TW201003161A - Optical sheet, process for producing optical sheet, formed object, and process for producing formed object - Google Patents

Optical sheet, process for producing optical sheet, formed object, and process for producing formed object Download PDF

Info

Publication number
TW201003161A
TW201003161A TW098110501A TW98110501A TW201003161A TW 201003161 A TW201003161 A TW 201003161A TW 098110501 A TW098110501 A TW 098110501A TW 98110501 A TW98110501 A TW 98110501A TW 201003161 A TW201003161 A TW 201003161A
Authority
TW
Taiwan
Prior art keywords
optical sheet
sheet
aromatic polycarbonate
resin composition
light guide
Prior art date
Application number
TW098110501A
Other languages
Chinese (zh)
Other versions
TWI442118B (en
Inventor
Hiroshi Kawato
Masami Kogure
Original Assignee
Idemitsu Kosan Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co filed Critical Idemitsu Kosan Co
Publication of TW201003161A publication Critical patent/TW201003161A/en
Application granted granted Critical
Publication of TWI442118B publication Critical patent/TWI442118B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/365Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
    • B29C48/37Gear pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/9145Endless cooling belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/9218Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/922Viscosity; Melt flow index [MFI]; Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92247Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92742Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/387Plasticisers, homogenisers or feeders comprising two or more stages using a screw extruder and a gear pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • B29L2011/005Fresnel lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0083Reflectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

An optical sheet is provided which can be easily processed into formed objects, e.g., a lightguide plate having a reduced thickness and increased area, and has a high light transmittance. Also provided are: a process for producing the optical sheet; a formed object obtained by forming a rugged pattern in a surface of the optical sheet; and a process for producing the formed object. The optical sheet is an optical sheet obtained by extruding an aromatic polycarbonate resin composition from an extruder and then cooling the extrudate at a temperature not higher than the glass transition temperature, the resin composition comprising (A) 100 parts by mass of an aromatic polycarbonate having a viscosity-average molecular weight of 22,000 or lower and (B) 0.01-1 part by mass of an antioxidant and not containing a blue dye or pigment. This optical sheet is characterized in that the optical sheet having a thickness of 0.1-1 mm has a total light transmittance of 91% or higher.

