JPWO2006041195A1 - Light guide plate and manufacturing method thereof - Google Patents

Light guide plate and manufacturing method thereof Download PDF

Info

Publication number
JPWO2006041195A1
JPWO2006041195A1 JP2006541002A JP2006541002A JPWO2006041195A1 JP WO2006041195 A1 JPWO2006041195 A1 JP WO2006041195A1 JP 2006541002 A JP2006541002 A JP 2006541002A JP 2006541002 A JP2006541002 A JP 2006541002A JP WO2006041195 A1 JPWO2006041195 A1 JP WO2006041195A1
Authority
JP
Japan
Prior art keywords
guide plate
light incident
light guide
incident surface
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006541002A
Other languages
Japanese (ja)
Inventor
智丈 白木
智丈 白木
和之 小渕
和之 小渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2006041195A1 publication Critical patent/JPWO2006041195A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide

Abstract

液晶表示装置用の導光板において、光入射面の算術平均粗さRaが0.4μmを超え2.0μm以下であることを特徴とする導光板、及び、熱可塑性樹脂の射出成形による導光板の製造方法において、光入射面に対応する金型面の算術平均粗さRaが0.4μmを超え2.0μm以下であることを特徴とする導光板の製造方法。液晶表示装置の表示画面において、色度ムラと輝度ムラがともに小さく、高画質の表示画面を与えることができる液晶表示装置用の導光板及びその製造方法が提供される。In a light guide plate for a liquid crystal display device, an arithmetic average roughness Ra of a light incident surface is more than 0.4 μm and not more than 2.0 μm, and a light guide plate by injection molding of a thermoplastic resin In the manufacturing method, the arithmetic mean roughness Ra of the mold surface corresponding to the light incident surface is more than 0.4 μm and not more than 2.0 μm. Provided are a light guide plate for a liquid crystal display device and a method for manufacturing the same, which can provide a high-quality display screen in which both chromaticity unevenness and luminance unevenness are small on the display screen of the liquid crystal display device.

Description

本発明は、導光板及びその製造方法に関する。さらに詳しくは、本発明は、液晶表示装置の表示画面において、色度ムラと輝度ムラがともに小さく、高画質の表示画面を与えることができる液晶表示装置用の導光板及びその製造方法に関する。  The present invention relates to a light guide plate and a method for manufacturing the same. More specifically, the present invention relates to a light guide plate for a liquid crystal display device and a method for manufacturing the same, which can provide a high-quality display screen with both chromaticity unevenness and luminance unevenness being small on the display screen of the liquid crystal display device.

