WO2009124504A1 - 一种爆胎监测方法及一种爆胎监控装置 - Google Patents

一种爆胎监测方法及一种爆胎监控装置 Download PDF

Info

Publication number
WO2009124504A1
WO2009124504A1 PCT/CN2009/071206 CN2009071206W WO2009124504A1 WO 2009124504 A1 WO2009124504 A1 WO 2009124504A1 CN 2009071206 W CN2009071206 W CN 2009071206W WO 2009124504 A1 WO2009124504 A1 WO 2009124504A1
Authority
WO
WIPO (PCT)
Prior art keywords
puncture
tire
wheel
wheel speed
monitoring
Prior art date
Application number
PCT/CN2009/071206
Other languages
English (en)
French (fr)
Inventor
傅建中
Original Assignee
Fu Jianzhong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fu Jianzhong filed Critical Fu Jianzhong
Priority to CN2009800000901A priority Critical patent/CN101678729B/zh
Publication of WO2009124504A1 publication Critical patent/WO2009124504A1/zh
Priority to US12/901,589 priority patent/US20110029214A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • B60C23/061Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle by monitoring wheel speed

Definitions

  • the invention relates to the technical field of industrial control, in particular to a vehicle safety monitoring and control technology for a vehicle, in particular to a puncture monitoring method and a puncture monitoring device.
  • TPMS tire pressure monitoring technology
  • the prior art tire pressure monitoring technology is divided into direct and indirect types. Directly, the tire pressure is directly monitored in the tire to monitor the tire pressure change, and the data signal is transmitted through RF (radio frequency). The tire pressure and temperature are displayed on the monitor screen to provide the driver with warning information.
  • RF radio frequency
  • the monitoring module of the direct tire pressure monitoring technology is limited by the power supply. It is necessary to take measures such as reducing the monitoring sampling frequency and increasing the data signal transmission period. It is impossible to implement real-time monitoring and sampling for the sudden sudden danger such as puncture.
  • a typical application of indirect tire pressure monitoring technology is the tire pressure monitoring system (TPMS) function developed on the basis of the wheel speed signal of the vehicle anti-lock brake system (ABS), that is, using the monitoring vehicle ABS wheel speed sensor signal, through various Algorithms such as wheel speed comparison method and effective rolling radius method are used to monitor the tire pressure.
  • TPMS tire pressure monitoring system
  • ABS vehicle anti-lock brake system
  • Algorithms such as wheel speed comparison method and effective rolling radius method are used to monitor the tire pressure. Due to the variation of tire pressure, the variation of wheel diameter is very small (the air pressure changes 69Kpa tire radius only changes lmm), the signal amplitude is low, the real-time performance is poor, the environmental impact factors are many, the algorithm is complex, the reaction lag and the monitoring speed should not exceed lOOKm/h. The existence of such problems cannot be applied to the monitoring sampling of the instantaneous puncture event in high-speed driving. Summary of the invention
  • the present invention provides a puncture monitoring method and a puncture monitoring device to solve the problem that the existing indirect tire pressure monitoring technology cannot monitor the puncture signal in real time.
  • the present invention provides a puncture monitoring method, the method comprising:
  • the tire speed determines the threshold, and the other wheel speeds do not change accordingly, that is, it is judged that a certain wheel is completely deflated or has a puncture;
  • the tire tire speed determination threshold includes a puncture or full detonation wheel speed increment ratio judgment threshold ⁇ VI and a puncture wheel speed increment ratio change rate determination threshold ⁇ VI / ⁇ t;
  • is a necessary condition, when the real-time wheel speed increment ratio of a certain wheel VI, and the other wheel speeds have not changed correspondingly, that is, the tire is completely deflated;
  • ⁇ / ⁇ is a sufficient condition, when the real-time wheel speed increment ratio of a certain wheel VI, the other wheel speeds have not changed accordingly, and the rate of change of the wheel speed increment ratio is also ⁇ / ⁇ , which is to judge a tire puncture.
  • the puncture or complete deflation wheel speed increment ratio AV tt value is related to the wheel diameter ratio between the normal pressure and the complete deflation of the tire.
  • Mathematical expression: AV tt (R ⁇ /R _l) X 100%;
  • the size of the tire is related to the size of the rim, regardless of the quality of the tire, the environment of use and the speed of the vehicle. After the redundancy or safety correction of the AV tt value of the puncture or full deflation wheel speed increase ratio, it becomes a puncture or complete deflation speed.
  • the incremental ratio judges the threshold ⁇ VI, and ⁇ VI ⁇ ⁇ V ratio;
  • the At value of the rate of change of the rate of change of the tire speed increase rate ( ⁇ / ⁇ ) is related to the time when the tire puncture is completely deflated and the downtime of the car body. It is related to the model and tire and rim specifications.
  • the range of At is 500ms ⁇ 200ms.
