出回路909などが設置される基板である。
 絞り部材902の開口部902a、902b、902c、および902dを通過した光は、それぞれ光学ブロック903a、903b、903c、および903dによる屈折作用を受けた後、遮光ブロック904内および光学フィルタ906を通過し、撮像ブロック907a、907b、907c、および907dに結像する。
 そして、各撮像ブロックから得られる画像間の視差を算出することにより、撮像装置901から被写体までの距離が算出される。例えば、視差算出回路909が、ブロックマッチング演算により、撮像ブロック907aから得られる画像と、撮像ブロック907bから得られる画像とのブロック間の類似度を算出する。そして、視差算出回路909は、算出された類似度に基づいて、視差dを求める。そして、視差算出回路909は、式(1)を用いて、視差dから距離Lを算出する。
Figure JPOXMLDOC01-appb-M000001
 ここで、fは光学ブロック903aおよび903bの焦点距離である。また、Bは、光学ブロック903aの光軸と、光学ブロック903bの光軸との間隔である。また、pは、光学ブロック903aと光学ブロック903bとの光軸を結ぶ方向における撮像ユニット907の画素間隔である。
 このように、光学ブロックアレイ903を備えた撮像装置901は、被写体までの距離を算出することができる。しかしながら、光学ブロックアレイ903は、温度の変化に伴って、形が変化する。つまり、温度が変化した場合、光軸間の間隔が変化するため、式(1)により算出された距離の誤差が大きくなるという問題がある。
 そこで、従来、温度を検知する温度センサを撮像装置に備え、検知した温度を用いて、測距精度を向上させる方法が提案されている(例えば、特許文献2参照)。以下、図30および図31に示した撮像装置901が温度センサを備えているとした場合に、測距精度を向上させる方法について説明する。
 撮像装置901が備える温度センサが検知した温度を検知温度Tとすると、式(2)を用いて、光軸間の距離の変化量zが算出される。
Figure JPOXMLDOC01-appb-M000002
 ここで、aLは光学ブロックアレイの熱線膨張率であり、aSは撮像ユニットの熱線膨張率である。また、T0は基準温度であり、Bは、基準温度T0における光学ブロック間の光軸の距離である。
 このようにして得られる光軸間の距離の変化量zを用いて、撮像装置は、各撮像ブロックにより得られる画像を補正する。
 具体的には、式(3)のように、撮像ブロック907aにより得られる画像I1を基準とした場合、撮像装置は、撮像ブロック907b、907cおよび907dにより得られる画像I2、I3およびI4を、式(4)、式(5)および式(6)を用いて補正する。
 なお、光学ブロック903aと光学ブロック903bとの光軸、および、光学ブロック903cと光学ブロック903dとの光軸は、互いにx軸方向に距離B離れて配置されている。また、光学ブロック903aと光学ブロック903cとの光軸、および、光学ブロック903bと光学ブロック903dとの光軸は、互いにy軸方向に距離B離れて配置されている。
Figure JPOXMLDOC01-appb-M000003
 ここで、pは、撮像ユニット907のx軸方向およびy軸方向における画素間隔である。また、I1(x,y)、I2(x,y)、I3(x,y)、およびI4(x,y)は、座標(x,y)における、補正前および補正後の画像の輝度を示す。
 温度変化により、光学ブロック903bは、光学ブロック903aに対して、x軸方向にz/p画素だけ移動する。したがって、撮像装置は、式(4)のように、I2(x,y)を、x軸方向にz/pだけ移動するように補正する。
 また、温度変化により、光学ブロック903cは、光学ブロック903aに対して、y軸方向にz/p画素だけ移動する。したがって、撮像装置は、式(5)のように、I3(x,y)を、y軸方向にz/pだけ移動するように補正する。
 また、温度変化により、光学ブロック903dは、光学ブロック903aに対して、x軸方向にz/p画素、y軸方向にz/p画素だけ移動する。したがって、撮像装置は、式(6)のように、I4(x,y)を、x軸方向にz/p画素、y軸方向にz/p画素だけ移動するように補正する。
 このように補正された画像を用いて、被写体までの距離を算出することにより、撮像装置の測距精度を向上させることができる。
特開2003-143459号公報 特開2002-204462号公報
 しかしながら、上記従来の撮像装置では、レンズアレイおよび撮像素子の温度を得るために、温度センサを設置する必要がある。また、レンズアレイおよび撮像素子の温度の検知に関して、信頼性を向上させるためには、温度センサを複数設置する必要がある。そのため、温度センサの実装に伴って、撮像装置の部品点数が増大するとともに、製造コストも増大するという問題がある。
 そこで、本発明は、温度の測定を要する撮像装置において、温度センサの実装数を削減することを目的とする。
 上記目的を達成するために、本発明に係る撮像装置は、被写体を撮像する撮像装置であって、複数のレンズを有するレンズアレイと、前記レンズアレイから所定の距離離れて設置され、前記複数のレンズのそれぞれに対応する撮像領域を有する撮像素子と、前記各レンズを通過した光が、当該レンズに対応する撮像領域と異なる撮像領域に到達しないように、前記レンズアレイと前記撮像素子との間の空間を区画する遮光壁と、前記撮像素子が出力する電気信号をデジタル値に変換した撮像信号を生成する撮像信号入力部と、前記撮像信号から、前記撮像素子の撮像面に射影された前記遮光壁の像の長さを特定し、特定した前記遮光壁の像の長さを用いて、第1温度を推定する温度推定部とを備えることを特徴とする。
 これにより、レンズアレイを有する撮像装置が一般的に備える遮光壁を利用して温度を推定することが可能となる。つまり、本発明に係る撮像装置は、温度を検知するための温度センサを備えることなく、温度を測定することが可能となる。
 また、前記撮像装置は、さらに、前記レンズアレイの近傍に配置され、第2温度を検知する温度センサと、前記第1温度と前記第2温度とに基づいて、前記第2温度の信頼度を算出する信頼度算出部とを備えてもよい。具体的には、前記信頼度算出部は、前記第1温度と前記第2温度との差分が大きいほど、前記第2温度の信頼性が低くなるように前記信頼度を算出してもよい。
 これにより、遮光壁を利用して推定された温度と温度センサにより検知された温度とを比較することができるので、温度センサが検知した温度の信頼性を評価することが可能となる。その結果、信頼性が低い場合に外部に報知するなどにより、撮像装置の信頼性を向上させることが可能となる。つまり、本来であれば、新たに温度センサを追加して信頼性を向上する必要がある撮像装置において、新たな温度センサを追加することなく、信頼性を向上させることが可能となる。
 また、前記撮像装置は、さらに、所定温度から前記第2温度に変化した場合の、前記複数のレンズの光軸間の距離の変化量を推定し、推定された変化量を用いて、前記撮像信号から得られる情報を補正する温度補償演算部と、前記温度補償演算部により補正された情報を用いて、前記複数の撮像領域に撮像された像の視差と前記被写体までの距離とを算出する距離演算部とを備えてもよい。
 これにより、温度センサから得られる温度の信頼性を確認したうえで、距離を算出することが可能となる。つまり、信頼性の高い測距装置を提供することが可能となる。
 また、前記撮像装置は、さらに、前記信頼度算出部により算出された前記信頼度が所定値を超えることにより、前記第2温度の信頼性が低いと判断された場合に、外部へ報知するための報知データを生成する報知部を備えてもよい。
 これにより、測定された温度の信頼度が所定の値より低くなった場合に、その旨を報知することが可能となる。
 また、前記撮像装置は、さらに、前記レンズアレイと前記撮像素子との間に、前記遮光壁を取り囲むように設置される筒状の鏡筒を備え、前記鏡筒は、内壁面に少なくとも一対の溝部を有し、前記遮光壁は、側端部を前記鏡筒の溝部に嵌合して設置されるとともに、前記撮像素子の撮像面から前記レンズアレイの方向に伸びる長方形状の板状部材であり、前記板状部材の同一板面から突起した突起部を少なくとも2つ有し、前記温度推定部は、前記突起部間の像の長さを用いて、前記第1温度を推定してもよい。
 また、前記撮像装置は、さらに、前記レンズアレイと前記撮像素子との間に、前記遮光壁を取り囲むように設置される筒状の鏡筒を備え、前記鏡筒は、内壁面に少なくとも一対の溝部を有し、前記遮光壁は、前記撮像素子の撮像面から前記レンズアレイの方向に伸びる板状部材であり、側端部が前記鏡筒の溝部に嵌合される第1板部と、前記第1板部から前記撮像面側に突出する第2板部とを有し、前記温度推定部は、前記第2板部の像の長さを用いて、前記第1温度を推定してもよい。
 これらにより、遮光壁を安定して設置することが可能となるとともに、撮像面に投影された遮光壁の像の長さの算出精度を向上させることができるので、温度推定の精度を向上させることが可能となる。
 また、本発明に係る撮像システムは、前記撮像装置と、前記撮像装置が算出した被写体までの距離と信頼度とに基づいて所定の制御を行うシステム制御部とを備えることを特徴とする。
 これにより、撮像システムにおいても、本発明に係る撮像装置と同様の効果が得られる。
 また、本発明に係る撮像方法は、複数のレンズを有するレンズアレイと、前記レンズアレイから所定の距離離れて設置され、前記複数のレンズのそれぞれに対応する撮像領域を有する撮像素子と、前記各レンズを通過した光が、当該レンズに対応する撮像領域と異なる撮像領域に到達しないように、前記レンズアレイと前記撮像素子との間の空間を区画する遮光壁とを備える撮像装置で用いられる撮像方法であって、前記撮像素子が出力する電気信号をデジタル値に変換した撮像信号を生成する撮像信号入力ステップと、前記撮像信号から、前記撮像素子の撮像面に射影された前記遮光壁の像の長さを特定し、特定した前記遮光壁の像の長さを用いて、温度を推定する温度推定ステップとを含むことを特徴とする。
 これにより、撮像方法においても、本発明に係る撮像装置と同様の効果が得られる。
 なお、本発明は、このような撮像方法に含まれるステップを実行させるプログラムとして実現することもできる。そして、そのようなプログラムは、CD-ROM(Compact Disc-Read Only Memory)等の記録媒体やインターネット等の通信ネットワークを介して流通させることができる。
 本発明により、温度の測定を要する撮像装置において、温度センサの実装数を削減することが可能となる。
