WO2009123279A1 - Insulated wire, coil using the same, and motor - Google Patents
Insulated wire, coil using the same, and motor Download PDFInfo
- Publication number
- WO2009123279A1 WO2009123279A1 PCT/JP2009/056879 JP2009056879W WO2009123279A1 WO 2009123279 A1 WO2009123279 A1 WO 2009123279A1 JP 2009056879 W JP2009056879 W JP 2009056879W WO 2009123279 A1 WO2009123279 A1 WO 2009123279A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- insulated wire
- wire according
- epoxy resin
- parts
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/40—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
Definitions
- the present invention relates to an insulated wire suitably used for an electric device such as an air conditioner or a refrigerator using a refrigerant, a compressor, a coil using the insulated wire, and a motor.
- Insulated wires are used in various modes depending on the type of electrical equipment. For this reason, the insulating coating is required to have excellent adhesion so as to ensure insulation in various specifications. For example, it is required that the film does not peel off even against mechanical and physical stimuli such as wear and scratches.
- Patent Document 1 proposes an insulated wire having a two-layered insulating film.
- the first insulating layer is made of polyesterimide
- the second insulating layer is made of polyamideimide.
- an air conditioner compressor that is used in summer and not used in winter resumes operation after it has been idle for several months.
- a refrigerant such as Freon that has adhered to the insulating coating penetrates into the coating during the resting state.
- the temperature around the insulated wire becomes high as a result of restarting the equipment, the expanded and vaporized refrigerant pushes the coating.
- a state where the insulating coating is foamed, that is, a blister occurs.
- Such a foaming phenomenon may also occur in a film having high adhesion to mechanical and physical stimuli. For this reason, it is not possible to determine whether or not an insulated wire can be used only by simple adhesion evaluation.
- Polyesterimide resin insulation films are excellent in solvent resistance and have few problems of blistering, so they are used as insulation wire films for air conditioners and air conditioners.
- demands for heat resistance and wear resistance are becoming stricter year by year. For this reason, it is necessary to comprehensively evaluate the wear resistance, heat resistance, adhesion, blister generation, etc., for the insulated wire coating used in air conditioners and compressors. Therefore, there is a need for an insulated wire that can satisfy these characteristics in a composite manner.
- An object of the present invention is to provide an insulated wire capable of suppressing the generation of blisters not only for adhesion to mechanical stimulation, but also when operation is resumed after being exposed to a refrigerant for a long period of time.
- the present applicant has found that an insulated wire using a cured product of an epoxy resin as a primer layer is superior in adhesion after heating and wear resistance as compared to an esterimide insulating coating, and applied for a patent (Japanese Patent Application No. 2007-). 266405).
- the present applicant has further studied and completed the present invention so that the generation of blisters can be suppressed.
- thermosetting resin is contained in an amount of 1 to 10 parts by mass per 100 parts by mass of the epoxy resin.
- the reactive functional group is preferably a methylol group.
- thermosetting resin is preferably a phenol resin and / or an amino resin.
- thermosetting resin is preferably a phenol resin.
- thermosetting resin is preferably a xylene resin having a number average molecular weight of 100 to 3000.
- the epoxy resin is preferably a phenoxy resin.
- the insulating layer is preferably made of a polyesterimide resin.
- a lubricating overcoat layer is further formed on the insulating layer.
- a coil formed by winding the insulated wire.
- a motor having the above coil is provided.
- the insulated wire of the present invention includes a conductor, a base layer that covers the conductor, and an insulating layer formed on the base layer.
- the underlayer is made of a cured product of a resin composition containing an epoxy resin and a thermosetting resin having a reactive functional group.
- a metal conductor such as a copper wire or an aluminum wire is used as the conductor.
- the underlayer is made of a cured product of a resin composition containing an epoxy resin and a thermosetting resin having a reactive functional group. More preferably, the underlayer is made of a cured product of a resin composition containing a blocked isocyanate.
- Epoxy resin examples include an epoxy resin produced from bisphenol and epihalohydrin, and an epoxy resin obtained by addition polymerization reaction of a phenol epoxy resin and bisphenol. These may be used alone or in combination of two or more. Among these, an epoxy resin produced from bisphenol and epihalohydrin is preferable, and a phenoxy resin having a large molecular weight is more preferable.
- bisphenol examples include 2,2-bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) sulfide, and 2,2-bis. (4-Hydroxyphenyl) sulfone, 3,4,5,6-dibenzo-1,2-oxaphosphan-2-oxide hydroquinone and the like. These may be used alone or in combination of two or more.
- a preferred representative example of epihalohydrin is epichlorohydrin.
- Suitable epoxy resins produced from bisphenol and epihalohydrin include, for example, bisphenol A modified phenoxy resin produced from bisphenol A and epihalohydrin, bisphenol S modified phenoxy resin produced from bisphenol S and epihalohydrin, and the like. .
- These phenoxy resins are all commercially available compounds, and specific examples thereof include product numbers YP-50, YP50S, YP-55, YP-70, and YPS007A30A manufactured by Tohto Kasei Co., Ltd. .
- the epoxy resin of this invention is not limited to said illustration.
- the weight average molecular weight of the epoxy resin used in the present invention is not particularly limited, but is preferably 30,000 to 100,000, more preferably 50,000 to 80,000 from the viewpoint of improving heat resistance and adhesion.
- the thermosetting resin used for the underlayer of the present invention is a thermosetting resin that has a reactive functional group such as a hydroxyl group such as an amino group or a methylol group and can be cured by heating. Specifically, phenol resins obtained by reaction of phenols with aldehydes, amino resins obtained by condensation of amino group-containing compounds and formaldehyde, or mixed resins thereof are used.
- amino group-containing compounds used for the synthesis of amino resins include urea, alkylurea, melamine, acetoguanamine, aniline, benzoguanamine and the like.
- the amino resin used in the present invention is a condensate of these amino group-containing compounds and formaldehyde, or an alcohol-modified resin thereof, and examples thereof include urea resins, melamine resins, guanamine resins, urea-melamine resins, and the like. .
- an amino resin a commercially available product may be used. Specifically, Uban 10S-60, 10R, 20SB, 20SE-60, 20HS, 21HV, 21R, 22R, 22R-60 from Mitsui Chemicals, Inc. may be used. 120, 122, 220, 134, 135, 136, 60R, 62, 69-1, 163, 164, 165, 805, 91-55; Cymel 300, 301, 303, 325, 350, Nippon Cytec Industries, Ltd.
- Such an amino resin has an alcoholic hydroxyl group or amino group as a reactive functional group at the end of the resin by a methylolation reaction, and can be cured by normal temperature to heating.
- an amino resin having a reactive hydroxyl group such as a methylol group contains an epoxy resin or a blocked isocyanate by heating
- This is considered to be useful for the modification of the epoxy resin.
- the occurrence of blistering at a high temperature which was a weak point of phenoxy resin, can be suppressed.
- the penetration of the refrigerant can be prevented by forming a cured body film having a crosslinked structure in which an amino resin is also involved.
- blistering can be suppressed as a result by preventing swelling of the film due to vaporization of the refrigerant and preventing the refrigerant from escaping.
- phenols used for the synthesis of phenol resins include phenols, alkylphenols such as cresol, xylenol and isopropylphenol; divalent phenols such as resorcin; and vinylphenols such as p-vinylphenol. Two or more kinds may be used in combination.
- aldehydes used in the synthesis of phenol resins include aldehyde group-containing compounds such as acetaldehyde and furfural in addition to formaldehyde, and these may be used in combination of two or more.
- phenol resins are known as phenol resins, xylene resins, resorcin resins, resorcin-modified phenol resins, cresol-modified phenol resins, alkylphenol-modified resins, and the like.
- Such phenol resins are generally classified into a novolak type synthesized using an acid catalyst and a resol type synthesized using an alkali catalyst.
- a resol type phenolic resin having a reactive hydroxyl group, particularly a methylol group at the resin chain end is preferably used.
- phenolic resins for example, Sumikanol 610 from Taoka Chemical Co., Ltd .; Tamanoru 1010R, Tamanoru 100S, Tamanoru 510, Tamanoru 7509, Tamanoru 7705 from Arakawa Chemical Industries, Ltd .; Showa Polymer Shounol CKM-1634, 1636, 1737, 1282, 904, 907, 908, 983, 2400, 941, 2103, 2432, 5254, BKM-2620, BRP-5904, RM-0909, BLS-2030 3574, 3122, 362, 356, 3135, CLS-3940, 3950, BRS-324, 621, BLL-3085, BRL-113, 114, 117, 134, 274, 2584, 112A, 120Z, CKS-3898; Dee Chemical Co., Ltd.
- phenol resins are liquid resins at room temperature and can be cured by heating.
- phenolic resins have an alcoholic hydroxyl group such as methylol as a reactive functional group. From this, it is considered that the phenol resins are useful for the modification of the epoxy resin by reacting with the epoxy resin contained in the varnish and further with the isocyanate to form a crosslinked cured product. That is, as with amino resins, it is possible to suppress the occurrence of blistering at high temperatures, which was a weak point of phenoxy resins. Furthermore, phenol resins can effectively suppress the occurrence of blisters without impairing the excellent wear resistance, softening resistance, and high-temperature adhesion of phenoxy resins.
- the above amino resins and phenol resins may be used singly or in combination of two or more, or may be used by blending amino resin and phenol resins. Phenol resins are preferable.
- liquid modified xylene / formaldehyde resin is used.
- the liquid modified xylene / formaldehyde resin can be obtained by adding alcohols, phenols, and the like to the xylene / formaldehyde resin obtained by the reaction of xylene and formaldehyde in the presence of an acidic catalyst.
- an oligomer having a methylol group as a reactive hydroxyl group is preferably used which is a resol type resin containing a metaxylene / mesitylene skeleton.
- the number average molecular weight of the oligomer is preferably 100 to 3000, more preferably about 200 to 1500. Further, it is preferably a liquid having a viscosity of 20 to 15000 centipoise (25 ° C.), more preferably 30 to 5000 centipoise (25 ° C.), and still more preferably 30 to 1000 so that the compatibility with the epoxy resin is excellent. A centipoise, particularly preferably 30 to 500 centipoise.
- the thermosetting resin having such a reactive functional group is contained in an amount of 1 to 10 parts by weight, preferably 2 to 8 parts by weight, per 100 parts by weight of the epoxy resin.
- the content of the thermosetting tree is too large, the crosslink density of the film becomes too high, and the flexibility is lowered. For this reason, the elongation of the film is lowered, and as a result, the adhesion during processing and use is lowered.
- the content of the thermosetting tree is too small, it is difficult to obtain the effect of adding the thermosetting resin, that is, the effect of suppressing the generation of blisters.
- the underlayer resin composition preferably contains a blocked isocyanate.
- the blocked isocyanate mainly acts as a curing agent for the epoxy resin.
- isocyanate compounds include aromatic diisocyanates such as tolylene diisocyanate (TDI), p-phenylene diisocyanate, and naphthalene diisocyanate; hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane diisocyanate, lysine diisocyanate, and the like.
- aromatic diisocyanates such as tolylene diisocyanate (TDI), p-phenylene diisocyanate, and naphthalene diisocyanate
- HDI hexamethylene diisocyanate
- 2,2,4-trimethylhexane diisocyanate 2,2,4-trimethylhexane diisocyanate
- lysine diisocyanate and the like.
- Aliphatic diisocyanates having 3 to 12 carbon atoms 1,4-cyclohexane diisocyanate (CDI), isophorone diisocyanate (IPDI), 4,4′-dicyclohexylmethane diisocyanate (hydrogenated MDI), methylcyclohexane diisocyanate, isopropylidene Dicyclohexyl-4,4'-diisocyanate, 1,3-diisocyanatomerylcyclohexane (hydrogenated XDI), hydrogenated TDI, 2,5-bis (a Salicyclic diisocyanates having 5 to 18 carbon atoms such as sinatomethyl) -bicyclo [2.2.1] heptane, 2,6-bis (isosinatomethyl) -bicyclo [2.2.1] heptane; (XDI), aliphatic diisocyanates having an aromatic ring such as tetramethylxylylene diisocyanate
- block isocyanate curing agents may be used, such as CT stable, BL-3175, TPLS-2759, BL-4165, Sumitomo Biurethane Co., Ltd., MS-50 manufactured by Nippon Polyurethane Industry Co., Ltd. Can be used.
- Such a blocked isocyanate compound is preferably used at a ratio of 5 to 30 parts by mass per 100 parts by mass of the epoxy resin.
- the blocked isocyanate compound forms a bond with an epoxy resin curing agent, and also with a thermosetting resin having a reactive functional group. These reactions can provide a highly three-dimensional reticulated cured film. Therefore, it is possible to increase the heat resistance, wear resistance, softening resistance, and adhesion of the base layer based on the epoxy resin, and thus the coating, and to suppress the generation of blisters.
- the resin composition constituting the base layer of the insulated wire of the present invention in addition to the epoxy resin, thermosetting resin, and blocked isocyanate, as long as the purpose of the present invention is not impaired, for example, silica, Fillers such as alumina, magnesium oxide, beryllium oxide, silicon carbide, titanium carbide, tungsten carbide, boron nitride, silicon nitride; to improve insulating paint curability and fluidity, for example, tetraisopropyl titanate, tetrabutyl titanate, tetra Additives such as titanium-based zinc naphthenates such as hexyl titanate and zinc-based compounds such as zinc octenoate; antioxidants; curability improvers; leveling agents;
- a resin composition containing the above components is diluted with an organic solvent to prepare a coating, and the coating applied to the surface of the conductor is heated and cured to form a base layer.
- the heating temperature is not particularly limited, but is preferably about 100 to 250 ° C.
- organic solvent used for preparing the paint examples include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexaethyl phosphate triamide, and ⁇ -butyrolactone.
- Polar organic solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and other ketones; esters such as methyl acetate, ethyl acetate, butyl acetate and diethyl oxalate; diethyl esters, ethylene glycol dimethyl ether, diethylene glycol monomethyl Ethers, ethers such as ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol methyl ether, tetrahydrofuran; hexane, heptane, benzene, tolue Hydrocarbon compounds such as xylene, halogenated hydrocarbon compounds such as dichloromethane and chlorobenzene, phenols such as cresol and chlorophenol, and tertiary amines such as pyridine. These organic solvents are used alone. Or two or more of them may be used in combination. These organic solvents are used alone
- the thickness of the underlayer is not particularly limited, but is preferably 1.0 to 10 ⁇ m, more preferably 1.0 to 5 ⁇ m from the viewpoint of improving the adhesion between the insulating coating and the conductor.