  • the wheel speed signal outputted by the vehicle ABS wheel speed sensor is directly used as the sampling target of the tire tire monitoring; or the wheel speed of the wheel is monitored and sampled by other forms of the wheel speed sensor, thereby obtaining the wheel speed signal.
  • the wheel speed includes an angular velocity of the wheel and/or a linear velocity of the wheel;
  • the present invention also provides a puncture monitoring device,
  • the device includes:
  • Puncture monitoring electronic controller (ECU-b): A puncture monitoring electronic controller (ECU-) formed by upgrading and improving the vehicle's ABS electronic controller (ECU) by applying a puncture monitoring method according to the present invention. b), including the original ABS electronic control circuit, program and new circuit and program software for wheel speed signal processing, calculation and puncture logic judgment;
  • Brake Execution Unit By improving the brake circuit of the ABS system, a solenoid valve is added between the vehicle master cylinder and the ABS hydraulic regulator to power the hydraulic line between the vehicle master cylinder and the ABS hydraulic regulator. Signal control is cut off or connected;
  • ECU-b After the wheel tire is completely deflated or puncture, (ECU-b) drives the ABS hydraulic pump and the added solenoid valve between the master cylinder and the ABS hydraulic regulator.
  • the solenoid valve cuts off between the master cylinder and the ABS hydraulic regulator.
  • Road, ABS hydraulic pump (return pump) The operation generates hydraulic braking force to achieve braking and maintain the original ABS function.
  • the puncture monitoring electronic controller determines that a certain wheel is completely deflated;
  • the ratio change rate is also the puncture judgment threshold, and it is judged that a tire has a puncture;
  • the puncture monitoring electronic controller determines that the wheel tire is completely deflated or blasted, and performs braking and gives a corresponding sound and light alarm prompt.
  • a solenoid valve is added between the ABS hydraulic regulator and the vehicle master cylinder to control the hydraulic line between the ABS hydraulic regulator and the vehicle brake master cylinder or to cut off the power receiving signal;
  • the solenoid valve is a two-position three-way or two-position two-way solenoid valve, and has a valve core anti-locking feature.
  • the puncture monitoring electronic controller (ECU-b) of the puncture monitoring device determines that the electromagnetic valve and the hydraulic pump are powered up after the tire is puncture or completely deflated, or the electromagnetic pump is applied to the electromagnetic pump The valve is energized such that the hydraulic line between the master cylinder and the hydraulic regulator is turned off or simultaneously.
  • ECU-b Electronic Brake Force Distribution
  • ESP Electronic Stability Program
  • the wheel speed signal can indirectly monitor the tire pressure.
  • the deformation of the outer diameter of the tire is small due to the change of the tire pressure (only 69 mm of the pressure change of 69 Kpa), road surface, environment and driving.
  • speed There are many influencing factors such as speed, and the known technology of wheel speed signal monitoring tire pressure cannot be directly applied directly, especially in the speed environment above lOOKm/h.
  • the prior art indirect monitoring tire pressure technical solutions are realized by establishing a specific mathematical model and applying a specific program algorithm.
  • Various technical solutions vary greatly in technical content, and each has its own advantages and disadvantages, but all of them are related to solving the pressure change.
  • Slow tire leakage or expansion of tire pressure monitoring problems can not be applied to specific events such as tire punctures and sudden changes in instantaneous air pressure.
  • the technical solution of the present invention is particularly directed to the monitoring of the puncture signal of the sudden change of the instantaneous air pressure and the safety control problem of the vehicle after the puncture.
  • the mathematical model, the judgment condition and the program algorithm are obviously different from the prior art, and the prior art is solved.
  • the puncture signal monitors the sampling technique in real time, and the outstanding substantive features are obvious.
  • the technical scheme of the present invention relates the wheel diameter ratio before and after the puncture to the puncture or full detonation wheel speed increment ratio ⁇ ⁇ 3 ⁇ 4 , and the puncture or complete deflation wheel speed increment ratio AV t value is only specific to the rim and the tire. Regardless of the specifications, regardless of the parameters such as tire quality and environmental conditions and driving speed, the amplitude of the puncture or complete deflated wheel speed increase ratio AV tt signal is large and stable, which is good for monitoring sampling and overcomes the existing indirect tire pressure monitoring technology. The limitations applied to speeds above lOOKm/h are substantially different and significantly better than prior art indirect tire pressure monitoring schemes.
