WO2008062638A1 - Optical flat plate member and method for manufacturing optical flat plate member - Google Patents
Optical flat plate member and method for manufacturing optical flat plate member Download PDFInfo
- Publication number
- WO2008062638A1 WO2008062638A1 PCT/JP2007/071101 JP2007071101W WO2008062638A1 WO 2008062638 A1 WO2008062638 A1 WO 2008062638A1 JP 2007071101 W JP2007071101 W JP 2007071101W WO 2008062638 A1 WO2008062638 A1 WO 2008062638A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gate
- arithmetic mean
- optical flat
- mean roughness
- light
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
- B29C45/37—Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
- B29C45/372—Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings provided with means for marking or patterning, e.g. numbering articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/0074—Production of other optical elements not provided for in B29D11/00009- B29D11/0073
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0025—Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
- B29C2045/0027—Gate or gate mark locations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2011/00—Optical elements, e.g. lenses, prisms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
- G02B6/0053—Prismatic sheet or layer; Brightness enhancement element, sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133606—Direct backlight including a specially adapted diffusing, scattering or light controlling members
- G02F1/133607—Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
Definitions
- the present invention relates to an optical flat plate member which can be easily produced by injection molding of a thermoplastic resin without using a gate trace when it is used as an optical member, and a method of producing the flat plate member for optical use. It is.
- Liquid crystal display devices utilizing the property of liquid crystals that change the alignment of molecules when voltage is applied are widely used in personal computers, flat-screen televisions, car panels, portable information terminals and the like. Since the liquid crystal itself does not emit light, the liquid crystal display device needs an external light source, and as the light source, a side light system in which the light source is disposed at the side edge of the liquid crystal display device and a light source is disposed at the back of the liquid crystal display device The direct system is being put to practical use. Since the sidelight system is capable of reducing the thickness of the device unit S and the luminance is low, the direct system is suitable for a large liquid crystal display device requiring high brightness!
- An optical flat member made of a thermoplastic resin plays an important function in both the side light type and the direct type, and in particular, in the direct type, a light diffusion plate is used as the optical flat member.
- a light source such as a plurality of cold cathode tubes is disposed on the back of the device housing, light from the light source is incident on the light diffusion plate, and the incident light is diffused by the light diffusion plate. And convert it into uniform light of uniform brightness.
- a reflection plate is provided behind the cold cathode tube, gradation printing is performed on the back of the light diffusion plate, and a light collection sheet, diffusion sheet, etc. are stacked on the front of the light diffusion plate.
- the light diffusing plate is required to have a sufficient strength without any warpage between the light transmittance and the light diffusing property, and to reduce the luminance unevenness.
- a molded product of a thermoplastic resin containing a light diffusing agent is often used as the material of the light diffusion plate, but it is possible to use only the thermoplastic resin and devise the shape of the surface of the molded product.
- Ru As a molding method of the light diffusion plate, an extrusion molding method, a casting method, an injection molding method or the like is used. According to the extrusion molding method, post-processing for forming a light diffusion plate capable of efficiently producing a raw material sheet of the light diffusion plate takes time and labor, and material waste occurs. Queer According to the strike method, it is not high in productivity which can obtain a light diffusion plate without optical distortion with high strength.
- the light diffusion plate can be manufactured in a short time in which the number of post-processing steps is small, and in the conventional method in which the molten thermoplastic resin flows from the side gate of the cavity side, It is technically difficult to manufacture by one-piece injection molding of light diffusers and by multiple injection molding of small light diffusers.
- Japanese Patent Application Publication No. 2004-117544 proposes a method of providing a multipoint gate on the light incident surface of a light diffusion plate and performing injection molding. According to this, it becomes possible to manufacture by a single-piece injection molding method for a large light diffusion plate and to manufacture by a multi-piece injection molding method for a small light diffusion plate. By using a mold having a hot runner and a multipoint gate, it is possible to efficiently inject and mold a large single-piece light diffusion plate and a small number of small light diffusion plate in a short molding cycle.
- the valve gate is closed by the valve pin after the inflow of molten resin into the mold cavity, and the tip of the valve pin is closed.
- the processing of the gate mark is not necessary.
- a light diffusion plate molded with a mold using this valve pin is mounted on a liquid crystal display device, uneven brightness occurs between the vicinity of the gate mark and the other parts, and the image quality of the display screen is degraded. Yes, further improvement is required. Such a problem occurs not only in the light diffusion plate but also in other flat optical members such as a light guide plate or the like.
- an object of the present invention to provide an optical flat plate member in which the gate mark is inconspicuous, the luminance unevenness can be suppressed, and the optical resin can be easily manufactured by injection molding of a thermoplastic resin.
- a flat plate member and a method of manufacturing the flat plate member for optics are provided.
- the inventor of the present invention has found that the arithmetic mean roughness Ra of the gate mark of the optical flat plate member and the surface on the side opposite to the surface on which the gate mark exists. Arithmetic mean roughness Ra and force S within a predetermined range from the point corresponding to the center of the gate mark As a result, it has been found that the gate mark of the optical flat member when mounted on the device becomes inconspicuous, and the present invention has been completed based on this finding.
- an optical flat member obtained by injection molding a thermoplastic resin using a mold having a gate in a plane corresponding to the optically effective surface.
- the total light transmittance is preferably 50 to 90% when light is applied to the surface on which the gate mark is present.
- the flat member for optics of the present invention be used for a light diffusion plate.
- the optical flat member is injection molded using a mold including a hot runner having a valve gate.
- the manufacturing method of is provided.
- the optical flat member when used as a flat optical plate member, it is possible to make the gate mark inconspicuous and to suppress the luminance mark S. Also, the optical flat member can be easily manufactured by injection molding of a thermoplastic resin.
- FIG. 1 is a cross-sectional view showing the shape of a triangular prism formed on the flat member for optics according to the embodiment.
- FIG. 2 is a cross-sectional view showing the shape of a triangular prism formed on the optical flat member according to the embodiment.
- FIG. 3 is a cross-sectional view showing the shape of a composite prism formed on the optical flat member according to the embodiment.
- FIG. 4 is a cross-sectional view showing the shape of a lenticular lens-shaped prism formed on the flat optical member according to the embodiment.
- FIG. 5 is a cross-sectional view showing the shape of a hemispherical protrusion formed on the optical flat member according to the embodiment.
- FIG. 6 is a perspective view showing the shape of a quadrangular pyramid formed on the optical flat member according to the embodiment.
- FIG. 7 is a cross-sectional view showing a configuration of a mold having a hot runner according to the embodiment.
- FIG. 8 is a cross-sectional view showing a method of manufacturing an optical flat member using a mold according to an embodiment.
- FIG. 9 is a cross-sectional view showing a method of manufacturing an optical flat member using a mold according to the embodiment.
- FIG. 10 is a cross-sectional view showing a method of manufacturing an optical flat member using a mold according to the embodiment.
- FIG. 11 is a view for explaining a gate mark angle according to the embodiment.
- FIG. 12 is a perspective view showing the configuration of a direct-type backlight device according to the embodiment.
- FIG. 13 is a view showing the gate position of the mold used in the example.
- FIG. 14 is a diagram showing measurement positions of luminance in the vicinity of the gate in the embodiment.
- the flat member for optics according to the present embodiment is obtained by injection molding a thermoplastic resin using a mold having a gate in a plane corresponding to the optically effective surface of the flat member for optics.
- the optical flat member includes a first surface on which a gate mark formed corresponding to the gate is present, and a second surface opposite to the first surface,
- the radius of the gate trace existing in the optically effective plane is r
- the total light transmittance when light is applied to the surface (first surface) on which the gate mark is present is 50 to 90%, preferably 60 to 90%.
- the optically effective surface is a portion that can be confirmed by the observer when the optical member is incorporated into a liquid crystal display device or the like for observation, and, for example, if it is a light diffusion plate, its main surface The portion excluding the liquid crystal display incorporating margin existing near the side wall of the.
- a plurality of gates are installed and installed in a plane corresponding to the optical effective surface of the optical flat plate member for injection molding of the optical flat plate member.
- N number
- the area of the optical flat plate member is S (mm 2 )
- the thickness of the optical flat plate member is t (mm)
- the number of gates N satisfies the following (formula 1) It is more preferable to satisfy the following (formula 2) that is preferred.
- optical flat plate member according to the present embodiment 15 inch or more, i.e., force S preferably the area is to 76,000Mm 2 or more, a 24 inch or more, i.e., area 180,00 Omm 2 or more It is more preferable to When a large number of flat plate members are taken from one mold, the area of the optical flat plate member is the entire flat plate provided in one mold. It is the sum of the area of a member. Also, the thickness of the flat plate member is properly selected in the range of 0.2 to 50 mm.
- the arithmetic mean roughness Ra of the gate marks present in the optically effective surface is plural for the gate marks of the optical flat member in order to provide a light diffusion function.
- a micro-specific shape is formed! /, It means the arithmetic mean roughness of the surface (range of radius r) forming this micro-specific shape, and the micro-specific shape is formed on the gate trace. If not, it is the arithmetic mean roughness of the plane of the gate mark (range of radius r).
- a fine specified shape forms the corresponding fine specified shape at the tip of the valve pin 12a (see FIG. 8) of the hot runner nozzle 12 described later, and transfers this fine specified shape to the resin.
- Such a fine specified shape of the gate mark is the same as that of the other part except for the gate mark when the fine specified shape is formed in the part other than the gate mark of the surface on which the gate mark of the optical flat plate material is present. A particular shape is formed.
- a plurality of fines are formed on the surface (second surface) of the optical flat member.
- a thin specified shape When a thin specified shape is formed, it means the arithmetic mean roughness in the relevant range of the surface forming this fine specified shape, and it is fine specified on the surface (second surface) of the optical flat member. When the shape is not formed, it means the arithmetic mean roughness in the relevant range of the surface of the optical flat member.
- Such a fine specified shape is formed on the surface of the stamper provided on the fixed mold 4 (see FIG. 7) of the mold described later (see FIG. 7), and this fine specified shape is used as a resin. It is formed by transferring.
- the cross section formed on the surface of the optical flat member is A triangular prism row composed of triangular linear prisms (triangular prisms) may be mentioned.
- the arithmetic mean roughness of the surface forming the triangular prism indicated by R1 in the figure is measured.
- the triangular prism is formed so that the angle formed by the two slopes forming the triangle and the plane orthogonal to the thickness direction of the optical flat plate member becomes equal.
- This angle is a certain X point of the optical flat plate member and the short side of the triangular prism from this X point
- the arithmetic mean roughness of the surface forming the triangular prism indicated by R2 in the figure is measured.
- a lenticular lens-like prism row having a convex arc-shaped cross section there can be mentioned a lenticular lens-like prism row having a convex arc-shaped cross section.
- the arithmetic mean roughness of the surface forming the convex arc-shaped lenticular lens-like prism indicated by R4 in the drawing is measured.
- FIG. 6 it is possible to cite a shape in which multipyramidal projections such as quadrangular pyramids are arrayed.
- the arithmetic mean roughness of the surface forming a multipyramidal projection such as a quadrangular pyramid shown by R6 in the drawing is measured.
- the multipyramidal protrusion such as a quadrangular pyramid may be a multipyramidal recess such as a quadrilateral pyramid.
- the gate mark appears to be split in appearance, which is noticeable It will be easier. For this reason, the gate mark can be made visible by giving the suitable surface roughness shown in the present embodiment.
- Arithmetic mean roughness Ra is a value defined in Japanese Industrial Standard JIS B06013.1, and can be measured using an ultra-deep microscope or the like.
- the flat plate for optics is used as a light source When arranged at the facing position, the gate mark is provided on the surface on the light source side of the optical flat plate member! /, Or may be! /, Provided on the surface opposite to the light source! / , Even!
- the thermoplastic resin used in the present embodiment is not particularly limited.
- a resin having an alicyclic structure, a copolymer of an aromatic boule monomer and a (meth) acrylic acid alkyl ester monomer is used.
- examples thereof include polymers, methacrylic resins, polycarbonates, polystyrenes, acrylonitrile-styrene copolymer resins, ABS resins, and polyether sulfones.
- resins having an alicyclic structure, copolymers of an aromatic boule monomer and a (meth) acrylic acid alkyl ester monomer, and a polycarbonate have a low water absorption coefficient and are tough. Can be suitably used.
- a resin having an alicyclic structure can be filled into a mold cavity at a low injection pressure because the fluidity of the molten resin is good, and has extremely low hygroscopicity, so it is excellent in dimensional stability, and is a flat member for optics
- the weight of the flat optical member can be reduced because the specific weight that causes no warping is small.
- a resin having an alicyclic structure is less likely to generate a weld line.
- the resin having an alicyclic structure is a resin having an alicyclic structure in the main chain or side chain! Among these, resins having an alicyclic structure in the main chain can be particularly preferably used because they have good mechanical strength and heat resistance.
- the alicyclic structure is preferably a saturated cyclic hydrocarbon structure, and the carbon number thereof is preferably 4 to 30 and more preferably 5 to 20. 5 to 15 Is more preferred.
- the proportion of the repeating unit having an alicyclic structure in the resin having an alicyclic structure is preferably 50% by weight or more, and more preferably 70% by weight or more, and is 90% by weight or more. Is more preferred.
- Examples of the resin having an alicyclic structure include a ring-opened polymer or ring-opened copolymer of a norbornene-based monomer, a hydrogenated product thereof, an addition polymer or addition-copolymer of a norbornene-based monomer, and the like.
- Polymer or hydrogenated product thereof polymer of monocyclic cyclic olefin group monomer or hydrogenated product thereof, polymer of cyclic conjugated diene monomer or hydrogenated product thereof, alicyclic cycloaliphatic hydrocarbon
- the hydrogenated substance of the unsaturated bond part including the aromatic ring of the body can be particularly preferably used because it is excellent in mechanical strength and heat resistance.
- Methacrylic resin is excellent in transparency, and thus can be suitably used as an optical member.
- a methacrylic resin the methacrylic resin molding material which contains 80 weight% or more of methyl methacrylate polymers prescribed
- the methacrylic resins defined in this standard the methacrylic resins having a Vicat softening point temperature of 96 to 100 ° C. and melt flow rates 8 to 16; classified classification codes 100 to 120 have appropriate fluidity and strength. Therefore, it can be used suitably.
- the aromatic bule monomer constituting a copolymer of an aromatic bule monomer and a (meth) acrylic acid alkyl ester refers to an aromatic bule monomer and a derivative thereof, for example, And styrene, ⁇ -methylstyrene, m-methylstyrene, p-methylstyrene, o-chloro-styrene, p-chlorostyrene and the like.
- (meth) acrylic acid alkyl ester which comprises the copolymer of an aromatic bure type
- the copolymer of the aromatic bule monomer and the (meth) acrylic acid alkyl ester is composed of 20 to 60% by weight of the aromatic bule monomer and 40 to 80% by weight of the (meth) acrylic acid ester. It is preferable that it is a copolymer.
- the (meth) acrylic acid alkyl ester means acrylic acid alkyl ester, methacrylic acid alkyl ester.
- the polycarbonate used in the present embodiment is generally obtained by reacting dihydric phenol with a carbonate precursor by an interfacial polymerization method or a melt polymerization method.
- divalent phenols include: 2,2 bis (4 hydroxy phenyl) propane (generally called bis pheno nore A), 2, 2 bis ⁇ (4 hydroxy mono methenore) phe di none ⁇ propane, 2 2, 2-bis (4-hydroxy-phenylonitrile) butane, 2, 2-bis (4-hydroxy-phenylonitrile) -3 methyl butan, 2, 2-bis (4-hydroxy-phenylonitrile) -3, 3-dimethinolebutane, 2, 2-bis (4- Hydroxyphenone) 1,4-methylpentane, 1,1-bis (4-hydroxyphenyle) cyclohexane, 1,1 bis (4-hydroxyphenenone) -3,3,3,5-trimethyonecyclo Xan, 9, Examples thereof include 9-bis ⁇ (4-hydroxy-1-methinole) phenone ⁇ flu
- carbonate precursor carbonyl halide, carbonate ester, haloformate and the like are used, and specific examples thereof include phosgene, diphenyl carbonate and dihaloforme of divalent phenol.
- the polycarbonate may be a branched polycarbonate obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound, or a polyester carbonate obtained by copolymerizing an aromatic or aliphatic difunctional carboxylic acid. It may be a mixture of two or more of the polycarbonates listed above.
- the polystyrene resin used in this embodiment is styrene, ⁇ -methylstyrene, 0-methylstyrene, ⁇ ⁇ ⁇ -methylstyrene, ⁇ -chlorostyrene, ⁇ -nitrostyrene, ⁇ -aminostyrene, ⁇ -carboxystyrene, PS resin consisting of aromatic boule such as --phenylstyrene HIPS resin obtained by graft-polymerizing aromatic boule onto rubbery polymer AS resin obtained by copolymerizing cyanide boule such as acrylonitrile with aromatic bule ABS polymer, which is a mixture of a cyanide bule and an aromatic bure grafted on a rubbery polymer and a copolymer of a cyanide boule and an aromatic vinyl, and a rubbery polymer such as methyl methacrylate and an aroma.
- MBS resin, etc. which is a graft polymer obtained by grafting
- thermoplastic resin one in which a thermoplastic elastomer, an additive and the like are blended can be used as needed.
- thermoplastic elastomers include polybutadiene, styrene-butadiene block copolymer and its hydrogenated compound, styrene-isoprene block copolymer and its hydrogenated compound, and the like.
- the blending amount of the thermoplastic elastomer is usually from 0. 0 to! 50% by weight, preferably 0. It is 05-30% by weight.
- additives include light diffusing agents, antioxidants, ultraviolet light absorbing agents, light stabilizers, coloring agents such as dyes and pigments, lubricants, plasticizers, antistatic agents, fluorescent whitening agents and the like.
- S can.
- the light diffusing agent for example, fine particles comprising a polystyrene polymer, a polysiloxane polymer or a crosslinked product thereof, a fluorine resin, barium sulfate, calcium carbonate, silica, talc and the like can be mentioned.
- fine particles composed of a polystyrene polymer, a polysiloxane polymer, or a crosslinked product thereof are particularly preferable because they have good dispersibility, are excellent in heat resistance, and do not cause yellowing at the time of molding. It can be used.
