JP2007230820A - Silicon carbide composite sintered compact and method of manufacturing the same - Google Patents

Silicon carbide composite sintered compact and method of manufacturing the same Download PDF

Info

Publication number
JP2007230820A
JP2007230820A JP2006054100A JP2006054100A JP2007230820A JP 2007230820 A JP2007230820 A JP 2007230820A JP 2006054100 A JP2006054100 A JP 2006054100A JP 2006054100 A JP2006054100 A JP 2006054100A JP 2007230820 A JP2007230820 A JP 2007230820A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
composite sintered
carbon powder
carbide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006054100A
Other languages
Japanese (ja)
Inventor
Hayato Nanri
隼人 南里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiko Refractories Co Ltd
Original Assignee
Taiko Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiko Refractories Co Ltd filed Critical Taiko Refractories Co Ltd
Priority to JP2006054100A priority Critical patent/JP2007230820A/en
Publication of JP2007230820A publication Critical patent/JP2007230820A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon carbide composite sintered compact reducing the friction to a counter member and the wear resistance by exhibiting the cushioning property to load stress in sliding and improving the supportability of a lubricant under a lubrication condition using water, oil or the like and particularly excellent in slidability under no lubrication in air to be suitable as a sliding member such as a mechanical seal. <P>SOLUTION: In the silicon carbide composite sintered compact obtained by dispersing carbon powder in silicon carbide, the carbon powder is a porous carbonized powder having a surface a part of which is covered with a carbonized coating film and the blending quantity of the carbon powder is 3-17 pts.mass per 100 pts.mass silicon carbide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭化珪素に炭素粉末を分散させた炭化珪素複合焼結体及びその製造方法に関するものである。   The present invention relates to a silicon carbide composite sintered body in which carbon powder is dispersed in silicon carbide and a method for manufacturing the same.

従来より、炭化珪素は硬度、耐熱性、耐食性に優れるため、構造部材としての応用が検討されている。特に水中での摺動性が良いことから、メカニカルシール等に一部実用化されている。しかしながら、炭化珪素は大気中無潤滑下での摩擦係数が大きく、摺動相手部材への攻撃性(以下、相手材攻撃性と称する)が高く、また潤滑油膜切れを生じ易いので、その使用範囲は限定されている。
このような問題を解決するため、母材となる炭化珪素セラミックスに炭素を複合することにより摺動特性を改善する技術が開発されている。
従来の技術としては、(特許文献1)に「炭化珪素100重量部に対し炭素を10〜50重量部含有し、5〜50容量%の開放気孔(平均直径0.05〜10μm)を有する炭化珪素−炭素複合材料の開放気孔部に、潤滑性を有する物質が開放気孔部容量のうち10容量%以上に充填された摺動性複合材料」が開示されている。
(特許文献2)には、「平均粒径が0.001〜0.080mmの大きさで、かつ、気孔を有するカーボン粉末を3〜30vol%含有し、残部が炭化珪素と焼結助剤を含有する焼結体に形成されて前記焼結体の摺動面に点在するカーボンが凹部に形成されている摺動部材」が開示されている。
(特許文献3)には、「互いに相対摺動する焼結体の摺動部品であって、前記摺動部品の前記摺動面に点在するカーボン粒子を有すると共に前記カーボン粒子の表面に前記摺動面より凹部に形成された気孔を有し、前記気孔の底面の前記カーボン粒子に微細気孔部を有する摺動部品」が開示されている。
特開平9−165281号公報 特開2003−42305号公報 特開2004−116587号公報
Conventionally, since silicon carbide is excellent in hardness, heat resistance, and corrosion resistance, application as a structural member has been studied. In particular, it is practically used for mechanical seals and the like because of its good sliding property in water. However, silicon carbide has a large coefficient of friction under no lubrication in the atmosphere, has a high attacking property against a sliding mating member (hereinafter referred to as a mating material aggression), and is liable to cause a lubricant film breakage. Is limited.
In order to solve such a problem, a technique for improving sliding characteristics by combining carbon with silicon carbide ceramics as a base material has been developed.
As a conventional technique, (Patent Document 1) states that “carbonization is contained in 10 to 50 parts by weight of carbon with respect to 100 parts by weight of silicon carbide, and has 5 to 50% by volume of open pores (average diameter 0.05 to 10 μm). A slidable composite material in which an open pore portion of a silicon-carbon composite material is filled with a substance having lubricity in 10% by volume or more of the open pore portion capacity is disclosed.
(Patent Document 2) states that “the average particle size is 0.001 to 0.080 mm in size and contains 3 to 30 vol% of carbon powder having pores, with the balance being silicon carbide and a sintering aid. There is disclosed a “sliding member in which carbon formed in a sintered body contained therein and interspersed on the sliding surface of the sintered body is formed in a recess”.
(Patent Document 3) states that “a sliding part of a sintered body that slides relative to each other, having carbon particles scattered on the sliding surface of the sliding part and the surface of the carbon particle There is disclosed a “sliding component having pores formed in a concave portion from a sliding surface and having fine pores in the carbon particles on the bottom surface of the pores”.
Japanese Patent Laid-Open No. 9-165281 JP 2003-42305 A Japanese Patent Laid-Open No. 2004-116587

しかしながら上記従来の技術においては、以下のような課題を有している。
(1)(特許文献1)に開示の技術は、炭化珪素−炭素複合材料の開放気孔に潤滑剤を含浸・充填させるのに真空含浸若しくは高圧含浸等の含浸方法を使用するため、生産性が低いという課題を有している。
(2)(特許文献2)及び(特許文献3)に開示の技術は、潤滑油等の液体が焼結体中の気孔を有するカーボン粉末に染み込み、摺動中長期に渡り摺動面に潤滑油等を供給して潤滑機能を発揮するが、潤滑油がカーボン粉末に染み込む量にばらつきがあるため、摺動時の安定性に欠けるという課題を有している。
(3)(特許文献3)に開示の技術は、カーボン粉末が点在する摺動面を大気雰囲気中で加熱し、カーボン粉末の表面を燃焼して多数の微細気孔を形成させるため、製造工程が煩雑で生産性が低いという課題を有している。
(4)(特許文献1)乃至(特許文献3)に開示の技術は、炭化珪素と複合化させるカーボン粉末は軟質で硬度が低いため、焼結体の製造時、特に、炭化珪素とカーボン粉末とを混合する際に破壊して微細化し易く、得られた複合焼結体が、カーボン粉末による負荷応力の緩和効果や相手材攻撃性の緩和効果に欠けるという課題を有している。
However, the above conventional techniques have the following problems.
(1) Since the technique disclosed in (Patent Document 1) uses an impregnation method such as vacuum impregnation or high-pressure impregnation to impregnate and fill the open pores of the silicon carbide-carbon composite material with a lubricant, productivity is high. It has the problem of being low.
(2) The technology disclosed in (Patent Document 2) and (Patent Document 3) is such that a liquid such as a lubricating oil soaks into carbon powder having pores in a sintered body and lubricates the sliding surface over a long period during sliding. Although lubricating function is exhibited by supplying oil or the like, there is a problem in that the amount of the lubricating oil soaked into the carbon powder varies, so that the stability during sliding is lacking.
(3) The technology disclosed in (Patent Document 3) is a manufacturing process in which a sliding surface interspersed with carbon powder is heated in an air atmosphere and the surface of the carbon powder is burned to form a large number of fine pores. However, it has the subject that productivity is low and productivity is low.
(4) In the technologies disclosed in (Patent Document 1) to (Patent Document 3), the carbon powder combined with silicon carbide is soft and has low hardness. When mixed with the above, the composite sintered body easily breaks down and has a problem that the obtained composite sintered body lacks the effect of mitigating the load stress by the carbon powder and the effect of mitigating the attack of the counterpart material.

本発明は、上記従来の課題を解決するもので、摺動時の負荷応力に対するクッション性を発揮し、また水や油等の潤滑条件下では潤滑剤の担持性を良好にすることによって、相手材攻撃性及び自材の比磨耗量を低減できるとともに、特に大気中無潤滑下での摺動性に優れる炭化珪素複合焼結体を提供することを目的とする。
また本発明は、脱脂成形体を、一旦、冷間等方圧加圧法(CIP)にて加圧した後に焼結させることで、熱間等方圧加圧法(HIP)やホットプレス法(HP)などの大掛かりな設備を必要とせず、高密度の複合焼結体を常圧焼結で製造できる炭化珪素複合焼結体の製造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, exhibits cushioning properties against load stress during sliding, and improves the supportability of the lubricant under lubrication conditions such as water and oil, so that the counterpart An object of the present invention is to provide a silicon carbide composite sintered body that can reduce the material aggression and the specific wear amount of the self material, and that is excellent in slidability especially in the air without lubrication.
In the present invention, the degreased molded body is once pressed by a cold isostatic pressing method (CIP) and then sintered, so that a hot isostatic pressing method (HIP) or a hot press method (HP) is performed. It is an object of the present invention to provide a method for producing a silicon carbide composite sintered body capable of producing a high-density composite sintered body by atmospheric pressure sintering without requiring large-scale equipment such as

上記従来の課題を解決するために本発明の炭化珪素複合焼結体及びその製造方法は、以下の構成を有している。
本発明の請求項1に記載の発明は炭化珪素に炭素粉末を分散させた炭化珪素複合焼結体であって、前記炭素粉末は表面の少なくとも一部が炭化被膜で被覆された多孔質炭化粉末であり、前記炭素粉末の配合量は前記炭化珪素100質量部に対して3〜17質量部であることを特徴とする。
この構成により、以下のような作用が得られる。
(1)炭素粉末は、多孔質炭化粉末の表面の少なくとも一部が炭化被膜で被覆されているので、炭化珪素複合焼結体の製造時、特に、炭化珪素と混合する際に多孔質炭化粉末が破壊されて微細化するのを防止する。その結果、炭素粉末を含む炭化珪素複合焼結体を摺動部材として用いた場合、多孔質炭化粉末が摺動時の負荷応力に対するクッション性を発揮し、また水や油等の潤滑条件下では潤滑剤の担持性を良好にするため、相手材攻撃性及び自材の比磨耗量を緩和することができる。
(2)炭素粉末の配合量を特定の範囲に調整するので、本発明の炭化珪素複合焼結体は大気中無潤滑下での摺動性に優れる。
In order to solve the above conventional problems, the silicon carbide composite sintered body and the method for producing the same of the present invention have the following configurations.
The invention according to claim 1 of the present invention is a silicon carbide composite sintered body in which carbon powder is dispersed in silicon carbide, and the carbon powder is a porous carbonized powder in which at least a part of the surface is coated with a carbonized film. The blending amount of the carbon powder is 3 to 17 parts by mass with respect to 100 parts by mass of the silicon carbide.
With this configuration, the following effects can be obtained.
(1) Since the carbon powder has at least a part of the surface of the porous carbonized powder coated with the carbonized film, the porous carbonized powder is produced when the silicon carbide composite sintered body is manufactured, particularly when mixed with silicon carbide. Is prevented from being broken and miniaturized. As a result, when a silicon carbide composite sintered body containing carbon powder is used as a sliding member, the porous carbonized powder exhibits a cushioning property against load stress during sliding, and under lubricating conditions such as water and oil In order to improve the supportability of the lubricant, the counterpart material attack and the specific wear amount of the own material can be reduced.
(2) Since the blending amount of the carbon powder is adjusted to a specific range, the silicon carbide composite sintered body of the present invention is excellent in slidability under no lubrication in the atmosphere.