  • the technical solution of the present invention has obvious utility to detect a puncture or complete deflation signal from the vehicle ABS wheel speed signal, and can be realized by upgrading and improving the technology based on the existing ABS of the vehicle and the EBD and ESP based on the ABS technology.
  • Vehicles that do not have ABS, EBD and ESP can also be used with other types of wheel speed sensors, such as Hall sensors, photoelectric sensors, etc., which can monitor the wheel speed to obtain the wheel speed signal, and then monitor the detected puncture or complete
  • the deflation signal has outstanding features and practical effects of simple structure, reasonableness and low cost.
  • Fig. 1 is a flow chart showing the procedure of the puncture monitoring method of the first embodiment of the present invention.
  • Fig. 2 is a block diagram showing the structure of a puncture monitoring device according to a second embodiment of the present invention. detailed description
  • Fig. 1 is a flow chart showing a method of monitoring a puncture of the embodiment 1 of the present invention. As shown in FIG. 1, the steps of implementing the puncture monitoring method of Embodiment 1 of the present invention are as follows:
  • the wheel speed signal is monitored and sampled by continuous or frequency pulse sampling. After the sampling data is obtained, the real-time wheel speed increment ratio ⁇ ⁇ of the sampled data is judged whether the puncture or the complete detonation wheel speed increment ratio is judged. ⁇ VI is judged ( ⁇ ⁇ ⁇ is determined according to parameters such as rim, tire, etc.
  • the wheel speed data may directly use the wheel speed data output by the vehicle ABS wheel speed sensor, or may be the wheel speed data obtained by monitoring the wheel speed of the wheel speed sensor by other forms.
  • the puncture or complete deflating wheel speed increment ratio is eight ⁇ 3 ⁇ 4
  • the normal atmospheric rolling radius of the wheel is related to the ratio of the full deflation rolling radius.
  • Mathematical expression: AV tt (R normal / R puncture - 1) ⁇ 100%.
  • the puncture or complete deflated wheel speed increment ratio judgment threshold ⁇ VI is a necessary condition for judging the puncture, when the wheel speed increment ratio ⁇ V puncture or full deflation wheel speed increment ratio judgment threshold ⁇ VI, and the remaining wheel speed If the corresponding change does not occur at the same time, it can be judged that the wheel tire is completely deflated.
  • the tire tire speed increment ratio change rate judgment threshold ( ⁇ / ⁇ ) is determined according to the following steps: The wheel wheel speed change reaches the ratio of the tire wheel speed increment ratio judgment threshold ⁇ VI to the elapsed time, that is, the tire tire
  • the speed increment ratio change rate judgment threshold ( ⁇ / ⁇ ) is a sufficient condition for judging the puncture.
  • the "unit time" ⁇ t value as the rate of change of the tire wheel speed increment ratio.
  • the rate of change of the wheel speed increment ratio can be obtained by sampling and data operation by means of timed frequency measurement (frequency method) or fixed frequency measurement (period method, measuring pulse width) or continuous sampling.
  • Figure 2 is a block diagram showing the structure of a puncture monitoring device according to a second embodiment of the present invention, and the puncture monitoring device includes:
  • ECU-b Based on ABS electronic controller (ECU) upgrade and improvement, taking wheel wheel speed signal as the target of puncture monitoring, implementing a puncture monitoring method proposed by the present invention to monitor and judge the puncture event Suitable for four-channel four-sensor ABS units with independent wheel speed sensors per wheel.
  • the brake actuator unit is improved by the ABS hydraulic brake line (hydraulic line and electrical control), as shown in Figure 2, three-position three-way electromagnetic in the vehicle master cylinder 6 and ABS hydraulic regulator 7.
  • the valve 8 is connected in series with the two-position three-way solenoid valve 5, and the two-position three-way solenoid valve 5 is normally open. In the normal state (not energized), the brake master cylinder and the hydraulic regulator three-position three-way solenoid valve 8 are maintained.
  • the brake line is unblocked.
  • the electric hydraulic pump 10, the brake cylinder 9, the three-position three-way solenoid valve 8, the wheel speed sensor 1 and the ABS ECU 3 are the main components of the vehicle ABS system, and the tire burst judgment and brake command unit 4 is an ECU upgrade for the ABS.
  • the puncture monitoring electronic controller (ECU-b) 2 contains the original ABS ECU
  • (ECU-b) 2 When (ECU-b) 2 detects the puncture signal, (ECU-b) 2 simultaneously energizes the two-position three-way solenoid valve 5 and the electric hydraulic pump 10, and the two-position three-way solenoid valve 5 is electrically commutated. , the pipeline between the brake master cylinder 6 and the ABS hydraulic regulator three-position three-way solenoid valve 8 is connected, and the pipeline between the brake master cylinder 6 and the electric hydraulic pump 10 inlet port is connected, and the electric hydraulic pump 10 operates. The pressure is established in the brake line and the vehicle is braked.

