WO2009122942A1 - Optical sheet, process for producing optical sheet, formed object, and process for producing formed object - Google Patents

Optical sheet, process for producing optical sheet, formed object, and process for producing formed object Download PDF

Info

Publication number
WO2009122942A1
WO2009122942A1 PCT/JP2009/055693 JP2009055693W WO2009122942A1 WO 2009122942 A1 WO2009122942 A1 WO 2009122942A1 JP 2009055693 W JP2009055693 W JP 2009055693W WO 2009122942 A1 WO2009122942 A1 WO 2009122942A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical sheet
sheet
aromatic polycarbonate
roll
resin composition
Prior art date
Application number
PCT/JP2009/055693
Other languages
French (fr)
Japanese (ja)
Inventor
川東 宏至
木暮 真巳
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN200980112383.9A priority Critical patent/CN101981097B/en
Publication of WO2009122942A1 publication Critical patent/WO2009122942A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/365Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
    • B29C48/37Gear pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/9145Endless cooling belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/9218Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/922Viscosity; Melt flow index [MFI]; Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92247Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92742Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/387Plasticisers, homogenisers or feeders comprising two or more stages using a screw extruder and a gear pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • B29L2011/005Fresnel lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0083Reflectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the present invention relates to an optical sheet used for a light guide plate and the like, a method for manufacturing the optical sheet, a molded body in which irregularities are formed on the surface of the optical sheet, and a method for manufacturing the molded body. More specifically, an optical sheet excellent in transparency and light guide obtained by extruding a specific thermoplastic resin under specific conditions and controlling a higher order structure in the solid structure of the sheet, and the optical sheet
  • the present invention relates to a manufacturing method, a molded body, and a molded body manufacturing method.
  • the backlight for liquid crystal displays mounted on the LED light source is also actively studied for thinning and screen enlargement.
  • the light guide plate dominates the product size, and therefore, consideration has been given to reducing the thickness of the light guide plate and enlarging the screen. Specifically, the thickness that has already been 0.8 mm has been reduced to 0.6 to 0.4 mm, and recently, the thickness has been further reduced to 0.2 mm, which is 0.3 mm or less.
  • a light guide plate used for a backlight for mobile devices is mainly made of polycarbonate resin.
  • a polycarbonate resin is molded into a plate shape mainly by an injection molding method, and at the same time, fine irregularities optically designed for the purpose of uniformly emitting a backlight on the surface are formed.
  • Patent Documents 1 and 2 resin compositions that have been improved in light guide properties for light guide plate applications for injection molding are frequently used.
  • these resin compositions are not only limited by the thickness of the light guide plate and the screen size in the injection molding method, but also birefringence (retardation) occurs due to shear orientation during injection molding, and color misregistration tends to occur during light emission.
  • birefringence retardation
  • the sheet becomes cloudy at the time of the extrusion molding, especially, when the thickness exceeds 2 mm, the cloudiness becomes remarkable.
  • the luminance characteristic is deteriorated. It was difficult to obtain an original sheet for a light guide plate with the resin composition by an extrusion method.
  • Patent Document 3 Even if the fluidity of the resin composition during injection molding is improved (Patent Document 3), a light guide plate having a thickness of 2.6 inches or more and a thickness of 0.25 mm or less cannot be molded by the injection molding method. It has been extremely difficult to obtain a product that is a limit region and exhibits brightness performance as a light guide plate. For large screens such as those for notebook computers, light guide plates made of polymethyl methacrylate (PMMA) have been used. However, as the thickness is reduced, impact strength is insufficient and warping (dimensional stability) Insufficient performance), there are problems such as generation of moire fringes and lowering of luminance due to displacement from the light source.
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • Patent Document 4 a polycarbonate resin composition for a light guide plate in which 0.02 to 2 parts by weight of a phosphorus-based and / or phenol-based antioxidant is blended with 100 parts by weight of a polycarbonate resin. Further, since a blue dye or the like is used and the molding temperature is high, the total light transmittance is only about 90%, and further improvement is desired.
  • Japanese Patent Laid-Open No. 10-73725 Japanese Patent No. 3330498
  • JP 2002-60609 Patent 3516908
  • An object of the present invention is to provide an optical sheet which can be easily processed into a molded body such as a light guide plate having a thin wall and a large screen and has a high light transmittance, and a method for producing the same.
  • the present inventors have achieved the above-mentioned problems by using an aromatic polycarbonate having a specific molecular weight and an antioxidant and molding at a specific temperature. Found to get.
  • the present invention has been completed based on such findings. That is, the present invention (1) (A) Aromatic polycarbonate resin composition containing 100 parts by weight of aromatic polycarbonate having a viscosity average molecular weight of 22,000 or less and (B) 0.01-1 part by weight of an antioxidant, and containing no blue dye or pigment. Is an optical sheet that is cooled below the glass transition temperature after being extruded from the extruder, and has a total light transmittance of 91% or more at a thickness of 0.1 to 1 mm.
  • the optical sheet according to (1) wherein the antioxidant of the component (B) is a phosphorus-based antioxidant and / or a phenol-based antioxidant, (6)
  • the method for producing an optical sheet according to the above (1) comprising a heat treatment step of heat treatment at a temperature equal to or higher than ° C.
  • the molded product according to (7) which is any one of a light guide plate, a diffusion sheet, a retroreflecting plate, a prism sheet, and a Fresnel lens sheet, (9)
  • the present invention provides a method for producing a molded article, wherein a concavo-convex pattern is formed on the surface of the optical sheet according to (1).
  • the present invention excels in optical properties (light guiding properties, color tone) such as transferability, high transparency, low birefringence, and the like suitable for the production of molded articles such as a light guide plate having a thickness and area that cannot be achieved by the injection molding method.
  • optical sheet, a light guide plate, and the like are provided.
  • Tension roll 2 Heating roll 3: Cooling roll 4: Pressure roll 5: Endless belt 6: Sheet supply roll 7: Tension roll 8: Heating device S: Sheet d before transferring uneven shape: Pressure roll Length of sheet 21 pinched by endless belt: extruder 22: pinching roll 23: pinching roll 24: take-up roll 25: pinching roll 26a: transfer roll 26b: transfer roll 26c: transfer roll 31: heating Roll 32: Transfer roll 33 for forming irregularities: Pre-heating roll 34: Cooling roll 35: Conveying roll 36: Endless belt
  • an aromatic polycarbonate having a viscosity average molecular weight of 22,000 or less contains (B) an antioxidant, and an aromatic polycarbonate resin composition containing no blue dye or pigment is extruded from an extruder.
  • the optical sheet is cooled below the glass transition temperature, and the total light transmittance at the thickness of the optical sheet of 0.1 to 1 mm is 91% or more.
  • the birefringence phase difference; retardation value at a wavelength of 550 nm
  • the standard deviation value of the retardation value measured at an arbitrary position in the sheet surface is preferably 10 or less.
  • the optical sheet of the present invention does not contain a blue dye or pigment, there is no reduction in luminance characteristics when processed into a light guide plate or the like. By the way, when a blue dye or pigment is contained, the luminance number decreases on the order of 10% depending on the blending amount.
  • an aromatic polycarbonate is used as a base resin and
  • an aromatic polycarbonate resin composition containing an antioxidant is used as an optical sheet, it is possible to reduce yellowing during molding into a sheet. Thus, the luminance is reduced when this sheet is processed into a light guide plate or the like.
  • aromatic polycarbonate As the aromatic polycarbonate as the component (A), bisphenol A type polycarbonate is preferable from the viewpoint of optical transparency, mechanical strength, and heat resistance.
  • the aromatic polycarbonate can be usually produced by reacting a dihydric phenol and a polycarbonate precursor such as phosgene or a carbonate compound.
  • a branching agent may be added if necessary, and a reaction between a dihydric phenol and a carbonate precursor such as phosgene, or It is produced by a transesterification reaction between a dihydric phenol and a carbonate precursor such as diphenyl carbonate.
  • bisphenol A 2,2-bis (4-hydroxyphenyl) propane
  • bisphenols other than bisphenol A include bis (4-hydroxyphenyl) methane; 1,1-bis (4-hydroxyphenyl) ethane; 2,2-bis (4-hydroxyphenyl) butane; (4-hydroxyphenyl) octane; 2,2-bis (4-hydroxyphenyl) phenylmethane; 2,2-bis (4-hydroxy-1-methylphenyl) propane; bis (4-hydroxyphenyl) naphthylmethane; 1 1,2-bis (4-hydroxy-t-butylphenyl) propane; 2,2-bis (4-hydroxy-3-bromophenyl) propane; 2,2-bis (4-hydroxy-3,5-tetramethylphenyl) ) Propane; 2,2-bis (4-hydroxy-3-chlorophenyl) propane; 2,2-bis (4-hydro) Bis-3,5-tetrachlorophenyl)
  • Examples of the carbonate compound include diaryl carbonates such as diphenyl carbonate, and dialkyl carbonates such as dimethyl carbonate and diethyl carbonate. And as a molecular weight regulator, what is normally used for superposition
  • phenol on-butylphenol, mn-butylphenol, pn-butylphenol, o-isobutylphenol, m-isobutylphenol, p-isobutylphenol, ot -Butylphenol, mt-butylphenol, pt-butylphenol, on-pentylphenol, mn-pentylphenol, pn-pentylphenol, on-hexylphenol, mn-hexylphenol, pn-hexylphenol, pt-octylphenol, o-cyclohexylphenol, m-cyclohexylphenol, p-cyclohexylphenol, o-phenylphenol, m-phenylphenol, p-phenylphenol, on-nonylphenol M-nonylphenol, pn-nonylphenol, o-cumylphenol
  • branching agents include, for example, 1,1,1-tris (4-hydroxyphenyl) ethane; ⁇ , ⁇ ′, ⁇ ′′ -tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene; -[ ⁇ -methyl- ⁇ - (4'-hydroxyphenyl) ethyl] -4- [ ⁇ ', ⁇ '-bis (4 "-hydroxyphenyl) ethyl] benzene; phloroglysin, trimellitic acid, isatin bis (o-cresol)
  • a compound having three or more functional groups such as) can also be used.
  • the aromatic polycarbonate as the component (A) used in the present invention is required to have a viscosity average molecular weight of 22,000 or less, and preferably 12,000 to 20,000. If it is less than 12,000, the mechanical strength is inferior, and if it exceeds 22,000, the total light transmittance is less than 91%, which is not preferable as an optical sheet. Birefringence (phase difference; retardation value at a wavelength of 550 nm) is 150 nm or less, preferably 130 nm or less, and the standard deviation value of the retardation value measured by sampling at an arbitrary position in the sheet surface is 10 or less. It is preferable.
  • the glass transition temperature of the aromatic polycarbonate as the component (A) is about 141 to 149 ° C.
  • an arbitrary location is a total of 9 locations on a 3 cm ⁇ 3 cm grid of 1 cm pitch of two 4 cm ⁇ 4 cm portions, each of which is 60 cm or more away from a sample of an optical sheet of 100 cm ⁇ 100 cm. 18 points shall be measured.
  • antioxidants examples include phosphorus-based, phenol-based, and pentaerythritol-based ones.
  • phosphorus-based antioxidants more specifically, phosphorus-based antioxidant stabilizers such as phosphites and phosphates are preferably used.
  • phosphites include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, trinolyl phosphate, tridecyl phosphite, trioctyl phosphite.
  • trioctadecyl phosphite distearyl pentaerythritol diphosphite, tricyclohexyl phosphite, monobutyl diphenyl phosphite, monooctyl diphenyl phosphite, distearyl pentaerythritol diphosphite, bis (2,4-di-) tert-butylphenyl) pentaerythritol phosphite, bis (2.6-di-tert-butyl-4-methylphenyl) pentaerythritol phosphite, 2,2-methylenebis (4,6-di-ter - butylphenyl) octyl phosphite, tri-esters of phosphorous acid such as tetrakis (2,4-di -tert- butylphenyl) -4,4-diphenyl En
  • phosphate ester examples include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, 2-ethylphenyl diphenyl phosphate, and the like. These phosphorus antioxidants may be used alone or in combination of two or more.
  • distearyl pentaerythritol diphosphite bis (2,4-di-tert-butylphenyl) pentaerythritol phosphite, bis (2.6-di-tert-butyl-4-) Methylphenyl) pentaerythritol phosphite and tris (2,4-di-tert-butylphenyl) phosphite are preferred
  • pentaerythritol type especially bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol Phosphite is particularly preferred.
  • the phosphorus antioxidants can be used alone or in combination of two or more.
  • phosphoric antioxidants can be used as they are, for example, Asahi Denka Kogyo Co., Ltd. [trade name: ADK STAB 2112], Clariant Japan Co., Ltd. product (Sand Stub P-EPQ), Sumitomo Chemical Co., Ltd. Products [Sumilyzer P-168], Ciba-Geigy products [Tris (2,4-di-tert-butylphenyl) phosphite, trade name: Irgafos 168), products of Asahi Denka Co., Ltd. [trade name: Adegas Tab PEP36, etc. Is mentioned.
  • phenolic antioxidants include ⁇ -tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2- tert-Butyl-6- (3′-tert-butyl-5′-methyl-2′-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethyl) Aminomethyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4 -Ethyl-6-tert-butylphenol), 4,4'-methylenebis (2,6-di-ter -Butylphenol), 2,2'-methylenebis (4-methyl-6-cyclohex
  • the said hindered phenolic antioxidant can be used individually or in combination of 2 or more types.
  • Commercially available phenolic antioxidants can be used as they are, for example, Asahi Denka Kogyo Co., Ltd. [trade name: ADK STAB AO-80], its products [trade name: ADK STAB AO-30], Ciba Specialty Chemicals. Products [trade name: Irganox 1010, 1076] and the like.
  • the antioxidant which is (B) component may use 1 or more types of the said phosphorus antioxidant, may use 1 or more types of phenolic antioxidant, and 1 or more types of phosphorus antioxidants. And one or more phenolic antioxidants may be used in combination.
  • the addition amount is in the range of 0.01 to 1 part by mass, preferably in the range of 0.05 to 0.3 part by mass, with respect to 100 parts by mass of the aromatic polycarbonate as the component (A). By setting it as such a range, the preferable characteristic as an optical sheet is acquired.
  • the optical sheet of the present invention has a total light transmittance of 91% or more at a thickness of 0.1 to 1 mm. After being extruded from the extruder, the total light transmittance can be 91% or more by cooling below the glass transition temperature. Preferably, it is 91.5 to 92%. By setting it to 91% or more, it is possible to prevent the luminance from being lowered. If it exceeds 92%, industrial production is difficult at present because of absorption from the molecular skeleton of the aromatic polycarbonate.
  • a light guide plate with higher display quality than a light guide plate by injection molding By using a retardation value of 150 nm or less and a standard deviation value of the retardation value measured by sampling at an arbitrary position in the sheet surface to be 10 or less, a backlight using a light guide plate processed with an optical sheet is used as a liquid crystal panel. It is possible to prevent the display quality when the display device is mounted on the display device from being deteriorated.
  • the retardation value is preferably 100 nm or less, more preferably 50 nm or less.
  • the optical sheet of the present invention has a spectral light transmittance (solution) in a visible-UV spectral spectrum measured at a thickness of 0.4 mm, measured by dissolving a spectral light transmittance of 70% or more at a wavelength of 300 nm or an aromatic polycarbonate in a good solvent.
  • a spectral light transmittance (solution) in a visible-UV spectral spectrum measured at a thickness of 0.4 mm measured by dissolving a spectral light transmittance of 70% or more at a wavelength of 300 nm or an aromatic polycarbonate in a good solvent.
  • Aromatic polycarbonate resin having a light guide length of the solution cell of 5 cm, a sample solution concentration of 12 g / dl, a solvent dichloromethane, and a wavelength of 450 nm) of 94% or more is used as the component (A) of the polycarbonate resin composition. preferable.
  • a light guide plate formed using an optical sheet light having a wavelength of 400 to 700 nm in the visible light region enters from the end face, is guided and propagates in the end face direction, and the direction of light in the thickness direction (plane direction) Surface emission is achieved by controlling the nature.
  • the light incident in the direction of the end face is emitted from the end face on the opposite side, and the spectral characteristics of the light are measured, so that evaluation suitable for the light propagation of the light guide plate can be performed.
  • a measurement with a thin molded piece of 1 mm or less needs to prepare a special measuring device, which is actually difficult.
  • the sheet characteristics are evaluated based on the spectral characteristics in the thickness direction (plane direction) that can be easily measured and evaluated.
  • the thickness of the sheet is as thin as 1 mm or less, it becomes difficult to detect the spectral characteristic difference specific to the sheet base material in the measurement of the spectral light transmittance that transmits visible light in the thickness direction.
  • this spectral characteristic difference even when measuring spectral characteristics in the thickness direction, it is possible to evaluate this spectral characteristic difference by paying attention to a wavelength of 380 nm or less in the ultraviolet region.
  • the evaluation result of the spectral transmittance at 300 to 380 nm by the measurement in the thickness direction does not directly reflect the spectral transmittance in the visible light region, but is relatively linked with the spectral transmittance at 300 to 380 nm in the end face direction.
  • There is a tendency to reflect the spectral characteristics in the visible light wavelength region and a substitution thereof is possible.
  • an optical resin base material having a high spectral transmittance of 300 to 380 nm measured in the thickness direction tends to have high spectral characteristics in the visible light wavelength region when measured in the end face direction. If the spectral light transmittance is less than 70%, the light guide performance is insufficient, and thus the luminance decreases. More preferably, it is 73% or more.
  • the viscosity average molecular weight of the aromatic polycarbonate (A) in the optical sheet of the present invention is 22000 or less, preferably 14000 to 20000. More preferably, it is 15000 to 19000. If it is less than 14,000, the strength of the product will be insufficient, and the yield will be reduced due to the adhesion of chips during the external processing of the product. In particular, when the thickness of the optical sheet is 0.3 mm or less, the strength tends to be insufficient, and the optical sheet tends to be easily damaged. When the viscosity average molecular weight exceeds 22,000, depending on the extrusion molding conditions, the yellowing and retardation values of the resin base material are likely to increase, and it becomes difficult to reach a total light transmittance of 91%.
  • a light guide plate or the like is formed by transferring a fine uneven pattern (prism, dot, dome-shaped convex lens) of several to several hundred microns on a sheet surface by roll embossing or press forming a resin sheet to form an uneven pattern.
  • a fine uneven pattern pris, dot, dome-shaped convex lens
  • the transferability at this time also deteriorates.
  • the optical sheet of the present invention is produced by extrusion molding of an aromatic polycarbonate resin composition, but it is thermoplastic as component (C) in addition to the aromatic polycarbonate as component (A) and the antioxidant as component (B).
  • a small amount of polyacrylic acid alkyl ester resin may be added.
  • Spectral characteristics are further improved by adding a small amount of component (C).
  • Component (C) is preferably added so that the ratio of component (A) / component (C) is 99.99 / 0.01 to 99.00 / 1.00 (mass ratio). More preferably, it is 99.95 / 0.05 to 99.50 / 0.50, and particularly preferably 99.90 / 0.10 to 99.70 / 0.30.
  • thermoplastic polyacrylic acid alkyl ester resin as component (C) is a polymer having a repeating unit of at least one selected from monomer units of acrylic acid, acrylic acid ester, acrylonitrile and derivatives thereof, a homopolymer or A copolymer with styrene, butadiene or the like may also be used.
  • polyacrylic acid polymethyl methacrylate (PMMA), polyacrylonitrile, ethyl acrylate-acrylic acid-2-chloroethyl copolymer, acrylic acid-n-butyl-acrylonitrile copolymer, acrylonitrile-styrene copolymer And acrylonitrile-butadiene copolymer and acrylonitrile-butadiene-styrene copolymer.
  • PMMA polymethyl methacrylate
  • PMMA polymethyl methacrylate
  • known ones can be used as polymethyl methacrylate (PMMA).
  • thermoplastic polyacrylic acid alkyl ester resin as component (C) preferably has a molecular weight of 200 to 100,000, more preferably 20,000 to 60,000. When the molecular weight is 200 to 100,000, phase separation between the component (A) and the component (C) does not become too fast at the time of molding, so that sufficient transparency can be obtained in the optical sheet.
  • the method for producing the optical sheet of the present invention is not particularly limited, but a desired optical sheet can be produced according to the following method for producing an optical sheet of the present invention.
  • the method for producing an optical sheet of the present invention includes a molding step of melt-extruding the aromatic polycarbonate resin composition into a sheet, a cooling step of rapidly cooling the melt-extruded sheet-like molded body to a glass transition temperature or lower, and cooling A heat treatment step of heat-treating the sheet-like molded body at 50 ° C. or more and below the glass transition temperature of the polycarbonate resin.
  • the said cooling process can cool the said sheet-like molded object by allowing the said sheet-like molded object to pass through the slit where cooling water flows down.
  • the heat treatment step can be carried out by sandwiching and heating the front and back surfaces of the sheet-like molded body with a metal endless belt and / or metal roll having a mirror surface.
  • an optical sheet that can be used as a light guide plate can be manufactured by selecting molding conditions even with a sheet molding machine that is generally equipped with three rolls.
  • the cylinder temperature and die temperature of the extruder are about 220 to 340 ° C., preferably about 240 to 320 ° C., depending on the difference in resin composition, glass transition temperature, and the like.
  • Resin containing (A) component / (C) component in a ratio of 99.99 / 0.01 to 99.00 / 1.00 (mass ratio) and (B) an antioxidant in the above-described ratio When performing extrusion molding using the composition as a raw material, a cooling step of rapidly cooling the sheet-like molded body obtained by the above melt extrusion to a glass transition temperature or lower is important. Extrusion molding including such a cooling step When the apparatus is applied, an optical sheet having higher optical transparency can be obtained.
  • the cooling temperature needs to be lower than the glass transition temperature, preferably 140 ° C. or lower, more preferably 120 ° C. or lower.
  • the total light transmittance at a thickness of 0.1 to 1 mm of the optical sheet can be set to 91% or higher.
  • the lower limit of the cooling temperature is about 50 ° C. although it depends on the difference in resin composition, glass transition temperature, and the like. By setting the temperature to 50 ° C. or higher, it is possible to reduce the residual strain in the molded optical sheet and ensure optical isotropy. Cooling is usually performed using a plurality of rolls.
  • the cylinder temperature of the extruder is about 220 to 340 ° C, preferably about 240 to 320 ° C.
  • the cooled sheet-like formed body is subjected to a heat treatment step in which heat treatment is performed at a temperature of 50 ° C.
  • the endless belt wound around a plurality of rolls and heated by the heating roll unit is caused to travel while the formed sheet is in close contact with the endless belt and the roll.
  • a method for producing a sheet in which the sheet is peeled from the endless belt after linear pressure welding, and the heated sheet is kept warm and / or heated while traveling from the side opposite to the endless belt (See FIG. 1). Heat insulation and / or heating is performed by a heat insulation plate, hot air blowing, and infrared rays.
  • 1 is a tension roll
  • 2 is a heating roll
  • 3 is a cooling roll
  • 4 is a rolling roll
  • 5 is an endless belt
  • 6 is a sheet supply roll
  • 7 is a tension roll
  • 8 is a heating device.
  • S indicates a sheet before the concavo-convex shape is transferred
  • d indicates the length of the sheet sandwiched between the rolling roll 4 and the endless belt 5.
  • the elastic roll method include a method disclosed in Japanese Patent Publication No. 2004-155101.
  • a T-die is attached to an extruder to form a sheet, the sheet is passed through a first clamping roll, a second clamping roll, and a third clamping roll, and a plurality of transfer rolls are linearly formed.
  • sheets are manufactured side by side and manufactured through a take-up roll (see FIG. 2).
  • 21 is an extruder
  • 22, 23 and 25 are pinching rolls
  • 24 is a take-up roll
  • 26a, 26b and 26c are transfer rolls.
  • the molded body of the present invention such as a light guide plate having a concavo-convex pattern formed on the surface of the optical sheet
  • the optical sheet obtained by the above characteristics, composition, and manufacturing method is formed into a molded body by forming a fine uneven pattern on the surface, light distribution control is possible, a light guide plate, a diffusion sheet, a retroreflector, It can be used as a prism sheet and a Fresnel lens sheet.
  • the concavo-convex pattern include a dot shape, a convex lens shape, a concave lens shape, a V-groove prism shape, and a polygonal prism shape such as a triangular pyramid and a quadrangular pyramid.
  • gradation shading
  • a diffusion sheet used in a direct type backlight it is possible to make the luminance uniform by forming the uneven pattern in the distance from the light source shadow on the light source to the distance between the light sources. Examples of a method for forming such a concavo-convex pattern include a roll embossing method, a vacuum press molding method, and a belt transfer method.
  • a mold with a fine uneven pattern formed on a nickel-plated foil on the surface of a belt-like thin plate stainless steel is manufactured, and heat, pressure transfer and peeling are performed while the resin film is synchronously conveyed between the mold belts rotating up and down.
  • a belt transfer method for example, Japanese Patent Application Laid-Open No. 2005-321681
  • This method does not require time for evacuation, temperature increase, and temperature decrease, and can transfer to a large area with high productivity (see FIG. 3).
  • 31 is a heating roll
  • 32 is a transfer roll for forming irregularities
  • 33 is a preheating roll
  • 34 is a cooling roll
  • 35 is a transport roll
  • 36 is an endless belt.
  • the left arrow indicates the optical sheet before transferring the concavo-convex shape
  • the right arrow indicates the optical sheet after transfer, that is, a molded body such as a light guide plate.
  • a lithography method in which an acrylic UV curable resin is pressed against the optical sheet of the present invention using a mold having a fine concavo-convex pattern, and a screen printing method using a white ink.
  • a molded body such as a light guide plate can also be manufactured by simultaneously performing the optical sheet molding and the step of forming a concavo-convex pattern on the surface.
  • a manufacturing apparatus provided with such simultaneous processes, for example, a continuous extrusion embossing machine SPU-03026W manufactured by Toshiba Machine Co., Ltd. can be suitably used (see FIG. 4).
  • the pressing length is increased due to the flexibility of the special touch roll, and the transfer rate is improved.
  • the roll clearance adjustment method Pressure sensor and Positioning sensor
  • Aromatic polycarbonate PC1 Taflon FN1700A bisphenol A polycarbonate resin manufactured by Idemitsu Kosan Co., Ltd., glass transition temperature: 142 ° C., viscosity average molecular weight: 17,300, refractive index: 1.585]
  • Aromatic polycarbonate PC2 Toughlon FN1900A bisphenol A polycarbonate resin manufactured by Idemitsu Kosan Co., Ltd., glass transition temperature: 145 ° C., viscosity average molecular weight: 19,500, refractive index: 1.585]
  • Aromatic polycarbonate PC3 Toughlon FN2500A [Bisphenol A polycarbonate resin manufactured by Idemitsu Kosan Co., Ltd., glass transition temperature: 148 ° C., viscosity average molecular weight: 23,500, refractive index: 1.585]
  • Phosphorus antioxidant Adegas tab PEP36 [Bisphenol A polycarbonate resin manufactured by Idemitsu Kosan Co., Ltd., glass
  • optical sheet extrusion> Condition 1 (applied in Examples 1 to 4 and Comparative Examples 1 and 2) An optical sheet (thickness 0.4 mm) was produced by a “three roll device” provided with the extruder 21 shown in FIG.
  • Each of the second pinching roll 23 and the third pinching roll 25 was a metal roll having a diameter of 300 mm.
  • the total distance between the first transfer roll 26a and the final transfer roll 26c was 3 m.
  • Condition 2 (applied in Example 5) This was carried out using a UF roll clamping press machine (elastic roll method—see FIG. 2) manufactured by Hitz Industrial Equipment Techno Co., Ltd. The screw diameter of the extruder is 90 mm.
  • Condition 3 (applied in Example 6) A stamper with a triangular pyramid prism array (height 50 ⁇ m) formed by nickel plating was pressed against a sheet obtained by sheet molding using a continuous extrusion embossing machine SPU-03026W (see FIG. 4) manufactured by Toshiba Machine Co., Ltd. Simultaneously, pattern transfer was performed to produce a prism sheet (pattern formation 2). The screw diameter of the extruder is 26 mm ⁇ , and the temperatures of the other parts are as described in Table 1.
  • Condition 4 (applied in Comparative Example 3) The same procedure as in Condition 1 was performed except that the temperature at each location was changed to the temperature shown in Table 1.
  • Condition 5 (applied in Comparative Example 4) Injection molding was performed at a molding temperature of 360 ° C. (mold temperature: 120 ° C.) using an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., product number SG100M-HP) having a clamping force of 100 tons.
  • ⁇ Evaluation method> (1) Total light transmittance Measured according to JIS-K-7105 using a haze meter (HGM-2DP) manufactured by Suga Test Instruments Co., Ltd. (2) Spectral Light Transmittance of Sheet An optical sheet sample having a thickness of 0.4 mm was measured for spectral light transmittance (%) at a wavelength of 300 nm using a UV-visible spectrophotometer (UV-2450) manufactured by Shimadzu Corporation. (3) Birefringence (Retardation) and Standard Deviation Value The birefringence (retardation value) for 550 nm was measured with a retardation measuring device (RETS-100) manufactured by Otsuka Electronics Co., Ltd.
  • FTS-100 retardation measuring device manufactured by Otsuka Electronics Co., Ltd.
  • an arbitrary location is a total of 9 locations on a 3 cm ⁇ 3 cm grid of 1 cm pitch of two 4 cm ⁇ 4 cm portions, each of which is 60 cm or more away from a sample of an optical sheet of 100 cm ⁇ 100 cm. 18 points were measured.
  • a formula: Standard deviation ( ⁇ ) ⁇ [ ⁇ (Re 1 ⁇ Re av ) 2 + (Re 2 ⁇ Re av ) 2 +... + (Re n ⁇ Re av ) 2 ⁇ / n] n represents the total sampling number Re n , the Re value Re av at the n-th sampling location, and the average value of Re.
  • Transferability of concavo-convex pattern For each of the light guide plates obtained in Examples 1 to 6 and Comparative Examples 1 to 4, the pattern transfer rate reflecting the luminance characteristics was carried out instead of the luminance evaluation.
  • Transfer rate (%) [height of the triangular pyramid of the transferred light guide plate ( ⁇ m) / height of the triangular pyramid in the stamper (50 ⁇ m)] ⁇ 100
  • Example 1 Using each pellet produced by melt-kneading extrusion using the compounding materials shown in Table 1, an optical sheet is produced by applying the molding conditions of “Condition 1”, “Condition 2” or “Condition 3”, A light guide plate was produced by applying the pattern formation 1 (Examples 1 to 5) or the pattern formation 2 (Example 6) to the optical sheet. The temperature at each location under each condition is as described in Table 1.
  • the optical sheet of the present invention controls the higher order structure in the solid structure by extruding a resin composition containing a specific aromatic polycarbonate under specific conditions, and optimizes the uneven pattern formed on the surface according to the application By doing so, it is processed into a light guide plate, a diffusion sheet, a retroreflecting plate, or a brightness enhancement prism sheet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

An optical sheet is provided which can be easily processed into formed objects, e.g., a lightguide plate having a reduced thickness and increased area, and has a high light transmittance. Also provided are: a process for producing the optical sheet; a formed object obtained by forming a rugged pattern in a surface of the optical sheet; and a process for producing the formed object. The optical sheet is an optical sheet obtained by extruding an aromatic polycarbonate resin composition from an extruder and then cooling the extrudate at a temperature not higher than the glass transition temperature, the resin composition comprising (A) 100 parts by mass of an aromatic polycarbonate having a viscosity-average molecular weight of 22,000 or lower and (B) 0.01-1 part by mass of an antioxidant and not containing a blue dye or pigment. This optical sheet is characterized in that the optical sheet having a thickness of 0.1-1 mm has a total light transmittance of 91% or higher.