- the amount of these additives to be added is not particularly limited, and is usually from 0. 0;! To 30% by weight, preferably from 0. 05 to 20% by weight.
- the particle diameter of the light diffusing agent in the case of incorporating the light diffusing agent as a compounding agent is not particularly limited, but the average particle diameter is usually in the range of 0.5-lOO ⁇ m, preferably 0.5 to 80 111. is there.
- the optical flat member according to the present embodiment corresponds to the arithmetic mean roughness Ra of the range of radius r related to the gate mark and the center of the gate mark on the surface opposite to the surface on which the gate mark exists.
- Arithmetic mean roughness Ra in the range of radius r ( r x 30) from the point to be
- the total light transmittance of the flat member for optics is set within the above-described predetermined range while setting 2) to satisfy the condition 2), even if the gate mark is in the optically effective surface, the optical unevenness is reduced.
- the mark of the gate is noticeable when mounted on the device.
- the flat optical plate member according to the present embodiment is manufactured by injection molding using a mold provided with a hot runner.
- FIG. 7 is a view showing the configuration of a mold provided with a hot runner.
- the mold 2 includes a fixed side mold 4 and a movable side mold 6.
- a predetermined shape is imparted to the optical plane (second surface) of a molded product (hereinafter referred to as a flat plate member for optics if necessary) on the surface of the stationary mold 4 opposed to the movable mold 6.
- a stamper 8 is provided which has a surface (shape-imparting surface) to be used. The shape-imparting surface of the stamper 8 is processed to have a predetermined arithmetic mean roughness.
- a cavity 10 is formed on the surface of the movable side mold 6 opposite to the fixed side mold 4 and has a valve pin 12 a (see FIG. 8) for supplying the molten resin 14 to the cavity 10.
- the tip of the valve pin 12a is processed to have a predetermined arithmetic average roughness.
- the mold clamping is performed at a predetermined pressure using a mold clamping device (not shown).
- the hot runner nozzle 12 is closed by the knob pin 12a.
- the hot runner nozzle 12 is opened by retracting the valve pin 12a of the hot runner nozzle 12, and the molten resin 14 is injected from the hot runner nozzle 12 into the cavity 10.
- valve pin 12a After a predetermined amount of molten resin 14 is injected into the cavity 10, as shown in FIG. 10, the valve pin 12a is advanced to close the hot runner nozzle 12. At this time, the shape of the tip portion of the valve pin 12 a is transferred to the molded product 16. Thereafter, the mold 2 is cooled and the molded product 16 is taken out of the mold 2.
- the tip end portion of the valve pin 12a is processed to have a predetermined arithmetic mean roughness
- the shape-imparting surface of the stamper 8 is a predetermined arithmetic. Since it is processed to be an average roughness, the arithmetic flatness of the range of radius r related to the gate mark
- Molded articles 16 can be produced. Moreover, in this manufacturing method, since the above-mentioned resin is used, the total light transmittance when light is applied to the surface (first surface) on the side where the gate mark of the molded product 16 satisfying the above conditions is present. Can be set in the range of 50 to 90%, preferably 60 to 90%. Therefore, even if the gate mark is in the optically effective surface, it is possible to manufacture an optical flat member in which the gate mark is not noticeable when mounted on an optical device having a small brightness mark.
- the optical mark of the optical flat member can be reduced.
- the hot runner 1 in order to manufacture the optical flat member 16, the hot runner 1 is used.
- the hot runner 13 with the mold 2 having 3 it is possible to cool and solidify the molten resin at the gate such that the arithmetic mean roughness Ra of the gate mark becomes a predetermined value.
- the resin can be effectively used, and the amount of resin melted for one injection decreases, so the molding cycle is shortened. It is possible to shorten and improve productivity.
- the hot runner 13 has the valve gate 12
- the shape of the tip of the valve pin 12a is transferred to the gate mark, and the gate is It is possible to form a gate trace with a predetermined arithmetic mean roughness Ra, which does not carry out the processing of the trace.
- the flow of the molten resin 14 is squeezed and shear heat generation occurs, so the viscosity of the molten resin 14 in the vicinity of the gate decreases and the shape of the tip of the valve pin 12a is accurately transferred to the gate mark, It is possible to form a gate mark having an arithmetic average roughness Ra, which is approximately equal to the arithmetic average roughness of the tip of the valve pin 12a.
- the method of processing the arithmetic mean roughness Ra of the tip of the valve pin 12a to a predetermined value is not particularly limited. For example, machining, sand blasting, diamond like carbon processing, plating, etc. may be used.
- the position of the tip of the valve pin is not particularly limited.
- the tip of the lube pin can be made coincident with the inner surface of the mold cavity to form an optical flat plate having no unevenness at all.
- the tip of the valve pin can be drawn into the inner surface of the mold cavity to form an optical flat member having a convex portion on the gate mark.
- the shape of the tip of the valve pin is not particularly limited, and may be, for example, a cylindrical shape, a wedge shape, or a truncated cone shape.
- a valve pin having such a tip shape it is possible to form an optical flat plate member having a recess or a convex portion such as a cylindrical shape, a wedge shape, or a truncated cone shape on the gate mark.
- the diameter of the gate mark of the optical flat plate member is preferably 0.5 to 5 mm.
- the depth of the depression or the height of the convex portion of the gate mark be 0.01-0.2 mm. If it is smaller than 0.1 mm, molding of the valve pin tip becomes difficult, and if it is larger than 0.2 mm There is a drawback that the marks of marks can be easily seen.
- the side wall portion of the gate mark formed by the valve pin may not be provided with an inclination angle (ie, an inclination angle of 0 degrees) or may be provided with an inclination angle.
- the inclination angle (gate trace angle) provided on the side wall portion of the gate trace is, as shown in FIG. 11, the normal on the optical flat plate member (bottom surface of the gate trace) and the side wall portion of the gate trace.
- the angle that is made by In the case of providing the inclination angle for example, this can be achieved by providing an inclined surface at the tip of the valve pin.
- the inclination angle of the side wall portion is preferably 80 degrees or less, more preferably 60 degrees or less, and even more preferably 45 degrees or less. preferable. With such an angle, it is possible to make the gate mark more visible, and it is also easy to process the tip of the valve pin. In addition, it is preferable that the gate mark is a depression because the gate mark can be seen.
- the injection molding conditions for obtaining the flat member for optics according to the present embodiment are: if the glass transition temperature of the thermoplastic resin to be used is Tg, the cylinder temperature is Tg + 80 ° C to Tg + 200 ° C
- the mold temperature is preferably in the range of Tg-40 ° C to Tg ° C, and the injection rate is in the range of lOcc / sec to 800 cc / sec.
- the temperature of the hot runner when having a hot runner as a mold is preferably Tg + 80 ° C to Tg + 200 ° C! /.
- the flat optical plate member according to the present embodiment can be used as a direct-type light diffusion plate, a side-light type light guide plate, a direct-type backlight lighting curtain, or a rear projection TV flare lens.
- it is a power S to use as a direct light diffuser among other things.
- FIG. 12 is a diagram showing the configuration of a direct type backlight device provided with a direct type light diffusion plate.
- cold cathode tubes 22 are disposed at predetermined intervals on a reflecting plate 20, and the flat plate member for light (light diffusion plate) of the present embodiment is formed thereon. Is arranged so that the surface with the gate mark is the light entrance surface. Therefore, it is possible to provide a surface light source with small luminance unevenness even if the gate mark is in the optically effective surface.
- the mold may have a cold runner, in the case of using a cold runner, (1) application of in-mold gate cutting technology, (2) pinpoint gate or sub-maritail It is necessary to take measures such as adjusting the mold opening condition appropriately using a gate. If this measure is not taken, gate marks need to be processed after molding, resulting in a drawback that the molding cycle time becomes long.
- the mixture was extruded into strands using a twin-screw extruder, and cut with a pelletizer to prepare pellets for a light diffusion plate.
- the light diffusion plate was molded from the pellet for light diffusion plate using an injection molding machine (clamping force of 4,410 kN).
- the diffuser concentration of this light diffuser is 0.2%.
- the mold has cavity dimensions of 430 mm in length, 730 mm in width, 847 mm in diagonal length, and 2. O mm in depth, and as shown by ⁇ in FIG.
- One valve gate type hot runner nozzle was installed at the center of the 8 divided rectangles.
- the valve pin (gate pin) opens at the time of injection, the molten resin is sent to the cavity, and the valve pin closes after the injection ends, stopping the supply of molten resin. At this time, the shape of the tip of the valve pin is transferred to the molded product.
- the valve pin was adjusted so that a 1 mm cylindrical depression was formed.
- the circular portion with a diameter of 1.5 mm at the tip of the valve pin was processed to have an arithmetic mean roughness of 0.2 m.
- a stamper on which a prism pattern is formed is attached on the side opposite to the side on which the gate is positioned, and the arithmetic mean roughness of the stamper, that is, the arithmetic mean roughness of the surface constituting the prism is 0.1 m. processed.
- the light diffusion plate was manufactured by injection molding at a cylinder temperature of 275 ° C., a hot runner temperature of 260 ° C., a mold temperature of 80 ° C. and a total cycle time of 70 seconds.
- the gate trace angle of this light diffusion plate is 0 °.
- Arithmetic mean roughness of gate mark which is an average value of fixed value Ra is 0.22 m, the gate mark exists Arithmetic mean rough of radius r from the point corresponding to the center of the gate mark on the side opposite to the face.
- Ra 0.14 111. Next, apply light from the side where the gate mark of the light diffusion plate exists.
- the total light transmittance was measured to be 80%.
- a white reflective sheet [manufactured by Djiden Co., Ltd., RF188] is attached to the inner surface of a box made of an acrylic plate with an inner dimension of 720 mm wide, 420 mm deep, and 17 mm deep, and the light of the cold cathode fluorescent lamp escapes.
- 11 cold cathode fluorescent lamps with an outer diameter of 3. O mm were mounted in parallel with a tube center spacing of 40 mm, with the tube surface 2 mm away from the bottom of the box.
- the light diffusion plate is separated by 12 mm from the tube surface of this cold cathode fluorescent lamp, so that the surface with the gate mark of the light diffusion plate is the light incident surface, and the cold cathode fluorescent light with two gate marks of the light diffusion plate.
- the lamp was placed so as to be at the middle position of the lamp, and the cold cathode fluorescent lamp was turned on to measure the luminance unevenness of the gate mark of the light diffusion plate.
- a diffusion sheet [Digden Co., Ltd., D124J] is laminated on the light exit surface of the light diffusion plate, and as shown in FIG. A square that is doubled is drawn virtually so that the center of the square coincides with the center of the circle of the gate mark, and it is 81 points of 81 points where one side is 9 points and the pitch is 1/3 of the gate mark diameter.
- a grid was considered, and 81 grid points were measured using a luminance meter. Uneven luminance was calculated by dividing the difference between the maximum value and the minimum value of the 81 luminance measurement values by the average value. The average value of the uneven brightness of the eight gate marks is 0.3%, and it was impossible to confirm the gate marks by visual confirmation.
- a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1.
- the gate mark angle of this light diffusion plate is 2 °.
- the concentration of the diffusing agent in this light diffusing plate is 0.3%.
- a mold similar to that of Example 1 was used, but the arithmetic mean roughness of the tip of the valve pin was processed so as to be 0.05 m, and the prismatic pattern was formed into a prism pattern. , I.e., the arithmetic mean roughness of the surface constituting the prism was processed to be 1.3111.
- arithmetic mean roughness of the gate trace Ra ⁇ From the point corresponding to the center of the gate trace on the opposite side surface to the surface on which the gate trace exists, the arithmetic mean roughness of the range of radius r is Ra, all
- the luminance unevenness of the gate marks was measured in the same manner as in Example 1.
- the average value of the luminance unevenness of the eight gate marks is 0.3%, and it is necessary to confirm the gate marks by visual observation. I could not do it.
- a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1.
- the gate mark angle of this light diffusion plate is 30 °.
- the diffuser concentration of this light diffuser is 0.7%.
- the same mold as used in Example 1 was used, but the arithmetic mean roughness of the tip of the valve pin was processed so as to be 1.5 m, and the arithmetic mean roughness of the prism 1 was formed. That is, it was processed such that the arithmetic mean roughness of the surface constituting the prism was 1. 8111.
- the arithmetic mean roughness Ra of the gate trace As in Example 1, the arithmetic mean roughness Ra of the gate trace, the arithmetic mean coarseness of the range of radius r from the point corresponding to the center of the gate trace on the opposite side surface to the surface on which the gate trace exists Ra, all
- Ra is 1. 45 ⁇ 111, Ra is 1. 7: m, total light transmittance is
- the luminance unevenness of the gate marks was measured in the same manner as in Example 1.
- the average value of the luminance unevenness of the eight gate marks is 0.2%, and it is necessary to confirm the gate marks by visual observation. I could not do it.
- a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1.
- the gate mark angle of this light diffusion plate is 2 °.
- the concentration of the diffusing agent in this light diffusing plate is 0.5%.
- the same mold as used in Example 1 was used, but the arithmetic mean roughness of the tip end of the valve pin was processed to be 0.2 m, and the arithmetic mean roughness of the lenticular stamper was formed. That is, the arithmetic mean roughness force of the surface constituting the lenticular shape was set to S 1.5 ⁇ m.
- arithmetic mean roughness of gate trace Ra ⁇ From the point corresponding to the center of the gate trace on the opposite side surface to the surface on which the gate trace exists, the arithmetic mean coarseness in the range of radius r is Ra, all
- a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1.
- the gate mark angle of this light diffusion plate is 0 °.
- the concentration of the diffusing agent in this light diffusing plate is 0.1%.
- a mold similar to that of Embodiment 1 was used, but it is processed so that the arithmetic mean roughness of the tip end portion of the valve pin is 1.2 ⁇ , and the square average is roughly formed. That is, it was processed so that the arithmetic mean roughness of the surface constituting the quadrangular pyramid shape would be 0.3.
- the arithmetic mean roughness Ra of the gate trace As in Example 1, the arithmetic mean roughness Ra of the gate trace, the arithmetic mean coarseness of the range of radius r from the point corresponding to the center of the gate trace on the opposite side surface to the surface on which the gate trace exists Ra, all
- Ra 1.3 111
- Ra 0.35 111
- total light transmittance 7
- a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1.
- the gate mark angle of this light diffusion plate is 0 °.
- the concentration of the diffusing agent in this light diffusing plate is 1%.
- the same mold as used in Example 1 was used, but processing was performed so that the arithmetic mean roughness of the tip of the valve pin was 0.1 m, and the arithmetic mean roughness of the stamper was 0.5 Hm. Processed to be
- a light diffusion plate was molded using methacrylic resin (Asahi Kasei Chemicals Corporation, Delpet 70 NHX).
- the gate mark angle of this light diffusion plate is 0 °.
- the concentration of the diffusing agent in this light diffusing plate is 2.5%.
- a mold similar to that of Example 1 was used, but the arithmetic mean roughness of the stamper on which the prism notch was formed was processed so that the arithmetic mean roughness of the tip of the valve pin was 0.3 m. That is, it was processed so that the arithmetic mean roughness of the surface constituting the prism was 0.8 ⁇ m.
- the arithmetic mean roughness Ra of the gate trace As in Example 1, the arithmetic mean roughness Ra of the gate trace, the arithmetic mean coarseness of the range of radius r from the point corresponding to the center of the gate trace on the surface opposite to the surface on which the gate trace exists Ra, all
- a light diffusion plate was molded using MS resin (Denki Kagaku Kogyo Co., Ltd., TX-100S).
- the gate mark angle of this light diffusion plate is 30 °.
- the diffuser concentration of this light diffuser plate is 1.5%.
- the same mold as in Example 1 was used, but the arithmetic mean roughness of the stamper on which the prism pattern was formed by processing so that the arithmetic mean roughness of the tip of the valve pin was 0.1 m, That is, processing was performed such that the arithmetic mean roughness of the surface constituting the prism was 0.7111.
- the luminance unevenness of the gate marks was measured in the same manner as in Example 1.
- the average value of the luminance unevenness of the eight gate marks is 0.2%, and it is necessary to confirm the gate marks by visual observation. I could not do it.
- the light diffusion plate was molded using polystyrene resin (manufactured by PS Japan Co., Ltd., G9504).
- the gate trace angle of this light diffusion plate is 5 °.
- the diffuser concentration of this light diffuser plate is 0.4%.
- the same mold as used in Example 1 was used, but the arithmetic mean roughness of the stamper having the lenticular shape formed by processing so that the arithmetic mean roughness of the tip of the bulb pin is 0.2 m, That is, it was processed so that the arithmetic mean roughness of the surface constituting the lenticular shape would be 0 ⁇ 1 m.
- the luminance unevenness of the gate marks was measured in the same manner as in Example 1.
- the average value of the luminance unevenness of the eight gate marks is 0.2%, and it is necessary to confirm the gate marks by visual observation. I could not do it.
- a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1.
- the gate trace angle of this light diffusion plate is 5 °.
- the concentration of the diffusing agent in this light diffusing plate is 1%.
- the arithmetic mean roughness Ra of the gate trace As in Example 1, the arithmetic mean roughness Ra of the gate trace, the arithmetic mean coarseness of the range of radius r from the point corresponding to the center of the gate trace on the surface opposite to the surface on which the gate trace exists is Ra, all When the light transmittance was measured, Ra was 4. ⁇ , ⁇ , Ra was 2. l O ⁇ m, and the total light transmittance was
- a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1.
- the gate mark angle of this light diffusion plate is 0 °.
- the concentration of the diffusing agent in this light diffusing plate is 0.2%.
- the same mold as used in Example 1 was used, but the arithmetic mean roughness of the stamper on which the prism pattern was formed, was processed so that the arithmetic mean roughness of the tip of the valve pin was 2 ⁇ m. That is, processing was performed so that the arithmetic mean roughness of the surface constituting the prism was 4.2111.
- the luminance unevenness of the gate marks was measured in the same manner as in Example 1. As a result, the average value of the luminance unevenness of the eight gate marks was 3.3%, and the gate marks were clearly seen by visual observation.
- a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1.
- the gate mark angle of this light diffusion plate is 30 °.
- the diffuser concentration of this light diffuser is 0.3%.