Description

一种爆胎监测方法及一种爆胎监控装置 技术领域
本发明涉及工控技术领域, 尤其是有关车辆的行车安全监测和控制技 术, 具体地讲是一种爆胎监测方法及一种爆胎监控装置。 背景技术
轮式车辆采用充气轮胎, 充气轮胎爆胎往往会导致灾难, 因此, 轮胎气 压监测技术 (TPMS ) 受到世界车辆产业界的重视。
现有技术的轮胎气压监测技术分为直接式和间接式两大类。直接式通过 在轮胎内安置气压传感器直接监测胎压变化, 并通过 RF (射频) 传送数据 信号, 由监视器屏幕显示各轮胎气压、 温度, 给驾驶员提供预警信息。
直接式轮胎气压监测技术的监测模块受到供电限制,不得已采取降低监 测采样频率、加大数据信号发射周期等措施,对爆胎等瞬间突发危险无法实 施实时监测采样。
间接式轮胎气压监测技术的典型应用是在车辆防抱死刹车系统 (ABS)的 轮速信号基础上开发的轮胎压力监测系统 (TPMS)功能, 即利用监测车辆 ABS 轮速传感器信号,通过各种算法如轮速比较法、有效滚动半径法等来实现对 胎压的监测。 由于胎压变化导致的轮径变化量值很小(气压变化 69Kpa轮胎 半径仅变化 lmm) , 信号幅值低、 实时性差、 环境影响因素多、 算法复杂、 反应滞后及监测速度不得大于 lOOKm/h等问题的存在,无法应用于高速行车 中瞬间爆胎事件的监测采样。 发明内容
本发明鉴于上述现有技术中存在的问题,提出一种爆胎监测方法和一种 爆胎监控装置,以解决现有间接式轮胎气压监测技术对爆胎信号不能实时监 测采样的技术问题, 并提供一种采用所述爆胎监测方法升级车辆 ABS系统, 实现爆胎监测与制动的爆胎监控装置。
为了实现上述本发明的目的,本发明提供一种爆胎监测方法, 该方法包 括:
以车轮轮速信号作为爆胎监测采样对象,当某车轮轮速变化 爆胎轮速 判断阈值, 同时其余车轮轮速未发生相应变化, 即判断某车轮完全泄气或发 生爆胎;
爆胎轮速判断阈值包括爆胎或完全泄气轮速增量比率判断阈值△ VI 和 爆胎轮速增量比率变化速率判断阈值 Δ VI/ Δ t;
Δνΐ为必要条件, 当某车轮实时轮速增量比率
Figure imgf000004_0001
VI, 且其余车轮 轮速未发生相应变化, 即判断轮胎完全泄气;
Δνΐ/Δΐ为充分条件, 当某车轮实时轮速增量比率
Figure imgf000004_0002
VI, 其余车 轮轮速未发生相应变化, 且轮速增量比率变化速率也 Δνΐ/Δΐ, 即判断某 车轮爆胎。
爆胎或完全泄气轮速增量比率 AVtt数值与轮胎正常气压和完全泄气两 种状态下的轮径比值关联, 数学表达式: AVtt= (R^/R _l) X 100%; 只与 轮胎和轮辋的规格尺寸有关, 与轮胎质量、 使用环境和行车速度无关; 对爆胎或完全泄气轮速增量比率 AVtt数值作冗余、安全修正后, 即成为 爆胎或完全泄气轮速增量比率判断阈值 Δ VI, 且 Δ VI < Δ V比;
爆胎轮速增量比率变化速率判断阈值(Δνΐ/Δΐ) 的 At数值与轮胎爆 胎完全泄气耗时和车体下沉耗时关联, 与车型和轮胎、 轮辋规格有关, At 取值范围为 500ms ± 200ms。
直接利用车辆 ABS轮速传感器输出的轮速信号作为爆胎监测采样对象; 或采用其它形式轮速传感器对车轮轮速进行监测采样, 从而得到轮速信号。
所述车轮轮速包括车轮的角速度和 /或车轮的线速度;
为了实现上述本发明的目的, 本发明还提供一种爆胎监控装置, 该装置包括:
爆胎监控电子控制器 (ECU-b ) : 应用本发明所述的一种爆胎监 测方法, 对车辆的 ABS 电子控制器 (ECU ) 进行升级改进所形成的爆 胎监控电子控制器 (ECU-b ) , 包括原有 ABS 电子控制电路、 程序及 新增的轮速信号处理、 运算及爆胎逻辑判断等电路及程序软件;
制动执行单元: 通过对 ABS系统制动回路改进实现, 在车辆制动 总泵与 ABS液压调节器之间增加电磁阀, 使车辆制动总泵与 ABS液压 调节器之间液压管路受电信号控制截止或连通;
车轮轮胎完全泄气或爆胎后, (ECU-b )驱动 ABS液压泵和制动总 泵与 ABS液压调节器之间增加的电磁阀, 电磁阀截止制动总泵与 ABS 液压调节器之间管路, ABS液压泵 (回流泵) 运转产生液压制动力, 实现制动并保持原有 ABS功能。
当某车轮轮速增量比率^爆胎判断阈值,且其余车轮轮速未同时 发生相应变化, 所述爆胎监控电子控制器 (ECU-b ) 即判断某车轮完 全泄气; 若轮速增量比率变化速率也 爆胎判断阈值, 则判断某车轮 发生爆胎;
所述爆胎监控电子控制器 (ECU-b ) 判断车轮轮胎完全泄气或爆 胎后, 实施制动并作相应声光报警提示。