本発明の炭素粉末は、表面の少なくとも一部が炭化被膜で被覆された多孔質炭化粉末であれば特に限定しないが、例えば後述するように、脱脂糠や麩等の麩糠類と熱硬化性樹脂,熱可塑性樹脂などの合成樹脂とを混練・造粒して得た造粒物を焼成して得た炭化物が好ましい。
麩糠類と熱硬化性樹脂,熱可塑性樹脂などの合成樹脂とからなる造粒物を炭化させることにより、麩糠類由来の多孔質の炭化物(多孔質炭化粉末)の表面が合成樹脂由来のガラス状炭化層(炭化被膜)で被覆された構造を有する炭素粉末が得られる。
炭化被膜には多孔質炭化粉末の破壊を抑制する効果がある。従って、炭化被膜が多孔質炭化粉末の少なくとも一部を被覆するのが好ましいが、その効果をより大きくするためには多孔質炭化粉末の略全面乃至全面を被覆するのがより好ましい。
The carbon powder of the present invention is not particularly limited as long as at least a part of the surface thereof is a porous carbonized powder coated with a carbonized film. For example, as will be described later, potatoes such as defatted soot and soot and thermosetting A carbide obtained by firing a granulated product obtained by kneading and granulating a synthetic resin such as a resin or a thermoplastic resin is preferable.
By carbonizing a granulated product composed of moss and synthetic resin such as thermosetting resin and thermoplastic resin, the surface of moss-derived porous carbide (porous carbonized powder) is derived from synthetic resin. A carbon powder having a structure coated with a glassy carbonized layer (carbonized film) is obtained.
The carbonized film has an effect of suppressing the destruction of the porous carbonized powder. Therefore, it is preferable that the carbonized film covers at least a part of the porous carbonized powder, but in order to increase the effect, it is more preferable to cover substantially the entire surface or the entire surface of the porous carbonized powder.

炭素粉末の配合量は、炭化珪素100質量部に対し3〜17質量部が好ましい。炭素粉末の配合量が3質量部より少ないと、複合焼結体の大気中無潤滑下における摺動性が低下し、15質量部より多いと、複合焼結体の強度や剛性が低下するので比磨耗量が増大する。より好ましい炭素粉末の配合量は、5〜15質量部である。   As for the compounding quantity of carbon powder, 3-17 mass parts is preferable with respect to 100 mass parts of silicon carbide. If the blending amount of the carbon powder is less than 3 parts by mass, the slidability of the composite sintered body in the air without lubrication is reduced. If it is more than 15 parts by mass, the strength and rigidity of the composite sintered body are reduced. Specific wear increases. A more preferable blending amount of the carbon powder is 5 to 15 parts by mass.

炭素粉末の平均粒径は、10〜100μmが好ましい。平均粒径が10μmより小さいと摺動時の負荷応力に対するクッション性や潤滑剤の担持性が低下し、100μmより大きいと炭化珪素との焼結性が低下するため複合焼結体の機械的強度が低下して比磨耗量が増大する。より好ましい平均粒径は、20〜80μmである。   The average particle size of the carbon powder is preferably 10 to 100 μm. When the average particle size is smaller than 10 μm, the cushioning property against the load stress at the time of sliding and the supportability of the lubricant are lowered, and when larger than 100 μm, the sinterability with silicon carbide is lowered, so the mechanical strength of the composite sintered body is reduced. Decreases and the specific wear increases. A more preferable average particle diameter is 20 to 80 μm.

炭化珪素は特に限定されず、α型,β型のどちらの結晶型も使用することができる。炭化珪素の純度は、複合焼結体の密度の低下や強度、破壊靭性値の劣化を防止する等の理由から90質量%以上が好ましく、より好ましくは95質量%以上である。
炭化珪素の平均粒径は、0.05〜10μmが好ましい。平均粒径が10μmより大きいと機械的強度が低下して摺動時に脱粒し、摺動性が損なわれる。また、平均粒径が0.05μmより小さいと粒子が凝集し、取扱性が低下する。より好ましい平均粒径は、0.1〜5μmである。
Silicon carbide is not particularly limited, and both α-type and β-type crystal types can be used. The purity of silicon carbide is preferably 90% by mass or more, more preferably 95% by mass or more for reasons such as preventing the decrease in density, strength, and fracture toughness of the composite sintered body.
The average particle size of silicon carbide is preferably 0.05 to 10 μm. When the average particle size is larger than 10 μm, the mechanical strength is lowered and the particles are shed when sliding, and the slidability is impaired. On the other hand, if the average particle size is less than 0.05 μm, the particles are aggregated and the handleability is lowered. A more preferable average particle diameter is 0.1 to 5 μm.

本発明の請求項2に記載の発明は請求項1に記載の炭化珪素複合焼結体であって、前記炭化被膜の平均厚みは、前記炭素粉末の平均粒径の1/20〜1/5であることを特徴とする。
この構成により、請求項1の作用に加え、以下のような作用が得られる。
(1)炭化被膜の平均厚みを特定の範囲に限定するので、多孔質炭化粉末が炭化珪素複合焼結体中に微細化することなくより安定して充分に存在するので、相手材攻撃性及び自材の比磨耗量を一層緩和する炭化珪素複合焼結体が得られる。
The invention according to claim 2 of the present invention is the silicon carbide composite sintered body according to claim 1, wherein the average thickness of the carbonized coating is 1/20 to 1/5 of the average particle diameter of the carbon powder. It is characterized by being.
With this configuration, the following operation is obtained in addition to the operation of the first aspect.
(1) Since the average thickness of the carbonized film is limited to a specific range, the porous carbonized powder is more stable and sufficiently present in the silicon carbide composite sintered body without being finely divided. A silicon carbide composite sintered body that further relaxes the specific wear amount of the own material is obtained.

炭化被膜の平均厚みは、前記炭素粉末の平均粒径の1/20〜1/5が好ましい。炭化被膜の平均厚みが、炭素粉末の平均粒径の1/20より薄いと炭化被膜の硬度が低下し、複合焼結体の製造時、特に、炭化珪素と混合する際に破壊して微細化し易い。また、炭化被膜の平均厚みが炭素粉末の平均粒径の1/5より厚いと、相対的に多孔質炭化粉末の粒径が小さくなり、摺動時の負荷応力に対するクッション性や潤滑剤の担持性が低下する。     The average thickness of the carbonized film is preferably 1/20 to 1/5 of the average particle diameter of the carbon powder. When the average thickness of the carbonized film is less than 1/20 of the average particle diameter of the carbon powder, the hardness of the carbonized film decreases, and when the composite sintered body is manufactured, particularly when mixed with silicon carbide, it is destroyed and refined. easy. Also, if the average thickness of the carbonized film is thicker than 1/5 of the average particle diameter of the carbon powder, the particle diameter of the porous carbonized powder becomes relatively small, and cushioning against load stress during sliding and support of lubricant Sex is reduced.

本発明の請求項3に記載の発明は請求項1又は2に記載の炭化珪素複合焼結体であって、前記多孔質炭化粉末は、平均気孔径0.5〜5μmの気孔を有することを特徴とする。
この構成により、請求項1又は2の作用に加え、以下のような作用が得られる。
(1)多孔質炭化粉末が特定の平均気孔径の気孔を有するので、炭化珪素複合焼結体は摺動時における負荷応力に対するクッション性や潤滑剤の担持性により優れる。
The invention according to claim 3 of the present invention is the silicon carbide composite sintered body according to claim 1 or 2, wherein the porous carbonized powder has pores having an average pore diameter of 0.5 to 5 μm. Features.
With this configuration, in addition to the operation of the first or second aspect, the following operation can be obtained.
(1) Since the porous carbonized powder has pores having a specific average pore diameter, the silicon carbide composite sintered body is superior in cushioning properties against load stress and sliding ability of a lubricant during sliding.

多孔質炭化粉末が有する気孔の平均気孔径は0.5〜5μmが好ましい。平均気孔径が0.5μmより小さいと、複合焼結体の、摺動時における負荷応力に対するクッション性や潤滑剤の担持性が低下し、平均気孔径が5μmより大きいと、多孔質炭化粉末の機械的強度や硬度が低下して、摺動時に炭素粉末が破壊し易くなる。
なお、多孔質炭化粉末の平均気孔径は、走査型電子顕微鏡(SEM)を用いて、炭化被膜で被覆されていない炭素粉末(多孔質炭化粉末)の表面若しくは炭素粉末(多孔質炭化粉末)の断面などの気孔径分布を測定することによって求めることができる。
The average pore diameter of the pores of the porous carbonized powder is preferably 0.5 to 5 μm. When the average pore diameter is smaller than 0.5 μm, the composite sintered body has a reduced cushioning property against the load stress during sliding and the carrying ability of the lubricant. When the average pore diameter is larger than 5 μm, the porous carbonized powder The mechanical strength and hardness are reduced, and the carbon powder is easily broken during sliding.
The average pore diameter of the porous carbonized powder is determined by using a scanning electron microscope (SEM), the surface of the carbon powder (porous carbonized powder) not covered with the carbonized film, or the carbon powder (porous carbonized powder). It can be determined by measuring the pore size distribution such as the cross section.

本発明の請求項4に記載の発明は請求項1乃至3の内いずれか1に記載の炭化珪素複合焼結体であって、前記炭素粉末は、麩糠類と熱硬化性樹脂,熱可塑性樹脂などの合成樹脂とを混練し造粒して得た造粒物を、常圧下不活性ガス雰囲気中又は減圧下空気雰囲気中において700〜1100℃の温度で炭化させて得た炭化物であることを特徴とする。
この構成により、請求項1乃至3の内いずれか1の作用に加え、以下のような作用が得られる。
(1)炭素粉末は、内部に適度な径の気孔を有する麩糠類とガラス化して硬質な炭化皮膜となる合成樹脂との造粒物を所定の条件で炭化させることによって得られるので、相手材攻撃性及び自材の比磨耗量をより一層緩和する炭化珪素複合焼結体が得られる。
(2)従来、大量に廃棄されていた麩糠類を工業材料として有効活用することができるため、省資源性に優れる。
The invention according to claim 4 of the present invention is the silicon carbide composite sintered body according to any one of claims 1 to 3, wherein the carbon powder includes mosses, thermosetting resins, and thermoplastics. It is a carbide obtained by carbonizing a granulated product obtained by kneading and granulating a synthetic resin such as a resin in an inert gas atmosphere under normal pressure or in an air atmosphere under reduced pressure at a temperature of 700 to 1100 ° C. It is characterized by.
With this configuration, the following operation is obtained in addition to the operation of any one of claims 1 to 3.
(1) The carbon powder is obtained by carbonizing a granulated product of a moss having pores of an appropriate diameter inside and a synthetic resin that is vitrified into a hard carbonized film under predetermined conditions. A silicon carbide composite sintered body that further relaxes the material aggression and the specific wear amount of the self material can be obtained.
(2) Since moss that has been disposed of in large quantities can be effectively used as an industrial material, it is excellent in resource saving.