- the same mold as in Example 1 was used, but the arithmetic mean roughness of the tip of the valve pin was processed to be 2.8 m and the prismatic pattern was formed to form the prismatic pattern. That is, it was processed so that the arithmetic mean roughness of the surface constituting the prism was 0. ⁇ ..
- the arithmetic mean roughness Ra of the gate trace As in Example 1, the arithmetic mean roughness Ra of the gate trace, the arithmetic mean coarseness of the range of radius r from the point corresponding to the center of the gate trace on the surface opposite to the surface on which the gate trace exists Ra, all
- a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1.
- the gate trace angle of this light diffusion plate is 15 °.
- the diffuser concentration of this light diffuser plate is 0%.
- a mold similar to that of Example 1 was used, but processing was performed so that the arithmetic mean roughness at the tip of the valve pin was 0.01 m, and the arithmetic mean roughness of the stamper was 0.10 ⁇ m. It was Karoe to become.
- the arithmetic mean roughness Ra of the gate trace As in Example 1, the arithmetic mean roughness Ra of the gate trace, the arithmetic mean coarseness of the range of radius r from the point corresponding to the center of the gate trace on the surface opposite to the surface on which the gate trace exists is Ra, all
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
This invention provides an optical flat plate member produced by injection molding a thermoplastic resin using a mold having a gate within an optically effective plane. This optical flat plate member comprises a first plane with a gate mark and a second plane which is a plane opposite to the first plane. The first and second planes satisfy requirement 1: 1 (μm) < Ra1 ≤ 3 (μm), Ra2 ≤ 3 (μm) and Ra1 ≤ Ra2, or requirement 2: Ra1 ≤ 1 (μm) and Ra2 ≤ 3 (μm), wherein r1 represents the radius of the gate mark present within the optically effective surface in the first plane; Ra1 represents the arithmetic mean roughness of the gate mark in the first plane; and Ra2 represents the arithmetic mean roughness, in the second plane, in an area with a radius r2 (r2 = r1 x 30) with a point, as its center, corresponding to the center of the gate mark in the first plane.
Description
明 細 書 Specification
光学用平板部材及び光学用平板部材の製造方法 Optical flat plate member and method for manufacturing optical flat plate member
技術分野 Technical field
[0001] 本発明は、光学部材として使用したときにゲート跡が目立たず、熱可塑性樹脂の射 出成形により容易に製造することができる光学用平板部材及び該光学用平板部材 の製造方法に関するものである。 The present invention relates to an optical flat plate member which can be easily produced by injection molding of a thermoplastic resin without using a gate trace when it is used as an optical member, and a method of producing the flat plate member for optical use. It is.
背景技術 Background art
[0002] 電圧をかけると分子の並び方が変化するという液晶の性質を利用した液晶表示装 置は、パーソナルコンピュータ、薄型テレビジョン、車載用パネル、携帯情報端末など に広く用いられている。液晶自体は発光しないので、液晶表示装置は外部の光源を 必要とし、該光源としては、液晶表示装置の側縁に光源が配置されるサイドライト方 式と、液晶表示装置の背部に光源が配置される直下方式のものが実用化されている 。サイドライト方式は、装置ユニットを薄くすることができる力 S、輝度が低いので、高輝 度が要求される大型の液晶表示装置には、直下方式が適して!/、る。 Liquid crystal display devices utilizing the property of liquid crystals that change the alignment of molecules when voltage is applied are widely used in personal computers, flat-screen televisions, car panels, portable information terminals and the like. Since the liquid crystal itself does not emit light, the liquid crystal display device needs an external light source, and as the light source, a side light system in which the light source is disposed at the side edge of the liquid crystal display device and a light source is disposed at the back of the liquid crystal display device The direct system is being put to practical use. Since the sidelight system is capable of reducing the thickness of the device unit S and the luminance is low, the direct system is suitable for a large liquid crystal display device requiring high brightness!
[0003] サイドライト方式、直下方式ともに、熱可塑性樹脂よりなる光学用平板部材が重要な 機能を果たしており、中でも直下方式では光学用平板部材として光拡散板が使用さ れている。直下方式の液晶表示装置では、装置筐体の背部に複数本の冷陰極管な どの光源を配置し、光源からの光が光拡散板に入射し、入射した光を光拡散板によ り拡散させて輝度の均一な面状の光に変換する。必要に応じて、冷陰極管の背後に 反射板を設け、光拡散板の裏面にグラデーション印刷を施し、光拡散板の前面に集 光シート、拡散シートなどを重ねる。光拡散板には、光線透過率と光拡散性のバラン スがよぐ反りがなく十分な強度を有し、輝度ムラを少なくすることが要求される。 An optical flat member made of a thermoplastic resin plays an important function in both the side light type and the direct type, and in particular, in the direct type, a light diffusion plate is used as the optical flat member. In the direct type liquid crystal display device, a light source such as a plurality of cold cathode tubes is disposed on the back of the device housing, light from the light source is incident on the light diffusion plate, and the incident light is diffused by the light diffusion plate. And convert it into uniform light of uniform brightness. If necessary, a reflection plate is provided behind the cold cathode tube, gradation printing is performed on the back of the light diffusion plate, and a light collection sheet, diffusion sheet, etc. are stacked on the front of the light diffusion plate. The light diffusing plate is required to have a sufficient strength without any warpage between the light transmittance and the light diffusing property, and to reduce the luminance unevenness.
[0004] 光拡散板の材料としては、光拡散剤を含有する熱可塑性樹脂の成形品が用いられ ることが多いが、熱可塑性樹脂のみを用い、成形品表面の形状を工夫する場合もあ る。光拡散板の成形法としては、押出成形法、キャスト法、射出成形法などが用いら れる。押出成形法によれば、光拡散板の原材料シートを効率的に生産することがで きる力 光拡散板にするための後加工に手間がかかり、材料の無駄が発生する。キヤ
スト法によれば、強度が高ぐ光学的な歪みのない光拡散板を得ることができる力 生 産性は高くない。射出成形法によれば、後加工の工程数が少なぐ短時間で光拡散 板を製造することができる力、キヤビティ側面のサイドゲートから溶融した熱可塑性樹 脂が流入する従来の方法では、大型の光拡散板の一個取りの射出成形法による製 造と、小型の光拡散板の多数個取りの射出成形法による製造とは技術的に困難であ A molded product of a thermoplastic resin containing a light diffusing agent is often used as the material of the light diffusion plate, but it is possible to use only the thermoplastic resin and devise the shape of the surface of the molded product. Ru. As a molding method of the light diffusion plate, an extrusion molding method, a casting method, an injection molding method or the like is used. According to the extrusion molding method, post-processing for forming a light diffusion plate capable of efficiently producing a raw material sheet of the light diffusion plate takes time and labor, and material waste occurs. Queer According to the strike method, it is not high in productivity which can obtain a light diffusion plate without optical distortion with high strength. According to the injection molding method, the light diffusion plate can be manufactured in a short time in which the number of post-processing steps is small, and in the conventional method in which the molten thermoplastic resin flows from the side gate of the cavity side, It is technically difficult to manufacture by one-piece injection molding of light diffusers and by multiple injection molding of small light diffusers.
[0005] そこで、 日本国特許出願公開第 2004— 117544号公報には、光拡散板の光入射 面に多点ゲートを設けて射出成形する方法が提案されている。これによれば、大型 の光拡散板の一個取りの射出成形法による製造と、小型の光拡散板の多数個取りの 射出成形法による製造が可能になる。ホットランナーと多点ゲートを有する金型を用 いると、一個取りの大型光拡散板と多数個取りの小型の光拡散板とを、短い成形サイ クルで効率的に射出成形することができる。 Therefore, Japanese Patent Application Publication No. 2004-117544 proposes a method of providing a multipoint gate on the light incident surface of a light diffusion plate and performing injection molding. According to this, it becomes possible to manufacture by a single-piece injection molding method for a large light diffusion plate and to manufacture by a multi-piece injection molding method for a small light diffusion plate. By using a mold having a hot runner and a multipoint gate, it is possible to efficiently inject and mold a large single-piece light diffusion plate and a small number of small light diffusion plate in a short molding cycle.
[0006] ところで、光拡散板のような精密な成形品の金型にホットランナーを用いる場合は、 溶融樹脂の金型キヤビティへの流入終了後に、バルブピンによりバルブゲートを閉鎖 し、バルブピンの先端の形状を光拡散板の光学的有効面内に転写することにより、ゲ ート跡の処理を不要としている。しかしながら、このバルブピンを使用した金型で成形 した光拡散板を液晶表示装置に実装したとき、ゲート跡付近とそれ以外の部分とで 輝度むらが発生し、表示画面の画質が低下するという問題があり、さらなる改善が求 められている。このような課題は、光拡散板に限らず、導光板等の他の光学用平板部 材にお!/、ても同様に生じて!/、た。 By the way, when using a hot runner for the mold of a precise molded product such as a light diffusion plate, the valve gate is closed by the valve pin after the inflow of molten resin into the mold cavity, and the tip of the valve pin is closed. By transferring the shape into the optically effective surface of the light diffusion plate, the processing of the gate mark is not necessary. However, when a light diffusion plate molded with a mold using this valve pin is mounted on a liquid crystal display device, uneven brightness occurs between the vicinity of the gate mark and the other parts, and the image quality of the display screen is degraded. Yes, further improvement is required. Such a problem occurs not only in the light diffusion plate but also in other flat optical members such as a light guide plate or the like.
発明の開示 Disclosure of the invention
[0007] よって、本発明の目的は、光学用平板部材として使用したときにゲート跡が目立た ず輝度むらを抑えることができ、かつ熱可塑性樹脂の射出成形により容易に製造す ることができる光学用平板部材及び該光学用平板部材の製造方法を提供することで ある。 Therefore, it is an object of the present invention to provide an optical flat plate member in which the gate mark is inconspicuous, the luminance unevenness can be suppressed, and the optical resin can be easily manufactured by injection molding of a thermoplastic resin. A flat plate member and a method of manufacturing the flat plate member for optics.
[0008] 本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、光学用平板部材 のゲート跡の算術平均粗さ Raと、ゲート跡が存在する面とは反対側の面のゲート跡 の中心に対応する点から所定の範囲の算術平均粗さ Raと力 S、所定の関係を満たす
ことにより、装置に実装したときの光学用平板部材のゲート跡が目立たなくなることを 見いだし、この知見に基づいて本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventor of the present invention has found that the arithmetic mean roughness Ra of the gate mark of the optical flat plate member and the surface on the side opposite to the surface on which the gate mark exists. Arithmetic mean roughness Ra and force S within a predetermined range from the point corresponding to the center of the gate mark As a result, it has been found that the gate mark of the optical flat member when mounted on the device becomes inconspicuous, and the present invention has been completed based on this finding.
[0009] 本発明の第 1の観点によれば、熱可塑性樹脂を光学的有効面に対応する面内に ゲートを有する金型を用いて射出成形することにより得られる光学用平板部材であつ て、前記ゲートに対応して形成されるゲート跡が存在する第 1の面と、この第 1の面と は反対側の面である第 2の面とを備え、前記第 1の面において、前記光学的有効面 内に存在する前記ゲート跡の半径を rとするとともに、該半径 rの範囲における算術 平均粗さを Raとし、前記第 2の面において、前記第 1の面の前記ゲート跡の中心に 対応する点を中心とした半径 r (r =r X 30)の範囲における算術平均粗さを Raとし According to a first aspect of the present invention, there is provided an optical flat member obtained by injection molding a thermoplastic resin using a mold having a gate in a plane corresponding to the optically effective surface. A first surface on which a gate mark formed corresponding to the gate is present, and a second surface opposite to the first surface, and the first surface The radius of the gate mark existing in the optically effective surface is r, and the arithmetic mean roughness in the range of the radius r is Ra, and in the second surface, the gate mark of the first surface is Let the arithmetic mean roughness Ra in the range of radius r (r = r x 30) centering on the point corresponding to the center
2 2 1 2 た際に、 2 2 1 2 When
(条件 1) (Condition 1)
K ^ mX Ra ≤3 ( 111)、かつ Ra ≤3 ( 111)、かっ1½ ≤Ra K ^ mX Ra ≤ 3 (111), and Ra ≤ 3 (111), color 1 1⁄2 ≤ Ra
1 2 1 2 1 2 1 2
または Or
(条件 2) (Condition 2)
Ra ≤ 1 ( ^ m) ,力、つ Ra ≤ 3 ( ^ m) Ra ≤ 1 (^ m), power, one Ra ≤ 3 (^ m)
1 2 1 2
を満たす光学用平板部材が提供される。 An optical flat member satisfying the above is provided.
[0010] 本発明の光学用平板部材においては、ゲート跡が存在する側の面に光を当てた場 合の全光線透過率が 50〜90%であることが好ましい。 [0010] In the optical flat member of the present invention, the total light transmittance is preferably 50 to 90% when light is applied to the surface on which the gate mark is present.
[0011] また、本発明の光学用平板部材は、光拡散板に用いられることが好ましい。 In addition, it is preferable that the flat member for optics of the present invention be used for a light diffusion plate.
[0012] また、本発明の第 2の観点によれば、本発明の光学用平板部材の製造方法であつ て、バルブゲートを有するホットランナーを備える金型を用いて射出成形する光学用 平板部材の製造方法が提供される。 Further, according to a second aspect of the present invention, in the method of manufacturing an optical flat member of the present invention, the optical flat member is injection molded using a mold including a hot runner having a valve gate. The manufacturing method of is provided.
[0013] 本発明によれば、光学用平板部材として使用したときにゲート跡が目立たず輝度む らを抑えること力 Sできる。また、光学用平板部材を熱可塑性樹脂の射出成形により容 易に製造することができる。 According to the present invention, when used as a flat optical plate member, it is possible to make the gate mark inconspicuous and to suppress the luminance mark S. Also, the optical flat member can be easily manufactured by injection molding of a thermoplastic resin.
図面の簡単な説明 Brief description of the drawings
[0014] [図 1]実施の形態に係る光学用平板部材に形成される三角プリズムの形状を示す断 面図である。
[図 2]実施の形態に係る光学用平板部材に形成される三角プリズムの形状を示す断 面図である。 FIG. 1 is a cross-sectional view showing the shape of a triangular prism formed on the flat member for optics according to the embodiment. FIG. 2 is a cross-sectional view showing the shape of a triangular prism formed on the optical flat member according to the embodiment.
[図 3]実施の形態に係る光学用平板部材に形成される複合プリズムの形状を示す断 面図である。 FIG. 3 is a cross-sectional view showing the shape of a composite prism formed on the optical flat member according to the embodiment.
[図 4]実施の形態に係る光学用平板部材に形成されるレンチキュラーレンズ状プリズ ムの形状を示す断面図である。 FIG. 4 is a cross-sectional view showing the shape of a lenticular lens-shaped prism formed on the flat optical member according to the embodiment.
[図 5]実施の形態に係る光学用平板部材に形成される半球状突起の形状を示す断 面図である。 FIG. 5 is a cross-sectional view showing the shape of a hemispherical protrusion formed on the optical flat member according to the embodiment.
[図 6]実施の形態に係る光学用平板部材に形成される四角錐の形状を示す斜視図 である。 FIG. 6 is a perspective view showing the shape of a quadrangular pyramid formed on the optical flat member according to the embodiment.
[図 7]実施の形態に係るホットランナーを有する金型の構成を示す断面図である。 FIG. 7 is a cross-sectional view showing a configuration of a mold having a hot runner according to the embodiment.
[図 8]実施の形態に係る金型を用いた光学用平板部材の製造方法を示す断面図で ある。 FIG. 8 is a cross-sectional view showing a method of manufacturing an optical flat member using a mold according to an embodiment.
[図 9]実施の形態に係る金型を用いた光学用平板部材の製造方法を示す断面図で ある。 FIG. 9 is a cross-sectional view showing a method of manufacturing an optical flat member using a mold according to the embodiment.
[図 10]実施の形態に係る金型を用いた光学用平板部材の製造方法を示す断面図で ある。 FIG. 10 is a cross-sectional view showing a method of manufacturing an optical flat member using a mold according to the embodiment.
[図 11]実施の形態に係るゲート跡角度を説明するための図である。 FIG. 11 is a view for explaining a gate mark angle according to the embodiment.
[図 12]実施の形態に係る直下型バックライト装置の構成を示す斜視図である。 FIG. 12 is a perspective view showing the configuration of a direct-type backlight device according to the embodiment.
[図 13]実施例で用いた金型のゲート位置を示す図である。 FIG. 13 is a view showing the gate position of the mold used in the example.
[図 14]実施例におけるゲート付近の輝度の測定位置を示す図である。 FIG. 14 is a diagram showing measurement positions of luminance in the vicinity of the gate in the embodiment.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態に係る光学用平板部材について説明を行なう。本実施 の形態に係る光学用平板部材は、熱可塑性樹脂を当該光学用平板部材の光学的 有効面に対応する面内にゲートを有する金型を用いて射出成形することにより得られ る。この光学用平板部材は、前記ゲートに対応して形成されるゲート跡が存在する第 1の面と、この第 1の面とは反対側の面である第 2の面とを備え、第 1の面において、 光学的有効面内に存在する前記ゲート跡の半径を rとするとともに、該半径 rの範囲
におけるその表面の算術平均粗さを とし、第 2の面において、第 1の面の前記ゲ ート跡の中心に対応する点を中心とした半径 r (r =r X 30)の範囲におけるその表 Hereinafter, the optical flat member according to the embodiment of the present invention will be described. The flat member for optics according to the present embodiment is obtained by injection molding a thermoplastic resin using a mold having a gate in a plane corresponding to the optically effective surface of the flat member for optics. The optical flat member includes a first surface on which a gate mark formed corresponding to the gate is present, and a second surface opposite to the first surface, The radius of the gate trace existing in the optically effective plane is r, and the range of the radius r is The arithmetic mean roughness of the surface of in the second surface, in the range of radius r (r = r X 30) centered on the point corresponding to the center of the gate mark of the first surface in the second surface table
2 2 1 2 2 1
面の算術平均粗さを Raとした際に、下記の(条件 1)または(条件 2)を満たすように In order to satisfy the following (condition 1) or (condition 2) when the arithmetic mean roughness of the surface is Ra
2 2
設定されている。 It is set.