図1は、本発明の実施の形態1に係る撮像装置の構成を示す断面図である。 図2は、本発明の実施の形態1に係る撮像装置の鏡筒およびレンズアレイを取り外した状態における平面図である。 図3は、本発明に係る撮像装置が備えるレンズアレイの平面図である。 図4は、本発明に係る撮像装置が備える遮光壁の斜視図である。 図5は、本発明に係る撮像装置が備える撮像素子の平面図である。 図6は、本発明に係る撮像装置が備える撮像素子に投影された遮光壁の像を説明するための図である。 図7は、本発明の実施の形態1に係る撮像装置の特徴的な機能構成を示すブロック図である。 図8は、本発明の実施の形態1に係る撮像装置が実行する温度推定に関する処理の流れを示すフローチャートである。 図9は、本発明の実施の形態2に係る撮像装置の構成を示す断面図である。 図10は、本発明の実施の形態2に係る撮像装置の鏡筒およびレンズアレイを取り外した状態における平面図である。 図11は、本発明の実施の形態2に係る撮像装置が備える温度センサの回路図である。 図12は、本発明の実施の形態2に係る撮像装置の特徴的な機能構成を示すブロック図である。 図13は、本発明の実施の形態2に係る撮像装置において、無限遠にある物体像の結像位置を説明するための図である。 図14は、本発明の実施の形態2に係る撮像装置において、有限距離の位置にある物体像の結像位置を説明するための図である。 図15は、本発明の実施の形態2に係る撮像装置の動作を示すフローチャートである。 図16は、本発明の実施の形態2に係る撮像装置の撮像信号の切り出し位置を説明するための図である。 図17は、本発明の実施の形態2に係る撮像装置が備える距離演算部の動作を示すフローチャートである。 図18は、本発明の実施の形態2に係る撮像装置におけるブロック分割を説明する図である。 図19は、本発明の実施の形態2に係る視差評価値の演算領域を説明する図である。 図20は、本発明の実施の形態2に係るずらし量と視差評価値との関係を説明する図である。 図21は、本発明の実施の形態2に係る撮像装置の温度推定の動作を示すフローチャートである。 図22は、本発明の実施の形態2に係る撮像装置の撮像信号のうち遮光壁に対応した撮像信号を切り出す位置と暗部とを説明するための図である。 図23は、本発明の実施の形態3に係る撮像システムの構成を示すブロック図である。 図24は、本発明の変形例に係る鏡筒の斜視図である。 図25Aは、本発明の変形例に係る遮光壁の斜視図である。 図25Bは、本発明の変形例に係る遮光壁の斜視図である。 図26Aは、本発明の変形例に係る遮光壁の像を説明するための図である。 図26Bは、本発明の変形例に係る遮光壁の像を説明するための図である。 図27Aは、本発明に係る撮像装置のレンズの平面図である。 図27Bは、本発明に係る撮像装置のレンズの平面図である。 図28Aは、本発明に係る撮像装置の遮光壁の斜視図である。 図28Bは、本発明に係る撮像装置の遮光壁の斜視図である。 図29Aは、本発明に係る遮光壁の撮像信号を示す図である。 図29Bは、本発明に係る遮光壁の撮像信号を示す図である。 図30は、従来の撮像装置の分解斜視図である。 図31は、従来の撮像装置の撮像ブロックを説明する図である。
 以下、本発明の実施の形態に係る撮像装置について、図面を参照しながら説明する。
 (実施の形態1)
 本発明の実施の形態1に係る撮像装置は、撮像素子の撮像面に射影した遮光壁の像の温度による変化量を算出し、算出した変化量を用いて温度を推定することができる点に特徴を有する。
 以下、本発明の実施の形態1に係る撮像装置について、図面を参照しながら説明する。
 図1は、本発明の実施の形態1に係る撮像装置100の構成を示す断面図である。また、図2は、本発明の実施の形態1に係る撮像装置100の、鏡筒111およびレンズアレイ112を取り外した状態における平面図である。
 図1および図2に示すように、撮像装置100は、レンズモジュール部110および回路部120を備える。レンズモジュール部110は、鏡筒111、レンズアレイ112、および遮光壁113を有し、回路部120は、基板121、撮像素子122、システムLSI(以下、SLSIと記す)123を有する。以下、各構成部について詳細に説明する。
 鏡筒111は、樹脂により一体に成型された直方体筒状の部材であり、レンズアレイ112および撮像素子122の周縁を囲む位置に設置される。また、鏡筒111の内壁面は、光の乱反射を防止するために、つや消しされた黒色である。
 レンズアレイ112は、ガラス、透明樹脂などからなり、第1レンズ部112a、第2レンズ部112b、第3レンズ部112c、および第4レンズ部112dを有する。また、レンズアレイ112は、鏡筒111の内壁の上部に、接着剤などを用いて接合される。なお、レンズアレイ112の詳細は、図3を用いて後述する。
 遮光壁113は、レンズアレイ112が有する各レンズ部を通過した光が、当該レンズ部に対応する撮像領域と異なる撮像領域に到達しないように、レンズアレイ112と撮像素子122との間の空間を区画する部材である。なお、遮光壁113の詳細は、図4を用いて後述する。
 基板121は、撮像素子122、SLSI123などの部品を表面に固定し、その部品間を配線で接続することで電子回路を構成する樹脂製の板状部材である。基板121の上面には、鏡筒111の底面が接着剤などにより接合される。
 撮像素子122は、CCD(Charge Coupled Device)イメージセンサまたはCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの固体撮像素子であり、レンズアレイ112から所定の距離離れて配置される。また、撮像素子122は、レンズアレイ112の各レンズ部に対応する撮像領域を有する。これらの撮像領域は、対応する各レンズ部の光軸と略垂直となるように配置される。また、撮像素子122は、金線125および基板121を介して、SLSI123と電気的に接続される。なお、撮像素子122の詳細は、図5を用いて後述する。
 SLSI123は、撮像素子122を駆動し、駆動した撮像素子122から電気信号を取得する。さらに、取得した電気信号に基づいて、温度を推定する。
 図3は、本発明に係る撮像装置が備えるレンズアレイ112の平面図である。
 図3に示すように、レンズアレイ112は、碁盤目状に配列された第1レンズ部112a、第2レンズ部112b、第3レンズ部112c、および第4レンズ部112dを有する。ここで、各レンズ部の配列方向の一方をx軸、他方をy軸と設定する。
 この4つのレンズ部の光軸は、互いに略平行となるように設置されており、撮像素子122の撮像面と略垂直となるように設置されている。
 図4は、本発明に係る撮像装置の遮光壁113の斜視図である。
 図4に示すように、遮光壁113は、長方形状の2枚の樹脂板を十字状に組み合わせた形状をした部材であり、レンズアレイ112の底面に接着剤などで固着される。また、遮光壁113の壁面は、光の乱反射を防止するために、つやが消された黒色である。そして、遮光壁113は、樹脂を射出成形することにより、一体に形成される。
 また、遮光壁113は、レンズアレイ112と撮像素子122との間に、第1レンズ部112a、第2レンズ部112b、第3レンズ部112c、および第4レンズ部112dを区切るように配置され、それぞれのレンズ部からの射出光が干渉しないように遮光する。
 さらに、遮光壁113は、温度の変化に伴って、形状が変化する。一般的に、所定の温度範囲において、遮光壁の大きさは、温度に比例して大きくなる。
 なお、遮光壁113は、一体成型ではなく、長方形状の2枚の樹脂板を組合せたものでもよい。また、遮光壁113は、樹脂に限定されるわけではない。つまり、遮光壁113は、光を遮り、かつ、温度変化に伴って変形する素材であればよい。
 図5は、本発明に係る撮像装置が備える撮像素子122の平面図である。
 図5に示すように、撮像素子122は、レンズアレイ112が有する4つのレンズ部(第1レンズ部112a、第2レンズ部112b、第3レンズ部112c、および第4レンズ部112d)に対応する4つの撮像領域(第1撮像領域122a、第2撮像領域122b、第3撮像領域122c、および第4撮像領域122d)を有する。
 これらの各撮像領域には、対応する各レンズ部を通過した被写体からの光のみが結像する。つまり、各レンズ部を通過した光は、当該レンズ部に対応する撮像領域と異なる撮像領域には到達しない。すなわち、第1レンズ部112aからの射出光は、第1撮像領域122aのみに入射する。これは、第1レンズ部112aからの射出光が、第2撮像領域、第3撮像領域、および第4撮像領域に入射するのを、遮光壁113が遮るからである。
 さらに、撮像素子122は、遮光壁113の位置に対応する横中央部撮像領域122xおよび縦中央部撮像領域122yを有する。
 図6は、撮像素子122に投影された遮光壁113の像を説明するための図である。
 図6に示すように、遮光壁113は、撮像素子122の横中央部撮像領域122xおよび縦中央部撮像領域122yに、暗部113qxおよび113qyとして投影される。この暗部113qxおよび113qyの長さを、それぞれ長さQxおよびQyとする。
 図7は、本発明の実施の形態1に係る撮像装置100の特徴的な機能構成を示すブロック図である。
 図7に示すように、撮像装置100は、撮像信号入力部133、温度推定部143、記憶部146、および入出力部135を備える。
 撮像信号入力部133は、ADC(アナログ/デジタル変換器:Analog Digital Converter)などにより構成され、撮像素子122から取得した電気信号をデジタル値に変換した撮像信号を生成する。
 温度推定部143は、撮像信号入力部133が生成した撮像信号を用いて、撮像素子122の撮像面に射影された遮光壁113の像の長さを算出することにより、遮光壁113の温度を推定する。
 記憶部146は、フラッシュメモリなどからなり、所定温度において、遮光壁113が撮像素子122の撮像面に射影されたときの像の長さと遮光壁113の熱線膨張率とを記憶している。具体的には、温度T0、並びに温度T0における遮光壁113のx軸方向の像の長さQx0およびy軸方向の像の長さQy0並びに遮光壁113の熱線膨張率kqを記憶している。
 入出力部135は、温度推定部143が推定した温度を出力する。また、入出力部135は、他の装置からの命令を入力する。
 次に、以上のように構成された撮像装置100の動作について説明する。
 図8は、本発明の実施の形態1に係る撮像装置100が実行する温度推定に関する処理の流れを示すフローチャートである。
 まず、撮像信号入力部133は、撮像素子122から取得した電気信号をデジタル値に変換した撮像信号を生成する(ステップS100)。
 次に、温度推定部143は、撮像信号入力部133が生成した撮像信号のうち、図5および図6に示した横中央部撮像領域122xに対応する横中央部撮像信号を切り出す(ステップS101)。
 次に、温度推定部143は、撮像信号入力部133が生成した撮像信号のうち、図5および図6に示した縦中央部撮像領域122yに対応する縦中央部撮像信号を切り出す(ステップS102)。
 次に、温度推定部143は、切り出された横中央部撮像信号から暗部113qxの長さ、つまり遮光壁113の像のx軸方向の長さQxを検知する(ステップS103)。具体的には、温度推定部143は、横中央部撮像信号を二値化し、二値化された撮像信号を用いて、黒部の一端と他端との座標から、長さQxを検知する。
 次に、温度推定部143は、ステップS103と同様に、縦中央部撮像信号から暗部113qyの長さ、つまり遮光壁113の像のy軸方向の長さQyを検知する(ステップS104)。
 次に、温度推定部143は、検知された長さQxおよびQyと、記憶部146に記憶された、温度T0における遮光壁113のx軸方向の像の長さQx0およびy軸方向の像の長さQy0並びに遮光壁113の熱線膨張率kqとを用いて、予め定義された関係式に従って推定温度を算出する(ステップS105)。