麩糠類は、米糠油を搾油した後の脱脂糠、小麦を挽いて粉にしたときに皮屑として残る麩、コーンスターチを製造したときの残渣であるグルテンフィード、籾、蕎麦、大豆等の穀類を加工処理する過程で発生する皮殻、及びそれらを粉砕処理したものが好ましい。
合成樹脂は、熱硬化性フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂などの熱硬化性樹脂や、熱可塑性フェノール樹脂、タール、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレートなどの熱可塑性樹脂を単独又は組み合わせて使用するのが好ましく、中でも特に、硬質な炭化被膜を得るために炭化率が40%以上のタール、フェノール樹脂、フラン樹脂、ポリアクリロニトリルなどを使用するのが好ましい。
また、合成樹脂は粉末状、液状のものをいずれも使用することができるが、多孔質炭化粉末と炭化被膜とが強固に接着し、かつ炭化被膜による多孔質炭化粉末表面の被覆がより均一になる点で、特に液状のものが好ましい。
Koji is a defatted koji after squeezing rice koji oil, koji that remains as flesh when milled into flour, gluten feed that is a residue when corn starch is produced, koji, oats, soybeans, etc. Peeling shells generated during the processing of, and those obtained by pulverizing them are preferred.
Synthetic resins include thermosetting resins such as thermosetting phenol resins, urea resins, melamine resins, unsaturated polyester resins, and epoxy resins, and thermoplastic resins such as thermoplastic phenol resins, tar, polyethylene, polypropylene, polystyrene, and polyethylene terephthalate. It is preferable to use resins alone or in combination, and it is particularly preferable to use tar, phenol resin, furan resin, polyacrylonitrile or the like having a carbonization rate of 40% or more in order to obtain a hard carbonized film.
Synthetic resins can be used in the form of powder or liquid, but the porous carbonized powder and the carbonized coating are firmly bonded, and the surface of the porous carbonized powder is more uniformly coated with the carbonized coating. In particular, the liquid form is preferable.

熱硬化性樹脂,熱可塑性樹脂などの合成樹脂の配合割合は、合成樹脂と麩糠類との総量100質量%に対して80質量%以下が好ましい。
配合割合が80質量%より多いと、得られる炭化被膜の平均厚みが厚くなるので相対的に多孔質炭化粉末の粒径が小さくなり、複合焼結体の摺動時における負荷応力に対するクッション性や潤滑剤の担持性が低下する。
麩糠類と合成樹脂との配合割合を調整することによって、得られる炭化被膜の平均厚みは調整することができる。
The blending ratio of the synthetic resin such as thermosetting resin or thermoplastic resin is preferably 80% by mass or less with respect to 100% by mass of the total amount of the synthetic resin and the moss.
When the blending ratio is more than 80% by mass, the average thickness of the obtained carbonized film becomes thick, so the particle size of the porous carbonized powder becomes relatively small, and the cushioning property against the load stress when the composite sintered body slides, Lubricant support is reduced.
The average thickness of the carbonized film obtained can be adjusted by adjusting the blending ratio of moss and synthetic resin.

得られる炭素粉末の粒径を整えるため、造粒物の大きさは、12メッシュ(目開き1.4mm)以下が好ましく、20メッシュ(目開き850μm)以下がより好ましい。
なお、造粒の際、造粒物の成形性と強度を向上させるため、必要に応じて、粘結剤を添加することができる。粘結剤の種類は特に限定しないが、例えば、澱粉、糖蜜、リグニン、ポリビニルアルコール、メチルセルロース、パルプ廃液等の有機類、水等を用いることができる。粘結剤の添加量は特に限定しないが、添加効果やコスト等を考慮すると、麩糠類と合成樹脂の総量100質量%に対して0.5〜10質量%が好ましい。
In order to adjust the particle size of the obtained carbon powder, the size of the granulated product is preferably 12 mesh (aperture 1.4 mm) or less, and more preferably 20 mesh (aperture 850 μm) or less.
In addition, in the case of granulation, in order to improve the moldability and intensity | strength of a granulated material, a binder can be added as needed. Although the kind of binder is not specifically limited, For example, starch, molasses, lignin, polyvinyl alcohol, methylcellulose, organic substances, such as a pulp waste liquid, water, etc. can be used. The addition amount of the binder is not particularly limited. However, in consideration of the addition effect and cost, the addition amount is preferably 0.5 to 10% by mass with respect to 100% by mass of the total amount of moss and synthetic resin.

造粒物を、麩糠類や合成樹脂が焼失しないように窒素ガス等の不活性ガス雰囲気中又は減圧下空気雰囲気中において、700〜1100℃、より好ましくは800〜1000℃の温度で炭化させる。炭化温度が700℃より低いか又は1100℃より高いと、得られた炭素粉末の硬度が低下する。なお、麩糠類等の分解に伴い多量のガスが発生するため、炭化温度が700℃以上に達するまでは1〜5℃/分の緩やかな速度で昇温・加熱するのが好ましい。   The granulated product is carbonized at a temperature of 700 to 1100 ° C., more preferably 800 to 1000 ° C. in an inert gas atmosphere such as nitrogen gas or in an air atmosphere under reduced pressure so that the moss and the synthetic resin are not burned off. . When the carbonization temperature is lower than 700 ° C or higher than 1100 ° C, the hardness of the obtained carbon powder is lowered. In addition, since a large amount of gas is generated with decomposition of moss and the like, it is preferable to raise and heat at a moderate rate of 1 to 5 ° C./min until the carbonization temperature reaches 700 ° C. or higher.

空気雰囲気中における炭化時の減圧条件は、1〜100Paが好ましい。圧力が1Paより低いと真空ポンプが大型化するとともに減圧に時間を要するため生産性が低下し、100Paより高いと残留空気によって麩糠類や合成樹脂が焼失する。   As for the pressure reduction conditions at the time of carbonization in an air atmosphere, 1-100 Pa is preferable. When the pressure is lower than 1 Pa, the vacuum pump is enlarged and time is required for pressure reduction, so that productivity is lowered. When the pressure is higher than 100 Pa, moss and synthetic resin are burned out by residual air.

本発明の請求項5に記載の発明は炭化珪素に炭素粉末を分散させた炭化珪素複合焼結体の製造方法であって、表面の少なくとも一部が炭化被膜で被覆された多孔質炭化粉末からなる炭素粉末と炭化珪素とを混合して混合粉末を得る混合工程と、前記混合粉末を成形して成形体を得る成形工程と、前記成形体を600〜1100℃の温度で加熱・脱脂して脱脂成形体を得る脱脂工程と、前記脱脂成形体を冷間等方圧加圧法で加圧する加圧工程と、前記加圧工程で加圧された脱脂成形体を1800〜2200℃で加熱・焼結させて焼結体を得る焼結工程と、を備えていることを特徴とする。
この構成により、以下のような作用が得られる。
(1)炭素粉末は、多孔質炭化粉末の表面の少なくとも一部が炭化被膜で被覆されているので、炭化珪素複合焼結体の製造時、特に、炭化珪素と混合する際に多孔質炭化粉末が破壊されて微細化するのを防止する。その結果、炭素粉末を含む炭化珪素複合焼結体を摺動部材として用いた場合、多孔質炭化粉末が摺動時の負荷応力に対するクッション性を発揮し、また水や油等の潤滑条件下では潤滑剤の担持性を良好にするため、相手材攻撃性及び自材の比磨耗量を緩和することができる。
(2)脱脂成形体を、一旦、冷間等方圧加圧法(CIP)にて加圧した後に焼結させるので、高密度の炭化珪素複合焼結体を常圧焼結にて製造できる。
(3)熱間等方圧加圧法(HIP)やホットプレス法(HP)などでも高密度の複合焼結体を製造することは可能であるが、本発明の製造方法ではそのような大掛かりな設備を必要としない点で経済的効果に優れる。
Invention of Claim 5 of this invention is a manufacturing method of the silicon carbide compound sintered compact which disperse | distributed carbon powder to silicon carbide, Comprising: From the porous carbonized powder by which at least one part of the surface was coat | covered with the carbonized film A mixing step of mixing a carbon powder and silicon carbide to obtain a mixed powder, a forming step of forming the mixed powder to obtain a formed body, and heating and degreasing the formed body at a temperature of 600 to 1100 ° C. A degreasing step for obtaining a degreased molded body, a pressing step for pressurizing the degreased molded body by a cold isostatic pressing method, and heating and baking the degreased molded body pressed in the pressing step at 1800 to 2200 ° C. And a sintering step of obtaining a sintered body by bonding.
With this configuration, the following effects can be obtained.
(1) Since the carbon powder has at least a part of the surface of the porous carbonized powder coated with the carbonized film, the porous carbonized powder is produced when the silicon carbide composite sintered body is manufactured, particularly when mixed with silicon carbide. Is prevented from being broken and miniaturized. As a result, when a silicon carbide composite sintered body containing carbon powder is used as a sliding member, the porous carbonized powder exhibits a cushioning property against load stress during sliding, and under lubricating conditions such as water and oil In order to improve the supportability of the lubricant, the counterpart material attack and the specific wear amount of the own material can be reduced.
(2) Since the degreased molded body is once pressed by the cold isostatic pressing method (CIP) and then sintered, a high-density silicon carbide composite sintered body can be produced by normal pressure sintering.
(3) Although it is possible to produce a high-density composite sintered body by hot isostatic pressing (HIP), hot pressing (HP), etc., the production method of the present invention does not require such a large scale. Excellent economic effect in that no equipment is required.

混合工程においては、炭素粉末が炭化珪素と均一に混合できれば、どのような条件で混合してもよいが、混合する際、炭素粉末が破壊して微細になり難いような条件で混合するのが好ましい。具体的な混合機の例としては、ボールミル、V型混合機等を使用するのが好ましい。
また、必要に応じて、成形性を高めるための有機バインダーやホウ素化合物等の焼結助剤などを添加することもできる。
In the mixing step, as long as the carbon powder can be uniformly mixed with silicon carbide, it may be mixed under any conditions. However, when mixing, it is preferable that the carbon powder is mixed under conditions that make it difficult for the carbon powder to break down and become fine. preferable. As a specific example of the mixer, it is preferable to use a ball mill, a V-type mixer or the like.
Further, if necessary, a sintering aid such as an organic binder or a boron compound for improving the moldability can be added.