ABS液压调节器与车辆制动总泵之间增加电磁阀, 使 ABS液压调节 器与车辆制动总泵之间液压管路连通或截止受电信号控制;
所述电磁阀为二位三通或二位二通电磁阀, 具有阀芯防卡死特征。 爆胎监控装置的所述爆胎监控电子控制器 (ECU-b ) 判断轮胎爆胎 或完全泄气后, 同时对所述电磁阀和液压泵进行加电驱动, 或先于液压泵对 所述电磁阀加电,使所述制动总泵与所述液压调节器之间的液压管路先于截 止或同时截止。 本发明技术方案同样适用于在车辆 ABS 技术基础上衍生的电子制动力 分配 (EBD) 和电子稳定程序 (ESP) 等系统的升级改进。
本发明具有以下有益效 一是轮速信号可以间接监测胎压虽然为公知 技术, 但由于胎压变化导致轮胎外径形变的量值很小 (69Kpa气压变化仅有 lmm) , 路面、 环境和行车速度等影响因素众多, 轮速信号监测胎压这一公 知技术并不能简单直接应用, 特别不能应用于 lOOKm/h以上速度环境。
现有技术的间接监测胎压技术方案均是通过建立特定的数学模型, 应用 特定的程序算法来实现, 各种技术方案在技术内容上差异很大, 各有利弊, 但均为解决气压变化相对缓慢的轮胎漏气或膨胀的轮胎气压监测问题,不能 应用于轮胎爆胎等瞬间气压急剧变化的特定事件。而本发明技术方案特别针 对瞬间气压急剧变化的爆胎信号监测采样和爆胎后车辆安全控制问题在数 学模型、 判断条件和程序算法上与现有技术存在明显区别, 解决了现有技术 未解决的爆胎信号实时监测采样技术难题, 突出的实质性特点显而易见。
二是本发明技术方案将爆胎前后车轮轮径比值与爆胎或完全泄气轮速 增量比率 Δ ν¾关联,爆胎或完全泄气轮速增量比率 A Vt 值只与轮辋、 轮胎 的具体规格有关, 与轮胎品质和使用环境状况和行车速度等参数无关, 爆胎 或完全泄气轮速增量比率 A Vtt信号幅值大而稳定,利于监测采样, 克服了现 有间接胎压监测技术无法应用于 lOOKm/h以上速度的局限, 较现有技术的间 接式轮胎气压监测方案有实质性区别和显著的进步。
三是本发明技术方案具有明显的实用 从车辆 ABS轮速信号检出爆胎 或完全泄气信号,在车辆现有 ABS和基于 ABS技术的 EBD和 ESP基础上进行 技术升级、 改进即可实现。 不具备 ABS、 EBD和 ESP的车辆, 也可采用另加 其它形式轮速传感器, 如霍尔传感器、 光电传感器等可监测轮速的传感器, 从而获得轮速信号, 进而监测检出爆胎或完全泄气信号, 具有结构简洁、 合 理和成本低廉的突出特点和实用效果。 附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请 的一部分, 并不构成对本发明的限定。 在附图中:
图 1所示的是本发明实施例 1的爆胎监测方法的程序流程图。
图 2所示的是本发明实施例 2的爆胎监控装置的结构框图。 具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白, 下面结合实 施方式和附图, 对本发明做进一步详细说明。
实施例 1
图 1所示的是本发明实施例 1的爆胎监测方法的流程图。 如图 1所示, 本发明实施例 1的爆胎监测方法实现步骤如下:
以连续或频率 ^ ΙΟΗζ的脉冲采样方式对车轮轮速信号进行监测采样, 获取采样数据后, 首先对采样数据的实时轮速增量比率 Δ ν是否 爆胎或完 全泄气轮速增量比率判断阈值 Δ VI进行判断 (Δ νΐ根据轮辋、 轮胎等参数 确定并预先存储于电子控制器 ECU中) , 若某车轮轮速增量比率 Δ ν 爆胎 或完全泄气轮速增量比率判断阈值△ VI, 且其余车轮轮速未发生相应变化, 再判断轮速增量比率变化速率△ V/ Δ t是否 爆胎轮速增量比率变化速率 判断阈值 Δ VI/ Δ t, 若轮速增量比率变化速率 Δ V/ Δ t 轮速增量比率变化 速率判断阈值 Δ νΐ/ Δ ΐ , 即可判断某车轮爆胎,否则为漏气所造成的轮胎完 全泄气。
在本发明实施例 1中,上述车轮轮速数据可以直接利用车辆 ABS轮速传 感器输出的轮速数据,也可以是采用其他形式轮速传感器对车轮轮速进行监 测所取得的轮速数据。
本发明技术方案的特征之一是将爆胎或完全泄气轮速增量比率八¥¾与 车轮正常气压滚动半径与完全泄气滚动半径比值关联, 数学表达式: AVtt= (R正常 /R爆胎- 1) Χ100%。 实际计算例:
根据 " =V/ ( R轮辋 +Η) 公式, 有 ω正常 =V/ (R轮辋 +H) , "爆胎 =V/ (R轮 ffl+H爆^。乘用车轮辋规格大部分为 13英寸〜 19英寸, 即轮辋半径 R为 165匪 〜241匪, 扁平比为 45〜90, 轮胎高度11=扁平比 X轮胎宽度, 以 195/60R14 轮胎为例, 轮胎高度 H = 0.60X195 = 117匪, 215/45R17轮胎高度 H=0.45X 215 = 96.75匪。 以现在普遍使用轮胎的扁平比 60计算, 剔除爆胎后残留高 度 H30 = 30mm, 轮胎实际高度 (有效滚动半径) 降低数值在 60mn!〜 100mm。 爆胎后轮速与爆胎前轮速比值范围在 1.2〜1.4之间, 即爆胎或完全泄气轮 速增量比率 Δ V比 =20 %〜40 %。
当某车型的轮辋和轮胎规格确定后,其爆胎或完全泄气轮速增量比率数 值八¥¾也随即为定值, AVt 冗余、安全修正即成为爆胎或完全泄气轮速增 量比率判断阈值 Δνΐ。
Figure imgf000008_0001
安全修正可根据车型规格实验确定, 一 般地, 冗余、 安全系数以 0.7—0.8左右为适宜, 即取 Δνΐ= (0.7—0.8) Δ V比。
爆胎或完全泄气轮速增量比率判断阈值 Δ VI为判断爆胎的必要条件, 当轮速增量比率 Δ V 爆胎或完全泄气轮速增量比率判断阈值 Δ VI, 且其余 车轮轮速未同时发生相应变化, 即可判断车轮轮胎完全泄气。
爆胎轮速增量比率变化速率判断阈值 (Δνΐ/Δΐ) 按照以下步骤确定: 车轮轮速变化达到爆胎轮速增量比率判断阈值 Δ VI与所耗用时间 的比 值, 即为爆胎轮速增量比率变化速率判断阈值(Δνΐ/Δΐ) , 此为判断爆胎 的充分条件。
技术文献数据表明, 爆胎至轮胎完全泄气耗时 100ms左右, 轮胎完全泄 气至车体下沉 (轮辋碾压轮胎) 耗时 200 ms〜500ms (前后轮有差异) , 综 合考虑,以 500ms±200ms作为爆胎轮速增量比率变化速率的 "单位时间" Δ t数值。 轮速增量比率变化速率可以采用定时测频(频率法)方式或定频测时(周 期法, 测量脉冲宽度。 ) 或连续采样等方式进行采样和数据运算获得。
实施例 2
图 2所示的是本发明实施例 2的爆胎监控装置的结构框图,爆胎监控装 置包括:
爆胎监控电子控制器 (ECU-b ) ; 制动执行单元。
(ECU-b ) 以 ABS电子控制器 (ECU) 为基础升级改进而成, 以车轮轮 速信号为爆胎监测采样对象, 实施本发明提出的一种爆胎监测方法而监测和 判断爆胎事件, 适用于每个车轮具有独立轮速传感器的四通道四传感器 ABS 装置。 制动执行单元由对 ABS液压制动管路(液压管路和电气控制)的改进得 以实现, 如图 2所示,在车辆制动总泵 6与 ABS液压调节器 7之三位三通电 磁阀 8之间串联接入二位三通电磁阀 5, 二位三通电磁阀 5为常开式, 常态 下(不通电)保持制动总泵与液压调节器三位三通电磁阀 8之间制动管路的 畅通。 电动液压泵 10、 制动分泵 9、 三位三通电磁阀 8、 轮速传感器 1和 ABS 之 ECU 3为车辆 ABS系统主要部件, 爆胎判断、 制动指令单元 4为对 ABS 之 ECU升级改进而产生, 爆胎监控电子控制器(ECU-b ) 2包含原 ABS之 ECU
3和爆胎判断、 制动指令单元 4。
当 (ECU-b ) 2检出爆胎信号后, (ECU-b ) 2同时对二位三通电磁阀 5 和电动液压泵 10进行加电驱动, 二位三通电磁阀 5得电换向, 截止制动总 泵 6与 ABS液压调节器三位三通电磁阀 8之间的管路, 并连通制动总泵 6 与电动液压泵 10进液口之间管路,电动液压泵 10运转使制动管路内建立起 压力, 车辆即被制动。
当制动管路内压力过高导致车轮抱死滑移时, ABS控制程序介入制动过 程, 汽车 ABS功能正常发挥作用。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行 了进一步详细说明,所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种爆胎监测方法, 其特征在于:
以车轮轮速信号作为爆胎监测采样对象,当某车轮轮速变化 爆胎轮速 判断阈值, 同时其余车轮轮速未发生相应变化, 即判断某车轮完全泄气或发 生爆胎。
2、 根据权利要求 1所述的爆胎监测方法, 其特征在于:
爆胎轮速判断阈值包括爆胎或完全泄气轮速增量比率判断阈值△ VI 和 爆胎轮速增量比率变化速率判断阈值 Δ VI/ Δ t;
Δνΐ为必要条件, 当某车轮实时轮速增量比率
Figure imgf000011_0001
VI, 且其余车轮 轮速未发生相应变化, 即判断轮胎完全泄气;
Δνΐ/Δΐ为充分条件, 当某车轮实时轮速增量比率
Figure imgf000011_0002