Description

201003161 六、發明說明 【發明所屬之技術領域】 本發明有關導光板等中使用之光學薄片以及光學薄片 之製造方法、以及於光學薄片表面形成凹凸之成型體及該 成型體之製造方法。進而詳言之,係有關於使特定熱可塑 性樹脂在特定條件下擠出成型而製造薄片之固體構造中藉 由控制高次構造所得之透明性、導光性優異之光學薄片、 該光學薄片之製造方法、成型體以及成型體之製造方法。 【先前技術】 近幾年來,隨著行動電話、行動音樂播放器、筆記型 電腦等移動電子機器之普及,已實現該等製品機器之薄型 化、畫面擴大化。與LED光源之薄型化技術發展之同時 ,對其等所搭載之液晶顯示器用背光以及對薄型化·畫面 擴大化進行積極檢討。於構成背光之構件中,由於導光板 支配了製品尺寸,故對導光板之薄型化及畫面擴大化之探 討備受重視。 具體而言,既有厚度0.8mm者已薄型化至0.6〜0.4mm ,於最近’更進展至以下之朝〇.2mm進一步薄片 化。該等薄型化使LED光源亦伴隨著薄型化。另一方面 ,畫面尺寸雖爲1·8〜2.8英吋左右,但最近正朝3~3.5英 吋擴大。再者,關於筆記型電腦亦自CCFL光源進展至 LED光源化’亦已嘗試於12吋等級畫面尺寸採用厚度 0.4〜0.6mm導光板之探討。 -5- 201003161 於行動機器用之背光中使用之導光板以聚碳酸酯樹脂 製者爲主流。以該等爲主藉由射出成型法將聚碳酸酯樹脂 成型爲板狀同時於表面上形成使背光均一發光爲目的之光 學設計之微細凹凸。 此處所用之聚碳酸酯樹脂中,尤其,大多使用用於射 出成型用導光板用途之導光性進行改良之樹脂組成物(專 利文獻1、2 )。然而,該等之樹脂組成物於射出成型法中 ,不但導光板厚度、畫面尺寸受到限定,且由於射出成型 時之剪切配向而產生雙折射(延滯)而有於發光時易產生 色彩偏移的問題。 又,關於該樹脂組成物,即使將例如射出成型法替換 成擠出成型法,進行薄片成型,於擠出成型時薄片亦產生 白濁,尤其厚度若超過2mm則白濁變顯著,有亮度特性 降低之問題點。藉由擠出成型法以該樹脂組成物獲得導光 板用原料片有其困難。 反過來,即使改善該樹脂組成物射出成型時之流動性 (專利文獻3 ),以射出成型法,形成2.6吋以上 '厚度 0.2 5 m m以下之導光板爲不可能的界限範圍,極難以獲得 展現作爲導光板之亮度性能之製品。 又,於如筆記型電腦用之大畫面者’雖使用以往聚甲 基丙烯酸甲酯(PMMA )製之導光板,但隨著薄型化’於 衝擊強度不足方面,有因翹曲(尺寸安定性不足)而發生 雲彩(m 〇 i r έ )條紋或因自光源位置偏移引起之亮度降低 等問題。 -6- 201003161 由於此種背景,於該等薄型導光板中雖亦嘗試使用聚 對苯二甲酸乙二酯(PET )製薄片,但PET薄片之雙折射 (延滯)極端地大,而有成爲導光板時亦產生色差之缺點 〇 又,對於聚碳酸酯樹脂100重量份添加磷系及/或酚 系抗氧化劑0.02〜2重量份所成之導光板用具聚碳酸酯樹 脂組成物雖以被揭示(專利文獻4 ),但若使用藍色系染 料,則由於成形溫度高,故全光線透光率最後爲90%,而 期望進一步改良。 專利文獻1:特開平10-73725號(特許3330498號) 公報 專利文獻2:特開2002-6 0609號(特許3516908號) 公報 專利文獻3 :特開2005-247947號公報 專利文獻4:特開2008-24911號公報 【發明內容】 [發明欲解決之問題] 本發明之目的係提供可容易地加工成實現薄型大畫面 化之導光板等之成型體且光線透過率高之光學薄片以及其 製造方法。 [用以解決問題之手段] 本發明人等爲達成上述目的而重複積極硏究之結果, 201003161 發現使用特定分子量之芳香族聚碳酸酯與抗氧化劑且藉由 以特定溫度成型,可達成上述課題。本發明係基於此見解 而完成者。 亦即,本發明係提供下列者: (1) 一種光學薄片,係使含有(A)黏度平均分子量 22000以下之芳香族聚碳酸酯1〇〇質量份,與(B )抗氧 化劑0.01〜1質量份之不含藍色系色素或顏料之芳香族聚 碳酸酯樹脂組成物由擠出機擠出後,冷卻至玻璃轉移溫度 以下之光學薄片,其特徵爲該光學薄片於厚度〇.1~1 mm下 之全光線透過率爲9 1 %以上。 (2 )如上述(1 )所述之光學薄片,其中雙折射(相 位差;於波長5 50nm下之延滯値)爲150nm以下,且薄 片面內之任意處所之延滯値的標準偏差値爲1 0以下。 (3) 如上述(1)所述之光學薄片,其中由前述光學 薄片所使用之芳香族聚碳酸酯樹脂組成物所製作之樣品板 於厚度 0.4mm所測定之可見光-UV分光光譜中。波長 300nm下之分光光線透過率70 %以上,或芳香族聚碳酸酯 溶解於良溶劑所測定分光光線透過率(依溶液法之測定: 溶液測量盒之導光長爲5cm,樣品溶液濃度爲12g/dl ’溶 劑爲二氯甲烷,波長爲45〇nm)爲94%以上。 (4) 如上述(1)所述之光學薄片’其中相對於前述 (A )成份1 00質量份,(C )熱塑性聚丙烯酸系樹脂爲含 有〇. 〇 1〜1質量份。 (5) 如上述(1)所述之光學薄片’其中前述(B) -8- 201003161 成份之抗氧化劑爲磷系氧化劑及/或酚系抗氧化劑。 (6) —種如上述(1)所述之光學薄片的製造方法, 其特徵爲由將前述芳香族聚碳酸酯樹脂組成物以薄片狀熔 融擠出之成型步驟,將熔融擠出之薄片狀成型體急速冷卻 至玻璃轉移溫度以下之冷卻步驟,及將冷卻之薄片狀成型 體,於5〇°C以上、前述芳香族聚碳酸酯樹脂組成物之玻璃 轉移溫度以下進行熱處理之熱處理步驟所構成者。 (7) —種成型體,其特徵爲使上述(1)之光學薄片 的表面上形成凹凸圖型者。 (8 )如上述(7 )所述之成型體,其爲導光板、擴散 薄片、遞回性反射板、稜鏡薄片與夫瑞耳透鏡薄片中任一 者。 (9) 一種成型體之製造方法,其特徵爲於上述(1) 所述之光學薄片之表面形成凹凸圖型。 [發明效果] 藉由本發明,提供一種適用於製造以射出成型法所不 可能達到之厚度及面積之導光板等成型體且||印性及高的 透明性、低的雙折射性等光學特性(導光性、色調)優異 之光學薄片及導光板等。 【實施方式】 本發明之光學薄片,係使於(A)黏度平均分子量 22000以下之芳香族聚碳酸酯中含有(b)抗氧化劑之不 201003161 含藍色系色素或顏料之芳香族聚碳酸酯樹脂組成物 機擠出後,冷卻至玻璃轉移溫度以下之光學薄片’ 薄片於厚度0.1〜1 mm下之全光線透過率爲91 %以上 較好其雙折射(相位差;於波長5 5 Onm下之延 爲1 5 Onm以下,且於薄片面內之任意處所測定之延 標準偏差値爲1 〇以下。 本發明之光學薄片由於不含有藍色系色素或顏 加工成導光板等時,亮度特性不會降低。順帶提及 藍色系色素或顏料時,其添加量亦爲使亮度數降低 等級。 又,由於係於(A)芳香族聚碳酸酯爲基礎樹 有(B )抗氧化劑之芳香族聚碳酸酯樹脂組成物所 光學薄片,因此可謀求減低加工成型爲薄片時之黃 謀求該薄片加工成導光板之際的亮度降低。 至於(A)成份之芳香族聚碳酸酯,由光學透 機械強度、耐熱性之觀點而言,較好爲雙酚A型之 酯。 芳香族聚碳酸酯通常可藉由使二價酚與碳醯氯 酯化合物之聚碳酸酯前驅物反應而製造。例如,在 烷等之溶劑中,在習知酸受體或分子量調節劑存在 而依據需要添加分支劑,藉由使二價酚與如碳醯氯 酯前驅物反應,或使二價酚與如二苯基碳酸酯之碳 驅物進行酯交換等而製造。 至於二價酚,可使用各種二價酚,尤其是2,2. 由擠出 該光學 〇 滞値) 滯値的 料,故 ,含有 1 0 %之 脂中含 構成之 變,並 明性、 聚碳酸 或碳酸 二氯甲 下,進 之碳酸 酸酯前 .雙(4- -10 - 201003161 羥基苯基)丙烷[通稱:雙酣A]較適宜。雙酌A以外之雙 酌,舉例爲例如雙(4-羥基苯基)甲烷;1,1-雙(4-羥基 苯基)乙烷;2,2-雙(4-經基苯基)丁院;2,2-雙(4-經基 苯基)辛烷;2,2-雙(4-經基苯基)苯基甲院;2,2-雙(4-經基-丨—甲基苯基)丙烷;雙(4 -羥基苯基)萘基甲烷; 1,卜雙(4-羥基-第三丁基苯基)丙烷;2,2_雙(4-羥基- 3-溴苯基)丙烷;2,2-雙(4-羥基-3,5·四甲基苯基)丙烷; 2,2 -雙(4 -羥基-3-氯苯基)丙烷;2,2 -雙(4 -羥基-3,5 -四 氯苯基)丙烷:2,2-雙(4-羥基-3,5-四溴苯基)丙烷等之 雙(羥基芳基)烷類;1,1 -雙(4-羥基苯基)環戊烷; 1,1-雙(4-羥基苯基)環己烷;1,1-雙(4-羥基苯基)-3,5,5-三甲基環己烷等之雙(羥基芳基)環烷類;4,4’-二 羥基苯基醚;4,4’_二羥基-3,3’-二甲基苯基醚等之二羥基 芳基醚類;4,4’-二羥基二苯基硫醚;4,4’-二羥基-3,3’-二 甲基二苯基硫醚等之二羥基二芳基硫醚類;4,4’-二羥基二 苯基亞颯;4,4’-二羥基-3,3’_二甲基二苯基亞碾等之二羥 基二芳基亞砸類;4,4’-二羥基二苯基楓;4,4’-二羥基-3,3’-二甲基二苯基颯等之二羥基二芳基颯類;4,4’-二羥基 聯苯等之二羥基聯苯類等。此等二價酚各可單獨使用,亦 可混合兩種以上使用。 又’作爲碳酸酯化合物,舉例有碳酸二苯酯等之碳酸 二芳基醋或碳酸二甲酯、碳酸二乙酯等之碳酸二烷酯等。 因此作爲分子量調節劑,只要是通常聚碳酸酯合成所用者 ,則可使用各種者。具體而言,作爲—價酚,舉例爲例如 -11 - 201003161 酚、鄰-正丁基酚、間-正丁基酚、對-正丁基酣、鄰_異丁 基酣、間-異丁基酣、對-異丁基酣、鄰-第三丁基酣、間_ 第三丁基酚、對-第三丁基酚、鄰·正戊基酚、間-正戊基酚 、對-正戊基酚、鄰-正己基酚、間-正己基酣、對_正己基 酚、對-第三辛基酚、鄰·環己基酚、間-環己基酸、對_環 己基酚、鄰-苯基酚、間-苯基酚、對-苯基酣、鄰-正壬基 紛、間-正壬基酸、對-正壬基酣、鄰-枯基紛、間-枯基紛 、對-枯基酹、鄰-萘基酌、間-萘基酸、對-萘基酸;2,5-二-第三丁基酹;2,4-二-第三丁基酣;3 ,5 -二-第三丁基酸 ;2,5 -二枯基酣;3,5 -二枯基酣;對-甲酉分、溴酣、三溴酉分 等。該等一價酌中,較好使用對-第三丁基酣、對-枯基酉分 、對-第三辛基酚、酚等。 其他,作爲分支劑,可使用例如1 ,1 ,1 -三(4 -羥基苯 基)乙院,a,a’,ct” -二(4 -經基苯基)-1,3,5 -三異丙基 苯;1-[α-甲基- tz-(4’-羥基苯基)乙基]_4_[α’, α ’-雙 (4”-羥基苯基)乙基]苯;氟甘胺酸、苯偏三酸、吲哚滿 二酮雙(鄰-甲酚)等之具有三個官能基以上之化合物。 本發明中使用之(Α)成份之芳香族聚碳酸酯黏度平 均分子量有必要爲22000以下,較好爲1 2,000~20,〇〇〇。 若未達12,000,則機械強度變差,若超過22,000,則全光 線透過率成爲未達9 1 %,作爲光學薄片較不佳。雙折射( 相位差;於波長55〇nm下之延滯値)爲150nm以下,較 好爲1 3 Onm以下,且較好於薄片面內任意處所取樣測定之 延滯値之標準偏差値爲1 〇以下。又,(A )成份之芳香族 -12- 201003161 聚碳酸酯之玻璃轉移溫度爲141〜149〇c左右。芳香族聚碳 酸酯自擠出機擠出後,藉由冷卻至此等玻璃轉移溫度以下 ’可使雙折射成爲1 5 Onm以下’其標準偏差値成爲1 〇以 下。 標準偏差値之下限越低越好,但由光學薄片所要求之 光學各向同性及經濟性等之觀點而言,實用上1 5左右即 已足夠。 本發明中’所g胃任思處所,係由lOOcmxlOOcm之光 學薄片之取樣,各測定處所係於相隔6 0 c m以上之兩處所 於4 cm X 4cm部份之1 cm間距的3cm X 3cm之格子上9處合 計1 8點所測定者。 至於(B )成份之抗氧化劑,舉例爲磷系、酚系、季 戊四醇系者。 其中,較好使用磷系抗氧化安定劑,具體而言爲亞磷 酸酯、磷酸酯等之憐系抗氧化安定劑。至於亞磷酸酯舉例 爲例如三苯基亞磷酸酯、三壬基苯基亞磷酸酯、三(2,4-二-第三丁基苯基)亞磷酸酯、三壬基亞磷酸酯、三癸基 亞磷酸酯、三辛基亞磷酸酯、三(十八烷基)亞磷酸酯、 二硬脂基季戊四醇二亞磷酸酯、三環己基亞磷酸酯、單丁 基二苯基亞磷酸酯、單辛基二苯基亞磷酸酯、二硬脂基季 戊四醇二亞磷酸酯、雙(2,4 -二-第三丁基苯基)季戊四醇 亞磷酸酯、雙(2,6 -二-第三丁基·4 -甲基苯基)季戊四醇 亞磷酸酯、2,2-亞甲基雙(4,6-二-第三丁基苯基)辛基亞 磷酸酯、肆(2,4-二-第三丁基苯基)-4,4-二伸苯基膦酸酯 -13- 201003161[Technical Field] The present invention relates to an optical sheet and a method for producing an optical sheet used in a light guide plate and the like, and a molded body in which irregularities are formed on the surface of the optical sheet, and a method of producing the molded body. Further, in detail, an optical sheet excellent in transparency and light guiding property obtained by controlling a high-order structure in a solid structure in which a specific thermoplastic resin is extruded under specific conditions to produce a sheet, the optical sheet is used. A manufacturing method, a molded body, and a method of producing a molded body. [Prior Art] In recent years, with the spread of mobile electronic devices such as mobile phones, mobile music players, and notebook computers, the thinning of these products and the enlargement of the screen have been realized. In addition to the development of the thin-film technology of the LED light source, the backlights for liquid crystal displays and the thinning and screen enlargement are actively reviewed. In the members constituting the backlight, since the light guide plate governs the size of the product, attention has been paid to the thinning of the light guide plate and the enlargement of the screen. Specifically, those having a thickness of 0.8 mm have been thinned to 0.6 to 0.4 mm, and have been further thinned by the recent development of 2 mm. These thinnings have led to an increase in the thickness of the LED light source. On the other hand, the screen size is about 1. 8 to 2.8 inches, but it has recently expanded to 3 to 3.5 inches. Furthermore, the development of the notebook computer from the CCFL light source to the LED light source has also been attempted to use a light guide plate with a thickness of 0.4 to 0.6 mm for a 12-inch screen size. -5- 201003161 The light guide plate used in the backlight for mobile devices is mainly made of polycarbonate resin. In these cases, the polycarbonate resin is molded into a plate shape by the injection molding method, and fine irregularities of optical design for the purpose of uniformly emitting the backlight are formed on the surface. In the polycarbonate resin used herein, in particular, a resin composition which is improved in light guiding properties for use in a light guide plate for injection molding is used (Patent Documents 1 and 2). However, in the injection molding method, the resin composition is not only limited in thickness and screen size, but also birefringent (delayed) due to shear alignment during injection molding, and color aberration tends to occur when illuminating. The problem of moving. Further, in the resin composition, for example, the injection molding method is replaced by an extrusion molding method, and sheet molding is performed, and the sheet is white turbid during extrusion molding. In particular, when the thickness exceeds 2 mm, white turbidity is remarkable, and brightness characteristics are lowered. Problems. It is difficult to obtain a raw material sheet for a light guide plate from the resin composition by an extrusion molding method. On the other hand, even if the fluidity at the time of injection molding of the resin composition is improved (Patent Document 3), it is extremely difficult to obtain a light guide plate having a thickness of 2.6 Å or more and a thickness of 0.25 mm or less in an injection molding method. As a product of the brightness performance of the light guide plate. In addition, in the case of large screens for notebook computers, the light guide plate made of conventional polymethyl methacrylate (PMMA) is used, but the thickness is reduced due to the lack of impact strength. Insufficient) occurs due to cloud (m 〇ir έ ) streaks or a decrease in brightness due to shifting from the position of the light source. -6- 201003161 Due to this background, although polyethylene terephthalate (PET) sheets are also tried in these thin light guide plates, the birefringence (delay) of PET sheets is extremely large, and When the light guide plate is used as a light guide plate, a chromatic aberration is also caused. In addition, a polycarbonate resin composition of 650 to 2 parts by weight of a phosphorus resin and/or a phenolic antioxidant is added to 100 parts by weight of the polycarbonate resin. Although it is disclosed (Patent Document 4), if a blue dye is used, since the molding temperature is high, the total light transmittance is finally 90%, and further improvement is desired. Japanese Patent Laid-Open No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. [Explanation of the Invention] [Problem to be Solved by the Invention] An object of the present invention is to provide an optical sheet which can be easily processed into a molded body of a light guide plate or the like which is thin and large in screen, and which has high light transmittance and its manufacture. method. [Means for Solving the Problem] The present inventors have repeated the results of active research to achieve the above object, and 201003161 found that the above-mentioned problem can be achieved by using an aromatic polycarbonate having a specific molecular weight and an antioxidant and molding at a specific temperature. . The present invention has been completed based on this finding. That is, the present invention provides the following: (1) An optical sheet comprising (A) 1 part by mass of an aromatic polycarbonate having a viscosity average molecular weight of 22,000 or less, and (B) an antioxidant 0.01 to 1 mass. An optical sheet comprising an aromatic polycarbonate resin composition containing no blue pigment or pigment and extruded by an extruder and cooled to a glass transition temperature or lower, characterized in that the optical sheet has a thickness of 1.1~1 The total light transmittance under mm is 91% or more. (2) The optical sheet according to (1) above, wherein the birefringence (phase difference; retardation at a wavelength of 50 nm) is 150 nm or less, and the standard deviation of the retardation 任意 at any position in the sheet surface 値It is 1 or less. (3) The optical sheet according to the above (1), wherein the sample sheet made of the aromatic polycarbonate resin composition used in the optical sheet is in a visible light-UV spectroscopic spectrum measured by a thickness of 0.4 mm. The spectral light transmittance at a wavelength of 300 nm is 70% or more, or the spectral transmittance of the aromatic polycarbonate dissolved in a good solvent (measured by solution method: the light guide length of the solution measuring box is 5 cm, and the sample solution concentration is 12 g) /dl 'The solvent is dichloromethane, the wavelength is 45 〇 nm) is 94% or more. (4) The optical sheet as described in (1) above, wherein the (C) thermoplastic polyacrylic resin contains 〇. 〇 1 to 1 part by mass with respect to 100 parts by mass of the component (A). (5) The optical sheet of the above (1) wherein the antioxidant of the component (B) -8 to 201003161 is a phosphorus-based oxidizing agent and/or a phenol-based antioxidant. (6) The method for producing an optical sheet according to the above (1), which is characterized in that the aromatic polycarbonate resin composition is melt-extruded in a sheet form, and the sheet is melt-extruded. a cooling step in which the molded body is rapidly cooled to a temperature below the glass transition temperature, and a heat-treated step of heat-treating the sheet-shaped molded body to be cooled at a temperature lower than or lower than a glass transition temperature of the aromatic polycarbonate resin composition of 5 ° C or higher. By. (7) A molded article characterized in that the surface of the optical sheet of the above (1) is formed into a concave-convex pattern. (8) The molded article according to the above (7), which is any one of a light guide plate, a diffusion sheet, a reversible reflection plate, a crucible sheet, and a Freire lens sheet. (9) A method of producing a molded article, characterized in that the surface of the optical sheet according to (1) above is formed into a concave-convex pattern. [Effect of the Invention] According to the present invention, it is possible to provide a molded article such as a light guide plate which is suitable for producing a thickness and an area which is impossible to achieve by an injection molding method, and has optical properties such as high printability, high transparency, and low birefringence. An optical sheet, a light guide plate, and the like which are excellent in light guiding property and color tone. [Embodiment] The optical sheet of the present invention contains (b) an aromatic polycarbonate having a viscosity average molecular weight of 22,000 or less, and (b) an antioxidant which does not contain an anti-oxidant. After the resin composition machine is extruded, the optical sheet which is cooled to a temperature lower than the glass transition temperature has a total light transmittance of 91% or more at a thickness of 0.1 to 1 mm, preferably its birefringence (phase difference; at a wavelength of 5 5 Onm) The extension is 1 5 Onm or less, and the standard deviation 値 measured at any position in the sheet surface is 1 〇 or less. The optical sheet of the present invention has brightness characteristics when it does not contain a blue coloring matter or is processed into a light guide plate or the like. When it comes to blue pigments or pigments, the amount of addition is also reduced by the number of brightness. Also, because of the (A) aromatic polycarbonate, the base tree has (B) the fragrance of antioxidants. Since the optical sheet of the polycarbonate resin composition is reduced, it is possible to reduce the decrease in brightness when the sheet is processed into a light guide plate in the case of processing into a sheet. As for the aromatic polycarbon of the component (A) The acid ester is preferably an ester of a bisphenol A type from the viewpoint of optical mechanical strength and heat resistance. Aromatic polycarbonate can usually be obtained by a polycarbonate precursor of a divalent phenol and a carbon chlorohydrin compound. For example, in a solvent such as an alkane or the like, a conventional acid acceptor or a molecular weight modifier is present and a branching agent is added as needed, by reacting a divalent phenol with a precursor such as a carbonium chloride precursor, or The divalent phenol is produced by transesterification with a carbon drive such as diphenyl carbonate. As for the divalent phenol, various divalent phenols can be used, especially 2, 2. The optical stagnation is caused by extrusion. The material, therefore, contains 10% of the fat in the composition of the change, and the explicit, polycarbonate or dichlorohydrin, into the carbonate front. Double (4- -10 - 201003161 hydroxyphenyl) propane [General name: double 酣 A] is more suitable. For example, in addition to A, for example, bis(4-hydroxyphenyl)methane; 1,1-bis(4-hydroxyphenyl)ethane; 2,2-bis(4-pyridylphenyl) House; 2,2-bis(4-phenylphenyl)octane; 2,2-bis(4-phenylphenyl)phenyl; 2,2-bis(4-carbyl-purine-methyl) Phenyl)propane; bis(4-hydroxyphenyl)naphthylmethane; 1, bis(4-hydroxy-t-butylphenyl)propane; 2,2-bis(4-hydroxy-3-bromobenzene Propane; 2,2-bis(4-hydroxy-3,5·tetramethylphenyl)propane; 2,2-bis(4-hydroxy-3-chlorophenyl)propane; 2,2-di( 4-hydroxy-3,5-tetrachlorophenyl)propane: bis(hydroxyaryl)alkane such as 2,2-bis(4-hydroxy-3,5-tetrabromophenyl)propane; 1,1 - Bis(4-hydroxyphenyl)cyclopentane; 1,1-bis(4-hydroxyphenyl)cyclohexane; 1,1-bis(4-hydroxyphenyl)-3,5,5-trimethyl a bis(hydroxyaryl)cycloalkane such as cyclohexane; a 4,4'-dihydroxyphenyl ether; a dihydroxy aryl group such as 4,4'-dihydroxy-3,3'-dimethylphenyl ether Ethers; 4,4'-dihydroxydiphenyl sulfide; 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide Dihydroxydiaryl sulfides such as ether; 4,4'-dihydroxydiphenylarylene; 4,4'-dihydroxy-3,3'-dimethyldiphenyl argon Diaryl hydrazide; 4,4'-dihydroxydiphenyl maple; dihydroxydiaryl fluorene such as 4,4'-dihydroxy-3,3'-dimethyldiphenyl hydrazine; , dihydroxybiphenyls such as 4'-dihydroxybiphenyl, and the like. These divalent phenols may be used singly or in combination of two or more. Further, the carbonate compound may, for example, be a diaryl vinegar such as diphenyl carbonate or a dialkyl carbonate such as dimethyl carbonate or diethyl carbonate. Therefore, as the molecular weight modifier, any one can be used as long as it is usually used for polycarbonate synthesis. Specifically, as the valence phenol, for example, -11 - 201003161 phenol, o-n-butyl phenol, m-n-butyl phenol, p-n-butyl fluorene, o-isobutyl fluorene, m-isobutyl Base, p-isobutyl fluorene, o-tert-butyl hydrazine, m-tert-butyl phenol, p-tert-butyl phenol, o-n-pentyl phenol, m-n-pentyl phenol, p- n-Pentylphenol, o-n-hexylphenol, m-n-hexyl hydrazine, p-n-hexyl phenol, p-t-octyl phenol, o-cyclohexyl phenol, m-cyclohexyl acid, p-cyclohexyl phenol, o -Phenylphenol, m-phenylphenol, p-phenylhydrazine, o-n-decyl, m-n-decyl, p-n-decyl, o-cumyl, m-cumyl, P-cumyl fluorene, o-naphthyl, m-naphthyl acid, p-naphthyl acid; 2,5-di-t-butyl hydrazine; 2,4-di-t-butyl hydrazine; 5 - di-tert-butyl acid; 2,5-di-cumyl hydrazine; 3,5-di-cumyl hydrazine; p-carbamidine, bromine, tribromo, and the like. Among these, it is preferred to use p-t-butyl fluorene, p-cumyl hydrazine, p-t-octyl phenol, phenol, and the like. Other, as a branching agent, for example, 1,1,1-tris(4-hydroxyphenyl), a, a', ct"-bis(4-cyanophenyl)-1,3,5- can be used. Triisopropylbenzene; 1-[α-methyl- tz-(4'-hydroxyphenyl)ethyl]_4_[α', α '-bis(4"-hydroxyphenyl)ethyl]benzene; fluorine A compound having three or more functional groups such as glycine, trimellitic acid, indandione bis(o-cresol). The aromatic polycarbonate having a (Α) component used in the present invention has a viscosity average molecular weight of 22,000 or less, preferably 12,000 to 20, Å. If it is less than 12,000, the mechanical strength is deteriorated. If it exceeds 22,000, the total light transmittance is less than 91%, which is not preferable as an optical sheet. The birefringence (phase difference; retardation at a wavelength of 55 〇 nm) is 150 nm or less, preferably 1 3 Onm or less, and preferably has a standard deviation 値 of 1 for sampling measured at any position in the sheet surface. 〇The following. Further, the aromatic transition of the (A) component -12-201003161 polycarbonate has a glass transition temperature of about 141 to 149 〇c. After the aromatic polycarbonate is extruded from the extruder, the birefringence can be made 1 5 Onm or less by cooling to below the glass transition temperature, and the standard deviation 値 becomes 1 〇 or less. The lower the lower limit of the standard deviation 越 is, the better, but from the viewpoints of optical isotropy and economy required for the optical sheet, practically about 15 is sufficient. In the present invention, the sample of the stomach is taken from an optical sheet of 100 cm x 100 cm, and each measurement site is placed at a space of 3 cm X 3 cm at a distance of 1 cm apart from each other at a distance of 60 cm 4 cm. The total of the above 9 points measured by 1 8 points. As the antioxidant of the component (B), for example, a phosphorus-based, phenol-based or pentaerythritol-based one is used. Among them, a phosphorus-based antioxidant stabilizer, specifically, a peat antioxidant stabilizer such as a phosphorous acid ester or a phosphate ester is preferably used. As the phosphite, for example, triphenyl phosphite, tridecyl phenyl phosphite, tris(2,4-di-t-butylphenyl) phosphite, tridecyl phosphite, three Mercaptophosphite, trioctyl phosphite, tris(octadecyl)phosphite, distearyl pentaerythritol diphosphite, tricyclohexyl phosphite, monobutyl diphenyl phosphite , monooctyl diphenyl phosphite, distearyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl) pentaerythritol phosphite, bis(2,6-di- Tributyl-4-methylphenyl)pentaerythritol phosphite, 2,2-methylenebis(4,6-di-t-butylphenyl)octyl phosphite, bismuth (2,4- Di-t-butylphenyl)-4,4-diphenylenephosphonate-13- 201003161