成形工程においては、従来から公知の種々の成形方法を用いることができるが、例えば、鋳込み成形法、押出成形法、一軸加圧成形法、冷間等方圧加圧法(CIP)、射出成形法等の成形方法を用いるのが好ましい。   In the molding process, various conventionally known molding methods can be used. For example, a casting molding method, an extrusion molding method, a uniaxial pressure molding method, a cold isostatic pressing method (CIP), and an injection molding method. It is preferable to use a molding method such as

脱脂工程においては、成形体を減圧下空気雰囲気中又は常圧下不活性ガス雰囲気中で600〜1100℃、より好ましくは700〜1000℃の温度で加熱・脱脂して脱脂成形体を得る。この脱脂処理により、炭素粉末中の水分や未分解の有機化合物は分解及びガス化するので、最終的に複合焼結体の相対密度を94〜99%の高密度にすることができる。
脱脂工程における雰囲気条件及び圧力条件に関しては、炭素粉末を焼失させずに未分解の有機化合物の分解を促進させることができるという点で、空気雰囲気で60Pa以下が特に好ましい。圧力が60Paより高いと分解ガスの蒸発・散失が促進されず、炭素粉末が焼失し易くなる。
温度条件に関しては、脱脂温度が600℃より低いと、炭素粉末に含まれる未分解の有機化合物の分解不足により焼結工程においてガスが発生するため、複合焼結体の密度が低下し、また脱脂温度が1100℃より高いと炭素粉末が分解し焼失する。
In the degreasing step, the molded body is heated and degreased at a temperature of 600 to 1100 ° C, more preferably 700 to 1000 ° C in an air atmosphere under reduced pressure or in an inert gas atmosphere under normal pressure to obtain a degreased molded body. By this degreasing treatment, moisture and undecomposed organic compounds in the carbon powder are decomposed and gasified, so that the relative density of the composite sintered body can be finally increased to 94 to 99%.
Regarding the atmospheric conditions and pressure conditions in the degreasing step, 60 Pa or less is particularly preferable in an air atmosphere in that the decomposition of the undecomposed organic compound can be promoted without burning off the carbon powder. When the pressure is higher than 60 Pa, evaporation / dissipation of the cracked gas is not promoted, and the carbon powder is easily burned off.
Regarding the temperature condition, if the degreasing temperature is lower than 600 ° C., gas is generated in the sintering process due to insufficient decomposition of the undecomposed organic compound contained in the carbon powder. When the temperature is higher than 1100 ° C., the carbon powder is decomposed and burned out.

加圧工程においては、冷間等方圧加圧法(CIP)の圧力は、100〜200MPaが好ましい。圧力が100MPaより低いと加圧による密度の増加が小さく、反対に、圧力が200MPaより高くてもそれ以上の密度の増加は小さく、その割に加圧装置の耐用年数が短くなるといったデメリットが生じる。より好ましい圧力は130〜180MPaである。     In the pressurizing step, the pressure of the cold isostatic pressing method (CIP) is preferably 100 to 200 MPa. If the pressure is lower than 100 MPa, the increase in density due to pressurization is small, and conversely, even if the pressure is higher than 200 MPa, the increase in density is small, and there is a demerit that the service life of the pressurizer is shortened. . A more preferable pressure is 130 to 180 MPa.

焼結工程においては、加圧工程で得られた脱脂成形体をアルゴン、ヘリウム、窒素等の不活性ガスを用いた常圧下不活性ガス雰囲気又は減圧下空気雰囲気にて焼結させる方法が好ましい。
空気雰囲気における圧力条件は、1〜100Paが好ましい。圧力が1Paより低いと減圧に用いる真空ポンプが大型化するとともに、減圧に時間を要するため生産性が低下する。圧力が100Paより高いと残留空気によって炭素粉末や炭化珪素が分解し複合焼結体の密度が低下する。
焼結温度は1800〜2200℃が好ましく、焼結温度が1800℃より低いと、焼結が不十分なため機械的特性が著しく低下し、2200℃より高いと炭化珪素の異常な粒成長が生じて機械的特性が低下する。
In the sintering step, a method in which the degreased molded body obtained in the pressurizing step is sintered in an inert gas atmosphere under normal pressure or an air atmosphere under reduced pressure using an inert gas such as argon, helium, or nitrogen is preferable.
The pressure condition in the air atmosphere is preferably 1 to 100 Pa. When the pressure is lower than 1 Pa, the vacuum pump used for depressurization increases in size, and time is required for depressurization, resulting in a decrease in productivity. When the pressure is higher than 100 Pa, carbon powder and silicon carbide are decomposed by residual air, and the density of the composite sintered body is lowered.
The sintering temperature is preferably 1800 to 2200 ° C. If the sintering temperature is lower than 1800 ° C., the mechanical properties are remarkably lowered due to insufficient sintering, and if it is higher than 2200 ° C., abnormal grain growth of silicon carbide occurs. As a result, the mechanical properties deteriorate.

本発明の請求項6に記載の発明は請求項5に記載の炭化珪素複合焼結体の製造方法であって、前記炭素粉末の配合量は、前記炭化珪素100質量部に対して3〜17質量部であることを特徴とする。     Invention of Claim 6 of this invention is a manufacturing method of the silicon carbide compound sintered compact of Claim 5, Comprising: The compounding quantity of the said carbon powder is 3-17 with respect to 100 mass parts of said silicon carbide. It is a mass part.

この構成により、請求項5の作用に加え、以下のような作用が得られる。
(1)炭素粉末の配合量を特定の範囲に調整するので、得られた炭化珪素複合焼結体は大気中無潤滑下での摺動性に優れる。
With this configuration, the following operation is obtained in addition to the operation of the fifth aspect.
(1) Since the blending amount of the carbon powder is adjusted to a specific range, the obtained silicon carbide composite sintered body is excellent in slidability under no lubrication in the atmosphere.

本発明の請求項7に記載の発明は請求項5又は6に記載の炭化珪素複合焼結体の製造方法であって、前記炭化被膜の平均厚さは、前記炭素粉末の平均粒径の1/20〜1/5であることを特徴とする。     Invention of Claim 7 of this invention is a manufacturing method of the silicon carbide compound sintered compact of Claim 5 or 6, Comprising: The average thickness of the said carbonized film is 1 of the average particle diameter of the said carbon powder. / 20 to 1/5.

この構成により、請求項5又は6の作用に加え、以下のような作用が得られる。
(1)炭化被膜の平均厚みを特定の範囲に限定するので、多孔質炭化粉末を炭化珪素複合焼結体中に微細化することなく安定して充分に存在させることができるので、相手材攻撃性及び自材の比磨耗量を一層緩和する炭化珪素複合焼結体が得られる。
With this configuration, in addition to the operation of the fifth or sixth aspect, the following operation can be obtained.
(1) Since the average thickness of the carbonized film is limited to a specific range, the porous carbonized powder can be stably and sufficiently present in the silicon carbide composite sintered body without being miniaturized. A silicon carbide composite sintered body that further relaxes the properties and the specific wear amount of the material itself can be obtained.

本発明の請求項8に記載の発明は請求項5乃至7の内いずれか1に記載の炭化珪素複合焼結体の製造方法であって、前記多孔質炭化粉末は、平均径0.5〜5μmの気孔を有することを特徴とする。     Invention of Claim 8 of this invention is a manufacturing method of the silicon carbide compound sintered compact of any one of Claim 5 thru | or 7, Comprising: The said porous carbide | carbonized_material powder is 0.5-0.5 in average diameter. It has 5 μm pores.

この構成により、請求項5乃至7の内いずれか1の作用に加え、以下のような作用が得られる。
(1)多孔質炭化粉末が特定の平均気孔径の気孔を有するので、摺動時における負荷応力に対するクッション性や潤滑剤の担持性により優れた炭化珪素複合焼結体を得ることができる。
With this configuration, in addition to the operation of any one of claims 5 to 7, the following operation can be obtained.
(1) Since the porous carbonized powder has pores having a specific average pore size, a silicon carbide composite sintered body that is superior in cushioning property against load stress during sliding and in carrying a lubricant can be obtained.

本発明の請求項9に記載の発明は請求項5乃至8の内いずれか1に記載の炭化珪素複合焼結体の製造方法であって、前記炭素粉末は、麩糠類と熱硬化性樹脂,熱可塑性樹脂などの合成樹脂とを混練し造粒して得た造粒物を、常圧下不活性ガス雰囲気中又は減圧下空気雰囲気中において700〜1100℃の温度で炭化させて得た炭化物であることを特徴とする。     Invention of Claim 9 of this invention is a manufacturing method of the silicon carbide composite sintered compact of any one of Claim 5 thru | or 8, Comprising: The said carbon powder is moss and thermosetting resin , Carbide obtained by carbonizing a granulated product obtained by kneading and granulating with a synthetic resin such as a thermoplastic resin at 700 to 1100 ° C. in an inert gas atmosphere under normal pressure or in an air atmosphere under reduced pressure It is characterized by being.

この構成により、請求項5乃至8の内いずれか1の作用に加え、以下のような作用が得られる。
(1)内部に適度な径の気孔を有する麩糠類とガラス化して硬質な炭化皮膜となる合成樹脂との造粒物を所定の条件で炭化させた炭素粉末を用いるので、相手材攻撃性及び自材の比磨耗量をより一層緩和する炭化珪素複合焼結体が得られる。
(2)従来、大量に廃棄されていた麩糠類を工業材料として有効活用することができるため、省資源性に優れる。
With this configuration, the following operation is obtained in addition to the operation of any one of claims 5 to 8.
(1) Since a carbon powder obtained by carbonizing a granulated product of a moss having pores of an appropriate diameter inside and a synthetic resin that is vitrified to form a hard carbonized film under a predetermined condition is used, the opponent material is aggressive In addition, a silicon carbide composite sintered body that further relaxes the specific wear amount of the own material can be obtained.
(2) Since moss that has been disposed of in large quantities can be effectively used as an industrial material, it is excellent in resource saving.

以上のように、本発明の炭化珪素複合焼結体及びその製造方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)本発明の炭素粉末を含む複合焼結体を摺動部材として用いた場合、多孔質炭化粉末によって摺動時の負荷応力に対するクッション性が発揮され、また水や油等の潤滑条件下では潤滑剤の担持性が良好になるため、相手材攻撃性及び自材の比磨耗量を緩和することができる炭化珪素複合焼結体を提供できる。
(2)大気中無潤滑下での摺動性に優れた炭化珪素複合焼結体を提供できる。
As described above, according to the silicon carbide composite sintered body and the manufacturing method thereof of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) When the composite sintered body containing the carbon powder of the present invention is used as a sliding member, cushioning properties against load stress during sliding are exhibited by the porous carbonized powder, and lubrication conditions such as water and oil are used. Then, since the carrying property of the lubricant is improved, it is possible to provide a silicon carbide composite sintered body capable of reducing the attacking property of the counterpart material and the specific wear amount of the own material.
(2) A silicon carbide composite sintered body excellent in slidability under non-lubrication in the atmosphere can be provided.