- resins, polyester imides, polyimides, polyamide imides, and the like conventionally used as insulating coatings can be used. Of these, polyester imide is preferable.
- the insulating layer may be formed by dissolving a resin composition containing the additives listed in the composition for the underlayer in an organic solvent in a polyester imide resin, as long as the object of the present invention is not impaired. It can be formed by adjusting the coating liquid and applying the coating liquid on the underlayer. Or you may form an insulating layer by drying, after immersing the electric wire in which the base layer was formed in the coating liquid for insulating films.
- the insulating layer may be a single layer or two or more layers. When composed of two or more layers, different resins, for example, a polyesterimide layer and a polyamideimide layer may be combined.
- the thickness of the insulating layer is preferably 1 to 100 ⁇ m, more preferably 10 to 50 ⁇ m, from the viewpoint of protecting the conductor. This is because if the insulating coating becomes too thick, the outer diameter of the insulated wire increases, and as a result, the space factor of the coil wound around the insulated wire tends to decrease. (Lubricity overcoat layer)
- a lubricating overcoat layer is further formed on the insulating layer. Covering the insulating layer with a resin having lubricity is preferable because friction between electric wires generated during compression processing for increasing coil winding and space factor is reduced.
- the resin constituting the lubricity overcoat layer may be any resin that has lubricity, for example, paraffins such as liquid paraffin and solid paraffin, various waxes, polyethylene, fluororesin, silicone resin and other lubricants as binders. Examples thereof include those bound with a resin.
- a resin Preferably, an amidoimide resin imparted with lubricity by adding paraffin or wax is used.
- the lubricity overcoat layer may be formed not only by the resin having the above-mentioned lubricity but also by applying a non-volatile lubricant.
- the lubricating overcoat layer may be one layer or two or more layers. Further, a lubricity overcoat layer may be formed by applying a non-lubricating lubricant on the resin layer having lubricity and further on the resin layer.
- the thickness of the lubricating overcoat layer is not particularly limited, but may be a thickness sufficient to reduce friction and wear with the surrounding electric wires when the insulated electric wires are formed in a coil shape. Specifically, the thickness of the lubricating overcoat layer is preferably 0.5 to 10 ⁇ m, more preferably 1 to 5 ⁇ m.
- the insulated wire of the present invention having the configuration as described above has not only excellent adhesion to mechanical stimulation but also when the insulating film is exposed to a refrigerant atmosphere, it is further operated for a certain period and for a certain period. The occurrence of blisters is also suppressed when the pauses are repeated alternately.
- the softening temperature (° C.) was measured according to JIS C3003 “11.1A”. Specifically, in the softening resistance test, first, two insulated wires were prepared, and both insulated wires were set so as to cross each other on a metal block preheated to a temperature specified in the individual standard. After elapse of a predetermined time, a load was applied to the intersecting portion of both insulated wires using a piston, and a test voltage was immediately applied to the upper and lower insulated wires. [Insulated wire No.
- Esterimide resin (EI) A commercially available polyesterimide (manufactured by Hitachi Chemical Co., Ltd., trade name: Isomid 40SM-45) was used.
- Close contact ester imide resin Close contact EI) EH402-45No. 3 (manufactured by Dainichi Seika Co., Ltd.) was used.
- Amidoimide resin (AI) HI-406E-34 (trade name of Hitachi Chemical Co., Ltd.) was used.
- Lubricating amidoimide resin (lubricating AI)
- a 1 L flask equipped with a thermometer, a cooling pipe, a calcium chloride-filled pipe, a stirrer, and a nitrogen blowing pipe while flowing 150 mL of nitrogen gas from the nitrogen blowing pipe per minute, 176.9 g of trimellitic anhydride, 1.95 g of trimellitic acid and 232.2 g of methylene diisocyanate (trade name: Coronate PH manufactured by Mitsui Takeda Chemical Co., Ltd.) were added.
- N-methyl-2-pyrrolidone as a solvent was added to the flask, heated at 80 ° C. for 3 hours while stirring with a stirrer, and then the temperature in the system was increased to 120 ° C. over about 4 hours. Warm and heat at the same temperature for 3 hours. Thereafter, the heating was stopped, and 134 g of xylene was added to the flask to dilute the content liquid, followed by cooling to obtain a general-purpose amideimide resin (AI) having a nonvolatile content of 35% by mass.
- AI general-purpose amideimide resin
- Lubricating amideimide resin (lubricating AI) was obtained by mixing AI and polyethylene wax at a ratio of 1.5 parts by weight of polyethylene wax with respect to 100 parts by weight of solid content of this general-purpose amideimide resin (AI). .
- Phenoxy resin (PH) As an epoxy resin, a bisphenol A type phenoxy resin [Tobu Kasei Co., Ltd., product name: YP-50, a solution of phenoxy resin dissolved in cresol / cyclohexanone (solid content: 27 mass%)] was used.
- Xylene / formaldehyde resin Nikanol PR-1440 (trade name) manufactured by Fudou Co., Ltd. was used.
- Block isocyanate Block isocyanate (MS-50: trade name) manufactured by Nippon Polyurethane Industry Co., Ltd. was used. This blocked isocyanate is a bifunctional type having two isocyanate groups in one molecule.
- the initial adhesion of each of the produced insulated wires was measured according to the above evaluation method.
- the adhesion after heat treatment (heating condition 1: 180 ° C. ⁇ 6 hours) was measured.
- the heat-treated electric wires were examined for flexibility, dielectric breakdown voltage, abrasion resistance, softening resistance, and occurrence of blisters after the refrigerant treatment according to the above evaluation methods. The results are shown in Table 2.
- the base resin of the base layer is phenoxy resin.
- excellent adhesion could be secured even after the heat treatment.
- the initial adhesion is inferior to that of the ester imide resin (No. 1, 2), but after the heat treatment, the adhesion is superior to the coating having the base layer based on the ester imide resin. It was.
- the base layer (No. 3 to 8) based on phenoxy resin a film having excellent friction resistance and excellent mechanical strength was obtained.
- Death Module CT is a trifunctional type composition having three isocyanate groups in one molecule, and is represented as “CT” in Table 3.
- an insulated wire having a base layer formed using a phenoxy resin (No. 22), a high adhesion ester imide resin (No. 23), and a general-purpose ester imide resin (No. 24) was prepared.
- the amino resins and phenol resins in Table 3 are as follows.
- A1 Cymel 370 from Nippon Cytec Industries, Ltd.
- A2 Super Becamine OD-L-131-60 from DIC Corporation
- F1 Sumikanoru 610 from Taoka Chemical Co., Ltd.
- F2 CKS3898 of Showa Polymer Co., Ltd.
- F3 PRIOFEN 5010 from DIC Corporation
- F4 Gunei Chemical Industry Co., Ltd. cash register top PL2211
- F5 Tamanol 100S from Arakawa Chemical Co., Ltd.
- F6 Sumitomo Bakelite Co., Ltd. PR-53194
- the insulated wire of the present invention has improved mechanical strength and high adhesion to mechanical stimulation as compared to conventional wires, and can suppress the generation of blisters even in an environment exposed to a refrigerant atmosphere. . For this reason, it is particularly useful as an insulated wire such as a coil for an air conditioner compressor, which requires processing resistance, strength, and refrigerant resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Organic Insulating Materials (AREA)
- Insulated Conductors (AREA)
- Epoxy Resins (AREA)
- Paints Or Removers (AREA)
Abstract
An insulated wire includes a conductor, a foundation layer covering the conductor, and an insulated layer formed on the foundation layer. The foundation layer is configured with a hardening body of a resin composition including a heat curing resin having an epoxy resin, and a reactive functional group. The heat curing resin includes 1 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin. Further, the heat curing resin preferably includes 5 to 30 parts by moss of blocked isocyanate with respect to 100 parts by mass of the epoxy resin.
Description
本発明は、冷媒が用いられているエアコンや冷蔵庫等の電気機器、コンプレッサー等に好適に用いられる絶縁電線、その絶縁電線を用いたコイル、及びモータに関する。
[Technical Field] The present invention relates to an insulated wire suitably used for an electric device such as an air conditioner or a refrigerator using a refrigerant, a compressor, a coil using the insulated wire, and a motor.
絶縁電線は、電気機器の種類に応じて種々の態様で用いられる。このことから、絶縁被膜には、種々の仕様態様で絶縁性を確保できるように、優れた密着性が要求される。例えば、摩耗や引っ掻きといった機械的、物理的刺激に対しても、剥がれないことが求められている。
Insulated wires are used in various modes depending on the type of electrical equipment. For this reason, the insulating coating is required to have excellent adhesion so as to ensure insulation in various specifications. For example, it is required that the film does not peel off even against mechanical and physical stimuli such as wear and scratches.
優れた密着性、絶縁性、機械的強度を有する絶縁被膜として、例えば、特開2007-287399号公報(特許文献1)に、絶縁被膜を2層構造とした絶縁電線が提案されている。この文献に開示の構成によれば、第1絶縁層はポリエステルイミドからなり、第2絶縁層はポリアミドイミドからなる。
As an insulating film having excellent adhesion, insulation, and mechanical strength, for example, Japanese Patent Application Laid-Open No. 2007-287399 (Patent Document 1) proposes an insulated wire having a two-layered insulating film. According to the configuration disclosed in this document, the first insulating layer is made of polyesterimide, and the second insulating layer is made of polyamideimide.
ところで、冷媒が用いられているエアコンや冷蔵庫等の電気製品、特にコンプレッサー等に用いられる絶縁電線においては、加工や摩擦といった機械的、物理的刺激に対する優れた密着性だけでは不十分である。
By the way, for electrical products such as air conditioners and refrigerators in which refrigerant is used, especially for insulated wires used in compressors, excellent adhesion to mechanical and physical stimuli such as processing and friction is not sufficient.
例えば、夏に使用し、冬に使用しない冷房機のコンプレッサーでは、数か月間以上使用されずに休止状態が続いた後に運転が再開される。冷媒雰囲気にさらされている絶縁電線では、絶縁被膜に付着していたフレオン等の冷媒が、休止状態中に被膜内に浸透する。機器の再起動により絶縁電線の周囲が一気に高温になると、膨張、気化した冷媒が被膜を押し広げる。このため、絶縁被膜が発泡したような状態、すなわちブリスターが発生する。このような発泡現象は、機械的、物理的刺激に対する密着性の高い被膜にも生じる場合がある。このため、単純な密着性評価だけでは、絶縁電線の使用の可否を判断できない。
For example, an air conditioner compressor that is used in summer and not used in winter resumes operation after it has been idle for several months. In an insulated wire exposed to a refrigerant atmosphere, a refrigerant such as Freon that has adhered to the insulating coating penetrates into the coating during the resting state. When the temperature around the insulated wire becomes high as a result of restarting the equipment, the expanded and vaporized refrigerant pushes the coating. For this reason, a state where the insulating coating is foamed, that is, a blister occurs. Such a foaming phenomenon may also occur in a film having high adhesion to mechanical and physical stimuli. For this reason, it is not possible to determine whether or not an insulated wire can be used only by simple adhesion evaluation.
ポリエステルイミド樹脂絶縁皮膜は、耐溶剤性に優れ、ブリスター発生の問題が少ないことから、エアコンや冷房機の絶縁電線用被膜として用いられている。しかしながら、近年の過酷な巻き線加工やワニス含浸処理に対応するために、耐熱性、耐摩耗性についての要求が年々厳しくなっている。このため、エアコン、コンプレッサーに用いられる絶縁電線用被膜としては、耐摩耗性、耐熱性、密着性、ブリスター発生などを総合的に評価する必要がある。よって、これらの特性を複合的に満足できる絶縁電線が求められている。
特開2007-287399号公報
Polyesterimide resin insulation films are excellent in solvent resistance and have few problems of blistering, so they are used as insulation wire films for air conditioners and air conditioners. However, in order to cope with the severe winding process and varnish impregnation treatment in recent years, demands for heat resistance and wear resistance are becoming stricter year by year. For this reason, it is necessary to comprehensively evaluate the wear resistance, heat resistance, adhesion, blister generation, etc., for the insulated wire coating used in air conditioners and compressors. Therefore, there is a need for an insulated wire that can satisfy these characteristics in a composite manner.
JP 2007-287399 A
本発明の目的は、機械的刺激に対する密着性だけでなく、長期間冷媒に曝された後に運転を再開しても、ブリスターの発生を抑制できる絶縁電線を提供することにある。
本出願人は、エポキシ樹脂の硬化物をプライマー層として用いた絶縁電線は、エステルイミド絶縁被膜と比べて、加熱後密着性、耐摩耗性に優れることを見出し、特許出願した(特願2007-266405号)。本出願人は、ブリスター発生を抑制できるように、さらに検討を進め、本発明を完成した。 An object of the present invention is to provide an insulated wire capable of suppressing the generation of blisters not only for adhesion to mechanical stimulation, but also when operation is resumed after being exposed to a refrigerant for a long period of time.
The present applicant has found that an insulated wire using a cured product of an epoxy resin as a primer layer is superior in adhesion after heating and wear resistance as compared to an esterimide insulating coating, and applied for a patent (Japanese Patent Application No. 2007-). 266405). The present applicant has further studied and completed the present invention so that the generation of blisters can be suppressed.
本出願人は、エポキシ樹脂の硬化物をプライマー層として用いた絶縁電線は、エステルイミド絶縁被膜と比べて、加熱後密着性、耐摩耗性に優れることを見出し、特許出願した(特願2007-266405号)。本出願人は、ブリスター発生を抑制できるように、さらに検討を進め、本発明を完成した。 An object of the present invention is to provide an insulated wire capable of suppressing the generation of blisters not only for adhesion to mechanical stimulation, but also when operation is resumed after being exposed to a refrigerant for a long period of time.
The present applicant has found that an insulated wire using a cured product of an epoxy resin as a primer layer is superior in adhesion after heating and wear resistance as compared to an esterimide insulating coating, and applied for a patent (Japanese Patent Application No. 2007-). 266405). The present applicant has further studied and completed the present invention so that the generation of blisters can be suppressed.