 具体的には、温度推定部143は、遮光壁113の温度による変化を数式化した式(7)および式(8)を用いて、温度TxおよびTyを算出する。そして、式(9)のように、温度推定部143は、温度TxおよびTyの相加平均値を推定温度Teとして算出する。
Figure JPOXMLDOC01-appb-M000004
 ここで、kqは遮光壁113の熱線膨張率であり、遮光壁113の材質により定まる値である。
 例えば、熱線膨張率kq=7e-5(/℃)、基準温度T0=20(℃)、基準温度T0における遮光壁113のx軸方向の長さQx0=10(mm)とした場合、温度T=30(℃)のとき、遮光壁113のx軸方向の長さの変化量は、Qx-Qx0=7(μm)である。ここで、撮像素子122の画素ピッチが2μmとすると、長さの変化は3.5画素に相当する。したがって、画像からの長さを求めるときの分解能が0.1画素の場合、温度推定部143は、0.29℃(=10℃/(3.5pix/0.1pix))の分解能で推定温度Teを算出できることになる。
 以上のように、本実施の形態の撮像装置は、レンズアレイを有する撮像装置が一般的に備える遮光壁の温度変化による形状の変化を利用して温度を推定することが可能となる。つまり、本発明に係る撮像装置は、温度を検知するための温度センサを備えずに、温度を推定することが可能となる。
 このようにして推定された推定温度は、複数の画像間の視差を利用して被写体までの距離を測定するときの温度補償に利用することができる。また、推定温度は、単に温度計などに表示する温度として利用することもできる。
 なお、本実施の形態において、温度推定部143は、式(9)を用いて温度を推定していたが、温度と遮光壁の像の長さとの対応関係を複数の温度に対して格納した温度推定テーブルを参照することにより、検知した遮光壁の像の長さに対応する温度を推定してもよい。その場合、記憶部146は、温度推定テーブルを記憶することとなる。
 また、本実施の形態において、温度推定部143は、式(9)とは異なる式を用いて温度を算出してもよい。例えば、温度推定部143は、遮光壁の長さを変数とする二次以上の多項式に従って、温度を算出してもよい。この場合、記憶部146は、多項式の係数を記憶することとなる。この多項式の係数は、熱線膨張率、基準温度、および基準温度における遮光壁の長さに限定されない。
 また、本実施の形態において、温度推定部143は、記憶部146に記憶されたデータを用いて温度を推定していたが、撮像装置100以外の装置に保持されたデータを取得して温度を推定してもよい。
 (実施の形態2)
 本発明の実施の形態2に係る撮像装置は、実施の形態1と同様の方法により推定した温度と、温度センサから得られる温度とを比較することにより、温度センサから得られる温度の信頼性を評価することができる点に特徴を有する。
 以下、本発明の実施の形態2に係る撮像装置について、図面を参照しながら説明する。なお、実施の形態1と同じ構成部に関しては、同一符号にて示し、説明を省略する。
 図9は、本発明の実施の形態2に係る撮像装置101の構成を示す断面図である。また、図10は、本発明の実施の形態2に係る撮像装置101が備える鏡筒111およびレンズアレイ112を取り外した状態の平面図である。
 図9および図10に示すように、実施の形態2の撮像装置101は、温度センサ124を備える点が実施の形態1の撮像装置100と異なっているが、他の構成部は実施の形態1の撮像装置100と同じである。以下、温度センサ124について説明する。
 温度センサ124は、サーミスタなどからなり、温度を検知することができる回路である。具体的には、図11のように構成される。
 図11は、本発明の実施の形態2に係る撮像装置101が備える温度センサ124の回路図である。
 図11に示すように、温度センサ124は、第1固定抵抗124aとサーミスタ124bと第2固定抵抗124cとが順に直列に接続された回路である。そして、第1固定抵抗124aのサーミスタ124bと接続されない端部は、電源124d(例えば3.3V、SLSIとは別電源)に接続される。また、第2固定抵抗124cのサーミスタ124bと接続されない端部は、グランド124e(例えば、0V。SLSI123のグランドと同一電位)に接続される。さらに、第1固定抵抗124aとサーミスタ124bとの接続点124fは、SLSI123に接続される。
 図12は、本発明の実施の形態2に係る撮像装置101の特徴的な機能構成を示すブロック図である。
 図12に示すように、撮像装置101は、システム制御部131、撮像素子駆動部132、撮像信号入力部133、温度センサ信号入力部134、入出力部135、温度補償演算部141、距離演算部142、温度推定部143、温度センサ信号信頼度算出部144、報知部145、および記憶部146を備える。
 システム制御部131は、CPU(中央演算処理装置:Central Processing Unit)、ロジック回路などから構成され、SLSI123の全体を制御する。
 撮像素子駆動部132は、ロジック回路などから構成され、システム制御部131の命令により、撮像素子122を駆動する信号を発生し、発生した信号に応じた電圧を撮像素子122に印加する。
 撮像信号入力部133は、CDS回路(相関二重サンプリング回路:Correlated Double Sampling Circuit)、AGC(自動利得制御器:Automatic Gain Controller)およびADC(アナログ/デジタル変換器:Analog Digital Converter)が直列に接続された回路からなる。撮像素子122から入力された電気信号は、CDS回路により固定ノイズが除去され、AGCによりゲインが調整され、ADCによりアナログ信号からデジタル信号に変換され、撮像信号I0となる。
 温度センサ信号入力部134は、ADCなどからなり、アナログ電圧信号である温度センサ信号をデジタル信号に変換した温度センサ信号Tsを出力する。
 入出力部135は、画像データ、距離データ、および報知データを撮像装置101の外部に出力する。
 温度補償演算部141は、温度センサ信号Tsを用いて、撮像信号の歪み補正を行う。具体的には、温度補償演算部141は、温度上昇に伴う、各レンズ部の光軸中心の移動距離を算出し、算出された移動距離に基づいて、座標変換テーブルの補正を行う。
 距離演算部142は、撮像信号および座標変換テーブルを用いて、距離データおよび第1撮像信号を算出する。ここで、第1撮像信号は、第1レンズ部が第1撮像領域に結像した像に対応する信号である。距離データ算出の原理は、図13および図14を用いて後述する。
 温度推定部143は、実施の形態1の撮像装置100と同様に、撮像信号入力部133が出力した撮像信号I0を用いて、撮像素子122の撮像面に射影された遮光壁113の像の長さを算出することにより、遮光壁113の温度を推定する。
 温度センサ信号信頼度算出部144は、センサ温度信号と推定温度との差分が大きいほど信頼性が低くなるように、温度センサ信号信頼度を算出する。ここで、温度センサ信号信頼度は、信頼性が低いほど、値が大きくなるように定義する。
 報知部145は、温度センサ信号信頼度が設定値以上の場合、報知データの値を1とし、温度センサ信号信頼度が設定値より小さい場合、報知データの値を0とする。つまり、報知部145は、信頼性が低い場合には、値が1である報知データを生成する。
 記憶部146は、フラッシュメモリなどからなり、所定温度と、所定温度における遮光壁113の像の長さを記憶する。具体的には、温度T0と、温度T0における、遮光壁113のx軸方向の長さQx0とy軸方向の長さQy0と熱線膨張率kqとを記憶する。
 なお、本実施の形態では、報知部145は、報知データを生成するのみであるが、作成した報知データに基づいて、報知部145は、ユーザ、管理会社などに報知する手段を備えてもよい。また、報知部145はLED(Light Emitting Diode)を備え、報知データの値が1の場合に、LEDを点灯させてもよい。
 次に、距離演算部142が行う距離データ算出の原理について、図13および図14を用いて説明する。なお、説明の便宜のため、図13および図14において、第1レンズ部112aおよび第2レンズ部112bのみを図示し、第3レンズ部112cおよび第4レンズ部112dについては、図示を省略する。
 図13は、本発明の実施の形態2に係る撮像装置101において、無限遠にある物体像の結像位置を説明するための図である。
 無限遠にある物体10からの光の第1レンズ部112aへの代表的な入射光L1は、第2レンズ部112bへの代表的な入射光L2と平行である。(ここで、説明の便宜のため、物体10は2つ描画されている。しかし、実際は、物体10は単一の物体である。つまり、無限遠にある物体10からの入射光L1と入射光L2とが平行であることを明示するために、無限遠にある物体10を2つ描画している。)このため、第1レンズ部112aの光軸と第2レンズ部112bの光軸との間の距離は、撮像素子122上の物体像11aが結像される位置と物体像11bが結像される位置との間の距離と等しい。すなわち、光軸間の距離と結像位置間の距離との差分である視差は発生しない。
 図14は、本発明の実施の形態2に係る撮像装置101において、有限距離の位置にある物体像の結像位置を説明するための図である。
 有限距離の位置にある物体12からの光の第1レンズ部112aへの代表的な入射光L1は、第2レンズ部112bへの代表的な入射光L2と平行でない。したがって、第1レンズ部112aの光軸と第2レンズ部112bの光軸との間の距離に比べて、撮像素子122上の物体像13aが結像される位置と物体像13bが結像される位置との間の距離は長い。すなわち、視差が発生する。
 ここで、第1レンズ部112aの主点から物体像12までの距離(被写体距離)をA、第1レンズ部112aと第2レンズ部112bとの光軸間距離をD、第1レンズ部112aおよび第2レンズ部112bの焦点距離をfとする。その場合、図14の直角を挟む2辺の長さがA、Dの直角三角形と、直角を挟む2辺の長さがf、Δの直角三角形とが相似であることにより、視差値Δは、式(10)のように表される。
Figure JPOXMLDOC01-appb-M000005
 その他のレンズ部についても同様の関係が成立する。このように、被写体距離に応じて4つのレンズ部112a、112b、112c、112dのそれぞれが形成する4つの物体像の相対的位置が変化する。例えば、被写体距離Aが小さくなると、視差値Δが大きくなる。そこで、式(11)のように、式(10)を被写体距離Aについて解くことにより、視差値Δから被写体距離Aを求めることができる。
Figure JPOXMLDOC01-appb-M000006
 次に、温度変化に伴う、各レンズ部の光軸中心の移動距離について、図3を用いて説明する。
 レンズアレイ112の温度が上昇すると、レンズアレイ112が膨張する。つまり、図3の矢印のように、温度上昇に伴い、各レンズ部の光軸中心がレンズ外側に移動する。ここで、温度上昇に比例して、レンズアレイが等方的に膨張すると仮定すると、光軸中心の間隔の変化量は、式(12)および(13)により算出される。
Figure JPOXMLDOC01-appb-M000007