請求項2に記載の発明によれば、請求項1の効果に加え、
(1)多孔質炭化粉末が炭化珪素複合焼結体中に微細化することなく安定して充分に存在するので、相手材攻撃性及び自材の比磨耗量を一層緩和する炭化珪素複合焼結体を提供できる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) Since the silicon carbide composite sintered body is sufficiently and stably present in the silicon carbide composite sintered body without being miniaturized, the silicon carbide composite sintering further mitigates the counterpart material attack and the specific wear amount of the own material. Can provide the body.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、
(1)多孔質炭化粉末が特定の平均気孔径の気孔を有するので、摺動時の負荷応力に対するクッション性や潤滑剤の担持性により優れた炭化珪素複合焼結体を提供できる。
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1) Since the porous carbonized powder has pores having a specific average pore diameter, it is possible to provide a silicon carbide composite sintered body that is superior in cushioning properties against load stress during sliding and in carrying lubricant.

請求項4に記載の発明によれば、請求項1乃至3の内いずれか1の効果に加え、
(1)炭素粉末は、内部に適度な径の気孔を有する麩糠類とガラス化して硬質な炭化皮膜となる合成樹脂との造粒物を所定の条件で炭化させることによって得られるので、相手材攻撃性及び自材の比磨耗量をより一層緩和する炭化珪素複合焼結体を提供できる。
(2)従来、大量に廃棄されていた麩糠類を工業材料として有効活用し、省資源性に優れた炭化珪素複合焼結体を提供できる。
According to the invention of claim 4, in addition to the effect of any one of claims 1 to 3,
(1) The carbon powder is obtained by carbonizing a granulated product of a moss having pores of an appropriate diameter inside and a synthetic resin that is vitrified into a hard carbonized film under predetermined conditions. It is possible to provide a silicon carbide composite sintered body that can further alleviate the material attack and the specific wear amount of the self material.
(2) A silicon carbide composite sintered body excellent in resource saving can be provided by effectively utilizing potatoes that have been discarded in large quantities as an industrial material.

請求項5に記載の発明によれば、
(1)本発明の炭素粉末を含む複合焼結体を摺動部材として用いた場合、多孔質炭化粉末によって摺動時の負荷応力に対するクッション性が発揮され、また水や油等の潤滑条件下では潤滑剤の担持性が良好になるため、相手材攻撃性及び自材の比磨耗量を緩和できる炭化珪素複合焼結体が得られる炭化珪素複合焼結体の製造方法を提供できる。
(2)脱脂成形体を、一旦、冷間等方圧加圧法(CIP)にて加圧した後に焼結させるので、高密度の炭化珪素複合焼結体を常圧焼結にて製造できる炭化珪素複合焼結体の製造方法を提供できる。
(3)従来公知の熱間等方圧加圧法(HIP)やホットプレス法(HP)などのような大掛かりな設備を必要とせず、経済的効果に優れた炭化珪素複合焼結体の製造方法を提供できる。
According to the invention of claim 5,
(1) When the composite sintered body containing the carbon powder of the present invention is used as a sliding member, cushioning properties against load stress during sliding are exhibited by the porous carbonized powder, and lubrication conditions such as water and oil are used. Then, since the carrying property of the lubricant is improved, it is possible to provide a method for producing a silicon carbide composite sintered body from which a silicon carbide composite sintered body capable of reducing the attack of the counterpart material and the specific wear amount of the own material can be obtained.
(2) Since the degreased molded body is once pressed by the cold isostatic pressing method (CIP) and then sintered, carbonization capable of producing a high-density silicon carbide composite sintered body by atmospheric pressure sintering A method for producing a silicon composite sintered body can be provided.
(3) A method for producing a silicon carbide composite sintered body that does not require a large-scale facility such as a conventionally known hot isostatic pressing method (HIP) or hot press method (HP) and is excellent in economic effect. Can provide.

請求項6に記載の発明によれば、請求項5の効果に加え、
(1)大気中無潤滑下での摺動性に優れた炭化珪素複合焼結体が得られる炭化珪素複合焼結体の製造方法を提供できる。
According to the invention described in claim 6, in addition to the effect of claim 5,
(1) A method for producing a silicon carbide composite sintered body from which a silicon carbide composite sintered body excellent in slidability under non-lubrication in the atmosphere can be provided.

請求項7に記載の発明によれば、請求項5又は6の効果に加え、
(1)多孔質炭化粉末を炭化珪素複合焼結体中に微細化することなく安定して充分に存在させることができるので、相手材攻撃性及び自材の比磨耗量を一層緩和する炭化珪素複合焼結体が得られる炭化珪素複合焼結体の製造方法を提供できる。
According to invention of Claim 7, in addition to the effect of Claim 5 or 6,
(1) Since silicon carbide composite powder can be made to exist in a stable and sufficiently porous carbide powder without making it fine, silicon carbide that further reduces the aggressiveness of the counterpart material and the specific wear amount of the material itself A method for producing a silicon carbide composite sintered body from which a composite sintered body can be obtained can be provided.

請求項8に記載の発明によれば、請求項5乃至7の内いずれか1の効果に加え、
(1)多孔質炭化粉末が特定の平均気孔径の気孔を有するので、摺動時における負荷応力に対するクッション性や潤滑剤の担持性により優れた炭化珪素複合焼結体が得られる炭化珪素複合焼結体の製造方法を提供できる。
According to the invention described in claim 8, in addition to the effect of any one of claims 5 to 7,
(1) Since the porous carbonized powder has pores having a specific average pore diameter, a silicon carbide composite fired product can be obtained in which a silicon carbide composite sintered body excellent in cushioning properties against load stress during sliding and carrying of a lubricant is obtained. A method for producing a knot can be provided.

請求項9に記載の発明によれば、請求項5乃至8の内いずれか1の効果に加え、
(1)内部に適度な径の気孔を有する麩糠類とガラス化して硬質な炭化皮膜となる合成樹脂との造粒物を所定の条件で炭化させた炭素粉末を用いるので、相手材攻撃性及び自材の比磨耗量をより一層緩和する炭化珪素複合焼結体が得られる炭化珪素複合焼結体の製造方法を提供できる。
(2)従来、大量に廃棄されていた麩糠類を工業材料として有効活用し、省資源性に優れた炭化珪素複合焼結体の製造方法を提供できる。
According to invention of Claim 9, in addition to the effect of any one of Claims 5 to 8,
(1) Since a carbon powder obtained by carbonizing a granulated product of a moss having pores of an appropriate diameter inside and a synthetic resin that is vitrified to form a hard carbonized film under a predetermined condition is used, the opponent material is aggressive And the manufacturing method of the silicon carbide composite sintered compact from which the silicon carbide composite sintered compact which relieves | releasing the specific wear amount of a self-material further can be provided.
(2) A method for producing a silicon carbide composite sintered body excellent in resource saving can be provided by effectively utilizing wastes that have been discarded in large quantities as an industrial material.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
48メッシュ(目開き300μm)の篩を通過した脱脂糠と、熱硬化性フェノール樹脂(群栄化学工業製、商品名:液状レヂトップPL−4826)とを、脱脂糠76質量部に対して熱硬化性フェノール樹脂24質量部の割合で配合して混練した後、80℃に加熱しながら造粒した。得られた造粒物の内、12メッシュ(目開き1.4mm)の篩を通過したものを窒素ガス雰囲気中900℃で炭化させた後、粉砕して炭素粉末を得た。得られた炭素粉末の平均粒径は、40μmであった。
図1は、炭素粉末の走査型電子顕微鏡(SEM)写真の一例であり、図2は図1の一部分を拡大した走査型電子顕微鏡(SEM)写真である。
図1によると、炭素粉末の最大粒径は約100μmであり、表面の炭化被膜は比較的平滑なガラス状組織であることがわかる。
図2に示す炭素粉末は粒径約90μmで、上側の表面の一部だけが平滑な組織をしており、下側は多孔質状の組織をしている。多孔質炭化粉末を被覆したガラス状の炭化被膜の一部が剥離したものと推察される。炭化被膜の厚みは約5μmであり、多孔質炭化粉末の表面には平均径が0.5〜5μmの気孔が形成されている。炭素粉末の平均粒径は40μmであり、炭化被膜の厚みは約5μmであったことから、炭素粉末に対する炭化被膜の厚み(5μm)の比率は、5/40=1/8である。
次に、平均粒径0.7μmの炭化珪素100質量部に対して前述の炭素粉末を3質量部配合したものに、焼結助剤として炭化ホウ素0.5質量部及び炭素1質量部を加えて、トルエン中ボールミルで24時間湿式混合した(混合工程)。乾燥後、混合粉末を冷間等方圧加圧法にて150MPaの圧力で加圧して平板状の成形体を得た(成形工程)。得られた成形体を26Paの空気雰囲気中、300℃/時間の昇温速度で900℃まで昇温・加熱して1時間保持した後、室温まで冷却して脱脂成形体を得た(脱脂工程)。得られた脱脂成形体を、再び150MPaで冷間等方圧加圧法にて加圧した(加圧工程)。加圧した脱脂成形体を、26Paの減圧下空気雰囲気中、300℃/時間の昇温速度で1500℃まで昇温・加熱した後、1500℃で0.1MPaのアルゴン雰囲気に置換した後、2050℃で2時間常圧焼結させて(焼結工程)、実施例1の炭化珪素複合焼結体を得た。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
Example 1
A defatted soot that has passed through a 48 mesh (mesh opening 300 μm) sieve and a thermosetting phenolic resin (manufactured by Gunei Chemical Industry Co., Ltd., trade name: Liquid Resid Top PL-4826) are thermally cured on 76 parts by weight of the defatted soot. After mixing and kneading at a ratio of 24 parts by weight of the phenolic resin, it was granulated while heating to 80 ° C. Among the obtained granulated material, a material that passed through a 12 mesh (1.4 mm opening) sieve was carbonized at 900 ° C. in a nitrogen gas atmosphere and then pulverized to obtain a carbon powder. The average particle size of the obtained carbon powder was 40 μm.
FIG. 1 is an example of a scanning electron microscope (SEM) photograph of carbon powder, and FIG. 2 is an enlarged scanning electron microscope (SEM) photograph of a part of FIG.
According to FIG. 1, the maximum particle diameter of the carbon powder is about 100 μm, and it can be seen that the carbonized film on the surface has a relatively smooth glassy structure.
The carbon powder shown in FIG. 2 has a particle size of about 90 μm, and only a part of the upper surface has a smooth structure, and the lower side has a porous structure. It is assumed that a part of the glass-like carbonized film coated with the porous carbonized powder is peeled off. The thickness of the carbonized film is about 5 μm, and pores having an average diameter of 0.5 to 5 μm are formed on the surface of the porous carbonized powder. Since the average particle diameter of the carbon powder was 40 μm and the thickness of the carbonized film was about 5 μm, the ratio of the thickness of the carbonized film to the carbon powder (5 μm) was 5/40 = 1/8.
Next, 0.5 parts by mass of boron carbide and 1 part by mass of carbon were added as a sintering aid to a mixture of 3 parts by mass of the aforementioned carbon powder with respect to 100 parts by mass of silicon carbide having an average particle size of 0.7 μm. Then, wet mixing was performed for 24 hours in a ball mill in toluene (mixing step). After drying, the mixed powder was pressed at a pressure of 150 MPa by a cold isostatic pressing method to obtain a flat molded body (molding step). The obtained molded body was heated to 900 ° C. at a heating rate of 300 ° C./hour in an air atmosphere of 26 Pa and held for 1 hour, and then cooled to room temperature to obtain a degreased molded body (degreasing step). ). The obtained degreased molded body was pressurized again by a cold isostatic pressing method at 150 MPa (pressurizing step). The pressurized degreased molded body was heated to 1500 ° C. at a temperature rising rate of 300 ° C./hour in an air atmosphere under a reduced pressure of 26 Pa, and then replaced with an argon atmosphere of 0.1 MPa at 1500 ° C., and then 2050 The silicon carbide composite sintered body of Example 1 was obtained by sintering at atmospheric pressure for 2 hours at normal pressure (sintering step).