Description

光学シート、光学シートの製造方法、成形体ならびに成形体の製造方法Optical sheet, optical sheet manufacturing method, molded body, and molded body manufacturing method
 本発明は、導光板等に用いられる光学シート及び光学シートの製造方法、ならびに光学シートの表面に凹凸を形成した成形体及び同成形体の製造方法に関する。さらに、詳しくは、特定の熱可塑性樹脂を特定の条件下で押出成形し、シートの固体構造における高次構造を制御することにより得られる透明性、導光性に優れた光学シート、同光学シートの製造方法、成形体ならびに成形体の製造方法に関する。 The present invention relates to an optical sheet used for a light guide plate and the like, a method for manufacturing the optical sheet, a molded body in which irregularities are formed on the surface of the optical sheet, and a method for manufacturing the molded body. More specifically, an optical sheet excellent in transparency and light guide obtained by extruding a specific thermoplastic resin under specific conditions and controlling a higher order structure in the solid structure of the sheet, and the optical sheet The present invention relates to a manufacturing method, a molded body, and a molded body manufacturing method.
 近年、携帯電話、携帯音楽プレイヤー、ノートパソコンなどモバイル電子機器の普及に伴い、これら製品機器の薄型化・画面拡大化が図られてきている。LED光源の薄型化技術の発展と共にこれに搭載される液晶ディスプレイ用バックライトもまた薄型化・画面拡大化の検討が活発に行われている。バックライトを構成する部材の中でも導光板が製品サイズを支配することから、導光板の薄型化と画面拡大化の検討が重視されてきている。
 具体的には、既に厚さ0.8mmであったものが0.6~0.4mmに薄肉化され、最近では0.3mm以下である0.2mmへとさらなる薄肉化が進められている。これら薄肉化はLED光源の薄肉化に伴うものである。一方、画面サイズは1.8~2.8インチ程度であったものが、近々3~3.5インチへと拡大しつつある。さらには、ノートパソコンにおいてもCCFL光源からのLED光源化が進み、12インチクラスの画面サイズについても厚さ0.4~0.6mmの導光板採用への検討が試みられている。
 モバイル機器用のバックライトに用いられ導光板はポリカーボネイト樹脂製のものが主流である。これらは主として射出成形法によりポリカーボネイト樹脂を板状に成形すると同時にその表面にバックライトを均一発光させる目的で光学設計された微細な凹凸が形成される。
 ここで用いられるポリカーボネイト樹脂の中でも、とりわけ、射出成形用導光板用途向けに導光性の改良がなされた樹脂組成物が多用されている(特許文献1、2)。しかしながら、これらの樹脂組成物は射出成形法においては導光板の肉厚、画面サイズによって限定される上に、射出成形時の剪断配向により複屈折(リタデーション)が生じ、発光時に色ズレが生じやすいという問題がある。
 また、該樹脂組成物については、例え射出成形法を押出成形法に換えて、シート成形を行ったとしても、押出成形時にシートが白濁し、取り分け、肉厚が2mmを越えると白濁が顕著となり、輝度特性が低下するという問題点があった。押出成形法による該樹脂組成物での導光板用の原反シートを得ることは困難であった。
In recent years, with the spread of mobile electronic devices such as mobile phones, portable music players, and notebook computers, these product devices have been made thinner and larger in screen. With the development of thinning technology for LED light sources, the backlight for liquid crystal displays mounted on the LED light source is also actively studied for thinning and screen enlargement. Among the members constituting the backlight, the light guide plate dominates the product size, and therefore, consideration has been given to reducing the thickness of the light guide plate and enlarging the screen.
Specifically, the thickness that has already been 0.8 mm has been reduced to 0.6 to 0.4 mm, and recently, the thickness has been further reduced to 0.2 mm, which is 0.3 mm or less. These thinnings are accompanied by the thinning of the LED light source. On the other hand, the screen size, which was about 1.8 to 2.8 inches, is now expanding to 3 to 3.5 inches. Furthermore, the use of LED light sources from CCFL light sources in notebook personal computers is also progressing, and it has been attempted to adopt a light guide plate with a thickness of 0.4 to 0.6 mm for a screen size of 12 inch class.
A light guide plate used for a backlight for mobile devices is mainly made of polycarbonate resin. In these, a polycarbonate resin is molded into a plate shape mainly by an injection molding method, and at the same time, fine irregularities optically designed for the purpose of uniformly emitting a backlight on the surface are formed.
Among the polycarbonate resins used here, in particular, resin compositions that have been improved in light guide properties for light guide plate applications for injection molding are frequently used (Patent Documents 1 and 2). However, these resin compositions are not only limited by the thickness of the light guide plate and the screen size in the injection molding method, but also birefringence (retardation) occurs due to shear orientation during injection molding, and color misregistration tends to occur during light emission. There is a problem.
In addition, for the resin composition, even if the injection molding method is changed to the extrusion molding method and the sheet molding is performed, the sheet becomes cloudy at the time of the extrusion molding, especially, when the thickness exceeds 2 mm, the cloudiness becomes remarkable. There is a problem that the luminance characteristic is deteriorated. It was difficult to obtain an original sheet for a light guide plate with the resin composition by an extrusion method.
 翻って、該樹脂組成物の射出成形時の流動性を改善したとしても(特許文献3)、射出成形法では2.6インチクラス以上、厚さ0.25mm以下の導光板は成形不可能な限界領域であり、導光板としての輝度性能を発現する製品を得ることは極めて困難であった。
 また、ノートパソコン用のような大画面のものについては、従来ポリメチルメタクリレート(PMMA)製の導光板が使われてきたが、薄肉化に伴い、衝撃強度が不足する上に、反り(寸法安定性の不足)によりモアレ縞の発生や光源からの位置ずれによる輝度低下などの問題があった。
 こうした背景から、これらの薄肉導光板にポリエチレンテレフタレート(PET)製シートを適用する試みもなされているが、PETシートは複屈折(リタデーション)が極端に大きく、導光板にしたときに色ずれが生じやすいという欠点がある。
 また、ポリカーボネイト樹脂100重量部に対し、リン系および/またはフェノール系酸化防止剤0.02~2重量部を配合してなる導光板用ポリカーボネイト樹脂組成物が開示(特許文献4)されているが、青色系染料等を用いていることと、成形温度が高いため全光線透過率が90%台止まりであり、さらなる改良が望まれている。
In turn, even if the fluidity of the resin composition during injection molding is improved (Patent Document 3), a light guide plate having a thickness of 2.6 inches or more and a thickness of 0.25 mm or less cannot be molded by the injection molding method. It has been extremely difficult to obtain a product that is a limit region and exhibits brightness performance as a light guide plate.
For large screens such as those for notebook computers, light guide plates made of polymethyl methacrylate (PMMA) have been used. However, as the thickness is reduced, impact strength is insufficient and warping (dimensional stability) Insufficient performance), there are problems such as generation of moire fringes and lowering of luminance due to displacement from the light source.
Against this background, attempts have been made to apply polyethylene terephthalate (PET) sheets to these thin light guide plates. However, PET sheets have extremely large birefringence (retardation), and color shifts occur when they are used as light guide plates. There is a drawback that it is easy.
Further, a polycarbonate resin composition for a light guide plate is disclosed (Patent Document 4) in which 0.02 to 2 parts by weight of a phosphorus-based and / or phenol-based antioxidant is blended with 100 parts by weight of a polycarbonate resin. Further, since a blue dye or the like is used and the molding temperature is high, the total light transmittance is only about 90%, and further improvement is desired.
特開平10-73725号(特許3330498号)公報Japanese Patent Laid-Open No. 10-73725 (Japanese Patent No. 3330498) 特開2002-60609号(特許3516908号)公報JP 2002-60609 (Patent 3516908) 特開2005-247947号公報JP 2005-247947 A 特開2008-24911号公報JP 2008-24911 A
 本発明の目的は、薄肉・大画面化が図られた導光板等の成形体への加工が容易で、光線透過率の高い光学シートおよびそれらの製造方法を提供することである。 An object of the present invention is to provide an optical sheet which can be easily processed into a molded body such as a light guide plate having a thin wall and a large screen and has a high light transmittance, and a method for producing the same.
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の分子量の芳香族ポリカーボネイトと酸化防止剤を用い、かつ、特定の温度で成形することにより、上記課題を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
 すなわち、本発明は、
(1)(A)粘度平均分子量22000以下の芳香族ポリカーボネイト100質量部および(B)酸化防止剤0.01~1質量部を含有し、青色系色素または顔料を含まない芳香族ポリカーボネイト樹脂組成物が押出機から押し出された後、ガラス転移温度以下で冷却された光学シートであって、該光学シートの厚み0.1~1mmにおける全光線透過率が91%以上であることを特徴とする光学シート、
(2)複屈折(位相差;波長550nmにおけるリタデーション値)が150nm以下で、且つシート面内の任意箇所でのリタデーション値の標準偏差値が10以下である上記(1)に記載の光学シート、
(3)前記光学シートに用いられる芳香族ポリカーボネイト樹脂組成物から調製された試料板厚みが0.4mmで測定した可視-UV分光スペクトルにおいて、波長300nmにおける分光光線透過率70%以上または芳香族ポリカーボネイトを良溶媒に溶解して測定した分光光線透過率(溶液法による測定:溶液セルの導光長が5cm、試料溶液濃度12g/dl、溶媒ジクロロメタン、波長450nm)が94%以上である上記(1)に記載の光学シート、
(4)前記(A)成分100質量部に対して(C)熱可塑性ポリアクリル系樹脂0.01~1質量部を含む上記(1)に記載の光学シート、
(5)前記(B)成分の酸化防止剤がリン系酸化防止剤及び/又はフェノール系酸化防止剤である上記(1)に記載の光学シート、
(6)前記芳香族ポリカーボネイト樹脂組成物をシート状に溶融押し出しする成形工程、溶融押し出しされたシート状成形体をガラス転移温度以下に急冷する冷却工程、および冷却されたシート状成形体を、50℃以上、前記芳香族ポリカーボネイト樹脂組成物のガラス転移温度以下で熱処理する熱処理工程からなることを特徴とする上記(1)に記載の光学シートの製造方法、
(7)上記(1)に記載の光学シートの表面に凹凸パターンを形成させてなる成形体、
(8)導光板、拡散シート、再帰性反射板、プリズムシートおよびフレネルレンズシートのいずれかである上記(7)に記載の成形体、
(9)上記(1)に記載の光学シートの表面に凹凸パターンを形成させることを特徴とする成形体の製造方法を提供するものである。
As a result of intensive studies to achieve the above object, the present inventors have achieved the above-mentioned problems by using an aromatic polycarbonate having a specific molecular weight and an antioxidant and molding at a specific temperature. Found to get. The present invention has been completed based on such findings.
That is, the present invention
(1) (A) Aromatic polycarbonate resin composition containing 100 parts by weight of aromatic polycarbonate having a viscosity average molecular weight of 22,000 or less and (B) 0.01-1 part by weight of an antioxidant, and containing no blue dye or pigment. Is an optical sheet that is cooled below the glass transition temperature after being extruded from the extruder, and has a total light transmittance of 91% or more at a thickness of 0.1 to 1 mm. Sheet,
(2) The optical sheet according to (1), wherein the birefringence (phase difference; retardation value at a wavelength of 550 nm) is 150 nm or less, and the standard deviation value of the retardation value at an arbitrary position in the sheet surface is 10 or less,
(3) Spectral light transmittance of 70% or more at a wavelength of 300 nm or aromatic polycarbonate in a visible-UV spectral spectrum measured at a thickness of 0.4 mm of a sample plate prepared from an aromatic polycarbonate resin composition used in the optical sheet (1) measured in a good solvent (measured by the solution method: the light guide length of the solution cell is 5 cm, the sample solution concentration is 12 g / dl, the solvent is dichloromethane, and the wavelength is 450 nm) is 94% or more (1 ) Optical sheet,
(4) The optical sheet according to the above (1), comprising 0.01 to 1 part by mass of (C) a thermoplastic polyacrylic resin with respect to 100 parts by mass of the component (A).
(5) The optical sheet according to (1), wherein the antioxidant of the component (B) is a phosphorus-based antioxidant and / or a phenol-based antioxidant,
(6) A molding step of melt-extruding the aromatic polycarbonate resin composition into a sheet, a cooling step of rapidly cooling the melt-extruded sheet-like molded product to a glass transition temperature or lower, and a cooled sheet-like molded product, The method for producing an optical sheet according to the above (1), comprising a heat treatment step of heat treatment at a temperature equal to or higher than ° C. and equal to or lower than a glass transition temperature of the aromatic polycarbonate resin composition,
(7) A molded article obtained by forming a concavo-convex pattern on the surface of the optical sheet according to (1) above,
(8) The molded product according to (7), which is any one of a light guide plate, a diffusion sheet, a retroreflecting plate, a prism sheet, and a Fresnel lens sheet,
(9) The present invention provides a method for producing a molded article, wherein a concavo-convex pattern is formed on the surface of the optical sheet according to (1).
 本発明により、射出成形法では不可能な厚みと面積の導光板等の成形体の製造に適した、転写性および高い透明性、低い複屈折性など光学特性(導光性、色調)に優れる光学シートおよび導光板等が提供される。 The present invention excels in optical properties (light guiding properties, color tone) such as transferability, high transparency, low birefringence, and the like suitable for the production of molded articles such as a light guide plate having a thickness and area that cannot be achieved by the injection molding method. An optical sheet, a light guide plate, and the like are provided.
スチールベルト法による転写工程を示す模式図である。It is a schematic diagram which shows the transfer process by a steel belt method. 挟圧ロール法による転写工程を示す図である。It is a figure which shows the transcription | transfer process by a pinching roll method. ベルト転写法による転写工程を示す模式図であるIt is a schematic diagram which shows the transfer process by a belt transfer method. シート成形と凹凸パターンを形成させる工程を同時に行う製造装置の模式図である。It is a schematic diagram of the manufacturing apparatus which performs the process of forming a sheet | seat shaping | molding and an uneven | corrugated pattern simultaneously.
符号の説明Explanation of symbols
1:テンションロール
2:加熱ロール
3:冷却ロール
4:挾圧ロール
5:無端ベルト
6:シート供給ロール
7:テンションロール
8:加熱装置
S:凹凸形状を転写する前のシート
d:挾圧ロールと無端ベルトにより挟圧されるシートの長さ
21:押出機
22:挟圧ロール
23:挟圧ロール
24:引取りロール
25:挟圧ロール
26a:移送ロール
26b:移送ロール
26c:移送ロール
31:加熱ロール
32:凹凸を形成させるための転写ロール
33:予備加熱ロール
34:冷却ロール
35:搬送ロール
36:エンドレスベルト
1: Tension roll 2: Heating roll 3: Cooling roll 4: Pressure roll 5: Endless belt 6: Sheet supply roll 7: Tension roll 8: Heating device S: Sheet d before transferring uneven shape: Pressure roll Length of sheet 21 pinched by endless belt: extruder 22: pinching roll 23: pinching roll 24: take-up roll 25: pinching roll 26a: transfer roll 26b: transfer roll 26c: transfer roll 31: heating Roll 32: Transfer roll 33 for forming irregularities: Pre-heating roll 34: Cooling roll 35: Conveying roll 36: Endless belt
 本発明の光学シートは、(A)粘度平均分子量22000以下の芳香族ポリカーボネイトに(B)酸化防止剤を含有し、青色系色素または顔料を含まない芳香族ポリカーボネイト樹脂組成物が押出機から押し出された後、ガラス転移温度以下で冷却された光学シートであって、該光学シートの厚み0.1~1mmにおける全光線透過率は91%以上である。
 複屈折(位相差;波長550nmにおけるリタデーション値)は150nm以下で、且つシート面内の任意箇所で測定したリタデーション値の標準偏差値は10以下であることが好ましい。
 本発明の光学シートは、青色系色素または顔料を含んでいないので、導光板等に加工した場合、輝度特性の低下がない。ちなみに、青色系色素または顔料を含有させた場合、その配合量にもよるが、輝度数が10%のオーダーで低下する。
