WO2009123035A1 - 超音波探傷方法及び装置 - Google Patents

超音波探傷方法及び装置 Download PDF

Info

Publication number
WO2009123035A1
WO2009123035A1 PCT/JP2009/056237 JP2009056237W WO2009123035A1 WO 2009123035 A1 WO2009123035 A1 WO 2009123035A1 JP 2009056237 W JP2009056237 W JP 2009056237W WO 2009123035 A1 WO2009123035 A1 WO 2009123035A1
Authority
WO
WIPO (PCT)
Prior art keywords
flaw detection
ultrasonic
tubular
spheroid
center
Prior art date
Application number
PCT/JP2009/056237
Other languages
English (en)
French (fr)
Inventor
正樹 山野
弘 鹿田
藤原 健二
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to CA2718305A priority Critical patent/CA2718305C/en
Priority to US12/935,377 priority patent/US8544329B2/en
Priority to EP09726622.5A priority patent/EP2261653B1/en
Priority to BRPI0909260-9A priority patent/BRPI0909260B1/pt
Priority to CN2009801119068A priority patent/CN101983334B/zh
Publication of WO2009123035A1 publication Critical patent/WO2009123035A1/ja
Priority to US13/971,951 priority patent/US9335301B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0625Annular array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/056Angular incidence, angular propagation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Definitions