(実施例2)
炭化珪素100質量部に対して炭素粉末を5質量部配合した以外は実施例1と同様にして、実施例2の炭化珪素複合焼結体を得た。
図3は、実施例2の炭化珪素複合焼結体の切断面の走査型電子顕微鏡(SEM)写真であり、図4は図3に点在する炭素粉末の切断面を拡大した走査型電子顕微鏡(SEM)写真である。
図3によれば、炭素粉末は炭化珪素複合焼結体中に均一に分散していることがわかる。また、図4によれば、炭化珪素複合焼結体の切断によって炭素粉末の炭化被膜が剥離し、多孔質炭化粉末部分が現れている。
(Example 2)
A silicon carbide composite sintered body of Example 2 was obtained in the same manner as Example 1 except that 5 parts by mass of carbon powder was blended with 100 parts by mass of silicon carbide.
3 is a scanning electron microscope (SEM) photograph of the cut surface of the silicon carbide composite sintered body of Example 2, and FIG. 4 is a scanning electron microscope in which the cut surfaces of the carbon powder scattered in FIG. 3 are enlarged. (SEM) Photograph.
As can be seen from FIG. 3, the carbon powder is uniformly dispersed in the silicon carbide composite sintered body. Moreover, according to FIG. 4, the carbonized film of carbon powder peels by cutting | disconnection of a silicon carbide composite sintered compact, and the porous carbonized powder part has appeared.

(実施例3)
炭化珪素100質量部に対して炭素粉末を11質量部配合した以外は実施例1と同様にして、実施例3の炭化珪素複合焼結体を得た。
(Example 3)
A silicon carbide composite sintered body of Example 3 was obtained in the same manner as Example 1 except that 11 parts by mass of carbon powder was blended with 100 parts by mass of silicon carbide.

(実施例4)
炭化珪素100質量部に対して炭素粉末を17質量部配合した以外は実施例1と同様にして、実施例4の炭化珪素複合焼結体を得た。
Example 4
A silicon carbide composite sintered body of Example 4 was obtained in the same manner as Example 1 except that 17 parts by mass of carbon powder was blended with 100 parts by mass of silicon carbide.

(比較例1)
炭化珪素100質量部に対して炭素粉末を2質量部配合した以外は実施例1と同様にして、比較例1の炭化珪素複合焼結体を得た。
(Comparative Example 1)
A silicon carbide composite sintered body of Comparative Example 1 was obtained in the same manner as in Example 1 except that 2 parts by mass of carbon powder was blended with 100 parts by mass of silicon carbide.

(比較例2)
炭化珪素100質量部に対して炭素粉末を20質量部配合した以外は実施例1と同様にして、比較例2の炭化珪素複合焼結体を得た。
(Comparative Example 2)
A silicon carbide composite sintered body of Comparative Example 2 was obtained in the same manner as in Example 1 except that 20 parts by mass of carbon powder was blended with 100 parts by mass of silicon carbide.

(比較例3)
石油ピッチを1000℃で焼成して得られた焼成体を、粉砕・整粒して炭素粉末(平均粒径100μm)を得た。得られた炭素粉末を炭化珪素100質量部に対して11質量部配合した以外は実施例1と同様にして比較例3の炭化珪素複合焼結体を得た。
(Comparative Example 3)
A fired body obtained by firing petroleum pitch at 1000 ° C. was pulverized and sized to obtain carbon powder (average particle size 100 μm). A silicon carbide composite sintered body of Comparative Example 3 was obtained in the same manner as in Example 1 except that 11 parts by mass of the obtained carbon powder was blended with respect to 100 parts by mass of silicon carbide.

(比較例4)
平均粒径0.7μmの炭化珪素粉末100質量部に焼結助剤として炭化ホウ素0.5質量部及び炭素1質量部を加えて、トルエン中ボールミルで24時間湿式混合した。乾燥後、混合粉末を冷間等方圧加圧法にて150MPaの圧力で加圧して成形体を得た。得られた成形体を、26Paの空気雰囲気中、300℃/時間の昇温速度で900℃まで昇温・加熱して1時間保持した後、室温まで冷却して脱脂成形体を得た。得られた脱脂成形体を、再び150MPaの圧力で冷間等方圧加圧法にて加圧した。加圧した脱脂成形体を26Paの減圧下、300℃/時間の昇温速度で1500℃まで昇温・加熱した後、0.1MPaのアルゴン雰囲気に置換して、再び2050℃まで昇温・加熱して2時間保持した後、室温まで冷却して比較例4の炭化珪素焼結体を得た。
(Comparative Example 4)
To 100 parts by mass of silicon carbide powder having an average particle size of 0.7 μm, 0.5 parts by mass of boron carbide and 1 part by mass of carbon were added as sintering aids, and wet mixed in a ball mill in toluene for 24 hours. After drying, the mixed powder was pressed at a pressure of 150 MPa by a cold isostatic pressing method to obtain a molded body. The obtained molded body was heated and heated to 900 ° C. at a temperature rising rate of 300 ° C./hour in an air atmosphere of 26 Pa for 1 hour, and then cooled to room temperature to obtain a degreased molded body. The obtained degreased molded body was again pressed by a cold isostatic pressing method at a pressure of 150 MPa. The pressurized degreased molded body was heated to 1500 ° C. at a heating rate of 300 ° C./hour under a reduced pressure of 26 Pa, then replaced with a 0.1 MPa argon atmosphere, and again heated to 2050 ° C. Then, after holding for 2 hours, it was cooled to room temperature to obtain a silicon carbide sintered body of Comparative Example 4.

(大気中無潤滑下における比磨耗量)
実施例1〜4及び比較例1〜4の各焼結体について、大気中無潤滑下での比磨耗量を以下のように測定した。
試験には、往復型磨耗試験装置(新東科学株式会社製、HEIDO−22型)を用いた。試験方法は、各焼結体をプレート状試験片としてステージに固定し、プレート状試験片の上に載置したボール状試験片に重錘を用いて荷重を加え、ステージを一定のすべり速度で往復運動させることにより磨耗試験を行った。なお、ボール状試験片は、半径4mmのアルミナ研磨球(嵩密度3.9g/cm、ビッカース硬度18GPa)を用いた。また、すべり速度は0.01m/s、摩擦繰り返し数は20000回、往復のストロークは5mmとした。
耐摩耗性の評価には、比磨耗量を用いた。ここで、比磨耗量とは、単位荷重、単位すべり距離あたりの磨耗体積であり、V/(W・L)の計算式(V:磨耗体積〔mm〕、W:垂直荷重〔N〕、L:すべり距離〔mm〕)で定義される。
試験後、プレート状試験片の磨耗痕について、触針式表面粗さ形状測定器(東京精密製、サーフコム1400A−3DF型)を用いて断面曲線を測定し、その断面曲線からプレート状試験片の磨耗体積を算出した。さらに、磨耗体積と試験時に加えた荷重、すべり距離からプレート状試験片の比磨耗量を算出した。
また、ボール状試験片の磨耗体積、試験時に加えた荷重及びすべり距離からボール状試験片の比磨耗量も算出した。
(Specific wear amount without lubrication in the atmosphere)
For each of the sintered bodies of Examples 1 to 4 and Comparative Examples 1 to 4, the specific wear amount in the air without lubrication was measured as follows.
A reciprocating wear test apparatus (manufactured by Shinto Kagaku Co., Ltd., HEIDO-22 type) was used for the test. The test method consists of fixing each sintered body to the stage as a plate-shaped test piece, applying a load to the ball-shaped test piece placed on the plate-shaped test piece using a weight, and moving the stage at a constant sliding speed. A wear test was performed by reciprocating. As the ball-shaped test piece, an alumina polishing sphere having a radius of 4 mm (bulk density 3.9 g / cm 3 , Vickers hardness 18 GPa) was used. The sliding speed was 0.01 m / s, the number of friction repetitions was 20000, and the reciprocating stroke was 5 mm.
The specific wear amount was used for evaluation of wear resistance. Here, the specific wear amount is a wear volume per unit load and unit slip distance, and a calculation formula of V / (W · L) (V: wear volume [mm 3 ], W: vertical load [N], L: sliding distance [mm]).
After the test, the wear resistance of the plate-like test piece was measured with a stylus type surface roughness shape measuring instrument (manufactured by Tokyo Seimitsu, Surfcom 1400A-3DF type), and the plate-like test piece was determined from the cross-section curve. The wear volume was calculated. Furthermore, the specific wear amount of the plate-like test piece was calculated from the wear volume, the load applied during the test, and the sliding distance.
The specific wear amount of the ball-shaped test piece was also calculated from the wear volume of the ball-shaped test piece, the load applied during the test, and the sliding distance.

(水潤滑下における比磨耗量)
また、前記各焼結体において、プレート状試験片及びボール状試験片との間の摩擦を水潤滑下で行い、すべり速度を0.5m/sとした以外は、大気中無潤滑下での試験方法に準じてプレート状試験片及びボール状試験片の比磨耗量の測定を行った。
(Specific wear amount under water lubrication)
In each of the sintered bodies, friction between the plate-like test piece and the ball-like test piece was performed under water lubrication, and the sliding speed was 0.5 m / s. The specific wear amount of the plate-like test piece and the ball-like test piece was measured according to the test method.