パーソナルコンピュータ、薄型テレビジョン、カーナビゲーションシステムなどの表示画面に、液晶表示装置が広く用いられている。液晶表示装置は、液晶表示パネルとバックライトとを備えている。液晶表示装置のバックライトとしては、管状光源を導光板のエッジ部に設置するサイドライト型バックライトと、管状光源を光拡散板を介して表示画面の直下に設置する直下型バックライトが一般的に用いられている。サイドライト型バックライトは、透明なメタクリル樹脂などの成形品で作られた導光板のエッジ部の光入射面に、冷陰極管などの光源を配置する方式であり、薄型のバックライトを実現することができる。しかし、サイドライト型バックライトは、光出射面に輝度ムラが生じやすい。冷陰極管などの線状の光源から発せられる光を、均一な面状の光としてバックライトから効率的に出射させるために、導光板の反射面側には反射シートが積層され、光出射面側には拡散シートが積層され、その上に2枚のプリズムシートがプリズムの方向が直交するように積層され、さらにその上に拡散シートが積層される場合が多い。
バックライトの輝度を向上し、プリズムシートと拡散シートの使用枚数を減らし、バックライトの薄型化とコストダウンを図るために、Fig.1に示すように反射面1Cにプリズム形状を付与する検討が成されている。この検討によって、導光板の光出射面側に、プリズムを導光板側になるように設置したプリズムシート4と、その上に拡散シート5を積層するだけで輝度が向上されたバックライトが得られている。しかし、その際光入射面1Aの近傍に輝度ムラが発生するので、その輝度ムラを低減するために、導光板の光入射面1Aを粗面化する試みがなされている。例えば、反射面にプリズム形状を付与した導光板の光入射面の中心線上において、算術平均粗さRaが0.05〜0.30μmの範囲内で、前記端面を粗面に形成したサイドライト型面光源装置が提案されている(特許文献1)。また、映り込みによる輝度ムラを低減して、発光面の品位を向上することができる導光板として、算術平均粗さ0.05〜0.3μmの範囲で入射面を粗面に形成し、入射面の厚み方向における粗さに比して、入射面の長手方向における粗さの程度を粗くした導光板が提案されている(特許文献2)。さらに、均斉でかつ高輝度な大画面用の面光源を実現し得る指向性導光板として、入光端面が、その厚み方向に沿う縦筋からなる縞模様にて粗面化されている指向性導光板が提案されている(特許文献3)。
しかし、これらの導光板によっても、液晶表示装置の表示画面の輝度ムラは十分に満足し得る水準までは減少せず、さらに、これらの導光板は、表示画面の色度ムラについてはほとんど改良されていない。
特開平9−160035号公報(第2−3頁) 特開2001−83512号公報(第2頁) 特開2002−169032号公報(第2頁)
Liquid crystal display devices are widely used for display screens of personal computers, thin televisions, car navigation systems, and the like. The liquid crystal display device includes a liquid crystal display panel and a backlight. As a backlight of a liquid crystal display device, a sidelight type backlight in which a tubular light source is installed at an edge portion of a light guide plate and a direct type backlight in which a tubular light source is installed directly under a display screen through a light diffusion plate are generally used. It is used for. The sidelight type backlight is a system in which a light source such as a cold cathode tube is arranged on the light incident surface of the edge portion of the light guide plate made of a molded product such as a transparent methacrylic resin, realizing a thin backlight. be able to. However, luminance unevenness tends to occur on the light exit surface of the sidelight type backlight. In order to efficiently emit light emitted from a linear light source such as a cold cathode tube from the backlight as uniform surface light, a reflection sheet is laminated on the reflection surface side of the light guide plate, and the light emission surface In many cases, a diffusion sheet is laminated on the side, and two prism sheets are laminated thereon so that the directions of the prisms are orthogonal to each other, and a diffusion sheet is further laminated thereon.
To improve the brightness of the backlight, reduce the number of prism sheets and diffusion sheets used, and reduce the thickness and cost of the backlight, FIG. As shown in FIG. 1, studies have been made to give a prism shape to the reflecting surface 1C. As a result of this study, a backlight with improved brightness can be obtained simply by laminating the prism sheet 4 with the prism placed on the light exit surface side of the light guide plate and the diffusion sheet 5 thereon. ing. However, since luminance unevenness occurs in the vicinity of the light incident surface 1A at that time, an attempt has been made to roughen the light incident surface 1A of the light guide plate in order to reduce the luminance unevenness. For example, on the center line of the light incident surface of the light guide plate having a prism shape on the reflecting surface, the side light type in which the end surface is formed as a rough surface within an arithmetic average roughness Ra of 0.05 to 0.30 μm. A surface light source device has been proposed (Patent Document 1). In addition, as a light guide plate that can reduce brightness unevenness due to reflection and improve the quality of the light emitting surface, the incident surface is formed into a rough surface with an arithmetic average roughness in the range of 0.05 to 0.3 μm. A light guide plate has been proposed in which the degree of roughness in the longitudinal direction of the incident surface is made larger than the roughness in the thickness direction of the surface (Patent Document 2). Furthermore, as a directional light guide plate that can realize a surface light source for large screens that is uniform and has high brightness, the directivity is roughened with a striped pattern consisting of vertical stripes along its thickness direction. A light guide plate has been proposed (Patent Document 3).
However, even with these light guide plates, the luminance unevenness of the display screen of the liquid crystal display device is not reduced to a sufficiently satisfactory level, and these light guide plates are almost improved with respect to the chromaticity unevenness of the display screen. Not.
Japanese Patent Laid-Open No. 9-160035 (page 2-3) JP 2001-83512 A (Page 2) JP 2002-169032 A (second page)