  • the present invention relates to an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus for flaw detection using ultrasonic waves for a flaw existing in a tubular flaw detection material such as a steel pipe.
  • a tubular flaw detection material such as a steel pipe.
  • the present invention when flaws having various inclination angles with respect to the axial direction of the tubular flaw detection material (inclined flaws) are manually flawed, the position of the inclined flaw in the thickness direction of the tubular flaw detection material, , Ultrasonic flaw detection method and apparatus capable of easily evaluating the inclination angle of an inclined flaw, and a highly reliable flaw detection result in which the attitude of the ultrasonic probe relative to the tubular flaw detection material does not change during manual flaw detection
  • the present invention relates to an ultrasonic flaw detector capable of obtaining the above.
  • a seamless pipe which is a typical pipe, is manufactured by punching a billet with a piercer to form a hollow shell, and rolling the hollow shell with a mandrel mill or the like.
  • inclination flaws there are flaws having various inclination angles with respect to the axial direction (hereinafter referred to as “inclination flaws” as appropriate).
  • This slanting flaw is generated when the vertical crack flaw originally present in the billet is deformed in the axial direction in the above manufacturing process, or exists on the guide surface of the guide shoe for maintaining the pass center of the hollow shell. It is said to be caused by the transfer of scratches. Therefore, the inclination angle of the inclined flaw with respect to the axial direction of the seamless pipe varies depending on the difference in the diameter of the seamless pipe and the cause of the occurrence. That is, in the seamless pipe, there are inclined flaws having various inclination angles.
  • Patent Document 1 Japanese Patent Laid-Open No. 55-116251
  • an ultrasonic probe is arranged at an appropriate position and inclination angle according to the position and inclination angle of a tilt flaw to be detected.
  • Patent Document 1 has a problem that it is very time-consuming because it is necessary to change the inclination angle of the ultrasonic probe in accordance with the inclination angle of the inclination flaw to be detected. .
  • a large number of ultrasonic probes are prepared and arranged at different inclination angles. There is a need. That is, there are problems that the arrangement and calibration of the ultrasonic probe are complicated, a large-sized device is essential, and the cost increases.
  • Patent Document 2 Japanese Patent Laid-Open No. 61-223553
  • a plurality of transducers elements for ultrasonic transmission / reception
  • a flaw detection method using an array type ultrasonic probe has been proposed. More specifically, the arrangement direction of the transducers is made to coincide with the axial direction of the tube, and the ultrasonic probe is arranged so as to be decentered from the axial center of the tube, whereby the transverse wave ultrasonic wave is propagated in the tube. .
  • Patent Document 2 has mainly the following two problems (first problem and second problem).
  • the outer surface refraction angle ( This is because the angle of incidence on the outer surface flaw existing on the outer surface of the tube and the inner surface refraction angle (incident angle on the inner surface flaw existing on the inner surface of the tube) change. If the intensity of the reflected echo from the tilted flaw differs according to the tilt angle of the tilted flaw, there is a possibility that a harmful flaw will be missed or a minute flaw that does not need to be detected may be overdetected.
  • Patent Document 3 Japanese Patent Laid-Open No. 59-163563
  • a group of vibrators arranged in a matrix is used to detect any direction.
  • the pattern which changes the incident direction of an ultrasonic wave is stored beforehand as a program.
  • Patent Document 3 does not mention the first problem that the intensity of the reflected echo changes in accordance with the inclination angle of each of the above-described inclination flaws. There is no disclosure about whether or not the incident direction of the ultrasonic wave should be changed with the change pattern. Moreover, it has the subject similar to the 2nd subject about the method described in patent document 2 mentioned above. That is, there is a problem that the flaw detection efficiency is lowered because the electronic scanning needs to be repeated the number of times corresponding to the inclination angle of the inclination flaw to be detected.
  • Patent Document 4 International Publication No. 2007/024000 Pamphlet
  • Patent Document 4 discloses a step of disposing an ultrasonic probe having a plurality of transducers so as to face a tubular flaw detection material, and a propagation direction of ultrasonic waves in the tubular flaw detection material. Selecting an appropriate transducer from among the plurality of transducers so as to have a plurality of different propagation directions, and transmitting and receiving ultrasonic waves, and the outer surface refraction angle ⁇ r of the ultrasonic waves in the plurality of propagation directions Are set to be substantially equal, and / or the flaw detection conditions by the ultrasonic probe are set so that the inner surface refraction angles ⁇ k of the ultrasonic waves in the plurality of propagation directions are substantially equal to each other.
  • a characteristic ultrasonic flaw detection method has been proposed (claim 1 of the patent document). Then, the ultrasonic probe faces a predetermined spheroid without passing through the center of the spheroid and without sandwiching the center of the spheroid, and on the rotation axis of the spheroid. In the step of arranging a plurality of transducers arranged along an annular curved surface obtained by cutting at two parallel planes orthogonal to each other, the ultrasonic probe is arranged to face the tubular flaw detection material.
  • the major axis direction of the acoustic probe is along the axial direction of the tubular specimen
  • the minor axis direction of the ultrasonic probe is along the circumferential direction of the tubular specimen
  • the center of the spheroid is Arranged so as to face the axial center of the tubular test object, the outer surface refraction angles ⁇ r of the ultrasonic waves in the plurality of propagation directions are substantially equal to each other, and / or in the plurality of propagation directions.
  • the ring is adjusted so that the inner surface refraction angle ⁇ k of the ultrasonic wave is substantially equal. It is described that the shape of the curved surface is determined (Claim 5 of Patent Document 4).
  • Patent Document 4 does not propose a solution for this point.
  • the ultrasonic probe is manually scanned, it is desirable that the attitude of the ultrasonic probe with respect to the tubular flaw detection material does not change and a highly reliable flaw detection result is obtained. Neither proposed any solution to this problem.
  • the present invention was made to solve the above-described problems of the prior art, and when flaws having various inclination angles with respect to the axial direction of the tubular flaw detection material (inclination flaws) are manually detected, Ultrasonic flaw detection method and apparatus capable of easily evaluating the position of the tilt flaw in the thickness direction of the tubular flaw detection material and the inclination angle of the slant flaw, and the ultrasonic flaw detection for the tubular flaw detection material during manual flaw detection It is an object of the present invention to provide an ultrasonic flaw detection apparatus that can obtain a highly reliable flaw detection result without changing the posture of a touch element.
  • an ultrasonic flaw detection method includes the following steps (1) to (3).
  • the tubular flaw detection material so that the minor axis direction of the ultrasonic probe is along the circumferential direction of the tubular flaw detection material, and the center of the spheroid faces the axial center of the tubular flaw detection material.
  • the step of arranging the counter (2) A step of transmitting and receiving ultrasonic waves by selecting an appropriate transducer from the plurality of transducers so that the propagation direction of the ultrasonic waves in the tubular flaw detection material is a plurality of different propagation directions. (3) A step of displaying the flaw detection waveform received by the transducer in a radial pattern in association with the propagation direction of the ultrasonic wave transmitted and received from the selected transducer. And, the outer surface refraction angles of the ultrasonic waves for the plurality of propagation directions are substantially equal to each other and / or the inner refraction angles of the ultrasonic waves for the plurality of propagation directions are substantially equal to each other.
  • the shape of the annular curved surface is determined.
  • the major axis direction of the ultrasonic probe is along the axial direction of the tubular flaw detection material, the short diameter direction of the ultrasonic probe is along the circumferential direction of the tubular flaw detection material, and is rotated.
  • the ultrasonic probe is arranged opposite to the tubular flaw detection material so that the center of the ellipsoid faces the axial center of the tubular flaw detection material, the elevation angle of each transducer viewed from the center of the spheroid is Depending on the position where each transducer is arranged, the incident angle of the ultrasonic wave transmitted from each transducer to the tubular flaw detection material is also different.
  • the shape of the ultrasonic probe (the shape of the annular curved surface) is appropriately set, the propagation direction of the ultrasonic wave transmitted from each transducer is made orthogonal to the direction in which the flaws to be detected extend,
  • the outer surface refraction angle and / or the inner surface refraction angle can be made substantially equal.
  • the outer surface flaws are substantially the same regardless of the plurality of propagation directions.
  • the intensity of the reflected echo can be obtained.
  • the shape of the annular curved surface is determined so that the inner surface refraction angles of the ultrasonic waves in a plurality of propagation directions are substantially equal, the inner surface flaws are omitted regardless of the plurality of propagation directions.
  • An equivalent reflected echo intensity can be obtained.
  • the shape of the annular curved surface is determined so that both the outer surface refraction angle and the inner surface refraction angle of the ultrasonic wave in a plurality of propagation directions are substantially equal to each other, it is not related to any of the plurality of propagation directions. In other words, substantially the same reflected echo intensity can be obtained for the outer surface flaw and the inner surface flaw. Therefore, it is possible to detect a plurality of flaws (outer surface flaws and / or inner surface flaws) extending in directions orthogonal to a plurality of propagation directions with high accuracy.
  • the flaw detection waveform received by the transducer is displayed in a radial pattern in association with the propagation direction of the ultrasonic wave transmitted and received from the selected transducer, the reflected echo from the displayed tilt flaw is By visually observing the direction of the included flaw detection waveform, it is possible to easily evaluate the inclination angle of the inclined flaw (a direction orthogonal to the displayed direction of the flaw detection waveform corresponds to the inclination angle).
  • the position of the tilt flaw in the thickness direction of the tubular flaw detection material (inner surface, outer surface) It is possible to easily evaluate the central part of the wall thickness.
  • the ultrasonic flaw detection method As described above, according to the ultrasonic flaw detection method according to the present invention, it is possible to accurately detect inclined flaws having various inclination angles with respect to the axial direction of the tubular flaw detection material. The position of the tilt flaw in the thickness direction and the tilt angle of the tilt flaw can be easily evaluated.
  • each vibrator is a curved surface so that the shape matches a part of the annular curved surface.
  • each vibrator is used to include a case where the vibrator is formed in a planar shape and arranged so as to be in contact with each annular curved surface.
  • the center of the spheroid directly faces the axis of the tubular specimen is a straight line that passes through the center of the spheroid and is orthogonal to the two parallel planes (corresponding to the rotation axis of the spheroid).
  • Ultrasonic propagation direction means the propagation direction of ultrasonic waves as viewed from the normal direction of the tangential plane of the tubular test object including the ultrasonic incident point.
  • the “outer surface refraction angle” means that the ultrasonic wave U (the center line of the ultrasonic beam) that has entered the tubular flaw detection material P reaches the outer surface of the tubular flaw detection material P on the ultrasonic propagation surface of the tubular flaw detection material P.
  • the “inner refraction angle” means that the ultrasonic wave U (the center line of the ultrasonic beam) that has entered the tubular flaw detection material P reaches the inner surface of the tubular flaw detection material P on the ultrasonic propagation surface of the tubular flaw detection material P. It means the angle ⁇ k formed between the normal line L2 of the tubular test object P at the point A and the ultrasonic wave U (the center line of the ultrasonic beam) (see FIG. 2D).
  • the outer surface refraction angles (or inner surface refraction angles) of ultrasonic waves in a plurality of propagation directions are substantially equal” means that the fluctuation range of the outer surface refraction angle (or inner surface refraction angle) is within 10 °.
  • the flaw detection waveform is displayed in a radial manner starting from a time point corresponding to a reflected echo at an ultrasonic wave incident point on the tubular flaw detection material included in the flaw detection waveform. It is preferable to display a circle indicating the time corresponding to the reflected echo on the inner surface and / or outer surface of the tubular flaw detection material with the start point as the center.
  • the flaw detection waveform is displayed in a radial manner in order to display the flaw detection waveform in a radial manner and to display a circle indicating a time point corresponding to a reflection echo on the inner surface and / or outer surface of the tubular flaw detection material.
  • the present invention does not pass through the center of a predetermined spheroid, faces the center of the spheroid without sandwiching the center, and is orthogonal to the rotation axis of the spheroid. It has a plurality of vibrators arranged along an annular curved surface obtained by cutting the spheroid in two parallel planes, the major axis direction is along the axial direction of the tubular test object, and the minor axis An ultrasonic probe arranged opposite to the tubular flaw detection material so that the direction is along the circumferential direction of the tubular flaw detection material and the center of the spheroid faces the axial center of the tubular flaw detection material.
  • a transmission / reception control means for selecting at least two or more transducers from among the plurality of transducers and transmitting / receiving ultrasonic waves to / from the tubular flaw detection material; and an ultrasonic transmission / reception from the selected transducers Corresponding to the propagation direction of the sound wave, received by the transducer It is also provided as an ultrasonic flaw detection apparatus characterized by comprising a testing waveform display unit that displays the flaw waveform radially.
  • the flaw detection waveform display means displays the flaw detection waveform in a radial manner starting from a time corresponding to a reflected echo at an ultrasonic wave incident point on the tubular flaw detection material included in the flaw detection waveform, and the start point As a center, it is preferable to display a circle indicating a time point corresponding to a reflection echo on the inner surface and / or the outer surface of the tubular flaw detection material.
  • the present invention provides an ultrasonic flaw detection apparatus for ultrasonic flaw detection on a tubular flaw detection material, the ultrasonic probe being sandwiched between the ultrasonic probe and the ultrasonic probe.
  • the ultrasonic flaw detector according to the present invention includes a pair of follow-up mechanisms that are arranged along the axial direction of the tubular flaw detection material with the ultrasonic probe interposed therebetween and connected to the ultrasonic probe.