 ここで、ddxは温度上昇に伴う光軸間の間隔のx軸方向の変化量であり、単位は撮像素子122の受光素子の間隔である。また、ddyは温度上昇に伴う光軸間の間隔のy軸方向の変化量であり、単位は撮像素子122の受光素子の間隔である。また、Dxは基準温度T0におけるx軸方向のレンズ間の光軸の間隔であり、Dyは基準温度T0におけるy軸方向のレンズ間の光軸の間隔である。また、aLはレンズアレイ112の熱線膨張率であり、aSは撮像素子122の熱線膨張率である。また、Tは温度であり、T0は基準温度である。また、pは撮像素子122の受光素子の間隔である。
 各レンズ部の光軸中心が等方的に膨張すると仮定すると、図3に示すように、各レンズ部の光軸中心は、温度上昇に伴うレンズ間の光軸間の間隔の変化の半分(x軸方向にp*ddx/2、y軸方向にp*ddy/2)だけ移動する。すなわち、第1レンズ部112aの光軸中心は、x軸方向に-p*ddx/2、y軸方向に-p*ddy/2だけ移動する。また、第2レンズ部112bの光軸中心は、x軸方向に+p*ddx/2、y軸方向に-p*ddy/2だけ移動する。また、第3レンズ部112cの光軸中心は、x軸方向に-p*ddx/2、y軸方向に+p*ddy/2だけ移動する。また、第4レンズ部112dの光軸中心は、x軸方向に+p*ddx/2、y軸方向に+p*ddy/2だけ移動する。
 したがって、検知した温度Tから求まる変化量ddxおよびddyを用いて、撮像装置は、レンズアレイ112の各レンズの光軸の移動距離を推定することができる。そして、推定された光軸の移動距離を用いて、撮像装置は、各種の補償を行うことができる。その結果、撮像装置は、温度変化に伴うレンズアレイ112の膨張の影響を低減し、正確な視差を求めることができる。つまり、撮像装置は、正確な視差から正確な距離を求めることができる。
 次に、以上のように構成された撮像装置101の動作について説明する。
 図15は、本発明の実施の形態2に係る撮像装置101の動作を示すフローチャートである。
 例えば、上位CPU(図示せず)が、入出力部135を介して、撮像装置101に動作の開始を命令することにより、撮像装置101は、以下の動作を開始する。
 まず、撮像信号入力部133は、CDS回路、AGC、ADCにより、撮像素子122から得られる電気信号から、撮像信号I0を生成する(ステップS1020)。ここで、撮像信号入力部133は、x軸方向にH0画素、y軸方向にV0画素を有する撮像信号I0(x,y)を、I0(0,0)、I0(1,0)、I0(2,0)、・・・、I0(H0-1,V0-1)の順に出力する。
 次に、温度センサ信号入力部134は、アナログ電圧信号である温度センサ信号をデジタル値に変換し、変換した信号を温度センサ信号Tsとして出力する(ステップS1030)。
 次に、温度補償演算部141は、温度センサ信号Tsを用いて、撮像信号の歪み補正を行う(ステップS1100)。具体的には、図3に示すように、温度上昇に伴って、各レンズ部の光軸中心が移動する距離(p*ddx/2、p*ddy/2)に基づいて、座標変換テーブルを補正する。
 以下に、図16を用いて、温度補償演算部141が、ステップS1100において行う処理の具体例を説明する。
 図16は、本発明の実施の形態2に係る撮像装置101の撮像信号の切り出し位置を説明するための図である。
 温度補償演算部141は、第1撮像信号I1(x,y)用の変換テーブルtx1(x,y)およびty1(x,y)を、式(14)、(15)および(16)を用いて作成する。ここで、図16に示すように、(x01,y01)は、撮像信号I0における歪みがないときの原点座標である。また、(xc1,yc1)は、撮像信号I1(x,y)における基準温度T0での光軸中心座標である。また、(-ddx/2,-ddy/2)は温度上昇による光軸中心の移動量であり、kd2およびkd4は歪曲係数である。
 また、温度補償演算部141は、第2撮像信号I2(x,y)用の変換テーブルtx2(x,y)およびty2(x,y)を、式(17)、(18)および(19)を用いて作成する。ここで、図16に示すように、(x02,y02)は、撮像信号I0における歪みがないときの原点座標である。また、(xc2,yc2)は撮像信号I2(x,y)における基準温度T0での光軸中心座標である。また、(+ddx/2,-ddy/2)は温度上昇による光軸中心の移動量であり、kd2およびkd4は歪曲係数である。
 また、温度補償演算部141は、第3撮像信号I3(x,y)用の変換テーブルtx3(x,y)およびty3(x,y)を、式(20)、(21)および(22)を用いて作成する。ここで、図16に示すように、(x03,y03)は撮像信号I0における歪みがないときの原点座標である。また、(xc3,yc3)は、撮像信号I3(x,y)における基準温度T0での光軸中心座標である。また、(-ddx/2,+ddy/2)は温度上昇による光軸中心の移動量であり、kd2およびkd4は歪曲係数である。
 また、温度補償演算部141は、第4撮像信号I4(x,y)用の変換テーブルtx4(x,y)およびty4(x,y)を、式(23)、(24)および(25)を用いて作成する。ここで、図16に示すように、(x04,y04)は撮像信号I0における歪みがないときの原点座標である。また、(xc4,yc4)は、撮像信号I4(x,y)I4(x,y)における基準温度T0での光軸中心座標である。また、(+ddx/2,+ddy/2)は温度上昇による光軸中心の移動量であり、kd2およびkd4は歪曲係数である。
Figure JPOXMLDOC01-appb-M000008
 なお、上記の座標変換テーブルの作成において、歪みがない場合は、式(26)、(27)、(28)および(29)のように、撮像信号I0(x,y)から画像を切り出した後に、式(30)、(31)、(32)および(33)のように、切り出した画像を平行移動することに相当する。
Figure JPOXMLDOC01-appb-M000009
 以下、図15のフローチャートの説明の続きを行う。
 次に、距離演算部142は、撮像信号I0、並びに座標変換テーブルtx1(x,y)、ty1(x,y)、tx2(x,y)、ty2(x,y)、tx3(x,y)、ty3(x,y)、tx4(x,y)、およびty4(x,y)を用いて、距離データDISおよび第1撮像信号I1を生成する(ステップS1200)。なお、本処理の詳細は、図17を用いて後述する。
 次に、温度推定部143は、撮像信号I0を用いて、推定温度Teを推定する(ステップS1300)。なお、本処理の詳細は、図21を用いて後述する。
 次に、温度センサ信号信頼度算出部144は、センサ温度信号Tsと推定温度Teとの差分が大きいほどセンサ温度信号Tsの信頼性が低くなるように、温度センサ信号信頼度Tsrを算出する(ステップS1400)。具体的には、温度センサ信号信頼度算出部144は、式(34)を用いて、温度センサ信号信頼度Tsrを算出する。
Figure JPOXMLDOC01-appb-M000010
 ここで、Te0およびTs0は、オフセット値である。また、式(34)のように、温度センサ信号信頼度Tsrを定義するため、温度センサ信号信頼度Tsrは、値が小さいほど信頼性が高いことを示し、値が大きいほど信頼性が低いことを示す。
 次に、報知部145は、温度センサ信号信頼度Tsrが設定値Tsr0以上の場合、報知データDDEの値を1とし、温度センサ信号信頼度Tsrが設定値Tsr0より小さい場合、報知データDDEの値を0とする。具体的には、式(35)を用いて、報知データDDEを生成する(ステップS1500)。つまり、報知データDDEが1の場合は、温度センサ信号Tsの信頼性が低いことを示す。一方、報知データDDEが0の場合は、温度センサ信号Tsの信頼性が高いことを示す。
Figure JPOXMLDOC01-appb-M000011
 次に、入出力部135は、画像データ、距離データ、信頼度データ、報知データなどを撮像装置101の外部に出力する(ステップS1910)。ここで、画像データとは、撮像信号I0、或いは第1撮像信号I1のことである。また、距離データとは、距離演算部142が算出した距離データDISのことである。また、信頼度データとは、温度センサ信号信頼度算出部144が算出した温度センサ信号信頼度Tsrのことである。また、報知データは、報知部145が生成した報知データDDEのことである。
 次に、システム制御部131は、処理を終了するか否かを判断する(ステップS1920)。例えば、システム制御部131は、入出力部135を介して、上位CPU(図示せず)と通信し、動作を終了するか否かの命令を要求する。そして、上位CPUから終了命令を受け取った場合に、システム制御部131は、処理を終了すると判断する。
 ここで、処理を終了しないと判断した場合(ステップS1920のN)、システム制御部131は、再度ステップS1020からの処理を繰り返す。一方、処理を終了すると判断した場合(ステップS1920のY)、システム制御部131は処理を終了する。
 次に、図15に示したステップS1200の詳細な処理の流れを、図17を用いて説明する。
 図17は、本発明の実施の形態2に係る撮像装置101が備える距離演算部142の動作を示すフローチャートである。
 まず、距離演算部142は、撮像信号I0から、各レンズ部により結像された被写体像の画像を切り出す(ステップS1220)。この画像の切り出し処理では、歪曲補正処理も同時に行われる。つまり、距離演算部142は、第1レンズ部112aに対応する第1撮像信号I1(x,y)、第2レンズ部112bに対応する第2撮像信号I2(x,y)、第3レンズ部112cに対応する第3撮像信号I3(x,y)、および第4レンズ部112dに対応する第4撮像信号II4(x,y)を作成する。
 具体的には、距離演算部142は、式(36)のように、座標変換テーブルtx1(x,y)およびty1(x,y)に基づいて、撮像信号I0(x,y)から第1撮像信号I1(x,y)を作成する。すなわち、座標 (tx1(x,y),ty1(x,y))の撮像信号I0を第1撮像信号I1(x,y)とする。
 なお、座標(tx1(x,y),ty1(x,y))は、整数でなくてもよい。その場合、座標変換テーブルtx1(x,y)の整数部分をtx1i(x,y)とし、小数部分をtx1f(x,y)とすると、式(37)のように、4画素を利用して、第1撮像信号I1(x,y)を作成する。
 同様に、距離演算部142は、式(38)のように、座標変換テーブルtx2(x,y)およびty2(x,y)に基づいて、撮像信号I0(x,y)から第2撮像信号I2(x,y)を作成する。
 さらに、同様に、距離演算部142は、式(39)のように、座標変換テーブルtx3(x,y)およびty3(x,y)に基づいて、撮像信号I0(x,y)から第3撮像信号I3(x,y)を作成する。
 さらに、同様に、距離演算部142は、式(40)のように、座標変換テーブルtx4(x,y)およびty4(x,y)に基づいて、撮像信号I0(x,y)から第4撮像信号I4(x,y)を作成する。
Figure JPOXMLDOC01-appb-M000012