上記の課題を解決するため、本発明の第一の態様によれば、導体;導体を被覆する下地層;及び下地層上に形成された絶縁層を有し、下地層は、エポキシ樹脂、及び反応性官能基を有する加熱硬化型樹脂を含有する樹脂組成物の硬化体で構成される絶縁電線が提供される。加熱硬化型樹脂は、エポキシ樹脂100質量部あたり1~10質量部含まれている。
In order to solve the above problems, according to a first aspect of the present invention, there is provided: a conductor; an underlayer covering the conductor; and an insulating layer formed on the underlayer, the underlayer comprising an epoxy resin, and An insulated wire composed of a cured body of a resin composition containing a thermosetting resin having a reactive functional group is provided. The thermosetting resin is contained in an amount of 1 to 10 parts by mass per 100 parts by mass of the epoxy resin.
上記の絶縁電線において、エポキシ樹脂100質量部あたり、更に、ブロックイソシアネート5~30質量部が含有されていることが好ましい。
上記の絶縁電線において、反応性官能基は、メチロール基であることが好ましい。 In the above insulated wire, it is preferable that 5 to 30 parts by mass of blocked isocyanate is further contained per 100 parts by mass of the epoxy resin.
In the above insulated wire, the reactive functional group is preferably a methylol group.
上記の絶縁電線において、反応性官能基は、メチロール基であることが好ましい。 In the above insulated wire, it is preferable that 5 to 30 parts by mass of blocked isocyanate is further contained per 100 parts by mass of the epoxy resin.
In the above insulated wire, the reactive functional group is preferably a methylol group.
上記の絶縁電線において、加熱硬化型樹脂は、フェノール樹脂類及び/又はアミノ樹脂であることが好ましい。
上記の絶縁電線において、加熱硬化型樹脂は、フェノール樹脂類であることが好ましい。 In the above insulated wire, the thermosetting resin is preferably a phenol resin and / or an amino resin.
In the above insulated wire, the thermosetting resin is preferably a phenol resin.
上記の絶縁電線において、加熱硬化型樹脂は、フェノール樹脂類であることが好ましい。 In the above insulated wire, the thermosetting resin is preferably a phenol resin and / or an amino resin.
In the above insulated wire, the thermosetting resin is preferably a phenol resin.
上記の絶縁電線において、加熱硬化型樹脂は、数平均分子量100~3000のキシレン樹脂であることが好ましい。
上記の絶縁電線において、エポキシ樹脂は、フェノキシ樹脂であることが好ましい。 In the above insulated wire, the thermosetting resin is preferably a xylene resin having a number average molecular weight of 100 to 3000.
In the above insulated wire, the epoxy resin is preferably a phenoxy resin.
上記の絶縁電線において、エポキシ樹脂は、フェノキシ樹脂であることが好ましい。 In the above insulated wire, the thermosetting resin is preferably a xylene resin having a number average molecular weight of 100 to 3000.
In the above insulated wire, the epoxy resin is preferably a phenoxy resin.
上記の絶縁電線において、絶縁層は、ポリエステルイミド樹脂で構成されていることが好ましい。
上記の絶縁電線において、絶縁層上に、さらに潤滑性上塗層が形成されていることが好ましい。 In the above insulated wire, the insulating layer is preferably made of a polyesterimide resin.
In the above insulated wire, it is preferable that a lubricating overcoat layer is further formed on the insulating layer.
上記の絶縁電線において、絶縁層上に、さらに潤滑性上塗層が形成されていることが好ましい。 In the above insulated wire, the insulating layer is preferably made of a polyesterimide resin.
In the above insulated wire, it is preferable that a lubricating overcoat layer is further formed on the insulating layer.
上記の課題を解決するため、本発明の第二の態様によれば、上記の絶縁電線を捲回してなるコイルが提供される。
上記の課題を解決するため、本発明の第三の態様によれば、上記のコイルを有するモータが提供される。 In order to solve the above problems, according to a second aspect of the present invention, there is provided a coil formed by winding the insulated wire.
In order to solve the above problems, according to a third aspect of the present invention, a motor having the above coil is provided.
上記の課題を解決するため、本発明の第三の態様によれば、上記のコイルを有するモータが提供される。 In order to solve the above problems, according to a second aspect of the present invention, there is provided a coil formed by winding the insulated wire.
In order to solve the above problems, according to a third aspect of the present invention, a motor having the above coil is provided.
以下に、本発明の実施の形態を説明する。以下に開示された実施の形態は、すべての点で例示であって制限的なものではない。本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図している。
Hereinafter, embodiments of the present invention will be described. The embodiments disclosed below are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
本発明の絶縁電線は、導体、導体を被覆する下地層、及び下地層上に形成された絶縁層から構成されている。下地層は、エポキシ樹脂、及び反応性官能基を有する加熱硬化型樹脂を含有する樹脂組成物の硬化体からなる。
〔導体〕
導体としては、銅線、アルミニウム線などの金属導体が用いられる。
〔下地層〕
下地層は、エポキシ樹脂、及び反応性官能基を有する加熱硬化型樹脂を含有する樹脂組成物の硬化体からなる。下地層は、ブロックイソシアネートを含有する樹脂組成物の硬化体からなることが更に好ましい。
<エポキシ樹脂>
本発明で用いられるエポキシ樹脂としては、例えば、ビスフェノールとエピハロヒドリンとから製造されるエポキシ樹脂、フェノールエポキシ樹脂とビスフェノールとを付加重合反応させて得られるエポキシ樹脂などが挙げられる。これらは、それぞれ単独で用いてもよく、又は2種以上を混合して用いてもよい。これらのうち、ビスフェノールとエピハロヒドリンとから製造されるエポキシ樹脂が好ましく、分子量が大きいフェノキシ樹脂がより好ましい。 The insulated wire of the present invention includes a conductor, a base layer that covers the conductor, and an insulating layer formed on the base layer. The underlayer is made of a cured product of a resin composition containing an epoxy resin and a thermosetting resin having a reactive functional group.
〔conductor〕
A metal conductor such as a copper wire or an aluminum wire is used as the conductor.
[Underlayer]
The underlayer is made of a cured product of a resin composition containing an epoxy resin and a thermosetting resin having a reactive functional group. More preferably, the underlayer is made of a cured product of a resin composition containing a blocked isocyanate.
<Epoxy resin>
Examples of the epoxy resin used in the present invention include an epoxy resin produced from bisphenol and epihalohydrin, and an epoxy resin obtained by addition polymerization reaction of a phenol epoxy resin and bisphenol. These may be used alone or in combination of two or more. Among these, an epoxy resin produced from bisphenol and epihalohydrin is preferable, and a phenoxy resin having a large molecular weight is more preferable.
〔導体〕
導体としては、銅線、アルミニウム線などの金属導体が用いられる。
〔下地層〕
下地層は、エポキシ樹脂、及び反応性官能基を有する加熱硬化型樹脂を含有する樹脂組成物の硬化体からなる。下地層は、ブロックイソシアネートを含有する樹脂組成物の硬化体からなることが更に好ましい。
<エポキシ樹脂>
本発明で用いられるエポキシ樹脂としては、例えば、ビスフェノールとエピハロヒドリンとから製造されるエポキシ樹脂、フェノールエポキシ樹脂とビスフェノールとを付加重合反応させて得られるエポキシ樹脂などが挙げられる。これらは、それぞれ単独で用いてもよく、又は2種以上を混合して用いてもよい。これらのうち、ビスフェノールとエピハロヒドリンとから製造されるエポキシ樹脂が好ましく、分子量が大きいフェノキシ樹脂がより好ましい。 The insulated wire of the present invention includes a conductor, a base layer that covers the conductor, and an insulating layer formed on the base layer. The underlayer is made of a cured product of a resin composition containing an epoxy resin and a thermosetting resin having a reactive functional group.
〔conductor〕
A metal conductor such as a copper wire or an aluminum wire is used as the conductor.
[Underlayer]
The underlayer is made of a cured product of a resin composition containing an epoxy resin and a thermosetting resin having a reactive functional group. More preferably, the underlayer is made of a cured product of a resin composition containing a blocked isocyanate.
<Epoxy resin>
Examples of the epoxy resin used in the present invention include an epoxy resin produced from bisphenol and epihalohydrin, and an epoxy resin obtained by addition polymerization reaction of a phenol epoxy resin and bisphenol. These may be used alone or in combination of two or more. Among these, an epoxy resin produced from bisphenol and epihalohydrin is preferable, and a phenoxy resin having a large molecular weight is more preferable.
ビスフェノールとしては、例えば、2,2-ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)スルフィド、2,2-ビス(4-ヒドロキシフェニル)スルホン、3,4,5,6-ジベンゾ-1,2-オキサホスファン-2-オキサイドヒドロキノンなどが挙げられる。これらは、それぞれ単独で用いてもよく、又は2種以上混合して用いてもよい。エピハロヒドリンの好適な代表例としては、エピクロロヒドリンが挙げられる。
Examples of bisphenol include 2,2-bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) sulfide, and 2,2-bis. (4-Hydroxyphenyl) sulfone, 3,4,5,6-dibenzo-1,2-oxaphosphan-2-oxide hydroquinone and the like. These may be used alone or in combination of two or more. A preferred representative example of epihalohydrin is epichlorohydrin.
ビスフェノールとエピハロヒドリンとから製造される好適なエポキシ樹脂としては、例えば、ビスフェノールAとエピハロヒドリンとから製造されるビスフェノールA変性フェノキシ樹脂、ビスフェノールSとエピハロヒドリンとから製造されるビスフェノールS変性フェノキシ樹脂などが挙げられる。これらのフェノキシ樹脂は、いずれも商業的に入手しうる化合物であり、具体的には、東都化成(株)製、品番YP-50、YP50S、YP-55、YP-70、YPS007A30Aなどが挙げられる。本発明のエポキシ樹脂は、上記の例示に限定されない。
Suitable epoxy resins produced from bisphenol and epihalohydrin include, for example, bisphenol A modified phenoxy resin produced from bisphenol A and epihalohydrin, bisphenol S modified phenoxy resin produced from bisphenol S and epihalohydrin, and the like. . These phenoxy resins are all commercially available compounds, and specific examples thereof include product numbers YP-50, YP50S, YP-55, YP-70, and YPS007A30A manufactured by Tohto Kasei Co., Ltd. . The epoxy resin of this invention is not limited to said illustration.
本発明に用いられるエポキシ樹脂の重量平均分子量は、特に限定されないが、耐熱性及び密着性を高める観点から、好ましくは、30000~100000、より好ましくは、50000~80000である。
<加熱硬化型樹脂>
本発明の下地層に用いられる加熱硬化型樹脂は、アミノ基、メチロール基等の水酸基といった反応性官能基を有し、加熱により硬化できる熱硬化性樹脂である。具体的には、フェノール類とアルデヒド類との反応により得られるフェノール樹脂類、アミノ基含有化合物とホルムアルデヒドとの縮合によって得られるアミノ樹脂、又はこれらの混合樹脂が用いられる。 The weight average molecular weight of the epoxy resin used in the present invention is not particularly limited, but is preferably 30,000 to 100,000, more preferably 50,000 to 80,000 from the viewpoint of improving heat resistance and adhesion.
<Heat-curing resin>
The thermosetting resin used for the underlayer of the present invention is a thermosetting resin that has a reactive functional group such as a hydroxyl group such as an amino group or a methylol group and can be cured by heating. Specifically, phenol resins obtained by reaction of phenols with aldehydes, amino resins obtained by condensation of amino group-containing compounds and formaldehyde, or mixed resins thereof are used.
<加熱硬化型樹脂>
本発明の下地層に用いられる加熱硬化型樹脂は、アミノ基、メチロール基等の水酸基といった反応性官能基を有し、加熱により硬化できる熱硬化性樹脂である。具体的には、フェノール類とアルデヒド類との反応により得られるフェノール樹脂類、アミノ基含有化合物とホルムアルデヒドとの縮合によって得られるアミノ樹脂、又はこれらの混合樹脂が用いられる。 The weight average molecular weight of the epoxy resin used in the present invention is not particularly limited, but is preferably 30,000 to 100,000, more preferably 50,000 to 80,000 from the viewpoint of improving heat resistance and adhesion.
<Heat-curing resin>
The thermosetting resin used for the underlayer of the present invention is a thermosetting resin that has a reactive functional group such as a hydroxyl group such as an amino group or a methylol group and can be cured by heating. Specifically, phenol resins obtained by reaction of phenols with aldehydes, amino resins obtained by condensation of amino group-containing compounds and formaldehyde, or mixed resins thereof are used.
アミノ樹脂の合成に用いられるアミノ基含有化合物としては、尿素、アルキル尿素、メラミン、アセトグアナミン、アニリン、ベンゾグアナミンなどが挙げられる。従って、本発明で用いられるアミノ樹脂は、これらのアミノ基含有化合物とホルムアルデヒドの縮合物、またはそのアルコール変性樹脂であり、例えば、ユリア樹脂、メラミン樹脂、グアナミン樹脂、尿素-メラミン樹脂などが該当する。
Examples of amino group-containing compounds used for the synthesis of amino resins include urea, alkylurea, melamine, acetoguanamine, aniline, benzoguanamine and the like. Accordingly, the amino resin used in the present invention is a condensate of these amino group-containing compounds and formaldehyde, or an alcohol-modified resin thereof, and examples thereof include urea resins, melamine resins, guanamine resins, urea-melamine resins, and the like. .
このようなアミノ樹脂としては、市販品を用いてもよく、具体的には、三井化学株式会社のユーバン10S-60、10R、20SB、20SE-60、20HS、21HV、21R、22R、22R-60、120、122、220、134、135、136、60R、62、69-1、163、164、165、805、91-55;日本サイテックインダストリーズ株式会社のサイメル300、301、303、325、350、370、1116、1130、1123、1125;DIC株式会社のベッカミンP-138、P-196-M、G-1800、G-1850、スーパーベッカミンOD-L-131-60、L-806、J-820-60、L-109-65、L-117-60、L-127-60、G-821-60、L-101-60、47-508-60、L-116-70、L-118-60、L-121-60、L-120-60、TD-139、17-590、L-105-60、TD-126、P-198が挙げられる。
As such an amino resin, a commercially available product may be used. Specifically, Uban 10S-60, 10R, 20SB, 20SE-60, 20HS, 21HV, 21R, 22R, 22R-60 from Mitsui Chemicals, Inc. may be used. 120, 122, 220, 134, 135, 136, 60R, 62, 69-1, 163, 164, 165, 805, 91-55; Cymel 300, 301, 303, 325, 350, Nippon Cytec Industries, Ltd. 370, 1116, 1130, 1123, 1125; DIC Corporation Becamine P-138, P-196-M, G-1800, G-1850, Super Becamine OD-L-131-60, L-806, J- 820-60, L-109-65, L-117-60, L-127-60, G-821-60 L-101-60, 47-508-60, L-116-70, L-118-60, L-121-60, L-120-60, TD-139, 17-590, L-105-60, TD-126, P-198.