 また、(A)芳香族ポリカーボネイトをベース樹脂に、(B)酸化防止剤を含有する芳香族ポリカーボネイト系樹脂組成物からなる光学シートとしたので、シートに成形加工する際の黄変の低減が図られ、このシートを導光板等に加工した際の輝度の低下が図られる。
In the optical sheet of the present invention, (A) an aromatic polycarbonate having a viscosity average molecular weight of 22,000 or less contains (B) an antioxidant, and an aromatic polycarbonate resin composition containing no blue dye or pigment is extruded from an extruder. After that, the optical sheet is cooled below the glass transition temperature, and the total light transmittance at the thickness of the optical sheet of 0.1 to 1 mm is 91% or more.
The birefringence (phase difference; retardation value at a wavelength of 550 nm) is preferably 150 nm or less, and the standard deviation value of the retardation value measured at an arbitrary position in the sheet surface is preferably 10 or less.
Since the optical sheet of the present invention does not contain a blue dye or pigment, there is no reduction in luminance characteristics when processed into a light guide plate or the like. By the way, when a blue dye or pigment is contained, the luminance number decreases on the order of 10% depending on the blending amount.
In addition, since (A) an aromatic polycarbonate is used as a base resin and (B) an aromatic polycarbonate resin composition containing an antioxidant is used as an optical sheet, it is possible to reduce yellowing during molding into a sheet. Thus, the luminance is reduced when this sheet is processed into a light guide plate or the like.
 (A)成分である芳香族ポリカーボネイトとしては、光学透明性、機械強度、耐熱性の観点から、ビスフェノールAタイプのポリカーボネイトが好ましい。
 芳香族ポリカーボネイトは、通常、二価フェノールとホスゲンまたは炭酸エステル化合物等のポリカーボネイト前駆体とを反応させることにより、製造することが出来る。例えば、塩化メチレンなどの溶媒中において、公知の酸受容体や分子量調節剤の存在下、更に、必要により分岐剤を添加し、二価フェノールとホスゲンのようなカーボネイト前駆体との反応により、あるいは二価フェノールとジフェニールカーボネイトのようなカーボネイト前駆体とのエステル交換反応などによって製造される。
 二価フェノールとしては、様々なものがあるが、特に、2,2-ビス(4-ヒドロキシフェニル)プロパン〔通称:ビスフェノールA〕が好適である。ビスフェノールA以外のビスフェノールとしては、例えば、ビス(4-ヒドロキシフェニル)メタン;1,1-ビス(4-ヒドロキシフェニル)エタン;2,2-ビス(4-ヒドロキシフェニル)ブタン;2,2-ビス(4-ヒドロキシフェニル)オクタン;2,2-ビス(4-ヒドロキシフェニル)フェニルメタン;2,2-ビス(4-ヒドロキシ-1-メチルフェニル)プロパン;ビス(4-ヒドロキシフェニル)ナフチルメタン;1,1-ビス(4-ヒドロキシ-t-ブチルフェニル)プロパン;2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン;2,2-ビス(4-ヒドロキシ-3,5-テトラメチルフェニル)プロパン;2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン;2,2-ビス(4-ヒドロキシ-3,5-テトラクロロフェニル)プロパン;2,2-ビス(4-ヒドロキシ-3,5-テトラブロモフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン;1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン;1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサン等のビス(ヒドロキシアリール)シクロアルカン類、4,4'-ジヒドロキシフェニルエーテル;4,4'-ジヒドロキシ-3,3'-ジメチルフェニルエーテル等のジヒドロキシアリールエーテル類、4,4'-ジヒドロキシジフェニルスルフィド;4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類、4,4'-ジヒドロキシジフェニルスルホキシド;4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4'-ジヒドロキシジフェニルスルホン;4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類、4,4'-ジヒロキシジフェニルなどのジヒドロキシジフェニル類などが挙げられる。これらの二価フェノールは、それぞれ単独で用いてもよいし、2種以上を混合して用いてもよい。
As the aromatic polycarbonate as the component (A), bisphenol A type polycarbonate is preferable from the viewpoint of optical transparency, mechanical strength, and heat resistance.
The aromatic polycarbonate can be usually produced by reacting a dihydric phenol and a polycarbonate precursor such as phosgene or a carbonate compound. For example, in a solvent such as methylene chloride, in the presence of a known acid acceptor or molecular weight regulator, a branching agent may be added if necessary, and a reaction between a dihydric phenol and a carbonate precursor such as phosgene, or It is produced by a transesterification reaction between a dihydric phenol and a carbonate precursor such as diphenyl carbonate.
There are various kinds of dihydric phenols, and 2,2-bis (4-hydroxyphenyl) propane (common name: bisphenol A) is particularly preferable. Examples of bisphenols other than bisphenol A include bis (4-hydroxyphenyl) methane; 1,1-bis (4-hydroxyphenyl) ethane; 2,2-bis (4-hydroxyphenyl) butane; (4-hydroxyphenyl) octane; 2,2-bis (4-hydroxyphenyl) phenylmethane; 2,2-bis (4-hydroxy-1-methylphenyl) propane; bis (4-hydroxyphenyl) naphthylmethane; 1 1,2-bis (4-hydroxy-t-butylphenyl) propane; 2,2-bis (4-hydroxy-3-bromophenyl) propane; 2,2-bis (4-hydroxy-3,5-tetramethylphenyl) ) Propane; 2,2-bis (4-hydroxy-3-chlorophenyl) propane; 2,2-bis (4-hydro) Bis-3,5-tetrachlorophenyl) propane; bis (hydroxyaryl) alkanes such as 2,2-bis (4-hydroxy-3,5-tetrabromophenyl) propane, 1,1-bis (4-hydroxyphenyl) ) Cyclopentane; 1,1-bis (4-hydroxyphenyl) cyclohexane; bis (hydroxyaryl) cycloalkanes such as 1,1-bis (4-hydroxyphenyl) -3,5,5-trimethylcyclohexane, 4, 4'-dihydroxyphenyl ether; dihydroxyaryl ethers such as 4,4'-dihydroxy-3,3'-dimethylphenyl ether, 4,4'-dihydroxydiphenyl sulfide; 4,4'-dihydroxy-3,3'- Dihydroxydiaryl sulfides such as dimethyldiphenyl sulfide, 4,4 ′ Dihydroxydiphenyl sulfoxide; dihydroxydiaryl sulfoxides such as 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfoxide; 4,4′-dihydroxydiphenyl sulfone; 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfone And the like, and dihydroxydiphenyls such as 4,4′-dihydroxydiphenyl. These dihydric phenols may be used alone or in combination of two or more.
 また、炭酸エステル化合物としては、ジフェニールカーボネイト等のジアリールカーボネイトやジメチルカーボネイト、ジエチルカーボ等のジアルキルカーボネイト等が挙げられる。そして分子量調整剤としては通常、ポリカーボネイトの重合に用いられるものでよく、各種のものを用いることができる。具体的には、一価フェノールとして、例えば、フェノール,o-n-ブチルフェノール,m-n-ブチルフェノール,p-n-ブチルフェノール,o-イソブチルフェノール,m-イソブチルフェノール,p-イソブチルフェノール,o-t-ブチルフェノール,m-t-ブチルフェノール,p-t-ブチルフェノール,o-n-ペンチルフェノール,m-n-ペンチルフェノール,p-n-ペンチルフェノール,o-n-ヘキシルフェノール,m-n-ヘキシルフェノール,p-n-ヘキシルフェノール,p-t-オクチルフェノール,o-シクロヘキシルフェノール,m-シクロヘキシルフェノール,p-シクロヘキシルフェノール,o-フェニルフェノール,m-フェニルフェノール,p-フェニルフェノール,o-n-ノニルフェノール,m-ノニルフェノール,p-n-ノニルフェノール,o-クミルフェノール,m-クミルフェノール,p-クミルフェノール,o-ナフチルフェノール,m-ナフチルフェノール,p-ナフチルフェノール;2,5-ジ-t-ブチルフェノール;2,4-ジ-t-ブチルフェノール;3,5-ジ-t-ブチルフェノール;2,5-ジクミルフェノール;3,5-ジクミルフェノール;p-クレゾール,ブロモフェノール,トリブロモフェノールなどが挙げられる。これらの一価フェノールのなかでは、p-t-ブチルフェノール,p-クミルフェノール,p-t-オクチルフェノール、フェノールなどが好ましく用いられる。 Examples of the carbonate compound include diaryl carbonates such as diphenyl carbonate, and dialkyl carbonates such as dimethyl carbonate and diethyl carbonate. And as a molecular weight regulator, what is normally used for superposition | polymerization of a polycarbonate may be used, and various things can be used. Specifically, as monohydric phenol, for example, phenol, on-butylphenol, mn-butylphenol, pn-butylphenol, o-isobutylphenol, m-isobutylphenol, p-isobutylphenol, ot -Butylphenol, mt-butylphenol, pt-butylphenol, on-pentylphenol, mn-pentylphenol, pn-pentylphenol, on-hexylphenol, mn-hexylphenol, pn-hexylphenol, pt-octylphenol, o-cyclohexylphenol, m-cyclohexylphenol, p-cyclohexylphenol, o-phenylphenol, m-phenylphenol, p-phenylphenol, on-nonylphenol M-nonylphenol, pn-nonylphenol, o-cumylphenol, m-cumylphenol, p-cumylphenol, o-naphthylphenol, m-naphthylphenol, p-naphthylphenol; 2,5-di -T-butylphenol; 2,4-di-t-butylphenol; 3,5-di-t-butylphenol; 2,5-dicumylphenol; 3,5-dicumylphenol; p-cresol, bromophenol, tribromo Examples include phenol. Among these monohydric phenols, pt-butylphenol, p-cumylphenol, pt-octylphenol, phenol and the like are preferably used.
 その他、分岐剤として、例えば、1,1,1-トリス(4-ヒドロキシフェニル)エタン;α,α',α"-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン;1-〔α-メチル-α-(4'-ヒドロキシフェニル)エチル〕-4-〔α',α'-ビス(4"-ヒドロキシフェニル)エチル〕ベンゼン;フロログリシン,トリメリト酸,イサチンビス(o-クレゾール)等の官能基を3つ以上有する化合物を用いることもできる。 Other branching agents include, for example, 1,1,1-tris (4-hydroxyphenyl) ethane; α, α ′, α ″ -tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene; -[Α-methyl-α- (4'-hydroxyphenyl) ethyl] -4- [α ', α'-bis (4 "-hydroxyphenyl) ethyl] benzene; phloroglysin, trimellitic acid, isatin bis (o-cresol) A compound having three or more functional groups such as) can also be used.
 本発明において用いられる(A)成分である芳香族ポリカーボネイトは、粘度平均分子量が22000以下であることが必要であり、好ましくは12,000~20,000である。12,000未満であると、機械的強度に劣り、22,000を超えると全光線透過率が91%未満となり光学シートとして好ましくない。複屈折(位相差;波長550nmにおけるリタデーション値)は150nm以下であり、好ましくは、130nm以下であり、且つシート面内の任意箇所でサンプリングして測定したリタデーション値の標準偏差値が10以下であることが好ましい。また、(A)成分である芳香族ポリカーボネイトのガラス転移温度は141~149℃程度である。芳香族ポリカーボネイトが押出機から押し出された後、このようなガラス転移温度以下で冷却されることにより、複屈折が150nm以下となり、その標準偏差値を10以下とすることができる。
 標準偏差値の下限は低ければ低いほど好ましいが、光学シートに要求される光学的等方性および経済性等の観点から、実用的には15程度で十分である。
 本発明において、任意箇所というのは、100cm×100cmの光学シートのサンプルより、各測定箇所が60cm以上離れた2箇所の4cm×4cmの部分の1cmピッチの3cm×3cmの格子上9箇所について合計18点を測定するものとする。
The aromatic polycarbonate as the component (A) used in the present invention is required to have a viscosity average molecular weight of 22,000 or less, and preferably 12,000 to 20,000. If it is less than 12,000, the mechanical strength is inferior, and if it exceeds 22,000, the total light transmittance is less than 91%, which is not preferable as an optical sheet. Birefringence (phase difference; retardation value at a wavelength of 550 nm) is 150 nm or less, preferably 130 nm or less, and the standard deviation value of the retardation value measured by sampling at an arbitrary position in the sheet surface is 10 or less. It is preferable. The glass transition temperature of the aromatic polycarbonate as the component (A) is about 141 to 149 ° C. After the aromatic polycarbonate is extruded from the extruder, it is cooled below such a glass transition temperature, so that the birefringence is 150 nm or less, and the standard deviation value can be 10 or less.
The lower limit of the standard deviation value is preferably as low as possible, but about 15 is sufficient for practical use from the viewpoint of optical isotropy and economy required for the optical sheet.
In the present invention, an arbitrary location is a total of 9 locations on a 3 cm × 3 cm grid of 1 cm pitch of two 4 cm × 4 cm portions, each of which is 60 cm or more away from a sample of an optical sheet of 100 cm × 100 cm. 18 points shall be measured.
 (B)成分である酸化防止剤としては、リン系、フェノール系、ペンタエリスリトール系のものが挙げられる。
 中でも、リン系、より具体的には亜リン酸エステル、リン酸エステルなどのリン系酸化防止安定剤が好ましく用いられる。亜リン酸エステルとしては、たとえば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリノリルホスアァイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリシクロヘキシルホスファイト、モノブチルジフエニルホスファイト、モノオクチルジフエニルホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールホスファイト、ビス(2.6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4-ジフエニレンホスフォナイトなどの亜リン酸のトリエステル、ジエステル、モノエステルなどが挙げられる。
Examples of the antioxidant as the component (B) include phosphorus-based, phenol-based, and pentaerythritol-based ones.
Among them, phosphorus-based antioxidants, more specifically, phosphorus-based antioxidant stabilizers such as phosphites and phosphates are preferably used. Examples of phosphites include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, trinolyl phosphate, tridecyl phosphite, trioctyl phosphite. Phyto, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tricyclohexyl phosphite, monobutyl diphenyl phosphite, monooctyl diphenyl phosphite, distearyl pentaerythritol diphosphite, bis (2,4-di-) tert-butylphenyl) pentaerythritol phosphite, bis (2.6-di-tert-butyl-4-methylphenyl) pentaerythritol phosphite, 2,2-methylenebis (4,6-di-ter - butylphenyl) octyl phosphite, tri-esters of phosphorous acid such as tetrakis (2,4-di -tert- butylphenyl) -4,4-diphenyl Eni alkylene phosphonites, diesters, such as mono-ester.
 リン酸エステルとしては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリス(ノニルフェニル)ホスフェート、2-エチルフェニルジフェニルホスフェートなどが挙げられる。これらリン系酸化防止剤は単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Examples of the phosphate ester include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, 2-ethylphenyl diphenyl phosphate, and the like. These phosphorus antioxidants may be used alone or in combination of two or more.
 これらのリン系酸化防止剤の中でも、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールホスファイト、ビス(2.6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイトが好ましく、ペンタエリスリトール系、中でもビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイトが特に好ましい。上記リン系酸化防止剤は、単独でまたは2種以上を組合せて使用することができる。 Among these phosphorus antioxidants, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol phosphite, bis (2.6-di-tert-butyl-4-) Methylphenyl) pentaerythritol phosphite and tris (2,4-di-tert-butylphenyl) phosphite are preferred, pentaerythritol type, especially bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol Phosphite is particularly preferred. The phosphorus antioxidants can be used alone or in combination of two or more.
 リン系酸化防止剤は、市販品をそのまま使用することができ、例えば、旭電化工業(株)製品〔商品名:アデカスタブ2112〕、クラリアントジャパン社の製品〔サンドスタブP-EPQ〕、住友化学社の製品〔スミライザーP-168〕、チバガイギー社製品〔トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、商品名:イルガホス168)、旭電化(株)の製品〔商品名:アデガスタブPEP36等が挙げられる。 Commercially available phosphoric antioxidants can be used as they are, for example, Asahi Denka Kogyo Co., Ltd. [trade name: ADK STAB 2112], Clariant Japan Co., Ltd. product (Sand Stub P-EPQ), Sumitomo Chemical Co., Ltd. Products [Sumilyzer P-168], Ciba-Geigy products [Tris (2,4-di-tert-butylphenyl) phosphite, trade name: Irgafos 168), products of Asahi Denka Co., Ltd. [trade name: Adegas Tab PEP36, etc. Is mentioned.