本発明は、液晶表示装置の表示画面において、色度ムラと輝度ムラがともに小さく、高画質の表示画面を与えることができる液晶表示装置用の導光板及びその製造方法を提供することを目的としてなされたものである。
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、液晶表示装置用の導光板において、光入射面の算術平均粗さRaを0.4μmを超え2.0μm以下とすることにより、表示画面の輝度ムラと色度ムラをともに著しく減少させることができ、さらに、光入射面に対応する金型面の算術平均粗さRaが0.4μmを超え2.0μm以下である金型を用いて熱可塑性樹脂を射出成形することにより、表示画面の輝度ムラと色度ムラの少ない導光板を経済的かつ容易に製造し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)液晶表示装置用の導光板において、光入射面の算術平均粗さRaが0.4μmを超え2.0μm以下であることを特徴とする導光板、
(2)光入射面の算術平均粗さRaが0.45μm以上1.5μm以下である(1)記載の導光板、
(3)光入射面から離れるにつれて厚さが薄くなっている(1)記載の導光板、
(4)さらに、光反射面を有し、前記光反射面に光入射面と直交する方向のプリズム形状が形成された(1)記載の導光板、
(5)前記導光板が、脂環式構造を有する樹脂を含んでいるものである(1)記載の導光板。
(6)熱可塑性樹脂の射出成形による導光板の製造方法において、光入射面に対応する金型面の算術平均粗さRaが0.4μmを超え2.0μm以下であることを特徴とする導光板の製造方法、
(7)光入射面に対応する金型面以外の金型面から溶融した樹脂を金型キャビティに注入する(6)記載の導光板の製造方法、
(8)光入射面に対応する金型面以外の金型面が、光反射面に対応する金型面、光出射面に対応する金型面、光入射面と直交する側面に対応する金型面のいずれかである(7)記載の導光板の製造方法、
(9)光入射面と直交する側面に対応する金型面から溶融した樹脂を金型キャビティに注入する(8)記載の製造方法、
(10)光入射面と直交する側面に対応する金型面に設けるゲートの位置が、光入射面に対応する金型面から0mm以上離れ、光入射面に対応する金型面から該側面長さの0.5倍以内にある(9)記載の導光板の製造方法、
(11)熱可塑性樹脂が、脂環式構造を有する樹脂である(6)ないし(10)のいずれか1項に記載の製造方法、及び、
(12)(1)ないし(5)のいずれか1項に記載の導光板を有する液晶表示装置、
を提供するものである。
An object of the present invention is to provide a light guide plate for a liquid crystal display device and a method of manufacturing the same for a liquid crystal display device, which can provide a high-quality display screen with both small chromaticity unevenness and luminance unevenness on the display screen of the liquid crystal display device. It was made.
As a result of intensive studies to solve the above-mentioned problems, the present inventors set the arithmetic average roughness Ra of the light incident surface to more than 0.4 μm and not more than 2.0 μm in a light guide plate for a liquid crystal display device. Thus, both luminance unevenness and chromaticity unevenness of the display screen can be remarkably reduced, and the arithmetic average roughness Ra of the mold surface corresponding to the light incident surface is more than 0.4 μm and not more than 2.0 μm. It was found that a light guide plate with less luminance unevenness and chromaticity unevenness can be manufactured economically and easily by injection molding of a thermoplastic resin using a mold, and the present invention was completed based on this knowledge. It came to do.
That is, the present invention
(1) A light guide plate for a liquid crystal display device, wherein the arithmetic average roughness Ra of the light incident surface is more than 0.4 μm and not more than 2.0 μm,
(2) The light guide plate according to (1), wherein the arithmetic average roughness Ra of the light incident surface is 0.45 μm or more and 1.5 μm or less,
(3) The light guide plate according to (1), wherein the thickness decreases as the distance from the light incident surface increases.
(4) The light guide plate according to (1), further including a light reflecting surface, wherein a prism shape in a direction orthogonal to the light incident surface is formed on the light reflecting surface;
(5) The light guide plate according to (1), wherein the light guide plate contains a resin having an alicyclic structure.
(6) In the method of manufacturing a light guide plate by injection molding of a thermoplastic resin, the arithmetic mean roughness Ra of the mold surface corresponding to the light incident surface is more than 0.4 μm and not more than 2.0 μm. Optical plate manufacturing method,
(7) The method for producing a light guide plate according to (6), wherein a resin melted from a mold surface other than the mold surface corresponding to the light incident surface is injected into the mold cavity.
(8) A mold surface other than the mold surface corresponding to the light incident surface corresponds to a mold surface corresponding to the light reflecting surface, a mold surface corresponding to the light emitting surface, and a side surface orthogonal to the light incident surface. The method for producing a light guide plate according to (7), which is one of mold surfaces,
(9) The manufacturing method according to (8), wherein molten resin is injected into a mold cavity from a mold surface corresponding to a side surface orthogonal to the light incident surface.
(10) The position of the gate provided on the mold surface corresponding to the side surface orthogonal to the light incident surface is at least 0 mm away from the mold surface corresponding to the light incident surface, and the side surface length from the mold surface corresponding to the light incident surface The method for producing a light guide plate according to (9), which is within 0.5 times the height,
(11) The production method according to any one of (6) to (10), wherein the thermoplastic resin is a resin having an alicyclic structure;
(12) A liquid crystal display device having the light guide plate according to any one of (1) to (5),
Is to provide.