VI, 其余车 轮轮速未发生相应变化, 且轮速增量比率变化速率也 Δνΐ/Δΐ, 即判断某 车轮爆胎。
3、 根据权利要求 1所述的爆胎监测方法, 其特征在于:
爆胎或完全泄气轮速增量比率 AVtt数值与轮胎正常气压和完全泄气两 种状态下的轮径比值关联, 数学表达式: AVtt= (R^/R _l) X 100%; 只与 轮胎和轮辋的规格尺寸有关, 与轮胎质量、 使用环境和行车速度无关; 对爆胎或完全泄气轮速增量比率 AVtt数值作冗余、安全修正后, 即成为 爆胎或完全泄气轮速增量比率判断阈值 Δ VI, 且 Δ VI < Δ V比。
4、 根据权利要求 1所述的爆胎监测方法, 其特征在于:
爆胎轮速增量比率变化速率判断阈值(Δνΐ/Δΐ) 的 At数值与轮胎爆 胎完全泄气耗时和车体下沉耗时关联, 与车型和轮胎、 轮辋规格有关, At 取值范围为 500ms ± 200ms。
5. 根据权利要求 1所述的爆胎监测方法, 其特征在于:
直接利用车辆 ABS轮速传感器输出的轮速信号作为爆胎监测采样对象; 或采用其它形式轮速传感器对车轮轮速进行监测采样, 从而得到轮速信号。
6. 根据权利要求 1所述的爆胎监测方法, 其特征在于:
所述车轮轮速包括车轮的角速度和 /或车轮的线速度。
7 . 一种爆胎监控装置, 其特征在于, 爆胎监控装置包括: 爆胎监控电子控制器 (ECU-b ) : 应用本发明所述的一种爆胎监 测方法, 对车辆的 ABS 电子控制器 (ECU ) 进行升级改进所形成的爆 胎监控电子控制器 (ECU-b ) , 包括原有 ABS 电子控制电路、 程序及 新增的轮速信号处理、 运算及爆胎逻辑判断等电路及程序软件;
制动执行单元: 通过对 ABS系统制动回路改进实现, 在车辆制动 总泵和 ABS液压调节器之间增加电磁阀, 使车辆制动总泵与 ABS液压 调节器之间液压管路受电信号控制截止或连通;
车轮轮胎完全泄气或爆胎后, (ECU-b )驱动 ABS液压泵和制动总 泵与 ABS液压调节器之间增加的电磁阀, 电磁阀截止制动总泵与 ABS 液压调节器之间管路, ABS液压泵 (回流泵) 运转产生液压制动力, 实现制动并保持原有 ABS功能。
8 . 根据权利要求 7所述的爆胎监控装置, 其特征在于: 当某车轮轮速增量比率^爆胎判断阈值,且其余车轮轮速未同时 发生相应变化, 所述爆胎监控电子控制器 (ECU-b ) 即判断某车轮完 全泄气; 若轮速增量比率变化速率也 爆胎判断阈值, 则判断某车轮 发生爆胎;
所述爆胎监控电子控制器 (ECU-b ) 判断车轮轮胎完全泄气或爆 胎后, 实施制动并作相应声光报警提示。
9. 根据权利要求 7所述的爆胎监控装置, 其特征在于:
ABS液压调节器与车辆制动总泵之间增加电磁阀, 使 ABS液压调节 器与车辆制动总泵之间液压管路连通或截止受电信号控制;
所述电磁阀为二位三通或二位二通电磁阀, 具有阀芯防卡死特征。
10. 根据权利要求 7所述的爆胎监控装置, 其特征在于: 爆胎监控装置的所述爆胎监控电子控制器 (ECU-b ) 判断轮胎爆月 或完全泄气后, 同时对所述电磁阀和液压泵进行加电驱动, 或先于液压泵 所述电磁阀加电,使所述制动总泵与所述液压调节器之间的液压管路先于 止或同时截止。
PCT/CN2009/071206 2008-04-10 2009-04-09 一种爆胎监测方法及一种爆胎监控装置 WO2009124504A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009800000901A CN101678729B (zh) 2008-04-10 2009-04-09 一种爆胎监测方法及一种爆胎监控装置
US12/901,589 US20110029214A1 (en) 2008-04-10 2010-10-11 Device and method for monitoring vehicle tires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2008100910270A CN101554830A (zh) 2008-04-10 2008-04-10 一种爆胎监测采样方法
CN200810091027.0 2008-04-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/901,589 Continuation US20110029214A1 (en) 2008-04-10 2010-10-11 Device and method for monitoring vehicle tires