  • This follow-up mechanism includes at least one rolling roller that rolls in contact with the outer surface of the tubular test object. Therefore, the ultrasonic probe is placed on the outer surface of the tubular flaw detection material via at least one rolling roller (and therefore at least two rolling rollers) each provided with a pair of follow-up mechanisms. By rolling the roller, the outer surface of the tubular flaw detection material can be scanned.
  • the ultrasonic flaw detection apparatus is arranged along the circumferential direction of the tubular flaw detection material with the ultrasonic probe and the tracking mechanism interposed therebetween, and is connected to the ultrasonic probe at intervals between each other.
  • a pair of adjustable arm mechanisms are provided.
  • This arm mechanism includes at least a pair of rolling rollers that are arranged across the center of the ultrasonic probe and roll in contact with the outer surface of the tubular flaw detection material. Accordingly, by adjusting the distance between the pair of arm mechanisms and sandwiching the tubular flaw detection material from the circumferential direction by the pair of arm mechanisms, the tubular flaw detection material of the ultrasonic probe connected to the pair of arm mechanisms It is possible to keep the posture with respect to.
  • each arm mechanism includes a rolling roller, so that by rolling the rolling roller, the tubular flaw detection material The ultrasonic probe can be scanned along the outer surface.
  • the posture of the ultrasonic probe with respect to the tubular flaw detection material does not change, and it is possible to obtain a highly reliable flaw detection result.
  • the ultrasonic flaw detector described above is particularly useful when the ultrasonic probe has a configuration including a plurality of transducers arranged along an annular curved surface as described above.
  • the ultrasonic probe does not pass through the center of a predetermined spheroid, faces the center of the spheroid without sandwiching the center, and is parallel to the rotation axis of the spheroid.
  • the ultrasonic flaw detection apparatus preferably includes transmission / reception control means for selecting at least two or more of the plurality of transducers and transmitting and receiving ultrasonic waves to and from the tubular flaw detection material. .
  • the ultrasonic flaw detection apparatus includes flaw detection waveform display means for displaying a flaw detection waveform received by the transducer in a radial manner in association with a propagation direction of ultrasonic waves transmitted / received from the selected transducer.
  • the flaw detection waveform display means displays the flaw detection waveform in a radial manner starting from a time corresponding to a reflected echo at an ultrasonic wave incident point on the tubular flaw detection material included in the flaw detection waveform, and the start point As a center, it is preferable to display a circle indicating a time point corresponding to a reflection echo on the inner surface and / or the outer surface of the tubular flaw detection material.
  • the present invention when manually detecting an inclined flaw having various inclination angles with respect to the axial direction of the tubular flaw detection material, the position of the inclined flaw in the thickness direction of the tubular flaw detection material, the inclined flaw Can be easily evaluated. Further, when flaw detection is performed manually, the attitude of the ultrasonic probe with respect to the tubular flaw detection material does not change, and a highly reliable flaw detection result can be obtained.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an ultrasonic flaw detector according to an embodiment of the present invention.
  • 1A is a perspective view
  • FIG. 1B is a plan view
  • FIG. 1C is a side view
  • FIG. 1D is an explanatory view.
  • FIG. 2 is an explanatory diagram showing ultrasonic propagation behavior in the ultrasonic flaw detector shown in FIG. 2 (a) is a perspective view
  • FIG. 2 (b) is a sectional view in the pipe circumferential direction
  • FIG. 2 (c) is a plan view
  • FIG. 2 (d) is an ultrasonic wave propagation surface (FIG. 2 (b)). Sectional drawing along the point O, the point A, and the point B which show the point B shown is shown.
  • FIG. 2 is an explanatory diagram showing ultrasonic propagation behavior in the ultrasonic flaw detector shown in FIG. 2 (a) is a perspective view
  • FIG. 2 (b) is a sectional view in the pipe
  • FIG. 3 is an explanatory view for explaining the function of the flaw detection waveform display means shown in FIG. 3A shows the relationship between the selected transducer and the propagation direction of the ultrasonic wave transmitted from the selected transducer.
  • FIG. 3B shows an example of a flaw detection waveform received by the selected transducer.
  • c) shows a display example of the flaw detection waveform.
  • FIG. 4 shows an example in which an inclined flaw generated in a steel pipe is detected using the ultrasonic flaw detection apparatus shown in FIG. 1, and the flaw detection waveform display means displays the flaw detection waveform.
  • FIG. 5 shows another display example of the flaw detection waveform by the flaw detection waveform display means shown in FIG. FIG.
  • FIG. 6 is a schematic diagram showing a schematic configuration around a mechanical unit included in the ultrasonic flaw detector shown in FIG. 6A shows a plan view
  • FIG. 6B shows a side view
  • FIG. 6C shows a back view
  • FIG. 7 is a front view for explaining a state in which the tube end portion is flawed by the ultrasonic flaw detector shown in FIG.
  • FIG. 8 is a schematic diagram showing a schematic configuration of another ultrasonic flaw detector to which the mechanism unit shown in FIG. 6 is applied.
  • 8A is a plan view
  • FIG. 8B is a side view
  • FIG. 8C is a front view.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an ultrasonic flaw detector according to an embodiment of the present invention.
  • 1A is a perspective view
  • FIG. 1B is a plan view
  • FIG. 1C is a side view
  • FIG. 1D is an explanatory view.
  • FIG. 2 is an explanatory diagram showing ultrasonic propagation behavior in the ultrasonic flaw detector shown in FIG. 2 (a) is a perspective view
  • FIG. 2 (b) is a sectional view in the pipe circumferential direction
  • FIG. 2 (c) is a plan view
  • FIG. 2 (d) is an ultrasonic wave propagation surface (FIG. 2 (b)). Sectional drawing along the point O, the point A, and the point B which show the point B shown is shown.
  • an ultrasonic flaw detector 100 is an ultrasonic flaw detector for ultrasonic flaw detection on a tube P, and includes an ultrasonic probe 1 and an ultrasonic probe 1.
  • the transmission / reception control means 2 for controlling the transmission / reception of ultrasonic waves by the ultrasonic probe 1 and the flaw detection waveform display means 3 for displaying the flaw detection waveform received by the ultrasonic probe 1 are provided.
  • the ultrasonic flaw detection apparatus 100 includes a mechanism unit 4 (not shown in FIG. 1) for causing the ultrasonic probe 1 to scan on the outer surface of the tube P.
  • the ultrasonic probe 1 includes a plurality of transducers 11 arranged along an annular curved surface.
  • the annular curved surface opposes the predetermined spheroid M without passing through the center O of the spheroid M and without sandwiching the center O of the spheroid M, and the spheroid M
  • This is a curved surface obtained by cutting along two parallel planes S1 and S2 orthogonal to the rotation axis (see FIGS. 1C and 1D).
  • the ultrasonic probe 1 has a major axis direction (x direction shown in FIG. 1 (b)) along the axial direction of the tube P, and a minor axis direction (y direction shown in FIG. 1 (b)).
  • the center O of the spheroid M is disposed opposite the tube P so as to face the axis of the tube P.
  • the transmission / reception control means 2 includes a transmission circuit, a reception circuit, and a control circuit.
  • the transmission circuit is connected to each transducer 11 to supply a pulse signal for transmitting an ultrasonic wave from each transducer 11, and sets a delay time of the pulse signal supplied from each pulsar to each transducer 11.
  • the receiving circuit is connected to each transducer 11 for amplifying a flaw detection waveform received by each transducer 11, and a delay circuit B for setting a delay time of the flaw detection waveform amplified by each receiver. It comprises.
  • the control circuit selects a transducer 11 that transmits and receives ultrasonic waves from among the plurality of transducers 11 arranged, and a delay set by the delay circuit A or the delay circuit B for each selected transducer 11. Operates to determine time.
  • the transmission / reception control means 2 having the above configuration selects at least two of the plurality of transducers 11 and transmits / receives ultrasonic waves from the selected transducer 11 to the tube P. To work.
  • the center O of the spheroid M is located in the vicinity of the outer surface of the tube P (therefore, transmitted from each transducer 11). Let us consider a state in which the ultrasonic probe 1 is arranged such that ultrasonic waves are incident on the tube P with the center O as the incident point.
  • the ultrasonic waves transmitted from the respective transducers 11 constituting the ultrasonic probe 1 are incident from a point O (the center O of the spheroid) on the outer surface of the tube P, and then the tube P Is reflected at a point A on the inner surface of the tube P and reaches a point B on the outer surface of the tube P.
  • the propagation direction of the ultrasonic wave incident from the point O (the propagation direction viewed from the normal direction of the tangential plane of the tube P including the incident point O) and the circumferential tangent L of the tube P passing through the incident point O are formed.
  • the angle (propagation angle) is ⁇ (hereinafter also referred to as “propagation direction ⁇ ” where appropriate), and the outer surface refraction angle at point B (normal line L1 at point B of tube P on the ultrasonic wave propagation surface shown in FIG. 2D). Is the angle of inner surface refraction at the point A (in the ultrasonic wave propagation surface shown in FIG. 2D), the normal L2 at the point A of the tube P and the ultrasonic beam U Is defined as ⁇ k. Further, the incident angle of the ultrasonic wave to the tube P (the angle formed by the normal line L3 at the incident point O of the tube P and the incident ultrasonic beam U in the ultrasonic wave propagation surface shown in FIG. 2D) is ⁇ w.
  • the refraction angle of the ultrasonic wave at the tube P (the angle formed by the normal L3 at the incident point O of the tube P and the ultrasonic beam U after the incident on the ultrasonic wave propagation surface shown in FIG. 2D) is ⁇ s. To do.
  • An ultrasonic wave incident on the tube P at an incident angle ⁇ w exhibits a geometrical optical propagation behavior. That is, the ultrasonic wave incident on the tube P at the incident angle ⁇ w propagates into the tube P at the refraction angle ⁇ s determined according to Snell's law. Then, as derived geometrically, the outer surface refraction angle ⁇ r is equal to the refraction angle ⁇ s. That is, the following formula (7) is established.
  • Vs is the propagation velocity of the ultrasonic wave propagating in the tube P
  • Vi is the ultrasonic wave propagation velocity in the contact medium filled between the ultrasonic probe 1A and the tube P. Means.
  • the inner surface refraction angle ⁇ k is a function of the incident angle ⁇ w, the propagation angle ⁇ , and the thickness / outer diameter ratio t / D of the tube P.
  • the difference between the inner surface refraction angle ⁇ k and the outer surface refraction angle ⁇ r calculated by the above equation (8) is within a range of about 10 °. Fits in.
  • the inner surface refraction angle ⁇ k when detecting an inner surface flaw extending in the axial direction of the tube P (detected by an ultrasonic wave whose propagation direction ⁇ coincides with the circumferential direction of the tube P) and an inner surface flaw extending in the circumferential direction of the tube P (
  • the inner surface refraction angle ⁇ k calculated by the above equation (8) becomes larger than 20 ° with respect to the outer surface refraction angle ⁇ s (that is, the propagation direction ⁇ is By changing from the axial direction of the tube P to the circumferential direction, the inner surface refraction angle ⁇ k becomes larger than 20 °), and the detection ability of the inner surface flaw extending in the axial direction of the tube P is greatly reduced. Similarly, even for an inner surface flaw having an inclination angle between the axial direction and the circumferential direction of the tube P, the detectability decreases as the inner surface refraction angle ⁇ k increases.
  • the refraction angle ⁇ s corresponding to each propagation direction ⁇ may be changed (that is, the incident angle ⁇ w is changed) so that the inner surface refraction angle ⁇ k corresponding to each propagation direction ⁇ becomes a substantially constant value.
  • the inner surface refraction angle ⁇ k corresponding to each propagation direction ⁇ is a substantially constant value according to the propagation direction ⁇ of the ultrasonic wave transmitted from each transducer 11.
  • the shape is designed so that the incident angle ⁇ w corresponding to each propagation direction ⁇ changes.
  • the ultrasound probe 1 includes a plurality of transducers 11 arranged along an annular curved surface, and the annular curved surface includes a predetermined spheroid M and the spheroid M.
  • Two parallel planes S1 and S2 that do not pass through the center O and face each other without sandwiching the center O of the spheroid M and are orthogonal to the rotation axis of the spheroid (FIG. 1 (c), FIG. 1). It is a curved surface obtained by cutting in (d). Accordingly, the propagation direction ⁇ of the ultrasonic wave transmitted from each transducer 11 is in the range of ⁇ 180 ° to 180 °. Further, the elevation angle of each transducer 11 viewed from the center O of the spheroid M varies depending on the position where each transducer 11 is arranged.
  • the elevation angle of each transducer 11 is determined according to the major axis and minor axis of the ultrasound probe 1 and the distance from the center O of the spheroid M of the ultrasound probe 1.
  • the elevation angle differs according to the position where the two are arranged (in accordance with the propagation direction ⁇ of the ultrasonic wave transmitted from each transducer 11).
  • the angle obtained by subtracting the elevation angle from 90 ° corresponds to the incident angle ⁇ w. Therefore, the ultrasound probe 1 according to the present embodiment appropriately sets the major axis and minor axis of the ultrasound probe 1 and the distance from the center O of the spheroid M of the ultrasound probe 1.
  • the incident angle corresponding to each propagation direction ⁇ is set so that the inner surface refraction angle ⁇ k corresponding to each propagation direction ⁇ becomes a substantially constant value.
  • the shape is designed so that the angle ⁇ w changes.
  • the major axis of the ultrasonic probe 1 is 2x
  • the minor axis is 2y
  • the incident angle ⁇ w (referred to as ⁇ w2) of the ultrasonic wave transmitted from the transducer 11 located in the short diameter part of the ultrasonic probe 1 is expressed by the following equations (9) and (10), respectively. expressed.
  • the ultrasonic probe is performed so that the incident angles ⁇ w1 and ⁇ w2 represented by the above formulas (9) and (10) satisfy the following formula (11).
  • the shape (x, y and h) of the child 1 is determined.
  • the ultrasonic propagation direction ⁇ coincides with the axial direction of the tube P as described in Patent Document 4 (ultrasonic probe 1).
  • the inner surface refraction angle ⁇ k and the ultrasonic wave propagation direction ⁇ coincide with the circumferential direction of the tube P (the short diameter of the ultrasonic probe 1).
  • the inner surface refraction angle ⁇ k in the case where ultrasonic waves are transmitted from the transducer 11 positioned in the section) are substantially equal.
  • the propagation direction ⁇ of the ultrasonic wave transmitted from each transducer 11 is orthogonal to the direction in which the flaw is detected.
  • the inner surface refraction angle ⁇ k can be made substantially constant, and an equivalent reflected echo intensity can be obtained regardless of the inclination angle of each flaw.
  • the ultrasonic probe 1 according to the present embodiment is arranged so that the center O of the spheroid is located in the vicinity of the outer surface of the tube P not only when determining the shape described above but also when actually detecting flaws. It is preferable to arrange.
  • the incident points of the ultrasonic waves transmitted from the respective transducers 11 to the tube P are substantially coincident (the center O of the spheroid is the incident point).
  • the propagation behavior of the ultrasonic wave as planned when the shape of 1A is determined can be obtained (the inner surface refraction angle ⁇ k is substantially constant regardless of the propagation direction of the ultrasonic wave), and various inclination angles can be obtained. It is possible to detect flaws with high accuracy.
  • the inner surface refraction angle ⁇ k can be made substantially constant, while the outer surface refraction angle ⁇ r changes according to the propagation direction ⁇ . .