 フェノール系の酸化防止剤としては、α-トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネイト、2-tert-ブチル-6-(3'-tert-ブチル-5'-メチル-2'-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-tert-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネイトジエチルエステル、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4'-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、2,2'-ジメチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)2,2'-エチリデン-ビス(4,6-ジ-tert-ブチルフェノール)、2,2'-ブチリデン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、トリエチレングリコール-N-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネイト、1,6-へキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネイト]、ビス[2-tert-ブチル-4-メチル6-(3-tert-ブチル-5-メチル-2-ヒドロキシベンジル)フェニル]テレフタレート、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1,-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、4,4'-チオビス(6-tert-ブチル-m-クレゾール)、4,4'-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2'-チオビス(4-メチル-6-tert-ブチルフェノール)、ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド、4,4'-ジ-チオビス(2,6-ジ-tert-ブチルフェノール)、4,4'-トリ-チオビス(2,6-ジ-tert-ブチルフェノール)、2,2-チオジエチレンビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネイト]、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3',5'-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、N,N'-ヘキサメチレンビス-(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナミド)、N,N'-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)イソシアヌレート、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレート、1,3,5-トリス2[3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、およびテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタンなどが例示される。これらはいずれも入手容易である。中でもn-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタンが好適であり、特にn-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネイトが好適である。上記ヒンダードフェノール系酸化防止剤は、単独でまたは2種以上を組合せて使用することができる。
 フェノール系の酸化防止剤は市販品をそのまま使用することができ、例えば、旭電化工業社製品〔商品名:アデカスタブAO-80〕、同社製品〔商品名:アデカスタブAO-30〕、チバスペシャリティーケミカルズ(株)製品〔商品名:イルガノックス1010、同1076〕等が挙げられる。
Examples of phenolic antioxidants include α-tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2- tert-Butyl-6- (3′-tert-butyl-5′-methyl-2′-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethyl) Aminomethyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4 -Ethyl-6-tert-butylphenol), 4,4'-methylenebis (2,6-di-ter -Butylphenol), 2,2'-methylenebis (4-methyl-6-cyclohexylphenol), 2,2'-dimethylene-bis (6-α-methyl-benzyl-p-cresol) 2,2'-ethylidene-bis (4,6-di-tert-butylphenol), 2,2′-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), Triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, 1,6-hexanediol bis [3- (3,5-di-tert-butyl- 4-hydroxyphenyl) propionate], bis [2-tert-butyl-4-methyl 6- (3-tert-butyl-5-methyl) -2-hydroxybenzyl) phenyl] terephthalate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1, -dimethylethyl}- 2,4,8,10-tetraoxaspiro [5,5] undecane, 4,4′-thiobis (6-tert-butyl-m-cresol), 4,4′-thiobis (3-methyl-6-tert) -Butylphenol), 2,2′-thiobis (4-methyl-6-tert-butylphenol), bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 4,4′-di-thiobis ( 2,6-di-tert-butylphenol), 4,4′-tri-thiobis (2,6-di-tert-butylphenol), 2,2-thiodiethylenebis- [ -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4-hydroxy-3 ', 5'-di-tert-butylanilino) -1,3,5-triazine, N, N′-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxyhydrocinnamide), N, N′-bis [3- (3,5 -Di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2 , 4,6-Tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, Tris (3,5-di-tert-butyl-4-hydroxyphenyl) isocyanurate Tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5 5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, 1,3,5-tris-2 [3 (3,5-di-tert-butyl-4-hydroxyphenyl) Examples include propionyloxy] ethyl isocyanurate and tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxymethyl] methane. All of these are readily available. Among them, n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl) -4-hydroxybenzyl) benzene, 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, tetrakis [3- (3,5-di-tert-butyl-4 -Hydroxyphenyl) propionyloxymethyl] methane is preferred, in particular n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate. The said hindered phenolic antioxidant can be used individually or in combination of 2 or more types.
Commercially available phenolic antioxidants can be used as they are, for example, Asahi Denka Kogyo Co., Ltd. [trade name: ADK STAB AO-80], its products [trade name: ADK STAB AO-30], Ciba Specialty Chemicals. Products [trade name: Irganox 1010, 1076] and the like.
 (B)成分である酸化防止剤は、前記リン系酸化防止剤を1種以上用いても良いし、フェノール系酸化防止剤を1種以上用いても良く、リン系酸化防止剤を1種以上とフェノール系酸化防止剤を1種以上とを組み合わせて用いても良い。
 その添加量は(A)成分である芳香族ポリカーボネイト100質量部に対して、0.01~1質量部の範囲、好ましくは、0.05~0.3質量部の範囲である。このような範囲とすることにより、光学シートとしての好ましい特性が得られる。
The antioxidant which is (B) component may use 1 or more types of the said phosphorus antioxidant, may use 1 or more types of phenolic antioxidant, and 1 or more types of phosphorus antioxidants. And one or more phenolic antioxidants may be used in combination.
The addition amount is in the range of 0.01 to 1 part by mass, preferably in the range of 0.05 to 0.3 part by mass, with respect to 100 parts by mass of the aromatic polycarbonate as the component (A). By setting it as such a range, the preferable characteristic as an optical sheet is acquired.
 本発明の光学シートは、その厚みが0.1~1mmにおける全光線透過率が91%以上である。押出機から押し出された後、前記のガラス転移温度以下で冷却することにより、全光線透過率を91%以上とすることができる。好ましくは、91.5~92%である。
 91%以上とすることにより、輝度が低下するのを防止する。92%を超えるものは、芳香族ポリカーボネートの分子骨格由来の吸収のため、工業的な製造は現時点では困難である。
The optical sheet of the present invention has a total light transmittance of 91% or more at a thickness of 0.1 to 1 mm. After being extruded from the extruder, the total light transmittance can be 91% or more by cooling below the glass transition temperature. Preferably, it is 91.5 to 92%.
By setting it to 91% or more, it is possible to prevent the luminance from being lowered. If it exceeds 92%, industrial production is difficult at present because of absorption from the molecular skeleton of the aromatic polycarbonate.
 一般に、射出成形品は射出成形時の剪断による分子配向したまま金型内で冷却され、その分子配向が凍結されるため残留応力歪が大きくなる傾向があり、金型のゲート付近と反ゲート末端では、残留応力歪の度合いが不均一となる。通常、ゲート周辺部の残留応力歪が大きくなるため、レターデーション値はより大きな計測値を示す傾向にある。
 一方、押出成形によるシートは、押出成形時の条件、材料の粘度(粘度平均分子量に依存する)にもよるが、レターデーション値を低くすることが可能であり、レターデーションのシート製品内の分布も均一化が容易である。このため、射出成形による導光板よりもより表示品位の高い導光板を得ることができる。レターデーション値を150nm以下とし、且つシート面内の任意箇所でサンプリングして測定したリタデーション値の標準偏差値を10以下とすることにより、光学シートを加工した導光板を用いたバックライトを液晶パネルに搭載して表示装置とした場合の表示品位が低下するのが防止される。レターデーション値は好ましくは、100nm以下、さらに好ましくは50nm以下である。
In general, injection molded products are cooled in the mold while maintaining the molecular orientation due to the shear during injection molding, and the residual stress strain tends to increase because the molecular orientation is frozen. Then, the degree of residual stress strain becomes non-uniform. Usually, since the residual stress strain in the gate peripheral portion increases, the retardation value tends to show a larger measured value.
On the other hand, although the sheet by extrusion molding can depend on the conditions at the time of extrusion molding and the viscosity of the material (depending on the viscosity average molecular weight), the retardation value can be lowered, and the distribution of the retardation within the sheet product Is easy to homogenize. For this reason, it is possible to obtain a light guide plate with higher display quality than a light guide plate by injection molding. By using a retardation value of 150 nm or less and a standard deviation value of the retardation value measured by sampling at an arbitrary position in the sheet surface to be 10 or less, a backlight using a light guide plate processed with an optical sheet is used as a liquid crystal panel. It is possible to prevent the display quality when the display device is mounted on the display device from being deteriorated. The retardation value is preferably 100 nm or less, more preferably 50 nm or less.
 本発明の光学シートは、厚み0.4mmで測定した可視-UV分光スペクトルにおいて、波長300nmにおける分光光線透過率70%以上または芳香族ポリカーボネイトを良溶媒に溶解して測定した分光光線透過率(溶液法による測定:溶液セルの導光長が5cm、試料溶液濃度12g/dl、溶媒ジクロロメタン、波長450nm)は94%以上となる芳香族ポリカーボネイト樹脂をポリカーボネイト樹脂組成物の(A)成分として用いることが好ましい。
 通常、光学シートを用いて成形した導光板においては、端面から可視光領域の波長400~700nmの光線が入光し、端面方向に導波、伝播させ、厚み方向(面方向)に光の方向性を制御することで面発光させる。この端面方向に入射させた光を反対側の端面から出射させ、光の分光特性を測定することにより、導光板の光の伝播に適合した評価をすることができる。
 しかしながら、このような測定において、1mm以下の薄い成形片での測定は特別な測定装置を用意する必要があり、現実的には困難である。そこで、本発明では測定評価が容易な厚み方向(面方向)の分光特性によりシートの特性評価を行った。一般にシートの厚みが1mm以下と薄くなると、厚み方向に可視光を透過させた分光光線透過率の計測では、シート基材固有の分光特性差の検出が困難となる。しかしながら、厚み方向の分光特性計測であっても、紫外領域の380nm以下の波長に着目すれば、この分光特性差の評価が可能となる。即ち、厚み方向の計測による300~380nmの分光透過率の評価結果は直接的には可視光域の分光透過率を反映しないが、相対的に300~380nmの分光透過率と連動して端面方向の可視光波長領域の分光特性を反映する傾向があり、その代用が可能である。
 具体的には、厚み方向で計測した300~380nmの分光透過率が高い特性の光学樹脂基材は、端面方向で計測した場合の可視光波長領域における分光特性が高くなるという傾向がある。分光光線透過率70%未満では、導光性能が不足するために、輝度が低下する。より好ましくは、73%以上である。
The optical sheet of the present invention has a spectral light transmittance (solution) in a visible-UV spectral spectrum measured at a thickness of 0.4 mm, measured by dissolving a spectral light transmittance of 70% or more at a wavelength of 300 nm or an aromatic polycarbonate in a good solvent. Measurement by method: Aromatic polycarbonate resin having a light guide length of the solution cell of 5 cm, a sample solution concentration of 12 g / dl, a solvent dichloromethane, and a wavelength of 450 nm) of 94% or more is used as the component (A) of the polycarbonate resin composition. preferable.
Usually, in a light guide plate formed using an optical sheet, light having a wavelength of 400 to 700 nm in the visible light region enters from the end face, is guided and propagates in the end face direction, and the direction of light in the thickness direction (plane direction) Surface emission is achieved by controlling the nature. The light incident in the direction of the end face is emitted from the end face on the opposite side, and the spectral characteristics of the light are measured, so that evaluation suitable for the light propagation of the light guide plate can be performed.
However, in such a measurement, a measurement with a thin molded piece of 1 mm or less needs to prepare a special measuring device, which is actually difficult. Therefore, in the present invention, the sheet characteristics are evaluated based on the spectral characteristics in the thickness direction (plane direction) that can be easily measured and evaluated. In general, when the thickness of the sheet is as thin as 1 mm or less, it becomes difficult to detect the spectral characteristic difference specific to the sheet base material in the measurement of the spectral light transmittance that transmits visible light in the thickness direction. However, even when measuring spectral characteristics in the thickness direction, it is possible to evaluate this spectral characteristic difference by paying attention to a wavelength of 380 nm or less in the ultraviolet region. That is, the evaluation result of the spectral transmittance at 300 to 380 nm by the measurement in the thickness direction does not directly reflect the spectral transmittance in the visible light region, but is relatively linked with the spectral transmittance at 300 to 380 nm in the end face direction. There is a tendency to reflect the spectral characteristics in the visible light wavelength region, and a substitution thereof is possible.
Specifically, an optical resin base material having a high spectral transmittance of 300 to 380 nm measured in the thickness direction tends to have high spectral characteristics in the visible light wavelength region when measured in the end face direction. If the spectral light transmittance is less than 70%, the light guide performance is insufficient, and thus the luminance decreases. More preferably, it is 73% or more.
 本発明の光学シートにおける上記(A)芳香族ポリカーボネイトの粘度平均分子量は22000以下であり、好ましくは14000~20000である。より好ましくは15000~19000である。14000未満であると、製品強度が不足する他、製品の外形加工時の切粉付着による歩留まりの低下をもたす。特に、光学シートの肉厚を0.3mm以下の薄肉にした場合に、強度の不足を招き、破損しやすいものとなる傾向がある。
 粘度平均分子量が2万2000を超えると、押出成形条件にもよるが、樹脂基材の黄変やレターデーション値が大きくなりやすく、全光線透過率が91%への到達が困難となる。
 また、導光板等は樹脂シートをロールエンボス成形またはプレス成形によりシート表面に数~数百ミクロンの微細な凹凸パターン(プリズムやドット、ドーム状の凸レンズ)を転写して凹凸パターンを形成させることで製造されるが、粘度平均分子量2万2000を超えるとこの際の転写性も低下する。
The viscosity average molecular weight of the aromatic polycarbonate (A) in the optical sheet of the present invention is 22000 or less, preferably 14000 to 20000. More preferably, it is 15000 to 19000. If it is less than 14,000, the strength of the product will be insufficient, and the yield will be reduced due to the adhesion of chips during the external processing of the product. In particular, when the thickness of the optical sheet is 0.3 mm or less, the strength tends to be insufficient, and the optical sheet tends to be easily damaged.
When the viscosity average molecular weight exceeds 22,000, depending on the extrusion molding conditions, the yellowing and retardation values of the resin base material are likely to increase, and it becomes difficult to reach a total light transmittance of 91%.
A light guide plate or the like is formed by transferring a fine uneven pattern (prism, dot, dome-shaped convex lens) of several to several hundred microns on a sheet surface by roll embossing or press forming a resin sheet to form an uneven pattern. Although manufactured, when the viscosity average molecular weight exceeds 22,000, the transferability at this time also deteriorates.
 本発明の光学シートは芳香族ポリカーボネイト樹脂組成物を押出成形して作製されるが、(A)成分である芳香族ポリカーボネイトおよび(B)成分である酸化防止剤以外に(C)成分として熱可塑性ポリアクリル酸アルキルエステル系樹脂を微量添加してもよい。(C)成分を微量添加することで、分光特性がさらに向上する。