(条件 1) (Condition 1)
K ^ mXRa ≤3 ( 111)、かつ Ra ≤3 ( 111)、かっ1½≤Ra K ^ mXRa ≤ 3 (111), and Ra ≤ 3 (111), color 1 1⁄2 ≤ Ra
1 2 1 2 1 2 1 2
(条件 2) (Condition 2)
Ra ≤ 1 ( ^ m) ,力、つ Ra ≤ 3 ( ^ m) Ra ≤ 1 (^ m), power, one Ra ≤ 3 (^ m)
1 2 1 2
この光学用平板部材において、ゲート跡が存在する側の面(第 1の面)に光を当てた 場合の全光線透過率は 50〜90%であり、好ましくは、 60〜90%である。 In this optical flat member, the total light transmittance when light is applied to the surface (first surface) on which the gate mark is present is 50 to 90%, preferably 60 to 90%.
[0016] ここで光学的有効面とは、光学部材を液晶表示装置等に組み込んで観察するとき に、観察者が確認できる部分のことであり、例えば光拡散板であるならば、その主面 の側壁付近に存在する液晶表示装置組み込みしろを除いた部分のことである。 Here, the optically effective surface is a portion that can be confirmed by the observer when the optical member is incorporated into a liquid crystal display device or the like for observation, and, for example, if it is a light diffusion plate, its main surface The portion excluding the liquid crystal display incorporating margin existing near the side wall of the.
[0017] また、この光学用平板部材を射出成形するための金型の該光学用平板部材の光 学的有効面となるべき面に対応する面内には、複数のゲートが設置され、設置する ゲート数を N (個)、光学用平板部材の面積を S (mm2)、光学用平板部材の厚みを t ( mm)とした場合、ゲート数 Nは、下記(式 1)を満たすことが好ましぐ下記(式 2)を満 たすことがより好ましい。 In addition, a plurality of gates are installed and installed in a plane corresponding to the optical effective surface of the optical flat plate member for injection molding of the optical flat plate member. Assuming that the number of gates is N (number), the area of the optical flat plate member is S (mm 2 ), and the thickness of the optical flat plate member is t (mm), the number of gates N satisfies the following (formula 1) It is more preferable to satisfy the following (formula 2) that is preferred.
(式 1) (S/(t + 6)) X 10_4≤N≤ (2S/t) X 10— 4 (Formula 1) (S / (t + 6)) X 10 _ 4 ≤ N ≤ (2 S / t) X 10 4
(式 2) (S/(t + 4)) X 10_4≤N≤ (2S/t) X 10— 4 (Eq. 2) (S / (t + 4)) X 10 _ 4 ≤ N ≤ (2 S / t) X 10 4
ゲート数 Nが(S/(t + 6)) X 10_4未満であると、溶融樹脂の金型内での流動距離が 長くなりすぎ、流動中の溶融樹脂の温度が低下して、光学用平板部材に歪み、厚み むら、ウエルドラインなどが生ずるおそれがある。また、ゲート数 Nが(2S/t) X 10_4 を超えると、ゲート数が多くなりすぎるので、金型の製作が困難になるおそれがある。 また、本実施の形態に係る光学用平板部材は、 15インチ型以上、すなわち、面積が 76,000mm2以上とすること力 S好ましく、 24インチ型以上、すなわち、面積が 180,00 Omm2以上とすることがより好ましい。なお、一つの金型から平板部材を多数個取りす る場合には、光学用平板部材の面積とは、一つの金型に設けられた、すべての平板
部材の面積の合計のことである。また、平板部材の厚みは 0. 2〜50mmの範囲で適 宜選択される。 When the gate number N is less than (S / (t + 6) ) X 10_ 4, flow distance is too long in the mold of the molten resin, the temperature of the molten resin in the fluid is reduced, optical There is a possibility that distortion, uneven thickness, weld line, etc. may occur on the flat plate member. In addition, when the gate number N exceeds (2S / t) × 10 4 , the number of gates is too large, which may make it difficult to manufacture a mold. Also, optical flat plate member according to the present embodiment 15 inch or more, i.e., force S preferably the area is to 76,000Mm 2 or more, a 24 inch or more, i.e., area 180,00 Omm 2 or more It is more preferable to When a large number of flat plate members are taken from one mold, the area of the optical flat plate member is the entire flat plate provided in one mold. It is the sum of the area of a member. Also, the thickness of the flat plate member is properly selected in the range of 0.2 to 50 mm.
[0018] 光学用平板部材の第 1の面において、光学的有効面内に存在するゲート跡の算術 平均粗さ Raは、光拡散機能を付与するために、光学用平板部材のゲート跡に複数 の微細特定形状が形成されて!/、る場合には、この微細特定形状を形成する面(半径 rの範囲)の算術平均粗さのことであり、ゲート跡に微細特定形状が形成されていな い場合には、ゲート跡の平面(半径 rの範囲)の算術平均粗さのことである。なお、こ のような微細特定形状は、後述のホットランナーノズル 12のバルブピン 12a (図 8参照 )の先端部に、対応する微細特定形状を形成しておき、この微細特定形状を樹脂に 転写することにより形成される。このようなゲート跡の微細特定形状は、光学用平板部 材のゲート跡が存在する面のゲート跡以外の部分に微細特定形状が形成されている 場合に、ゲート跡以外の部分と同様な微細特定形状が形成される。 In the first surface of the optical flat member, the arithmetic mean roughness Ra of the gate marks present in the optically effective surface is plural for the gate marks of the optical flat member in order to provide a light diffusion function. In the case where a micro-specific shape is formed! /, It means the arithmetic mean roughness of the surface (range of radius r) forming this micro-specific shape, and the micro-specific shape is formed on the gate trace. If not, it is the arithmetic mean roughness of the plane of the gate mark (range of radius r). In addition, such a fine specified shape forms the corresponding fine specified shape at the tip of the valve pin 12a (see FIG. 8) of the hot runner nozzle 12 described later, and transfers this fine specified shape to the resin. It is formed by Such a fine specified shape of the gate mark is the same as that of the other part except for the gate mark when the fine specified shape is formed in the part other than the gate mark of the surface on which the gate mark of the optical flat plate material is present. A particular shape is formed.
[0019] また、ゲート跡が存在する面とは反対側の面である第 2の面において、第 1の面の ゲート跡の中心に対応する点から半径 r力 =r X 30とした範囲の算術平均粗さ Ra In the second surface, which is the surface opposite to the surface on which the gate marks are present, the radius r force = r × 30 from the point corresponding to the center of the gate marks on the first surface. Arithmetic mean roughness Ra
2 2 1 2 2 1
は、光拡散機能を付与するために、光学用平板部材の表面(第 2の面)に複数の微 In order to provide a light diffusion function, a plurality of fines are formed on the surface (second surface) of the optical flat member.
2 2
細特定形状が形成されている場合には、この微細特定形状を形成する面の当該範 囲における算術平均粗さのことであり、光学用平板部材の表面(第 2の面)に微細特 定形状が形成されていない場合には、光学用平板部材の表面の当該範囲における 算術平均粗さのことである。なお、このような微細特定形状は、後述の金型の固定金 型 4 (図 7参照)に備えられるスタンパーの表面に、対応する微細特定形状を形成し ておき、この微細特定形状を樹脂に転写することにより形成される。 When a thin specified shape is formed, it means the arithmetic mean roughness in the relevant range of the surface forming this fine specified shape, and it is fine specified on the surface (second surface) of the optical flat member. When the shape is not formed, it means the arithmetic mean roughness in the relevant range of the surface of the optical flat member. Such a fine specified shape is formed on the surface of the stamper provided on the fixed mold 4 (see FIG. 7) of the mold described later (see FIG. 7), and this fine specified shape is used as a resin. It is formed by transferring.
[0020] ゲート跡や、光学用平板部材の一方または両方の表面に形成される微細特定形状 としては、図 1の断面図に示すように、光学用平板部材の表面に形成された、断面が 三角形状の線状プリズム(三角プリズム)からなる三角プリズム条列が挙げられる。こ の場合には、図中 R1で示す三角プリズムを形成する面の算術平均粗さを計測する。 As shown in the cross-sectional view of FIG. 1, as a micro-specific shape formed on the surface of the gate mark or one or both surfaces of the optical flat member, the cross section formed on the surface of the optical flat member is A triangular prism row composed of triangular linear prisms (triangular prisms) may be mentioned. In this case, the arithmetic mean roughness of the surface forming the triangular prism indicated by R1 in the figure is measured.
[0021] また、図 2の断面図に示すように三角プリズムを、三角形を構成する 2つの斜面と、 当該光学用平板部材の厚み方向に直交する面とのなす角度が等しくなるように形成 し、この角度が光学用平板部材のある特定の X点と、この X点から三角プリズムの短
手方向へ所定距離だけ離れた Y点との間で、 X点及び Υ点から離れるに従って、連 続的にまたは断続的に小さくなるように形成しても良い。この場合には、図中 R2で示 す三角プリズムを形成する面の算術平均粗さを計測する。 Further, as shown in the cross-sectional view of FIG. 2, the triangular prism is formed so that the angle formed by the two slopes forming the triangle and the plane orthogonal to the thickness direction of the optical flat plate member becomes equal. , This angle is a certain X point of the optical flat plate member and the short side of the triangular prism from this X point You may form so that it may become small continuously or intermittently as it leaves | separates from X point and a saddle point between Y points which separated by predetermined distance in the hand direction. In this case, the arithmetic mean roughness of the surface forming the triangular prism indicated by R2 in the figure is measured.
[0022] また、図 3の断面図に示すように線状プリズムが少なくとも 4つの平面を含む断面多 角形状に形成された複合プリズム条列を挙げることができる。この場合には、図中 R3 で示す複合プリズムを形成する面の算術平均粗さを計測する。ここで図 1から図 3に 示す形状を形成した場合には、光学用平板部材を光源上に置いてゲート跡を観察し た際に、ゲート跡が見かけ上分裂して見えることとなり、ゲート跡が目立ちやすくなる。 このため、本実施の形態に示す好適な表面粗さを付与することにより、ゲート跡を見 えにくくすることができる。 In addition, as shown in the cross-sectional view of FIG. 3, it is possible to cite a composite prism row in which linear prisms are formed in a polygonal shape in cross section including at least four planes. In this case, the arithmetic mean roughness of the surface forming the composite prism indicated by R3 in the figure is measured. Here, when the shapes shown in FIGS. 1 to 3 are formed, when the optical flat member is placed on the light source and the gate mark is observed, the gate mark appears to be split and the gate mark appears. Becomes more noticeable. For this reason, it is possible to make it difficult to see the gate mark by providing the suitable surface roughness shown in this embodiment.
[0023] また、図 4の断面図に示すように、断面が凸型円弧状のレンチキュラーレンズ状の プリズム条列を挙げることができる。この場合には、図中 R4で示す凸型円弧状のレン チキユラ一レンズ状のプリズムを形成する面の算術平均粗さを計測する。 In addition, as shown in the cross-sectional view of FIG. 4, there can be mentioned a lenticular lens-like prism row having a convex arc-shaped cross section. In this case, the arithmetic mean roughness of the surface forming the convex arc-shaped lenticular lens-like prism indicated by R4 in the drawing is measured.
[0024] また、図 5の断面図に示すように、半球状の突起を縦方向及び横方向に配列した 形状を挙げること力できる。この場合には、図中 R5で示す半球状の突起を形成する 面の算術平均粗さを計測する。ここで図 4と図 5に示す形状を形成した場合には、光 学用平板部材を光源上に置いてゲート跡を観察した際に、ゲート跡が見かけ上拡大 して見えることとなり、ゲート跡が目立ちやすくなる。このため、本実施の形態に示す 好適な表面粗さを付与することにより、ゲート跡を見えにくくすることができる。 Further, as shown in the cross-sectional view of FIG. 5, it is possible to cite a shape in which hemispherical projections are arranged in the longitudinal direction and the lateral direction. In this case, the arithmetic mean roughness of the surface forming a hemispherical protrusion indicated by R5 in the figure is measured. Here, when the shapes shown in FIG. 4 and FIG. 5 are formed, when the flat plate member for optics is placed on the light source and the gate mark is observed, the gate mark appears to be apparently enlarged. Becomes more noticeable. Therefore, the gate mark can be made less visible by providing the suitable surface roughness described in this embodiment.
[0025] また、図 6に示すように、四角錐等の多角錐状の突起を配列した形状を挙げること ができる。この場合には、図中 R6で示す四角錐等の多角錐状の突起を形成する面 の算術平均粗さを計測する。なお、四角錐等の多角錐状の突起は、四角錐等の多 角錐状の凹み等でもよい。ここで図 6に示す形状を形成した場合には、光学用平板 部材を光源上に置!/、てゲート跡を観察した際に、ゲート跡が見かけ上分裂して見え ることになり、 目立ちやすくなる。このため、本実施の形態に示す好適な表面粗さを付 与することにより、ゲート跡を見えに《することができる。 Further, as shown in FIG. 6, it is possible to cite a shape in which multipyramidal projections such as quadrangular pyramids are arrayed. In this case, the arithmetic mean roughness of the surface forming a multipyramidal projection such as a quadrangular pyramid shown by R6 in the drawing is measured. The multipyramidal protrusion such as a quadrangular pyramid may be a multipyramidal recess such as a quadrilateral pyramid. Here, when the shape shown in FIG. 6 is formed, when the optical flat member is placed on the light source! /, And the gate mark is observed, the gate mark appears to be split in appearance, which is noticeable It will be easier. For this reason, the gate mark can be made visible by giving the suitable surface roughness shown in the present embodiment.
[0026] なお、算術平均粗さ Raは、 日本工業規格 JIS B06013. 1に定義される値であり、 超深度顕微鏡などを用いて測定することができる。また、光学用平板部材を、光源に
面する位置に配置した際に、ゲート跡は、光学用平板部材の光源側の面に設けられ て!/、てもよ!/、し、光源とは反対側の面に設けられて!/、てもよ!/、。 Arithmetic mean roughness Ra is a value defined in Japanese Industrial Standard JIS B06013.1, and can be measured using an ultra-deep microscope or the like. In addition, the flat plate for optics is used as a light source When arranged at the facing position, the gate mark is provided on the surface on the light source side of the optical flat plate member! /, Or may be! /, Provided on the surface opposite to the light source! / , Even!
[0027] 本実施の形態に用いる熱可塑性樹脂に特に制限はなぐ例えば、脂環式構造を有 する樹脂、芳香族ビュル系単量体と (メタ)アクリル酸アルキルエステル系単量体との 共重合体、メタクリル樹脂、ポリカーボネート、ポリスチレン、アクリロニトリル スチレン 共重合体樹脂、 ABS樹脂、ポリエーテルスルホンなどを挙げることができる。これらの 中で、脂環式構造を有する樹脂、芳香族ビュル系単量体と (メタ)アクリル酸アルキル エステル系単量体との共重合体、及びポリカーボネートを、吸水率が低く強靭である ために、好適に用いることができる。脂環式構造を有する樹脂は、溶融樹脂の流動 性が良好なので、低い射出圧力で金型のキヤビティに充填することができ、吸湿性が 極めて低いので、寸法安定性に優れ、光学用平板部材に反りを生ずることがなぐ比 重が小さいので光学用平板部材を軽量化することができる。また、脂環式構造を有 する樹脂は、ウエルドラインが発生しにくい。 [0027] The thermoplastic resin used in the present embodiment is not particularly limited. For example, a resin having an alicyclic structure, a copolymer of an aromatic boule monomer and a (meth) acrylic acid alkyl ester monomer is used. Examples thereof include polymers, methacrylic resins, polycarbonates, polystyrenes, acrylonitrile-styrene copolymer resins, ABS resins, and polyether sulfones. Among these, resins having an alicyclic structure, copolymers of an aromatic boule monomer and a (meth) acrylic acid alkyl ester monomer, and a polycarbonate have a low water absorption coefficient and are tough. Can be suitably used. A resin having an alicyclic structure can be filled into a mold cavity at a low injection pressure because the fluidity of the molten resin is good, and has extremely low hygroscopicity, so it is excellent in dimensional stability, and is a flat member for optics The weight of the flat optical member can be reduced because the specific weight that causes no warping is small. In addition, a resin having an alicyclic structure is less likely to generate a weld line.
[0028] 脂環式構造を有する樹脂は、主鎖又は側鎖に脂環式構造を有する樹脂のことを!/、 う。この中でも主鎖に脂環式構造を有する樹脂は、機械的強度と耐熱性が良好なの で、特に好適に用いることができる。脂環式構造は、飽和環状炭化水素構造であるこ とが好ましぐその炭素数は、 4〜30であることが好ましぐ 5〜20であることがより好 ましぐ 5〜; 15であることがさらに好ましい。脂環式構造を有する樹脂中の脂環式構 造を有する繰り返し単位の割合は、 50重量%以上であることが好ましぐ 70重量% 以上であること力 り好ましく、 90重量%以上であることがさらに好ましい。 The resin having an alicyclic structure is a resin having an alicyclic structure in the main chain or side chain! Among these, resins having an alicyclic structure in the main chain can be particularly preferably used because they have good mechanical strength and heat resistance. The alicyclic structure is preferably a saturated cyclic hydrocarbon structure, and the carbon number thereof is preferably 4 to 30 and more preferably 5 to 20. 5 to 15 Is more preferred. The proportion of the repeating unit having an alicyclic structure in the resin having an alicyclic structure is preferably 50% by weight or more, and more preferably 70% by weight or more, and is 90% by weight or more. Is more preferred.