  • the ultrasonic probe 1 according to the present embodiment has a suitable shape for accurately detecting flaws on the inner surface having various inclination angles.
  • the outer surface refraction angle ⁇ r is set regardless of the inclination angle of each flaw (that is, regardless of the ultrasonic propagation direction ⁇ ). It needs to be almost constant.
  • the refraction angle ⁇ s may be made substantially constant regardless of the propagation direction ⁇ .
  • the incident angle ⁇ w is related to the propagation direction ⁇ . What is necessary is just to make it substantially constant.
  • the lengths of the major axis (2x) and minor axis (2y) of the ultrasonic probe may be set to substantially equal values. That is, the shape obtained when the spheroid is a sphere may be set. According to the ultrasonic probe having such a shape, the outer surface refraction angle r can be made substantially constant regardless of the propagation direction ⁇ , and it is possible to detect the outer surface flaw having various inclination angles with high accuracy. is there.
  • the shape of the ultrasonic probe suitable for detecting each flaw may be selected according to whether the main detection target of the flaw in the tube P is an inner surface flaw or an outer surface flaw.
  • the shape of the ultrasonic probe (x, y and h) satisfying the formula (11) suitable for detecting the inner surface flaw is used.
  • the shape of an ultrasonic probe that satisfies x y suitable for detecting an external flaw, and a shape having values of x and y approximately in the middle.
  • FIG. 3 is an explanatory view for explaining the function of the flaw detection waveform display means shown in FIG. 3A shows the relationship between the selected transducer and the propagation direction of the ultrasonic wave transmitted from the selected transducer.
  • FIG. 3B shows an example of a flaw detection waveform received by the selected transducer.
  • c) shows a display example of the flaw detection waveform.
  • the flaw detection waveform display means 3 is associated with the propagation direction ⁇ of the ultrasonic wave transmitted / received from the selected transducer 11 (in the example shown in FIG. 3, the transducers 11A, 11B, 11C), and the flaw detection received by the transducer 11. Display the waveform in a radial pattern.
  • the flaw detection waveform display means 3 displays each flaw detection waveform in a radial manner with a time point corresponding to a reflected echo at the point of incidence of the ultrasonic wave on the tube P included in each flaw detection waveform as a start point S. More specifically, the flaw detection waveform display unit 3 performs A / D conversion on each flaw detection waveform received by each transducer 11A to 11C output from the transmission / reception control unit 2, and then a grayscale image corresponding to the flaw detection waveform intensity. As a color image that is color-coded according to the intensity of the flaw detection waveform, or as a binarized image obtained by binarizing the flaw detection waveform with a predetermined threshold value, it is displayed on an appropriate monitor or the like.
  • the flaw detection waveform display means 3 displays the flaw detection waveform in a radial manner as described above, and displays a circle indicating the time corresponding to the reflection echo on the inner surface and / or the outer surface of the tube P with the start point S as the center. To do.
  • the coordinates of the circle can be calculated from the thickness of the tube P, the refraction angle ⁇ s of the ultrasonic wave in the tube P, and the propagation velocity Vs of the ultrasonic wave propagating through the tube P. In the example shown in FIG.
  • the ultrasonic wave incident on the tube P is incident on the tube P and the circle C1 indicating the time point corresponding to the reflected echo when the ultrasonic wave first reaches the inner surface of the tube P (so-called 0.5 skip).
  • a circle C2 indicating a time point corresponding to a reflection echo when the outer surface of the tube P is first reached is displayed.
  • FIG. 4 shows an example in which an ultrasonic flaw detector 100 according to the present embodiment is used to detect an inclined flaw generated in a steel pipe and the flaw detection waveform display means 3 displays the flaw detection waveform.
  • the detected steel pipe has an outer diameter of 178 mm and a wall thickness of 10 mm, and the shape of the ultrasonic probe 1 (the shape of an annular curved surface) satisfies a formula (11) suitable for detecting flaws on the inner surface.
  • a formula (11) suitable for detecting flaws on the inner surface.
  • a shape having x and y values approximately in the middle between the shape (x, y and h) of the acoustic probe and the shape of the ultrasonic probe satisfying x y suitable for detecting an external flaw It was.
  • x y
  • the flaw detection waveform display means 3 displays the flaw detection waveform received by the transducer 11 in a radial manner in association with the propagation direction ⁇ of the ultrasonic wave transmitted and received from the selected transducer 11.
  • the inclination angle of the inclined flaw (the direction orthogonal to the displayed flaw detection waveform direction corresponds to the inclination angle) can be easily obtained It is possible to evaluate.
  • FIG. 4A it can be easily recognized that there is an inclined flaw extending at right angles to the propagation direction at a position where the ultrasonic propagation angle ⁇ is approximately 0 °.
  • FIG. 4B it can be easily recognized that there is an inclined flaw extending at right angles to the propagation direction at a position where the ultrasonic propagation angle ⁇ is approximately 30 °.
  • the flaw detection waveform display means 3 displays a flaw detection waveform in a radial pattern and a circle indicating the time corresponding to the reflected echo on the inner surface and / or outer surface of the tube P (example shown in FIG.
  • the flesh of the pipe P can be displayed by visually observing at which point of the flaw detection waveform displayed radially the reflected echo from the tilt flaw is included together with the displayed circle. It is possible to easily evaluate the position of the inclined flaw in the thickness direction. In the example shown in FIGS. 4A and 4B, since there is a reflection echo from the inclined flaw on the circle C2, it can be easily recognized that the inclined flaw exists on the outer surface of the tube P.
  • the aspect of displaying radially from S has been described.
  • the mechanism unit 4 for causing the ultrasonic probe 1 to scan on the outer surface of the tube P will be described with reference to FIG.
  • the mechanism unit 4 is configured to obtain a highly reliable flaw detection result without changing the posture of the ultrasonic probe 1 with respect to the tube P when the flaw detection is manually performed by scanning the ultrasonic probe 1.
  • the posture of the ultrasonic probe 1 changes, for example, the transducer 11 designed to transmit and receive ultrasonic waves at a propagation angle ⁇ of 0 ° transmits and receives ultrasonic waves at other propagation angles ⁇ . This is because the flaw detection accuracy deteriorates and the inclination angle of the flaw cannot be accurately evaluated.
  • FIG. 6 is a schematic diagram showing a schematic configuration around the mechanism unit 4 included in the ultrasonic flaw detector 100.
  • 6A shows a plan view
  • FIG. 6B shows a side view
  • FIG. 6C shows a back view.
  • the mechanism unit 4 is illustrated.
  • the mechanism unit 4 according to the present embodiment includes a pair of follow-up mechanisms 41A and 41B and a pair of arm mechanisms 42A and 42B.
  • the pair of follow-up mechanisms 41A and 41B are disposed along the axial direction of the tube P with the ultrasonic probe 1 interposed therebetween, and are connected to the ultrasonic probe 1 via an appropriate member (not shown). ing.
  • the follow-up mechanisms 41A and 41B include at least one rolling roller 41R that rolls in contact with the outer surface of the pipe P.
  • the follow-up mechanisms 41A and 41B according to the present embodiment include a pair of rolling rollers 41R that are arranged with the center (center of gravity) of the ultrasound probe 1 interposed therebetween and roll in contact with the outer surface of the tube P.
  • a spherical bearing that can roll in all directions is used as the rolling roller 41R.
  • the present invention is not limited to this. For example, in the biaxial direction sold by Tosa Electronics Co., Ltd. It is also possible to use a rollable omni wheel or the like.
  • the ultrasonic probe 1 is placed on the outer surface of the tube P via a pair of rolling rollers 41R (and thus four rolling rollers 41R) provided in the pair of tracking mechanisms 41A and 41B, respectively.
  • rolling the roller 41R it is possible to scan the outer surface of the tube P while keeping the distance between the outer surface of the tube P and the ultrasonic probe 1 constant.
  • a total of four rolling rollers are used as the rolling rollers 41R.
  • each of the following mechanisms 41A and 41B includes one rolling roller 41R. Even in the configuration, there is no problem because the distance between the outer surface of the tube P and the ultrasonic probe 1 can be kept constant.
  • the ultrasonic probe 1 and the tracking mechanisms 41A and 41B are preferably coupled to each other in a positional relationship such that the position of the center O of the spheroid described above is in the vicinity of the outer surface of the tube P.
  • the follow-up mechanisms 41A and 41B include a permanent magnet 41M between a pair of rolling rollers 41R as a preferable configuration.
  • the attraction force by the permanent magnet 41M contributes to maintaining the posture of the ultrasonic probe 1 with respect to the tube P constant.
  • the ultrasonic probe 1 and the tracking mechanisms 41A and 41B connected by the above-described appropriate members are attached to an appropriate frame (not shown).
  • the ultrasound probe 1 and the follow-up mechanisms 41A and 41B are attached to the frame so as to be integrally movable in the radial direction of the tube P.
  • the pair of arm mechanisms 42A and 42B are formed in a substantially U shape in plan view, and are arranged along the circumferential direction of the tube P with the ultrasonic probe 1 and the tracking mechanisms 41A and 41B interposed therebetween. It is connected to the touch element 1. Specifically, the rotation center shafts 421A and 421B of the arm mechanisms 42A and 42B are rotatably attached to the above-described frame. As described above, the ultrasonic probe 1 and the tracking mechanisms 41A and 41B connected by appropriate members are attached to the frame. With the above configuration, the pair of arm mechanisms 42 ⁇ / b> A and 42 ⁇ / b> B are coupled to the ultrasound probe 1.
  • the pair of arm mechanisms 42A and 42B are configured to be able to adjust the distance between each other. Specifically, a ball screw mechanism 43 is attached to one end 422A, 422B of each arm mechanism 42A, 42B. Then, by turning the adjustment knob 431 of the ball screw mechanism 43, the one end portions 422A and 422B of the arm mechanisms 42A and 42B are moved toward and away from each other. Thereby, each arm mechanism 42A and 42B rotates on the basis of rotation center axis
  • the arm mechanisms 42A and 42B are arranged across the center (center of gravity) of the ultrasonic probe 1, and are at least a pair (five in this embodiment) of rolling rollers that are in contact with the outer surface of the tube P and roll. 42R is provided.
  • the rolling roller 42R is attached to the other end portions 423A and 423B of the arm mechanisms 42A and 42B.
  • a spherical bearing is used as the rolling roller 42R.
  • arm mechanism 42A, 42B which concerns on this embodiment comprises the permanent magnet 42M between the three rolling rollers 42R arrange
  • An ultrasonic wave connected to the pair of arm mechanisms 42A and 42B by adjusting the distance between the pair of arm mechanisms 42A and 42B having the above configuration and sandwiching the pipe P from the circumferential direction by the pair of arm mechanisms 42A and 42B.
  • the posture of the probe 1 with respect to the tube P can be kept constant. Even if the pipe P is sandwiched between the pair of arm mechanisms 42A and 42B from the circumferential direction, each arm mechanism 42A and 42B includes the rolling roller 42R, so that the rolling roller 42R is rolled.
  • the ultrasonic probe 1 can be scanned along the outer surface of the tube P.
  • the arm mechanisms 42A and 42B are attached to the frame so as not to move in the radial direction of the pipe P. For this reason, as described above, as a preferable configuration, when the ultrasonic probe 1 and the tracking mechanisms 41A and 41B are attached to the frame so as to be integrally movable in the radial direction of the tube P, The ultrasonic probe 1 and the tracking mechanisms 41A and 41B can move relative to the arm mechanisms 42A and 42B in the radial direction of the tube P. Therefore, even if the outer surface of the tube P is slightly deformed and not a perfect circle, the posture of the ultrasonic probe 1 is kept constant by sandwiching the tube P from the circumferential direction by the pair of arm mechanisms 42A and 42B.
  • the ultrasonic probe 1 and the tracking mechanisms 41A and 41B move in the radial direction of the tube P along the outer surface of the tube P. Thereby, it is possible to maintain a positional relationship in which the position of the center O of the spheroid is near the outer surface of the pipe P.
  • the mechanism unit 4 is configured such that a liquid contact medium such as water is filled between the ultrasonic probe 1 and the steel pipe P.
  • a liquid contact medium such as water
  • the acoustic wedge and the steel pipe P are filled with a contact medium such as water. ing.
  • the ultrasonic flaw detection apparatus 100 including the mechanism unit 4 described above, the posture of the ultrasonic probe 1 with respect to the tube P does not change, and a highly reliable flaw detection result can be obtained.
  • the mechanism unit 4 it is possible to detect flaws up to the end of the tube P as shown in FIG. That is, even when one follower mechanism 41A is beyond the end of the tube P, the pair of arm mechanisms 42A and 42B and the other follower mechanism 41B allow the ultrasonic probe 1 to be placed on the outer surface of the tube P. Therefore, flaw detection up to the end of the tube P is possible.
  • Table 1 shows the results of evaluating the flaw detection reproducibility when the flaws that have been subjected to electric discharge machining on a steel pipe are manually flawed using the ultrasonic flaw detection apparatus 100 described above.
  • the ultrasonic probe to which the mechanism unit 4 according to the present embodiment is applied is not limited to the ultrasonic probe 1 shown in FIG.
  • the mechanism unit 4 according to this embodiment includes an ultrasonic probe A for vertical flaw detection and four ultrasonic probes B to E for oblique flaw detection. It is also suitably used for the ultrasonic probe 1A.
  • the four ultrasonic probes B to E have their vibration surfaces SB to SE at the center of a predetermined spheroid like the transducer 11 of the ultrasonic probe 1 described above. So as to be along an annular curved surface obtained by cutting along two parallel planes that do not pass through O and face the center O of the spheroid without sandwiching the center O and are orthogonal to the rotation axis of the spheroid Has been placed.
  • the shape of the circular curved surface is such that the outer surface refraction angles of the ultrasonic waves propagating from the ultrasonic probes B to E are substantially equal and / or the inner refraction angle of the ultrasonic waves is substantially equal. It has been determined to be.
  • the ultrasonic probe A has a vibration surface SA along a straight line L (corresponding to the rotation axis of the spheroid) that passes through the center O of the spheroid and is orthogonal to the two parallel planes ( In the example shown in FIG. 8, it is arranged (just above the center O of the spheroid). Accordingly, there is an advantage that it is possible to measure the thickness of the steel pipe P and detect the lamination by the ultrasonic probe A at the same time as the oblique flaw detection by the ultrasonic probes B to E.
  • the ultrasonic probe B designed to transmit / receive ultrasonic waves at a propagation angle ⁇ of 0 ° is changed to other probes. If ultrasonic waves are transmitted and received at the propagation angle ⁇ , the flaw detection accuracy deteriorates and the tilt angle of the flaw cannot be accurately evaluated.
  • the mechanism section 4 by providing the mechanism section 4 according to the present embodiment, the attitude of the ultrasonic probe 1A with respect to the tube P does not change, and a highly reliable flaw detection result can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 本発明に係る超音波探傷装置100は、所定の環状の曲面に沿って配列された複数の振動子11を備える超音波探触子1と、複数の振動子の内、少なくとも2つ以上の振動子を選択して、管状被探傷材Pに対して超音波を送受信させる送受信制御手段2と、前記選択した振動子から送受信する超音波の伝搬方向に対応付けて、当該振動子で受信した探傷波形を放射状に表示する探傷波形表示手段3とを備える。探傷波形表示手段3は、探傷波形に含まれる管状被探傷材への超音波の入射点での反射エコーに相当する時点を始点Sとして、探傷波形を放射状に表示すると共に、始点Sを中心として、管状被探傷材Pの内面及び/又は外面での反射エコーに相当する時点を示す円C1、C2を表示する。