 (C)成分は(A)成分/(C)成分の比率が99.99/0.01~99.00/1.00(質量比)になるように添加するのが好ましい。さらに好ましくは99.95/0.05~99.50/0.50、特に好ましくは99.90/0.10~99.70/0.30である。(C)成分の添加比率を0.01以上とすることにより、成形体の透明性が向上し、1.00以下とすることにより、他の所望物性を損なうことなく透明性を保持することができる。
The optical sheet of the present invention is produced by extrusion molding of an aromatic polycarbonate resin composition, but it is thermoplastic as component (C) in addition to the aromatic polycarbonate as component (A) and the antioxidant as component (B). A small amount of polyacrylic acid alkyl ester resin may be added. Spectral characteristics are further improved by adding a small amount of component (C).
Component (C) is preferably added so that the ratio of component (A) / component (C) is 99.99 / 0.01 to 99.00 / 1.00 (mass ratio). More preferably, it is 99.95 / 0.05 to 99.50 / 0.50, and particularly preferably 99.90 / 0.10 to 99.70 / 0.30. By setting the addition ratio of component (C) to 0.01 or more, the transparency of the molded body is improved, and by setting it to 1.00 or less, transparency can be maintained without impairing other desired physical properties. it can.
 (C)成分である熱可塑性ポリアクリル酸アルキルエステル系樹脂としてはアクリル酸、アクリル酸エステル、アクリロニトリル及びその誘導体のモノマー単位から選ばれる少なくとも一種を繰り返し単位とする重合体であり、単独重合体又はスチレン、ブタジエン等との共重合体でもよい。具体的にはポリアクリル酸、ポリメタクリル酸メチル(PMMA)、ポリアクリロニトリル、アクリル酸エチル-アクリル酸-2-クロロエチル共重合体、アクリル酸-n-ブチル-アクリロニトリル共重合体、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体などが挙げられる。これらの中でも、特に、ポリメタクリル酸メチル(PMMA)を好適に用いることができる。ポリメタクリル酸メチル(PMMA)としては公知のものを使用することができるが、通常、過酸化物、アゾ系の重合開始剤の存在下、メタクリル酸メチルモノマ-を塊状重合して製造されたものが好ましい。
 (C)成分である熱可塑性ポリアクリル酸アルキルエステル系樹脂は、分子量が200~10万であることが好ましく、さらに好ましくは2万~6万である。分子量が200~10万であることにより、成形時に、(A)成分と(C)成分間の相分離が速くなりすぎることがないので、光学シートにおいて十分な透明性を得ることができる。
The thermoplastic polyacrylic acid alkyl ester resin as component (C) is a polymer having a repeating unit of at least one selected from monomer units of acrylic acid, acrylic acid ester, acrylonitrile and derivatives thereof, a homopolymer or A copolymer with styrene, butadiene or the like may also be used. Specifically, polyacrylic acid, polymethyl methacrylate (PMMA), polyacrylonitrile, ethyl acrylate-acrylic acid-2-chloroethyl copolymer, acrylic acid-n-butyl-acrylonitrile copolymer, acrylonitrile-styrene copolymer And acrylonitrile-butadiene copolymer and acrylonitrile-butadiene-styrene copolymer. Among these, polymethyl methacrylate (PMMA) can be particularly preferably used. As polymethyl methacrylate (PMMA), known ones can be used. Usually, those produced by bulk polymerization of methyl methacrylate monomer in the presence of a peroxide or azo polymerization initiator are used. preferable.
The thermoplastic polyacrylic acid alkyl ester resin as component (C) preferably has a molecular weight of 200 to 100,000, more preferably 20,000 to 60,000. When the molecular weight is 200 to 100,000, phase separation between the component (A) and the component (C) does not become too fast at the time of molding, so that sufficient transparency can be obtained in the optical sheet.
 本発明の光学シートを製造する方法は特に制限されないが、下記の、本発明の光学シートの製造方法によれば所望の光学シートを製造することができる。
 本発明の光学シートの製造方法は、前記芳香族ポリカーボネイト樹脂組成物をシート状に溶融押し出しする成形工程、溶融押し出しされたシート状成形体をガラス転移温度以下に急冷する冷却工程、および冷却されたシート状成形体を50℃以上、前記ポリカーボネイト樹脂のガラス転移温度以下で熱処理する熱処理工程を含む。
 前記冷却工程は、冷却水が流下するスリットに前記シート状成形体を通過させることにより、前記シート状成形体を冷却することができる。また、前記熱処理工程は、鏡面を有する金属製エンドレスベルトおよび/または金属ロールで、前記シート状成形体の表裏面を挟持して加熱することより、実施されることができる。
 押出成形法としては、通常一般に用いられる3本ロールを備えたシート成形機でも成形条件を選定することにより、導光板として利用可能な光学シートの製造が可能である。押出機のシリンダー温度およびダイスの温度は樹脂の組成の違い、ガラス転移温度等にも依存するが220~340℃、好ましくは240~320℃程度である。
 (A)成分/(C)成分の比率が99.99/0.01~99.00/1.00(質量比)で、かつ、(B)酸化防止剤を前記のような比率で含む樹脂組成物を原料として押出成形を行う場合には、上記の溶融押し出しで得られたシート状成形体をガラス転移温度以下に急冷する冷却工程が重要であり、このような冷却工程を具備する押出成形装置を適用した方が、より光学的に透明度が高く光学シートを得ることができる。
 冷却温度はガラス転移温度以下とする必要があり、好ましくは140℃以下、さらに好ましくは120℃以下である。冷却温度をガラス転移温度以下とすることにより、光学シートの厚み0.1~1mmにおける全光線透過率を91%以上とすることができる。冷却温度の下限は樹脂の組成の違い、ガラス転移温度等にも依存するが50℃程度である。50℃以上とすることにより、成形された光学シートにおける残留ひずみを少なくして光学的等方性を確保することができる。冷却は、通常、複数のロールを用いて行なわれる。
 押出機のシリンダー温度は220~340℃、好ましくは240~320℃程度である。
 また、冷却されたシート状成形体は、50℃以上で前記芳香族ポリカーボネイトのガラス転移温度以下で熱処理する熱処理工程により、前述の急冷過程による残留歪を一旦開放し、賦形することで、皺のない均一な肉厚で、レターデーション値が低い光学シートを得ることができる。
 これらの製造工程を具備した押出成形機を適用することで、(A)成分/(C)成分の比率が99.99/0.01~99.00/1.00(質量比)の樹脂組成物の溶融状態から冷却過程で起こる相分離を抑制することが可能となり、光線透過率の低下が抑制できる。
 これらの工程を具備する製造法としては、弾性ロール法またはスチールベルト法などが挙げられ、これらを具備した押出成形機の適用がより好ましい。
 スチールベルト法としては、例えば、特許公開公報2004-230598号公報にて開示されている製造法が挙げられる。
 この製造法においては、複数のロールに巻装され、加熱ロール部により加熱された無端ベルトに、成形されたシートを密着して走行させ、次いで同シートを前記無端ベルト及びロール間で面状又は線状圧接した後、同シートを前記無端ベルトから剥離させるシートの製造方法であって、同シートの無端ベルトとは反対側から、加熱された同シートを走行中に保温及び/又は加熱する(図1参照)。保温及び/又は加熱は、保温板、熱風吹き出し、赤外線により行なわれる。
 図1において、1はテンションロール、2は加熱ロール、3は冷却ロール、4は挾圧ロール、5は無端ベルト、6はシート供給ロール、7はテンションロール、8は加熱装置である。Sは凹凸形状を転写する前のシートを、dは挾圧ロール4と無端ベルト5との間で挟圧されるシートの長さを示す。
 弾性ロール法としては、例えば、特許公開公報2004-155101号に開示されている方法が挙げられる。
 この製造法においては、押出機にT型ダイを取り付けてシートを形成させ、このシートを第一挟圧ロール、第二挟圧ロール、第三挟圧ロールに通し、複数の移送ロールを直線状に並べてシートを製造し、引取りロールを通して製造する方法である(図2参照)。
 図2において、21は押出機、22、23、25は挟圧ロール、24は引取りロール、26a、26b、26cは移送ロールである。
The method for producing the optical sheet of the present invention is not particularly limited, but a desired optical sheet can be produced according to the following method for producing an optical sheet of the present invention.
The method for producing an optical sheet of the present invention includes a molding step of melt-extruding the aromatic polycarbonate resin composition into a sheet, a cooling step of rapidly cooling the melt-extruded sheet-like molded body to a glass transition temperature or lower, and cooling A heat treatment step of heat-treating the sheet-like molded body at 50 ° C. or more and below the glass transition temperature of the polycarbonate resin.
The said cooling process can cool the said sheet-like molded object by allowing the said sheet-like molded object to pass through the slit where cooling water flows down. The heat treatment step can be carried out by sandwiching and heating the front and back surfaces of the sheet-like molded body with a metal endless belt and / or metal roll having a mirror surface.
As an extrusion molding method, an optical sheet that can be used as a light guide plate can be manufactured by selecting molding conditions even with a sheet molding machine that is generally equipped with three rolls. The cylinder temperature and die temperature of the extruder are about 220 to 340 ° C., preferably about 240 to 320 ° C., depending on the difference in resin composition, glass transition temperature, and the like.
Resin containing (A) component / (C) component in a ratio of 99.99 / 0.01 to 99.00 / 1.00 (mass ratio) and (B) an antioxidant in the above-described ratio When performing extrusion molding using the composition as a raw material, a cooling step of rapidly cooling the sheet-like molded body obtained by the above melt extrusion to a glass transition temperature or lower is important. Extrusion molding including such a cooling step When the apparatus is applied, an optical sheet having higher optical transparency can be obtained.
The cooling temperature needs to be lower than the glass transition temperature, preferably 140 ° C. or lower, more preferably 120 ° C. or lower. By setting the cooling temperature to the glass transition temperature or lower, the total light transmittance at a thickness of 0.1 to 1 mm of the optical sheet can be set to 91% or higher. The lower limit of the cooling temperature is about 50 ° C. although it depends on the difference in resin composition, glass transition temperature, and the like. By setting the temperature to 50 ° C. or higher, it is possible to reduce the residual strain in the molded optical sheet and ensure optical isotropy. Cooling is usually performed using a plurality of rolls.
The cylinder temperature of the extruder is about 220 to 340 ° C, preferably about 240 to 320 ° C.
In addition, the cooled sheet-like formed body is subjected to a heat treatment step in which heat treatment is performed at a temperature of 50 ° C. or higher and below the glass transition temperature of the aromatic polycarbonate. An optical sheet having a uniform thickness and no retardation value can be obtained.
By applying an extrusion molding machine equipped with these production steps, a resin composition having a ratio of (A) component / (C) component of 99.99 / 0.01 to 99.99 / 1.00 (mass ratio) It is possible to suppress the phase separation that occurs in the cooling process from the molten state of the object, and it is possible to suppress a decrease in light transmittance.
Examples of the production method including these steps include an elastic roll method and a steel belt method, and application of an extruder having these steps is more preferable.
Examples of the steel belt method include a manufacturing method disclosed in Japanese Patent Application Publication No. 2004-230598.
In this manufacturing method, the endless belt wound around a plurality of rolls and heated by the heating roll unit is caused to travel while the formed sheet is in close contact with the endless belt and the roll. A method for producing a sheet in which the sheet is peeled from the endless belt after linear pressure welding, and the heated sheet is kept warm and / or heated while traveling from the side opposite to the endless belt ( (See FIG. 1). Heat insulation and / or heating is performed by a heat insulation plate, hot air blowing, and infrared rays.
In FIG. 1, 1 is a tension roll, 2 is a heating roll, 3 is a cooling roll, 4 is a rolling roll, 5 is an endless belt, 6 is a sheet supply roll, 7 is a tension roll, and 8 is a heating device. S indicates a sheet before the concavo-convex shape is transferred, and d indicates the length of the sheet sandwiched between the rolling roll 4 and the endless belt 5.
Examples of the elastic roll method include a method disclosed in Japanese Patent Publication No. 2004-155101.
In this manufacturing method, a T-die is attached to an extruder to form a sheet, the sheet is passed through a first clamping roll, a second clamping roll, and a third clamping roll, and a plurality of transfer rolls are linearly formed. In this method, sheets are manufactured side by side and manufactured through a take-up roll (see FIG. 2).
In FIG. 2, 21 is an extruder, 22, 23 and 25 are pinching rolls, 24 is a take-up roll, and 26a, 26b and 26c are transfer rolls.
 次に、前記の光学シートの表面に凹凸パターンを形成させた導光板等の本発明の成形体について説明する。
 以上の特性、組成、製造方法により得られた光学シートは、その表面に微細な凹凸パターンを形成することにより成形体とし、配光制御が可能となり、導光板、拡散シート、再帰性反射板、プリズムシートおよびフレネルレンズシート等として用いることができる。凹凸パターンとしてはドット形状、凸レンズ形状、凹レンズ形状、V溝プリズム形状、三角錘や四角錘などの多角錘プリズム形状などが挙げられる。
 導光板においては、凹凸パターンにグラデーション(濃淡)を付与するのが好ましい。
 通常の拡散シート、再帰性反射板およびプリズムシートならば均一なパターンを形成するのが好ましい。
 また、直下型バックライトで用いられる拡散シートの場合には光源上の光源影から光源間までの距離の間に凹凸パターンの濃淡を形成することで、輝度の均一化を図ることができる。
 このような凹凸パターンの形成法としては、ロールエンボス法、真空プレス成形法、ベルト転写法などが挙げられる。中でもベルト状の薄板ステンレスの表面にニッケルめっき箔に微細な凹凸パターンを形成した金型を製作し、上下で回転する金型ベルトの間で樹脂フィルムを同期搬送しながら加熱、加圧転写、剥離の各工程を連続して行う手段を備えた装置を用いたベルト転写法(例えば、特開2005-321681号公報)を適用することが好ましい。この方法では真空引き、昇温、降温のための時間が不要で、高い生産性で大面積への転写を行うことができる(図3参照)。
 図3において、31は加熱ロール、32は凹凸を形成させるための転写ロール、33は予備加熱ロール、34は冷却ロール、35は搬送ロール、36はエンドレスベルトである。左側の矢印は凹凸形状を転写する前の光学シート、右側の矢印は転写後の光学シート、すなわち、導光板等の成形体を示す。
Next, the molded body of the present invention such as a light guide plate having a concavo-convex pattern formed on the surface of the optical sheet will be described.
The optical sheet obtained by the above characteristics, composition, and manufacturing method is formed into a molded body by forming a fine uneven pattern on the surface, light distribution control is possible, a light guide plate, a diffusion sheet, a retroreflector, It can be used as a prism sheet and a Fresnel lens sheet. Examples of the concavo-convex pattern include a dot shape, a convex lens shape, a concave lens shape, a V-groove prism shape, and a polygonal prism shape such as a triangular pyramid and a quadrangular pyramid.
In the light guide plate, it is preferable to add gradation (shading) to the uneven pattern.
It is preferable to form a uniform pattern if it is a normal diffusion sheet, retroreflecting plate, and prism sheet.
In the case of a diffusion sheet used in a direct type backlight, it is possible to make the luminance uniform by forming the uneven pattern in the distance from the light source shadow on the light source to the distance between the light sources.
Examples of a method for forming such a concavo-convex pattern include a roll embossing method, a vacuum press molding method, and a belt transfer method. Above all, a mold with a fine uneven pattern formed on a nickel-plated foil on the surface of a belt-like thin plate stainless steel is manufactured, and heat, pressure transfer and peeling are performed while the resin film is synchronously conveyed between the mold belts rotating up and down. It is preferable to apply a belt transfer method (for example, Japanese Patent Application Laid-Open No. 2005-321681) using an apparatus provided with means for continuously performing each of these steps. This method does not require time for evacuation, temperature increase, and temperature decrease, and can transfer to a large area with high productivity (see FIG. 3).
In FIG. 3, 31 is a heating roll, 32 is a transfer roll for forming irregularities, 33 is a preheating roll, 34 is a cooling roll, 35 is a transport roll, and 36 is an endless belt. The left arrow indicates the optical sheet before transferring the concavo-convex shape, and the right arrow indicates the optical sheet after transfer, that is, a molded body such as a light guide plate.