Publications (1)

Publication Number Publication Date
WO2009124504A1 true WO2009124504A1 (zh) 2009-10-15

Family

ID=41161555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071206 WO2009124504A1 (zh) 2008-04-10 2009-04-09 一种爆胎监测方法及一种爆胎监控装置

Country Status (3)

Country Link
US (1) US20110029214A1 (zh)
CN (2) CN101554830A (zh)
WO (1) WO2009124504A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101716873B (zh) * 2009-12-24 2012-09-05 浙江亚太机电股份有限公司 一种车辆爆胎或剧烈漏气监测方法
CN102507219A (zh) * 2011-11-25 2012-06-20 华南理工大学 一种爆胎口径可控的爆胎实验装置
CN103832223A (zh) * 2012-11-20 2014-06-04 傅黎明 一种tpms技术缺陷改进方案
CN105270115A (zh) * 2014-06-19 2016-01-27 天津城建大学 基于磁敏式的间接型汽车轮胎状态监测系统
CN104842984B (zh) * 2014-08-26 2018-03-27 北汽福田汽车股份有限公司 爆胎制动方法、系统及车辆
JP6604000B2 (ja) * 2015-02-24 2019-11-13 セイコーエプソン株式会社 インクジェットインク組成物及びインクジェット記録方法
CN105946579B (zh) * 2016-06-24 2018-07-10 黄勇 一种汽车爆胎的监测方法
CN107953729A (zh) * 2016-10-18 2018-04-24 赖燕萍 一种基于整合式tpms的智能干预方法
FR3060126B1 (fr) * 2016-12-08 2020-06-26 Continental Automotive France Procede pour obtenir une information redondante de la vitesse d'un vehicule
CN107444037A (zh) * 2017-08-23 2017-12-08 奇瑞汽车股份有限公司 汽车胎压监测方法
CN108973545B (zh) * 2018-09-20 2024-03-08 安徽工业大学科技园有限公司 一种预测爆胎的监测装置及方法
CN111016565B (zh) * 2019-11-26 2023-12-22 广东白云学院 车辆控制方法、装置、车身ecu和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3630116A1 (de) * 1986-09-04 1988-03-17 Bosch Gmbh Robert Mit einem antiblockierregelsystem ausgeruestetes fahrzeug
US5712616A (en) * 1995-07-26 1998-01-27 Robert Bosch Gmbh System for monitoring the condition of tires
CN2480178Y (zh) * 2000-12-24 2002-03-06 傅建中 汽车爆胎自动刹车、紧急制动模拟abs功能机构
CN2517606Y (zh) * 2001-12-05 2002-10-23 傅建中 汽车爆胎自动紧急刹车系统
CN1142073C (zh) * 2000-01-28 2004-03-17 傅建中 汽车爆胎自动减速系统
CN1501867A (zh) * 2001-02-26 2004-06-02 丰田自动车株式会社 用于获得轮胎信息的轮胎信息获得装置、方法以及轮胎信息获得程序
CN1982095A (zh) * 2005-12-15 2007-06-20 傅建中 Tpms改进方案及远程监测模块外供电轮胎气压监控系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591906A (en) * 1992-09-16 1997-01-07 Sumitomo Electric Industries, Ltd. Tire pressure drop detecting device and method
EP1240038B1 (de) * 1999-12-15 2003-10-08 Continental Aktiengesellschaft Verfahren und vorrichtung zur erkennung eines druckverlustes von reifen in kraftfahrzeugen
US20040243290A1 (en) * 2001-08-11 2004-12-02 Robert Schmidt Method for determining a fault in a pressure sensor or brake circuit
US20060108170A1 (en) * 2002-11-18 2006-05-25 Hiroaki Ishikawa Axle unit with slip sensor and slip meansurement method
CN101054085B (zh) * 2006-04-16 2014-09-10 傅建中 一种具备行车制动功能的制动防抱死系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3630116A1 (de) * 1986-09-04 1988-03-17 Bosch Gmbh Robert Mit einem antiblockierregelsystem ausgeruestetes fahrzeug
US5712616A (en) * 1995-07-26 1998-01-27 Robert Bosch Gmbh System for monitoring the condition of tires
CN1142073C (zh) * 2000-01-28 2004-03-17 傅建中 汽车爆胎自动减速系统
CN2480178Y (zh) * 2000-12-24 2002-03-06 傅建中 汽车爆胎自动刹车、紧急制动模拟abs功能机构
CN1501867A (zh) * 2001-02-26 2004-06-02 丰田自动车株式会社 用于获得轮胎信息的轮胎信息获得装置、方法以及轮胎信息获得程序
CN2517606Y (zh) * 2001-12-05 2002-10-23 傅建中 汽车爆胎自动紧急刹车系统
CN1982095A (zh) * 2005-12-15 2007-06-20 傅建中 Tpms改进方案及远程监测模块外供电轮胎气压监控系统

Also Published As

Publication number Publication date
US20110029214A1 (en) 2011-02-03
CN101554830A (zh) 2009-10-14
CN101678729B (zh) 2010-12-15
CN101678729A (zh) 2010-03-24

Similar Documents

Publication Publication Date Title
WO2009124504A1 (zh) 一种爆胎监测方法及一种爆胎监控装置
CN105189222B (zh) 用于根据牵引车abs的响应以减小的挂车制动力制动牵引车-挂车组合的方法
US7292924B2 (en) Vehicle stability control enhancement using tire force characteristics
CN101088818A (zh) 电动汽车防滑控制系统及方法
US7185957B2 (en) Braking force distribution control apparatus and method
EP1529703B1 (en) A method for judging road surface condition and device thereof, and program for judging road surface condition
US20080281552A1 (en) Method for the Detection of the Loading of a Motor Vehicle
WO2010048761A1 (zh) 汽车爆胎检测与防偏系统及其实现方法
JPH09142275A (ja) 車両ブレーキ装置の制御方法および制御装置
CN100430246C (zh) 用于检测轮胎胎压损失的方法及装置
CN108263151A (zh) 汽车及汽车的胎压监测方法
CN102114757A (zh) 一种基于abs轮速传感器信号的轮胎气压监测方法
CN106004833A (zh) 一种飞机防滑刹车控制系统
US10994746B2 (en) Vehicle dynamic control monitoring system
CN106926842A (zh) 车辆辅助驾驶方法及车辆辅助驾驶系统
JP2003267012A (ja) タイヤ空気圧低下検出方法および装置、ならびにタイヤ減圧判定のプログラム
CN107139915A (zh) 一种车辆气压防抱死性能的测试系统
CN201208958Y (zh) 一种能调整制动力的爆胎制动系统
US20080084288A1 (en) Method Of Monitoring Tire Pressure In A Motor Vehicle
EP2142390B1 (en) Adaptive pressure thresholds in a tyre pressure monitoring system
JP2010151467A (ja) タイヤ空気圧監視装置
US20030210136A1 (en) Method and apparatus for detecting decrease in tire air-pressure, and program for judging decompression of tire
US20010026098A1 (en) Method for automatically detecting the installation position of brake force generating units of an electromagnetic motor vehicle brake system
CN112937534A (zh) 一种汽车液压制动助力控制方法
CN203410444U (zh) 一种新型汽车气压制动防抱死装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000090.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09730918

Country of ref document: EP

Kind code of ref document: A1