Description

超音波探傷方法及び装置
 本発明は、鋼管などの管状の被探傷材に存在するきずを超音波を用いて探傷するための超音波探傷方法及び超音波探傷装置に関する。特に、本発明は、管状被探傷材の軸方向に対して種々の傾斜角度を有するきず(傾斜きず)を手動で探傷する際に、管状被探傷材の肉厚方向についての傾斜きずの位置や、傾斜きずの傾斜角度を容易に評価できる超音波探傷方法及び装置、並びに、手動で探傷する際に、管状被探傷材に対する超音波探触子の姿勢が変化せず、信頼性の高い探傷結果を得ることを可能とする超音波探傷装置に関する。
 近年、管に対する高品質化要求が高まるにつれて、管の非破壊検査基準が厳格化される傾向にある。
 例えば、代表的な管である継目無管は、ビレットをピアサーによって穿孔して中空シェルを形成し、この中空シェルをマンドレルミル等によって圧延することにより製造される。この継目無管には、軸方向に対して種々の傾斜角度を有するきず(以下、適宜「傾斜きず」という)が存在する。
 この傾斜きずは、ビレットに元々存在する縦割れきずが上記製造工程において軸方向に変形を受けることによって発生したり、或いは、中空シェルのパスセンターを維持するためのガイドシューの案内面に存在するきずが転写することによって発生するといわれている。従って、傾斜きずの継目無管の軸方向に対する傾斜角度は、継目無管の管径やその発生原因の相違によって変化する。すなわち、継目無管には、種々の傾斜角度を有する傾斜きずが存在する。
 継目無管の使用環境は年々厳しくなる傾向にあるため、その高品質化が要求され、上記傾斜きずを精度良く検出することも厳しく要求されている。
 ところで、従来より、継目無管に存在する傾斜きずを探傷するための種々の方法が提案されている。
 例えば、特許文献1(日本国特開昭55-116251号公報)には、検出対象とする傾斜きずの位置及び傾斜角度に応じて超音波探触子を適宜の位置及び傾斜角度で配置することにより、傾斜きずを探傷する方法が提案されている。
 しかしながら、特許文献1に記載の方法は、検出対象とする傾斜きずの傾斜角度に応じて、超音波探触子の傾斜角度をその都度変更する必要があるため、極めて手間が掛かるという問題がある。また、前述のように継目無管に存在する種々の傾斜角度を有する傾斜きずを一回の探傷作業で検出するには、多数の超音波探触子を準備してそれぞれ異なる傾斜角度で配置する必要がある。つまり、超音波探触子の配置設定や校正等が煩雑であると共に、大型の装置が必須であることやコスト高騰を招くという問題がある。
 上記特許文献1に記載の方法における問題点を解決するべく、特許文献2(日本国特開昭61-223553号公報)には、複数の振動子(超音波送受信用素子)を一列に配列したアレイ型超音波探触子を適用した探傷方法が提案されている。より具体的には、前記振動子の配列方向を管の軸方向に一致させると共に、超音波探触子を管の軸心から偏芯させて配置することにより、管内に横波超音波を伝搬させる。そして、各振動子による超音波の送受信タイミングを電気的に制御する電子走査によって、超音波探触子で送受信する超音波の傾斜角度(管の軸方向に対する傾斜角度)を変更することにより、種々の傾斜角度を有する傾斜きずを探傷する方法である。
 しかしながら、特許文献2に記載の方法には、主として以下のような2つの課題(第1の課題及び第2の課題)が存在する。
 <第1の課題>
 特許文献2に記載の方法では、たとえ同じ大きさの傾斜きずであっても、傾斜きずの傾斜角度に応じて、傾斜きずからの反射エコーの強度が異なってしまう。これは、たとえ傾斜きずの延びる方向と超音波探触子から送信された超音波の伝搬方向(超音波の入射点を含む管の接平面の法線方向から見た伝搬方向)とが直交するように、各傾斜きずの傾斜角度に応じて電子走査で超音波の傾斜角度を変更したとしても、各傾斜きずの傾斜角度に応じて(超音波の伝搬方向に応じて)、外面屈折角(管の外面に存在する外面きずへの入射角)及び内面屈折角(管の内面に存在する内面きずへの入射角)が変化することが原因である。傾斜きずの傾斜角度に応じて、傾斜きずからの反射エコーの強度が異なれば、有害なきずを見逃したり、検出不要な微小きずを過検出することにつながる虞がある。
 <第2の課題>
 特許文献2に記載のアレイ型超音波探触子の各振動子による超音波の送受信タイミングを電気的に制御する電子走査によって、超音波探触子で送受信する超音波の傾斜角度を変更する場合、管の特定部位において、検出対象とする傾斜きずの傾斜角度に応じた回数分だけ電子走査を繰り返す必要がある。すなわち、例えば3つの異なる傾斜角度をそれぞれ有する傾斜きずを検出するには、管の特定部位において3回の電子走査を繰り返す必要があり、一方向の傾斜角度を有するきずを検出する場合に比べて、探傷効率が1/3に低下することになる。このように、特許文献2に記載の方法には、検出対象とする傾斜きずの傾斜角度の数に応じて探傷効率が低下するという問題がある。
 一方、特許文献3(日本国特開昭59-163563号公報)には、種々の傾斜角度を有する傾斜きずを探傷するために、マトリックス状に配列された振動子群を用いて、任意の方向に超音波を入射させる方法が提案されている。より具体的には、振動子群の中から任意の振動子を適数個選択し、その送受信タイミング(駆動時間)を電気的に制御する電子走査によって、超音波の入射方向を任意に変更する。そして、超音波の入射方向を変更するパターンを予めプログラムとして貯えるということが開示されている。
 しかし、特許文献3は、前述した各傾斜きずの傾斜角度に応じて反射エコーの強度が変化してしまうという第1の課題には言及しておらず、さらにその課題を解決するために、如何なる変更パターンで超音波の入射方向を変更すればよいかという点についても、何ら開示されていない。また、前述した特許文献2に記載された方法についての第2の課題と同様の課題を有する。つまり、検出対象とする傾斜きずの傾斜角度に応じた回数分だけ電子走査を繰り返す必要があるため、探傷効率が低下するという問題がある。
 上記のような従来技術の問題に鑑み、本発明者らは、特許文献4(国際公開第2007/024000号パンフレット)に記載の超音波探傷方法を提案している。
 具体的には、特許文献4には、複数の振動子を備えた超音波探触子を管状の被探傷材に対向配置するステップと、前記管状被探傷材内での超音波の伝搬方向が複数の異なる伝搬方向となるように、前記複数の振動子の中から適宜の振動子を選択して超音波を送受信させるステップとを含み、前記複数の伝搬方向についての超音波の外面屈折角θrがそれぞれ略同等となるように、及び/又は、前記複数の伝搬方向についての超音波の内面屈折角θkがそれぞれ略同等となるように、前記超音波探触子による探傷条件を設定することを特徴とする超音波探傷方法が提案されている(特許文献の請求項1等)。
 そして、前記超音波探触子は、所定の回転楕円体を、当該回転楕円体の中心を通らず且つ当該回転楕円体の中心を挟まずに対向し、なお且つ当該回転楕円体の回転軸に直交する2つの平行な平面で切断して得られる環状の曲面に沿って配列された複数の振動子を備え、前記超音波探触子を前記管状被探傷材に対向配置するステップでは、前記超音波探触子の長径方向が前記管状被探傷材の軸方向に沿い、前記超音波探触子の短径方向が前記管状被探傷材の周方向に沿い、なお且つ前記回転楕円体の中心が前記管状被探傷材の軸心に正対するように配置し、前記複数の伝搬方向についての超音波の外面屈折角θrがそれぞれ略同等となるように、及び/又は、前記複数の伝搬方向についての超音波の内面屈折角θkが略同等となるように、前記環状の曲面の形状を決定することが記載されている(特許文献4の請求項5等)。
 特許文献4に記載の方法によれば、複数の超音波の伝搬方向にそれぞれ直交する方向に延びる複数の傾斜きずを高精度に探傷することが可能である。また、複数の異なる伝搬方向に超音波を略同時に送受信することにより、複数のきずを高速に探傷することが可能である。
 管の一連の製造工程中に検査するインライン検査では、予め定めた所定寸法以上のきずが存在するか否かを高速に評価すれば良いため、本発明者らが特許文献4で提案した超音波探傷方法を適用すれば十分である。
 一方、インライン検査で「きず有り」と判断された管については、再検査する必要がある。この再検査では、有資格検査員が手動で探傷することにより、きずの有無はもちろんのこと、管の肉厚方向についてのきずの位置(内面、外面、肉厚中央部など)や、傾斜きずの傾斜角度を詳細に評価する必要がある。
 上記の再検査の際、検査員がきずの位置や傾斜角度を容易に評価できることが望まれるが、特許文献4には、この点についての解決手段が提案されていない。また、手動で超音波探触子を走査する際に、管状被探傷材に対する超音波探触子の姿勢が変化せず、信頼性の高い探傷結果が得られることが望まれるが、特許文献4には、この点についての解決手段も提案されていない。
 本発明は、上記従来技術の問題点を解決するためになされたものであり、管状被探傷材の軸方向に対して種々の傾斜角度を有するきず(傾斜きず)を手動で探傷する際に、管状被探傷材の肉厚方向についての傾斜きずの位置や、傾斜きずの傾斜角度を容易に評価できる超音波探傷方法及び装置、並びに、手動で探傷する際に、管状被探傷材に対する超音波探触子の姿勢が変化せず、信頼性の高い探傷結果を得ることを可能とする超音波探傷装置を提供することを課題とする。
 前記課題を解決するため、本発明に係る超音波探傷方法は、以下の(1)~(3)のステップを含む。
 (1)所定の回転楕円体の中心を通らず、且つ当該回転楕円体の中心を挟まずに対向し、なお且つ当該回転楕円体の回転軸に直交する2つの平行な平面で当該回転楕円体を切断して得られる環状の曲面に沿って配列された複数の振動子を備えた超音波探触子を、該超音波探触子の長径方向が管状の被探傷材の軸方向に沿い、前記超音波探触子の短径方向が前記管状被探傷材の周方向に沿い、なお且つ前記回転楕円体の中心が前記管状被探傷材の軸心に正対するように、前記管状被探傷材に対向配置するステップ。
 (2)前記管状被探傷材内での超音波の伝搬方向が複数の異なる伝搬方向となるように、前記複数の振動子の中から適宜の振動子を選択して超音波を送受信させるステップ。
 (3)前記選択した振動子から送受信する超音波の伝搬方向に対応付けて、当該振動子で受信した探傷波形を放射状に表示するステップ。
 そして、前記複数の伝搬方向についての超音波の外面屈折角がそれぞれ略同等となるように、及び/又は、前記複数の伝搬方向についての超音波の内面屈折角が略同等となるように、前記環状の曲面の形状を決定することを特徴とする。
 本発明によれば、所定の回転楕円体の中心を通らず、且つ当該回転楕円体の中心を挟まずに対向し、なお且つ当該回転楕円体の回転軸に直交する2つの平行な平面で当該回転楕円体を切断して得られる環状の曲面に沿って配列された複数の振動子を備えた超音波探触子を用いるため、各振動子から送信された超音波は、回転楕円体の中心に向かって伝搬される。そして、本発明によれば、超音波探触子の長径方向が管状被探傷材の軸方向に沿い、超音波探触子の短径方向が管状被探傷材の周方向に沿い、なお且つ回転楕円体の中心が管状被探傷材の軸心に正対するように、超音波探触子を管状被探傷材に対して対向配置するため、回転楕円体の中心から見た各振動子の仰角は、各振動子の配列された位置によって異なり、各振動子から送信された超音波の管状被探傷材への入射角も異なることになる。従って、超音波探触子の形状(環状の曲面の形状)を適切に設定すれば、各振動子から送信される超音波の伝搬方向を検出対象とするきずの延びる方向に直交させると同時に、外面屈折角及び/又は内面屈折角を略同等にすることができる。
 複数の伝搬方向についての超音波の外面屈折角がそれぞれ略同等となるように、環状の曲面の形状を決定した場合には、複数の伝搬方向の何れにも関わらず、外面きずについて略同等の反射エコーの強度を得ることができる。また、複数の伝搬方向についての超音波の内面屈折角がそれぞれ略同等となるように、環状の曲面の形状を決定した場合には、複数の伝搬方向の何れにも関わらず、内面きずについて略同等の反射エコーの強度を得ることができる。さらに、複数の伝搬方向についての超音波の外面屈折角及び内面屈折角の双方がそれぞれ略同等となるように、環状の曲面の形状を決定した場合には、複数の伝搬方向の何れにも関わらず、外面きず及び内面きずについて略同等の反射エコーの強度を得ることができる。従って、複数の伝搬方向にそれぞれ直交する方向に延びる複数のきず(外面きず及び/又は内面きず)を高精度に探傷することが可能である。
 また、本発明によれば、選択した振動子から送受信する超音波の伝搬方向に対応付けて、当該振動子で受信した探傷波形を放射状に表示するため、表示された傾斜きずからの反射エコーが含まれる探傷波形の方向を目視することにより、当該傾斜きずの傾斜角度(当該表示された探傷波形の方向と直交する方向が傾斜角度に相当する)を容易に評価することが可能である。
 さらには、放射状に表示された探傷波形の何れの時点に傾斜きずからの反射エコーが含まれるかを目視することにより、管状被探傷材の肉厚方向についての当該傾斜きずの位置(内面、外面、肉厚中央部など)を容易に評価することが可能である。
 以上のように、本発明に係る超音波探傷方法によれば、管状被探傷材の軸方向に対して種々の傾斜角度を有する傾斜きずを高精度に探傷可能であると共に、管状被探傷材の肉厚方向についての傾斜きずの位置や、傾斜きずの傾斜角度を容易に評価可能である。
 なお、本発明において、「環状の曲面に沿って配列された複数の振動子」とは、環状の曲面の一部と形状が合致するように各振動子(各振動子の振動面)が曲面に形成されている場合の他、各振動子(各振動子の振動面)が平面状に形成され且つそれぞれ環状の曲面と接するように配列されている場合も含む意味として使用している。