三甲苯基 三乙基磷酸酯、 酯等。 改日日、三辛基磷酸酯、三苯 、二(壬基苯基)磷酸酯、2-該等磷系抗氧化劑可單獨使用 2-乙基苯基二苯基磷酸 用,亦可組合兩種以上 使用。 該等憐系抗氧化劑中’較好爲二硬脂基季戊四醇二亞 磷酸酯、雙(2,4_二-第三丁基苯基)季戊四醇亞磷酸酯、 雙(2,6-—-第三丁基-4_甲基苯基)季戊四醇亞磷酸酯、 二(2,4-二-第三丁基苯基)亞磷酸酯,季戊四醇系中,最 好爲雙(2,6-二-第三丁基-4_甲基苯基)季戊四醇亞磷酸 @ ° 磷系抗氧化劑可單獨使用亦可組合兩種以上使用 〇 磷系抗氧化劑可直接使用市售者,例如旭電化工業( 股)製品[商品名:ADEKASTAB 2112]、CLIENT 日本公 司製品[SANDOSTAB P-EPQ]、住友化學公司製品 [SUMILYZER ?-168]、汽巴嘉基公司製品[三(2,4-二-第 三丁基苯基)亞磷酸酯,商品名·· IRGANOX 168]、旭電 化(股)製品[商品名_· ADEKASTAB PEP36]等。 至於酚系抗氧化劑’舉例爲α -生育酚、丁基羥基甲 苯、桂皮醇、維他命Ε、正-十八院基-3- (3,5-一-第二丁 基-4-羥基苯基)丙酸酯、2-第三丁基-6-( 3’-第三丁基-5’ -甲基-2、羥基苄基)-4 -甲基苯基丙烯酸酯、2,6-二-第 三丁基-4- (Ν,Ν-二甲基胺基甲基)酚、3,5·二-第三丁基- -14- 201003161 4-羥基苄基膦酸二乙酯、2,2’-亞甲基雙(4-甲基-6-第三丁 基酚)、2,2’-亞甲基雙(4-乙基-6-第三丁基酚)、4,4’-亞甲基雙(2,6-二-第三丁基酚)、2,2’-亞甲基雙(4-甲 基-6-環己基酚)、2,2’-二亞甲基雙(6-α;-甲基-苄基-對-甲酚)、2,2’-亞乙基雙(4,6-二-第三丁基酚)、2,2’-亞 丁基-雙(4-甲基-6-第三丁基酚)、4,4’-亞丁基雙(3-甲 基-6-第三丁基酚)、三乙二醇-N-雙-3- (3-第三丁基-4-羥 基-5-甲基苯基)丙酸酯、1,6-己烷二醇雙[3- (3,5-二-第 三丁基-4-羥基苯基)丙酸酯]、雙[2-第三丁基-4 -甲基6-(3-第三丁基-5-甲基-2-羥基苄基)苯基]對苯二甲酸酯、 3,9-雙{2-[3-( 3-第三丁基-4-羥基-5-甲基苯基)丙醯氧基 ]-1,1-二甲基乙基}-2,4,8,10-四氧雜螺[5,5]十一烷、4,4’-硫基雙(6-第三丁基-間-甲酚)、4,4’-硫基雙(3-甲基- 6-第三丁基酚)、2,2’_硫基雙(4-甲基-6-第三丁基酚)、雙 (3,5- 一-%二丁基-4 -經基卞基)硫酸;4,4’- 一-硫基雙( 2,6-二-第三丁基酚)、4,4’-三-硫基雙(2,6-二-第三丁基 酚)、2,2-硫基二伸乙基雙-[3- (3,5-二-第三丁基-4-羥基 苯基)丙酸酯]、2,4-雙(正辛硫基)-6- (4-羥基-3’,5’-二-第三丁基苯胺基)-1,3, 5-三嗪、N,N’-六亞甲基雙-( 3,5-二-第三丁基-4-羥基氫桂皮醯胺)、1^,’-雙[3-(3,5-二-第三丁基-4-羥基苯基)丙醯基]聯吡啶、1,1,3-三(2-乙基-4-羥基-5-第三丁基苯基)丁烷、1,3, 5-三甲基- 2,4,6-三(3,5-二-第三丁基-4-羥基苄基)苯、三(3,5-二-第三 丁基-4-羥基苯基)異氰脲酸酯、三(3,5-二-第三丁基-4- -15- 201003161 羥基苄基)異氰脲酸酯、1,3,5-三(3,5 -二-第三丁基-4-羥 基苄基)異氰脲酸酯、1,3,5-三(4-第三丁基-3-羥基-2,6-二甲基苄基)異氰脲酸酯、1,3,5-三2[3-( 3,5-二-第三丁 基-4-羥基苯基)丙醯氧基]乙基異氰脲酸酯、以及肆[3-( 3,5-二-第三丁基-4-羥基苯基)丙醯氧基甲基]甲烷等。該 等均可容易獲得。其中,較好爲正-十八烷基-3- ( 3,5-二-第三丁基-4-羥基苯基)丙酸酯、i,3,5-三甲基-2,4,6-三( 3 ,5-二-第三丁基-4-羥基苄基)苯、1,3,5-三(3,5-二-第三 丁基-4-羥基苄基)異氰脲酸酯 '肆[3-(3,5-二-第三丁基-4-羥基苯基)丙醯氧基甲基]甲烷,最好爲正-十八烷基-3-(3,5-二-第三丁基-4-羥基苯基)丙酸酯。上述受阻酚系 抗氧化劑可單獨使用亦可組合兩種以上使用。 酚系抗氧化劑可直接使用市售品,舉例爲例如旭電化 工業公司製品[商品名:ADEKASTAB AO-80]、旭電化工 業公司製品[商品名:ADEKASTAB AO-30]、汽巴特用化 學品(股)製品[商品名:IRGANOX 101 0、IRGANOX 1076]等。 (B )成份的抗氧化劑可使用1種以上之上述磷系抗 氧化劑,亦可使用1種以上之酚系抗氧化劑,亦可組合使 用1種以上磷系抗氧化劑與1種以上酚系抗氧化劑。 其添加量相對於(A)成份的芳香族聚碳酸酯100質 量份,爲0.01〜1質量份之範圍,較好爲0.05〜0.3質量份 之範圍。藉由成爲此等範圍,可獲得作爲光學薄片之較佳 特性。 -16- 201003161 本發明之光學薄片,其於厚度爲ο·1〜lmm下之全光線 透過率爲9 1 %以上,自擠出機擠出後,藉由冷卻至前述玻 璃轉移溫度以下,可使全光線透過率成爲9 1 %以上。較好 爲 9 1 . 5 〜9 2 %。 藉由使全光線透過率成爲9 1 %以上,可防止亮度降低 。超過92%者,由於源自芳香族聚碳酸酯之分子骨架之吸 收,於現時點以工業製造有其困難。 一般,射出成型品於射出成型時之剪切力引起之分子 配向直接在模具內冷卻,由於其分子配向遭凍結故有殘留 應力變形變大之傾向,於模具入口附近與相反入口末端殘 留應力程度變成不均勻。通常,由於入口周邊部之殘留應 力變形大,故延滯値有顯示更大之計測値之傾向。 另一方面,由擠出成型產生之薄片,於擠出成型時之 條件、材料黏度(依黏度平均分子量而定)可能使延滯値 降低,亦可容易地使薄片製品內之延滯値分佈均一化。因 此,可獲得顯示比由射出成型所得導光板品質更高之導光 板。藉由使延滯値設爲1 50nm以下,且於薄片面內任意處 所取樣測定之延滯値標準偏差値成爲1 〇以下,可防止將 使用光學薄片加工後之導光板之背光搭載於液晶面板而作 爲顯示裝置時之顯示品質降低。延滯値較好爲1 〇〇nm以下 ,更好爲50nm以下。 本發明之光學薄片,較好使用以厚度〇.4mm所測定之 可見光-UV分光光譜中,於波長3 00nm之分光光線透過率 爲70%以上或將芳香族聚碳酸酯溶解於良溶劑中而測定之 201003161 分光光線透過率(依據溶液法測定:溶液測量盒之導光長 度5cm,試料溶液濃度12g/dl ’溶劑二氯甲烷,波長 45 0nm)成爲94%以上之芳香族聚碳酸酯樹脂作爲聚碳酸 酯樹脂組成物之(A )成份。 通常,使用光學薄片成型之導光板中,自端面入射可 見光區域之波長400~700nm光線’於端面方向導波、傳播 ,以控制於厚度方向(面方向)之光方向性而進行面發光 。入射至該端面方向之光自相反側端面射出,藉由測定光 之分光特性,可評價導光板對於光傳播之適合性。 然而,於該等測定中,對於1 mm以下之薄的成型片 的測定有必要準備特別測定裝置,現實上有其困難。因此 ,於本發明測定評價係容易地藉由厚度方向(面方向)之 分光特性而進行薄片之特性評價。一般薄片厚度薄如1 mm 以下時,於厚度方向透過可見光之分光光線之透過率的吕十 測,難以檢測出薄片基材固有的分光特性差。然而’即使 於厚度方向之分光特性計測,若著眼於紫外光區域之 3 8Onm以下之波長,則此分光特性差的評價變得有可能。 亦即,藉由厚度方向之計測,300〜3 80nm的分光透過率之 評價結果雖未直接反映可見光域之分光透過率’但相對地 有反映與300〜380nm分光透過率連動之端面方向之可見光 波長區域之分光特性之傾向,而可代用。 具體而言,於厚度方向計測之300〜3 80nm分光透過率 高的特性之光學樹脂基材,有以端面方向計測時之可見光 波長區域之分光特性變高之傾向。分光光線透過率未達 -18 - 201003161 70°/。時,由於導光性能不足,故亮度降低。更好爲73%以 上。 本發明之光學薄片中上述(A)芳香族聚碳酸酯之黏 度平均分子量爲22000以下,較好爲14〇〇〇〜2〇〇〇()。更好 爲15〇00~ 1 9000。若未達14〇〇〇,則製品強度不足以外, 亦有因製品外型加工時之切粉附著引起之良率降低。尤其 光學薄片之厚度爲〇_ 3mm以下之薄型時,有成爲引起強度 不足、易破損之傾向。 黏度平均分子量若超過2萬2000,則雖依據押出成型 條件而定’但樹脂基材之黃變或延滯値易變大,全光線透 光率難以到達9 1 %。 又,導光板等之樹脂薄片可藉由輥壓花成型或加壓成 型而於薄片表面上轉印數微米至數百微米之微細凹凸圖案 (稜型或點、圓凸狀之凸透鏡)並形成凹凸圖案而製造, 但若黏度平均分子量超過2萬2000,則此時之轉印性亦降 低。 本發明之光學薄片雖係使芳香族聚碳酸酯樹脂組成物 擠出成型而製造,但於(A)成份之芳香族聚碳酸酯及(B )成份之抗氧化劑以外,亦可微量添加熱可塑性聚丙烯酸 烷酯系樹脂作爲(C)成份。微量添加(C)成份,可進一 步提高分光特性。 (C )成份較好以使(A )成份/ ( C )成份之比例爲 99.99/0.01~ 99.00/1.00 (質量比)之方式添加。更好爲 99.95/0.05~ 99.50/0.50,最好爲 99·90/0·10〜99.70/0.30。 -19- 201003161 藉由使(C)成份之添加比例成爲0.01以上’可提高成型 體之透明性,藉由成爲1. 〇 0以下’可不損及其他所需物 性之下保持透明性。 至於(C)成份之熱可塑性聚丙烯酸烷酯系樹脂亦可 爲以自丙烯酸、丙烯酸酯、丙烯腈及其衍生物之單體單位 所選出之至少一種作爲重複單位之聚合物、均聚物或與苯 乙烯、丁二烯等之共聚物。具體而言’可舉例爲聚丙烯酸 、聚甲基丙烯酸甲酯(PMMA)、聚丙烯腈、丙烯酸乙酯-丙烯酸-2-氯乙酯共聚物、丙烯酸正丁酯-丙烯腈共聚物、 丙烯腈-苯乙烯共聚物 '丙烯腈-丁二烯共聚物、丙烯腈-丁 二烯-苯乙烯共聚物等。該等中,尤其適宜使用聚甲基丙 烯酸甲酯(PMMA)。至於聚甲基丙烯酸甲酯(PMMA ) 可以使用公知者,但通常較好爲在過氧化物、偶氮系聚合 起始劑存在下,使甲基丙烯酸甲酯單體經塊狀聚合而製造 者。 (C)成份之熱可塑性聚丙烯酸烷酯系樹脂較好分子 量爲200〜1 〇萬,更好爲2萬〜6萬。藉由使分子量爲 2 0 0〜10萬,於成型時,由於(A )成份與(C )成份間之 相分離不會過度加速,而可獲得充分透明性之光學薄片。 本發明光學薄片之製造方法並無特別限制,但可依據 下述之本發明光學薄片之製造方法製造所需之光學薄片。 本發明之光學薄片之製造方法,包含:使前述芳香族 聚碳酸酯樹脂組成物熔融擠出成薄片狀之成型步驟,使熔 融擠出之薄片狀成型體急速冷卻至玻璃轉移溫度以下之冷 -20- 201003161 卻步驟,以及將冷卻之薄片狀成型體在50°C以上、前述聚 碳酸酯樹脂之玻璃轉移溫度以下進行熱處理之熱處理步驟 〇 前述冷卻步驟’藉由使前述薄片狀成型體通過流下有 冷卻水之隙縫’可使前述薄片狀成型體冷卻。又,前述熱 處理步驟可藉由以具有鏡面之金屬製環型帶及/或金屬輥 ,挾住前述薄片狀成型體之表背面並加熱而實施。 至於擠出成型法’通常一般使用之具有3輥之薄片成 型機亦藉由選定成型條件’可製造可利用作爲導光板之光 學薄片。擠出機之汽缸溫度及模具溫度雖亦隨著樹脂組成 之差異、玻璃轉移溫度等而定,但可爲220〜340 °C,較好 爲 240~320 °C 左右。 以(A )成份/( c )成份之比例爲 99.99/0.01〜 99.00/ 1 · 00 (質量比)且以前述比例含有(b )抗氧化劑之 樹脂組成物作爲原料進行擠出成型時,令以上述熔融擠出 所得之薄片狀成型體急速冷卻至玻璃轉移溫度以下之冷卻 步驟具有重要性,使用具備此等冷卻步驟之擠出成型裝置 ’可獲得光學透明度更高之光學薄片。 冷卻溫度有必要成爲玻璃轉移溫度以下,較好爲 140°C以下’再者更好爲i2(TC以下。藉由使冷卻溫度成爲 玻璃轉移溫度以下,可使光學薄片於厚度〇.1~1 mm下之全 光線透過率成爲9 1 %以上。冷卻溫度下限亦隨著樹脂組成 之差異、玻璃轉移溫度等而異,但可爲50 °C左右。藉由成 爲50°C以上,可確保於所形成之光學薄片中殘留變形少之 -21 - 201003161 光學各向同性。冷卻通常使用複數根輥進行。 擠出機之汽缸溫度爲220〜3 40 T: ’較好爲240〜3 20 °C左 右。 又,冷卻之薄片狀成型體,藉由於50 °C以上、前述芳 香族聚碳酸酯之玻璃轉移溫度以下進行熱處理之熱處理步 驟,由前述急速冷卻過程中引起的殘留變形一旦打開’可 藉賦形而獲得無皺紋之均勻厚度的延滯値低之光學薄片。 藉由使用具備該等製造步驟之擠出成型機’可抑制將 (A )成份 / ( C )成份比例爲 99.99/0.0 1 〜99.00/ 1. 00 (質 量比)之樹脂組成物自熔融狀態冷卻之過程中引起的相分 離,可抑制光線透過率降低。 具備該等步驟之製造法,舉例有彈性輥法或鋼帶法等 ,更好使用具備該等之擠出成型機。 至於鋼帶法,舉例有例如特許公開公報2004-23 0598 號公報中所揭示之製造法。 關於該製造法,係使所形成之薄片於捲裝成複數輥藉 由加熱輥部而加熱之環型帶上密著移動,接著使該薄片在 前述環型帶及輥之間進行面狀或線狀壓接後,將該薄片自 前述環型帶剝離獲得薄片之製造方法,自該薄片之與環型 帶相反側,使加熱之該薄片於移動時保溫及/或加熱(參 考圖1 )。保溫及/或加熱係藉由保溫板、吹出熱風、紅外 線而進行。 圖1中,1爲張力輥,2爲加熱輥,3爲冷卻輥’4爲 挾壓輥,5爲環型帶,6爲薄片供給輥,7爲張力輥,8爲 -22 - 201003161 加熱裝置。s爲轉印凹凸形狀前之薄片’ d表示挾壓輥4 與環型帶5之間所挾壓之薄片長度。 至於彈性輥法,舉例爲例如特許公開公報2〇〇4-155101號中所揭示之方法。 此製造法係於擠出機上安裝T型模具形成薄片’使該 薄片通過第一挾壓輥、第二挾壓輥、第三挾壓輥’以直線 狀並排複數移送輥而製造薄片,並通過捲取輥之製造方法 (參考圖2 )。 圖2中,21爲擠出機,22' 23、25爲挾壓輥,24爲 捲取輥,26a、26b、26c爲移送輥。 接著,對前述光學薄片表面上形成凹凸圖案之導光板 等之本發明成型體加以說明。 藉由以上特性、組成、製造方法所得之光學薄片,藉 由在其表面上形成微細凹凸圖案作爲成型體,使配光控制 成爲可能,而可使用作爲導光板、擴散薄片、遞回式反射 板、稜鏡薄片及夫瑞耳透鏡等。至於凹凸圖案,舉例爲點 形狀、凸透鏡形狀、凹透鏡形狀、V溝稜鏡形狀、三角錐 或四角錐等之多角錐稜鏡形狀等。 關於導光板’較好於凹凸圖案上附有梯度(濃淡)者 〇 若爲通常之擴散薄片、遞回式反射板及稜鏡薄片,較 好形成均一圖案。 又,於直下型背光板使用之擴散薄片時,於自光源上 之光源影到光源間之距離間形成凹凸圖案之濃淡,可實現 -23- 201003161 亮度之均一化。 至於此種凹凸圖案之形成法,舉例有輥壓花法、真空 加壓成型法、帶轉印法等。其中較好使用具有於帶狀薄板 不鏽鋼表面上鍍鎳箔上形成微細凹凸圖案製作模具,邊同 時搬送樹脂薄膜於上下進行旋轉之模具帶之間邊連續進行 加熱,加壓轉印、剝離各步驟之機構之裝置之帶轉印法( 例如特開2005 -3 2 1 6 8 1號公報)。此方法由於不需要抽真 空、升溫、降溫之時間,而可以高生產性進行朝大面積之 轉印(參見圖3 )。 圖3中,3 1爲加熱輥,3 2爲用以形成凹凸之轉印輥 ,3 3爲預加熱輥,3 4爲冷卻輥,3 5爲搬送輥,3 6爲環型 帶。左側箭頭爲轉印凹凸形狀前之光學薄片,右側箭頭爲 轉印後之光學薄片,亦即表示導光板等之成型體。 其他,可利用使用形成有微細凹凸圖案之模具將丙烯 酸系紫外線硬化樹脂邊壓著本發明之光學薄片邊以紫外線 硬化之微影蝕刻法或使用白色油墨之網版印刷法等。 藉由同時進行前述光學薄片成型與在表面上形成凹凸 圖案之步驟,可製造導光板等之成型體。具備該等同時步 驟之製造裝置,可較好地利用例如東芝機械股份有限公司 製造之連續擠出壓花成型機SPU-03026W(參考圖4)。 以圖4所示之裝置,藉由特定接觸輥之柔軟性使壓抵 長度加長,可提高轉印率。又,藉由輥間隙調整方式(壓 力感測器及定位感測器),使間隙、壓抵力之測定及控制 變成可能。 -24- 201003161 實施例 接著’藉由實施例及比較例更詳細說明本發明,但本 發明並非限定於該等例者。 實施例及比較例所使用之調配材料等如τ。 <調配材料> (1 )芳香族聚碳酸酯PC 1 TAFLON FN1700A[出光興產股份有限公司製之雙酌a 聚碳酸酯樹脂,玻璃轉移溫度:1 4 2 °c,黏度平均分子量 :17,300,折射率:1.585] (2)芳香族聚碳酸酯PC2 TAFLON FN 1 900A[出光興產股份有限公司製之雙酚A 聚碳酸酯樹脂,玻璃轉移溫度:145 °C,黏度平均分子量 :1 9,5 0 0,折射率:1 . 5 8 5 ] (3 )芳香族聚碳酸酯PC3 TAFLON FN2500A[出光興產股份有限公司製之雙酚A 聚碳酸酯樹脂,玻璃轉移溫度:148 °C,黏度平均分子量 :23,5 00,折射率:1 .5 85 ] (4 )磷系抗氧化劑 ADEGASTAB P E P 3 6 [旭電化(股)製之雙(2,6 -二-第 三丁基-4-甲基苯基)季戊四醇磷酸酯] (5 )酚系抗氧化劑 IRUGANOX 1 076[汽巴特用化學品(股)製之酚系抗 -25- 201003161 氧化劑,十八院基-3_( 3,5_二-第三丁基-4 -經基苯基)丙 酸酯],於表1,記載爲「IRG1076」。 (6 )熱塑性聚丙烯酸系樹脂 DAIANOL BR83[三菱嫘縈(股)製,分子量:25,〇〇〇 ,折射率1 .4 9 0,分子量係使用◦ s t w a r d型黏度管測定於 25°c氯仿溶液之極限黏度[η],由下式關係式求得平均聚合 度 ΡΑ 而計算。logPA=l_6131og([ri]xl〇4/8.29)]。 於表1,記載爲「丙烯酸酯樹脂」° (7 )藍色染料 HOSTALUX KSN[CLIANT 曰本(股)製,4-(苯并噁 唑-2 -基)-4’- (5 -甲基苯并噁唑-2 -基)二苯乙烯( S t i 1 b e n e s )與藍色顏料之混合物] <混練擠出> 使用轉磨機以表1所示之各實施例及比較例中之調配 比例混合各材料,使用螺桿直徑6 5 m m φ之單軸擠出機, 於2 80°C進行熔融混練壓出,製作於各例中使用之顆粒。 <光學薄片擠出成型> 條件1 (於實施例1 ~4及比較例1、2中適用) 藉由設有圖2所示之擠出機21之「三輥裝置」製造 光學薄片(厚度0.4mm )。使用擠出機2 1之螺桿直徑 65mm,T型模具寬度爲650mm、直徑300mm之第一挾壓 輥 22。第二挾壓輥 23及第三挾壓輥 25皆使用直徑 -26- 201003161 3 00mm之金屬輥。移送輥26係使用以直線狀並列3個直 徑70mm之金屬輕者。又,自最初移送輥26a到最終移送 輥2 6 c間之合計距離設爲3 m。 條件2 (於實施例5中適用) 使用Hitz產機技術股份有限公司製之UF輥挾壓擠出 成型機(彈性輥法-參考圖2)進行。擠出機之螺桿直徑爲 90mm ° 條件3 (於實施例6適用) 使用東芝機械股份有限公司製之連續擠出壓花成型機 SPU-03026W(參考圖4)以薄片形成獲得之薄片上,以鍍 鎳形成之壓模壓抵三角錐稜型陣列(高度5 0微米)同時 進行圖案轉印,藉此製作稜型薄片(圖案形成2)。擠出 機之螺桿直徑2 6mm φ、其他各部份之溫度如表1所記載 條件4 (於比較例3中適用) 除各部份溫度變更爲表1所示之溫度以外,其餘條件 與條件1相同般進行。 條件5 (於比較例4中適用) 使用模具夾緊力100噸之射出成型機[住友重機械工 業(股)製,品項S G 1 Ο Ο Μ - Η P ]以成型溫度3 6 0 °C (模具溫 -27- 201003161 度120°C )進行射出成形。 <藉由加壓成型之圖案轉印> 除實施例6以外之各實施例及各比較例中所製作之各 光學薄片以名機製作所製之微細圖案轉印用真空加壓機進 行真空吸引後,以鍍鎳形成之壓模壓抵三角錐稜型陣列( 高度50微米),於160 °C進行加壓成型,製作導光板(圖 案形成1 )。 <評價方法> (1 )全光線透過率 使用 SUGA試驗機股份有限公司製之濁度計(HGM-2DP )依據:FIS-K-7 1 05進行測定。 (2)薄片之分光光線透過率 厚度0.4mm之光學薄片樣品藉由島津製作所製之UV 可見光分光光度計(UV-245 0 )測定波長300nm之分光光 線透過率(% )。 (3 )雙折射率(延滯値)及其標準偏差値 藉由大塚電子股份有限公司製之延滯測定裝置( RETS-1 00 ),測定對於5 50nm之雙折射(延滯値)。 於本發明中,所謂任意處所,係由1 0 0 c m X 1 0 0 c m之 光學薄片之取樣,各測定處所係於相隔6 0 c m以上之兩處 所於4cmx4cm部份之1cm間距的3cmx3cm之格子上9處 合計1 8點進行測定。 -28- 201003161 計算式: 標準偏差(σ )= /"[{(Rei-ReJ2+(Re Re }2+.....+ (Re -Re )2)Xn] 2 av n av n表示測定之全部取樣數 Ren表示第η次取樣處之Re値 Reav表示Re之平均値。 (4)藉由溶液法之光學特性(分光光線透過率) a )樣品調製 切斷的樣品(6 g )放入三角燒瓶(5 0毫升)中並添加 二氯甲院予以融解,溶解時進行超音波照射3小時。 b)測定裝置:島津製作所UV-2450 c )測定條件: 測里盒(e e 11 )長度:5 c m 測定波長:9 0 0〜2 0 0微米 掃描速度:設定爲低速模式 狹縫寬度:2.0 n m 轉換波長:3 6 0nm d)測定順序 於測定2小時前將裝置立起並安定化後,測定基準線 ,接著,於500nm測定自動歸零(autozero ),藉由測定 是否爲零點加以確認。 使用二氯甲烷及丙酮充分洗淨,待測量盒溫度成爲室 溫後,於測量盒溫度恢復之時點,添加測定溶液,將測量 盒放入測定室蓋上蓋子,放置大約1分鐘後,開始測定。 -29- 201003161 測定結束後’取出測定溶液並洗淨,變更樣品重複操作。 (5)凹凸圖案之轉印 對於實施例1〜6及比較例1〜4所得之各導光板,以反 映亮度特性之圖案轉印率代替亮度評價實施。 轉印率(% )=[轉印之導光板三角錐高度(微米)/壓 模中之三角錐高度(50微米)]x 1〇〇 [實施例1~6] 使用利用表1所示之調配材料進行熔融混練擠出所製 作之各顆粒’使用「條件1」、「條件2」或「條件3」之 成型條件製作光學薄片,於各光學薄片上進行前述圖案形 成1(實施例1〜5)或圖案形成2 (實施例6)製作導光板 。各條件中之各處溫度如表1所記載。 [比較例1 ~ 4 ] 使用利用表1所不之調配材料進行熔融混練擠出所製 作之各顆粒,使用「條件1」、「條件4」或「條件5」之 成型條件製作光學薄片,於各光學薄片上進行前述圖案形 成1製作導光板。各條件中之各處溫度如表1所記載。 -30- 201003161Trimethylphenyl triethyl phosphate, ester, and the like. Change day, trioctyl phosphate, triphenyl, bis(nonylphenyl) phosphate, 2 - these phosphorus antioxidants can be used alone with 2-ethylphenyl diphenyl phosphate, or two More than one kind. Among these antioxidants, 'preferably distearyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl) pentaerythritol phosphite, double (2,6--- Tributyl-4_methylphenyl)pentaerythritol phosphite, bis(2,4-di-t-butylphenyl)phosphite, in the pentaerythritol system, preferably bis(2,6-di- Third butyl-4_methylphenyl)pentaerythritol phosphite @ ° Phosphorus-based antioxidants may be used singly or in combination of two or more. Phosphorus-based antioxidants may be directly used in the market, for example, Asahi Chemical Industry Co., Ltd. Products [product name: ADEKASTAB 2112], CLIENT Japan company products [SANDOSTAB P-EPQ], Sumitomo Chemical Co., Ltd. products [SUMILYZER ?-168], Ciba Jiaji products [three (2,4-di-t-butyl) Phenyl) phosphite, trade name · · IRGANOX 168], Asahi (stock) products [trade name _· ADEKASTAB PEP36]. As for the phenolic antioxidants, exemplified are α-tocopherol, butylhydroxytoluene, cinnamyl alcohol, vitamin Ε, n-octyl-3-yl-3-(3,5-mono-t-butyl-4-hydroxyphenyl) Propionate, 2-tert-butyl-6-(3'-tert-butyl-5'-methyl-2, hydroxybenzyl)-4-methylphenyl acrylate, 2,6-di -T-butyl-4-(anthracene, fluorenyl-dimethylaminomethyl)phenol, 3,5·di-t-butyl--14-201003161 Diethyl 4-hydroxybenzylphosphonate, 2 , 2'-methylenebis(4-methyl-6-tert-butylphenol), 2,2'-methylenebis(4-ethyl-6-tert-butylphenol), 4,4 '-Methylene bis(2,6-di-t-butylphenol), 2,2'-methylenebis(4-methyl-6-cyclohexylphenol), 2,2'-dimethylene Bis(6-α;-methyl-benzyl-p-cresol), 2,2'-ethylenebis(4,6-di-t-butylphenol), 2,2'-butylene - bis(4-methyl-6-tert-butylphenol), 4,4'-butylene bis(3-methyl-6-tert-butylphenol), triethylene glycol-N-bis-3 - (3-tert-butyl-4-hydroxy-5-methylphenyl)propionate, 1,6-hexanediol bis[3-(3,5-di-t-butyl-4- Hydroxyphenyl)propionate], Bis[2-t-butyl-4-methyl-6-(3-t-butyl-5-methyl-2-hydroxybenzyl)phenyl]terephthalate, 3,9-double { 2-[3-(3-Tertibutyl-4-hydroxy-5-methylphenyl)propanoxy]-1,1-dimethylethyl}-2,4,8,10-tetra Oxaspiro[5,5]undecane, 4,4'-thiobis(6-tert-butyl-m-cresol), 4,4'-thiobis(3-methyl-6-) Third butyl phenol), 2,2'-thiobis(4-methyl-6-tert-butylphenol), bis(3,5-mono-% dibutyl-4-hydrazino) Sulfuric acid; 4,4'-mono-thiobis(2,6-di-t-butylphenol), 4,4'-tris-thiobis(2,6-di-t-butylphenol), 2,2-thiodiethylhexyl-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 2,4-bis(n-octylthio)- 6-(4-Hydroxy-3',5'-di-t-butylanilino)-1,3,5-triazine, N,N'-hexamethylenebis-(3,5-di- Tert-butyl-4-hydroxyhydrocinnamate, 1^,'-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propanyl]bipyridine, 1, 1,3-tris(2-ethyl-4-hydroxy-5-t-butylphenyl)butane, 1,3,5-trimethyl- 2,4,6-tris(3,5-di -T-butyl-4-hydroxyl Benzyl)benzene, tris(3,5-di-t-butyl-4-hydroxyphenyl)isocyanurate, tris(3,5-di-tert-butyl-4- -15- 201003161 hydroxy Benzyl)isocyanurate, 1,3,5-tris(3,5-di-t-butyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris(4- Third butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 1,3,5-tri 2[3-( 3,5-di-t-butyl-4- Hydroxyphenyl)propoxycarbonyl]ethylisocyanurate, and 肆[3-(3,5-di-t-butyl-4-hydroxyphenyl)propoxymethyl]methane. These can be easily obtained. Among them, n-octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, i,3,5-trimethyl-2,4, 6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, 1,3,5-tris(3,5-di-t-butyl-4-hydroxybenzyl)isocyano Urea '肆[3-(3,5-di-t-butyl-4-hydroxyphenyl)propanoxymethyl]methane, preferably n-octadecyl-3-(3, 5-di-t-butyl-4-hydroxyphenyl)propionate. The hindered phenol-based antioxidant may be used singly or in combination of two or more. For the phenolic antioxidant, a commercially available product can be used as it is, for example, a product of Asahi Kasei Kogyo Co., Ltd. [trade name: ADEKASTAB AO-80], a product of Asahi Kasei Kogyo Co., Ltd. [trade name: ADEKASTAB AO-30], a chemical for steam batter ( Products) [product name: IRGANOX 101 0, IRGANOX 1076] and so on. The antioxidant of the component (B) may be one or more kinds of the above-mentioned phosphorus-based antioxidants, or one or more kinds of phenol-based antioxidants may be used, or one or more kinds of phosphorus-based antioxidants and one or more kinds of phenol-based antioxidants may be used in combination. . The amount thereof is in the range of 0.01 to 1 part by mass, preferably 0.05 to 0.3 part by mass, based on 100 parts by mass of the aromatic polycarbonate of the component (A). By being such a range, a preferable characteristic as an optical sheet can be obtained. -16- 201003161 The optical sheet of the present invention has a total light transmittance of 91% or more at a thickness of ο·1 to 1 mm, and is cooled to a temperature below the glass transition temperature after being extruded from an extruder. The total light transmittance is made 91% or more. It is preferably from 9 1 . 