 なお、歪みがなく、温度によるレンズの膨張がない場合、図16に示すように、第1撮像信号I1(x,y)は、撮像信号I0を原点(x01,y01)から、x軸方向にH1画素、y軸方向にV1画素だけ切り出した領域の画像となる。また、第2撮像信号I2(x,y)は、撮像信号I0を原点(x02,y02)から、x軸方向にH1画素、y軸方向にV1画素だけ切り出した領域の画像となる。また、第3撮像信号I3(x,y)は、撮像信号I0を原点(x03,y03)から、x軸方向にH1画素、y軸方向にV1画素だけ切り出した領域の画像となる。また、第4撮像信号I4(x,y)は、撮像信号I0を原点(x04,y04)から、x軸方向にH1画素、y軸方向にV1画素だけ切り出した領域の画像となる。
 次に、距離演算部142は、撮像信号をブロックに分割する(ステップS1230)。図18は、本発明の実施の形態2に係る撮像装置101におけるブロック分割を説明する図である。図18において、第1撮像信号I1は、x軸方向にHB画素、y軸方向にVB画素を有する長方形状のブロックに分割され、x軸方向にNh個、y軸方向にNv個のブロックを持つ。
 次に、距離演算部142は、ブロックを選択する(ステップS1240)。ステップS1230の処理を実行した後、初めてこのステップS1240の処理を実行するときは、距離演算部142は、(0,0)で示されるブロックを選択する。そして、次回以後、ステップS1240の処理が実行されるときは、距離演算部142は、右側に順にずらしたブロックを選択する。
 なお、距離演算部142が、図18に示される右端のブロック((Nh-1,0)、(Nh-1,1)、・・・で示されるブロック)を選択した場合、次回の処理において、距離演算部142は、1つ下の行の左端のブロック((0,1)、(0,2)、・・・で示されるブロック)を選択する。
 すなわち、ステップS1230の処理を実行後、初めてこのステップS1240の処理を実行するときを0番目とすると、距離演算部142は、i番目において(i%Nh,int(i/Nh))で示されるブロックを選択する。ここで、i%Nhは、iをNhで除算したときの剰余であり、int(i/Nh)は、iをNhで除算したときの商の整数部である。以後、このようにして選択されたブロックを選択ブロックB(ih,iv)と呼ぶ。
 次に、距離演算部142は、視差を算出する(ステップS1250)。
 以下、ステップS1250において、距離演算部142が行う視差の算出の詳細を説明する。
 距離演算部142は、第1撮像信号I1と第2撮像信号I2との視差および視差信頼度を算出する。まず、距離演算部142は、第1撮像信号I1と第2撮像信号I2との視差評価値R12(kx)を算出する。ここで、kxは、画像をどれだけずらすかを示すずらし量であり、kx=0、1、2、・・・、SBのように変化させる。
 図19は、本発明の実施の形態2に係る撮像装置101において、第1撮像信号と第2撮像信号とを利用したときの視差演算における視差評価値の演算領域を説明する図である。
 図19において、I1で示される領域は、第1撮像信号I1の選択ブロックB(ih,iv)で選択された領域を示す。また、I2で示される領域は、選択ブロックの座標からx軸方向にkxだけずれた領域の第2撮像信号I2である。距離演算部142は、ずらし量kx=0からSBについて、式(41)に示される絶対値差分総和(SAD:Sum of Absolute Differences)を演算し、視差評価値R12(kx)を算出する。すなわち、距離演算部142は、第1撮像信号I1を基準として、視差評価値R12(kx)を算出する。
Figure JPOXMLDOC01-appb-M000013
 この視差評価値R12(kx)は、選択ブロックB(ih,iv)の第1撮像信号I1と、選択ブロックからx軸方向にkxだけずれた領域における第2撮像信号I2とが、どれだけ相関があるかを示す。そして、視差評価値R12(kx)が小さいほど相関が大きい(よく似ている)ことを示す。
 図20は、本発明の実施の形態2に係る撮像装置101の第1撮像信号I1と第2撮像信号I2を利用したときの視差演算におけるずらし量と視差評価値との関係を説明する図である。
 図20に示すように、視差評価値R12(kx)は、ずらし量kxの値によって変化し、ずらし量kx=Δのときに極小値となる。つまり、選択ブロックB(ih,iv)の第1撮像信号I1と、選択ブロックからx軸方向にΔだけずれた領域における第2撮像信号I2とが、最も相関が高いことを示す。したがって、選択ブロックB(ih,iv)における第1撮像信号I1と第2撮像信号I2との視差が、Δであることが分かる。
 そこで、距離演算部142は、式(42)のように、この視差Δを用いて、選択ブロックB(ih,iv)における第1撮像信号I1と第2撮像信号I2との視差値Δ12(ih,iv)を算出する。そして、距離演算部142は、式(43)のように、視差評価値R12(Δ)を用いて、選択ブロックB(ih,iv)における第1撮像信号I1と第2撮像信号I2との視差信頼度C12(ih,iv)を算出する。
Figure JPOXMLDOC01-appb-M000014
 次に、距離演算部142は、第1撮像信号I1と第3撮像信号I3との視差および視差信頼度も同様に算出する。ただし、ずらす方向はy軸方向とし、ずらし量はkyとする。
 距離演算部142は、式(44)のように、選択ブロックB(ih,iv)における、第1撮像信号I1と第3撮像信号I3との視差評価値R13(ky)を算出する。すなわち、距離演算部142は、第1撮像信号I1を基準として、視差評価値R13(ky)を算出する。
 そして、距離演算部142は、最小値を与えるずらし量、すなわち視差Δを用いて、式(45)のように、選択ブロックB(ih,iv)における第1撮像信号I1と第3撮像信号I3との視差値Δ13(ih,iv)を算出する。また、距離演算部142は、式(46)のように、視差評価値R13(Δ)を用いて、選択ブロックB(ih,iv)における第1撮像信号I1と第3撮像信号I3との信頼度C13(ih,iv)を算出する。
Figure JPOXMLDOC01-appb-M000015
 次に、距離演算部142は、第1撮像信号I1と第4撮像信号I4との視差および視差信頼度も同様に算出する。ただし、ずらす方向は斜め方向(第1レンズ部112aの光軸と第4レンズ部112dの光軸とを結ぶ方向)とし、ずらし量はx軸方向にkx、y軸方向にkx*Dy/Dxとする。
 距離演算部142は、式(47)のように、選択ブロックB(ih,iv)における、第1撮像信号I1と第4撮像信号I4との視差評価値R14(kx)を算出する。すなわち、距離演算部142は、第1撮像信号I1を基準として、視差評価値R14(kx)を算出する。
 そして、距離演算部142は、最小値を与えるずらし量、すなわち視差Δを用いて、式(48)のように、選択ブロックB(ih,iv)における第1撮像信号I1と第4撮像信号I4との視差値Δ14(ih,iv)を算出する。また、距離演算部142は、式(49)のように、視差評価値R14(Δ)を用いて、選択ブロックB(ih,iv)における第1撮像信号I1と第4撮像信号I4との信頼度C14(ih,iv)を算出する。
 なお、式(47)において座標(x+kx,y+kx*Dy/Dx)が小数点以下の数字を有する座標となる場合、撮像信号I4は、周辺画素から線形補間などを用いて算出する。なお、図3に示すように、DxおよびDyは、第1レンズ部112aと第4レンズ部112dにおけるx軸方向の間隔、およびy軸方向の間隔である。
Figure JPOXMLDOC01-appb-M000016
 そして、距離演算部142は、上記3つの視差信頼度を比較し、最も信頼度の高い視差値をこのブロックにおける視差値とする。すなわち、距離演算部142は、式(50)のように、3つの視差信頼度C12(ih,iv)、C13(ih,iv)、およびC14(ih,iv)を比較し、C12(ih,iv)が最も小さいときΔ12(ih,iv)をブロックB(ih,iv)における視差値Δ(ih,iv)とし、C13(ih,iv)が最も小さいとき Δ13(ih,iv)をブロックB(ih,iv)における視差値Δ(ih,iv)とし、C14(ih,iv)が最も小さいときΔ14(ih,iv)をブロックB(ih,iv)における視差値Δ(ih,iv)とする。
 なお、信頼度(C12、C13、およびC14)として絶対値差分総和(式(43)、(46)、(49))を用いたが、正規化相関係数を用いてもよい。この場合、最も大きい信頼度を与える視差値を選択する。ここで、視差値をx軸方向に統一するため、Δ13(ih,iv)を採用する場合、レンズ部の間隔の比であるDx/DyをΔ13(ih,iv)に乗ずる。
Figure JPOXMLDOC01-appb-M000017
 以下、図17のフローチャートの説明の続きを行う。
 次に、距離演算部142は、視差から距離を算出する(ステップS1260)。式(10)を距離Aについて解くと式(11)のように表されるため、ブロックB(ih,iv)に含まれる領域の距離DIS(x,y)は、式(51)にように示される。
Figure JPOXMLDOC01-appb-M000018
 ここで、fは4つのレンズ部112a、112b、112c、および112dの焦点距離であり、pは撮像素子122の受光素子の間隔である。なお、視差値Δは、単位が画素である。したがって、式(51)において、視差値Δが焦点距離fなどと同一の単位系となるように、受光素子の間隔pが乗じられている。
 次に、距離演算部142は、距離演算を終了するか否かを判定する(ステップS1270)。ここで、距離演算を終了すると判定した場合(全てのブロックが選択された場合、つまり、選択ブロックがB(Nh-1,Nv-1)の場合)(ステップS1270のY)、図15のステップS1300の処理を実行する。一方、距離演算を終了すると判定しない場合(全てのブロックが選択されていない場合、つまり、選択ブロックがB(Nh-1,Nv-1)でない場合)(ステップS1270のN)、再度ステップS1240からの処理を実行する。
 次に、図15に示したステップS1300の詳細な処理の流れを、図21を用いて説明する。
 図21は、本発明の実施の形態2に係る撮像装置101の温度推定の動作を示すフローチャートである。
 まず、温度推定部143は、撮像信号I0から横中央部撮像信号を切り出す(ステップS1320)。
 図22は、本発明の実施の形態2に係る撮像装置101の撮像信号のうち遮光壁に対応した撮像信号を切り出す位置と暗部とを説明するための図である。
 図22に示すように、温度推定部143は、遮光壁113に対応する暗部113qxおよび113qyを囲むように、横中央部撮像信号I5x、縦中央部撮像信号I5yを切り出す。具体的には、温度推定部143は、原点(0,V0/2-W5/2)から、x軸方向にH0画素、y軸方向にW5画素だけ切り出した領域の撮像信号を、横中央部撮像信号I5xとする。
 次に、温度推定部143は、撮像信号I0から縦中央部撮像信号を切り出す(ステップS1330)。具体的には、図22に示すように、温度推定部143は、原点(H0/2-W5/2,0)から、x軸方向にW5画素、y軸方向にV0画素だけ切り出した領域の撮像信号を、縦中央部撮像信号I5yとする。
 次に、温度推定部143は、切り出された横中央部撮像信号I5xから、横方向の暗部113qxの長さQxを検知する(ステップS1340)。具体的には、温度推定部143は、横中央部撮像信号I5xを二値化し、二値化された撮像信号を用いて、黒部の左端から右端までの長さを検知する。