 「回転楕円体の中心が管状被探傷材の軸心に正対する」とは、回転楕円体の中心を通り且つ前記2つの平行な平面に直交する直線(回転楕円体の回転軸に相当する)が管状被探傷材の軸心を通る意味として使用している。
 「回転楕円体」とは、長径と短径とが等しい球体をも含む用語として使用している。
 「超音波の伝搬方向」とは、超音波の入射点を含む管状被探傷材の接平面の法線方向から見た超音波の伝搬方向を意味する。
 「外面屈折角」とは、管状被探傷材Pの超音波伝搬面において、管状被探傷材P内に入射した超音波U(超音波ビームの中心線)が管状被探傷材Pの外面に到達した点Bにおける管状被探傷材Pの法線L1と前記超音波U(超音波ビームの中心線)との成す角度θrを意味する(図2(d)参照)。
 「内面屈折角」とは、管状被探傷材Pの超音波伝搬面において、管状被探傷材P内に入射した超音波U(超音波ビームの中心線)が管状被探傷材Pの内面に到達した点Aにおける管状被探傷材Pの法線L2と前記超音波U(超音波ビームの中心線)との成す角度θkを意味する(図2(d)参照)。
 「複数の伝搬方向についての超音波の外面屈折角(又は内面屈折角)がそれぞれ略同等」とは、外面屈折角(又は内面屈折角)の変動範囲が10°以内であることを意味する。
 前記探傷波形を放射状に表示するステップでは、前記探傷波形に含まれる前記管状被探傷材への超音波の入射点での反射エコーに相当する時点を始点として、前記探傷波形を放射状に表示すると共に、前記始点を中心として、前記管状被探傷材の内面及び/又は外面での反射エコーに相当する時点を示す円を表示することが好ましい。
 斯かる好ましい構成によれば、探傷波形を放射状に表示すると共に、管状被探傷材の内面及び/又は外面での反射エコーに相当する時点を示す円を表示するため、放射状に表示された探傷波形の何れの時点に傾斜きずからの反射エコーが含まれるかを上記表示された円と共に目視することにより(傾斜きずからの反射エコーが含まれる時点と円との位置関係を評価することにより)、管状被探傷材の肉厚方向についての当該傾斜きずの位置をより一層容易に評価することが可能である。
 また、前記課題を解決するため、本発明は、所定の回転楕円体の中心を通らず、且つ当該回転楕円体の中心を挟まずに対向し、なお且つ当該回転楕円体の回転軸に直交する2つの平行な平面で当該回転楕円体を切断して得られる環状の曲面に沿って配列された複数の振動子を備え、その長径方向が管状の被探傷材の軸方向に沿い、その短径方向が前記管状被探傷材の周方向に沿い、なお且つ前記回転楕円体の中心が前記管状被探傷材の軸心に正対するように、前記管状被探傷材に対向配置された超音波探触子と、前記複数の振動子の内、少なくとも2つ以上の振動子を選択して、前記管状被探傷材に対して超音波を送受信させる送受信制御手段と、前記選択した振動子から送受信する超音波の伝搬方向に対応付けて、当該振動子で受信した探傷波形を放射状に表示する探傷波形表示手段とを備えることを特徴とする超音波探傷装置としても提供される。
 前記探傷波形表示手段は、前記探傷波形に含まれる前記管状被探傷材への超音波の入射点での反射エコーに相当する時点を始点として、前記探傷波形を放射状に表示すると共に、前記始点を中心として、前記管状被探傷材の内面及び/又は外面での反射エコーに相当する時点を示す円を表示することが好ましい。
 さらに、前記課題を解決するため、本発明は、管状の被探傷材を超音波探傷するための超音波探傷装置であって、超音波探触子と、前記超音波探触子を挟んで前記管状被探傷材の軸方向に沿って配置され、前記超音波探触子に連結された一対の追従機構と、前記超音波探触子及び前記追従機構を挟んで前記管状被探傷材の周方向に沿って配置され、前記超音波探触子に連結された、互いの間隔を調整可能な一対のアーム機構とを備え、前記追従機構は、前記管状被探傷材の外面に接触して転動する少なくとも一つの転動ローラを具備し、前記アーム機構は、前記超音波探触子の中心を挟んで配置され、前記管状被探傷材の外面に接触して転動する少なくとも一対の転動ローラを具備することを特徴とする超音波探傷装置としても提供される。
 本発明に係る超音波探傷装置は、超音波探触子を挟んで管状被探傷材の軸方向に沿って配置され、超音波探触子に連結された一対の追従機構を備える。この追従機構は、管状被探傷材の外面に接触して転動する少なくとも一つの転動ローラを具備する。従って、超音波探触子は、一対の追従機構がそれぞれ具備する少なくとも一つの転動ローラ(従って、少なくとも2つの転動ローラ)を介して、管状被探傷材の外面に載置され、転動ローラを転動させることにより、管状被探傷材の外面上を走査可能である。
 そして、本発明に係る超音波探傷装置は、超音波探触子及び追従機構を挟んで管状被探傷材の周方向に沿って配置され、超音波探触子に連結された、互いの間隔を調整可能な一対のアーム機構を備える。このアーム機構は、超音波探触子の中心を挟んで配置され、管状被探傷材の外面に接触して転動する少なくとも一対の転動ローラを具備する。従って、一対のアーム機構の間隔を調整して、当該一対のアーム機構で管状被探傷材を周方向から挟み込むことにより、当該一対のアーム機構に連結された超音波探触子の管状被探傷材に対する姿勢を一定に保持することが可能である。そして、一対のアーム機構で管状被探傷材を周方向から挟み込んだ状態であっても、各アーム機構は転動ローラを具備するため、転動ローラを転動させることにより、管状被探傷材の外面に沿って超音波探触子を走査可能である。
 以上のように、本発明に係る超音波探傷装置によれば、管状被探傷材に対する超音波探触子の姿勢が変化せず、信頼性の高い探傷結果を得ることが可能である。
 上記の超音波探傷装置は、超音波探触子が、前述したように、環状の曲面に沿って配列された複数の振動子を備えた構成である場合に特に有用である。すなわち、前記超音波探触子は、所定の回転楕円体の中心を通らず、且つ当該回転楕円体の中心を挟まずに対向し、なお且つ当該回転楕円体の回転軸に直交する2つの平行な平面で当該回転楕円体を切断して得られる環状の曲面に沿って配列された複数の振動子を備え、その長径方向が前記管状被探傷材の軸方向に沿い、その短径方向が前記管状被探傷材の周方向に沿い、なお且つ前記回転楕円体の中心が前記管状被探傷材の軸心に正対するように、前記管状被探傷材に対向配置される。そして、前記超音波探傷装置は、前記複数の振動子の内、少なくとも2つ以上の振動子を選択して、前記管状被探傷材に対して超音波を送受信させる送受信制御手段を備えることが好ましい。
 斯かる好ましい構成によれば、傾斜きずを高精度に探傷可能であると共に、管状被探傷材に対する超音波探触子の姿勢が変化せず、信頼性の高い探傷結果を得ることが可能である。
 さらに好ましくは、前記超音波探傷装置は、前記選択した振動子から送受信する超音波の伝搬方向に対応付けて、当該振動子で受信した探傷波形を放射状に表示する探傷波形表示手段を備える。
 斯かる好ましい構成によれば、管状被探傷材の肉厚方向についての傾斜きずの位置や、傾斜きずの傾斜角度を容易に評価できるという更なる利点が得られる。
 前記探傷波形表示手段は、前記探傷波形に含まれる前記管状被探傷材への超音波の入射点での反射エコーに相当する時点を始点として、前記探傷波形を放射状に表示すると共に、前記始点を中心として、前記管状被探傷材の内面及び/又は外面での反射エコーに相当する時点を示す円を表示することが好ましい。
 斯かる好ましい構成によれば、管状被探傷材の肉厚方向についての傾斜きずの位置をより一層容易に評価することが可能である。
 本発明によれば、管状被探傷材の軸方向に対して種々の傾斜角度を有する傾斜きずを手動で探傷する際に、管状被探傷材の肉厚方向についての傾斜きずの位置や、傾斜きずの傾斜角度を容易に評価可能である。また、手動で探傷する際に、管状被探傷材に対する超音波探触子の姿勢が変化せず、信頼性の高い探傷結果を得ることが可能である。
図1は、本発明の一実施形態に係る超音波探傷装置の概略構成を示す模式図である。図1(a)は斜視図を、図1(b)は平面図を、図1(c)は側面図を、図1(d)は説明図を示す。 図2は、図1に示す超音波探傷装置における超音波の伝搬挙動を示す説明図である。図2(a)は斜視図を、図2(b)は管周方向断面図を、図2(c)は平面図を、図2(d)は超音波伝搬面(図2(b)に示す点O、点A及び点Bを含む面)に沿った断面図を示す。 図3は、図1に示す探傷波形表示手段の機能を説明する説明図である。図3(a)は選択した振動子と該選択した振動子から送信する超音波の伝搬方向との関係を、図3(b)は選択した振動子で受信する探傷波形例を、図3(c)は探傷波形の表示例を示す。 図4は、図1に示す超音波探傷装置を用いて、鋼管に生じている傾斜きずを探傷し、探傷波形表示手段で探傷波形を表示した例を示す。 図5は、図1に示す探傷波形表示手段による探傷波形の他の表示例を示す。 図6は、図1に示す超音波探傷装置が具備する機構部周辺の概略構成を示す模式図である。図6(a)は平面図を、図6(b)は側面図を、図6(c)は裏面図を示す。 図7は、図6に示す超音波探傷装置によって管端部を探傷する様子を説明する正面図である。 図8は、図6に示す機構部を適用した他の超音波探傷装置の概略構成を示す模式図である。図8(a)は平面図を、図8(b)は側面図を、図8(c)は正面図を示す。
 以下、添付図面を参照しつつ、本発明に係る超音波探傷方法及び装置の一実施形態について説明する。
 図1は、本発明の一実施形態に係る超音波探傷装置の概略構成を示す模式図である。図1(a)は斜視図を、図1(b)は平面図を、図1(c)は側面図を、図1(d)は説明図を示す。図2は、図1に示す超音波探傷装置における超音波の伝搬挙動を示す説明図である。図2(a)は斜視図を、図2(b)は管周方向断面図を、図2(c)は平面図を、図2(d)は超音波伝搬面(図2(b)に示す点O、点A及び点Bを含む面)に沿った断面図を示す。
 図1に示すように、本実施形態に係る超音波探傷装置100は、管Pを超音波探傷するための超音波探傷装置であって、超音波探触子1と、超音波探触子1による超音波の送受信を制御する送受信制御手段2と、超音波探触子1で受信した探傷波形を表示する探傷波形表示手段3とを備えている。また、本実施形態に係る超音波探傷装置100は、超音波探触子1を管Pの外面上で走査させるための機構部4(図1には図示せず)を具備する。
 超音波探触子1は、環状の曲面に沿って配列された複数の振動子11を備える。前記環状の曲面は、所定の回転楕円体Mを、当該回転楕円体Mの中心Oを通らず、且つ当該回転楕円体Mの中心Oを挟まずに対向し、なお且つ当該回転楕円体Mの回転軸に直交する2つの平行な平面S1及びS2で切断して得られる曲面である(図1(c)、図1(d)参照)。そして、超音波探触子1は、その長径方向(図1(b)に示すx方向)が管Pの軸方向に沿い、短径方向(図1(b)に示すy方向)が管Pの周方向に沿い、なお且つ前記回転楕円体Mの中心Oが管Pの軸心に正対するように管Pに対向配置される。
 本実施形態に係る送受信制御手段2は、送信回路と、受信回路と、制御回路とを具備する。前記送信回路は、各振動子11にそれぞれ接続され各振動子11から超音波を送信させるためのパルス信号を供給するパルサーと、各パルサーから各振動子11に供給するパルス信号の遅延時間を設定するための遅延回路Aとを具備する。前記受信回路は、各振動子11にそれぞれ接続され各振動子11で受信した探傷波形を増幅するためのレシーバと、各レシーバで増幅された探傷波形の遅延時間を設定するための遅延回路Bとを具備する。前記制御回路は、配列された複数の振動子11の内、超音波を送受信する振動子11を選択すると共に、当該選択した各振動子11についての遅延回路A又は遅延回路Bで設定される遅延時間を決定するように動作する。
 以上の構成を有する送受信制御手段2は、複数の振動子11の内、少なくとも2つ以上の振動子11を選択して、該選択した振動子11から管Pに対して超音波を送受信させるように動作する。
 以下、図2を参照して、超音波探触子1の形状(環状の曲面の形状)を決定する具体的方法について説明する。超音波探触子1の形状を決定する際には、図2に示すように、前記回転楕円体Mの中心Oが管Pの外面近傍に位置する(従って、各振動子11から送信された超音波が前記中心Oを入射点として管Pに入射する)ように超音波探触子1を配置した状態を考える。
 図2に示すように、超音波探触子1を構成する各振動子11から送信された超音波は、管Pの外面における点O(回転楕円体の中心O)から入射した後、管Pの内面における点Aで反射し、管Pの外面における点Bに到達する。そして、点Oから入射した超音波の伝搬方向(入射点Oを含む管Pの接平面の法線方向から見た伝搬方向)と、入射点Oを通る管Pの周方向接線Lとの成す角度(伝搬角度)をγ(以下、適宜「伝搬方向γ」ともいう)とし、点Bにおける外面屈折角(図2(d)に示す超音波伝搬面において、管Pの点Bにおける法線L1と超音波ビームUとの成す角度)をθrとし、点Aにおける内面屈折角(図2(d)に示す超音波伝搬面において、管Pの点Aにおける法線L2と超音波ビームUとの成す角度)をθkとする。また、管Pへの超音波の入射角(図2(d)に示す超音波伝搬面において、管Pの入射点Oにおける法線L3と入射する超音波ビームUとの成す角度)をθwとし、管Pでの超音波の屈折角(図2(d)に示す超音波伝搬面において、管Pの入射点Oにおける法線L3と入射後の超音波ビームUとの成す角度)をθsとする。
 入射角θwで管Pに入射した超音波は、幾何光学的な伝搬挙動を示す。すなわち、入射角θwで管Pに入射した超音波は、スネルの法則に従って決定される屈折角θsで管P内に伝搬することになる。そして、幾何学的に導出されるように、外面屈折角θrは、屈折角θsと等しくなる。つまり、下記の式(7)が成立する。
Figure JPOXMLDOC01-appb-M000001