5 to 9 2 %. By reducing the total light transmittance to 91% or more, it is possible to prevent the brightness from being lowered. More than 92% of them have difficulty in industrial production due to the absorption of the molecular skeleton derived from aromatic polycarbonate. In general, the molecular alignment caused by the shearing force of the injection molded product during injection molding is directly cooled in the mold, and the residual stress is increased due to the molecular alignment being frozen, and the residual stress is near the entrance of the mold and the opposite inlet end. It becomes uneven. In general, since the residual stress of the peripheral portion of the inlet is greatly deformed, the delay lag has a tendency to show a larger measurement. On the other hand, the conditions of the sheet produced by extrusion molding, the material viscosity (depending on the viscosity average molecular weight) may lower the retardation enthalpy, and may easily delay the distribution of enthalpy in the sheet product. Uniformity. Therefore, it is possible to obtain a light guide plate which exhibits a higher quality than the light guide plate obtained by injection molding. By setting the delay 値 to 150 nm or less and measuring the hysteresis 値 standard deviation 取样 measured at any position in the sheet surface to be 1 〇 or less, it is possible to prevent the backlight of the light guide plate after the optical sheet processing from being mounted on the liquid crystal panel. As a display device, the display quality is lowered. The retardation enthalpy is preferably 1 〇〇 nm or less, more preferably 50 nm or less. In the optical sheet of the present invention, it is preferred to use a visible light-UV spectroscopic spectrum measured by a thickness of 〇4 mm, a spectral light transmittance of 70% or more at a wavelength of 300 nm or an aromatic polycarbonate dissolved in a good solvent. Measured 201003161 Spectral light transmittance (measured according to the solution method: the light guide length of the solution measuring box is 5 cm, the sample solution concentration is 12 g/dl 'solvent methylene chloride, the wavelength is 45 0 nm), and the aromatic polycarbonate resin is 94% or more. (A) component of the polycarbonate resin composition. In general, in a light guide plate formed by using an optical sheet, light having a wavelength of 400 to 700 nm incident from a visible light region from the end surface is guided and propagated in the end direction, and surface light is emitted by controlling the light directivity in the thickness direction (surface direction). The light incident on the end face direction is emitted from the opposite end surface, and the light splitting property of the light guide plate can be evaluated by measuring the light splitting characteristics of the light. However, in these measurements, it is necessary to prepare a special measuring device for the measurement of a thin molded piece of 1 mm or less, which is actually difficult. Therefore, in the measurement evaluation of the present invention, the characteristics of the sheet were easily evaluated by the spectral characteristics in the thickness direction (surface direction). When the thickness of the sheet is as thin as 1 mm or less, the transmittance of the spectroscopic light transmitted through the visible light in the thickness direction is difficult to detect the difference in the spectral characteristics inherent to the sheet substrate. However, even if the spectral characteristics of the thickness direction are measured, it is possible to evaluate the difference in spectral characteristics by focusing on a wavelength of 3 8 nm or less in the ultraviolet light region. That is, the measurement result of the spectral transmittance of 300 to 3 80 nm does not directly reflect the spectral transmittance of the visible light region by the measurement of the thickness direction, but relatively reflects the visible light in the direction of the end face in conjunction with the spectral transmittance of 300 to 380 nm. The tendency of the spectral characteristics of the wavelength region can be substituted. Specifically, the optical resin substrate having a high spectral transmittance of 300 to 380 nm measured in the thickness direction tends to have a high spectral characteristic in the visible light wavelength region when measured in the end surface direction. The spectral light transmittance is less than -18 - 201003161 70°/. At the time, since the light guiding performance is insufficient, the brightness is lowered. Better than 73%. In the optical sheet of the present invention, the (A) aromatic polycarbonate has a viscosity average molecular weight of 22,000 or less, preferably 14 Å to 2 Å (?). Better for 15〇00~ 1 9000. If it is less than 14 inches, the strength of the product is insufficient, and the yield due to the adhesion of the cut powder during the processing of the product is also reduced. In particular, when the thickness of the optical sheet is a thin shape of 〇 _ 3 mm or less, there is a tendency that the strength is insufficient and the yarn is easily broken. When the viscosity average molecular weight exceeds 22,000, it is determined by the extrusion molding conditions, but the yellowing or retardation of the resin substrate tends to be large, and the total light transmittance is difficult to reach 91%. Further, the resin sheet such as a light guide plate can be formed by transferring a fine concavo-convex pattern (a prismatic shape or a point-shaped convex shape) of several micrometers to several hundreds micrometers on the surface of the sheet by roll embossing or press molding. It is produced by a concavo-convex pattern. However, if the viscosity average molecular weight exceeds 22,000, the transfer property at this time also decreases. The optical sheet of the present invention is produced by extrusion molding an aromatic polycarbonate resin composition, but may be added with a small amount of thermoplasticity in addition to the aromatic polycarbonate of the component (A) and the antioxidant of the component (B). A polyalkyl acrylate resin is used as the component (C). Adding a small amount of (C) component can further improve the spectral characteristics. The component (C) is preferably added in such a manner that the ratio of the component (A) / (C) is from 99.99 / 0.01 to 99.00 / 1.00 (mass ratio). More preferably, it is 99.95/0.05~99.50/0.50, preferably 99.90/0·10~99.70/0.30. -19-201003161 By increasing the ratio of the addition of the component (C) to 0.01 or more, the transparency of the molded article can be improved, and the transparency can be maintained without impairing other desired properties by being 1. 〇 0 or less. The thermoplastic polyalkyl acrylate resin of the component (C) may be at least one polymer, homopolymer or a repeating unit selected from monomer units of acrylic acid, acrylate, acrylonitrile and derivatives thereof. Copolymer with styrene, butadiene, and the like. Specifically, 'polyacrylic acid, polymethyl methacrylate (PMMA), polyacrylonitrile, ethyl acrylate-acrylic acid 2-chloroethyl ester copolymer, n-butyl acrylate-acrylonitrile copolymer, acrylonitrile a styrene copolymer 'acrylonitrile-butadiene copolymer, acrylonitrile-butadiene-styrene copolymer, and the like. Among these, it is particularly preferable to use polymethyl methacrylate (PMMA). As the polymethyl methacrylate (PMMA), a known one can be used, but it is usually preferred to produce a methyl methacrylate monomer by bulk polymerization in the presence of a peroxide or an azo polymerization initiator. . The (C) component of the thermoplastic polyalkyl acrylate resin preferably has a molecular weight of 200 to 1 million, more preferably 20,000 to 60,000. By setting the molecular weight to 200 to 100,000, the phase separation between the component (A) and the component (C) is not excessively accelerated during molding, and an optical sheet having sufficient transparency can be obtained. The method for producing the optical sheet of the present invention is not particularly limited, but a desired optical sheet can be produced in accordance with the method for producing an optical sheet of the present invention described below. The method for producing an optical sheet of the present invention comprises the step of melt-extruding the aromatic polycarbonate resin composition into a sheet form, and rapidly cooling the melt-extruded sheet-like formed body to a temperature below the glass transition temperature - 20-201003161 However, the heat treatment step of heat-treating the cooled sheet-like formed body at 50 ° C or higher and below the glass transition temperature of the polycarbonate resin, the cooling step 'by passing the sheet-like formed body down through The slit of the cooling water can cool the aforementioned sheet-like formed body. Further, the heat treatment step can be carried out by rubbing the front and back surfaces of the sheet-like molded body with a mirror-shaped metal ring-shaped belt and/or a metal roll. As for the extrusion molding method, a three-roll sheet forming machine which is generally used generally can also manufacture an optical sheet which can be utilized as a light guide plate by selecting molding conditions. The cylinder temperature and the mold temperature of the extruder may vary depending on the composition of the resin, the glass transition temperature, etc., but may be 220 to 340 ° C, preferably about 240 to 320 ° C. When the ratio of the component (A)/(c) is 99.99/0.01 to 99.00/1·00 (mass ratio) and the resin composition containing the antioxidant (b) in the above ratio is used as a raw material for extrusion molding, It is important to cool the sheet-like formed body obtained by the above melt-squeezing to a glass transition temperature or less, and an optical sheet having higher optical transparency can be obtained by using an extrusion molding apparatus having such a cooling step. The cooling temperature needs to be below the glass transition temperature, preferably 140 ° C or less. Further, it is preferably i2 (TC or less. By setting the cooling temperature to be below the glass transition temperature, the optical sheet can be made to have a thickness of 1.1~1. The total light transmittance under mm is 91% or more. The lower limit of the cooling temperature varies depending on the difference in resin composition, glass transition temperature, etc., but may be about 50 ° C. By setting it to 50 ° C or higher, it is ensured 21 - 201003161 optically isotropic in the formed optical sheet. Cooling is usually carried out using a plurality of rolls. The cylinder temperature of the extruder is 220~3 40 T: 'Better 240~3 20 °C Further, the cooled sheet-like molded body is subjected to a heat treatment step of heat treatment at 50 ° C or higher and a glass transition temperature of the aromatic polycarbonate, and the residual deformation caused by the rapid cooling process is once opened. Forming to obtain a wrinkle-free uniform thickness of the retarded optical sheet. By using an extrusion molding machine having such manufacturing steps, the ratio of the (A) component / (C) component can be suppressed to 99.99. /0.0 1 to 99.00 / 1. 