 次に、温度推定部143は、切り出された縦中央部撮像信号I5yから、縦方向の暗部113qyの長さQyを検知する(ステップS1350)。具体的には、温度推定部143は、縦中央部撮像信号I5yを二値化し、二値化された撮像信号を用いて、黒部の上端から下端までの長さを検知する。
 次に、温度推定部143は、推定温度Teを算出する(ステップS1360)。具体的には、温度推定部143は、ステップS1340およびステップS1350において検知された横方向の暗部113qxの長さQxおよび縦方向の暗部113qyの長さQyを、式(9)に代入することにより、推定温度Teを算出する。
 ここで、基準温度T0、遮光壁113の熱線膨張率kq、基準温度T0における横方向の暗部113qxの長さQx0、基準温度T0における縦方向の暗部113qyの長さQy0は、記憶部146に記憶された値が利用される。
 以上、本発明の実施の形態2に係る撮像装置101は、温度推定部143が遮光壁113の像の長さに基づいて推定した推定温度を利用して、温度センサ124から得られる温度の信頼性を数値化した温度センサ信号信頼度を得ることが可能となる。すなわち、報知部145が、得られた温度センサ信号信頼度に基づいて、信頼性が低いことを報知するなどにより、ユーザは、不具合などが発生した状態での撮像装置の使用を回避することが可能となる。
 具体的には、ユーザは、温度センサ124の経年劣化、温度センサ124の故障、温度センサ124とSLSI123の配線の断線、SLSI123内部での温度センサ信号ラインの断線、温度センサ信号入力部134のADCの故障によるビット落ち、他部品の故障による負荷の増大による温度センサ信号入力部134のADCへのリファレンス電圧の低下、温度センサ124からSLSI123への配線へのノイズの混入、SLSI123内部での温度センサ信号ラインへのノイズの混入などが発生した状態での撮像装置の使用を回避することが可能となる。
 すなわち、本実施の形態の撮像装置によれば、撮像装置の信頼性を向上させることが可能となる。
 このように、本来であれば、新たに温度センサを追加することにより信頼性を向上させる必要がある撮像装置において、新たな温度センサを追加することなく、信頼性を向上させることが可能となる。また、本実施の形態に係る撮像装置は、温度センサを新たに追加する必要がないので、製造コストを抑制すること、および撮像装置を小型化することが可能となる。
 また、撮像装置101は、信頼性が評価された温度センサ124の温度を利用して温度補償し、被写体までの距離を算出することができる。つまり、温度センサを新たに追加することなく、信頼性の高い距離情報を提供することが可能となる。また、リファレンス電圧の変動により誤差が発生する可能性がある温度センサ信号Tsと、リファレンス電圧が変動し画像濃淡が変動しても影響されない暗部の長さから求められる推定温度Teとを用いてセンサ温度信号信頼度Tsrを作成するため、本実施の形態の撮像装置によれば、より外部からのノイズに強い、つまり堅牢な撮像装置を提供することが可能となる。
 なお、本実施の形態において、温度補償演算部141は、座標変換テーブルtx1、ty1、tx2、ty2、tx3、ty3、tx4、ty4を算出することにより、温度補償を行っていたが、異なる温度補償を行ってもよい。例えば、温度補償演算部141は、距離演算部142が算出した視差に対して、式(52)のように、レンズアレイ112の各レンズ部の光軸の間隔の変化分を減じて、温度補償を行ってもよい。
 あるいは、温度補償演算部141は、距離演算部142が算出した距離DIS(x,y)に対して、式(53)のように補正することで、温度補償を行ってもよい。
Figure JPOXMLDOC01-appb-M000019
 また、本実施の形態において、温度センサ信号信頼度算出部144は、温度センサ信号信頼度Tsrを、2つの温度(センサ温度信号Tsおよび推定温度Te)の差分に基づいて算出しているが、2つの温度の比に基づいて算出してもよい。つまり、2つの温度の一致度が低いほど、温度センサ信号Tsの信頼性が低くなるように、温度センサ信号信頼度Tsrが算出されればよい。このように、2つの温度の比に基づいて温度センサ信号信頼度を算出する場合、報知部145は、温度センサ信号信頼度が1を含む所定の値の範囲内にあるときに報知データDDEを0とする。一方、温度センサ信号信頼度が1を含む所定の値の範囲外にあるときに、報知部145は報知データDDEを1とする。
 (実施の形態3)
 本発明の実施の形態3に係る撮像システムは、実施の形態2に係る撮像装置101を利用したものである。
 以下、本発明の実施の形態3に係る撮像システム202について、図面を参照しながら説明する。
 図23は、本発明の実施の形態3に係る撮像システム202の構成を示すブロック図である。
 図23に示すように、撮像システム202は、実施の形態2の撮像装置101、システム制御部203、警告報知部204、画像認識部205、記憶部206、および通信部207を備える。
 システム制御部203は、CPUなどからなり、撮像システム202が有する各機能を制御する。
 撮像装置101は、実施の形態2の撮像装置であり、システム制御部203によって制御される。また、撮像装置101は、画像データ(例えば、第1撮像信号I1)、距離データDIS、および温度センサ信号信頼度Tsrを出力する。
 警告報知部204は、赤色のLED、駆動回路などから構成される。温度センサ信号信頼度Tsrにより信頼性が高いと判断されるとき(例えば、温度センサ信号信頼度Tsrが設定値Tsr0未満のとき)、システム制御部203は、警告報知部204のLEDを消灯する。一方、温度センサ信号信頼度Tsrにより信頼性が低いと判断されるとき(例えば、温度センサ信号信頼度Tsrが設定値Tsr0以上のとき)、システム制御部203は、警告報知部204のLEDを点灯する。
 これにより、ユーザは、撮像装置101の温度センサ信号の信頼度を知ることができる。その結果、ユーザは、使用中止、製造会社への通報などの対応を図ることができるので、撮像システム202の不具合による被害を抑制することが可能となる。
 画像認識部205は、CPUなどから構成される。システム制御部203は、温度センサ信号信頼度Tsrに基づき、画像認識部205に、画像認識方法を命令する。温度センサ信号信頼度Tsrにより信頼性が高いと判断されるとき(例えば、温度センサ信号信頼度Tsrが設定値Tsr0未満のとき)、画像認識部205は、画像データI1と距離DISとを利用した画像認識を行う。一方、温度センサ信号信頼度Tsrにより信頼性が低いと判断されるとき(例えば、温度センサ信号信頼度Tsrが設定値Tsr0以上のとき)、画像認識部205は、距離データDISを利用しないで、画像データI1のみを利用した画像認識を行う。
 このように、温度センサ信号信頼度Tsrにより信頼性が低いと判断されるときは、画像認識部205は、例えば、距離DISを利用せずに画像認識を行うため、温度センサの不具合による影響を回避することが可能となる。
 記憶部206は、フラッシュROMなどの不揮発性メモリなどから構成される。システム制御部203は、温度センサ信号信頼度Tsrにより信頼性が低いと判断されるとき(例えば、温度センサ信号信頼度Tsrが設定値Tsr0以上のとき)、時刻および温度センサ信号信頼度Tsrを記憶部206に書き込む。
 これにより、書き込まれた温度センサ信号信頼度Tsrの時系列情報を調べることができるので、温度センサの交換時期などを適切に判断することが可能となる。
 通信部207は、無線通信機およびアンテナなどから構成される。システム制御部203は、温度センサ信号信頼度Tsrにより信頼性が低いと判断されるとき(例えば、温度センサ信号信頼度Tsrが設定値Tsr0以上のとき)、通信部207を介して、温度センサの不具合を、例えば管理会社などに報知する。
 これにより、例えば、管理会社は、温度センサの不具合を検知し、管理要員の派遣、ユーザへの通報、部品の手配などを行うことができる。したがって、撮像システム202の不具合を早期に解消することが可能となる。
 以上、本発明の実施の形態3に係る撮像システム202によれば、撮像装置101から得られる温度センサ信号信頼度に基づいて、画像処理などの処理方法を変更することが可能となる。つまり、撮像システム202は、温度センサの不具合による影響を回避することが可能となる。
 (変形例)
 本発明の変形例に係る撮像装置は、上記実施の形態に係る撮像装置の遮光壁および鏡筒の形状を変更することにより、遮光壁の像の長さの検知精度を向上させるものである。
 以下、本発明の変形例に係る鏡筒111および遮光壁113について、図面を参照しながら説明する。
 図24は、本発明の変形例に係る鏡筒111の斜視図である。また、図25A及び図25Bは、本発明の変形例に係る遮光壁113の斜視図である。また、図26A及び図26Bは、本発明の変形例に係る遮光壁113の像を説明するための図である。
 図24に示すように、本変形例に係る鏡筒111は、遮光壁113をはめ合わせることが可能な4つの溝部111mを有する。この溝部111mに、図25A及び図25Bに示す遮光壁113が挿入されることにより、遮光壁113は固定される。
 図25Aは、変形例に係る遮光壁113の一例を示す。図25Aに示すように、遮光壁113は、下部に突起部113tを有する。
 なお、本変形例に係る遮光壁113は、板面の両側に突起部113tを有しているが、片側だけに突起部113tを有する遮光壁113であってもよい。
 図26Aは、図25Aに示す遮光壁113の像を示す。図26Aに示すように、温度推定部は、遮光壁113の突起部113t間の像の長さQxおよびQyを用いて、温度を推定する。
 なお、樽型の歪曲を持つレンズは、画像の斜め端は歪み補正によって不要となる。つまり、突起部の像の一部が4つの撮像信号(第1撮像信号122a、第2撮像信号122b、第3撮像信号122c、および第4撮像信号122d)内に存在しているが、撮像信号の不要な部分が利用されていることになる。
 また、遮光壁113は、図25Bのような形状であってもよい。
 図25Bは、変形例に係る遮光壁113の一例を示す。図25Bに示すように、遮光壁113は、上部に第1板部113a、下部に第2板部113bを有する。なお、第1板部113aと第2板部113bは、一体で成型されている。
 図26Bは、図25Bに示す遮光壁113の像を示す。図26Bに示すように、温度推定部は、遮光壁113の第2板部113bの像の長さQxおよびQyを用いて、温度を推定する。
 このように、遮光壁113が鏡筒111の溝部111mを用いて固定されることにより、遮光壁113を安定して保持することができる。また、遮光壁113と鏡筒111とが、同一の素材であれば、温度変化による変形も同一となる。つまり、レンズアレイに接着されるよりも、温度を正確に推定することが可能となる。
 また、遮光壁113は、突起部113tまたは第2板部113aを有するので、暗部の長さの検知が容易となり、暗部の長さの検知精度の向上も可能となる。つまり、温度推定の精度が向上する。