このようなアミノ樹脂は、メチロール化反応により樹脂末端に反応性官能基としてアルコール性水酸基、あるいはアミノ基を有しており、常温~加熱により硬化することができる。
Such an amino resin has an alcoholic hydroxyl group or amino group as a reactive functional group at the end of the resin by a methylolation reaction, and can be cured by normal temperature to heating.
メチロール基等の反応性水酸基を有しているアミノ樹脂は、加熱によりエポキシ樹脂、ブロックイソシアネートを含む場合、さらにイソシアネート基とも反応して、架橋硬化体を形成できると考えられる。これにより、エポキシ樹脂の改質に役立つと考えられる。特に、フェノキシ樹脂の弱点であった高温でのブリスター発生を抑制することができる。エポキシ樹脂の硬化にあたり、アミノ樹脂も参与した架橋構造を有する硬化体被膜を形成することで、冷媒の浸透を防止できると考えられる。また、浸透した冷媒についても、冷媒の気化による被膜の膨れを抑止するとともに、冷媒の抜けを防止することで、結果として、ブリスターの発生を抑制できると考えられる。
When an amino resin having a reactive hydroxyl group such as a methylol group contains an epoxy resin or a blocked isocyanate by heating, it is considered that it can further react with an isocyanate group to form a crosslinked cured product. This is considered to be useful for the modification of the epoxy resin. In particular, the occurrence of blistering at a high temperature, which was a weak point of phenoxy resin, can be suppressed. In curing the epoxy resin, it is considered that the penetration of the refrigerant can be prevented by forming a cured body film having a crosslinked structure in which an amino resin is also involved. In addition, it is considered that, as for the permeated refrigerant, blistering can be suppressed as a result by preventing swelling of the film due to vaporization of the refrigerant and preventing the refrigerant from escaping.
フェノール樹脂類の合成に用いられるフェノール類としては、フェノールの他、クレゾール、キシレノール、イソプロピルフェノール等のアルキルフェノール;レゾルシン等の二価のフェノール;p-ビニルフェノール等のビニルフェノールなどが挙げられ、これらは2種以上併用してもよい。フェノール樹脂類の合成に用いられるアルデヒド類としては、ホルムアルデヒドの他、アセトアルデヒド、フルフラールなどのアルデヒド基含有化合物が挙げられ、これらは2種以上併用してもよい。使用するフェノール類、アルデヒド類の種類に応じて、フェノール樹脂類は、フェノール樹脂、キシレン樹脂、レゾルシン樹脂、レゾルシン変性フェノール樹脂、クレゾール変性フェノール樹脂、アルキルフェノール変性樹脂などとして知られている。
Examples of phenols used for the synthesis of phenol resins include phenols, alkylphenols such as cresol, xylenol and isopropylphenol; divalent phenols such as resorcin; and vinylphenols such as p-vinylphenol. Two or more kinds may be used in combination. Examples of aldehydes used in the synthesis of phenol resins include aldehyde group-containing compounds such as acetaldehyde and furfural in addition to formaldehyde, and these may be used in combination of two or more. Depending on the types of phenols and aldehydes used, phenol resins are known as phenol resins, xylene resins, resorcin resins, resorcin-modified phenol resins, cresol-modified phenol resins, alkylphenol-modified resins, and the like.
このようなフェノール樹脂類は、一般に酸触媒を用いて合成されるノボラックタイプと、アルカリ触媒を用いて合成されるレゾールタイプとに分類される。本発明では、樹脂鎖末端に、反応性水酸基、特にメチロール基を有するレゾールタイプのフェノール樹脂類が、好ましく用いられる。
Such phenol resins are generally classified into a novolak type synthesized using an acid catalyst and a resol type synthesized using an alkali catalyst. In the present invention, a resol type phenolic resin having a reactive hydroxyl group, particularly a methylol group at the resin chain end is preferably used.
フェノール樹脂類としては、市販品を用いてもよく、例えば、田岡化学工業株式会社のスミカノール610;荒川化学工業株式会社製のタマノル1010R、タマノル100S、タマノル510、タマノル7509、タマノル7705;昭和高分子株式会社製のショウノールCKM-1634、1636、1737、1282、904、907、908、983、2400、941、2103、2432、5254、BKM-2620、BRP-5904、RM-0909、BLS-2030、3574、3122、362、356、3135、CLS-3940、3950、BRS-324、621、BLL-3085、BRL-113、114、117、134、274、2584、112A、120Z、CKS-3898;スケネクタディーケミカル株式会社のSP-460B、SP103H、HRJ-1367;群栄化学工業株式会社のレジトップPL2211;住友ベークライト株式会社のPR-HF-3、PR-53194、PR-53195;株式会社フドーのニカノールPR1440、ニカノールL、ニカノールP100;DIC株式会社のプライオーフェン5010、503、TD-447が挙げられる。
Commercially available products may be used as the phenolic resins, for example, Sumikanol 610 from Taoka Chemical Co., Ltd .; Tamanoru 1010R, Tamanoru 100S, Tamanoru 510, Tamanoru 7509, Tamanoru 7705 from Arakawa Chemical Industries, Ltd .; Showa Polymer Shounol CKM-1634, 1636, 1737, 1282, 904, 907, 908, 983, 2400, 941, 2103, 2432, 5254, BKM-2620, BRP-5904, RM-0909, BLS-2030 3574, 3122, 362, 356, 3135, CLS-3940, 3950, BRS-324, 621, BLL-3085, BRL-113, 114, 117, 134, 274, 2584, 112A, 120Z, CKS-3898; Dee Chemical Co., Ltd. SP-460B, SP103H, HRJ-1367; Gunei Chemical Industry Co., Ltd. cash register top PL2211, Sumitomo Bakelite Co., Ltd. PR-HF-3, PR-53194, PR-53195; PR1440, Nikanol L, Nikanol P100; priorphen 5010, 503 and TD-447 manufactured by DIC Corporation.
以上のようなフェノール樹脂類は、常温液状樹脂で、加熱により硬化させることができる。また、フェノール樹脂類は、反応性官能基として、メチロール等のアルコール性水酸基を有している。このことから、フェノール樹脂類は、ワニスに含まれるエポキシ樹脂、更にブロックイソシアネートを含有する場合にはイソシアネートとも反応して架橋硬化物を形成することにより、エポキシ樹脂の改質に役立つと考えられる。すなわち、アミノ樹脂と同様に、フェノキシ樹脂の弱点であった高温でのブリスター発生を抑制することができる。さらに、フェノール樹脂類では、フェノキシ樹脂の優れた耐摩耗性、耐軟化性、高温での密着性を損なうことなく、有効にブリスターの発生を抑制できる。
The above phenol resins are liquid resins at room temperature and can be cured by heating. In addition, phenolic resins have an alcoholic hydroxyl group such as methylol as a reactive functional group. From this, it is considered that the phenol resins are useful for the modification of the epoxy resin by reacting with the epoxy resin contained in the varnish and further with the isocyanate to form a crosslinked cured product. That is, as with amino resins, it is possible to suppress the occurrence of blistering at high temperatures, which was a weak point of phenoxy resins. Furthermore, phenol resins can effectively suppress the occurrence of blisters without impairing the excellent wear resistance, softening resistance, and high-temperature adhesion of phenoxy resins.
以上のようなアミノ樹脂、フェノール樹脂類は、単独で用いてもよく、2種以上混合して用いてもよく、アミノ樹脂とフェノール樹脂類とをブレンドして用いてもよい。好ましくは、フェノール樹脂類である。
The above amino resins and phenol resins may be used singly or in combination of two or more, or may be used by blending amino resin and phenol resins. Phenol resins are preferable.
さらに、フェノール樹脂類のうち、液状の変性キシレン・ホルムアルデヒド樹脂が用いられる。液状の変性キシレン・ホルムアルデヒド樹脂は、キシレンとホルムアルデヒドの反応により得られるキシレン・ホルムアルデヒド樹脂に、さらに酸性触媒存在下で、アルコール類、フェノール類などを添加し反応させて得られる。液状の変性キシレン・ホルムアルデヒド樹脂として、具体的には、メタキシレン・メシチレン骨格を含むレゾール型の樹脂で、反応性を有する水酸基としてメチロール基を末端に有するオリゴマーが好ましく用いられる。オリゴマーの数平均分子量は、好ましくは、100~3000であり、より好ましくは、200~1500程度である。また、エポキシ樹脂との相溶性に優れるように、粘度20~15000センチポイズ(25℃)の液体であることが好ましく、より好ましくは、30~5000センチポイズ(25℃)、さらに好ましくは、30~1000センチポイズ、特に好ましくは、30~500センチポイズである。
Furthermore, among phenolic resins, liquid modified xylene / formaldehyde resin is used. The liquid modified xylene / formaldehyde resin can be obtained by adding alcohols, phenols, and the like to the xylene / formaldehyde resin obtained by the reaction of xylene and formaldehyde in the presence of an acidic catalyst. As the liquid modified xylene / formaldehyde resin, specifically, an oligomer having a methylol group as a reactive hydroxyl group is preferably used which is a resol type resin containing a metaxylene / mesitylene skeleton. The number average molecular weight of the oligomer is preferably 100 to 3000, more preferably about 200 to 1500. Further, it is preferably a liquid having a viscosity of 20 to 15000 centipoise (25 ° C.), more preferably 30 to 5000 centipoise (25 ° C.), and still more preferably 30 to 1000 so that the compatibility with the epoxy resin is excellent. A centipoise, particularly preferably 30 to 500 centipoise.
このような反応性官能基を有する加熱硬化型樹脂は、エポキシ樹脂100質量部あたり、1~10質量部、好ましくは、2~8質量部含有される。加熱硬化型樹の含有量が多くなりすぎると、被膜の架橋密度が高くなりすぎて、可とう性が低下する。そのため、被膜の伸びが低下し、ひいては、加工や使用時における密着性が低下する。一方、加熱硬化型樹の含有量が少なすぎると、加熱硬化型樹脂添加の効果、すなわち、ブリスター発生の抑制効果が得られにくい。
<ブロックイソシアネート>
下地層用樹脂組成物には、ブロックイソシアネートが含有されることが好ましい。ブロックイソシアネートは、主として、エポキシ樹脂の硬化剤として作用する。 The thermosetting resin having such a reactive functional group is contained in an amount of 1 to 10 parts by weight, preferably 2 to 8 parts by weight, per 100 parts by weight of the epoxy resin. When the content of the thermosetting tree is too large, the crosslink density of the film becomes too high, and the flexibility is lowered. For this reason, the elongation of the film is lowered, and as a result, the adhesion during processing and use is lowered. On the other hand, when the content of the thermosetting tree is too small, it is difficult to obtain the effect of adding the thermosetting resin, that is, the effect of suppressing the generation of blisters.
<Block isocyanate>
The underlayer resin composition preferably contains a blocked isocyanate. The blocked isocyanate mainly acts as a curing agent for the epoxy resin.
<ブロックイソシアネート>
下地層用樹脂組成物には、ブロックイソシアネートが含有されることが好ましい。ブロックイソシアネートは、主として、エポキシ樹脂の硬化剤として作用する。 The thermosetting resin having such a reactive functional group is contained in an amount of 1 to 10 parts by weight, preferably 2 to 8 parts by weight, per 100 parts by weight of the epoxy resin. When the content of the thermosetting tree is too large, the crosslink density of the film becomes too high, and the flexibility is lowered. For this reason, the elongation of the film is lowered, and as a result, the adhesion during processing and use is lowered. On the other hand, when the content of the thermosetting tree is too small, it is difficult to obtain the effect of adding the thermosetting resin, that is, the effect of suppressing the generation of blisters.
<Block isocyanate>
The underlayer resin composition preferably contains a blocked isocyanate. The blocked isocyanate mainly acts as a curing agent for the epoxy resin.
上記イソシアネート系化合物としては、例えば、トリレンジイソシアネート(TDI)、p-フェニレンジイソシアネート、ナフタレンジイソシアネートなどの芳香族ジイソシアネート;ヘキサメチレンジイソシアネート(HDI)、2,2,4-トリメチルへキサンジイソシアネート、リジンジイソシアネートなどの炭素数3~12の脂肪族ジイソシアネート;1,4-シクロへキサンジイソシアネート(CDI)、イソホロンジイソシアネート(IPDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(水添MDI)、メチルシクロへキサンジイソシアネート、イソプロピデンジシクロヘキシル-4,4’-ジイソシアネート、1、3-ジイソシアナトメリルシクロへキサン(水添XDI)、水添TDI、2,5-ビス(イソシナートメチル)-ビシクロ[2.2.1]ヘプタン、2,6-ビス(イソシナートメチル)-ビシクロ[2.2.1]ヘプタンなどの炭素数5~18の脂環式ジイソシアネート;キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)などの芳香環を有する脂肪族ジイソシアネート;これらのジイソシアネートの変性物などが挙げられ、これらは、それぞれ単独で用いてもよく、又は2種以上混合して用いてもよい。
Examples of the isocyanate compounds include aromatic diisocyanates such as tolylene diisocyanate (TDI), p-phenylene diisocyanate, and naphthalene diisocyanate; hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane diisocyanate, lysine diisocyanate, and the like. Aliphatic diisocyanates having 3 to 12 carbon atoms: 1,4-cyclohexane diisocyanate (CDI), isophorone diisocyanate (IPDI), 4,4′-dicyclohexylmethane diisocyanate (hydrogenated MDI), methylcyclohexane diisocyanate, isopropylidene Dicyclohexyl-4,4'-diisocyanate, 1,3-diisocyanatomerylcyclohexane (hydrogenated XDI), hydrogenated TDI, 2,5-bis (a Salicyclic diisocyanates having 5 to 18 carbon atoms such as sinatomethyl) -bicyclo [2.2.1] heptane, 2,6-bis (isosinatomethyl) -bicyclo [2.2.1] heptane; (XDI), aliphatic diisocyanates having an aromatic ring such as tetramethylxylylene diisocyanate (TMXDI); modified products of these diisocyanates, etc., which may be used alone or in combination of two or more. May be used.
ブロックイソシアネート硬化剤としては、市販されているものを用いてもよく、例えば、住友バイウレタン社のCT stable、BL-3175、TPLS-2759、BL-4165、日本ポリウレタン工業社製のMS-50などを用いることができる。
Commercially available block isocyanate curing agents may be used, such as CT stable, BL-3175, TPLS-2759, BL-4165, Sumitomo Biurethane Co., Ltd., MS-50 manufactured by Nippon Polyurethane Industry Co., Ltd. Can be used.