Fig.1はサイドライト型バックライト装置の一例を示す説明図、Fig.2は導光板の光入射面の測定点を示す説明図、Fig.3は導光板の光出射面の測定点を示す説明図である。図中符号1は導光板、1Aは光入射面、1Bは光出射面、1Cは光反射面、2は管状光源、3は反射板、4はプリズムシート、5は拡散シート、6は反射シートを表す。  FIG. 1 is an explanatory view showing an example of a sidelight type backlight device, FIG. 2 is an explanatory diagram showing measurement points on the light incident surface of the light guide plate, FIG. 3 is an explanatory diagram showing measurement points on the light exit surface of the light guide plate. In the figure, 1 is a light guide plate, 1A is a light incident surface, 1B is a light exit surface, 1C is a light reflection surface, 2 is a tubular light source, 3 is a reflection plate, 4 is a prism sheet, 5 is a diffusion sheet, and 6 is a reflection sheet. Represents.

本発明の導光板は、液晶表示装置用の導光板において、光入射面の算術平均粗さRaが0.4μmを超え2.0μm以下である導光板であり、より好ましくは光入射面の算術平均粗さRaが0.45μm以上1.5μm以下の導光板であり、さらに好ましくは光入射面の算術平均粗さRaが0.6μm以上1.3μm以下の導光板である。光入射面の算術平均粗さRaが0.4μm以下であると、色度ムラが大きくなるおそれがある。光入射面の算術平均粗さRaが2.0μmを超えると、輝度ムラが大きくなるおそれがある。光入射面の算術平均粗さRaを0.4μmを超え2.0μm以下とすることにより、色度ムラと輝度ムラをともに減少し、光入射面と平行に現れる輝線と暗帯の出現を防止することができる。
本発明の導光板の形状に特に制限はなく、例えば、側面の1つを光入射面とし、光入射面と直交する側面が略台形で、光入射面から離れるにつれて厚さが次第に薄くなる導光板とすることができ、あるいは、側面が略台形の導光板を組み合せた形状とすることもでき、あるいは、厚さが一定の平板状であって、相対する2つの側面が光入射面である導光板とすることもできる。光入射面から離れるにつれて厚さが次第に薄くなる導光板は、効率よく照明光を出射することができるので、好適に用いることができる。
本発明において、光入射面の算術平均粗さRaは、断面曲線から所定の波長より長い表面うねり成分を位相補償高域フィルタで除去した粗さ曲線について、JIS B 06013.にしたがって求めることができ、あるいは、超深度形状測定顕微鏡などを用いて直読することもできる。
本発明の導光板において、光入射面の算術平均粗さRaを0.4μmを超え2.0μm以下とする方法に特に制限はなく、例えば、光入射面に対応する面の算術平均粗さRaが0.4μmを超え2.0μm以下の金型を用いて射出成形し、金型面の形状を成形品に転写することができ、あるいは、射出成形により得られた導光板の光入射面に、切削又は研削加工、サンドブラストなどを施すことにより粗面化して、算術平均粗さRaを0.4μmを超え2.0μm以下とすることもできる。