00 (mass ratio) The phase separation caused by the resin composition cooling from the molten state can suppress the decrease in light transmittance. The manufacturing method having such steps is exemplified by an elastic roll method or For the steel strip method, the extrusion molding machine having the above-described ones is preferably used. As for the steel strip method, for example, the manufacturing method disclosed in Japanese Laid-Open Patent Publication No. 2004-23 0598 is used. The sheet is adhered to the ring-shaped belt heated by the heating roller portion by being wound into a plurality of rolls, and then the sheet is pressed in a planar or linear shape between the ring-shaped belt and the roller, and then the sheet is pressed. A method for producing a sheet obtained by peeling off the above-mentioned endless belt, from the side opposite to the endless belt of the sheet, allowing the heated sheet to be kept warm and/or heated while moving (refer to FIG. 1). The heat preservation and/or heating is performed by The heat insulating plate is blown with hot air and infrared rays. In Fig. 1, 1 is a tension roller, 2 is a heating roller, 3 is a cooling roller '4 is a rolling roller, 5 is a ring belt, 6 is a sheet feeding roller, and 7 is a tension. Roller, 8 is -22 - 201003161 heating device. s is turning The sheet "d" before the uneven shape indicates the length of the sheet which is pressed between the pressing roll 4 and the endless belt 5. As the elastic roll method, for example, the method disclosed in Japanese Laid-Open Patent Publication No. Hei-4-155101 is exemplified. The manufacturing method is such that a T-die is formed on an extruder to form a sheet, and the sheet is produced by a first rolling roll, a second rolling roll, and a third rolling roll, and the plurality of transfer rolls are linearly arranged to form a sheet. The manufacturing method of the take-up roll (refer to Fig. 2). In Fig. 2, 21 is an extruder, 22' 23, 25 are rolling rolls, 24 is a take-up roll, and 26a, 26b, and 26c are transfer rolls. A molded article of the present invention such as a light guide plate having a concave-convex pattern formed on the surface of the optical sheet will be described. The optical sheet obtained by the above characteristics, composition, and manufacturing method can be used as a light guide plate, a diffusion sheet, and a reversing type reflector by forming a fine concavo-convex pattern on the surface thereof as a molded body. , enamel sheets and Freire lenses. As the concavo-convex pattern, for example, a polygonal shape such as a dot shape, a convex lens shape, a concave lens shape, a V-groove shape, a triangular pyramid or a quadrangular pyramid, or the like can be given. It is preferable that the light guide plate ′ is attached with a gradient (darkness) on the concave-convex pattern. 〇 If it is a normal diffusion sheet, a reversing reflection sheet, and a ruthenium sheet, it is preferable to form a uniform pattern. Further, in the case of the diffusion sheet used in the direct type backlight, the brightness of the concave-convex pattern is formed between the distance from the light source on the light source to the distance between the light sources, and the brightness can be uniformized by -23-201003161. As a method of forming such a concavo-convex pattern, there are exemplified by a roll embossing method, a vacuum press molding method, a belt transfer method, and the like. Among them, it is preferable to use a mold having a fine concavo-convex pattern formed on a nickel-plated foil on the surface of a strip-shaped thin stainless steel, and to continuously heat the resin film while rotating the resin film, and to perform pressure transfer and peeling steps. The belt transfer method of the device of the mechanism (for example, JP-A-2005-3 2 1 6 8 1). This method allows high-productivity transfer to a large area because it does not require vacuuming, temperature rise, and temperature reduction (see Figure 3). In Fig. 3, 3 1 is a heating roller, 32 is a transfer roller for forming irregularities, 3 3 is a preheating roller, 34 is a cooling roller, 35 is a conveying roller, and 36 is a ring belt. The left arrow is the optical sheet before the transfer of the uneven shape, and the right arrow is the transferred optical sheet, that is, the molded body such as the light guide plate. In addition, a lithographic etching method in which an acrylic-based ultraviolet curable resin is pressed against an optical sheet of the present invention by ultraviolet rays using a mold having a fine concavo-convex pattern, or a screen printing method using white ink can be used. A molded body such as a light guide plate can be produced by simultaneously performing the steps of forming the optical sheet and forming a concave-convex pattern on the surface. For the manufacturing apparatus having such simultaneous steps, for example, a continuous extrusion embossing machine SPU-03026W manufactured by Toshiba Machine Co., Ltd. (refer to Fig. 4) can be preferably used. With the apparatus shown in Fig. 4, the transfer length can be increased by lengthening the pressing length by the flexibility of the specific contact roller. Further, by the roll gap adjusting method (pressure sensor and positioning sensor), it is possible to measure and control the gap and the pressing force. -24-201003161 EXAMPLES Next, the present invention will be described in more detail by way of examples and comparative examples, but the invention is not limited thereto. The formulation materials used in the examples and comparative examples are, for example, τ. <Materials> (1) Aromatic Polycarbonate PC 1 TAFLON FN1700A [Aluminum resin made by Idemitsu Kosan Co., Ltd., polycarbonate resin, glass transition temperature: 1 4 2 °c, viscosity average molecular weight: 17,300 , Refractive index: 1.585] (2) Aromatic polycarbonate PC2 TAFLON FN 1 900A [Bisphenol A polycarbonate resin manufactured by Idemitsu Kosan Co., Ltd., glass transition temperature: 145 ° C, viscosity average molecular weight: 19 , 500, refractive index: 1. 5 8 5 ] (3) Aromatic polycarbonate PC3 TAFLON FN2500A [bisphenol A polycarbonate resin manufactured by Idemitsu Kosan Co., Ltd., glass transition temperature: 148 °C, Viscosity average molecular weight: 23,5 00, refractive index: 1.55 85 ] (4) Phosphorus-based antioxidant ADEGASTAB PEP 3 6 [Asahito Chemical Co., Ltd. double (2,6-di-t-butyl-4) -Methylphenyl)pentaerythritol phosphate] (5) Phenolic antioxidant IRUGANOX 1 076 [Vapor-based chemical (Stock) phenolic anti--25- 201003161 oxidant, 18-yard-3 - 3,5 _Di-t-butyl-4-cyclopropylphenyl)propionate] is described in Table 1 as "IRG1076". (6) Thermoplastic polyacrylic resin DAIANOL BR83 [Mitsubishi 嫘萦 (manufactured by Mitsui), molecular weight: 25, yttrium, refractive index 1.49, molecular weight is determined by ◦ stward type viscosity tube in 25 °c chloroform solution The ultimate viscosity [η] is calculated by the average degree of polymerization ΡΑ obtained by the following equation. logPA=l_6131og([ri]xl〇4/8.29)]. In Table 1, it is described as "Acrylate resin" ° (7) Blue dye HOSTALUX KSN [CLIANT 曰本(股), 4-(benzoxazol-2-yl)-4'- (5-methyl a mixture of benzoxazole-2-yl stilbene (S ti 1 benes ) and a blue pigment] <kneading extrusion> using a rotator in each of the examples and comparative examples shown in Table 1 Each material was mixed in a blending ratio, and a single-axis extruder having a screw diameter of 6 5 mm φ was used for melt-kneading at 280 ° C to prepare pellets for use in each of the examples. <Optical Sheet Extrusion> Condition 1 (Applicable to Examples 1 to 4 and Comparative Examples 1 and 2) An optical sheet was produced by the "three-roller apparatus" provided with the extruder 21 shown in Fig. 2 ( Thickness 0.4mm). The first nip roll 22 of the extruder 2 1 having a screw diameter of 65 mm and a T-die width of 650 mm and a diameter of 300 mm was used. The second nip roller 23 and the third nip roller 25 are both metal rollers having a diameter of -26 - 201003161 3 00 mm. The transfer roller 26 is formed by juxtaposing three metal beams having a diameter of 70 mm in a straight line. Further, the total distance between the first transfer roller 26a and the final transfer roller 2 6 c was set to 3 m. Condition 2 (applicable in Example 5) was carried out using a UF roll squeezing extruder (elastic roll method - see Fig. 2) manufactured by Hitz Machine Technology Co., Ltd. The screw diameter of the extruder was 90 mm °. Condition 3 (Applicable to Example 6) Using a continuous extrusion embossing machine SPU-03026W (refer to FIG. 4) manufactured by Toshiba Machine Co., Ltd., the sheet was formed into sheets, A stamper formed of nickel plating was pressed against a triangular pyramid array (height of 50 μm) while pattern transfer was performed, thereby producing a prismatic sheet (pattern formation 2). The screw diameter of the extruder is 2 6 mm φ, and the temperature of the other parts is as shown in Table 1 (Applicable in Comparative Example 3). The conditions and conditions are changed except that the temperature of each part is changed to the temperature shown in Table 1. 1 is carried out in the same way. Condition 5 (Applicable in Comparative Example 4) An injection molding machine using a mold clamping force of 100 tons [manufactured by Sumitomo Heavy Industries Co., Ltd., item SG 1 Ο Ο Μ - Η P ] at a molding temperature of 3 60 ° C (Mold temperature -27-201003161 degrees 120 °C) Injection molding. <Pattern Transfer by Press Forming> Each of the optical sheets produced in each of the examples and the comparative examples except for Example 6 was vacuum-dried by a vacuum press machine for fine pattern transfer manufactured by a famous machine. After the suction, a stamper formed of nickel plating was pressed against a triangular pyramidal array (having a height of 50 μm), and pressure-molded at 160 ° C to prepare a light guide plate (pattern formation 1). <Evaluation method> (1) Total light transmittance The turbidity meter (HGM-2DP) manufactured by SUGA Test Machine Co., Ltd. was used for measurement according to FIS-K-7 195. (2) Spectral light transmittance of the sheet The optical sheet sample having a thickness of 0.4 mm was measured for a light transmittance (%) at a wavelength of 300 nm by a UV visible light spectrophotometer (UV-245 0) manufactured by Shimadzu Corporation. (3) Birefringence (delay 値) and its standard deviation 双 Birefringence (delay 値) for 5 50 nm was measured by a retardation measuring device (RETS-1 00) manufactured by Otsuka Electronics Co., Ltd. In the present invention, any space is sampled by an optical sheet of 100 cm X 1 0 0 cm, and each measurement space is placed at a grid of 3 cm x 3 cm at a distance of 1 cm apart from each other at a distance of 60 cm or more at a distance of 4 cm x 4 cm. The measurement was performed at a total of 18 points on the top 9. -28- 201003161 Calculation formula: Standard deviation (σ ) = /"[{(Rei-ReJ2+(Re Re }2+.....+ (Re -Re )2)Xn] 2 av n av n indicates measurement The total number of samples Ren indicates that Re 値 Reav at the nth sampling indicates the average Re of Re. (4) Optical properties by solution method (light ray transmittance) a) Sample modulating the cut sample (6 g ) The flask was placed in a conical flask (50 ml) and added with a dichlorocarbyl solution to dissolve. When dissolved, ultrasonic irradiation was performed for 3 hours. b) Measuring device: Shimadzu Corporation UV-2450 c) Measurement conditions: Measuring box (ee 11) Length: 5 cm Measuring wavelength: 9 0 0~2 0 0 μm Scanning speed: set to low speed mode Slit width: 2.0 nm Conversion wavelength: 3 60 nm d) Measurement procedure After the device was stood up and stabilized 2 hours before the measurement, the reference line was measured, and then autozero was measured at 500 nm, and it was confirmed by measuring whether it was zero or not. Wash thoroughly with dichloromethane and acetone. After the temperature of the measuring box becomes room temperature, add the measurement solution at the time when the temperature of the measuring box recovers. Place the measuring box on the lid of the measuring chamber cover and let it stand for about 1 minute. . -29- 201003161 After the measurement is completed, the measurement solution is taken out and washed, and the sample is changed repeatedly. (5) Transfer of concave-convex pattern Each of the light guide plates obtained in Examples 1 to 6 and Comparative Examples 1 to 4 was subjected to a pattern transfer rate reflecting the luminance characteristics instead of the brightness evaluation. Transfer rate (%) = [transfer guide plate triangular cone height (micron) / triangular cone height in the stamper (50 micrometers)] x 1 〇〇 [Examples 1 to 6] Using the use shown in Table 1 The preparation material was subjected to melt kneading and extrusion, and each of the particles produced by the conditions of "Condition 1", "Condition 2" or "Condition 3" was used to produce an optical sheet, and the pattern formation 1 was performed on each of the optical sheets (Example 1 to 5) or pattern formation 2 (Example 6) A light guide plate was produced. The temperatures in each of the conditions are as shown in Table 1. [Comparative Examples 1 to 4] Using the molding conditions of "Condition 1", "Condition 4" or "Condition 5", each of the pellets produced by melt-kneading extrusion using the blending materials of Table 1 was used to produce an optical sheet. The light guide plate is formed by performing the pattern formation 1 on each of the optical sheets. The temperatures in each of the conditions are as shown in Table 1. -30- 201003161