大気中無潤滑下及び水潤滑下でのプレート状試験片(自材)及びボール状試験片(相手材)の比磨耗量の測定結果を表1に示す。
また、各焼結体における炭素粉末の配合量、嵩密度、見掛気孔率、相対密度、曲げ強度、ビッカース硬度を併せて表1に示す。
なお、曲げ強度はJIS R1601(1995)に準じて測定し、ビッカース硬度はJIS R1610(2003)に準じて、硬度の高い実施例1〜4、比較例1及び比較例4は98.07Nの試験力で測定を行い、硬度の低い比較例2及び比較例3は9.807Nの試験力で測定した。
Table 1 shows the measurement results of the specific wear amount of the plate-like test piece (own material) and the ball-like test piece (counter material) under non-lubricated and water-lubricated conditions in the air.
Table 1 also shows the blending amount, bulk density, apparent porosity, relative density, bending strength, and Vickers hardness of the carbon powder in each sintered body.
The bending strength is measured according to JIS R1601 (1995), and the Vickers hardness is according to JIS R1610 (2003). Examples 1 to 4, Examples 1 and 4 having high hardness are tests of 98.07N. The measurement was performed with a force, and Comparative Examples 2 and 3 having a low hardness were measured with a test force of 9.807N.

表1から、本発明の炭化珪素複合焼結体(実施例1〜4)はいずれも、従来の炭化珪素複合焼結体(比較例3)に比べて、曲げ強度及びビッカース硬度とも高く機械的特性に優れるとともに、特に大気中無潤滑下における自材及び相手材の比磨耗量が少ない。
炭素粉末の配合量が3質量部より少ない炭化珪素複合焼結体(比較例1)及び炭素粉末を含まない炭化珪素焼結体(比較例4)は、緻密で機械的特性に優れるものの、自材及び相手材の比磨耗量が多い。
また、炭素粉末の配合量が17質量部より多い炭化珪素複合焼結体(比較例2)は、曲げ強度及びビッカース硬度とも低く、自材及び相手材の比磨耗量が多い。
以上のように本実施例によれば、水潤滑下及び大気中無潤滑下における相手材攻撃性及び自材の比磨耗量を低減でき摺動性に優れた炭化珪素複合焼結体が得られることが明らかである。
From Table 1, the silicon carbide composite sintered bodies (Examples 1 to 4) of the present invention are both mechanically higher in bending strength and Vickers hardness than the conventional silicon carbide composite sintered body (Comparative Example 3). In addition to excellent characteristics, the amount of specific wear between the self-material and the counterpart material is particularly low under no lubrication in the atmosphere.
The silicon carbide composite sintered body (Comparative Example 1) in which the blending amount of the carbon powder is less than 3 parts by mass and the silicon carbide sintered body not containing the carbon powder (Comparative Example 4) are dense and excellent in mechanical properties. There is a lot of specific wear of the material and the mating material.
Moreover, the silicon carbide composite sintered body (Comparative Example 2) in which the blending amount of the carbon powder is more than 17 parts by mass is low in both bending strength and Vickers hardness, and the specific material and the counterpart material have a large amount of specific wear.
As described above, according to the present example, a silicon carbide composite sintered body excellent in slidability can be obtained that can reduce the aggressiveness of the counterpart material under water lubrication and non-lubrication in the atmosphere and the specific wear amount of the self material. It is clear.

(比較例5)
実施例記載の炭化珪素複合焼結体の製造方法の脱脂工程において、成形体を26Paの空気雰囲気中、300℃/時間の昇温速度で550℃まで昇温・加熱して1時間保持した後、室温まで冷却して脱脂成形体を得た以外は実施例2と同様にして、比較例5の炭化珪素複合焼結体を得た。
(Comparative Example 5)
In the degreasing step of the method for producing the silicon carbide composite sintered body described in the examples, the molded body was heated to 550 ° C. and heated for 1 hour in a 26 Pa air atmosphere at a heating rate of 300 ° C./hour. A silicon carbide composite sintered body of Comparative Example 5 was obtained in the same manner as in Example 2 except that the degreased molded body was obtained by cooling to room temperature.

(比較例6)
脱脂工程において、成形体を26Paの空気雰囲気中、300℃/時間の昇温速度で1150℃まで昇温・加熱して1時間保持した後、室温まで冷却して脱脂成形体を得た以外は実施例2と同様にして、比較例6の炭化珪素複合焼結体を得た。
(Comparative Example 6)
In the degreasing step, the molded body was heated to 1150 ° C. at a heating rate of 300 ° C./hour in an air atmosphere of 26 Pa and held for 1 hour, and then cooled to room temperature to obtain a degreased molded body. In the same manner as in Example 2, a silicon carbide composite sintered body of Comparative Example 6 was obtained.

(比較例7)
加圧工程で加圧した脱脂成形体を、焼結工程において、26Paの減圧下空気雰囲気中、300℃/時間の昇温速度で1500℃まで昇温・加熱した後、1500℃で0.1MPaのアルゴン雰囲気に置換した後、1750℃で2時間常圧焼結させた以外は実施例2と同様にして、比較例7の炭化珪素複合焼結体を得た。
(Comparative Example 7)
The degreased compact pressed in the pressurizing step was heated and heated to 1500 ° C at a heating rate of 300 ° C / hour in an air atmosphere under a reduced pressure of 26 Pa in the sintering step, and then 0.1 MPa at 1500 ° C. After substituting for the argon atmosphere, a silicon carbide composite sintered body of Comparative Example 7 was obtained in the same manner as in Example 2 except that atmospheric pressure sintering was performed at 1750 ° C. for 2 hours.

(比較例8)
加圧工程で加圧した脱脂成形体を、焼結工程において、26Paの減圧下空気雰囲気中、300℃/時間の昇温速度で1500℃まで昇温・加熱した後、1500℃で0.1MPaのアルゴン雰囲気に置換した後、2250℃で2時間常圧焼結させた以外は実施例2と同様にして、比較例8の炭化珪素複合焼結体を得た。
(Comparative Example 8)
The degreased compact pressed in the pressurizing step was heated and heated to 1500 ° C at a heating rate of 300 ° C / hour in an air atmosphere under a reduced pressure of 26 Pa in the sintering step, and then 0.1 MPa at 1500 ° C. The silicon carbide composite sintered body of Comparative Example 8 was obtained in the same manner as in Example 2 except that the atmospheric pressure sintering was performed at 2250 ° C. for 2 hours.

(比較例9)
成形工程において得られた成形体を、脱脂工程を行わずに再び150MPaで冷間等方圧加圧法にて加圧した(加圧工程)した以外は実施例2と同様にして、比較例9の炭化珪素複合焼結体を得た。
(Comparative Example 9)
Comparative Example 9 was performed in the same manner as in Example 2 except that the molded body obtained in the molding process was pressurized again by a cold isostatic pressing method at 150 MPa without performing the degreasing process (pressurizing process). A silicon carbide composite sintered body was obtained.

(比較例10)
脱脂工程において得られた脱脂成形体を、加圧工程を行わずに26Paの減圧下空気雰囲気中、300℃/時間の昇温速度で1500℃まで昇温・加熱した後、1500℃で0.1MPaのアルゴン雰囲気に置換した後、2050℃で2時間常圧焼結させた(焼結工程)以外は実施例2と同様にして、比較例10の炭化珪素複合焼結体を得た。
比較例5〜10及び基準試料として用いた実施例2の各炭化珪素複合焼結体の嵩密度、見掛気孔率、相対密度、曲げ強度(JIS R1601(1995))及びビッカース硬度(JIS R1610(2003))をそれぞれ表2に示す。
(Comparative Example 10)
The degreased molded body obtained in the degreasing step was heated and heated to 1500 ° C. at a rate of temperature increase of 300 ° C./hour in an air atmosphere under a reduced pressure of 26 Pa without performing the pressurizing step, and then at 0. After substituting with an argon atmosphere of 1 MPa, a silicon carbide composite sintered body of Comparative Example 10 was obtained in the same manner as in Example 2 except that sintering was performed at 2050 ° C. for 2 hours under normal pressure (sintering step).
The bulk density, the apparent porosity, the relative density, the bending strength (JIS R1601 (1995)) and the Vickers hardness (JIS R1610 (JIS R1610)) of each of the silicon carbide composite sintered bodies of Comparative Examples 5 to 10 and Example 2 used as the reference sample. 2003)) is shown in Table 2.

表2から、脱脂温度が600℃より低い比較例5及び脱脂工程を行わなかった比較例9では、有機物の分解不足により発生するガスによって焼結が不十分となるため、得られた複合焼結体の密度及び硬度とも実施例2より低い。
また、脱脂温度が1100℃より高い比較例6では、脱脂工程において炭素粉末が分解し焼失するため、得られた複合焼結体の密度及び硬度とも実施例2より低い。
焼結温度が1800℃より低い比較例7では、焼結が不十分なため、得られた複合焼結体の密度及び硬度とも実施例2より著しく低く、また焼結温度が2200℃より高い比較例8では、異常な粒成長により、得られた複合焼結体の密度及び硬度とも実施例2より低い。
また、加圧工程を行わなかった比較例10では、脱脂成形体の緻密化が不足するため、得られた複合焼結体の密度及び硬度とも実施例2より低い。
以上のように本実施例によれば、常圧焼結で高密度の炭化珪素複合焼結体が得られることが明らかである。
From Table 2, in Comparative Example 5 in which the degreasing temperature is lower than 600 ° C. and in Comparative Example 9 in which the degreasing process was not performed, sintering was insufficient due to gas generated due to insufficient decomposition of the organic matter, and thus the obtained composite sintering Both body density and hardness are lower than in Example 2.
Further, in Comparative Example 6 where the degreasing temperature is higher than 1100 ° C., the carbon powder is decomposed and burnt down in the degreasing step, so that the density and hardness of the obtained composite sintered body are lower than in Example 2.
In Comparative Example 7 where the sintering temperature is lower than 1800 ° C., since the sintering is insufficient, the density and hardness of the obtained composite sintered body are both significantly lower than in Example 2 and the comparison is higher than 2200 ° C. In Example 8, the density and hardness of the obtained composite sintered body are both lower than in Example 2 due to abnormal grain growth.
Moreover, in Comparative Example 10 in which the pressurizing step was not performed, densification of the degreased molded body was insufficient, and thus the density and hardness of the obtained composite sintered body were lower than in Example 2.
As described above, according to this example, it is clear that a high-density silicon carbide composite sintered body can be obtained by atmospheric pressure sintering.