[0029] 脂環式構造を有する樹脂としては、例えば、ノルボルネン系単量体の開環重合体 若しくは開環共重合体又はそれらの水素添加物、ノルボルネン系単量体の付加重合 体若しくは付加共重合体又はそれらの水素添加物、単環の環状ォレフィン系単量体 の重合体又はその水素添加物、環状共役ジェン系単量体の重合体又はその水素添 加物、ビュル脂環式炭化水素系単量体の重合体若しくは共重合体又はそれらの水 素添加物、ビュル芳香族炭化水素系単量体の重合体又は共重合体の芳香環を含 む不飽和結合部分の水素添加物などを挙げることができる。これらの中で、ノルボル ネン系単量体の重合体の水素添加物及びビュル芳香族炭化水素系単量体の重合
体の芳香環を含む不飽和結合部分の水素添加物は、機械的強度と耐熱性に優れる ので、特に好適に用いることができる。 Examples of the resin having an alicyclic structure include a ring-opened polymer or ring-opened copolymer of a norbornene-based monomer, a hydrogenated product thereof, an addition polymer or addition-copolymer of a norbornene-based monomer, and the like. Polymer or hydrogenated product thereof, polymer of monocyclic cyclic olefin group monomer or hydrogenated product thereof, polymer of cyclic conjugated diene monomer or hydrogenated product thereof, alicyclic cycloaliphatic hydrocarbon Polymers or copolymers of monomers of the above type or their hydrogen additives, hydrogenates of unsaturated bonds including aromatic rings of polymers or copolymers of bure aromatic hydrocarbon monomers, etc. Can be mentioned. Among these, hydrogenation products of polymers of norbornene type monomers and polymerization of bure aromatic hydrocarbon type monomers The hydrogenated substance of the unsaturated bond part including the aromatic ring of the body can be particularly preferably used because it is excellent in mechanical strength and heat resistance.
[0030] メタクリル樹脂は、透明性に優れるので、光学部材として好適に用いることができる 。メタクリル樹脂としては、 日本工業規格 JIS K6717に規定されるメタクリル酸メチル 重合物を 80重量%以上含むメタクリル樹脂成形材料を挙げることができる。この規格 に規定されるメタクリル樹脂の中で、ビカット軟化点温度 96〜100°C、メルトフローレ ート 8〜; 16の指定分類コード 100— 120のメタクリル樹脂は、適度な流動性と強度を 有するので、好適に用いることができる。 [0030] Methacrylic resin is excellent in transparency, and thus can be suitably used as an optical member. As a methacrylic resin, the methacrylic resin molding material which contains 80 weight% or more of methyl methacrylate polymers prescribed | regulated to Japanese Industrial Standard JISK6717 can be mentioned. Among the methacrylic resins defined in this standard, the methacrylic resins having a Vicat softening point temperature of 96 to 100 ° C. and melt flow rates 8 to 16; classified classification codes 100 to 120 have appropriate fluidity and strength. Therefore, it can be used suitably.
[0031] 芳香族ビュル系単量体と (メタ)アクリル酸アルキルエステルとの共重合体を構成す る芳香族ビュル系単量体とは、芳香族ビュル単量体及びその誘導体をいい、例えば 、スチレン、 α—メチルスチレン、 m メチルスチレン、 p メチルスチレン、 o クロノレ スチレン、 p クロルスチレンなどを挙げることができる。芳香族ビュル系単量体と (メタ )アクリル酸アルキルエステルとの共重合体を構成する(メタ)アクリル酸アルキルエス テルとしては、例えば、炭素数 1〜4のアルキル基を有する (メタ)アクリル酸アルキル エステルなどを挙げることができ、中でもアクリル酸メチル、アクリル酸ェチル、メタタリ ル酸メチル、メタクリル酸ェチルを好適に用いることができる。芳香族ビュル系単量体 と (メタ)アクリル酸アルキルエステルとの共重合体は、香族ビュル系単量体 20〜60重 量%と、(メタ)アクリル酸アルキルエステル 40〜80重量%の共重合体であることが好 ましい。なお、前記 (メタ)アクリル酸アルキルエステルは、アクリル酸アルキルエステル 、メタクリル酸アルキルエステルを意味する。 The aromatic bule monomer constituting a copolymer of an aromatic bule monomer and a (meth) acrylic acid alkyl ester refers to an aromatic bule monomer and a derivative thereof, for example, And styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, o-chloro-styrene, p-chlorostyrene and the like. As a (meth) acrylic acid alkyl ester which comprises the copolymer of an aromatic bure type | system | group monomer and (meth) acrylic-acid alkylester, it has a C1-C4 alkyl group, for example, (meth) acryl Acid alkyl esters and the like can be mentioned, and among them, methyl acrylate, ethyl acrylate, methyl methacrylate, and methyl methacrylate can be suitably used. The copolymer of the aromatic bule monomer and the (meth) acrylic acid alkyl ester is composed of 20 to 60% by weight of the aromatic bule monomer and 40 to 80% by weight of the (meth) acrylic acid ester. It is preferable that it is a copolymer. The (meth) acrylic acid alkyl ester means acrylic acid alkyl ester, methacrylic acid alkyl ester.
[0032] 本実施の形態で使用されるポリカーボネートは、通常二価フエノールとカーボネート 前駆体とを界面重合法又は溶融重合法で反応させて得られるものである。二価フエ ノールの代表的な例としては、 2, 2 ビス(4ーヒドロキシフエニル)プロパン (通称ビス フエノーノレ A)、 2, 2 ビス {(4 ヒドロキシ一 3 メチノレ)フエ二ノレ }プロパン、 2, 2 ビ ス (4ーヒドロキシフエ二ノレ)ブタン、 2, 2 ビス (4ーヒドロキシフエ二ノレ )ー3 メチルブ タン、 2, 2 ビス (4ーヒドロキシフエ二ノレ )ー3, 3 ジメチノレブタン、 2, 2 ビス (4ーヒ ドロキシフエ二ノレ)一 4—メチルペンタン、 1 , 1—ビス (4—ヒドロキシフエ二ノレ)シクロへ キサン、 1 , 1 ビス (4ーヒドロキシフエ二ノレ )ー3, 3, 5—トリメチノレシクロへキサン、 9,
9—ビス { (4—ヒドロキシ一 3—メチノレ)フエ二ノレ }フルオレン、及び α , a —ビス (4—ヒ ドロキシフエニル) m ジイソプロピルベンゼン等が挙げられ、なかでもビスフエノー ル Aが好ましい。これらの二価フエノールは単独又は 2種以上を混合して使用できるThe polycarbonate used in the present embodiment is generally obtained by reacting dihydric phenol with a carbonate precursor by an interfacial polymerization method or a melt polymerization method. Representative examples of divalent phenols include: 2,2 bis (4 hydroxy phenyl) propane (generally called bis pheno nore A), 2, 2 bis {(4 hydroxy mono methenore) phe di none} propane, 2 2, 2-bis (4-hydroxy-phenylonitrile) butane, 2, 2-bis (4-hydroxy-phenylonitrile) -3 methyl butan, 2, 2-bis (4-hydroxy-phenylonitrile) -3, 3-dimethinolebutane, 2, 2-bis (4- Hydroxyphenone) 1,4-methylpentane, 1,1-bis (4-hydroxyphenyle) cyclohexane, 1,1 bis (4-hydroxyphenenone) -3,3,3,5-trimethyonecyclo Xan, 9, Examples thereof include 9-bis {(4-hydroxy-1-methinole) phenone} fluorene and α, a-bis (4-hydroxyphenyl) m diisopropylbenzene and the like, with preference given to bisphenyl A. These divalent phenols can be used alone or in combination of two or more.
〇 Yes
[0033] カーボネート前駆体としてはカルボニルハライド、カーボネートエステル又はハロホ ルメート等が使用され、具体的にはホスゲン、ジフエニルカーボネート又は二価フエノ 一ルのジハロホルメー卜等が挙げられる。 As the carbonate precursor, carbonyl halide, carbonate ester, haloformate and the like are used, and specific examples thereof include phosgene, diphenyl carbonate and dihaloforme of divalent phenol.
[0034] 上記二価フエノールとカーボネート前駆体を界面重合法又は溶融重合法によって 反応させてポリカーボネート樹脂を製造するに当たっては、必要に応じて触媒、末端 停止剤、二価フエノールの酸化防止剤等を使用してもよい。またポリカーボネートは 三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネートであっても 、芳香族又は脂肪族の二官能性カルボン酸を共重合したポリエステルカーボネート であってもよく、また、得られたポリカーボネートの 2種以上を混合した混合物であつ てもよい。 When producing the polycarbonate resin by reacting the above divalent phenol with the carbonate precursor by the interfacial polymerization method or the melt polymerization method, a catalyst, an end terminator, an antioxidant for divalent phenol, etc. You may use it. The polycarbonate may be a branched polycarbonate obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound, or a polyester carbonate obtained by copolymerizing an aromatic or aliphatic difunctional carboxylic acid. It may be a mixture of two or more of the polycarbonates listed above.
[0035] 本実施の形態で用いるポリスチレン樹脂は、スチレン、 α -メチルスチレン、 0-メチ ノレスチレン、 ρ-メチルスチレン、 ρ-クロロスチレン、 ρ-ニトロスチレン、 ρ-アミノスチレン 、 ρ-カルボキシスチレン、 ρ-フエニルスチレンなどの芳香族ビュルからなる PS樹脂、 ゴム質重合体に芳香族ビュルをグラフト重合してなる HIPS樹脂、アクリロニトリルなど のシアン化ビュルと芳香族ビュルを共重合させた AS樹脂、ゴム質重合体にシアン化 ビュルと芳香族ビュルをグラフトしたグラフト重合体およびシアン化ビュルと芳香族ビ ニルとの共重合体の混合物である ABS樹脂、ゴム質重合体にメチルメタタリレートと 芳香族ビュルをグラフトしたグラフト重合体である MBS樹脂などをいい、吸水率、屈 折率、耐熱性、耐衝撃性などの要求性能に応じ選択すればよい。 [0035] The polystyrene resin used in this embodiment is styrene, α-methylstyrene, 0-methylstyrene, メ チ ル -methylstyrene, ρ-chlorostyrene, ρ-nitrostyrene, ρ-aminostyrene, ρ-carboxystyrene, PS resin consisting of aromatic boule such as --phenylstyrene HIPS resin obtained by graft-polymerizing aromatic boule onto rubbery polymer AS resin obtained by copolymerizing cyanide boule such as acrylonitrile with aromatic bule ABS polymer, which is a mixture of a cyanide bule and an aromatic bure grafted on a rubbery polymer and a copolymer of a cyanide boule and an aromatic vinyl, and a rubbery polymer such as methyl methacrylate and an aroma. MBS resin, etc., which is a graft polymer obtained by grafting a family bule, and is required to meet the required performances such as water absorption rate, refractive index, heat resistance and impact resistance. Flip may be selected.
[0036] 本実施の形態においては、熱可塑性樹脂には、必要に応じて、熱可塑性エラスト マー、添加剤などを配合したものを用いることができる。熱可塑性エラストマ一として は、例えば、ポリブタジエン、スチレン ブタジエンブロック共重合体及びその水素添 加物、スチレン イソプレンブロック共重合体及びその水素添加物などを挙げること ができる。熱可塑性エラストマ一の配合量は、通常 0. 0;!〜 50重量%、好ましくは 0.
05〜30重量%である。添加剤としては、例えば、光拡散剤、酸化防止剤、紫外線吸 収剤、光安定剤、染料や顔料などの着色剤、滑剤、可塑剤、帯電防止剤、蛍光増白 剤などを挙げること力 Sできる。光拡散剤としては、例えば、ポリスチレン系重合体、ポリ シロキサン系重合体又はこれらの架橋物からなる微粒子、フッ素系樹脂、硫酸バリゥ ム、炭酸カルシウム、シリカ、タルクなどを挙げること力できる。これらの中で、ポリスチ レン系重合体、ポリシロキサン系重合体又はこれらの架橋物からなる微粒子は、分散 性が良好であり、耐熱性に優れ、成形時の黄変がないので、特に好適に用いること ができる。これらの添加剤の配合量は、特に制限されず、通常 0. 0;!〜 30重量%、好 ましくは 0. 05〜20重量%である。配合剤として光拡散剤を配合する場合における光 拡散剤の粒子径は、特に制限されないが、平均粒径で通常 0. 5- lOO ^ m,好まし くは 0. 5〜80 111の範囲である。 In the present embodiment, as the thermoplastic resin, one in which a thermoplastic elastomer, an additive and the like are blended can be used as needed. Examples of thermoplastic elastomers include polybutadiene, styrene-butadiene block copolymer and its hydrogenated compound, styrene-isoprene block copolymer and its hydrogenated compound, and the like. The blending amount of the thermoplastic elastomer is usually from 0. 0 to! 50% by weight, preferably 0. It is 05-30% by weight. Examples of additives include light diffusing agents, antioxidants, ultraviolet light absorbing agents, light stabilizers, coloring agents such as dyes and pigments, lubricants, plasticizers, antistatic agents, fluorescent whitening agents and the like. S can. As the light diffusing agent, for example, fine particles comprising a polystyrene polymer, a polysiloxane polymer or a crosslinked product thereof, a fluorine resin, barium sulfate, calcium carbonate, silica, talc and the like can be mentioned. Among these, fine particles composed of a polystyrene polymer, a polysiloxane polymer, or a crosslinked product thereof are particularly preferable because they have good dispersibility, are excellent in heat resistance, and do not cause yellowing at the time of molding. It can be used. The amount of these additives to be added is not particularly limited, and is usually from 0. 0;! To 30% by weight, preferably from 0. 05 to 20% by weight. The particle diameter of the light diffusing agent in the case of incorporating the light diffusing agent as a compounding agent is not particularly limited, but the average particle diameter is usually in the range of 0.5-lOO ^ m, preferably 0.5 to 80 111. is there.
[0037] 本実施の形態に係る光学用平板部材は、ゲート跡に係る半径 rの範囲の算術平均 粗さ Raと、ゲート跡が存在する面とは反対側の面のゲート跡の中心に対応する点か らの半径 r ( = r X 30)の範囲の算術平均粗さ Raとを、上述した(条件 1)または(条 The optical flat member according to the present embodiment corresponds to the arithmetic mean roughness Ra of the range of radius r related to the gate mark and the center of the gate mark on the surface opposite to the surface on which the gate mark exists. Arithmetic mean roughness Ra in the range of radius r (= r x 30) from the point to be
2 1 2 2 1 2
件 2)を満たすように設定するとともに、当該光学用平板部材の全光線透過率を上述 した所定の範囲内に設定したため、ゲート跡が光学的有効面内にあっても輝度むら 力小さぐ光学装置に実装したときにゲート跡が目立たなレ、。 Since the total light transmittance of the flat member for optics is set within the above-described predetermined range while setting 2) to satisfy the condition 2), even if the gate mark is in the optically effective surface, the optical unevenness is reduced. The mark of the gate is noticeable when mounted on the device.
[0038] 本実施の形態に係る光学用平板部材は、ホットランナーを備える金型を用いて射 出成形することにより製造される。図 7は、ホットランナーを備える金型の構成を示す 図である。 The flat optical plate member according to the present embodiment is manufactured by injection molding using a mold provided with a hot runner. FIG. 7 is a view showing the configuration of a mold provided with a hot runner.
[0039] 金型 2は、固定側金型 4と可動側金型 6とを備えている。固定側金型 4の可動側金 型 6と対向する面には、成形品(以下、必要に応じて光学用平板部材という。) 16の 光学平面(第 2の面)に所定の形状を付与するための面 (形状付与面)を有するスタ ンパー 8が配設されている。このスタンパー 8の形状付与面は、所定の算術平均粗さ となるように加工されている。また、可動側金型 6には、固定側金型 4に対向する面に キヤビティ 10が形成されており、キヤビティ 10に溶融樹脂 14を供給するための、バル ブピン 12a (図 8参照)を有するバルブゲートタイプのホットランナーノズル(ゲート) 12 を当該光学用平板部材 16の光学的有効面に対応する面内に複数有するホットラン
ナー 13が備えられている。なお、バルブピン 12aの先端部は、所定の算術平均粗さ となるように加工されている。 The mold 2 includes a fixed side mold 4 and a movable side mold 6. A predetermined shape is imparted to the optical plane (second surface) of a molded product (hereinafter referred to as a flat plate member for optics if necessary) on the surface of the stationary mold 4 opposed to the movable mold 6. A stamper 8 is provided which has a surface (shape-imparting surface) to be used. The shape-imparting surface of the stamper 8 is processed to have a predetermined arithmetic mean roughness. In addition, a cavity 10 is formed on the surface of the movable side mold 6 opposite to the fixed side mold 4 and has a valve pin 12 a (see FIG. 8) for supplying the molten resin 14 to the cavity 10. A hot run having a plurality of valve gate type hot runner nozzles (gates) 12 in a plane corresponding to the optically effective surface of the optical flat plate member 16 It is equipped with the 13th. The tip of the valve pin 12a is processed to have a predetermined arithmetic average roughness.
[0040] この金型を用いて成形品 16を製造する場合には、まず、図示しない型締装置を用 いて、所定の圧力で金型の型締めを行なう。この時点では、図 8に示すように、ホット ランナーノズル 12は、ノ ルブピン 12aにより閉じている。次に、図 9に示すように、ホッ トランナーノズル 12のバルブピン 12aを後退させて、ホットランナーノズル 12を開き、 ホットランナーノズル 12よりキヤビティ 10内に溶融樹脂 14を射出する。 In the case of producing a molded product 16 using this mold, first, the mold clamping is performed at a predetermined pressure using a mold clamping device (not shown). At this point, as shown in FIG. 8, the hot runner nozzle 12 is closed by the knob pin 12a. Next, as shown in FIG. 9, the hot runner nozzle 12 is opened by retracting the valve pin 12a of the hot runner nozzle 12, and the molten resin 14 is injected from the hot runner nozzle 12 into the cavity 10.
[0041] キヤビティ 10内に所定量の溶融樹脂 14が射出された後に、図 10に示すように、バ ルブピン 12aを前進させてホットランナーノズル 12を閉じる。このときに成形品 16には バルブピン 12aの先端部の形状が転写される。その後、金型 2を冷却して金型 2から 成形品 16を取り出す。 After a predetermined amount of molten resin 14 is injected into the cavity 10, as shown in FIG. 10, the valve pin 12a is advanced to close the hot runner nozzle 12. At this time, the shape of the tip portion of the valve pin 12 a is transferred to the molded product 16. Thereafter, the mold 2 is cooled and the molded product 16 is taken out of the mold 2.