 以上、本発明に係る撮像装置および撮像システムについて、実施の形態および変形例に基づいて説明したが、本発明は上記実施の形態および変形例に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態および変形例に施したものや、異なる実施の形態および変形例における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 例えば、本発明に係る撮像装置において、レンズアレイ112は、4つのレンズ部(第1レンズ部112a、第2レンズ部112b、第3レンズ部112c、および第4レンズ部112d)を有していたが、レンズ部の数は4つに限定されない。以下に、レンズ部の数を変更した場合の具体例を、図を参照しながら説明する。
 図27A及び図27Bは、本発明に係る撮像装置のレンズの平面図である。また、図28A及び図28Bは、本発明に係る撮像装置の遮光壁の斜視図である。また、図29A及び図29Bは、本発明に係る遮光壁の撮像信号を示す図である。
 例えば、図27Aに示すように、撮像装置が備えるレンズアレイは、2つのレンズ部を有してもよい。この場合、図28Aに示すように、遮光壁は、2つのレンズ部の射出光の干渉を防ぐために、1枚の板から構成される。
 また、図28Aに示した遮光壁の像は、図29Aの暗部となる。ここで、遮光壁の像を取り囲む部分の撮像信号を縦中央部撮像信号I5yとすると、温度推定部は、縦中央部撮像信号I5yから遮光壁に対応する暗部の長さQyを検知する。そして、温度推定部は、式(54)を用いて、検知した長さQyから推定温度Teを算出する。
Figure JPOXMLDOC01-appb-M000020
 また、例えば、図27Bに示すように、撮像装置が備えるレンズアレイは、9つのレンズ部を有してもよい。この場合、図28Bに示すように、遮光壁は、9つのレンズ部の射出光の干渉を防ぐために、井型に板を組合せて構成される。
 また、図28Bに示した遮光壁の像は、図29Bの暗部となる。ここで、遮光壁の像を取り囲む部分の撮像信号を、第1横中央部撮像信号I5x1、第2横中央部撮像信号I5x2、第1縦中央部撮像信号I5y1、および第2縦中央部撮像信号I5y2とすると、温度推定部は、4つの中央部撮像信号から、それぞれの遮光壁に対応する暗部の長さQx1、Qx2、Qy1、およびQy2を検知する。そして、温度推定部は、式(55)を用いて、検知した長さQx1、Qx2、Qy1、およびQy2から推定温度Teを算出する。
Figure JPOXMLDOC01-appb-M000021
 ここで、Qx10は、基準温度T0における第1横中央部撮像信号I5x1の暗部の長さである。また、Qx20は、基準温度T0における第2横中央部撮像信号I5x2の暗部の長さである。また、Qy10は、基準温度T0における第1縦中央部撮像信号I5y1の暗部の長さである。また、Qy20は、基準温度T0における第2縦中央部撮像信号I5y2の暗部の長さである。
 本発明に係る撮像装置は、温度測定が可能な撮像装置として、例えば、カメラ機能を備えた携帯電話、デジタルスチルカメラ、車載用カメラ、監視用カメラ、三次元計測器、立体画像入力カメラなどとして利用することができる。また、本発明に係る撮像システムは、被写体までの距離測定が可能な撮像システムとして、例えば、携帯電話、デジタルスチルカメラ、自動車、監視システム、3次元計測器、立体画像入力システムなどとして利用することができる。
 100、101 撮像装置
 110 レンズモジュール部
 111 鏡筒
 112 レンズアレイ
 113 遮光壁
 120 回路部
 121 基板
 122 撮像素子
 123 SLSI
 124 温度センサ
 125 金線
 131 システム制御部
 132 撮像素子駆動部
 133 撮像信号入力部
 134 温度センサ信号入力部
 135 入出力部
 141 温度補償演算部
 142 距離演算部
 143 温度推定部
 144 温度センサ信号信頼度算出部
 145 報知部
 146、206 記憶部
 202 撮像システム
 203 システム制御部
 204 警告報知部
 205 画像認識部
 207 通信部

Claims (10)

  1.  被写体を撮像する撮像装置であって、
     複数のレンズを有するレンズアレイと、
     前記レンズアレイから所定の距離離れて設置され、前記複数のレンズのそれぞれに対応する撮像領域を有する撮像素子と、
     前記各レンズを通過した光が、当該レンズに対応する撮像領域と異なる撮像領域に到達しないように、前記レンズアレイと前記撮像素子との間の空間を区画する遮光壁と、
     前記撮像素子が出力する電気信号をデジタル値に変換した撮像信号を生成する撮像信号入力部と、
     前記撮像信号から、前記撮像素子の撮像面に射影された前記遮光壁の像の長さを特定し、特定した前記遮光壁の像の長さを用いて、第1温度を推定する温度推定部とを備える
     ことを特徴とする撮像装置。
  2.  さらに、
     前記レンズアレイの近傍に配置され、第2温度を検知する温度センサと、
     前記第1温度と前記第2温度とに基づいて、前記第2温度の信頼度を算出する信頼度算出部とを備える
     ことを特徴とする請求項1に記載の撮像装置。
  3.  前記信頼度算出部は、前記第1温度と前記第2温度との差分が大きいほど、前記第2温度の信頼性が低くなるように前記信頼度を算出する
     ことを特徴とする請求項2に記載の撮像装置。
  4.  さらに、
     所定温度から前記第2温度に変化した場合の、前記複数のレンズの光軸間の距離の変化量を推定し、推定された変化量を用いて、前記撮像信号から得られる情報を補正する温度補償演算部と、
     前記温度補償演算部により補正された情報を用いて、前記複数の撮像領域に撮像された像の視差と前記被写体までの距離とを算出する距離演算部とを備える
     ことを特徴とする請求項2に記載の撮像装置。
  5.  さらに、
     前記信頼度算出部により算出された前記信頼度が所定値を超えることにより、前記第2温度の信頼性が低いと判断された場合に、外部へ報知するための報知データを生成する報知部を備える
     ことを特徴とする請求項2に記載の撮像装置。
  6.  さらに、
     前記レンズアレイと前記撮像素子との間に、前記遮光壁を取り囲むように設置される筒状の鏡筒を備え、
     前記鏡筒は、内壁面に少なくとも一対の溝部を有し、
     前記遮光壁は、側端部を前記鏡筒の溝部に嵌合して設置されるとともに、前記撮像素子の撮像面から前記レンズアレイの方向に伸びる長方形状の板状部材であり、前記板状部材の同一板面から突起した突起部を少なくとも2つ有し、
     前記温度推定部は、前記突起部間の像の長さを用いて、前記第1温度を推定する
     ことを特徴とする請求項1に記載の撮像装置。
  7.  さらに、
     前記レンズアレイと前記撮像素子との間に、前記遮光壁を取り囲むように設置される筒状の鏡筒を備え、
     前記鏡筒は、内壁面に少なくとも一対の溝部を有し、
     前記遮光壁は、前記撮像素子の撮像面から前記レンズアレイの方向に伸びる板状部材であり、側端部が前記鏡筒の溝部に嵌合される第1板部と、前記第1板部から前記撮像面側に突出する第2板部とを有し、
     前記温度推定部は、前記第2板部の像の長さを用いて、前記第1温度を推定する
     ことを特徴とする請求項1に記載の撮像装置。
  8.  請求項4に記載の撮像装置と、
     前記撮像装置が算出した被写体までの距離と信頼度とに基づいて所定の制御を行うシステム制御部とを備える
     ことを特徴とする撮像システム。
  9.  複数のレンズを有するレンズアレイと、前記レンズアレイから所定の距離離れて設置され、前記複数のレンズのそれぞれに対応する撮像領域を有する撮像素子と、前記各レンズを通過した光が、当該レンズに対応する撮像領域と異なる撮像領域に到達しないように、前記レンズアレイと前記撮像素子との間の空間を区画する遮光壁とを備える撮像装置で用いられる撮像方法であって、
     前記撮像素子が出力する電気信号をデジタル値に変換した撮像信号を生成する撮像信号入力ステップと、
     前記撮像信号から、前記撮像素子の撮像面に射影された前記遮光壁の像の長さを特定し、特定した前記遮光壁の像の長さを用いて、温度を推定する温度推定ステップとを含む
     ことを特徴とする撮像方法。
  10.  複数のレンズを有するレンズアレイと、前記レンズアレイから所定の距離離れて設置され、前記複数のレンズのそれぞれに対応する撮像領域を有する撮像素子と、前記各レンズを通過した光が、当該レンズに対応する撮像領域と異なる撮像領域に到達しないように、前記レンズアレイと前記撮像素子との間の空間を区画する遮光壁とを備える撮像装置で実行されるプログラムであって、
     前記撮像素子が出力する電気信号をデジタル値に変換した撮像信号を生成する撮像信号入力ステップと、
     前記撮像信号から、前記撮像素子の撮像面に射影された前記遮光壁の像の長さを特定し、特定された前記遮光壁の像の長さを用いて、温度を推定する温度推定ステップとを含む
     ことを特徴とするプログラム。
PCT/JP2009/001598 2008-04-10 2009-04-07 撮像装置、撮像システムおよび撮像方法 WO2009125577A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009539554A JP4456180B2 (ja) 2008-04-10 2009-04-07 撮像装置、撮像システムおよび撮像方法
US12/598,292 US8212912B2 (en) 2008-04-10 2009-04-07 Imaging device, imaging system, and imaging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008102874 2008-04-10
JP2008-102874 2008-04-10

Publications (1)

Publication Number Publication Date
WO2009125577A1 true WO2009125577A1 (ja) 2009-10-15

Family

ID=41161714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001598 WO2009125577A1 (ja) 2008-04-10 2009-04-07 撮像装置、撮像システムおよび撮像方法

Country Status (3)

Country Link
US (1) US8212912B2 (ja)
JP (1) JP4456180B2 (ja)
WO (1) WO2009125577A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125947A1 (ja) * 2009-04-28 2010-11-04 富士機械製造株式会社 測定装置及びその測定方法並びに切削機械の加工位置補正装置及びその加工位置補正方法並びに撮像装置及びその撮像装置を備える切削機械