このようなブロックイソシアネート化合物は、エポキシ樹脂100質量部あたり5~30質量部の割合で用いることが好ましい。ブロックイソシアネート化合物は、エポキシ樹脂の硬化剤、さらには、反応性官能基を有する加熱硬化型樹脂とも結合を形成する。これらの反応により、高度に三次元網状化された硬化体被膜を提供することができる。よって、エポキシ樹脂をベースとする下地層、ひいては、被膜の耐熱性、耐摩耗性、耐軟化性、密着性を高め、ブリスター発生の抑制できる。
Such a blocked isocyanate compound is preferably used at a ratio of 5 to 30 parts by mass per 100 parts by mass of the epoxy resin. The blocked isocyanate compound forms a bond with an epoxy resin curing agent, and also with a thermosetting resin having a reactive functional group. These reactions can provide a highly three-dimensional reticulated cured film. Therefore, it is possible to increase the heat resistance, wear resistance, softening resistance, and adhesion of the base layer based on the epoxy resin, and thus the coating, and to suppress the generation of blisters.
本発明の絶縁電線の下地層を構成する樹脂組成物には、上記エポキシ樹脂、加熱硬化型樹脂、ブロックイソシアネートの他、本発明の目的を阻害しない範囲で、必要に応じて、例えば、シリカ、アルミナ、酸化マグネシウム、酸化ベリリウム、炭化ケイ素、炭化チタン、タングステンカーバイド、窒化ホウ素、窒化ケイ素などのフィラー;絶縁塗料硬化性や流動性を改善するために、例えば、テトライソプロピルチタネート、テトラブチルチタネート、テトラヘキシルチタネートなどのチタン系ナフテン酸亜鉛、オクテン酸亜鉛などの亜鉛系化合物;酸化防止剤;硬化性改善剤;レベリング剤;接着助剤などの添加剤が含有されてもよい。
In the resin composition constituting the base layer of the insulated wire of the present invention, in addition to the epoxy resin, thermosetting resin, and blocked isocyanate, as long as the purpose of the present invention is not impaired, for example, silica, Fillers such as alumina, magnesium oxide, beryllium oxide, silicon carbide, titanium carbide, tungsten carbide, boron nitride, silicon nitride; to improve insulating paint curability and fluidity, for example, tetraisopropyl titanate, tetrabutyl titanate, tetra Additives such as titanium-based zinc naphthenates such as hexyl titanate and zinc-based compounds such as zinc octenoate; antioxidants; curability improvers; leveling agents;
以上のような成分を含有する樹脂組成物を有機溶媒で希釈して塗料を調整し、導体の表面に塗布した塗料を加熱して硬化することにより、下地層が形成される。加熱温度は、特に限定しないが、100~250℃程度であることが好ましい。
A resin composition containing the above components is diluted with an organic solvent to prepare a coating, and the coating applied to the surface of the conductor is heated and cured to form a base layer. The heating temperature is not particularly limited, but is preferably about 100 to 250 ° C.
塗料の調製に用いる有機溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサエチルリン酸トリアミド、γ-ブチロラクトンなどの極性有機溶媒をはじめ、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロへキサノンなどのケトン類;酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチルなどのエステル類;ジエチルエステル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールメチルエーテル、テトラヒドロフランなどのエーテル類;ヘキサン、ヘプタン、ベンゼン、トルエン、キシレンなどの炭化水素化合物;ジクロロメタン、クロロベンゼンなどのハロゲン化炭化水素化合物;クレゾール、クロルフェノールなどのフェノール類;ピリジンなどの第三級アミンなどが挙げられ、これらの有機溶媒は、それぞれ単独で用いてもよく、又は2種以上混合して用いてもよい。
Examples of the organic solvent used for preparing the paint include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexaethyl phosphate triamide, and γ-butyrolactone. Polar organic solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and other ketones; esters such as methyl acetate, ethyl acetate, butyl acetate and diethyl oxalate; diethyl esters, ethylene glycol dimethyl ether, diethylene glycol monomethyl Ethers, ethers such as ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol methyl ether, tetrahydrofuran; hexane, heptane, benzene, tolue Hydrocarbon compounds such as xylene, halogenated hydrocarbon compounds such as dichloromethane and chlorobenzene, phenols such as cresol and chlorophenol, and tertiary amines such as pyridine. These organic solvents are used alone. Or two or more of them may be used in combination.
下地層の厚みとしては、特に限定しないが、絶縁被膜と導体との密着性を高めるとの観点から、好ましくは、1.0~10μm、より好ましくは、1.0~5μmである。
〔絶縁層〕
絶縁層としては、従来より絶縁被膜として用いられていた樹脂、ポリエステルイミド、ポリイミド、ポリアミドイミドなどを用いることができる。これらのうち、好ましくは、ポリエステルイミドである。 The thickness of the underlayer is not particularly limited, but is preferably 1.0 to 10 μm, more preferably 1.0 to 5 μm from the viewpoint of improving the adhesion between the insulating coating and the conductor.
[Insulating layer]
As the insulating layer, resins, polyester imides, polyimides, polyamide imides, and the like conventionally used as insulating coatings can be used. Of these, polyester imide is preferable.
〔絶縁層〕
絶縁層としては、従来より絶縁被膜として用いられていた樹脂、ポリエステルイミド、ポリイミド、ポリアミドイミドなどを用いることができる。これらのうち、好ましくは、ポリエステルイミドである。 The thickness of the underlayer is not particularly limited, but is preferably 1.0 to 10 μm, more preferably 1.0 to 5 μm from the viewpoint of improving the adhesion between the insulating coating and the conductor.
[Insulating layer]
As the insulating layer, resins, polyester imides, polyimides, polyamide imides, and the like conventionally used as insulating coatings can be used. Of these, polyester imide is preferable.
絶縁層は、例えば、ポリエステルイミド樹脂に、本発明の目的を阻害しない範囲で、必要に応じて、下地層用組成物で列挙した添加剤を含む樹脂組成物を有機溶媒に溶解して絶縁被膜用塗液を調整し、この塗液を下地層上に塗布することによって形成することができる。あるいは、絶縁被膜用塗液中に、下地層が形成された電線を浸漬後、乾燥することによって、絶縁層を形成してもよい。
For example, the insulating layer may be formed by dissolving a resin composition containing the additives listed in the composition for the underlayer in an organic solvent in a polyester imide resin, as long as the object of the present invention is not impaired. It can be formed by adjusting the coating liquid and applying the coating liquid on the underlayer. Or you may form an insulating layer by drying, after immersing the electric wire in which the base layer was formed in the coating liquid for insulating films.
絶縁層は、1層であってもよいし、2層以上であってもよい。2層以上から構成される場合、異なる樹脂、例えば、ポリエステルイミド層とポリアミドイミド層とを組み合わせてもよい。
The insulating layer may be a single layer or two or more layers. When composed of two or more layers, different resins, for example, a polyesterimide layer and a polyamideimide layer may be combined.
絶縁層の厚みは、導体を保護する観点から、好ましくは、1~100μmであり、より好ましくは、10~50μmである。絶縁被膜が厚くなりすぎると、絶縁電線の外径が大きくなり、ひいては、絶縁電線を捲回したコイルの占積率が低下する傾向にあるからである。
〔潤滑性上塗層〕
本発明の絶縁電線は、絶縁層上に、さらに潤滑性上塗層が形成されていることが好ましい。潤滑性を有する樹脂で絶縁層を被覆することは、コイル巻きや占積率を挙げるための圧縮加工時に生じる電線間での摩擦が低減されるため、好ましい。 The thickness of the insulating layer is preferably 1 to 100 μm, more preferably 10 to 50 μm, from the viewpoint of protecting the conductor. This is because if the insulating coating becomes too thick, the outer diameter of the insulated wire increases, and as a result, the space factor of the coil wound around the insulated wire tends to decrease.
(Lubricity overcoat layer)
In the insulated wire of the present invention, it is preferable that a lubricating overcoat layer is further formed on the insulating layer. Covering the insulating layer with a resin having lubricity is preferable because friction between electric wires generated during compression processing for increasing coil winding and space factor is reduced.
〔潤滑性上塗層〕
本発明の絶縁電線は、絶縁層上に、さらに潤滑性上塗層が形成されていることが好ましい。潤滑性を有する樹脂で絶縁層を被覆することは、コイル巻きや占積率を挙げるための圧縮加工時に生じる電線間での摩擦が低減されるため、好ましい。 The thickness of the insulating layer is preferably 1 to 100 μm, more preferably 10 to 50 μm, from the viewpoint of protecting the conductor. This is because if the insulating coating becomes too thick, the outer diameter of the insulated wire increases, and as a result, the space factor of the coil wound around the insulated wire tends to decrease.
(Lubricity overcoat layer)
In the insulated wire of the present invention, it is preferable that a lubricating overcoat layer is further formed on the insulating layer. Covering the insulating layer with a resin having lubricity is preferable because friction between electric wires generated during compression processing for increasing coil winding and space factor is reduced.
潤滑性上塗層を構成する樹脂としては、潤滑性を有するものであればよく、例えば、流動パラフィン、固形パラフィン等のパラフィン類、各種ワックス、ポリエチレン、フッ素樹脂、シリコーン樹脂等の潤滑剤をバインダー樹脂で結着したものなどを挙げることができる。好ましくは、パラフィン又はワックスを添加することで潤滑性を付与したアミドイミド樹脂が用いられる。潤滑性上塗層は、上記潤滑性を有する樹脂で構成される場合だけでなく、不揮発性の潤滑油を塗布することによって、形成してもよい。
The resin constituting the lubricity overcoat layer may be any resin that has lubricity, for example, paraffins such as liquid paraffin and solid paraffin, various waxes, polyethylene, fluororesin, silicone resin and other lubricants as binders. Examples thereof include those bound with a resin. Preferably, an amidoimide resin imparted with lubricity by adding paraffin or wax is used. The lubricity overcoat layer may be formed not only by the resin having the above-mentioned lubricity but also by applying a non-volatile lubricant.
潤滑性上塗層は、1層であってもよく、2層以上であってもよい。また、潤滑性を有する樹脂層、さらにその樹脂層上に不揮発性の潤滑油を塗布して、潤滑性上塗層を形成してもよい。
The lubricating overcoat layer may be one layer or two or more layers. Further, a lubricity overcoat layer may be formed by applying a non-lubricating lubricant on the resin layer having lubricity and further on the resin layer.
潤滑性上塗層の厚みは、特に限定しないが、絶縁電線をコイル状に形成した場合、周囲の電線との摩擦、摩耗を低減するのに必要十分な厚みであればよい。潤滑性上塗層の厚みは、具体的には、好ましくは、0.5~10μmであり、より好ましくは、1~5μmである。
The thickness of the lubricating overcoat layer is not particularly limited, but may be a thickness sufficient to reduce friction and wear with the surrounding electric wires when the insulated electric wires are formed in a coil shape. Specifically, the thickness of the lubricating overcoat layer is preferably 0.5 to 10 μm, more preferably 1 to 5 μm.
以上のような構成を有する本発明の絶縁電線は、絶縁被膜が機械的刺激に対して優れた密着性を有するだけでなく、冷媒雰囲気に曝される場合、さらには一定期間の運転と一定期間の休止とが交互に繰り返される場合にも、ブリスターの発生が抑制される。
The insulated wire of the present invention having the configuration as described above has not only excellent adhesion to mechanical stimulation but also when the insulating film is exposed to a refrigerant atmosphere, it is further operated for a certain period and for a certain period. The occurrence of blisters is also suppressed when the pauses are repeated alternately.
本発明を実施するための最良の形態を実施例により説明する。実施例は、本発明の範囲を限定しない。
〔測定評価方法〕
はじめに、本実施例で行なった評価方法について説明する。
(1)可とう性
絶縁電線を、初期長さに対して30%伸長し、伸長後、JIS C3003 7.1.1可とう性試験に準拠して試験した。具体的には、絶縁電線の自己径を有する丸棒に沿って電線を、電線と電線とが接触するように10回巻き付けた後、亀裂の有無を観察し、亀裂個数を数えた。
(2)絶縁破壊電圧(kV)
JIS C3003 10.2.2に準拠して測定した。具体的には、グリセリン/飽和NaCl水=85/15溶液中に電線を25cm浸漬した。対極として銅板を浸漬した上で、電線導体を正極、銅板を負極とした。そして、50Hzの正弦波に近い波形の交流電圧を加えて500V/sのスピードで昇圧し、電流が流れたときの電圧を測定した。
(3)耐摩擦性(gf)
JIS C3003 9.の一方向摩耗試験に準じて行った。具体的には、サンプル6個について一方向磨耗を室温で測定した。ここでは、まず、摩擦ヘッドに取着された針に荷重を加えると共にその荷重を連続的に増加させつつ、摩擦ヘッドの針を用いて試験台上の絶縁電線の表面を擦った。次に、針と絶縁電線との摩擦により膜が破れて針と導体との間に導通が生じたときの荷重を破壊荷重として求めた。そして、それらの平均値を求めた。
(4)密着性
i)初期密着性
JIS C3003「8.1a)急激伸張」に準じて、作製した絶縁電線を急激に伸張させて切断し、切断部分で被覆が剥がれたことにより露出した導体の長さを測定した。このとき、2カ所測定したときの平均値を導体露出平均(mm)として求めた。なお、露出した導体の長さの測定値が小さいほど、切断面において被覆層が剥がれていないことを示し、密着性に優れていることを示す。 The best mode for carrying out the present invention will be described with reference to examples. The examples do not limit the scope of the invention.
[Measurement evaluation method]
First, the evaluation method performed in this example will be described.
(1) Flexible The insulated wire was stretched by 30% with respect to the initial length, and after stretching, it was tested according to JIS C3003 7.1.1 flexibility test. Specifically, after winding the electric wire 10 times so that the electric wire and the electric wire were in contact with each other along a round bar having a self-diameter of the insulated wire, the presence or absence of cracks was observed and the number of cracks was counted.
(2) Dielectric breakdown voltage (kV)
It measured based on JIS C3003 10.2.2. Specifically, the electric wire was immersed for 25 cm in a glycerin / saturated NaCl water = 85/15 solution. After immersing a copper plate as a counter electrode, the wire conductor was a positive electrode and the copper plate was a negative electrode. Then, an alternating voltage having a waveform close to a sine wave of 50 Hz was added, the voltage was increased at a speed of 500 V / s, and the voltage when current flowed was measured.