 この他、微細な凹凸パターンが形成された金型を用いてアクリル系紫外線硬化樹脂を本発明の光学シートに押し当てながら紫外線で硬化させるリソグラフィー法や、白色インキを用いたスクリーン印刷法になどが適用できる。
 前記の光学シート成形と表面に凹凸パターンを形成させる工程を同時に行うことにより、導光板等の成形体を製造することもできる。このような同時工程を備える製造装置としては、例えば、東芝機械株式会社製連続押出エンボス成形機SPU-03026Wが好適に利用できる(図4参照)。
 図4に示す装置では、特殊タッチロール(special touch roll)の柔軟性により押付長さが長くなり、転写率が向上する。また、ロール隙間調整方式(Pressure sensorおよびPositioning sensor)により、隙間、押し付け力の測定および制御が可能となる。
In addition, there are a lithography method in which an acrylic UV curable resin is pressed against the optical sheet of the present invention using a mold having a fine concavo-convex pattern, and a screen printing method using a white ink. Applicable.
A molded body such as a light guide plate can also be manufactured by simultaneously performing the optical sheet molding and the step of forming a concavo-convex pattern on the surface. As a manufacturing apparatus provided with such simultaneous processes, for example, a continuous extrusion embossing machine SPU-03026W manufactured by Toshiba Machine Co., Ltd. can be suitably used (see FIG. 4).
In the apparatus shown in FIG. 4, the pressing length is increased due to the flexibility of the special touch roll, and the transfer rate is improved. In addition, the roll clearance adjustment method (Pressure sensor and Positioning sensor) enables measurement and control of clearance and pressing force.
 次に、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
 実施例および比較例で使用された配合材料等は以下の通りである。
<配合材料>
(1)芳香族ポリカーボネートPC1
 タフロンFN1700A〔出光興産株式会社製のビスフェノールAポリカーボネート樹脂、ガラス転移温度:142℃、粘度平均分子量:17,300、屈折率:1.585〕
(2)芳香族ポリカーボネートPC2
 タフロンFN1900A〔出光興産株式会社製のビスフェノールAポリカーボネート樹脂、ガラス転移温度:145℃、粘度平均分子量:19,500、屈折率:1.585〕
(3)芳香族ポリカーボネートPC3
 タフロンFN2500A〔出光興産株式会社製のビスフェノールAポリカーボネート樹脂、ガラス転移温度:148℃、粘度平均分子量:23,500、屈折率:1.585〕
(4)リン系酸化防止剤
 アデガスタブPEP36〔旭電化(株)製のビス(2,6-ジーt-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト〕
(5)フェノール系酸化防止剤
 イルガノックス1076〔チバスペシャリティーケミカルズ(株)製のフェノール系酸化防止剤、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕表1では、「IRG1076」と記載する。
(6)熱可塑性ポリアクリル系樹脂
 ダイアナールBR83〔三菱レイヨン(株)製、分子量:25,000、屈折率1.490、分子量は、オストワルド型粘度管を用いて25℃におけるクロロホルム溶液の極限粘度[η]を測定し、次の関係式により平均重合度PAを求めて計算した。logPA=1.613log([η]×104/8.29)〕
 表1では、「アクリル酸エステル樹脂」と記載する。
(7)青色染料
 HOSTALUX KSN〔クラリアントジャパン(株)製、4-(ベンゾオキサゾール-2-イル)-4′-(5-メチルベンゾオキサゾール-2-イル)スチルベンと青色顔料の混合物〕
The compounding materials used in Examples and Comparative Examples are as follows.
<Combination material>
(1) Aromatic polycarbonate PC1
Taflon FN1700A [bisphenol A polycarbonate resin manufactured by Idemitsu Kosan Co., Ltd., glass transition temperature: 142 ° C., viscosity average molecular weight: 17,300, refractive index: 1.585]
(2) Aromatic polycarbonate PC2
Toughlon FN1900A [bisphenol A polycarbonate resin manufactured by Idemitsu Kosan Co., Ltd., glass transition temperature: 145 ° C., viscosity average molecular weight: 19,500, refractive index: 1.585]
(3) Aromatic polycarbonate PC3
Toughlon FN2500A [Bisphenol A polycarbonate resin manufactured by Idemitsu Kosan Co., Ltd., glass transition temperature: 148 ° C., viscosity average molecular weight: 23,500, refractive index: 1.585]
(4) Phosphorus antioxidant Adegas tab PEP36 [Bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol phosphite manufactured by Asahi Denka Co., Ltd.]
(5) Phenol antioxidant Irganox 1076 [Phenol antioxidant manufactured by Ciba Specialty Chemicals, Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] Table 1 is described as “IRG1076”.
(6) Thermoplastic polyacrylic resin DIANAR BR83 [Mitsubishi Rayon Co., Ltd., molecular weight: 25,000, refractive index: 1.490, molecular weight: intrinsic viscosity of chloroform solution at 25 ° C. using an Ostwald type viscosity tube [ η] was measured, and the average degree of polymerization PA was calculated by the following relational expression. log PA = 1.613 log ([η] × 10 4 /8.29)]
In Table 1, it is described as “acrylic ester resin”.
(7) Blue dye HOSTALUX KSN [manufactured by Clariant Japan Co., Ltd., mixture of 4- (benzoxazol-2-yl) -4 '-(5-methylbenzoxazol-2-yl) stilbene and blue pigment]
<混練押出>
 タンブラーを用いて表1に示す各実施例および比較例における配合比率で各材料を混合しスクリュウ径65mmφの単軸押出機を用いて280℃で溶融混練押出を行い各例で使用したペレットを作製した。
<Kneading extrusion>
Using a tumbler, the materials are mixed at the blending ratios in each Example and Comparative Example shown in Table 1, and melt-kneaded and extruded at 280 ° C. using a single screw extruder with a screw diameter of 65 mmφ to produce pellets used in each example. did.
<光学シート押出成形>
 条件1(実施例1~4および比較例1、2で適用)
 図2に示す押出機21を設けた「3本ロール装置」により光学シート(厚み0.4mm)を製造した。押出機21のスクリュウ直径65mm、T型ダイの幅が650mm、直径300mmの第一挟圧ロール22を使用した。第二挟圧ロール23及び第三挟圧ロール25は、いずれも直径300mmの金属ロールを使用した。移送ロール26は、直径70mmの金属ロール3個が直線状に並んだものを使用した。なお、最初の移送ロール26aから最終の移送ロール26c間の合計距離は3mとした。
 条件2(実施例5で適用)
 Hitz産機テクノ株式会社製のUFロール挟圧押出成形機(弾性ロール法―図2参照)を用いて行なった。押出機のスクリュウ直径は90mmである。
 条件3(実施例6で適用)
 東芝機械株式会社製連続押出エンボス成形機SPU-03026W(図4参照)を用いてシート成形で得られたシートに三角錘プリズムアレイ(高さ50μm)をニッケルメッキにて形成したスタンパーを押し当てて同時にパターン転写を行なうことによりプリズムシートを作製した(パターン形成2)。押出機のスクリュウ直径26mmφ、その他各部の温度は表1に記載したとおりである。
 条件4(比較例3で適用)
 各所の温度を表1に示す温度に変更した以外は条件1と同様に行なった。
 条件5(比較例4で適用)
 型締力100トンの射出成形機〔住友重機械工業(株)製、品番SG100M-HP〕を用いて成形温度360℃(金型温度120℃)で射出成形を行なった。
<Optical sheet extrusion>
Condition 1 (applied in Examples 1 to 4 and Comparative Examples 1 and 2)
An optical sheet (thickness 0.4 mm) was produced by a “three roll device” provided with the extruder 21 shown in FIG. A first pinching roll 22 having a screw diameter of 65 mm for the extruder 21, a width of a T-shaped die of 650 mm, and a diameter of 300 mm was used. Each of the second pinching roll 23 and the third pinching roll 25 was a metal roll having a diameter of 300 mm. As the transfer roll 26, a roll in which three metal rolls having a diameter of 70 mm were arranged in a straight line was used. The total distance between the first transfer roll 26a and the final transfer roll 26c was 3 m.
Condition 2 (applied in Example 5)
This was carried out using a UF roll clamping press machine (elastic roll method—see FIG. 2) manufactured by Hitz Industrial Equipment Techno Co., Ltd. The screw diameter of the extruder is 90 mm.
Condition 3 (applied in Example 6)
A stamper with a triangular pyramid prism array (height 50 μm) formed by nickel plating was pressed against a sheet obtained by sheet molding using a continuous extrusion embossing machine SPU-03026W (see FIG. 4) manufactured by Toshiba Machine Co., Ltd. Simultaneously, pattern transfer was performed to produce a prism sheet (pattern formation 2). The screw diameter of the extruder is 26 mmφ, and the temperatures of the other parts are as described in Table 1.
Condition 4 (applied in Comparative Example 3)
The same procedure as in Condition 1 was performed except that the temperature at each location was changed to the temperature shown in Table 1.
Condition 5 (applied in Comparative Example 4)
Injection molding was performed at a molding temperature of 360 ° C. (mold temperature: 120 ° C.) using an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., product number SG100M-HP) having a clamping force of 100 tons.
<プレス成形によるパターン転写>
 実施例6以外の各実施例および各比較例において作製した各光学シートを名機製作所製微細パターン転写用真空プレスで真空吸引後、三角錘プリズムアレイ(高さ50μm)をニッケルメッキにて形成したスタンパーに押し当て、160℃にてプレス成形を行ない、導光板を作製した(パターン形成1)。
<Pattern transfer by press molding>
Each optical sheet produced in each Example other than Example 6 and each Comparative Example was vacuum-sucked with a vacuum press for fine pattern transfer manufactured by Meiki Seisakusho, and then a triangular pyramid prism array (height 50 μm) was formed by nickel plating. A light guide plate was produced by pressing against a stamper and performing press molding at 160 ° C. (pattern formation 1).
<評価方法>
(1)全光線透過率
 スガ試験機株式会社製のヘイズメーター(HGM-2DP)を用いてJIS-K-7105に準拠して測定した。
(2)シートの分光光線透過率
 厚み0.4mmの光学シートサンプルを島津製作所製のUV可視分光光度計(UV-2450)により波長300nmでの分光光線透過率(%)を測定した。
(3)複屈折率(レターデーション)およびその標準偏差値
 大塚電子株式会社製のリタデーション測定装置(RETS-100)により、550nmに対する複屈折(レターデーション値)を測定した。
 本発明において、任意箇所というのは、100cm×100cmの光学シートのサンプルより、各測定箇所が60cm以上離れた2箇所の4cm×4cmの部分の1cmピッチの3cm×3cmの格子上9箇所について合計18点の測定を行った。
計算式:
標準偏差(σ)=
√[{(Re1-Reav2+(Re2-Reav2+・・・・・+(Ren-Reav2}/n]
nは測定した全サンプリング数
Renはn番目のサンプリング箇所のRe値
ReavはReの平均値を表わす。
(4)溶液法による光学特性(分光光線透過率)
a)サンプル調製
 切断したサンプル(6g)をメスフラスコ(50ミリリットル)に入れジクロロメタンを加え溶解させ、溶解の際、超音波照射を3時間行った。
b)測定装置:島津製作所 UV-2450
c)測定条件
セル長さ:5cm
測定波長:900~200μm
スキャンスピード:低速モードに設定
スリット幅:2.0nm
切り替え波長:360nm
d)測定手順
 測定の2時間前に装置を立ち上げて安定化させた後、ベースラインを測定し、次いで、500nmにてオートゼロを測定し、ゼロ点が取れたか測定することにより確認する。
 ジクロロメタン及びアセトンを用いてセルをよく洗浄、セル温度が室温になるまで待ち、セル温度が戻った時点で、測定溶液を加え、セルを測定室に入れてふたをし、1分ほど放置した後、測定開始する。測定終了後、測定溶液を出して洗浄し、サンプルを変えてこれを繰り返す。
(5)凹凸パターンの転写性
 実施例1~6および比較例1~4で得られた各導光板について、輝度特性を反映するパターンの転写率を輝度評価に代えて実施した。
 転写率(%)=[転写した導光板の三角錘の高さ(μm)/スタンパーにおける三角錘の高さ(50μm)]×100
<Evaluation method>
(1) Total light transmittance Measured according to JIS-K-7105 using a haze meter (HGM-2DP) manufactured by Suga Test Instruments Co., Ltd.
(2) Spectral Light Transmittance of Sheet An optical sheet sample having a thickness of 0.4 mm was measured for spectral light transmittance (%) at a wavelength of 300 nm using a UV-visible spectrophotometer (UV-2450) manufactured by Shimadzu Corporation.
(3) Birefringence (Retardation) and Standard Deviation Value The birefringence (retardation value) for 550 nm was measured with a retardation measuring device (RETS-100) manufactured by Otsuka Electronics Co., Ltd.
In the present invention, an arbitrary location is a total of 9 locations on a 3 cm × 3 cm grid of 1 cm pitch of two 4 cm × 4 cm portions, each of which is 60 cm or more away from a sample of an optical sheet of 100 cm × 100 cm. 18 points were measured.
a formula:
Standard deviation (σ) =
√ [{(Re 1 −Re av ) 2 + (Re 2 −Re av ) 2 +... + (Re n −Re av ) 2 } / n]
n represents the total sampling number Re n , the Re value Re av at the n-th sampling location, and the average value of Re.
(4) Optical characteristics by the solution method (spectral light transmittance)
a) Sample preparation The cut sample (6 g) was put into a volumetric flask (50 ml) and dissolved by adding dichloromethane, and ultrasonic irradiation was performed for 3 hours at the time of dissolution.
b) Measuring device: Shimadzu Corporation UV-2450
c) Measurement condition Cell length: 5 cm
Measurement wavelength: 900-200μm
Scanning speed: Set to low-speed mode Slit width: 2.0 nm
Switching wavelength: 360 nm
d) Measurement procedure After starting up and stabilizing the apparatus 2 hours before the measurement, the baseline is measured, and then auto-zero is measured at 500 nm, and it is confirmed by measuring whether the zero point is taken.
Wash the cell thoroughly with dichloromethane and acetone, wait until the cell temperature reaches room temperature, and when the cell temperature returns, add the measurement solution, put the cell in the measurement chamber, cover it, and leave it for about 1 minute. Start measurement. After completion of the measurement, the measurement solution is taken out and washed, and this is repeated by changing the sample.
(5) Transferability of concavo-convex pattern For each of the light guide plates obtained in Examples 1 to 6 and Comparative Examples 1 to 4, the pattern transfer rate reflecting the luminance characteristics was carried out instead of the luminance evaluation.
Transfer rate (%) = [height of the triangular pyramid of the transferred light guide plate (μm) / height of the triangular pyramid in the stamper (50 μm)] × 100
[実施例1~6]
 表1に示す配合材料を用いて溶融混練押出を行なって作製した各ペレットを用い、「条件1」、「条件2」または「条件3」の成形条件を適用して光学シートを作製し、各光学シートに前記パターン形成1(実施例1~5)またはパターン形成2(実施例6)を適用して導光板を作製した。各条件における各所の温度は表1に記載されている通りである。
[Examples 1 to 6]
Using each pellet produced by melt-kneading extrusion using the compounding materials shown in Table 1, an optical sheet is produced by applying the molding conditions of “Condition 1”, “Condition 2” or “Condition 3”, A light guide plate was produced by applying the pattern formation 1 (Examples 1 to 5) or the pattern formation 2 (Example 6) to the optical sheet. The temperature at each location under each condition is as described in Table 1.
[比較例1~4]
 表1に示す配合材料を用いて溶融混練押出を行なって作製した各ペレットを用い、「条件1」、「条件4」または「条件5」の成形条件を適用して光学シートを作製し、各光学シートにパ前記ターン形成1を適用して導光板を作製した。各条件における各所の温度は表1に記載されている通りである。
[Comparative Examples 1 to 4]
Using each pellet produced by melt kneading extrusion using the compounding materials shown in Table 1, an optical sheet is produced by applying the molding conditions of “Condition 1”, “Condition 4” or “Condition 5”. A light guide plate was prepared by applying the pattern formation 1 to an optical sheet. The temperature at each location under each condition is as described in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の光学シートは特定の芳香族ポリカーボネートを含む樹脂組成物を特定の条件下で押出成形することにより固体構造における高次構造を制御し、用途に応じて表面に形成させる凹凸パターンを最適化することにより導光板、拡散シート、再帰性反射板、または輝度向上プリズムシート等に加工される。 The optical sheet of the present invention controls the higher order structure in the solid structure by extruding a resin composition containing a specific aromatic polycarbonate under specific conditions, and optimizes the uneven pattern formed on the surface according to the application By doing so, it is processed into a light guide plate, a diffusion sheet, a retroreflecting plate, or a brightness enhancement prism sheet.