JP2011099779A (ja) * 2009-11-06 2011-05-19 Ricoh Co Ltd 距離画像取得装置及び距離画像取得処理方法
JP2011147079A (ja) * 2010-01-18 2011-07-28 Ricoh Co Ltd 撮像装置
JP2011169853A (ja) * 2010-02-22 2011-09-01 Ricoh Co Ltd 距離画像取得装置
EP2372651A1 (en) * 2010-03-08 2011-10-05 Ricoh Company, Ltd. Image pickup apparatus and range determination system
KR101747511B1 (ko) 2014-01-31 2017-06-27 가부시키가이샤 모르포 화상 처리 장치 및 화상 처리 방법
JP2019533918A (ja) * 2016-08-25 2019-11-21 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニーFacebook Technologies, Llc 深度マッピング用のアレイ検出器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5742272B2 (ja) * 2011-02-14 2015-07-01 株式会社リコー 複眼式撮像装置
JP6167525B2 (ja) * 2012-03-21 2017-07-26 株式会社リコー 距離計測装置及び車両
CN107407852A (zh) * 2015-03-30 2017-11-28 株式会社尼康 拍摄装置、多透镜相机及拍摄装置的制造方法
US10397551B2 (en) * 2017-07-26 2019-08-27 Symbol Technologies, Llc Temperature compensation for image acquisition and processing apparatus and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204462A (ja) * 2000-10-25 2002-07-19 Canon Inc 撮像装置及びその制御方法及び制御プログラム及び記憶媒体
JP2003143459A (ja) * 2001-11-02 2003-05-16 Canon Inc 複眼撮像系およびこれを備えた装置
JP2007271301A (ja) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd 撮像装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262799B2 (en) 2000-10-25 2007-08-28 Canon Kabushiki Kaisha Image sensing apparatus and its control method, control program, and storage medium
US7872574B2 (en) * 2006-02-01 2011-01-18 Innovation Specialists, Llc Sensory enhancement systems and methods in personal electronic devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204462A (ja) * 2000-10-25 2002-07-19 Canon Inc 撮像装置及びその制御方法及び制御プログラム及び記憶媒体
JP2003143459A (ja) * 2001-11-02 2003-05-16 Canon Inc 複眼撮像系およびこれを備えた装置
JP2007271301A (ja) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd 撮像装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125947A1 (ja) * 2009-04-28 2010-11-04 富士機械製造株式会社 測定装置及びその測定方法並びに切削機械の加工位置補正装置及びその加工位置補正方法並びに撮像装置及びその撮像装置を備える切削機械
CN102414613A (zh) * 2009-04-28 2012-04-11 富士机械制造株式会社 测量装置及其测量方法、切削机械的加工位置校正装置及其加工位置校正方法、以及摄像装置及具备该摄像装置的切削机械
US8885038B2 (en) 2009-04-28 2014-11-11 Fuji Machine Mfg. Co., Ltd. Measuring apparatus and measuring method thereof, apparatus for correcting processing position of cutting machine and method thereof for correcting processing position, and imaging apparatus and cutting machine comprising the same
CN102414613B (zh) * 2009-04-28 2015-04-15 富士机械制造株式会社 测量装置及其测量方法、切削机械的加工位置校正装置及其加工位置校正方法、以及摄像装置及具备该摄像装置的切削机械
JP2011099779A (ja) * 2009-11-06 2011-05-19 Ricoh Co Ltd 距離画像取得装置及び距離画像取得処理方法
JP2011147079A (ja) * 2010-01-18 2011-07-28 Ricoh Co Ltd 撮像装置
JP2011169853A (ja) * 2010-02-22 2011-09-01 Ricoh Co Ltd 距離画像取得装置
EP2372651A1 (en) * 2010-03-08 2011-10-05 Ricoh Company, Ltd. Image pickup apparatus and range determination system
US8593536B2 (en) 2010-03-08 2013-11-26 Ricoh Company, Ltd. Image pickup apparatus with calibration function
KR101747511B1 (ko) 2014-01-31 2017-06-27 가부시키가이샤 모르포 화상 처리 장치 및 화상 처리 방법
JP2019533918A (ja) * 2016-08-25 2019-11-21 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニーFacebook Technologies, Llc 深度マッピング用のアレイ検出器
US11102467B2 (en) 2016-08-25 2021-08-24 Facebook Technologies, Llc Array detector for depth mapping

Also Published As

Publication number Publication date
JP4456180B2 (ja) 2010-04-28
JPWO2009125577A1 (ja) 2011-07-28
US8212912B2 (en) 2012-07-03
US20100128140A1 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
JP4456180B2 (ja) 撮像装置、撮像システムおよび撮像方法
JP4510930B2 (ja) 撮像装置及び半導体回路素子
JP4264464B2 (ja) 撮像装置及び半導体回路素子
US8405820B2 (en) Ranging device and ranging module and image-capturing device using the ranging device or the ranging module
JP5029274B2 (ja) 撮像装置
US7679659B2 (en) Imaging apparatus having dark current correcting unit
US8488872B2 (en) Stereo image processing apparatus, stereo image processing method and program
US20120200673A1 (en) Imaging apparatus and imaging method
TW201540066A (zh) 包括主要高解析度成像器及次要成像器之影像感測器模組
KR20200100498A (ko) 전자 장치 및 그 전자 장치의 자동 초점 제어 방법
CN104581137A (zh) 检测设备、摄像设备、摄像系统和检测设备的控制方法
JP2009250785A (ja) 撮像装置
WO2017042998A1 (ja) 車載用ステレオカメラ装置、およびその補正方法
KR102597470B1 (ko) 뎁스 맵 결정 방법 및 그 방법을 적용한 전자 장치
US9854153B2 (en) Imaging apparatus, and a method of controlling imaging apparatus using an imaging surface correction map for performing corrections
JP7121269B2 (ja) 測距カメラ
JP2010002280A (ja) 撮像装置、測距装置及び視差算出方法
US9621882B2 (en) Calibration device, imaging device, calibration method, and method for manufacturing imaging device
JP4838652B2 (ja) 撮像装置
JP6060482B2 (ja) 測距装置、測距システム、測距プログラムおよび視差補正方法
JP5434816B2 (ja) 測距装置及び撮像装置
US7054550B2 (en) Rangefinder apparatus
JP2007166494A (ja) カメラおよび撮像ユニット
JP2005010353A (ja) プロジェクタ
JP2005043085A (ja) 角度検出装置及びそれを備えたプロジェクタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009539554

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12598292

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09731229

Country of ref document: EP

Kind code of ref document: A1