實施例 比較例 調配例 1 2 3 4 5 6 1 2 3 4 PCI 芳香族聚碳酸醋 黏度平均分子量Π300 TAFLON FN 1700Α 100 100 100 100 100 100 100 PC2 芳香族聚碳酸酯 黏度平均分子量19500 TAFLON FN 1900A 100 100 PC3 芳香族聚碳酸酯 黏度平均分子量23500 TAFLON FN 2500A 100 PEP36 磷系抗氧化劑 0.1 - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 IRG1070 酚抗氧化劑 - 0.1 - - - - - - BR83 丙烯酸酯樹脂 - - 0.1 0.1 0.1 0.1 0.1 - 0.1 0.1 藍色色劑 CLIENT日本(股)公司 製之 HOSTALUX KSN - - - - - - 0.001 - 混練擠出 上述調配以轉磨機混合,於螺桿直徑65mm φ之單: tt擠出機中於28(TC進行熔融混練擠出,作成顆粒。 薄片成型 3輕擠出成型裝置 條件 條件 條件 條件 1 條件 條件1 條件 4 條件5 汽缸溫度(°C) 260 260 260 260 260 260 260 - 模具溫度 250 250 250 250 250 250 250 第一輥溫度 120 120 120 120 120 120 170 - 第二輥溫度 130 130 130 130 130 130 160 - 第三輥溫度 130 130 130 130 - 130 130 130 - 彈性輕法 HITZ產機技術(股)製 UF輥挾壓擠出成型機 條件 2 汽缸溫度fc) - - - 260 - - - 模具溫度 - - - 250 - - - - - 第一輥溫度 - - - 100 - - - - - 第二輥溫度 - - - 125 - - - - - 第三輥溫度 - - - - 125 - - - - - 薄片成型同時 進行轉印成型 [V溝稜鏡陣列 (溝距:50μηι, 溝深:25μιη,頂 角:90度)] 圖案形成2」 東芝機械(股)製連續 擠出壓花成型機 SPU-03026W 條件 3 汽缸溫度(°C) - - - - - 260 - - - - 模具溫度 - - - - 250 - - - - 第一輥溫度 - - - - 110 - - - - 第二壓花輥溫度 - - - - 120 - - - - 第三輥溫度 - - - - - 110 - - - - 射出成型 - - - - - - - - - 模具挾持力 100噸之成型 機成型溫度 380〇C 光學薄片之光 學特性 全光線透過率(%) 91.2 91.1 91.3 91.3 91.3 91.3 90.8 90.5 90.4 90.5 波長300nm之分光光 線透過率(%) 70 73 77 76 77 77 71 26 65 58 波長550nm之延滯値 (nm) 100 100 100 130 18 130 250 100 100 300〜350 延滞之標準偏差値 5 7 8 7 1 2 12 6 7 35 藉溶液法之光 學特性 於波長450nm之分光 光線透過率(%) 95 95.5 96.0 95.8 96.0 96.0 94.3 94.0 95.5 95.8 藉加壓成型之 圖案轉印(三 角錐稜鏡陣列 (高度50微米)) 名機製作所製微細圖 案轉印真空加壓真空 [圖案形成1] 吸引後,於160°c成型 [圖案形成1] 替代亮度評價 而以反映導光 板亮度特性之 圖案轉印率實 施 轉印率(%) 98 98 98 98 96 96 95 98 98 75 -31 - 201003161 產業上之可能利用性 本發明之光學薄片係藉由使含特定芳香族聚碳酸醋之 樹脂組成物在特定條件下擠出成型而可控制固體構造中之 高次構造,藉由對應於用途使在表面上形成之凹凸圖案最 適化,而可加工成導光板、擴散薄片、遞回式反射板或提 高亮度之稜鏡薄片等。 【圖式簡單說明】 圖1爲顯示由鋼帶法之轉印步驟之模式圖。 圖2爲顯示由挾壓輥法之轉印步驟之模式圖。 圖3爲顯示由帶轉印法之轉印步驟之模式圖。 圖4爲同時進行薄片成型及凹凸圖案形成之步驟之製 造裝置模式圖。 【主要元件符號說明】 1 :張力輥 2 :加熱輥 3 :冷卻輥 4 :挾壓輥 5 :環型帶 6 :薄片供給輥 7 :張力輥 8 :加熱裝置 S :凹凸形狀轉印前之薄片 -32- 201003161 d:由挾壓輥與環型帶所挾壓之薄片長度 2 1 :擠出機 2 2 :挾壓輥 2 3 :挾壓輥 24 :捲取輥 2 5 :挾壓輥 2 6 a :移送輥 26b :移送輥 2 6 c :移送輥 3 1 :加熱輥 3 2 :用以形成凹凸之轉印輥 3 3 :預加熱輥 3 4 :冷卻輥 3 5 :搬送輥 3 6 :環型帶 -33-EXAMPLES Comparative Example Formulation 1 2 3 4 5 6 1 2 3 4 PCI Aromatic polycarbonate viscosity average molecular weight Π300 TAFLON FN 1700Α 100 100 100 100 100 100 100 PC2 Aromatic polycarbonate viscosity average molecular weight 19500 TAFLON FN 1900A 100 100 PC3 Aromatic polycarbonate viscosity average molecular weight 23500 TAFLON FN 2500A 100 PEP36 Phosphorus antioxidant 0.1 - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 IRG1070 Phenolic antioxidant - 0.1 - - - - - - BR83 Acrylate resin - - 0.1 0.1 0.1 0.1 0.1 - 0.1 0.1 Blue color agent CLIENT Japan made by HOSTALUX KSN - - - - - - 0.001 - Kneading extrusion The above compound is mixed by a rotary machine at a screw diameter of 65 mm φ: tt extruder In 28 (TC), melt-kneading and extrusion, making pellets. Sheet forming 3 Light extrusion molding equipment Condition conditions Conditions 1 Condition condition 1 Condition 4 Condition 5 Cylinder temperature (°C) 260 260 260 260 260 260 260 - Mold temperature 250 250 250 250 250 250 250 First roll temperature 120 120 120 120 120 120 170 - Second roll temperature 130 130 13 0 130 130 130 160 - Third roll temperature 130 130 130 130 - 130 130 130 - Elastic light method HITZ production machine technology (unit) UF roll press extrusion molding machine condition 2 Cylinder temperature fc) - - - 260 - - - Mold temperature - - - 250 - - - - - First roll temperature - - - 100 - - - - - Second roll temperature - - - 125 - - - - - Third roll temperature - - - - 125 - - - - - Sheet forming and transfer molding at the same time [V groove array (groove distance: 50μηι, groove depth: 25μιη, apex angle: 90 degrees)] Pattern formation 2" Toshiba Machine Co., Ltd. continuous extrusion embossing machine SPU-03026W Condition 3 Cylinder temperature (°C) - - - - - 260 - - - - Mold temperature - - - - 250 - - - - First roll temperature - - - - 110 - - - - Second embossing roll Temperature - - - - 120 - - - - Third roll temperature - - - - - 110 - - - - Injection molding - - - - - - - - - Mold holding capacity of 100 tons of molding machine forming temperature 380 〇 C optical sheet Optical characteristics Total light transmittance (%) 91.2 91.1 91.3 91.3 91.3 91.3 90.8 90.5 90.4 90.5 Spectral light transmittance at a wavelength of 300 nm (%) 70 73 77 76 77 77 71 26 65 58 Delay 値(nm) at a wavelength of 550 nm 100 100 100 130 18 130 250 100 100 300~350 Standard deviation of the delay 値5 7 8 7 1 2 12 6 7 35 The optical properties of the solution method are at a wavelength of 450 nm. Spectral light transmittance (%) 95 95.5 96.0 95.8 96.0 96.0 94.3 94.0 95.5 95.8 Pattern transfer by pressure molding (triangular cone array (height 50 μm)) Micro-pattern transfer vacuum pressure vacuum produced by the famous machine manufacturer [ Pattern formation 1] After attraction, molding at 160 ° C [pattern formation 1] Instead of brightness evaluation, the transfer rate (%) is performed at a pattern transfer rate reflecting the brightness characteristics of the light guide plate 98 98 98 98 96 96 95 98 98 75 - 31 - 201003161 INDUSTRIAL APPLICABILITY The optical sheet of the present invention can control a high-order structure in a solid structure by extrusion molding a resin composition containing a specific aromatic polycarbonate under specific conditions, by corresponding For the purpose of optimizing the concave-convex pattern formed on the surface, it can be processed into a light guide plate, a diffusion sheet, a reversing reflection plate or a thin sheet for improving brightness. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a transfer step by a steel strip method. Fig. 2 is a schematic view showing a transfer step by a roll method. Fig. 3 is a schematic view showing a transfer step by a belt transfer method. Fig. 4 is a schematic view showing a manufacturing apparatus for performing the steps of forming a sheet and forming a concave-convex pattern at the same time. [Description of main component symbols] 1 : Tension roller 2 : Heating roller 3 : Cooling roller 4 : Rolling roller 5 : Ring belt 6 : Sheet feeding roller 7 : Tension roller 8 : Heating device S : Sheet before transfer of uneven shape -32- 201003161 d: Length of sheet pressed by rolling roll and ring belt 2 1 : Extruder 2 2 : Rolling roll 2 3 : Rolling roll 24 : Take-up roll 2 5 : Rolling roll 2 6 a : transfer roller 26 b : transfer roller 2 6 c : transfer roller 3 1 : heating roller 3 2 : transfer roller 3 3 for forming irregularities: preheating roller 3 4 : cooling roller 3 5 : conveying roller 3 6 : Ring belt -33-