(3) Friction resistance (gf)
JIS C3003 9. The unidirectional wear test was conducted. Specifically, the unidirectional wear of six samples was measured at room temperature. Here, first, while applying a load to the needle attached to the friction head and continuously increasing the load, the surface of the insulated wire on the test table was rubbed with the needle of the friction head. Next, the load when the film was broken by the friction between the needle and the insulated wire and conduction was generated between the needle and the conductor was determined as the breaking load. And the average value was calculated | required.
(4) Adhesion i) Initial adhesion In accordance with JIS C3003 “8.1a) Rapid extension”, the produced insulated wire was abruptly stretched and cut, and the exposed conductor was peeled off at the cut portion. The length was measured. At this time, the average value when measured at two locations was determined as the conductor exposure average (mm). In addition, it shows that the coating layer is not peeled in a cut surface, and it shows that it is excellent in adhesiveness, so that the measured value of the length of the exposed conductor is small.
〔測定評価方法〕
はじめに、本実施例で行なった評価方法について説明する。
(1)可とう性
絶縁電線を、初期長さに対して30%伸長し、伸長後、JIS C3003 7.1.1可とう性試験に準拠して試験した。具体的には、絶縁電線の自己径を有する丸棒に沿って電線を、電線と電線とが接触するように10回巻き付けた後、亀裂の有無を観察し、亀裂個数を数えた。
(2)絶縁破壊電圧(kV)
JIS C3003 10.2.2に準拠して測定した。具体的には、グリセリン/飽和NaCl水=85/15溶液中に電線を25cm浸漬した。対極として銅板を浸漬した上で、電線導体を正極、銅板を負極とした。そして、50Hzの正弦波に近い波形の交流電圧を加えて500V/sのスピードで昇圧し、電流が流れたときの電圧を測定した。
(3)耐摩擦性(gf)
JIS C3003 9.の一方向摩耗試験に準じて行った。具体的には、サンプル6個について一方向磨耗を室温で測定した。ここでは、まず、摩擦ヘッドに取着された針に荷重を加えると共にその荷重を連続的に増加させつつ、摩擦ヘッドの針を用いて試験台上の絶縁電線の表面を擦った。次に、針と絶縁電線との摩擦により膜が破れて針と導体との間に導通が生じたときの荷重を破壊荷重として求めた。そして、それらの平均値を求めた。
(4)密着性
i)初期密着性
JIS C3003「8.1a)急激伸張」に準じて、作製した絶縁電線を急激に伸張させて切断し、切断部分で被覆が剥がれたことにより露出した導体の長さを測定した。このとき、2カ所測定したときの平均値を導体露出平均(mm)として求めた。なお、露出した導体の長さの測定値が小さいほど、切断面において被覆層が剥がれていないことを示し、密着性に優れていることを示す。 The best mode for carrying out the present invention will be described with reference to examples. The examples do not limit the scope of the invention.
[Measurement evaluation method]
First, the evaluation method performed in this example will be described.
(1) Flexible The insulated wire was stretched by 30% with respect to the initial length, and after stretching, it was tested according to JIS C3003 7.1.1 flexibility test. Specifically, after winding the electric wire 10 times so that the electric wire and the electric wire were in contact with each other along a round bar having a self-diameter of the insulated wire, the presence or absence of cracks was observed and the number of cracks was counted.
(2) Dielectric breakdown voltage (kV)
It measured based on JIS C3003 10.2.2. Specifically, the electric wire was immersed for 25 cm in a glycerin / saturated NaCl water = 85/15 solution. After immersing a copper plate as a counter electrode, the wire conductor was a positive electrode and the copper plate was a negative electrode. Then, an alternating voltage having a waveform close to a sine wave of 50 Hz was added, the voltage was increased at a speed of 500 V / s, and the voltage when current flowed was measured.
(3) Friction resistance (gf)
JIS C3003 9. The unidirectional wear test was conducted. Specifically, the unidirectional wear of six samples was measured at room temperature. Here, first, while applying a load to the needle attached to the friction head and continuously increasing the load, the surface of the insulated wire on the test table was rubbed with the needle of the friction head. Next, the load when the film was broken by the friction between the needle and the insulated wire and conduction was generated between the needle and the conductor was determined as the breaking load. And the average value was calculated | required.
(4) Adhesion i) Initial adhesion In accordance with JIS C3003 “8.1a) Rapid extension”, the produced insulated wire was abruptly stretched and cut, and the exposed conductor was peeled off at the cut portion. The length was measured. At this time, the average value when measured at two locations was determined as the conductor exposure average (mm). In addition, it shows that the coating layer is not peeled in a cut surface, and it shows that it is excellent in adhesiveness, so that the measured value of the length of the exposed conductor is small.
ii)加熱処理後の密着性
絶縁電線を180℃で6時間(加熱条件1)、あるいは160℃で6時間(加熱条件2)加熱した後、上記i)の初期密着性に準じて、露出した導体の長さ(mm)を測定した。
(5)冷媒処理後ブリスター
絶縁電線を冷媒R22(ダイキン工業株式会社のダイフロン-22)中(85℃、42kg/cm2)に96時間、浸漬した後、取り出し、急激に所定温度(120℃、130℃、140℃)にまで加熱して、絶縁電線表面の発泡状態を確認した。発泡が認められない場合を「OK」、発泡が認められた場合を「ブリスター発生」とした。
(6)耐軟化性
JIS C3003「11.1A」に準じて、軟化温度(℃)を測定した。具体的には、耐軟化性試験では、まず、絶縁電線を2本準備し、個別規格に規定する温度に予め加熱した金属ブロック上に、両絶縁電線を交差させてセットした。所定時間経過後、両絶縁電線の交差部分にピストンを用いて荷重をかけ、直ちに試験電圧を上下の絶縁電線に印加した。
〔絶縁電線No.1~8の作製〕
径0.897~0.898mmの銅線を、表1に示すような樹脂を主成分とする層構成(銅線から順に1~4層目)で被膜することにより、仕上げ外径0.966~0.969mmの絶縁電線No.1~8を作製した。No.3~8は、第1層目のベース樹脂としてフェノキシ樹脂を用い、表2に示すようにキシレン・ホルムアルデヒド樹脂及び/又は硬化剤(ブロックイソシアネート)を添加した樹脂組成物を用いた。 ii) Adhesiveness after heat treatment After the insulated wire was heated at 180 ° C. for 6 hours (heating condition 1) or 160 ° C. for 6 hours (heating condition 2), it was exposed according to the initial adhesiveness of i) above. The length (mm) of the conductor was measured.
(5) Blister after refrigerant treatment The insulated wire was immersed in refrigerant R22 (Daikin 22 of Daikin Industries, Ltd.) (85 ° C., 42 kg / cm 2) for 96 hours, then taken out and rapidly removed at a predetermined temperature (120 ° C., 130 To 140 ° C.) and the foamed state of the insulated wire surface was confirmed. The case where foaming was not recognized was defined as “OK”, and the case where foaming was observed was defined as “blister generation”.
(6) Softening resistance The softening temperature (° C.) was measured according to JIS C3003 “11.1A”. Specifically, in the softening resistance test, first, two insulated wires were prepared, and both insulated wires were set so as to cross each other on a metal block preheated to a temperature specified in the individual standard. After elapse of a predetermined time, a load was applied to the intersecting portion of both insulated wires using a piston, and a test voltage was immediately applied to the upper and lower insulated wires.
[Insulated wire No. Production of 1-8]
By coating a copper wire having a diameter of 0.897 to 0.898 mm with a layer structure (first to fourth layers in order from the copper wire) having a resin as a main component as shown in Table 1, the finished outer diameter is 0.966. Insulated wire no. 1 to 8 were produced. No. In Nos. 3 to 8, phenoxy resin was used as the base resin for the first layer, and a resin composition to which a xylene / formaldehyde resin and / or a curing agent (block isocyanate) was added as shown in Table 2 was used.
絶縁電線を180℃で6時間(加熱条件1)、あるいは160℃で6時間(加熱条件2)加熱した後、上記i)の初期密着性に準じて、露出した導体の長さ(mm)を測定した。
(5)冷媒処理後ブリスター
絶縁電線を冷媒R22(ダイキン工業株式会社のダイフロン-22)中(85℃、42kg/cm2)に96時間、浸漬した後、取り出し、急激に所定温度(120℃、130℃、140℃)にまで加熱して、絶縁電線表面の発泡状態を確認した。発泡が認められない場合を「OK」、発泡が認められた場合を「ブリスター発生」とした。
(6)耐軟化性
JIS C3003「11.1A」に準じて、軟化温度(℃)を測定した。具体的には、耐軟化性試験では、まず、絶縁電線を2本準備し、個別規格に規定する温度に予め加熱した金属ブロック上に、両絶縁電線を交差させてセットした。所定時間経過後、両絶縁電線の交差部分にピストンを用いて荷重をかけ、直ちに試験電圧を上下の絶縁電線に印加した。
〔絶縁電線No.1~8の作製〕
径0.897~0.898mmの銅線を、表1に示すような樹脂を主成分とする層構成(銅線から順に1~4層目)で被膜することにより、仕上げ外径0.966~0.969mmの絶縁電線No.1~8を作製した。No.3~8は、第1層目のベース樹脂としてフェノキシ樹脂を用い、表2に示すようにキシレン・ホルムアルデヒド樹脂及び/又は硬化剤(ブロックイソシアネート)を添加した樹脂組成物を用いた。 ii) Adhesiveness after heat treatment After the insulated wire was heated at 180 ° C. for 6 hours (heating condition 1) or 160 ° C. for 6 hours (heating condition 2), it was exposed according to the initial adhesiveness of i) above. The length (mm) of the conductor was measured.
(5) Blister after refrigerant treatment The insulated wire was immersed in refrigerant R22 (Daikin 22 of Daikin Industries, Ltd.) (85 ° C., 42 kg / cm 2) for 96 hours, then taken out and rapidly removed at a predetermined temperature (120 ° C., 130 To 140 ° C.) and the foamed state of the insulated wire surface was confirmed. The case where foaming was not recognized was defined as “OK”, and the case where foaming was observed was defined as “blister generation”.
(6) Softening resistance The softening temperature (° C.) was measured according to JIS C3003 “11.1A”. Specifically, in the softening resistance test, first, two insulated wires were prepared, and both insulated wires were set so as to cross each other on a metal block preheated to a temperature specified in the individual standard. After elapse of a predetermined time, a load was applied to the intersecting portion of both insulated wires using a piston, and a test voltage was immediately applied to the upper and lower insulated wires.
[Insulated wire No. Production of 1-8]
By coating a copper wire having a diameter of 0.897 to 0.898 mm with a layer structure (first to fourth layers in order from the copper wire) having a resin as a main component as shown in Table 1, the finished outer diameter is 0.966. Insulated wire no. 1 to 8 were produced. No. In Nos. 3 to 8, phenoxy resin was used as the base resin for the first layer, and a resin composition to which a xylene / formaldehyde resin and / or a curing agent (block isocyanate) was added as shown in Table 2 was used.
具体的に用いた材料は、以下の通りである。
(1)エステルイミド樹脂(EI)
市販のポリエステルイミド(日立化成工業(株)製、商品名:Isomid40SM-45)を用いた。
(2)密着エステルイミド樹脂(密着EI)
EH402-45No.3(大日精化(株)製)を用いた。
(3)アミドイミド樹脂(AI)
HI-406E-34(日立化成工業(株)の商品名)を用いた。
(4)潤滑性アミドイミド樹脂(潤滑AI)
温度計、冷却管、塩化カルシウム充填管、攪拌器および窒素吹き込み管が取付けられた1L容のフラスコ内に、窒素吹き込み管から毎分150mLの窒素ガスを流しながら、無水トリメリット酸176.9g、トリメリット酸1.95g及びメチレンジイソシアネート(三井武田ケミカル(株)製、商品名:コロネートPH)232.2gを投入した。 Specific materials used are as follows.
(1) Esterimide resin (EI)
A commercially available polyesterimide (manufactured by Hitachi Chemical Co., Ltd., trade name: Isomid 40SM-45) was used.
(2) Close contact ester imide resin (Close contact EI)
EH402-45No. 3 (manufactured by Dainichi Seika Co., Ltd.) was used.
(3) Amidoimide resin (AI)
HI-406E-34 (trade name of Hitachi Chemical Co., Ltd.) was used.
(4) Lubricating amidoimide resin (lubricating AI)
In a 1 L flask equipped with a thermometer, a cooling pipe, a calcium chloride-filled pipe, a stirrer, and a nitrogen blowing pipe, while flowing 150 mL of nitrogen gas from the nitrogen blowing pipe per minute, 176.9 g of trimellitic anhydride, 1.95 g of trimellitic acid and 232.2 g of methylene diisocyanate (trade name: Coronate PH manufactured by Mitsui Takeda Chemical Co., Ltd.) were added.
(1)エステルイミド樹脂(EI)
市販のポリエステルイミド(日立化成工業(株)製、商品名:Isomid40SM-45)を用いた。
(2)密着エステルイミド樹脂(密着EI)
EH402-45No.3(大日精化(株)製)を用いた。
(3)アミドイミド樹脂(AI)
HI-406E-34(日立化成工業(株)の商品名)を用いた。
(4)潤滑性アミドイミド樹脂(潤滑AI)
温度計、冷却管、塩化カルシウム充填管、攪拌器および窒素吹き込み管が取付けられた1L容のフラスコ内に、窒素吹き込み管から毎分150mLの窒素ガスを流しながら、無水トリメリット酸176.9g、トリメリット酸1.95g及びメチレンジイソシアネート(三井武田ケミカル(株)製、商品名:コロネートPH)232.2gを投入した。 Specific materials used are as follows.
(1) Esterimide resin (EI)
A commercially available polyesterimide (manufactured by Hitachi Chemical Co., Ltd., trade name: Isomid 40SM-45) was used.
(2) Close contact ester imide resin (Close contact EI)
EH402-45No. 3 (manufactured by Dainichi Seika Co., Ltd.) was used.
(3) Amidoimide resin (AI)
HI-406E-34 (trade name of Hitachi Chemical Co., Ltd.) was used.