 ここで、上記式(7)において、Vsは管P中を伝搬する超音波の伝搬速度を、Viは超音波探触子1Aと管Pとの間に充填する接触媒質における超音波の伝搬速度を意味する。
 一方、内面屈折角θkは、特許文献4にも記載のように、入射角θw、伝搬角度γ及び管Pの肉厚対外径比t/Dの関数となる。そして、超音波の伝搬方向γが管Pの軸方向に一致する(すなわち、伝搬角度γ=90°)ときに最小値となって、外面屈折角θr(=屈折角θs)と等しくなり、超音波の伝搬方向γが管Pの周方向に一致する(すなわち、伝搬角度γ=0°)ときに最大値となって、以下の式(8)で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、管Pの肉厚対外径比t/Dが数%程度であれば、上記式(8)によって算出される内面屈折角θkと外面屈折角θrとの差は10°程度の範囲内に収まる。従って、管Pの軸方向に延びる内面きず(伝搬方向γが管Pの周方向に一致する超音波によって検出)を検出する場合の内面屈折角θkと、管Pの周方向に延びる内面きず(伝搬方向γが管Pの軸方向に一致する超音波によって検出)を検出する場合の内面屈折角θk(=θs)との差が10°程度の範囲内に収まることになり、両内面きずの検出能に有意差は生じない。しかしながら、管Pのt/Dが15%以上になると、上記式(8)によって算出される内面屈折角θkは、外面屈折角θsに対して20°以上も大きくなり(すなわち、伝搬方向γを管Pの軸方向から周方向に変更することにより、内面屈折角θkは20°以上も大きくなり)、管Pの軸方向に延びる内面きずの検出能が大きく低下する。同様にして、管Pの軸方向と周方向の間の傾斜角度を有する内面きずについても、内面屈折角θkの増加に伴って検出能が低下する。
 以上に説明した内面屈折角θkの変動に伴うきずの検出能低下を抑制するには、超音波の伝搬方向γに応じて(すなわち、超音波の伝搬方向γに直交するきずの傾斜角度に応じて)、各伝搬方向γに対応する内面屈折角θkが略一定の値となるように、各伝搬方向γに対応する屈折角θsを変更(すなわち、入射角θwを変更)すればよい。
 そこで、本実施形態に係る超音波探触子1は、各振動子11から送信される超音波の伝搬方向γに応じて、各伝搬方向γに対応する内面屈折角θkが略一定の値となるように、各伝搬方向γに対応する入射角θwが変化する形状に設計されている。前述のように、超音波探触子1は、環状の曲面に沿って配列された複数の振動子11を備え、前記環状の曲面は、所定の回転楕円体Mを、当該回転楕円体Mの中心Oを通らず且つ当該回転楕円体Mの中心Oを挟まずに対向し、なお且つ当該回転楕円体の回転軸に直交する2つの平行な平面S1及びS2(図1(c)、図1(d)参照)で切断して得られる曲面である。これにより、各振動子11から送信される超音波の伝搬方向γは-180°~180°の範囲内にある。また、回転楕円体Mの中心Oから見た各振動子11の仰角は、各振動子11の配列された位置によって異なる。換言すれば、超音波探触子1の長径、短径及び超音波探触子1の前記回転楕円体Mの中心Oからの距離に応じて各振動子11の仰角は定まり、各振動子11の配列された位置に応じて(各振動子11から送信される超音波の伝搬方向γに応じて)仰角が異なる。この仰角を90°から減算した角度が入射角θwに相当する。従って、本実施形態に係る超音波探触子1は、超音波探触子1の長径、短径及び超音波探触子1の前記回転楕円体Mの中心Oからの距離を適切に設定することにより、各振動子11から送信される超音波の伝搬方向γに応じて、各伝搬方向γに対応する内面屈折角θkが略一定の値となるように、各伝搬方向γに対応する入射角θwが変化する形状に設計される。
 より具体的に説明すれば、図1に示すように、超音波探触子1の長径を2x、短径を2y、超音波探触子1の回転楕円体Mの中心Oからの距離(回転楕円体Mの中心Oから平面S1及びS2までの平均距離)をhとしたとき、超音波探触子1の長径部に位置する振動子11から送信される超音波の入射角θw(θw1と称する)と、超音波探触子1の短径部に位置する振動子11から送信される超音波の入射角θw(θw2と称する)とは、それぞれ以下の式(9)及び(10)で表される。
Figure JPOXMLDOC01-appb-M000003
 そして、上記式(9)及び(10)で表される入射角θw1及びθw2が、以下の式(11)を満足するように、探傷する管Pのt/Dに応じて、超音波探触子1の形状(x、y及びh)を決定する。
Figure JPOXMLDOC01-appb-M000004
 入射角θw1及びθw2が上記式(11)を満足することにより、特許文献4にも記載のように、超音波の伝搬方向γが管Pの軸方向に一致する場合(超音波探触子1の長径部に位置する振動子11から超音波を送信した場合)における内面屈折角θkと、超音波の伝搬方向γが管Pの周方向に一致する場合(超音波探触子1の短径部に位置する振動子11から超音波を送信した場合)における内面屈折角θkとが略等しくなる。これにより、超音波の伝搬方向γが管Pの軸方向と周方向の間にある場合についても、略等しい内面屈折角θkが得られる。すなわち、超音波の伝搬方向γが-180°~180°の範囲内の何れであっても、略等しい内面屈折角θkが得られる。
 本実施形態に係る超音波探触子1の形状は、以上のようにして決定されるため、各振動子11から送信される超音波の伝搬方向γを検出対象とするきずの延びる方向に直交させると同時に、内面屈折角θkを略一定にすることができ、各きずの傾斜角度に関わらずに同等の反射エコー強度を得ることが可能である。このようにして、検出対象とするきずの傾斜角度の数に等しい数の振動子11を送受信制御手段2によって選択し、当該選択した各振動子11から超音波を送受信すれば、種々の傾斜角度を有するきずを高精度に探傷することが可能である。
 本実施形態に係る超音波探触子1は、前述した形状を決定する際のみならず、実際に探傷する際にも、前記回転楕円体の中心Oが管Pの外面近傍に位置するように配置することが好ましい。
 斯かる好ましい装置により、各振動子11から送信された超音波の管Pへの入射点が略一致する(回転楕円体の中心Oが入射点となる)ことになるため、超音波探触子1Aの形状を決定した際に予定していた通りの超音波の伝搬挙動を得ることができ(超音波の伝搬方向に関わらず内面屈折角θkが略一定になり)、ひいては種々の傾斜角度を有するきずを高精度に探傷することが可能である。
 なお、本実施形態に係る超音波探触子1の形状によれば、内面屈折角θkを略一定にすることができる一方、外面屈折角θrは、伝搬方向γに応じて変化することになる。換言すれば、本実施形態に係る超音波探触子1は、種々の傾斜角度を有する内面きずを高精度に探傷する上で好適な形状とされている。これに対して、種々の傾斜角度を有する外面きずを高精度に探傷するには、外面屈折角θrを各きずの傾斜角度に関わらずに(すなわち、超音波の伝搬方向γに関わらずに)略一定にする必要がある。前述のように、外面屈折角θrは屈折角θsと等しいため、斯かる屈折角θsを伝搬方向γに関わらずに略一定にすれば良く、このためには入射角θwを伝搬方向γに関わらずに略一定にすれば良い。入射角θwを超音波の伝搬方向γに関わらずに略一定にするには、超音波探触子の長径(2x)と短径(2y)の長さを略等しい値に設定すれば良い。すなわち、前記回転楕円体を球体とした場合に得られる形状に設定すれば良い。斯かる形状の超音波探触子によれば、外面屈折角rを伝搬方向γに関わらず略一定にすることができ、種々の傾斜角度を有する外面きずを高精度に探傷することが可能である。
 そして、管Pにおけるきずの主たる検出対象が内面きず或いは外面きずのいずれであるかに応じて、各きずを検出するのに好適な超音波探触子の形状を選択すれば良い。或いは、内面きず及び外面きずの双方を同等に検出する必要がある場合には、内面きずを検出するのに好適な式(11)を満足する超音波探触子の形状(x、y及びh)と、外面きずを検出するのに好適なx=yを満足する超音波探触子の形状との略中間のx、yの値を有する形状とすれば良い。
 以下、図3を参照して、探傷波形表示手段3の機能について説明する。
 図3は、図1に示す探傷波形表示手段の機能を説明する説明図である。図3(a)は選択した振動子と該選択した振動子から送信する超音波の伝搬方向との関係を、図3(b)は選択した振動子で受信する探傷波形例を、図3(c)は探傷波形の表示例を示す。
 探傷波形表示手段3は、選択した振動子11(図3に示す例では、振動子11A、11B、11C)から送受信する超音波の伝搬方向γに対応付けて、当該振動子11で受信した探傷波形を放射状に表示する。
 具体的には、探傷波形表示手段3は、各探傷波形に含まれる管Pへの超音波の入射点での反射エコーに相当する時点を始点Sとして、各探傷波形を放射状に表示する。より具体的には、探傷波形表示手段3は、送受信制御手段2から出力された各振動子11A~11Cで受信した各探傷波形をA/D変換した後、探傷波形の強度に応じた濃淡画像として、探傷波形の強度に応じて色分けしたカラー画像として、或いは、探傷波形を所定のしきい値で2値化した2値化画像として、適宜のモニター等に表示する。
 また、探傷波形表示手段3は、上記のようにして探傷波形を放射状に表示すると共に、始点Sを中心として、管Pの内面及び/又は外面での反射エコーに相当する時点を示す円を表示する。この円の座標は、管Pの肉厚、管Pでの超音波の屈折角θs、及び、管P中を伝搬する超音波の伝搬速度Vsから算出することが可能である。図3に示す例では、管Pに入射した超音波が最初に管Pの内面に到達したときの反射エコーに相当する時点(いわゆる0.5スキップ)を示す円C1と、管Pに入射した超音波が管Pの内面で反射した後、管Pの外面に初めて到達したときの反射エコーに相当する時点(いわゆる1.0スキップ)を示す円C2とが表示されている。
 図4は、本実施形態に係る超音波探傷装置100を用いて、鋼管に生じている傾斜きずを探傷し、探傷波形表示手段3で探傷波形を表示した例を示す。なお、探傷した鋼管は、外径178mm、肉厚10mmで、超音波探触子1の形状(環状の曲面の形状)は、内面きずを検出するのに好適な式(11)を満足する超音波探触子の形状(x、y及びh)と、外面きずを検出するのに好適なx=yを満足する超音波探触子の形状との略中間のx、yの値を有する形状とした。図4に示す例では、前述した円C2と、管Pに入射した超音波が管P内で反射し、2回目に管Pの内面に到達したときの反射エコーに相当する時点(いわゆる1.5スキップ)を示す円C3とを表示している。
 図4に示すように、探傷波形表示手段3は、選択した振動子11から送受信する超音波の伝搬方向γに対応付けて、当該振動子11で受信した探傷波形を放射状に表示するため、表示された傾斜きずからの反射エコーが含まれる探傷波形の方向を目視することにより、当該傾斜きずの傾斜角度(当該表示された探傷波形の方向と直交する方向が傾斜角度に相当する)を容易に評価することが可能である。図4(a)に示す例では、超音波の伝搬角度γが略0°の位置に、この伝搬方向に直交して延びる傾斜きずが存在することを容易に認識可能である。また、図4(b)に示す例では、超音波の伝搬角度γが略30°の位置に、この伝搬方向に直交して延びる傾斜きずが存在することを容易に認識可能である。
 また、図4に示すように、探傷波形表示手段3は、探傷波形を放射状に表示すると共に、管Pの内面及び/又は外面での反射エコーに相当する時点を示す円(図4に示す例では、円C2、C3)を表示するため、放射状に表示された探傷波形の何れの時点に傾斜きずからの反射エコーが含まれるかを上記表示された円と共に目視することにより、管Pの肉厚方向についての当該傾斜きずの位置を容易に評価することが可能である。図4(a)及び図4(b)に示す例では、円C2上に傾斜きずからの反射エコーが存在するため、管Pの外面に傾斜きずが存在することを容易に認識可能である。
 なお、本実施形態では、図3(c)や図4に示すように、超音波の伝搬方向γ(γ=-180°~180°)に対応付けられた全ての探傷波形を、同一の始点Sから放射状に表示する態様について説明した。しかしながら、本発明はこれに限らず、図5に示すように、超音波の伝搬方向γ(γ=-180°~180°)を複数の領域に区分し、各区分毎に、表示上異なる始点Sから、探傷波形を放射状に表示させることも可能である。
 以下、図6を参照して、超音波探触子1を管Pの外面上で走査させるための機構部4について説明する。機構部4は、超音波探触子1を走査して手動で探傷する際に、管Pに対する超音波探触子1の姿勢が変化せず、信頼性の高い探傷結果を得られるように構成されている。超音波探触子1の姿勢が変化することにより、例えば、0°の伝搬角度γで超音波を送受信するように設計された振動子11が、他の伝搬角度γで超音波を送受信することになれば、きずの探傷精度が劣化すると共に、きずの傾斜角度を正確に評価できなくなるからである。
 図6は、超音波探傷装置100が具備する機構部4周辺の概略構成を示す模式図である。図6(a)は平面図を、図6(b)は側面図を、図6(c)は裏面図を示す。なお、図6(c)では機構部4のみを図示している。
 図6に示すように、本実施形態に係る機構部4は、一対の追従機構41A、41Bと、一対のアーム機構42A、42Bとを備える。
 一対の追従機構41A、41Bは、超音波探触子1を挟んで管Pの軸方向に沿って配置され、適宜の部材(図示せず)を介して、超音波探触子1に連結されている。追従機構41A、41Bは、管Pの外面に接触して転動する少なくとも一つの転動ローラ41Rを具備する。本実施形態に係る追従機構41A、41Bは、超音波探触子1の中心(重心)を挟んで配置され、管Pの外面に接触して転動する一対の転動ローラ41Rを具備する。本実施形態では、転動ローラ41Rとして、全ての方向に転動可能な球状ベアリングを用いているが、これに限るものではなく、例えば、(株)土佐電子から販売されている2軸方向に転動可能なオムニホイール等を用いることも可能である 。
 超音波探触子1は、一対の追従機構41A、41Bがそれぞれ具備する一対の転動ローラ41R(従って、4つの転動ローラ41R)を介して、管Pの外面に載置され、転動ローラ41Rを転動させることにより、管Pの外面と超音波探触子1との距離を一定に保ちながら、管Pの外面上を走査可能である。本実施形態では、転動ローラ41Rとして、計4つの転動ローラを用いているが、これに限るものではなく、例えば、各追従機構41A、41Bが、それぞれ一つの転動ローラ41Rを具備する構成であっても、管Pの外面と超音波探触子1との距離を一定に保つことが可能であるため、問題はない。なお、超音波探触子1と追従機構41A、41Bとは、前述した回転楕円体の中心Oの位置が管Pの外面近傍となるような位置関係で互いに連結することが好ましい。
 本実施形態に係る追従機構41A、41Bは、好ましい構成として、一対の転動ローラ41Rの間に永久磁石41Mを具備する。管Pが磁性を有する場合には、永久磁石41Mによる吸着力が、超音波探触子1の管Pに対する姿勢を一定に保持する上で寄与する。
 なお、前述した適宜の部材によって連結された超音波探触子1及び追従機構41A、41Bは、適宜のフレーム(図示せず)に取り付けられている。好ましくは、超音波探触子1及び追従機構41A、41Bは、前記フレームに対して、管Pの径方向に一体的に移動自在に取り付けられる。
 一対のアーム機構42A、42Bは、平面視で略コの字状に形成され、超音波探触子1及び追従機構41A、41Bを挟んで管Pの周方向に沿って配置され、超音波探触子1に連結されている。具体的には、各アーム機構42A、42Bの回動中心軸421A、421Bが前述したフレームに回動自在に取り付けられている。このフレームには、前述のように、適宜の部材によって連結された超音波探触子1及び追従機構41A、41Bが取り付けられている。以上の構成により、一対のアーム機構42A、42Bは、超音波探触子1に連結される。
 一対のアーム機構42A、42Bは、互いの間隔を調整可能に構成されている。具体的には、各アーム機構42A、42Bの一端部422A、422Bに、ボールねじ機構43が取り付けられている。そして、ボールねじ機構43の調整つまみ431を回すことにより、各アーム機構42A、42Bの一端部422A、422Bが互いに近づいたり離れたりする。これにより、各アーム機構42A、42Bは、回動中心軸421A、421Bを基準として回動し、各アーム機構42A、42Bの他端部423A、423Bが互いに近づいたり離れたりする。以上のようにして、一対のアーム機構42A、42Bは、互いの間隔を調整可能である。
 アーム機構42A、42Bは、超音波探触子1の中心(重心)を挟んで配置され、管Pの外面に接触して転動する少なくとも一対(本実施形態では、5つ)の転動ローラ42Rを具備する。転動ローラ42Rは、アーム機構42A、42Bの他端部423A、423Bに取り付けられている。本実施形態では、転動ローラ42Rとして球状ベアリングを用いているが、これに限るものではない点は、転動ローラ41Rと同様である。また、本実施形態に係るアーム機構42A、42Bは、追従機構41A、41Bと同様に、好ましい構成として、中央部に配置された3つの転動ローラ42Rの間に永久磁石42Mを具備する。
 以上の構成を有する一対のアーム機構42A、42Bの間隔を調整して、一対のアーム機構42A、42Bで管Pを周方向から挟み込むことにより、一対のアーム機構42A、42Bに連結された超音波探触子1の管Pに対する姿勢を一定に保持することが可能である。そして、一対のアーム機構42A、42Bで管Pを周方向から挟み込んだ状態であっても、各アーム機構42A、42Bは転動ローラ42Rを具備するため、転動ローラ42Rを転動させることにより、管Pの外面に沿って超音波探触子1を走査可能である。
 なお、アーム機構42A、42Bは、前記フレームに対して、管Pの径方向に移動しないように取り付けられている。このため、前述のように、好ましい構成として、超音波探触子1及び追従機構41A、41Bを、前記フレームに対して、管Pの径方向に一体的に移動自在に取り付けた場合には、超音波探触子1及び追従機構41A、41Bは、アーム機構42A、42Bに対して、管Pの径方向に相対的に移動可能となる。従って、管Pの外面が多少変形しており真円ではなくとも、一対のアーム機構42A、42Bで管Pを周方向から挟み込むことによって超音波探触子1の姿勢を一定に保持した状態で、管Pの外面に倣って、超音波探触子1及び追従機構41A、41Bが管Pの径方向に移動する。これにより、回転楕円体の中心Oの位置が管Pの外面近傍となるような位置関係を保持することが可能である。
 また、本実施形態に係る機構部4は、超音波探触子1と鋼管Pとの間に、水等の液状接触媒質が充填されるように構成されている。或いは、超音波探触子1の下面に、樹脂等で作製した音響くさびが介在する場合には、この音響くさびと鋼管Pとの間に、水等の接触媒質が充填されるように構成されている。
 以上に説明した機構部4を具備する超音波探傷装置100によれば、管Pに対する超音波探触子1の姿勢が変化せず、信頼性の高い探傷結果を得ることが可能である。
 なお、本実施形態に係る機構部4を適用することにより、図7に示すように、管Pの端部まで探傷することが可能である。すなわち、一方の追従機構41Aが管Pの端を超えた状態であっても、一対のアーム機構42A、42Bと、他方の追従機構41Bとによって、超音波探触子1を管Pの外面上に保持できるため、管Pの端部まで探傷することが可能である。
 以上に説明した超音波探傷装置100を用いて、鋼管に放電加工したきずを手動探傷した際の探傷再現性を評価した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1に示すように、良好な再現性できずを検出可能であった。
 なお、本実施形態に係る機構部4を適用する超音波探触子としては、図1に示す超音波探触子1に限るものではない。本実施形態に係る機構部4は、例えば、図8に示すように、垂直探傷用の超音波探触子Aと、斜角探傷用の4つの超音波探触子B~Eとを具備する超音波探触子1Aにも好適に用いられる。
 図8に示すように、4つの超音波探触子B~Eは、それらの振動面SB~SEが、前述した超音波探触子1の振動子11と同様に、所定回転楕円体の中心Oを通らず、且つ当該回転楕円体の中心Oを挟まずに対向し、なお且つ当該回転楕円体の回転軸に直交する2つの平行な平面で切断して得られる環状の曲面に沿うように配置されている。そして、この環状の曲面の形状は、各超音波探触子B~Eから伝搬する超音波の外面屈折角がそれぞれ略同等となるように、及び/又は、超音波の内面屈折角が略同等となるように、決定されている。
 超音波探触子Aは、その振動面SAが前記回転楕円体の中心Oを通り且つ前記2つの平行な平面に直交する直線L(回転楕円体の回転軸に相当する)に沿うように(図8に示す例では、回転楕円体の中心Oの直上に)配置されている。これにより、超音波探触子B~Eによる斜角探傷と同時に、超音波探触子Aによる鋼管Pの肉厚測定やラミネーションの検出などが可能であるという利点が得られる。
 以上に説明した超音波探触子1Aについても、その姿勢が変化することにより、例えば、0°の伝搬角度γで超音波を送受信するように設計された超音波探触子Bが、他の伝搬角度γで超音波を送受信することになれば、きずの探傷精度が劣化すると共に、きずの傾斜角度を正確に評価できなくなる。しかしながら、本実施形態に係る機構部4を備えることにより、管Pに対する超音波探触子1Aの姿勢が変化せず、信頼性の高い探傷結果を得ることが可能である。