本発明の導光板においては、光入射面と略直交する面のうち、面積の大きい2面の片方が光反射面であり、もう片方が光出射面である。
本発明の導光板において、光反射面の形状に特に制限はなく、例えばプリズムパターン、微細な凹凸模様を有するシボパターン、多数の微小な半球状や円柱状などの突起を有するパターン、白又は半透明インキで印刷された反射パターン、を形成することができる。本発明は、特にプリズムパターンの光反射面に対して有効である。
本発明の導光板において、光出射面の形状に特に制限はなく、微細な凹凸模様を有するシボパターン、多数の微小な半球状や円柱状などの突起を有するパターンなどとすることができる。
本発明の導光板においては、光反射面及び/又は光出射面に微細な凹凸模様などを設けることにより、光を均一に散乱させて色度ムラ及び輝度ムラを低減することができ、光を効率的に出射させて輝度を向上することができる。さらに、前記パターンは、微小な半球状の突起を有するパターンであると、色度ムラ及び輝度ムラをより低減できるので有効である。
本発明の導光板はその製造方法によって特に制限されないが、熱可塑性樹脂の射出成形による導光板の製造方法において、光入射面に対応する金型面の算術平均粗さRaが0.4μmを超え2.0μm以下であり、より好ましくは0.45μm以上1.5μm以下である。熱可塑性樹脂を射出成形することにより、光入射面に対応する金型面の形状は、ほぼ正確に成形品である導光板の光入射面に転写される。光入射面に対応する金型面の算術平均粗さRaが0.4μm以下であると、色度ムラが大きくなるおそれがある。光入射面に対応する金型面の算術平均粗さRaが2.0μmを超えると、輝度ムラが大きくなるおそれがある。
本発明方法において、光入射面に対応する金型面の算術平均粗さRaを0.4μmを超え2.0μm以下とする方法に特に制限はなく、例えば、金型面を直接加工することができ、あるいは、表面の算術平均粗さRaを0.4μmを超え2.0μm以下に加工したスタンパーを光入射面に対応する金型面に取り付けることもできる。スタンパーは、一つの金型を用いて、スタンパーの交換により光入射面の算術平均粗さRaの異なる導光板を製造することができるので、好適に用いることができる。スタンパーの材料に特に制限はなく、例えば、ステンレス鋼板やニッケル板などを挙げることができる。スタンパーの厚さは、0.2〜2mmであることが好ましく、0.2〜1mmであることがより好ましい。
本発明方法において、金型面又はスタンパー面の算術平均粗さRaを0.4μmを超え2.0μm以下とする方法に特に制限はなく、例えば、微細加工機を用いて三角錐、四角錐、六角錐などの形状を研削加工により形成することができ、あるいは、研磨材を用いるサンドブラストにより粗面化することもできる。
本発明方法においては、光入射面に対応する金型面以外の金型面から溶融した樹脂を金型キャビティに注入することが好ましい。光入射面に対応する金型面以外の金型面から溶融した樹脂を金型キャビティに注入することにより、溶融した樹脂が算術平均粗さRaが0.4μmを超え2.0μm以下である光入射面に対応する面に衝突するように流れ込むので、光入射面に対応する金型面の形状を成形品に正確かつ再現性よく転写することができる。溶融した樹脂を注入する光入射面に対応する面以外の金型面に特に制限はなく、光反射面に対応する金型面、光出射面に対応する金型面、光入射面と直交する側面に対応する金型面、光入射面に対向する側面に対応する金型面のいずれともすることができる。これらの中で、光入射面と直交する側面に対応する金型面は、ゲート痕が液晶表示装置の表示画面の画質に与える影響が小さく、かつ、光入射面の近傍に設けて溶融した樹脂が光入射面に対応する金型面に達するまでの流動距離を短くし、溶融樹脂の温度低下による粘度上昇を防ぐことができるので、好適に用いることができる。