[0042] 本実施の形態に係る光学用平板部材の製造方法によれば、バルブピン 12aの先 端部を所定の算術平均粗さになるように加工し、スタンパー 8の形状付与面が所定の 算術平均粗さになるように加工しているため、ゲート跡に係る半径 rの範囲の算術平 According to the method of manufacturing an optical flat member according to the present embodiment, the tip end portion of the valve pin 12a is processed to have a predetermined arithmetic mean roughness, and the shape-imparting surface of the stamper 8 is a predetermined arithmetic. Since it is processed to be an average roughness, the arithmetic flatness of the range of radius r related to the gate mark
2 2
均粗さ Raと、ゲート跡が存在する面とは反対側の面のゲート跡の中心に対応する点 からの半径 rの範囲の算術平均粗さ Raとが、上述した(条件 1)または(条件 2)を満 The roughness Ra and the arithmetic mean roughness Ra in the range of the radius r from the point corresponding to the center of the gate trace on the surface opposite to the surface on which the gate trace exists are described above (Condition 1) or (Condition 1) Condition 2) is satisfied
2 2 twenty two
たす成形品 16を製造することができる。また、この製造方法においては、上述の樹脂 を用いているため、上記条件を満たす成形品 16のゲート跡が存在する側の面(第 1 の面)に光を当てた場合の全光線透過率を 50〜90%、好ましくは、 60〜90%の範 囲内に設定することができる。従って、ゲート跡が光学的有効面内にあっても輝度む らが小さぐ光学装置に実装したときにゲート跡が目立たない光学用平板部材を製造 すること力 Sでさる。 Molded articles 16 can be produced. Moreover, in this manufacturing method, since the above-mentioned resin is used, the total light transmittance when light is applied to the surface (first surface) on the side where the gate mark of the molded product 16 satisfying the above conditions is present. Can be set in the range of 50 to 90%, preferably 60 to 90%. Therefore, even if the gate mark is in the optically effective surface, it is possible to manufacture an optical flat member in which the gate mark is not noticeable when mounted on an optical device having a small brightness mark.
[0043] また、この製造方法によれば、ゲート跡が光学的有効面内にあっても輝度むらが小 さぐ光学装置に実装したときにゲート跡が目立たないので、光学用平板部材の光学 的有効面に相当する金型キヤビティ面に多数のゲートを設け、溶融樹脂の流動距離 を短くして、厚さが薄い大型の光学用平板部材を、射出成形により効率的に製造す ること力 Sでさる。 Further, according to this manufacturing method, even when the gate mark is in the optically effective surface, when the gate mark is not noticeable when mounted on the optical device having small luminance unevenness, the optical mark of the optical flat member can be reduced. By providing a large number of gates on the mold cavity surface corresponding to the effective surface and shortening the flow distance of the molten resin, it is possible to efficiently manufacture a large thin optical flat member by injection molding. You
[0044] 本実施の形態においては、光学用平板部材 16を製造するために、ホットランナー 1
3を有する金型 2を用いている力 ホットランナー 13を用いると、ゲート跡の算術平均 粗さ Raが所定の値になるように、ゲートにおいて溶融樹脂を冷却固化することがで きる。また、ホットランナー 13を用いると、一回の射出ごとに廃棄するランナーが発生 しないので、樹脂を有効に使用することができ、一回の射出について溶融する樹脂 の量が少なくなるので成形サイクルを短縮し、生産性を向上することができる。 In the present embodiment, in order to manufacture the optical flat member 16, the hot runner 1 is used. Using the hot runner 13 with the mold 2 having 3, it is possible to cool and solidify the molten resin at the gate such that the arithmetic mean roughness Ra of the gate mark becomes a predetermined value. In addition, since the use of the hot runner 13 eliminates the generation of runners to be discarded after each injection, the resin can be effectively used, and the amount of resin melted for one injection decreases, so the molding cycle is shortened. It is possible to shorten and improve productivity.
[0045] 本実施の形態に係る成形品の製造に用いられる多点ゲートを有する金型は、ホット ランナー 13がバルブゲート 12を有するため、バルブピン 12aの先端の形状をゲート 跡に転写し、ゲート跡の処理を行うことなぐ所定の算術平均粗さ Raを有するゲート 跡を形成することができる。すなわち、バルブゲート 12では、溶融樹脂 14の流れが 絞られ、せん断発熱が生じるので、ゲート付近における溶融樹脂 14の粘度が低下し 、バルブピン 12aの先端の形状をゲート跡に正確に転写して、バルブピン 12aの先端 の算術平均粗さと略等しレ、算術平均粗さ Raを有するゲート跡を形成することができ る。本実施の形態において、バルブピン 12aの先端の算術平均粗さ Raを所定の値 に加工する方法に特に制限はなぐ例えば、機械工作、サンドブラスト、ダイヤモンド ライクカーボン処理、メツキなどで加工してもよい。 In the mold having a multipoint gate used for manufacturing the molded article according to the present embodiment, since the hot runner 13 has the valve gate 12, the shape of the tip of the valve pin 12a is transferred to the gate mark, and the gate is It is possible to form a gate trace with a predetermined arithmetic mean roughness Ra, which does not carry out the processing of the trace. That is, in the valve gate 12, the flow of the molten resin 14 is squeezed and shear heat generation occurs, so the viscosity of the molten resin 14 in the vicinity of the gate decreases and the shape of the tip of the valve pin 12a is accurately transferred to the gate mark, It is possible to form a gate mark having an arithmetic average roughness Ra, which is approximately equal to the arithmetic average roughness of the tip of the valve pin 12a. In the present embodiment, the method of processing the arithmetic mean roughness Ra of the tip of the valve pin 12a to a predetermined value is not particularly limited. For example, machining, sand blasting, diamond like carbon processing, plating, etc. may be used.
[0046] 本実施の形態において、バルブピンの先端の位置に特に制限はなぐ例えば、 , ルブピンの先端を金型キヤビティ内面と一致させて、全く凹凸のない光学用平板部 材を成形すること力できる。また、バルブピンの先端を金型キヤビティ内面よりも突き 出して、ゲート跡に窪みを有する光学用平板部材を成形することもできる。さらに、バ ルブピンの先端を金型キヤビティ内面よりも引き込んで、ゲート跡に凸部を有する光 学用平板部材を成形することもできる。 In the present embodiment, the position of the tip of the valve pin is not particularly limited. For example, the tip of the lube pin can be made coincident with the inner surface of the mold cavity to form an optical flat plate having no unevenness at all. . In addition, it is possible to form an optical flat plate member having a depression in the gate mark by sticking the tip of the valve pin beyond the inner surface of the mold cavity. Furthermore, the tip of the valve pin can be drawn into the inner surface of the mold cavity to form an optical flat member having a convex portion on the gate mark.
[0047] 本実施の形態において、バルブピンの先端の形状に特に制限はなぐ例えば、円 柱状、椀形状、円錐台状などであってもよい。このような先端形状を有するバルブピ ンを用いることにより、ゲート跡に円柱状、椀形状、円錐台状などの窪み又は凸部を 有する光学用平板部材を成形することができる。本実施の形態においては、光学用 平板部材のゲート跡の直径が 0. 5〜5mmであることが好ましい。また、ゲート跡の窪 みの深さ又は凸部の高さが 0. 01—0. 2mmであることが好ましい。 0. 01mmより小 さい場合には、バルブピンの先端の成形が困難になり、また、 0. 2mmより大きいとゲ
ート跡が見えやすくなる欠点がある。 In the present embodiment, the shape of the tip of the valve pin is not particularly limited, and may be, for example, a cylindrical shape, a wedge shape, or a truncated cone shape. By using a valve pin having such a tip shape, it is possible to form an optical flat plate member having a recess or a convex portion such as a cylindrical shape, a wedge shape, or a truncated cone shape on the gate mark. In the present embodiment, the diameter of the gate mark of the optical flat plate member is preferably 0.5 to 5 mm. In addition, it is preferable that the depth of the depression or the height of the convex portion of the gate mark be 0.01-0.2 mm. If it is smaller than 0.1 mm, molding of the valve pin tip becomes difficult, and if it is larger than 0.2 mm There is a drawback that the marks of marks can be easily seen.
[0048] また、バルブピンによって形成されるゲート跡の側壁部分には、傾斜角度を設けな くてもよいし (すなわち、傾斜角度 0度)、傾斜角度が設けられていてもよい。ここでゲ ート跡の側壁部分に設けられる傾斜角度(ゲート跡角度)とは、図 11に示すように、 光学用平板部材 (ゲート跡の底面)に立てた法線とゲート跡の側壁部分のなす角度 をいう。傾斜角度を設ける場合には、例えば、バルブピンの先端に傾斜面を設けるこ とで達成できる。ゲート跡の側壁部分に傾斜角度を設けることにより、ゲート跡部分の 離型を容易にできる。また、この側壁部分の傾斜角度は 80度以下であることが好まし ぐ 60度以下であることがより好ましぐ 45度以下であることがさらに好ましぐ 40度以 下であることが特に好ましい。このような角度にすることにより、ゲート跡をさらに見え に《できる上、バルブピンの先端の加工も容易である。また、ゲート跡は、当該グー ト跡が見えに《なる点で、窪みであることが好ましい。 Further, the side wall portion of the gate mark formed by the valve pin may not be provided with an inclination angle (ie, an inclination angle of 0 degrees) or may be provided with an inclination angle. Here, the inclination angle (gate trace angle) provided on the side wall portion of the gate trace is, as shown in FIG. 11, the normal on the optical flat plate member (bottom surface of the gate trace) and the side wall portion of the gate trace. The angle that is made by In the case of providing the inclination angle, for example, this can be achieved by providing an inclined surface at the tip of the valve pin. By providing the side wall portion of the gate mark with an inclination angle, it is possible to facilitate the release of the gate mark portion. In addition, the inclination angle of the side wall portion is preferably 80 degrees or less, more preferably 60 degrees or less, and even more preferably 45 degrees or less. preferable. With such an angle, it is possible to make the gate mark more visible, and it is also easy to process the tip of the valve pin. In addition, it is preferable that the gate mark is a depression because the gate mark can be seen.
[0049] 本実施の形態に係る光学用平板部材を得るための射出成形条件は、用いる熱可 塑性樹脂のガラス転移温度を Tgとすると、シリンダ温度は Tg+ 80°C〜Tg + 200°C の範囲、金型温度は Tg— 40°C〜Tg°Cの範囲、射出率が lOcc/秒〜 800cc/秒 の範囲であることが好ましレ、。金型としてホットランナーを有する場合のホットランナー の温度は Tg + 80°C〜Tg + 200°Cであることが好まし!/、。 [0049] The injection molding conditions for obtaining the flat member for optics according to the present embodiment are: if the glass transition temperature of the thermoplastic resin to be used is Tg, the cylinder temperature is Tg + 80 ° C to Tg + 200 ° C The mold temperature is preferably in the range of Tg-40 ° C to Tg ° C, and the injection rate is in the range of lOcc / sec to 800 cc / sec. The temperature of the hot runner when having a hot runner as a mold is preferably Tg + 80 ° C to Tg + 200 ° C! /.
[0050] 本実施の形態に係る光学用平板部材は、直下方式の光拡散板、サイドライト方式 の導光板、直下型バックライトのライティングカーテン、リアープロジェクシヨン TVのフ レネルレンズなどとして用いることができるが、中でも直下方式の光拡散板として用い ること力 Sでさる。 The flat optical plate member according to the present embodiment can be used as a direct-type light diffusion plate, a side-light type light guide plate, a direct-type backlight lighting curtain, or a rear projection TV flare lens. However, it is a power S to use as a direct light diffuser among other things.
[0051] 図 12は、直下方式の光拡散板を備える直下型バックライト装置の構成を示す図で ある。図 12に示すように直下型バックライト装置は、反射板 20上に冷陰極管 22が所 定の間隔で配置され、その上に、本実施の形態の光学用平板部材(光拡散板) 16が ゲート跡のある面が光入射面となるように配置されている。従って、ゲート跡が光学的 有効面内にあっても輝度むらが小さい面光源を提供することができる。 FIG. 12 is a diagram showing the configuration of a direct type backlight device provided with a direct type light diffusion plate. As shown in FIG. 12, in the direct-type backlight device, cold cathode tubes 22 are disposed at predetermined intervals on a reflecting plate 20, and the flat plate member for light (light diffusion plate) of the present embodiment is formed thereon. Is arranged so that the surface with the gate mark is the light entrance surface. Therefore, it is possible to provide a surface light source with small luminance unevenness even if the gate mark is in the optically effective surface.
[0052] なお、金型がコールドランナーを有していてもよいが、コールドランナーを用いる場 合には、(1)型内ゲートカット技術を適用する、(2)ピンポイントゲート若しくはサブマリ
ンゲートを使用して型開き条件を適度に調整する等の対応を行う必要がある。このよ うな対応を行わない場合には、成形後にゲート跡の処理が必要となって、成形サイク ルタイムが長くなる欠点がある。 Although the mold may have a cold runner, in the case of using a cold runner, (1) application of in-mold gate cutting technology, (2) pinpoint gate or sub-maritail It is necessary to take measures such as adjusting the mold opening condition appropriately using a gate. If this measure is not taken, gate marks need to be processed after molding, resulting in a drawback that the molding cycle time becomes long.
実施例 Example
[0053] 以下に、実施例を挙げて本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail by way of examples.
[0054] (実施例 1) Example 1
脂環式構造を有する樹脂 [日本ゼオン (株)、ゼォノア 1060R] 99重量部とシリコー ン樹脂微粒子 [ジーィー東芝シリコーン (株)、トスパール 120、平均粒子径 2. O ^ m] 1重量部を混合し、二軸押出機を用いてストランド状に押し出し、ペレタイザ一で切断 することにより、光拡散板用ペレットを調製した。この光拡散板用ペレットから、射出成 形機 (型締力 4, 410kN)を用いて、光拡散板を成形した。なお、この光拡散板の拡 散剤濃度は 0. 2%である。 A mixture of 99 parts by weight of a resin having an alicyclic structure [Nippon Zeon Co., Ltd., Zeonor 1060R] and 1 part by weight of silicone resin fine particles [Zee Toshiba Silicone Co., Ltd., Tospearl 120, average particle diameter 2. O ^ m] The mixture was extruded into strands using a twin-screw extruder, and cut with a pelletizer to prepare pellets for a light diffusion plate. The light diffusion plate was molded from the pellet for light diffusion plate using an injection molding machine (clamping force of 4,410 kN). The diffuser concentration of this light diffuser is 0.2%.
[0055] 金型は、キヤビティ寸法が、縦 430mm、横 730mm、対角線の長さ 847mm、深さ 2 . Ommであり、図 13に〇で示すように、光拡散板の光入射面を 8等分した 8個の長 方形の中心に、各 1個のバルブゲートタイプのホットランナーノズルを設けた。ノ ルブ ピン (ゲートピン)は、射出時に開き、溶融した樹脂がキヤビティに送られ、射出終了 後にバルブピンが閉まり、溶融樹脂の供給をとめる。このとき、成形品にはバルブピン 先端の形状が転写される。 The mold has cavity dimensions of 430 mm in length, 730 mm in width, 847 mm in diagonal length, and 2. O mm in depth, and as shown by ○ in FIG. One valve gate type hot runner nozzle was installed at the center of the 8 divided rectangles. The valve pin (gate pin) opens at the time of injection, the molten resin is sent to the cavity, and the valve pin closes after the injection ends, stopping the supply of molten resin. At this time, the shape of the tip of the valve pin is transferred to the molded product.
[0056] バルブピンの先端の直径 1. 5mm、長さ 0. 1mmの円柱状部分が光拡散板の光入 射面に突き出し、光拡散板の光入射面に直径 1. 5mm、深さ 0. 1mmの円柱状の窪 みが形成されるようにバルブピンを調整した。バルブピンの先端の直径 1. 5mmの円 形部は、算術平均粗さが 0. 2 mとなるように加工した。ゲートが位置する側と反対 側の面には、プリズムパターンを形成したスタンパーを取り付け、スタンパーの算術平 均粗さ、即ちプリズムを構成する面の算術平均粗さが 0. 1 mとなるように加工した。 シリンダ温度は 275°C、ホットランナー温度は 260°C、金型温度は 80°C、全サイクノレ 70秒で射出成形を行うことにより光拡散板を製造した。この光拡散板のゲート跡角度 は、 0°である。 The cylindrical portion with the diameter of the tip of the bulb pin of 1.5 mm and the length of 0.1 mm protrudes to the light incident surface of the light diffusion plate, and the diameter of the light incident surface of the light diffusion plate is 1.5 mm and the depth is 0.5. The valve pin was adjusted so that a 1 mm cylindrical depression was formed. The circular portion with a diameter of 1.5 mm at the tip of the valve pin was processed to have an arithmetic mean roughness of 0.2 m. A stamper on which a prism pattern is formed is attached on the side opposite to the side on which the gate is positioned, and the arithmetic mean roughness of the stamper, that is, the arithmetic mean roughness of the surface constituting the prism is 0.1 m. processed. The light diffusion plate was manufactured by injection molding at a cylinder temperature of 275 ° C., a hot runner temperature of 260 ° C., a mold temperature of 80 ° C. and a total cycle time of 70 seconds. The gate trace angle of this light diffusion plate is 0 °.
[0057] 光入射側の表面のゲート跡の中心 8か所と、ゲート跡が存在する面とは反対側の面
において、ゲート跡の半径を rとしたときのゲート跡の中心に対応する点からの半径 r 力 =r X 30とした範囲を超深度顕微鏡で算術平均粗さを測定した。各 8か所の測[0057] Eight centers of gate marks on the surface on the light incident side, and a surface opposite to the surface on which the gate marks exist The arithmetic mean roughness was measured with an ultra-deep microscope in the range where the radius r force = r × 30 from the point corresponding to the center of the gate trace, where r is the radius of the gate trace. 8 points each
2 2 1 2 2 1
定値の平均値であるゲート跡の算術平均粗さ Raが 0. 22 m、ゲート跡が存在する 面とは反対側の面のゲート跡の中心に対応する点から半径 rの範囲の算術平均粗さ Arithmetic mean roughness of gate mark which is an average value of fixed value Ra is 0.22 m, the gate mark exists Arithmetic mean rough of radius r from the point corresponding to the center of the gate mark on the side opposite to the face The
2 2
Raが 0. 14 111であった。次に、光拡散板のゲート跡が存在する側から光を当てて Ra was 0.14 111. Next, apply light from the side where the gate mark of the light diffusion plate exists.
2 2
全光線透過率を測定したところ、 80 %であった。 The total light transmittance was measured to be 80%.