炭化珪素に炭素粉末を分散させた炭化珪素複合焼結体及びその製造方法に関し、表面の少なくとも一部が炭化被膜で被覆された多孔質炭化粉末からなる炭素粉末を使用することで、摺動時の負荷応力に対するクッション性が発揮され、また水や油等の潤滑条件下では潤滑剤の担持性が良好になるので、相手材攻撃性及び自材の比磨耗量を低減できるとともに、特に大気中無潤滑下での摺動性に優れた炭化珪素複合焼結体を提供することができ、また、脱脂成形体を冷間等方圧加圧法(CIP)にて加圧した後に焼結させることで、熱間等方圧加圧法(HIP)やホットプレス法(HP)などの大掛かりな設備を必要とせず、常圧焼結で高密度の複合焼結体を量産できる炭化珪素複合焼結体の製造方法を提供することができる。   A silicon carbide composite sintered body in which carbon powder is dispersed in silicon carbide and a method for producing the same, and using a carbon powder made of porous carbonized powder having at least a part of the surface coated with a carbonized coating Cushioning performance against the load stress of the oil is demonstrated, and the loadability of the lubricant is improved under the lubrication conditions such as water and oil. A silicon carbide composite sintered body excellent in slidability under non-lubrication can be provided, and the degreased molded body is sintered after being pressed by a cold isostatic pressing method (CIP). Thus, a silicon carbide composite sintered body capable of mass-producing a high-density composite sintered body by atmospheric pressure sintering without requiring large-scale equipment such as hot isostatic pressing (HIP) or hot pressing (HP). The manufacturing method of can be provided.

炭素粉末の走査型電子顕微鏡(SEM)写真Scanning electron microscope (SEM) photo of carbon powder 炭素粉末の表面を拡大して観察した走査型電子顕微鏡(SEM)写真Scanning electron microscope (SEM) photograph of a magnified surface of carbon powder 実施例2の炭化珪素複合焼結体の切断面の走査型電子顕微鏡(SEM)写真Scanning electron microscope (SEM) photograph of the cut surface of the silicon carbide composite sintered body of Example 2 実施例2の炭化珪素複合焼結体の切断面の炭素粉末の表面を拡大した走査型電子顕微鏡(SEM)写真Scanning electron microscope (SEM) photograph in which the surface of the carbon powder of the cut surface of the silicon carbide composite sintered body of Example 2 was enlarged.

Claims (9)

炭化珪素に炭素粉末を分散させた炭化珪素複合焼結体であって、
前記炭素粉末は、表面の少なくとも一部が炭化被膜で被覆された多孔質炭化粉末であり、前記炭素粉末の配合量は、前記炭化珪素100質量部に対して3〜17質量部であることを特徴とする炭化珪素複合焼結体。
A silicon carbide composite sintered body in which carbon powder is dispersed in silicon carbide,
The carbon powder is a porous carbonized powder in which at least a part of the surface is coated with a carbonized film, and the blending amount of the carbon powder is 3 to 17 parts by mass with respect to 100 parts by mass of the silicon carbide. A silicon carbide composite sintered body characterized.
請求項1に記載の炭化珪素複合焼結体であって、
前記炭化被膜の平均厚みは、前記炭素粉末の平均粒径の1/20〜1/5であることを特徴とする炭化珪素複合焼結体。
The silicon carbide composite sintered body according to claim 1,
An average thickness of the carbonized coating is 1/20 to 1/5 of an average particle diameter of the carbon powder.
請求項1又は2に記載の炭化珪素複合焼結体であって、
前記多孔質炭化粉末は、平均径0.5〜5μmの気孔を有することを特徴とする炭化珪素複合焼結体。
The silicon carbide composite sintered body according to claim 1 or 2,
The porous silicon carbide powder has pores having an average diameter of 0.5 to 5 μm.
請求項1乃至3の内いずれか1に記載の炭化珪素複合焼結体であって、
前記炭素粉末は、麩糠類と熱硬化性樹脂,熱可塑性樹脂などの合成樹脂とを混練し造粒して得た造粒物を、常圧下不活性ガス雰囲気中又は減圧下空気雰囲気中において700〜1100℃の温度で炭化させて得た炭化物であることを特徴とする炭化珪素複合焼結体。
A silicon carbide composite sintered body according to any one of claims 1 to 3,
The carbon powder is a granulated product obtained by kneading a moss and a synthetic resin such as a thermosetting resin or a thermoplastic resin in an inert gas atmosphere under normal pressure or in an air atmosphere under reduced pressure. A silicon carbide composite sintered body, which is a carbide obtained by carbonizing at a temperature of 700 to 1100 ° C.
炭化珪素に炭素粉末を分散させた炭化珪素複合焼結体の製造方法であって、
表面の少なくとも一部が炭化被膜で被覆された多孔質炭化粉末からなる炭素粉末と炭化珪素粉末とを混合して混合粉末を得る混合工程と、前記混合粉末を成形して成形体を得る成形工程と、前記成形体を600〜1100℃の温度で加熱・脱脂して脱脂成形体を得る脱脂工程と、前記脱脂成形体を冷間等方圧加圧法で加圧する加圧工程と、前記加圧工程で加圧された脱脂成形体を1800〜2200℃で加熱・焼結させて焼結体を得る焼結工程と、を備えていることを特徴とする炭化珪素複合焼結体の製造方法。
A method for producing a silicon carbide composite sintered body in which carbon powder is dispersed in silicon carbide,
A mixing step of obtaining a mixed powder by mixing a carbon powder composed of a porous carbonized powder having at least a part of the surface coated with a carbonized film and a silicon carbide powder, and a forming step of obtaining a molded body by forming the mixed powder. A degreasing step of heating and degreasing the molded body at a temperature of 600 to 1100 ° C. to obtain a degreased molded body, a pressurizing step of pressurizing the degreased molded body by a cold isostatic pressing method, and the pressurization And a sintering step of obtaining a sintered body by heating and sintering the degreased molded body pressed in the step at 1800 to 2200 ° C.
請求項5に記載の炭化珪素複合焼結体の製造方法であって、
前記炭素粉末の配合量は、前記炭化珪素100質量部に対して3〜17質量部であることを特徴とする炭化珪素複合焼結体の製造方法。
A method for producing a silicon carbide composite sintered body according to claim 5,
The compounding quantity of the said carbon powder is 3-17 mass parts with respect to 100 mass parts of said silicon carbide, The manufacturing method of the silicon carbide compound sintered compact characterized by the above-mentioned.
請求項5又は6に記載の炭化珪素複合焼結体の製造方法であって、
前記炭化被膜の平均厚みは、前記炭素粉末の平均粒径の1/20〜1/5であることを特徴とする炭化珪素複合焼結体の製造方法。
A method for producing a silicon carbide composite sintered body according to claim 5 or 6,
An average thickness of the carbonized coating is 1/20 to 1/5 of an average particle diameter of the carbon powder.
請求項5乃至7の内いずれか1に記載の炭化珪素複合焼結体の製造方法であって、
前記多孔質炭化粉末は、平均径0.5〜5μmの気孔を有することを特徴とする炭化珪素複合焼結体の製造方法。
A method for producing a silicon carbide composite sintered body according to any one of claims 5 to 7,
The method for producing a silicon carbide composite sintered body, wherein the porous carbonized powder has pores having an average diameter of 0.5 to 5 μm.
請求項5乃至8の内いずれか1に記載の炭化珪素複合焼結体の製造方法であって、
前記炭素粉末は、麩糠類と熱硬化性樹脂,熱可塑性樹脂などの合成樹脂とを混練し造粒して得た造粒物を、常圧下不活性ガス雰囲気中又は減圧下空気雰囲気中において700〜1100℃の温度で炭化させて得た炭化物であることを特徴とする炭化珪素複合焼結体の製造方法。
A method for producing a silicon carbide composite sintered body according to any one of claims 5 to 8,
The carbon powder is a granulated product obtained by kneading a moss and a synthetic resin such as a thermosetting resin or a thermoplastic resin in an inert gas atmosphere under normal pressure or in an air atmosphere under reduced pressure. A method for producing a silicon carbide composite sintered body, which is a carbide obtained by carbonizing at a temperature of 700 to 1100 ° C.
JP2006054100A 2006-02-28 2006-02-28 Silicon carbide composite sintered compact and method of manufacturing the same Withdrawn JP2007230820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054100A JP2007230820A (en) 2006-02-28 2006-02-28 Silicon carbide composite sintered compact and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054100A JP2007230820A (en) 2006-02-28 2006-02-28 Silicon carbide composite sintered compact and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2007230820A true JP2007230820A (en) 2007-09-13

Family

ID=38551794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054100A Withdrawn JP2007230820A (en) 2006-02-28 2006-02-28 Silicon carbide composite sintered compact and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007230820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266797A (en) * 2008-04-03 2009-11-12 Sumitomo Electric Wintec Inc Insulated wire
KR101231437B1 (en) * 2011-01-31 2013-02-07 엘지이노텍 주식회사 Silicon carbide sintered body and method for manufacturing the same
JP2020503675A (en) * 2016-12-20 2020-01-30 トーカイ カーボン コリア カンパニー.,リミテッド Semiconductor manufacturing component, semiconductor manufacturing component including composite coating layer, and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266797A (en) * 2008-04-03 2009-11-12 Sumitomo Electric Wintec Inc Insulated wire
KR101231437B1 (en) * 2011-01-31 2013-02-07 엘지이노텍 주식회사 Silicon carbide sintered body and method for manufacturing the same
JP2020503675A (en) * 2016-12-20 2020-01-30 トーカイ カーボン コリア カンパニー.,リミテッド Semiconductor manufacturing component, semiconductor manufacturing component including composite coating layer, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR102084033B1 (en) Dense composite material, method for producing the same, and component for semiconductor production equipment
US8906522B2 (en) Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid article
JP5322382B2 (en) Ceramic composite member and manufacturing method thereof
JP2722182B2 (en) Porous SiC bearing material having three types of pore structure and method of manufacturing the same
US10981834B2 (en) Plastic component comprising a carbon filler
CN102272074B (en) Large ceramic component and method of manufacture
JP6061592B2 (en) Friction material and friction material manufacturing method
JP3350394B2 (en) Graphite composite silicon carbide sintered body, graphite composite silicon carbide sintered composite, and mechanical seal
US20020160902A1 (en) Composite material based on silicon carbide and carbon, process for its production and its use
CN1856454A (en) Wear resistant member comprised of silicon nitride and process for producing the same
JP2007230820A (en) Silicon carbide composite sintered compact and method of manufacturing the same
JP4998458B2 (en) Ceramic sintered body, sliding component using the same, and method for producing ceramic sintered body
JP2011184290A (en) Method for producing sintered cubic boron nitride compact
JP4395605B2 (en) Aluminum oxide wear-resistant member and method for producing the same
JP6578427B1 (en) Silicon carbide for sliding material of mechanical seal and manufacturing method thereof
JPS61127664A (en) Silicon carbide sliding material
JPH04293998A (en) Sliding member
JP2004339587A (en) Self-lubricating hard material
JP2003148630A (en) Composite sic sliding member, seal ring for mechanical seal, mechanical seal, and manufacturing method of composite sic sliding member
JPS62148384A (en) Silicon carbide base composite material
EP2924016A1 (en) Method for controlling characteristics of ceramic carbon composite, and ceramic carbon composite
JP2004106355A (en) Ceramics composite sliding component
JP2005336364A (en) Self-lubricating composite material and method for producing the same
JP2020117419A (en) Ceramic body and rolling element
JP2024078024A (en) Insulation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512