Claims (9)

  1. (A)粘度平均分子量22000以下の芳香族ポリカーボネイト100質量部および(B)酸化防止剤0.01~1質量部を含有し、青色系色素または顔料を含まない芳香族ポリカーボネイト樹脂組成物が押出機から押し出された後、ガラス転移温度以下で冷却された光学シートであって、該光学シートの厚み0.1~1mmにおける全光線透過率が91%以上であることを特徴とする光学シート。 (A) An aromatic polycarbonate resin composition containing 100 parts by weight of an aromatic polycarbonate having a viscosity average molecular weight of 22,000 or less and (B) 0.01 to 1 part by weight of an antioxidant and containing no blue dye or pigment is an extruder. An optical sheet which is extruded from the above and cooled at a glass transition temperature or lower, wherein the total light transmittance at a thickness of 0.1 to 1 mm of the optical sheet is 91% or more.
  2.  複屈折(位相差;波長550nmにおけるリタデーション値)が150nm以下で、且つシート面内の任意箇所でのリタデーション値の標準偏差値が10以下である請求項1に記載の光学シート。 2. The optical sheet according to claim 1, wherein the birefringence (phase difference; retardation value at a wavelength of 550 nm) is 150 nm or less, and the standard deviation value of the retardation value at an arbitrary position in the sheet surface is 10 or less.
  3.  前記光学シートに用いられる芳香族ポリカーボネイト樹脂組成物から調製された試料板厚みが0.4mmで測定した可視-UV分光スペクトルにおいて、波長300nmにおける分光光線透過率70%以上または芳香族ポリカーボネイトを良溶媒に溶解して測定した分光光線透過率(溶液法による測定:溶液セルの導光長が5cm、試料溶液濃度12g/dl、溶媒ジクロロメタン、波長450nm)が94%以上である請求項1に記載の光学シート。 In a visible-UV spectroscopic spectrum measured with a sample plate thickness of 0.4 mm prepared from an aromatic polycarbonate resin composition used in the optical sheet, a spectral light transmittance of 70% or more at a wavelength of 300 nm or an aromatic polycarbonate is used as a good solvent. The spectroscopic light transmittance (measured by a solution method: the light guide length of the solution cell is 5 cm, the sample solution concentration is 12 g / dl, the solvent is dichloromethane, and the wavelength is 450 nm) is 94% or more as measured by dissolving in an aqueous solution. Optical sheet.
  4.  前記(A)成分100質量部に対して(C)熱可塑性ポリアクリル系樹脂0.01~1質量部を含む請求項1に記載の光学シート。 2. The optical sheet according to claim 1, comprising 0.01 to 1 part by mass of (C) a thermoplastic polyacrylic resin with respect to 100 parts by mass of the component (A).
  5.  前記(B)成分の酸化防止剤がリン系酸化防止剤及び/又はフェノール系酸化防止剤である請求項1に記載の光学シート。 The optical sheet according to claim 1, wherein the antioxidant of the component (B) is a phosphorus-based antioxidant and / or a phenol-based antioxidant.
  6.  前記芳香族ポリカーボネイト樹脂組成物をシート状に溶融押し出しする成形工程、溶融押し出しされたシート状成形体をガラス転移温度以下に急冷する冷却工程、および冷却されたシート状成形体を、50℃以上、前記芳香族ポリカーボネイト樹脂組成物のガラス転移温度以下で熱処理する熱処理工程からなることを特徴とする請求項1に記載の光学シートの製造方法。 A molding step of melt-extruding the aromatic polycarbonate resin composition into a sheet, a cooling step of rapidly cooling the melt-extruded sheet-like molded product to a glass transition temperature or lower, and the cooled sheet-like molded product at 50 ° C. or higher, The method for producing an optical sheet according to claim 1, comprising a heat treatment step in which heat treatment is performed at a temperature equal to or lower than a glass transition temperature of the aromatic polycarbonate resin composition.
  7.  請求項1に記載の光学シートの表面に凹凸パターンを形成させてなる成形体。 A molded product obtained by forming an uneven pattern on the surface of the optical sheet according to claim 1.
  8.  導光板、拡散シート、再帰性反射板、プリズムシートおよびフレネルレンズシートのいずれかである請求項7に記載の成形体。 The molded article according to claim 7, which is any one of a light guide plate, a diffusion sheet, a retroreflector, a prism sheet, and a Fresnel lens sheet.
  9.  請求項1に記載の光学シートの表面に凹凸パターンを形成させることを特徴とする成形体の製造方法。 A method for producing a molded body, comprising forming a concavo-convex pattern on the surface of the optical sheet according to claim 1.
PCT/JP2009/055693 2008-03-31 2009-03-23 Optical sheet, process for producing optical sheet, formed object, and process for producing formed object WO2009122942A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980112383.9A CN101981097B (en) 2008-03-31 2009-03-23 Optical sheet, method for producing optical sheet, molded body, and method for producing molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008094212A JP5296405B2 (en) 2008-03-31 2008-03-31 Optical sheet, optical sheet manufacturing method, molded body, and molded body manufacturing method
JP2008-094212 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122942A1 true WO2009122942A1 (en) 2009-10-08