[0058] 内側の寸法が幅 720mm、奥行き 420mm、深さ 17mmのアクリル板で作製した箱 の内面に白色反射シート [(株)ッジデン製、 RF188]を貼り付け、冷陰極蛍光ランプ の光が逃げないようにし、外径 3. Ommの冷陰極蛍光ランプ 11本を、管中心の間隔 40mmとして平行に、箱の底面から管表面を 2mm離して取り付けた。光拡散板をこ の冷陰極蛍光ランプの管表面から 12mm離して、光拡散板のゲート跡のある面が光 入射面となるように、さらに光拡散板のゲート跡が 2本の冷陰極蛍光ランプの中間の 位置にくるように載置し、冷陰極蛍光ランプを点灯して、光拡散板のゲート跡の輝度 むらを測定した。 A white reflective sheet [manufactured by Djiden Co., Ltd., RF188] is attached to the inner surface of a box made of an acrylic plate with an inner dimension of 720 mm wide, 420 mm deep, and 17 mm deep, and the light of the cold cathode fluorescent lamp escapes. To prevent this, 11 cold cathode fluorescent lamps with an outer diameter of 3. O mm were mounted in parallel with a tube center spacing of 40 mm, with the tube surface 2 mm away from the bottom of the box. The light diffusion plate is separated by 12 mm from the tube surface of this cold cathode fluorescent lamp, so that the surface with the gate mark of the light diffusion plate is the light incident surface, and the cold cathode fluorescent light with two gate marks of the light diffusion plate. The lamp was placed so as to be at the middle position of the lamp, and the cold cathode fluorescent lamp was turned on to measure the luminance unevenness of the gate mark of the light diffusion plate.
[0059] 輝度は、光拡散板の光出射面に、拡散シート [(株)ッジデン、 D124J]を積層し、図 14に示すように一辺の長さが円形のゲート跡の直径の 8/3倍である正方形を、正方 形の中心がゲート跡の円形の中心と一致するように仮想的に描き、一辺が 9点で、ピ ツチがゲート跡の直径の 1/3となる 81点の正方格子を考え、その格子点 81個につ いて、輝度計を用いて測定した。 81個の輝度測定値の最大値と最小値との差を平均 値で除して、輝度むらを算出した。 8個のゲート跡の輝度むらの平均値は、 0. 3%で あり、 目視確認によりゲート跡を確認することはできな力、つた。 For luminance, a diffusion sheet [Digden Co., Ltd., D124J] is laminated on the light exit surface of the light diffusion plate, and as shown in FIG. A square that is doubled is drawn virtually so that the center of the square coincides with the center of the circle of the gate mark, and it is 81 points of 81 points where one side is 9 points and the pitch is 1/3 of the gate mark diameter. A grid was considered, and 81 grid points were measured using a luminance meter. Uneven luminance was calculated by dividing the difference between the maximum value and the minimum value of the 81 luminance measurement values by the average value. The average value of the uneven brightness of the eight gate marks is 0.3%, and it was impossible to confirm the gate marks by visual confirmation.
[0060] (実施例 2) Example 2
表 1に示すように、実施例 1と同様の脂環式構造を有する樹脂を用いて光拡散板を 成形した。この光拡散板のゲート跡角度は、 2°である。なお、この光拡散板の拡散剤 濃度は 0. 3%である。この場合に、実施例 1と同様の金型を用いたがバルブピンの先 端部の算術平均粗さが 0. 05 mとなるように加工し、プリズムパターンを形成したス タンパ一の算術平均粗さ、即ちプリズムを構成する面の算術平均粗さが 1. 3 111とな るように加工した。
[0061] 実施例 1と同様にしてゲート跡の算術平均粗さ Ra^ゲート跡が存在する面とは反 対側の面のゲート跡の中心に対応する点から半径 rの範囲の算術平均粗さ Ra、全 As shown in Table 1, a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1. The gate mark angle of this light diffusion plate is 2 °. The concentration of the diffusing agent in this light diffusing plate is 0.3%. In this case, a mold similar to that of Example 1 was used, but the arithmetic mean roughness of the tip of the valve pin was processed so as to be 0.05 m, and the prismatic pattern was formed into a prism pattern. , I.e., the arithmetic mean roughness of the surface constituting the prism was processed to be 1.3111. As in Example 1, arithmetic mean roughness of the gate trace Ra ^: From the point corresponding to the center of the gate trace on the opposite side surface to the surface on which the gate trace exists, the arithmetic mean roughness of the range of radius r is Ra, all
2 2 光線透過率を測定したところ、 Raが 0. 08 ^ m, Raが 1. 27 111、全光線透過率が When the light transmittance was measured, Ra was 0. 08 ^ m, Ra was 1. 27 111, and total light transmittance was
1 2 1 2
70%であった。 It was 70%.
[0062] 実施例 1と同様にしてゲート跡の輝度むらを測定したところ、 8個のゲート跡の輝度 むらの平均値は、 0. 3%であり、 目視観察によりゲート跡を確認することはできなかつ た。 The luminance unevenness of the gate marks was measured in the same manner as in Example 1. The average value of the luminance unevenness of the eight gate marks is 0.3%, and it is necessary to confirm the gate marks by visual observation. I could not do it.
[0063] (実施例 3) Example 3
表 1に示すように、実施例 1と同様の脂環式構造を有する樹脂を用いて光拡散板を 成形した。この光拡散板のゲート跡角度は、 30°である。なお、この光拡散板の拡散 剤濃度は 0. 7%である。この場合に、実施例 1と同様の金型を用いたがバルブピンの 先端部の算術平均粗さが 1. 5 mとなるように加工し、プリズムパターンを形成したス タンパ一の算術平均粗さ、即ちプリズムを構成する面の算術平均粗さが 1. 8 111とな るように加工した。 As shown in Table 1, a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1. The gate mark angle of this light diffusion plate is 30 °. The diffuser concentration of this light diffuser is 0.7%. In this case, the same mold as used in Example 1 was used, but the arithmetic mean roughness of the tip of the valve pin was processed so as to be 1.5 m, and the arithmetic mean roughness of the prism 1 was formed. That is, it was processed such that the arithmetic mean roughness of the surface constituting the prism was 1. 8111.
[0064] 実施例 1と同様にしてゲート跡の算術平均粗さ Ra、ゲート跡が存在する面とは反 対側の面のゲート跡の中心に対応する点から半径 rの範囲の算術平均粗さ Ra、全 As in Example 1, the arithmetic mean roughness Ra of the gate trace, the arithmetic mean coarseness of the range of radius r from the point corresponding to the center of the gate trace on the opposite side surface to the surface on which the gate trace exists Ra, all
2 2 光線透過率を測定したところ、 Raが 1. 45 ^ 111, Raが 1. 7: m、全光線透過率が When 2 2 light transmittances were measured, Ra is 1. 45 ^ 111, Ra is 1. 7: m, total light transmittance is
1 2 1 2
70%であった。 It was 70%.
[0065] 実施例 1と同様にしてゲート跡の輝度むらを測定したところ、 8個のゲート跡の輝度 むらの平均値は、 0. 2%であり、 目視観察によりゲート跡を確認することはできなかつ た。 The luminance unevenness of the gate marks was measured in the same manner as in Example 1. The average value of the luminance unevenness of the eight gate marks is 0.2%, and it is necessary to confirm the gate marks by visual observation. I could not do it.
[0066] (実施例 4) Example 4
表 1に示すように、実施例 1と同様の脂環式構造を有する樹脂を用いて光拡散板を 成形した。この光拡散板のゲート跡角度は、 2°である。なお、この光拡散板の拡散剤 濃度は 0. 5%である。この場合に、実施例 1と同様の金型を用いたがバルブピンの先 端部の算術平均粗さが 0. 2 mとなるように加工し、レンチキュラー形状を形成した スタンパーの算術平均粗さ、即ちレンチキュラー形状を構成する面の算術平均粗さ 力 S 1. 5〃mとなるようにカロェした。
[0067] 実施例 1と同様にしてゲート跡の算術平均粗さ Ra^ゲート跡が存在する面とは反 対側の面のゲート跡の中心に対応する点から半径 rの範囲の算術平均粗さ Ra、全 As shown in Table 1, a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1. The gate mark angle of this light diffusion plate is 2 °. The concentration of the diffusing agent in this light diffusing plate is 0.5%. In this case, the same mold as used in Example 1 was used, but the arithmetic mean roughness of the tip end of the valve pin was processed to be 0.2 m, and the arithmetic mean roughness of the lenticular stamper was formed. That is, the arithmetic mean roughness force of the surface constituting the lenticular shape was set to S 1.5 μm. Similar to Example 1, arithmetic mean roughness of gate trace Ra ^: From the point corresponding to the center of the gate trace on the opposite side surface to the surface on which the gate trace exists, the arithmetic mean coarseness in the range of radius r is Ra, all
2 2 光線透過率を測定したところ、 Raが 0. 18 ^ m, Raが 1. 6 m、全光線透過率が 7 When 2 2 light transmittances were measured, Ra was 0.18 ^ m, Ra was 1.6 m, and total light transmittance was 7
1 2 1 2
2%であった。 It was 2%.
[0068] 実施例 1と同様にしてゲート跡の輝度むらを測定したところ、 8個のゲート跡の輝度 むらの平均値は、 0. 5%であり、 目視観察によりゲート跡を確認することはできなかつ た。 When the luminance unevenness of the gate marks was measured in the same manner as in Example 1, the average value of the luminance unevenness of the eight gate marks was 0.5%, and it was confirmed that the gate marks were visually observed. I could not do it.
[0069] (実施例 5) Example 5
表 1に示すように、実施例 1と同様の脂環式構造を有する樹脂を用いて光拡散板を 成形した。この光拡散板のゲート跡角度は、 0°である。なお、この光拡散板の拡散剤 濃度は 0. 1 %である。この場合に、実施例 1と同様の金型を用いたがバルブピンの先 端部の算術平均粗さが 1. 2 πιとなるように加工し、四角錐形状を形成したスタンパ 一の算術平均粗さ、即ち四角錐形状を構成する面の算術平均粗さが 0. 3 111となる ように加工した。 As shown in Table 1, a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1. The gate mark angle of this light diffusion plate is 0 °. The concentration of the diffusing agent in this light diffusing plate is 0.1%. In this case, a mold similar to that of Embodiment 1 was used, but it is processed so that the arithmetic mean roughness of the tip end portion of the valve pin is 1.2πι, and the square average is roughly formed. That is, it was processed so that the arithmetic mean roughness of the surface constituting the quadrangular pyramid shape would be 0.3.
[0070] 実施例 1と同様にしてゲート跡の算術平均粗さ Ra、ゲート跡が存在する面とは反 対側の面のゲート跡の中心に対応する点から半径 rの範囲の算術平均粗さ Ra、全 As in Example 1, the arithmetic mean roughness Ra of the gate trace, the arithmetic mean coarseness of the range of radius r from the point corresponding to the center of the gate trace on the opposite side surface to the surface on which the gate trace exists Ra, all
2 2 光線透過率を測定したところ、 Raが 1. 3 111、 Raが 0. 35 111、全光線透過率が 7 When 2 2 light transmittances were measured, Ra was 1.3 111, Ra was 0.35 111, and total light transmittance was 7
1 2 1 2
8%であった。 It was 8%.
[0071] 実施例 1と同様にしてゲート跡の輝度むらを測定したところ、 8個のゲート跡の輝度 むらの平均値は、 0. 1 %であり、 目視観察によりゲート跡を確認することはできなかつ た。 When the luminance unevenness of the gate marks was measured in the same manner as in Example 1, the average value of the luminance unevenness of the eight gate marks was 0.1%, and it is necessary to confirm the gate marks by visual observation. I could not do it.
[0072] (実施例 6) Example 6
表 1に示すように、実施例 1と同様の脂環式構造を有する樹脂を用いて光拡散板を 成形した。この光拡散板のゲート跡角度は、 0°である。なお、この光拡散板の拡散剤 濃度は 1 %である。この場合に、実施例 1と同様の金型を用いたがバルブピンの先端 部の算術平均粗さが 0. 1 mとなるように加工し、スタンパーの算術平均粗さが 0. 5 H mとなるように加工した。 As shown in Table 1, a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1. The gate mark angle of this light diffusion plate is 0 °. The concentration of the diffusing agent in this light diffusing plate is 1%. In this case, the same mold as used in Example 1 was used, but processing was performed so that the arithmetic mean roughness of the tip of the valve pin was 0.1 m, and the arithmetic mean roughness of the stamper was 0.5 Hm. Processed to be
[0073] 実施例 1と同様にしてゲート跡の算術平均粗さ Ra、ゲート跡が存在する面とは反
対側の面のゲート跡の中心に対応する点から半径 rの範囲の算術平均粗さ Ra、全 [0073] As in Example 1, the arithmetic mean roughness Ra of the gate trace, which is opposite to the surface on which the gate trace exists Arithmetic mean roughness Ra in the range of radius r from the point corresponding to the center of the gate mark on the opposite side
2 2 光線透過率を測定したところ、 Raが 0. 15 n Raが 0. 45 111、全光線透過率が 2 2 When the light transmittance was measured, Ra was 0.15 n Ra was 0.45 111, and the total light transmittance was
1 2 1 2
63%であった。 It was 63%.
[0074] 実施例 1と同様にしてゲート跡の輝度むらを測定したところ、 8個のゲート跡の輝度 むらの平均値は、 0. 2%であり、 目視観察によりゲート跡を確認することはできなかつ た。 When the luminance unevenness of the gate marks was measured in the same manner as in Example 1, the average value of the luminance unevenness of the eight gate marks was 0.2%, and it was confirmed that the gate marks were visually observed. I could not do it.
[0075] (実施例 7) Example 7
表 1に示すように、メタクリル樹脂(旭化成ケミカルズ株式会社、デルペット 70NHX) を用いて光拡散板を成形した。この光拡散板のゲート跡角度は、 0°である。なお、こ の光拡散板の拡散剤濃度は 2. 5%である。この場合に、実施例 1と同様の金型を用 いたがバルブピンの先端部の算術平均粗さが 0. 3 mとなるように加工し、プリズム ノ ターンを形成したスタンパーの算術平均粗さ、即ちプリズムを構成する面の算術平 均粗さが 0. 8〃mとなるように加工した。 As shown in Table 1, a light diffusion plate was molded using methacrylic resin (Asahi Kasei Chemicals Corporation, Delpet 70 NHX). The gate mark angle of this light diffusion plate is 0 °. The concentration of the diffusing agent in this light diffusing plate is 2.5%. In this case, a mold similar to that of Example 1 was used, but the arithmetic mean roughness of the stamper on which the prism notch was formed was processed so that the arithmetic mean roughness of the tip of the valve pin was 0.3 m. That is, it was processed so that the arithmetic mean roughness of the surface constituting the prism was 0.8 μm.
[0076] 実施例 1と同様にしてゲート跡の算術平均粗さ Ra、ゲート跡が存在する面とは反 対側の面のゲート跡の中心に対応する点から半径 rの範囲の算術平均粗さ Ra、全 As in Example 1, the arithmetic mean roughness Ra of the gate trace, the arithmetic mean coarseness of the range of radius r from the point corresponding to the center of the gate trace on the surface opposite to the surface on which the gate trace exists Ra, all
2 2 光線透過率を測定したところ、 Raが 0. 8 m, Raが 0. Q5 ii 全光線透過率が 5 2 2 When the light transmittance was measured, Ra was 0.8 m, Ra was 0. Q5 ii total light transmittance was 5
1 2 1 2
5%であった。 It was 5%.
[0077] 実施例 1と同様にしてゲート跡の輝度むらを測定したところ、 8個のゲート跡の輝度 むらの平均値は、 0. 3%であり、 目視観察によりゲート跡を確認することはできなかつ た。 When the luminance unevenness of the gate marks was measured in the same manner as in Example 1, the average value of the luminance unevenness of the eight gate marks was 0.3%, and it was confirmed that the gate marks were visually observed. I could not do it.
[0078] (実施例 8) (Example 8)
表 1に示すように、 MS樹脂(電気化学工業株式会社、 TX- 100S)を用いて光拡 散板を成形した。この光拡散板のゲート跡角度は、 30°である。なお、この光拡散板 の拡散剤濃度は 1. 5%である。この場合に、実施例 1と同様の金型を用いたがバル ブピンの先端部の算術平均粗さが 0. 1 mとなるように加工し、プリズムパターンを 形成したスタンパーの算術平均粗さ、即ちプリズムを構成する面の算術平均粗さが 0 . 7 111となるように加工した。 As shown in Table 1, a light diffusion plate was molded using MS resin (Denki Kagaku Kogyo Co., Ltd., TX-100S). The gate mark angle of this light diffusion plate is 30 °. The diffuser concentration of this light diffuser plate is 1.5%. In this case, the same mold as in Example 1 was used, but the arithmetic mean roughness of the stamper on which the prism pattern was formed by processing so that the arithmetic mean roughness of the tip of the valve pin was 0.1 m, That is, processing was performed such that the arithmetic mean roughness of the surface constituting the prism was 0.7111.
[0079] 実施例 1と同様にしてゲート跡の算術平均粗さ Ra、ゲート跡が存在する面とは反
対側の面のゲート跡の中心に対応する点から半径 rの範囲の算術平均粗さ Ra、全 [0079] The arithmetic mean roughness Ra of the gate trace and the surface on which the gate trace exists are the same as in Example 1. Arithmetic mean roughness Ra in the range of radius r from the point corresponding to the center of the gate mark on the opposite side
2 2 光線透過率を測定したところ、 Raが 0. 09 111、 Raが 0. 9 ii 全光線透過率が 6 When 2 2 light transmittances were measured, Ra was 0. 09 111, Ra was 0. 9 ii total light transmittance was 6
1 2 1 2
1 %であった。 It was 1%.
[0080] 実施例 1と同様にしてゲート跡の輝度むらを測定したところ、 8個のゲート跡の輝度 むらの平均値は、 0. 2%であり、 目視観察によりゲート跡を確認することはできなかつ た。 The luminance unevenness of the gate marks was measured in the same manner as in Example 1. The average value of the luminance unevenness of the eight gate marks is 0.2%, and it is necessary to confirm the gate marks by visual observation. I could not do it.