Claims (1)

201003161 七、申請專利範圍 1. 一種光學薄片,其爲使含有(A)黏度平均分子量 22000以下之芳香族聚碳酸酯100質量份’與(B)抗氧 化劑0.01〜1質量份之不含藍色系色素或顏料之芳香族聚 碳酸酯樹脂組成物由擠出機擠出後,冷卻至玻璃移轉溫度 以下之光學薄片,其特徵爲,該光學薄片於厚度0」〜 lmm下之全光線透過率爲91%以上。 2. 如申請專利範圍第1項之光學薄片,其中,雙折 射(相位差;波長5 5 0nm下之延滞値)爲150nm以下, 且薄片面內之任意處所之延滯値的標準偏差値爲10以下 〇 3 ·如申請專利範圍第1項之光學薄片,其中,由前 述光學薄片所使用之芳香族聚碳酸酯樹脂組成物所製作之 樣品板於厚度0 · 4mm所測定之可見光-U V分光光譜中,波 長300nm下之分光光線透過率70%以上,或芳香族聚碳 酸酯溶解於良溶劑所測定分光光線透過率(依溶液法之測 疋:溶液測量盒之導光長爲5cm,樣品溶液濃度爲I2g/dl ’溶劑爲二氯甲烷,波長爲450nm)爲94%以上。 4 ·如申請專利範圍第1項之光學薄片,其中,相對 於前述(A)成份100質量份,(C)熱塑性聚丙烯酸系樹 脂爲含有0.01〜1質量份。 5.如申請專利範圍第1項之光學薄片,其中,前述 (B )成份之抗氧化劑爲磷系抗氧化劑及/或酚系抗氧化劑 -34- 201003161 6 · —種如申請專利範圍第1項之光學薄片的製造方 法’其特徵爲,將前述芳香族聚碳酸酯樹脂組成物以薄片 狀熔融擠出之成型步驟,將熔融擠出之薄片狀成型體急速 冷卻至玻璃移轉溫度以下之冷卻步驟,及,將冷卻之薄片 狀成型體,於5 0°C以上,前述芳香族聚碳酸酯樹脂組成物 之玻璃移轉溫度以下進行熱處理之熱處理步驟所構成者。 7. —種成型體,其特徵爲,使申請專利範圍第1項 之光學薄片的表面上形成凹凸圖型者。 8 ·如申請專利範圍第7項之成型體’其爲導光板、 擴散薄片、遞回性反射板、稜鏡薄片與夫瑞耳透鏡薄片中 任~'者。 9. 一種成型體之製造方法’其特徵爲,於申請專利 範圍第1項之光學薄片之表面形成凹凸圖型。 -35-201003161 VII. Patent Application Area 1. An optical sheet which contains 100 parts by mass of (A) aromatic polycarbonate having a viscosity average molecular weight of 22,000 or less and (B) an antioxidant of 0.01 to 1 part by mass without blue An optical sheet in which an aromatic polycarbonate resin composition of a pigment or a pigment is extruded by an extruder and cooled to a temperature below the glass transition temperature, characterized in that the optical sheet is transmitted through the entire light at a thickness of 0" to 1 mm. The rate is 91% or more. 2. The optical sheet of claim 1, wherein the birefringence (phase difference; retardation at a wavelength of 550 nm) is 150 nm or less, and the standard deviation 延 of the 値 任意 in any position in the sheet surface is 値The optical sheet according to claim 1, wherein the sample sheet made of the aromatic polycarbonate resin composition used in the optical sheet has a visible light-UV spectrum measured at a thickness of 0 · 4 mm. In the spectrum, the spectral light transmittance at a wavelength of 300 nm is 70% or more, or the spectral transmittance of the aromatic polycarbonate dissolved in a good solvent (measured by a solution method: the light guide length of the solution measuring box is 5 cm, sample) The solution concentration was I2g/dl 'solvent is methylene chloride and the wavelength was 450 nm) and was 94% or more. The optical sheet of the first aspect of the invention, wherein the (C) thermoplastic polyacrylic resin is contained in an amount of 0.01 to 1 part by mass based on 100 parts by mass of the component (A). 5. The optical sheet of claim 1, wherein the antioxidant of the component (B) is a phosphorus-based antioxidant and/or a phenolic antioxidant-34-201003161 6 - as in claim 1 The method for producing an optical sheet is characterized in that the melt-extruded sheet-like formed body is rapidly cooled to a temperature below the glass transition temperature by a step of melt-extruding the aromatic polycarbonate resin composition in a sheet form. And the step of heat-treating the sheet-like molded body to be cooled at 50 ° C or higher and the glass transition temperature of the aromatic polycarbonate resin composition is heat-treated. A molded article characterized in that the surface of the optical sheet of claim 1 is formed into a concave-convex pattern. 8. The molded body as claimed in claim 7 is a light guide plate, a diffusion sheet, a reversible reflection plate, a crucible sheet, and a Freire lens sheet. A method of producing a molded article, which is characterized in that an uneven pattern is formed on the surface of the optical sheet of claim 1 of the patent application. -35-
TW098110501A 2008-03-31 2009-03-30 An optical sheet, an optical sheet manufacturing method, a molded article, and a method of manufacturing the same TWI442118B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094212A JP5296405B2 (en) 2008-03-31 2008-03-31 Optical sheet, optical sheet manufacturing method, molded body, and molded body manufacturing method