(4) Lubricating amidoimide resin (lubricating AI)
In a 1 L flask equipped with a thermometer, a cooling pipe, a calcium chloride-filled pipe, a stirrer, and a nitrogen blowing pipe, while flowing 150 mL of nitrogen gas from the nitrogen blowing pipe per minute, 176.9 g of trimellitic anhydride, 1.95 g of trimellitic acid and 232.2 g of methylene diisocyanate (trade name: Coronate PH manufactured by Mitsui Takeda Chemical Co., Ltd.) were added.
次に、フラスコ内に溶媒としてN-メチル-2-ピロリドン536gを添加し、攪拌器で攪拌しながら、80℃で3時間加熱した後、約4時間かけて系内の温度を120℃まで昇温し、同温度で3時間加熱した。その後、加熱を止め、フラスコ内にキシレン134g添加して内容液を希釈した後、放冷し、不揮発分含量が35質量%である汎用アミドイミド樹脂(AI)を得た。この汎用アミドイミド樹脂(AI)の固形分量100質量部に対して、ポリエチレンワックス1.5質量部の割合で、AIとポリエチレンワックスとを混合することにより、潤滑性アミドイミド樹脂(潤滑AI)を得た。
(5)フェノキシ樹脂(PH)
エポキシ樹脂としてビスフェノールA型フェノキシ樹脂〔東部化成(株)、製品名:YP-50、フェノキシ樹脂をクレゾール/シクロヘキサノンに溶解させた溶液(固形分量:27質量%)〕を用いた。
(6)キシレン・ホルムアルデヒド樹脂
フドー株式会社のニカノールPR-1440(商品名)を用いた。これは、下記式であらわされるレゾール型の変性キシレン樹脂(数平均分子量911)をn‐ブタノールに溶解した溶液(樹脂分:52質量%)であり、粘度は100~300センチポイズ(20℃)である。 Next, 536 g of N-methyl-2-pyrrolidone as a solvent was added to the flask, heated at 80 ° C. for 3 hours while stirring with a stirrer, and then the temperature in the system was increased to 120 ° C. over about 4 hours. Warm and heat at the same temperature for 3 hours. Thereafter, the heating was stopped, and 134 g of xylene was added to the flask to dilute the content liquid, followed by cooling to obtain a general-purpose amideimide resin (AI) having a nonvolatile content of 35% by mass. Lubricating amideimide resin (lubricating AI) was obtained by mixing AI and polyethylene wax at a ratio of 1.5 parts by weight of polyethylene wax with respect to 100 parts by weight of solid content of this general-purpose amideimide resin (AI). .
(5) Phenoxy resin (PH)
As an epoxy resin, a bisphenol A type phenoxy resin [Tobu Kasei Co., Ltd., product name: YP-50, a solution of phenoxy resin dissolved in cresol / cyclohexanone (solid content: 27 mass%)] was used.
(6) Xylene / formaldehyde resin Nikanol PR-1440 (trade name) manufactured by Fudou Co., Ltd. was used. This is a solution (resin content: 52 mass%) of a resol type modified xylene resin (number average molecular weight 911) represented by the following formula dissolved in n-butanol, and the viscosity is 100 to 300 centipoise (20 ° C.). is there.
(5)フェノキシ樹脂(PH)
エポキシ樹脂としてビスフェノールA型フェノキシ樹脂〔東部化成(株)、製品名:YP-50、フェノキシ樹脂をクレゾール/シクロヘキサノンに溶解させた溶液(固形分量:27質量%)〕を用いた。
(6)キシレン・ホルムアルデヒド樹脂
フドー株式会社のニカノールPR-1440(商品名)を用いた。これは、下記式であらわされるレゾール型の変性キシレン樹脂(数平均分子量911)をn‐ブタノールに溶解した溶液(樹脂分:52質量%)であり、粘度は100~300センチポイズ(20℃)である。 Next, 536 g of N-methyl-2-pyrrolidone as a solvent was added to the flask, heated at 80 ° C. for 3 hours while stirring with a stirrer, and then the temperature in the system was increased to 120 ° C. over about 4 hours. Warm and heat at the same temperature for 3 hours. Thereafter, the heating was stopped, and 134 g of xylene was added to the flask to dilute the content liquid, followed by cooling to obtain a general-purpose amideimide resin (AI) having a nonvolatile content of 35% by mass. Lubricating amideimide resin (lubricating AI) was obtained by mixing AI and polyethylene wax at a ratio of 1.5 parts by weight of polyethylene wax with respect to 100 parts by weight of solid content of this general-purpose amideimide resin (AI). .
(5) Phenoxy resin (PH)
As an epoxy resin, a bisphenol A type phenoxy resin [Tobu Kasei Co., Ltd., product name: YP-50, a solution of phenoxy resin dissolved in cresol / cyclohexanone (solid content: 27 mass%)] was used.
(6) Xylene / formaldehyde resin Nikanol PR-1440 (trade name) manufactured by Fudou Co., Ltd. was used. This is a solution (resin content: 52 mass%) of a resol type modified xylene resin (number average molecular weight 911) represented by the following formula dissolved in n-butanol, and the viscosity is 100 to 300 centipoise (20 ° C.). is there.
(7)ブロックイソシアネート
日本ポリウレタン工業株式会社のブロックイソシアネート(MS-50:商品名)を用いた。このブロックイソシアネートは、1分子中にイソシアネート基を2個有する2官能タイプである。 (7) Block isocyanate Block isocyanate (MS-50: trade name) manufactured by Nippon Polyurethane Industry Co., Ltd. was used. This blocked isocyanate is a bifunctional type having two isocyanate groups in one molecule.
日本ポリウレタン工業株式会社のブロックイソシアネート(MS-50:商品名)を用いた。このブロックイソシアネートは、1分子中にイソシアネート基を2個有する2官能タイプである。 (7) Block isocyanate Block isocyanate (MS-50: trade name) manufactured by Nippon Polyurethane Industry Co., Ltd. was used. This blocked isocyanate is a bifunctional type having two isocyanate groups in one molecule.
作製した各絶縁電線について、上記評価方法に従って、まず、初期密着性を測定した。次に、加熱処理(加熱条件1:180℃×6時間)後の密着性を測定した。さらに加熱処理した電線について、上記の評価方法にしたがって、可とう性、絶縁破壊電圧、耐摩耗性、耐軟化性、冷媒処理後のブリスター発生の有無を調べた。結果を表2に示す。
First, the initial adhesion of each of the produced insulated wires was measured according to the above evaluation method. Next, the adhesion after heat treatment (heating condition 1: 180 ° C. × 6 hours) was measured. Furthermore, the heat-treated electric wires were examined for flexibility, dielectric breakdown voltage, abrasion resistance, softening resistance, and occurrence of blisters after the refrigerant treatment according to the above evaluation methods. The results are shown in Table 2.
下地層のベース樹脂をフェノキシ樹脂としたNo.3~8では、加熱処理後も、すぐれた密着性を確保することができた。No.3~8では、初期の密着性がエステルイミド樹脂(No.1、2)と比べて劣るものの、加熱処理後は、エステルイミド樹脂をベースとする下地層を有する被膜よりも密着性に優れていた。また、フェノキシ樹脂をベースとする下地層(No.3~8)では、耐摩擦性にも優れ、機械的強度に優れた被膜が得られた。
No. The base resin of the base layer is phenoxy resin. In Nos. 3 to 8, excellent adhesion could be secured even after the heat treatment. No. 3 to 8, the initial adhesion is inferior to that of the ester imide resin (No. 1, 2), but after the heat treatment, the adhesion is superior to the coating having the base layer based on the ester imide resin. It was. In addition, in the base layer (No. 3 to 8) based on phenoxy resin, a film having excellent friction resistance and excellent mechanical strength was obtained.
No.3とNo.4~8との比較から、急激伸長後の密着性は同程度であっても、キシレン・ホルムアルデヒド樹脂を含んでいない下地層の場合(No.3)、冷媒処理後、高温に曝されると、ブリスターが発生した。これに対し、キシレン・ホルムアルデヒド樹脂を含有する下地層の場合(No.4~8)、ブリスターは発生しなかった。また、キシレン・ホルムアルデヒド樹脂の含有により、可とう性試験後での亀裂の発生数はゼロとなり、可とう性が向上した。
No. 3 and no. Compared with 4-8, even if the adhesion after rapid extension is similar, in the case of an underlayer that does not contain xylene / formaldehyde resin (No. 3), if it is exposed to high temperatures after refrigerant treatment A blister occurred. On the other hand, in the case of the underlayer containing xylene / formaldehyde resin (No. 4 to 8), no blister was generated. In addition, the inclusion of xylene / formaldehyde resin reduced the number of cracks after the flexibility test to zero and improved the flexibility.
No.4~7とNo.8との比較から、硬化剤を含むフェノキシ樹脂組成物では、耐軟化温度が向上した。これは、樹脂組成物が3次元網状化し、より緻密な被膜が得られたためであるものと推測される。また、そのような傾向は、硬化剤の添加量が多いほど、大きかった。
〔絶縁電線No.11~24の作製〕
キシレン・ホルムアルデヒド樹脂に代えて、表3に示すように、他のフェノール樹脂類(F1~F6)及び/又はアミノ樹脂(A1又はA2)を用いた下地層用塗料を塗布し、400℃で加熱硬化して、下地層(1層目)を形成した。次に、No.1と同様にして2層目、3層目、4層目を形成して、絶縁電線No.11~19を作成した。 No. 4-7 and no. From the comparison with 8, the softening temperature improved in the phenoxy resin composition containing the curing agent. This is presumably because the resin composition was three-dimensionally reticulated and a denser film was obtained. Moreover, such a tendency was so large that the addition amount of a hardening | curing agent was large.
[Insulated wire No. Production of 11 to 24]
As shown in Table 3, instead of xylene / formaldehyde resin, apply a coating for the underlayer using other phenolic resins (F1 to F6) and / or amino resins (A1 or A2) and heat at 400 ° C. It hardened | cured and formed the base layer (1st layer). Next, no. The second layer, the third layer, and the fourth layer are formed in the same manner as in FIG. 11 to 19 were created.
〔絶縁電線No.11~24の作製〕
キシレン・ホルムアルデヒド樹脂に代えて、表3に示すように、他のフェノール樹脂類(F1~F6)及び/又はアミノ樹脂(A1又はA2)を用いた下地層用塗料を塗布し、400℃で加熱硬化して、下地層(1層目)を形成した。次に、No.1と同様にして2層目、3層目、4層目を形成して、絶縁電線No.11~19を作成した。 No. 4-7 and no. From the comparison with 8, the softening temperature improved in the phenoxy resin composition containing the curing agent. This is presumably because the resin composition was three-dimensionally reticulated and a denser film was obtained. Moreover, such a tendency was so large that the addition amount of a hardening | curing agent was large.
[Insulated wire No. Production of 11 to 24]
As shown in Table 3, instead of xylene / formaldehyde resin, apply a coating for the underlayer using other phenolic resins (F1 to F6) and / or amino resins (A1 or A2) and heat at 400 ° C. It hardened | cured and formed the base layer (1st layer). Next, no. The second layer, the third layer, and the fourth layer are formed in the same manner as in FIG. 11 to 19 were created.
さらに、ブロックイソシアネートをバイエル社の「デスモジュールCT」に変更した以外は、No.11又は13と同様にして、それぞれ絶縁電線No.20、21を作製した。なお、「デスモジュールCT」は、1分子中にイソシアネート基3個有する3官能タイプの組成物であり、表3中「CT」として表記する。
Furthermore, except that block isocyanate was changed to “Death Module CT” of Bayer, No. In the same manner as in No. 11 or 13, each insulated wire No. 20 and 21 were produced. “Desmodur CT” is a trifunctional type composition having three isocyanate groups in one molecule, and is represented as “CT” in Table 3.
参考のために、フェノキシ樹脂(No.22)、高密着エステルイミド樹脂(No.23)、汎用エステルイミド樹脂(No.24)を用いて下地層を形成した絶縁電線を作成した。
For reference, an insulated wire having a base layer formed using a phenoxy resin (No. 22), a high adhesion ester imide resin (No. 23), and a general-purpose ester imide resin (No. 24) was prepared.
作成した絶縁電線No.11~24について、上記評価方法に基づいて、耐摩耗性、絶縁破壊電圧、耐軟化性、加熱後密着性(加熱条件2:160℃×6時間)、プリスターを測定した。結果を表3に示す。
Created insulated wire No. With respect to 11 to 24, abrasion resistance, dielectric breakdown voltage, softening resistance, adhesion after heating (heating condition 2: 160 ° C. × 6 hours), and prestar were measured based on the above evaluation methods. The results are shown in Table 3.
尚、表3中のアミノ樹脂、フェノール樹脂類は、以下のとおりである。
A1:日本サイテックインダストリーズ株式会社のサイメル370
A2:DIC株式会社のスーパーベッカミンOD-L-131-60
F1:田岡化学工業株式会社のスミカノール610
F2:昭和高分子株式会社のCKS3898
F3:DIC株式会社のプライオーフェン5010
F4:群栄化学工業株式会社のレジトップPL2211
F5:荒川化学工業株式会社のタマノル100S
F6:住友ベークライト株式会社のPR-53194 The amino resins and phenol resins in Table 3 are as follows.
A1: Cymel 370 from Nippon Cytec Industries, Ltd.
A2: Super Becamine OD-L-131-60 from DIC Corporation
F1: Sumikanoru 610 from Taoka Chemical Co., Ltd.
F2: CKS3898 of Showa Polymer Co., Ltd.
F3: PRIOFEN 5010 from DIC Corporation
F4: Gunei Chemical Industry Co., Ltd. cash register top PL2211
F5: Tamanol 100S from Arakawa Chemical Co., Ltd.
F6: Sumitomo Bakelite Co., Ltd. PR-53194
A1:日本サイテックインダストリーズ株式会社のサイメル370
A2:DIC株式会社のスーパーベッカミンOD-L-131-60
F1:田岡化学工業株式会社のスミカノール610
F2:昭和高分子株式会社のCKS3898
F3:DIC株式会社のプライオーフェン5010
F4:群栄化学工業株式会社のレジトップPL2211
F5:荒川化学工業株式会社のタマノル100S
F6:住友ベークライト株式会社のPR-53194 The amino resins and phenol resins in Table 3 are as follows.
A1: Cymel 370 from Nippon Cytec Industries, Ltd.
A2: Super Becamine OD-L-131-60 from DIC Corporation
F1: Sumikanoru 610 from Taoka Chemical Co., Ltd.
F2: CKS3898 of Showa Polymer Co., Ltd.
F3: PRIOFEN 5010 from DIC Corporation
F4: Gunei Chemical Industry Co., Ltd. cash register top PL2211
F5: Tamanol 100S from Arakawa Chemical Co., Ltd.