[0081] (実施例 9) (Example 9)
表 1に示すように、ポリスチレン樹脂(PSジャパン株式会社製、 G9504)を用いて光 拡散板を成形した。この光拡散板のゲート跡角度は、 5°である。なお、この光拡散板 の拡散剤濃度は 0. 4%である。この場合に、実施例 1と同様の金型を用いたがバル ブピンの先端部の算術平均粗さが 0. 2 mとなるように加工し、レンチキュラー形状 を形成したスタンパーの算術平均粗さ、即ちレンチキュラー形状を構成する面の算術 平均粗さが 0· 1 mとなるように加工した。 As shown in Table 1, the light diffusion plate was molded using polystyrene resin (manufactured by PS Japan Co., Ltd., G9504). The gate trace angle of this light diffusion plate is 5 °. The diffuser concentration of this light diffuser plate is 0.4%. In this case, the same mold as used in Example 1 was used, but the arithmetic mean roughness of the stamper having the lenticular shape formed by processing so that the arithmetic mean roughness of the tip of the bulb pin is 0.2 m, That is, it was processed so that the arithmetic mean roughness of the surface constituting the lenticular shape would be 0 · 1 m.
[0082] 実施例 1と同様にしてゲート跡の算術平均粗さ Ra、ゲート跡が存在する面とは反 対側の面のゲート跡の中心に対応する点から半径 rの範囲の算術平均粗さ Ra、全 As in Example 1, the arithmetic mean roughness Ra of the gate trace, the arithmetic mean coarseness of the range of radius r from the point corresponding to the center of the gate trace on the side opposite to the face on which the gate trace exists Ra, all
2 2 光線透過率を測定したところ、 Raが 0. 21 m、 Raが 0. 08 ,i m、全光線透過率が 2 2 When the light transmittance was measured, Ra was 0.21 m, Ra was 0. 08, im, and the total light transmittance was
1 2 1 2
65 %であった。 It was 65%.
[0083] 実施例 1と同様にしてゲート跡の輝度むらを測定したところ、 8個のゲート跡の輝度 むらの平均値は、 0. 2%であり、 目視観察によりゲート跡を確認することはできなかつ た。 The luminance unevenness of the gate marks was measured in the same manner as in Example 1. The average value of the luminance unevenness of the eight gate marks is 0.2%, and it is necessary to confirm the gate marks by visual observation. I could not do it.
[0084] (比較例 1 ) Comparative Example 1
表 1に示すように、実施例 1と同様の脂環式構造を有する樹脂を用いて光拡散板を 成形した。この光拡散板のゲート跡角度は、 5°である。なお、この光拡散板の拡散剤 濃度は 1 %である。この場合に、実施例 1と同様の金型を用いたがバルブピンの先端 部の算術平均粗さが 5 mとなるように加工しスタンパーの算術平均粗さが 2 mとな るように加工した。 As shown in Table 1, a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1. The gate trace angle of this light diffusion plate is 5 °. The concentration of the diffusing agent in this light diffusing plate is 1%. In this case, using the same mold as in Example 1, it was processed so that the arithmetic average roughness of the tip of the valve pin is 5 m and processed so that the arithmetic average roughness of the stamper is 2 m. .
[0085] 実施例 1と同様にしてゲート跡の算術平均粗さ Ra、ゲート跡が存在する面とは反 対側の面のゲート跡の中心に対応する点から半径 rの範囲の算術平均粗さ Ra、全
光線透過率を測定したところ、 Raが 4. ΘΟ , ΐη, Raが 2. l O ^ m,全光線透過率が As in Example 1, the arithmetic mean roughness Ra of the gate trace, the arithmetic mean coarseness of the range of radius r from the point corresponding to the center of the gate trace on the surface opposite to the surface on which the gate trace exists is Ra, all When the light transmittance was measured, Ra was 4. ΘΟ, ΐ, Ra was 2. l O ^ m, and the total light transmittance was
1 2 1 2
63 %であった。 It was 63%.
[0086] 実施例 1と同様にしてゲート跡の輝度むらを測定したところ、 8個のゲート跡の輝度 むらの平均値は、 3. 1 %であり、 目視観察によりゲート跡がぼんやり見えた。 When the luminance unevenness of the gate marks was measured in the same manner as in Example 1, the average value of the luminance unevenness of the eight gate marks was 3.1%, and the gate marks appeared dimly by visual observation.
[0087] (比較例 2) Comparative Example 2
表 1に示すように、実施例 1と同様の脂環式構造を有する樹脂を用いて光拡散板を 成形した。この光拡散板のゲート跡角度は、 0°である。なお、この光拡散板の拡散剤 濃度は 0. 2%である。この場合に、実施例 1と同様の金型を用いたがバルブピンの先 端部の算術平均粗さが 2 ^ mとなるように加工し、プリズムパターンを形成したスタン パーの算術平均粗さ、即ちプリズムを構成する面の算術平均粗さが 4. 2 111となるよ うに加工した。 As shown in Table 1, a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1. The gate mark angle of this light diffusion plate is 0 °. The concentration of the diffusing agent in this light diffusing plate is 0.2%. In this case, the same mold as used in Example 1 was used, but the arithmetic mean roughness of the stamper on which the prism pattern was formed, was processed so that the arithmetic mean roughness of the tip of the valve pin was 2 ^ m. That is, processing was performed so that the arithmetic mean roughness of the surface constituting the prism was 4.2111.
[0088] 実施例 1と同様にしてゲート跡の算術平均粗さ Ra、ゲート跡が存在する面とは反 対側の面のゲート跡の中心に対応する点から半径 rの範囲を算術平均粗さ Ra、全 In the same manner as in Example 1, the arithmetic average roughness Ra of the gate mark, the area of radius r from the point corresponding to the center of the gate mark on the surface opposite to the surface on which the gate mark exists is Ra, all
2 2 光線透過率を測定したところ、 Raが 2. 2 111、1½が 4. l O ^ m,全光線透過率が 7 When 2 2 light transmittances were measured, Ra was 2.2 111, 11⁄2 was 4. l O ^ m, and total light transmittance was 7
1 2 1 2
5%であった。 It was 5%.
[0089] 実施例 1と同様にしてゲート跡の輝度むらを測定したところ、 8個のゲート跡の輝度 むらの平均値は、 3. 3%であり、 目視観察によりゲート跡がはっきり見えた。 The luminance unevenness of the gate marks was measured in the same manner as in Example 1. As a result, the average value of the luminance unevenness of the eight gate marks was 3.3%, and the gate marks were clearly seen by visual observation.
[0090] (比較例 3) (Comparative Example 3)
表 1に示すように、実施例 1と同様の脂環式構造を有する樹脂を用いて光拡散板を 成形した。この光拡散板のゲート跡角度は、 30°である。なお、この光拡散板の拡散 剤濃度は 0. 3%である。この場合に、実施例 1と同様の金型を用いたがバルブピンの 先端部の算術平均粗さが 2. 8 mとなるように加工し、プリズムパターンを形成したス タンパ一の算術平均粗さ、即ちプリズムを構成する面の算術平均粗さが 0. δ ΐιιとな るように加工した。 As shown in Table 1, a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1. The gate mark angle of this light diffusion plate is 30 °. The diffuser concentration of this light diffuser is 0.3%. In this case, the same mold as in Example 1 was used, but the arithmetic mean roughness of the tip of the valve pin was processed to be 2.8 m and the prismatic pattern was formed to form the prismatic pattern. That is, it was processed so that the arithmetic mean roughness of the surface constituting the prism was 0. δ ..
[0091] 実施例 1と同様にしてゲート跡の算術平均粗さ Ra、ゲート跡が存在する面とは反 対側の面のゲート跡の中心に対応する点から半径 rの範囲の算術平均粗さ Ra、全 As in Example 1, the arithmetic mean roughness Ra of the gate trace, the arithmetic mean coarseness of the range of radius r from the point corresponding to the center of the gate trace on the surface opposite to the surface on which the gate trace exists Ra, all
2 2 光線透過率を測定したところ、 Raが 2. 6 m, Raが 0. 55 ii 全光線透過率が 7 2 2 When the light transmittance was measured, Ra was 2.6 m, Ra was 0.55 ii total light transmittance was 7
1 2 1 2
1 %であった。
[0092] 実施例 1と同様にしてゲート跡の輝度むらを測定したところ、 8個のゲート跡の輝度 むらの平均値は、 2. 1 %であり、 目視観察によりゲート跡がはっきり見えた。 It was 1%. When the luminance unevenness of the gate marks was measured in the same manner as in Example 1, the average value of the luminance unevenness of the eight gate marks was 2.1%, and the gate marks were clearly visible by visual observation.
[0093] (比較例 4) (Comparative Example 4)
表 1に示すように、実施例 1と同様の脂環式構造を有する樹脂を用いて光拡散板を 成形した。この光拡散板のゲート跡角度は、 15°である。なお、この光拡散板の拡散 剤濃度は 0%である。この場合に、実施例 1と同様の金型を用いたがバルブピンの先 端部の算術平均粗さが 0. 01 mとなるように加工しスタンパーの算術平均粗さが 0. 01 μ mとなるようにカロェした。 As shown in Table 1, a light diffusion plate was molded using a resin having the same alicyclic structure as in Example 1. The gate trace angle of this light diffusion plate is 15 °. The diffuser concentration of this light diffuser plate is 0%. In this case, a mold similar to that of Example 1 was used, but processing was performed so that the arithmetic mean roughness at the tip of the valve pin was 0.01 m, and the arithmetic mean roughness of the stamper was 0.10 μm. It was Karoe to become.
[0094] 実施例 1と同様にしてゲート跡の算術平均粗さ Ra、ゲート跡が存在する面とは反 対側の面のゲート跡の中心に対応する点から半径 rの範囲の算術平均粗さ Ra、全 As in Example 1, the arithmetic mean roughness Ra of the gate trace, the arithmetic mean coarseness of the range of radius r from the point corresponding to the center of the gate trace on the surface opposite to the surface on which the gate trace exists is Ra, all
2 2 光線透過率を測定したところ、 Raが 0. 02 111、 Raが 0. 02 111、全光線透過率が When 2 2 light transmittances were measured, Ra is 0. 02 111, Ra is 0. 02 111, total light transmittance is
1 2 1 2
92%であった。 It was 92%.
[0095] 実施例 1と同様にしてゲート跡の輝度むらを測定したところ、 8個のゲート跡の輝度 むらの平均値は、 1. 2%であり、 目視観察によりゲート跡がはっきり見えた。 When the luminance unevenness of the gate marks was measured in the same manner as in Example 1, the average value of the luminance unevenness of the eight gate marks was 1.2%, and the gate marks were clearly seen by visual observation.
[0096] [表 1]
[Table 1]
[0097] なお、以上説明した実施形態及び実施例は、本発明の理解を容易にするために記 載されたものであって、本発明を限定するために記載されたものではない。したがつ て、上記の実施形態又は実施例に開示された各要素は、本発明の技術的範囲に属 する全ての設計変更や均等物をも含む趣旨である。 [0097] The embodiments and examples described above are described to facilitate the understanding of the present invention, and are not described to limit the present invention. Therefore, each element disclosed in the above embodiment or example is intended to include all design changes and equivalents that fall within the technical scope of the present invention.
[0098] 本開示は、 2006年 11月 24日に提出された日本国特許出願第 2006— 316671 号に含まれた主題に関連し、その開示の全てはここに参照事項として明白に組み込 よれ 。
The present disclosure relates to the subject matter contained in Japanese Patent Application No. 2006-316671 filed on Nov. 24, 2006, the entire disclosure of which is expressly incorporated herein by reference. .
Claims
(条件 1) (Condition 1)
K ^ mX Ra ≤3 ( 111)、かつ Ra ≤3 ( 111)、かっ1½ ≤Ra K ^ mX Ra ≤ 3 (111), and Ra ≤ 3 (111), color 1 1⁄2 ≤ Ra
1 2 1 2 1 2 1 2
または Or
(条件 2) (Condition 2)
Ra ≤ 1 ( ^ m) ,力、つ Ra ≤ 3 ( ^ m) Ra ≤ 1 (^ m), power, one Ra ≤ 3 (^ m)
1 2 1 2
を満たす光学用平板部材。 Flat members for optics that satisfy
[2] 前記光学用平板部材の前記ゲート跡が存在する側の面に光を当てた場合の全光 線透過率が 50〜90%である請求項 1記載の光学用平板部材。 [2] The optical flat member according to claim 1, wherein the total light transmittance is 50 to 90% when light is applied to the surface on the side where the gate mark of the optical flat member is present.
[3] 光拡散板に用いられる請求項 1または 2に記載の光学用平板部材。 [3] The flat member for optics according to claim 1 or 2, which is used for a light diffusion plate.
[4] 請求項 1〜3の何れか一項に記載の光学用平板部材の製造方法であって、 [4] A method of manufacturing an optical flat plate member according to any one of claims 1 to 3,
バルブゲートを有するホットランナーを備える金型を用いて射出成形する光学用平 板部材の製造方法。
The manufacturing method of the optical flat plate member which injection-molds using the metal mold | die provided with the hot runner which has a valve gate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008545343A JPWO2008062638A1 (en) | 2006-11-24 | 2007-10-30 | Optical flat plate member and method for manufacturing optical flat plate member |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006316671 | 2006-11-24 | ||
JP2006-316671 | 2006-11-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008062638A1 true WO2008062638A1 (en) | 2008-05-29 |
Family
ID=39429576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/071101 WO2008062638A1 (en) | 2006-11-24 | 2007-10-30 | Optical flat plate member and method for manufacturing optical flat plate member |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2008062638A1 (en) |
TW (1) | TW200832001A (en) |
WO (1) | WO2008062638A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010116552A (en) * | 2008-10-17 | 2010-05-27 | Semiconductor Energy Lab Co Ltd | Material for light-emitting element, light-emitting element, light-emitting device, electronic device, and lighting device |
WO2017137172A1 (en) * | 2016-02-11 | 2017-08-17 | Osram Gmbh | Method for producing a lighting module, lighting module and use of an optical element in a lighting module |
JP7493149B2 (en) | 2020-10-28 | 2024-05-31 | パナソニックIpマネジメント株式会社 | Light-refractive components, optical systems, lighting systems, display systems, moving bodies and molds |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI612340B (en) * | 2016-08-16 | 2018-01-21 | 奇景光電股份有限公司 | Transparent rib structure, composite optical prism and method for forming optical prism |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001239556A (en) * | 2000-02-29 | 2001-09-04 | Nippon Zeon Co Ltd | Method for molding thermoplastic resin |
JP2004117544A (en) * | 2002-09-24 | 2004-04-15 | Nippon Zeon Co Ltd | Method for manufacturing light diffusing plate |
JP2006106190A (en) * | 2004-10-01 | 2006-04-20 | Nippon Zeon Co Ltd | Method for manufacturing light diffusion plate |
-
2007
- 2007-10-30 WO PCT/JP2007/071101 patent/WO2008062638A1/en active Application Filing
- 2007-10-30 JP JP2008545343A patent/JPWO2008062638A1/en active Pending
- 2007-11-02 TW TW096141338A patent/TW200832001A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001239556A (en) * | 2000-02-29 | 2001-09-04 | Nippon Zeon Co Ltd | Method for molding thermoplastic resin |
JP2004117544A (en) * | 2002-09-24 | 2004-04-15 | Nippon Zeon Co Ltd | Method for manufacturing light diffusing plate |
JP2006106190A (en) * | 2004-10-01 | 2006-04-20 | Nippon Zeon Co Ltd | Method for manufacturing light diffusion plate |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010116552A (en) * | 2008-10-17 | 2010-05-27 | Semiconductor Energy Lab Co Ltd | Material for light-emitting element, light-emitting element, light-emitting device, electronic device, and lighting device |
WO2017137172A1 (en) * | 2016-02-11 | 2017-08-17 | Osram Gmbh | Method for producing a lighting module, lighting module and use of an optical element in a lighting module |
JP7493149B2 (en) | 2020-10-28 | 2024-05-31 | パナソニックIpマネジメント株式会社 | Light-refractive components, optical systems, lighting systems, display systems, moving bodies and molds |
Also Published As
Publication number | Publication date |
---|---|
TW200832001A (en) | 2008-08-01 |
JPWO2008062638A1 (en) | 2010-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5296405B2 (en) | Optical sheet, optical sheet manufacturing method, molded body, and molded body manufacturing method | |
JP6021292B2 (en) | Edge light type backlight unit | |
JPWO2005095083A1 (en) | Light guide plate injection mold and method of manufacturing light guide plate using the same | |
US7616858B2 (en) | Light guiding plate made of transparent resin, surface-emitting light source apparatus and process for manufacturing light guiding plate | |
JP5138597B2 (en) | Light scattering film and its use in flat screen | |
JP5253925B2 (en) | Multilayer optical sheet | |
JP2005215497A (en) | Light diffusion plate and its manufacturing method | |
WO2008062638A1 (en) | Optical flat plate member and method for manufacturing optical flat plate member | |
JP2010066664A (en) | Light diffusion plate, direct backlight device, and liquid crystal display device | |
TW201416223A (en) | Method of manufacturing a composite light guide plate | |
TW201416735A (en) | A composite light guide plate | |
KR20080031210A (en) | Optical flat plate member | |
JP4670680B2 (en) | Light guide plate made of transparent resin, planar light source device, and method for manufacturing light guide plate | |
JP4992280B2 (en) | Liquid crystal display | |
JP6128830B2 (en) | Laminated board | |
JPWO2006041195A1 (en) | Light guide plate and manufacturing method thereof | |
JP2005153488A (en) | Mold for injection molding of light guide plate, and method for production of light guide plate | |
KR100593470B1 (en) | Liquid crystal display device comprising a light diffusion plate and a light diffusion plate | |
JP4457344B2 (en) | Manufacturing method of light diffusion plate | |
JP2006264149A (en) | Mold for injection molding and manufacturing method of optical member using the mold | |
JP3845474B2 (en) | Light guide plate and manufacturing method thereof | |
JP6132581B2 (en) | Laminated board | |
KR102241268B1 (en) | Layered plate | |
JP2004327204A (en) | Optical diffusion layer integrated type light guide plate | |
JP2006116759A (en) | Die for optical material injection-molding, and manufacturing method for optical material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07830835 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008545343 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07830835 Country of ref document: EP Kind code of ref document: A1 |