Claims (8)

  1.  所定の回転楕円体の中心を通らず、且つ当該回転楕円体の中心を挟まずに対向し、なお且つ当該回転楕円体の回転軸に直交する2つの平行な平面で当該回転楕円体を切断して得られる環状の曲面に沿って配列された複数の振動子を備えた超音波探触子を、該超音波探触子の長径方向が管状の被探傷材の軸方向に沿い、前記超音波探触子の短径方向が前記管状被探傷材の周方向に沿い、なお且つ前記回転楕円体の中心が前記管状被探傷材の軸心に正対するように、前記管状被探傷材に対向配置するステップと、
     前記管状被探傷材内での超音波の伝搬方向が複数の異なる伝搬方向となるように、前記複数の振動子の中から適宜の振動子を選択して超音波を送受信させるステップと、
     前記選択した振動子から送受信する超音波の伝搬方向に対応付けて、当該振動子で受信した探傷波形を放射状に表示するステップとを含み、
     前記複数の伝搬方向についての超音波の外面屈折角がそれぞれ略同等となるように、及び/又は、前記複数の伝搬方向についての超音波の内面屈折角が略同等となるように、前記環状の曲面の形状を決定することを特徴とする超音波探傷方法。
  2.  前記探傷波形を放射状に表示するステップでは、前記探傷波形に含まれる前記管状被探傷材への超音波の入射点での反射エコーに相当する時点を始点として、前記探傷波形を放射状に表示すると共に、前記始点を中心として、前記管状被探傷材の内面及び/又は外面での反射エコーに相当する時点を示す円を表示することを特徴とする請求項1に記載の超音波探傷方法。
  3.  所定の回転楕円体の中心を通らず、且つ当該回転楕円体の中心を挟まずに対向し、なお且つ当該回転楕円体の回転軸に直交する2つの平行な平面で当該回転楕円体を切断して得られる環状の曲面に沿って配列された複数の振動子を備え、その長径方向が管状の被探傷材の軸方向に沿い、その短径方向が前記管状被探傷材の周方向に沿い、なお且つ前記回転楕円体の中心が前記管状被探傷材の軸心に正対するように、前記管状被探傷材に対向配置された超音波探触子と、
     前記複数の振動子の内、少なくとも2つ以上の振動子を選択して、前記管状被探傷材に対して超音波を送受信させる送受信制御手段と、
     前記選択した振動子から送受信する超音波の伝搬方向に対応付けて、当該振動子で受信した探傷波形を放射状に表示する探傷波形表示手段とを備えることを特徴とする超音波探傷装置。
  4.  前記探傷波形表示手段は、前記探傷波形に含まれる前記管状被探傷材への超音波の入射点での反射エコーに相当する時点を始点として、前記探傷波形を放射状に表示すると共に、前記始点を中心として、前記管状被探傷材の内面及び/又は外面での反射エコーに相当する時点を示す円を表示することを特徴とする請求項3に記載の超音波探傷装置。
  5.  管状の被探傷材を超音波探傷するための超音波探傷装置であって、
     超音波探触子と、
     前記超音波探触子を挟んで前記管状被探傷材の軸方向に沿って配置され、前記超音波探触子に連結された一対の追従機構と、
     前記超音波探触子及び前記追従機構を挟んで前記管状被探傷材の周方向に沿って配置され、前記超音波探触子に連結された、互いの間隔を調整可能な一対のアーム機構とを備え、
     前記追従機構は、前記管状被探傷材の外面に接触して転動する少なくとも一つの転動ローラを具備し、
     前記アーム機構は、前記超音波探触子の中心を挟んで配置され、前記管状被探傷材の外面に接触して転動する少なくとも一対の転動ローラを具備することを特徴とする超音波探傷装置。
  6.  前記超音波探触子は、所定の回転楕円体の中心を通らず、且つ当該回転楕円体の中心を挟まずに対向し、なお且つ当該回転楕円体の回転軸に直交する2つの平行な平面で当該回転楕円体を切断して得られる環状の曲面に沿って配列された複数の振動子を備え、その長径方向が前記管状被探傷材の軸方向に沿い、その短径方向が前記管状被探傷材の周方向に沿い、なお且つ前記回転楕円体の中心が前記管状被探傷材の軸心に正対するように、前記管状被探傷材に対向配置され、
     前記複数の振動子の内、少なくとも2つ以上の振動子を選択して、前記管状被探傷材に対して超音波を送受信させる送受信制御手段を備えることを特徴とする請求項5に記載の超音波探傷装置。
  7.  前記選択した振動子から送受信する超音波の伝搬方向に対応付けて、当該振動子で受信した探傷波形を放射状に表示する探傷波形表示手段を備えることを特徴とする請求項6に記載の超音波探傷装置。
  8.  前記探傷波形表示手段は、前記探傷波形に含まれる前記管状被探傷材への超音波の入射点での反射エコーに相当する時点を始点として、前記探傷波形を放射状に表示すると共に、前記始点を中心として、前記管状被探傷材の内面及び/又は外面での反射エコーに相当する時点を示す円を表示することを特徴とする請求項7に記載の超音波探傷装置。
PCT/JP2009/056237 2008-03-31 2009-03-27 超音波探傷方法及び装置 WO2009123035A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2718305A CA2718305C (en) 2008-03-31 2009-03-27 Ultrasonic testing method and equipment therefor
US12/935,377 US8544329B2 (en) 2008-03-31 2009-03-27 Ultrasonic testing method and equipment therefor
EP09726622.5A EP2261653B1 (en) 2008-03-31 2009-03-27 Method and device for ultrasonic flaw probing
BRPI0909260-9A BRPI0909260B1 (pt) 2008-03-31 2009-03-27 Método de teste ultrassônico e equipamento para o mesmo
CN2009801119068A CN101983334B (zh) 2008-03-31 2009-03-27 超声波探伤方法以及超声波探伤装置
US13/971,951 US9335301B2 (en) 2008-03-31 2013-08-21 Ultrasonic testing method and equipment therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-090382 2008-03-31
JP2008090382A JP4524764B2 (ja) 2008-03-31 2008-03-31 超音波探傷方法及び装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/935,377 A-371-Of-International US8544329B2 (en) 2008-03-31 2009-03-27 Ultrasonic testing method and equipment therefor
US13/971,951 Division US9335301B2 (en) 2008-03-31 2013-08-21 Ultrasonic testing method and equipment therefor

Publications (1)

Publication Number Publication Date
WO2009123035A1 true WO2009123035A1 (ja) 2009-10-08

Family

ID=41135413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056237 WO2009123035A1 (ja) 2008-03-31 2009-03-27 超音波探傷方法及び装置

Country Status (8)

Country Link
US (2) US8544329B2 (ja)
EP (1) EP2261653B1 (ja)
JP (1) JP4524764B2 (ja)
CN (1) CN101983334B (ja)
AR (2) AR071117A1 (ja)
BR (1) BRPI0909260B1 (ja)
CA (2) CA2718305C (ja)
WO (1) WO2009123035A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024000A1 (ja) * 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. 超音波探触子、超音波探傷装置、超音波探傷方法及び継目無管の製造方法
US8161818B2 (en) * 2008-10-29 2012-04-24 Airbus Operations Gmbh Device for detecting a flaw in a component
JP5092043B2 (ja) * 2010-07-15 2012-12-05 三菱重工業株式会社 探傷装置
US20120053895A1 (en) * 2010-08-18 2012-03-01 Noam Amir Method and system for evaluating the condition of a collection of similar elongated hollow objects
FR2992064B1 (fr) * 2012-06-19 2016-12-09 Airbus Operations Sas Procede de controle non-destructif par ultrasons de structure en materiau composite stratifie
US20140305219A1 (en) * 2013-04-11 2014-10-16 V & M Deutschland Gmbh Conical ultrasonic probe
ES2885813T3 (es) * 2014-03-14 2021-12-15 Bae Systems Plc Método de diseño y aparato para la fabricación de un artículo
WO2015176132A1 (en) * 2014-05-23 2015-11-26 Whitsunday Mooring And Marine Construction Pty Ltd Data capture device and system
CN103969342B (zh) * 2014-05-26 2018-04-03 中车成都机车车辆有限公司 机车轮对连杆销裂纹超声波探头
DE102016223807A1 (de) 2016-11-30 2018-05-30 Siemens Aktiengesellschaft Messanordnung zum Erfassen der Wandstärke eines Rohrs
US10641738B2 (en) 2017-07-20 2020-05-05 Airbus (S.A.S.) Device and method for non-destructive ultrasound inspection of structures made of composite material
CN108020595B (zh) * 2017-12-05 2020-04-07 南通理工学院 一种实心轮轴超声波探伤方法及探伤装置
CN108195944A (zh) * 2017-12-25 2018-06-22 常州常宝精特钢管有限公司 一种管体斜向伤探头及探伤装置
CN107894460A (zh) * 2017-12-25 2018-04-10 常州常宝精特钢管有限公司 一种管体斜向伤探伤方法
FR3079302B1 (fr) * 2018-03-22 2020-03-20 Safran Procede et dispositif de cartographie de pieces pour detection de direction d'allongement
US11783464B2 (en) * 2018-05-18 2023-10-10 Lawrence Livermore National Security, Llc Integrating extended reality with inspection systems
JP7216366B2 (ja) * 2018-11-01 2023-02-01 荏原環境プラント株式会社 超音波探触子およびこれを用いた被検配管厚測定方法
CN110907535B (zh) * 2019-12-05 2021-08-20 广西电网有限责任公司电力科学研究院 一种基于旋转扫查的缺陷定位导波检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116251A (en) 1979-03-01 1980-09-06 Nippon Steel Corp Method and apparatus for detecting oblique crack in seamless pipe by supersonic wave
JPS59163563A (ja) 1983-03-09 1984-09-14 Sumitomo Metal Ind Ltd 方向性欠陥の検出方法
JPS61223553A (ja) 1985-03-28 1986-10-04 Sumitomo Metal Ind Ltd 超音波探傷方法
JP2006234761A (ja) * 2005-02-28 2006-09-07 Shin Nippon Hihakai Kensa Kk 超音波測定装置
WO2007024000A1 (ja) 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. 超音波探触子、超音波探傷装置、超音波探傷方法及び継目無管の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE840456A (fr) * 1975-04-22 1976-10-07 Dispositif de mesure precise des dimensions d'un objet par ultra-sons
JPS55138652A (en) * 1979-04-16 1980-10-29 Kubota Ltd Flaw detector for vertical pipe
JPS5960257A (ja) * 1982-09-29 1984-04-06 Hitachi Ltd 配管検査用の無軌道式配管走査装置
JPS59143955A (ja) * 1983-02-08 1984-08-17 Babcock Hitachi Kk 探触子調芯移動装置
JPH06154226A (ja) * 1992-11-25 1994-06-03 Matsushita Electric Ind Co Ltd 超音波診断装置
JPH11183446A (ja) * 1997-12-25 1999-07-09 Nkk Corp 溶接部の超音波探傷方法および装置
EP1498746B1 (en) * 2003-07-09 2013-12-11 Panasonic Corporation Ultrasonic diagnostic apparatus and tomographic image processing apparatus
JP4842784B2 (ja) * 2006-12-04 2011-12-21 住友金属工業株式会社 管の探傷用追従装置及びこれを用いた管の自動探傷装置
JP2008245788A (ja) * 2007-03-29 2008-10-16 Olympus Medical Systems Corp 超音波観測装置及びこの超音波観測装置を用いた超音波診断装置
WO2009050719A2 (en) * 2007-10-15 2009-04-23 Slender Medical, Ltd. Implosion techniques for ultrasound
US8466605B2 (en) * 2008-03-13 2013-06-18 Ultrashape Ltd. Patterned ultrasonic transducers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116251A (en) 1979-03-01 1980-09-06 Nippon Steel Corp Method and apparatus for detecting oblique crack in seamless pipe by supersonic wave
JPS59163563A (ja) 1983-03-09 1984-09-14 Sumitomo Metal Ind Ltd 方向性欠陥の検出方法
JPS61223553A (ja) 1985-03-28 1986-10-04 Sumitomo Metal Ind Ltd 超音波探傷方法
JP2006234761A (ja) * 2005-02-28 2006-09-07 Shin Nippon Hihakai Kensa Kk 超音波測定装置
WO2007024000A1 (ja) 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. 超音波探触子、超音波探傷装置、超音波探傷方法及び継目無管の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2261653A4

Also Published As

Publication number Publication date
US9335301B2 (en) 2016-05-10
AR071117A1 (es) 2010-05-26
CA2718305A1 (en) 2009-10-08
CA2792170A1 (en) 2009-10-08
AR095493A2 (es) 2015-10-21
US20140060195A1 (en) 2014-03-06
US8544329B2 (en) 2013-10-01
CA2792170C (en) 2015-11-24
EP2261653A1 (en) 2010-12-15
EP2261653B1 (en) 2020-03-25
BRPI0909260A2 (pt) 2015-08-18
CA2718305C (en) 2014-03-18
BRPI0909260B1 (pt) 2019-05-28
JP2009244060A (ja) 2009-10-22
EP2261653A4 (en) 2014-09-17
US20110088476A1 (en) 2011-04-21
CN101983334A (zh) 2011-03-02
JP4524764B2 (ja) 2010-08-18
CN101983334B (zh) 2013-10-02

Similar Documents

Publication Publication Date Title
JP4524764B2 (ja) 超音波探傷方法及び装置
JP4596336B2 (ja) 超音波探傷装置、超音波探傷方法及び継目無管の製造方法
JP4596337B2 (ja) 超音波探傷方法及び継目無管の製造方法
KR101163549B1 (ko) 위상배열 초음파 탐상용 기본 보정시험편
CN108562647B (zh) Pa-tofd结合的聚乙烯管道热熔对接接头超声检测装置及方法
JP2007187593A (ja) 配管検査装置及び配管検査方法
KR101163554B1 (ko) 위상배열 초음파 탐상용 검증용 시험편
WO2017061366A1 (ja) 非破壊検査装置および軸受の製造方法
JP2010096779A (ja) 超音波探傷装置
JP5325394B2 (ja) 軸部材の超音波探傷方法、超音波探傷装置および超音波探傷システム
US20090249879A1 (en) Inspection systems and methods for detection of material property anomalies
JP4897420B2 (ja) 超音波探傷装置
KR101163551B1 (ko) 위상배열 초음파 탐상용 감도보정 대비시험편
JP2011163814A (ja) 超音波探傷試験方法
KR20100076636A (ko) 초음파 탐상 장치 시스템 및 그 제어 방법
WO2020250379A1 (ja) 超音波探傷方法、超音波探傷装置、鋼材の製造設備列、鋼材の製造方法、及び鋼材の品質保証方法
JPH1183815A (ja) 超音波探傷方法および装置
JP2006313115A (ja) 超音波探傷方法及び装置
JPH01158348A (ja) 超音波探傷装置
JP2006313110A (ja) 超音波探傷方法及び装置
JP2010175519A (ja) 超音波検査装置
JPH1151911A (ja) ラインフォーカス型超音波探傷方法および装置
JP4389218B2 (ja) 管の斜角超音波探傷における屈折角の測定方法及び装置並びにこれを用いた管の斜角超音波探傷方法及び装置
KR20100124240A (ko) 위상배열 초음파 탐상을 위한 보정(대비)시험편 및 보정절차

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111906.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726622

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2718305

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009726622

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12935377

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0909260

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100928