Family

ID=41135323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055693 WO2009122942A1 (en) 2008-03-31 2009-03-23 Optical sheet, process for producing optical sheet, formed object, and process for producing formed object

Country Status (5)

Country Link
JP (1) JP5296405B2 (en)
KR (1) KR101567351B1 (en)
CN (1) CN101981097B (en)
TW (1) TWI442118B (en)
WO (1) WO2009122942A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164138A (en) * 2013-02-25 2014-09-08 Keiwa Inc Light guide film, ultra-slim liquid crystal backlight unit, and portable computer
JP2014164134A (en) * 2013-02-25 2014-09-08 Keiwa Inc Light guide film for ultra-slim liquid crystal backlight, ultra-slim liquid crystal backlight unit, and portable computer
JP2014164135A (en) * 2013-02-25 2014-09-08 Keiwa Inc Light guide film for ultra-slim liquid crystal backlight, ultra-slim liquid crystal backlight unit, and portable computer
JP2014164136A (en) * 2013-02-25 2014-09-08 Keiwa Inc Light guide film, ultra-thin liquid crystal backlight unit, and portable computer
JP2014164133A (en) * 2013-02-25 2014-09-08 Keiwa Inc Light guide film, ultra-slim liquid crystal backlight unit, and portable computer
JP2014164137A (en) * 2013-02-25 2014-09-08 Keiwa Inc Light guide film, ultra-slim liquid crystal backlight unit, and portable computer

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008309A (en) * 2010-06-24 2012-01-12 Dainippon Printing Co Ltd Optical sheet, surface light source device, and display device
JP2012053282A (en) * 2010-09-01 2012-03-15 Dainippon Printing Co Ltd Method for manufacturing optical sheet
JP2012185157A (en) * 2011-02-18 2012-09-27 Sumitomo Chemical Co Ltd Inspection apparatus, inspection method and method for manufacturing light guide plate using inspection method
JP2014035440A (en) * 2012-08-08 2014-02-24 Dainippon Printing Co Ltd Optical sheet, display device and production method of optical sheet
JP6047993B2 (en) * 2012-08-21 2016-12-21 大日本印刷株式会社 Optical sheet and display device
JP2014044258A (en) * 2012-08-24 2014-03-13 Dainippon Printing Co Ltd Display device
JP2014071327A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Diffraction optical sheet and display device
JP6146637B2 (en) * 2012-10-11 2017-06-14 大日本印刷株式会社 Display device
JP2014115464A (en) * 2012-12-10 2014-06-26 Dainippon Printing Co Ltd Display device
CN103029299A (en) * 2013-01-08 2013-04-10 石狮市新力元反光材料有限公司 Hot-pressing type production equipment and production method of optical sheets
KR101711974B1 (en) 2015-07-27 2017-03-06 주식회사 에이치비테크놀러지 Light guide plate extrusion manufacturing method
JP7107756B2 (en) * 2018-06-05 2022-07-27 ポリプラ・エボニック株式会社 Sheet and sheet manufacturing method
JP2021141393A (en) * 2020-03-03 2021-09-16 三菱ケミカル株式会社 Resin composition for acoustic member, film for acoustic member, laminate and diaphragm for acoustic member

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275501A (en) * 1991-03-04 1992-10-01 Sekisui Chem Co Ltd Light diffusing plate
JPH0790167A (en) * 1993-09-22 1995-04-04 Teijin Ltd Light-diffusing resin composition
JPH08132515A (en) * 1994-11-08 1996-05-28 Sekisui Chem Co Ltd Thin sheet and manufacture thereof
JPH0911328A (en) * 1995-07-03 1997-01-14 Teijin Chem Ltd Manufacture of sheet with fine ridge-shaped pattern
JPH10211642A (en) * 1997-01-31 1998-08-11 Idemitsu Petrochem Co Ltd Manufacture of polycarbonate sheet
JP2005321681A (en) * 2004-05-11 2005-11-17 Idemitsu Kosan Co Ltd Prism-integrated optical diffusion plate and its manufacturing method
JP2006130901A (en) * 2004-10-07 2006-05-25 Teijin Chem Ltd Manufacturing method for polycarbonate resin sheet having fine protrusion on surface and sheet having fine protrusion on surface
WO2006137459A1 (en) * 2005-06-24 2006-12-28 Idemitsu Kosan Co., Ltd. Light diffusing plate and lighting device using it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839285B2 (en) * 2007-09-10 2011-12-21 帝人株式会社 Plastic molded product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275501A (en) * 1991-03-04 1992-10-01 Sekisui Chem Co Ltd Light diffusing plate
JPH0790167A (en) * 1993-09-22 1995-04-04 Teijin Ltd Light-diffusing resin composition
JPH08132515A (en) * 1994-11-08 1996-05-28 Sekisui Chem Co Ltd Thin sheet and manufacture thereof
JPH0911328A (en) * 1995-07-03 1997-01-14 Teijin Chem Ltd Manufacture of sheet with fine ridge-shaped pattern
JPH10211642A (en) * 1997-01-31 1998-08-11 Idemitsu Petrochem Co Ltd Manufacture of polycarbonate sheet
JP2005321681A (en) * 2004-05-11 2005-11-17 Idemitsu Kosan Co Ltd Prism-integrated optical diffusion plate and its manufacturing method
JP2006130901A (en) * 2004-10-07 2006-05-25 Teijin Chem Ltd Manufacturing method for polycarbonate resin sheet having fine protrusion on surface and sheet having fine protrusion on surface
WO2006137459A1 (en) * 2005-06-24 2006-12-28 Idemitsu Kosan Co., Ltd. Light diffusing plate and lighting device using it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164138A (en) * 2013-02-25 2014-09-08 Keiwa Inc Light guide film, ultra-slim liquid crystal backlight unit, and portable computer
JP2014164134A (en) * 2013-02-25 2014-09-08 Keiwa Inc Light guide film for ultra-slim liquid crystal backlight, ultra-slim liquid crystal backlight unit, and portable computer
JP2014164135A (en) * 2013-02-25 2014-09-08 Keiwa Inc Light guide film for ultra-slim liquid crystal backlight, ultra-slim liquid crystal backlight unit, and portable computer
JP2014164136A (en) * 2013-02-25 2014-09-08 Keiwa Inc Light guide film, ultra-thin liquid crystal backlight unit, and portable computer
JP2014164133A (en) * 2013-02-25 2014-09-08 Keiwa Inc Light guide film, ultra-slim liquid crystal backlight unit, and portable computer
JP2014164137A (en) * 2013-02-25 2014-09-08 Keiwa Inc Light guide film, ultra-slim liquid crystal backlight unit, and portable computer

Also Published As

Publication number Publication date
CN101981097A (en) 2011-02-23
JP5296405B2 (en) 2013-09-25
KR101567351B1 (en) 2015-11-09
JP2009242752A (en) 2009-10-22
CN101981097B (en) 2014-01-29
TWI442118B (en) 2014-06-21
TW201003161A (en) 2010-01-16
KR20100138965A (en) 2010-12-31

Similar Documents

Publication Publication Date Title
JP5296405B2 (en) Optical sheet, optical sheet manufacturing method, molded body, and molded body manufacturing method
JP4069364B2 (en) Aromatic polycarbonate resin composition for light guide plate and surface light source body
EP2799200B1 (en) Polycarbonate resin composition pellets and process for manufacturing same
JP5253925B2 (en) Multilayer optical sheet
TWI607051B (en) Film
JP5602992B2 (en) Light diffusing aromatic polycarbonate resin composition
JP6484627B2 (en) Methacrylic resin or methacrylic resin composition
TWI452086B (en) Light-scattering films and the use thereof in flat screens
JPWO2014185509A1 (en) Methacrylic resin composition and molded body thereof
JP5261921B2 (en) Polycarbonate resin composition for light diffusion plate and light diffusion plate
KR20160147856A (en) Methacrylic resin composition, method for producing same, molded body, film, and polarizing plate
JP2017024291A (en) Film
JP2009184266A (en) Molding system of polycarbonate resin molded article, molding process, and polycarbonate resin molded article
WO2006126731A1 (en) Optical flat plate member
WO2017146169A1 (en) Methacrylic resin composition and injection-molded article
WO2008062638A1 (en) Optical flat plate member and method for manufacturing optical flat plate member
JP2012068381A (en) Luminance increase film
JP2014172274A (en) Method of producing thermoplastic resin, thermoplastic resin, liquid crystal display and projection device
JP6209428B2 (en) Optical sheet with lens and surface light source member
TW202346381A (en) Optical styrene-based resin composition, light guide plate, edge-light system flat-surface light source unit, light diffusion plate, and direct under-light system flat-surface light source unit
JP2007102067A (en) Laminated resin sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112383.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107021395

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09728096

Country of ref document: EP

Kind code of ref document: A1