F6: Sumitomo Bakelite Co., Ltd. PR-53194
下地層のベース樹脂として汎用エステルイミド樹脂を用いた場合(No.23)では、耐摩耗性が劣り、高密着エステルイミド樹脂を用いた場合(No.24)では、高温密着性が劣っていた。これに対して、ベース樹脂としてフェノキシ樹脂を用いた場合(No.22)では、耐摩耗性、耐軟化性、高温密着性の結果はいずれも良好であったが、ブリスターが発生した。しかしながら、アミノ樹脂(No.11、12、20)又はフェノール樹脂類(No.13~18、21)を添加した場合、並びに、アミノ樹脂とフェノール樹脂類とをブレンドして(No.19)添加した場合のいずれも、ブリスターは発生しなかった。アミノ樹脂、他のフェノール樹脂類についても、キシレン・ホルムアルデヒド樹脂と同様に、フェノキシ樹脂の弱点であるブリスター発生を抑制できることが確認できた。
When a general-purpose ester imide resin was used as the base resin for the underlayer (No. 23), the wear resistance was inferior, and when a high adhesion ester imide resin was used (No. 24), the high-temperature adhesion was inferior. . In contrast, when a phenoxy resin was used as the base resin (No. 22), the results of abrasion resistance, softening resistance, and high-temperature adhesion were all good, but blisters were generated. However, when amino resins (No. 11, 12, 20) or phenol resins (No. 13 to 18, 21) are added, and when amino resins and phenol resins are blended (No. 19), In all cases, no blistering occurred. It was confirmed that the occurrence of blistering, which is a weak point of phenoxy resin, can be suppressed for amino resins and other phenol resins as well as xylene / formaldehyde resins.
但し、アミノ樹脂を用いた場合(No.11、12、19、20)は、フェノール樹脂類を用いた場合(No.13~18)、フェノキシ樹脂単独の場合(No.22)よりも高温密着性が若干劣る傾向が認められた。そして、No.11とNo.20の比較から、ブロックイソシアネートとして3官能タイプに変更しても、高温密着性の低下を抑制する効果はほとんど認められなかった。これらのことから、フェノキシ樹脂のブリスター発生防止には、フェノール樹脂類の方がより効果的であることがわかる。
However, when amino resin is used (No. 11, 12, 19, 20), when phenolic resins are used (No. 13 to 18), it adheres at a higher temperature than when phenoxy resin is used alone (No. 22). A tendency to be slightly inferior was observed. And No. 11 and no. From the comparison of 20, even if it changed to trifunctional type as blocked isocyanate, the effect which suppresses the fall of high temperature adhesiveness was hardly recognized. From these facts, it is understood that phenol resins are more effective in preventing blister generation of phenoxy resin.
本発明の絶縁電線は、従来の電線と比べて、機械的強度が向上し、機械的刺激に対する密着性が高いだけでなく、冷媒雰囲気にさらされる環境下でもブリスターの発生を抑制することができる。このため、エアコン用コンプレッサーのコイルなど、耐加工性、強度、さらには耐冷媒性が要求される絶縁電線として特に有用である。
The insulated wire of the present invention has improved mechanical strength and high adhesion to mechanical stimulation as compared to conventional wires, and can suppress the generation of blisters even in an environment exposed to a refrigerant atmosphere. . For this reason, it is particularly useful as an insulated wire such as a coil for an air conditioner compressor, which requires processing resistance, strength, and refrigerant resistance.
Claims (11)
- 導体;前記導体を被覆する下地層;及び前記下地層上に形成された絶縁層を有し、前記下地層は、エポキシ樹脂、及び反応性官能基を有する加熱硬化型樹脂を含有する樹脂組成物の硬化体で構成される絶縁電線であって、
前記加熱硬化型樹脂は、前記エポキシ樹脂100質量部あたり1~10質量部含まれていることを特徴とする絶縁電線。 A resin composition comprising: a conductor; a base layer covering the conductor; and an insulating layer formed on the base layer, wherein the base layer includes an epoxy resin and a thermosetting resin having a reactive functional group An insulated wire composed of a cured body of
The insulated wire according to claim 1, wherein the thermosetting resin is contained in an amount of 1 to 10 parts by mass per 100 parts by mass of the epoxy resin. - 前記エポキシ樹脂100質量部あたり、更に、ブロックイソシアネート5~30質量部が含有されていることを特徴とする請求項1に記載の絶縁電線。 The insulated wire according to claim 1, further comprising 5 to 30 parts by mass of blocked isocyanate per 100 parts by mass of the epoxy resin.
- 前記反応性官能基は、メチロール基であることを特徴とする請求項1又は2に記載の絶縁電線。 The insulated wire according to claim 1 or 2, wherein the reactive functional group is a methylol group.
- 前記加熱硬化型樹脂は、フェノール樹脂類及び/又はアミノ樹脂であることを特徴とする請求項1~3のいずれかに記載の絶縁電線。 The insulated wire according to any one of claims 1 to 3, wherein the thermosetting resin is a phenol resin and / or an amino resin.
- 前記加熱硬化型樹脂は、フェノール樹脂類であることを特徴とする請求項4に記載の絶縁電線。 The insulated wire according to claim 4, wherein the thermosetting resin is a phenol resin.
- 前記加熱硬化型樹脂は、数平均分子量100~3000のキシレン樹脂であることを特徴とする請求項5に記載の絶縁電線。 The insulated wire according to claim 5, wherein the thermosetting resin is a xylene resin having a number average molecular weight of 100 to 3000.
- 前記エポキシ樹脂は、フェノキシ樹脂であることを特徴とする請求項1~6のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 6, wherein the epoxy resin is a phenoxy resin.
- 前記絶縁層は、ポリエステルイミド樹脂で構成されていることを特徴とする請求項1~7のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 7, wherein the insulating layer is made of a polyesterimide resin.
- 前記絶縁層上に、さらに潤滑性上塗層が形成されていることを特徴とする請求項1~8のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 8, wherein a lubricating overcoat layer is further formed on the insulating layer.
- 請求項1~9のいずれか1項に記載の絶縁電線を捲回してなることを特徴とするコイル。 A coil obtained by winding the insulated wire according to any one of claims 1 to 9.
- 請求項10に記載のコイルを有するモータ。 A motor having the coil according to claim 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980100034.5A CN101785070B (en) | 2008-04-03 | 2009-04-02 | Insulated wire, coil using the same, and motor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008097608 | 2008-04-03 | ||
JP2008-097608 | 2008-04-03 | ||
JP2008-310140 | 2008-12-04 | ||
JP2008310140A JP5476649B2 (en) | 2008-04-03 | 2008-12-04 | Insulated wire |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009123279A1 true WO2009123279A1 (en) | 2009-10-08 |
Family
ID=41135646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/056879 WO2009123279A1 (en) | 2008-04-03 | 2009-04-02 | Insulated wire, coil using the same, and motor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5476649B2 (en) |
CN (1) | CN101785070B (en) |
WO (1) | WO2009123279A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013168395A (en) * | 2012-02-14 | 2013-08-29 | Taiyo Holdings Co Ltd | Resin composition for plating resist, multilayer printed wiring board, and manufacturing method of multilayer printed wiring board |
WO2013150991A1 (en) * | 2012-04-02 | 2013-10-10 | 住友電気工業株式会社 | Insulated electric wire and method for manufacturing same |
JP6108368B2 (en) * | 2013-07-22 | 2017-04-05 | 株式会社日立製作所 | Insulated wire and rotating electric machine using the same |
WO2015121999A1 (en) * | 2014-02-17 | 2015-08-20 | 株式会社日立製作所 | Insulated wire, rotary electric machinery, and method for producing insulated wire |
KR101757436B1 (en) | 2015-06-25 | 2017-07-12 | 경일대학교산학협력단 | Method of multi-layer epoxy powder coating for high voltage facilities |
JP6619614B2 (en) * | 2015-10-26 | 2019-12-11 | 住友電工ウインテック株式会社 | Insulated wire |
KR102041687B1 (en) * | 2016-12-09 | 2019-11-06 | 경일대학교산학협력단 | Powder coating apparatus of bus-bar and powder coating method of bus-bar using the same |
WO2019159922A1 (en) * | 2018-02-16 | 2019-08-22 | 古河電気工業株式会社 | Insulated wire, coil, and electric/electronic instrument |
KR102043028B1 (en) * | 2018-04-12 | 2019-11-11 | 조우현 | High voltage bus bar manufacturing method for electric car |
CN109273146A (en) * | 2018-10-16 | 2019-01-25 | 铜陵精达里亚特种漆包线有限公司 | A kind of hollow copper magnet wire and its manufacturing method of painting |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6139407A (en) * | 1984-07-31 | 1986-02-25 | 株式会社フジクラ | Self-adhesive insulated wire and sealed compressor motor using same |
JPH01182375A (en) * | 1988-01-16 | 1989-07-20 | Toshiba Chem Corp | Insulation paint for electric wire |
JPH0412405A (en) * | 1990-05-01 | 1992-01-17 | Fujikura Ltd | Insulated wire |
JPH0422006A (en) * | 1990-05-15 | 1992-01-27 | Fujikura Ltd | Insulated wire |
JPH04184812A (en) * | 1990-11-20 | 1992-07-01 | Fujikura Ltd | Insulated wire |
JPH04341708A (en) * | 1990-11-30 | 1992-11-27 | Fujikura Ltd | Extra fine multicore parallel bonded wire |
JPH0688012U (en) * | 1993-06-01 | 1994-12-22 | 株式会社フジクラ | Insulated wire |
JPH0785728A (en) * | 1993-09-13 | 1995-03-31 | Showa Electric Wire & Cable Co Ltd | Self-fusible insulated electric wire |
JPH0931164A (en) * | 1995-07-24 | 1997-02-04 | Hitachi Chem Co Ltd | Resin composition for refrigerator motor |
JP2000160128A (en) * | 1998-09-24 | 2000-06-13 | Hitachi Chem Co Ltd | Adhesive composition for metal foil and metal foil with adhesive, metal-clad laminated sheet or the like using the same |
JP2001114872A (en) * | 1999-08-06 | 2001-04-24 | Hitachi Chem Co Ltd | Epoxy resin composition for sealing and electronic part device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5106701A (en) * | 1990-02-01 | 1992-04-21 | Fujikura Ltd. | Copper alloy wire, and insulated electric wires and multiple core parallel bonded wires made of the same |
JP2007230820A (en) * | 2006-02-28 | 2007-09-13 | Taiko Rozai Kk | Silicon carbide composite sintered compact and method of manufacturing the same |
-
2008
- 2008-12-04 JP JP2008310140A patent/JP5476649B2/en active Active
-
2009
- 2009-04-02 CN CN200980100034.5A patent/CN101785070B/en active Active
- 2009-04-02 WO PCT/JP2009/056879 patent/WO2009123279A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6139407A (en) * | 1984-07-31 | 1986-02-25 | 株式会社フジクラ | Self-adhesive insulated wire and sealed compressor motor using same |
JPH01182375A (en) * | 1988-01-16 | 1989-07-20 | Toshiba Chem Corp | Insulation paint for electric wire |
JPH0412405A (en) * | 1990-05-01 | 1992-01-17 | Fujikura Ltd | Insulated wire |
JPH0422006A (en) * | 1990-05-15 | 1992-01-27 | Fujikura Ltd | Insulated wire |
JPH04184812A (en) * | 1990-11-20 | 1992-07-01 | Fujikura Ltd | Insulated wire |
JPH04341708A (en) * | 1990-11-30 | 1992-11-27 | Fujikura Ltd | Extra fine multicore parallel bonded wire |
JPH0688012U (en) * | 1993-06-01 | 1994-12-22 | 株式会社フジクラ | Insulated wire |
JPH0785728A (en) * | 1993-09-13 | 1995-03-31 | Showa Electric Wire & Cable Co Ltd | Self-fusible insulated electric wire |
JPH0931164A (en) * | 1995-07-24 | 1997-02-04 | Hitachi Chem Co Ltd | Resin composition for refrigerator motor |
JP2000160128A (en) * | 1998-09-24 | 2000-06-13 | Hitachi Chem Co Ltd | Adhesive composition for metal foil and metal foil with adhesive, metal-clad laminated sheet or the like using the same |
JP2001114872A (en) * | 1999-08-06 | 2001-04-24 | Hitachi Chem Co Ltd | Epoxy resin composition for sealing and electronic part device |
Also Published As
Publication number | Publication date |
---|---|
CN101785070B (en) | 2015-07-22 |
JP5476649B2 (en) | 2014-04-23 |
CN101785070A (en) | 2010-07-21 |
JP2009266797A (en) | 2009-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5476649B2 (en) | Insulated wire | |
JP5704494B2 (en) | Insulated wire | |
JP3419226B2 (en) | Insulated wire | |
CN101855678B (en) | Insulated electric conductor, the electric coil employing this insulated electric conductor and engine | |
CN104246914B (en) | Insulated electric conductor and its manufacture method | |
JP2020015880A (en) | Heat-resistant resin composition | |
JP2010108758A (en) | Phenoxy resin insulating varnish and insulation wire using it | |
JP2010205708A (en) | Phenoxy resin insulating varnish | |
JPH0336247B2 (en) | ||
JP5326157B2 (en) | Self-bonding insulated wire and compressor drive motor | |
JP2017101197A (en) | Polyamide-imide resin composition and paint | |
JP5596916B2 (en) | Insulated wire | |
JP2008189815A (en) | Dispersant, filler, heat-conductive resin composition and heat-conductive sheet | |
JPH0412405A (en) | Insulated wire | |
JP5364939B2 (en) | Insulated wire | |
JP2010153099A (en) | Insulated wire | |
JP2010031101A (en) | Polyamideimide resin coating and insulated electric wire using it | |
JP2010090321A (en) | Polyesterimide resin varnish and insulated wire using the same | |
TW201927894A (en) | Primer composition, primer coating film and formation method therefor, and formation method for coating film | |
JP2010070672A (en) | Coating for insulating film, and insulated electric wire using the same | |
JP4021926B2 (en) | Self-bonding insulated wire | |
JP2010153290A (en) | Insulation wire | |
JP2004269793A (en) | Silane modified polyamide imide resin composition and its cured film | |
JP5449306B2 (en) | Dispersant, heat conductive resin composition and heat conductive sheet | |
WO2022180794A1 (en) | Insulated wire and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980100034.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09729110 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09729110 Country of ref document: EP Kind code of ref document: A1 |