Publications (2)

Publication Number Publication Date
TW201003161A true TW201003161A (en) 2010-01-16
TWI442118B TWI442118B (en) 2014-06-21

Family

ID=41135323

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098110501A TWI442118B (en) 2008-03-31 2009-03-30 An optical sheet, an optical sheet manufacturing method, a molded article, and a method of manufacturing the same

Country Status (5)

Country Link
JP (1) JP5296405B2 (en)
KR (1) KR101567351B1 (en)
CN (1) CN101981097B (en)
TW (1) TWI442118B (en)
WO (1) WO2009122942A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008309A (en) * 2010-06-24 2012-01-12 Dainippon Printing Co Ltd Optical sheet, surface light source device, and display device
JP2012053282A (en) * 2010-09-01 2012-03-15 Dainippon Printing Co Ltd Method for manufacturing optical sheet
JP2012185157A (en) * 2011-02-18 2012-09-27 Sumitomo Chemical Co Ltd Inspection apparatus, inspection method and method for manufacturing light guide plate using inspection method
JP2014035440A (en) * 2012-08-08 2014-02-24 Dainippon Printing Co Ltd Optical sheet, display device and production method of optical sheet
JP6047993B2 (en) * 2012-08-21 2016-12-21 大日本印刷株式会社 Optical sheet and display device
JP2014044258A (en) * 2012-08-24 2014-03-13 Dainippon Printing Co Ltd Display device
JP2014071327A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Diffraction optical sheet and display device
JP6146637B2 (en) * 2012-10-11 2017-06-14 大日本印刷株式会社 Display device
JP2014115464A (en) * 2012-12-10 2014-06-26 Dainippon Printing Co Ltd Display device
CN103029299A (en) * 2013-01-08 2013-04-10 石狮市新力元反光材料有限公司 Hot-pressing type production equipment and production method of optical sheets
JP6181936B2 (en) * 2013-02-25 2017-08-16 恵和株式会社 Light guide film manufacturing method, light guide film, ultra-thin liquid crystal backlight unit, and portable computer
JP6293415B2 (en) * 2013-02-25 2018-03-14 恵和株式会社 Light guide film, ultra-thin LCD backlight unit and portable computer
JP6181937B2 (en) * 2013-02-25 2017-08-16 恵和株式会社 Light guide film, ultra-thin LCD backlight unit and portable computer
JP6293414B2 (en) * 2013-02-25 2018-03-14 恵和株式会社 Light guide film for ultra-thin liquid crystal backlight, ultra-thin liquid crystal backlight unit, and portable computer
JP6189052B2 (en) * 2013-02-25 2017-08-30 恵和株式会社 Light guide film, ultra-thin LCD backlight unit and portable computer
JP6148495B2 (en) * 2013-02-25 2017-06-14 恵和株式会社 Light guide film for ultra-thin liquid crystal backlight, ultra-thin liquid crystal backlight unit, and portable computer
KR101711974B1 (en) 2015-07-27 2017-03-06 주식회사 에이치비테크놀러지 Light guide plate extrusion manufacturing method
JP7107756B2 (en) * 2018-06-05 2022-07-27 ポリプラ・エボニック株式会社 Sheet and sheet manufacturing method
JP2021141393A (en) * 2020-03-03 2021-09-16 三菱ケミカル株式会社 Resin composition for acoustic member, film for acoustic member, laminate and diaphragm for acoustic member

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275501A (en) * 1991-03-04 1992-10-01 Sekisui Chem Co Ltd Light diffusing plate
JPH0790167A (en) * 1993-09-22 1995-04-04 Teijin Ltd Light-diffusing resin composition
JP3308733B2 (en) * 1994-11-08 2002-07-29 積水化学工業株式会社 Method for producing thin sheet and thin sheet obtained by the method
JP3676848B2 (en) * 1995-07-03 2005-07-27 帝人化成株式会社 Manufacturing method of sheet with fine hook pattern
JPH10211642A (en) * 1997-01-31 1998-08-11 Idemitsu Petrochem Co Ltd Manufacture of polycarbonate sheet
JP5009491B2 (en) * 2004-05-11 2012-08-22 出光興産株式会社 Prism-integrated light diffusing plate for LCD backlight device
JP4602797B2 (en) * 2004-10-07 2010-12-22 帝人化成株式会社 Method for producing polycarbonate resin sheet having fine convex shape on surface
KR20080021043A (en) * 2005-06-24 2008-03-06 이데미쓰 고산 가부시키가이샤 Light diffusing plate and lighting device using it
JP4839285B2 (en) * 2007-09-10 2011-12-21 帝人株式会社 Plastic molded product

Also Published As

Publication number Publication date
CN101981097B (en) 2014-01-29
JP5296405B2 (en) 2013-09-25
JP2009242752A (en) 2009-10-22
WO2009122942A1 (en) 2009-10-08
KR20100138965A (en) 2010-12-31
CN101981097A (en) 2011-02-23
KR101567351B1 (en) 2015-11-09
TWI442118B (en) 2014-06-21

Similar Documents

Publication Publication Date Title
TW201003161A (en) Optical sheet, process for producing optical sheet, formed object, and process for producing formed object
TWI607051B (en) Film
US7297381B2 (en) Light diffusing films, methods of making the same, and articles using the same
US10526430B2 (en) Methacrylic resin or methacrylic resin composition
TWI653280B (en) Methacrylic resin composition, formed body, film, and polarizing plate
TWI651355B (en) Methacrylic resin composition, method for producing the same, molded body, film and polarizing plate
CN106163764A (en) Biaxially oriented film and manufacture method, polarizer protecting film, decorating film and laminate film
CN101317106A (en) Light diffusing films, methods of making the same, and articles using the same
JP5253925B2 (en) Multilayer optical sheet
CN104169757A (en) Phase difference film laminate, method for producing phase difference film laminate, and method for producing phase difference film
US9885910B2 (en) Twisted alignment mode liquid crystal display device
JP2007179018A (en) Polycarbonate resin composition for light diffusion plate and light diffusion plate
TWI609907B (en) Light diffusing resin composition and molded article thereof
JP2017048344A (en) Methacryl resin, methacryl resin composition and molded body
JP2007297534A (en) Polycarbonate-based resin composition, optical molded product and lighting unit
JP2010078892A (en) Retardation film and method for manufacturing the same
CN102585472A (en) Optical polycarbonate-based resin films and process for producing the same
JPH10287804A (en) Composition for photo-functional sheet and prism sheet
US20140288234A1 (en) Optical Resin Material And Manufacturing Method Therefor
JP2008083257A (en) Anisotropic reflection film
WO2006126731A1 (en) Optical flat plate member
JP5998990B2 (en) Method for manufacturing thermoplastic resin sheet, thermoplastic resin sheet, liquid crystal display, and projection device
KR101197018B1 (en) Retardation film, polarizing plate and image display having the same
JP2009235255A (en) Light diffusing resin composition and its molded product
JP2015016633A (en) Apparatus and method for manufacturing thermoplastic resin sheet, and thermoplastic resin sheet obtained by the same