本発明方法において、溶融した樹脂は、導光板の光入射面と直交する二つの側面に対応する二つの金型面から注入することが好ましい。二つの金型面に各1個のゲートを設けて、2か所から溶融した樹脂を注入することにより、金型内における溶融樹脂の流動距離を減らして成形サイクルを短縮するとともに、金型内における溶融樹脂の温度低下による粘度上昇を防いで、金型面の形状を成形品である導光板に正確に転写することができる。
本発明方法において、導光板の光入射面と直交する側面に対応する金型面に設けるゲートの位置は、光入射面に対応する金型面から0mm以上離れ、光入射面に対応する金型面から該側面の長さの0.5倍以内にあることが好ましく、光入射面に対応する金型面から0mm以上離れ、光入射面に対応する金型面から該側面の長さの0.3倍以内にあることがより好ましい。ゲートが、光入射面と直交する側面に対応する金型面で、光入射面に対応する金型面から該側面に対応する金型面の長さの0.5倍を超える位置に存在すると、溶融樹脂が光入射面に対応する金型面に達するまでの流動距離が長くなり、溶融樹脂の温度低下による粘度上昇のために、光入射面に対応する金型面の転写が不十分になるおそれがある。また、ゲートが左右2点に存在することが、溶融樹脂の流動距離が短くなるために好ましい。
本発明に用いる熱可塑性樹脂に特に制限はなく、例えば、脂環式構造を有する樹脂、メタクリル樹脂、ポリカーボネート、ポリスチレン、アクリロニトリル−スチレン共重合体、メタクリル酸メチル−スチレン共重合体、ポリエーテルスルホンなどを挙げることができる。これらの中で、脂環式構造を有する樹脂を好適に用いることができる。脂環式構造を有する樹脂は、溶融樹脂の流動性が良好なので、ピンポイントゲートを用いて低い射出圧力で金型のキャビティを充填し、金型面の形状を正確に転写することができ、ウェルドラインが発生しにくく、吸湿性が極めて低いので寸法安定性に優れ、導光板に反りを生ずることがなく、比重が小さいので導光板を軽量化することができる。
脂環式構造を有する樹脂としては、例えば、ノルボルネン系単量体の開環重合体若しくは開環共重合体又はそれらの水素添加物、ノルボルネン系単量体の付加重合体若しくは付加共重合体又はそれらの水素添加物、単環の環状オレフィン系単量体の重合体又はその水素添加物、環状共役ジエン系単量体の重合体又はその水素添加物、ビニル脂環式炭化水素系単量体の重合体若しくは共重合体又はそれらの水素添加物、ビニル芳香族炭化水素系単量体の重合体又は共重合体の芳香環を含む不飽和結合部分の水素添加物などを挙げることができる。これらの中で、ノルボルネン系単量体の重合体の水素添加物及びビニル芳香族炭化水素系単量体の重合体の芳香環を含む不飽和結合部分の水素添加物は、機械的強度と耐熱性に優れるので、特に好適に用いることができる。
本発明においては、必要に応じて、熱可塑性樹脂にその他の重合体、配合剤、充填剤などを混合して射出成形することができる。その他の重合体としては、例えば、ポリブタジエン、ポリ(メタ)アクリル酸エステルなどを挙げることができる。配合剤としては、例えば、酸化防止剤、紫外線吸収剤、光安定剤、滑剤、可塑剤、帯電防止剤、蛍光増白剤、光拡散剤などを挙げることができる。光拡散剤としては、例えば、ポリスチレン系重合体、ポリシロキサン系重合体、ポリ(メタ)アクリル酸エステル系重合体などの架橋物からなる微粒子、フッ素系樹脂の微粒子、硫酸バリウム、炭酸カルシウム、シリカ、タルクなどを挙げることができる。
本発明の導光板の製造方法においては、Tg(℃)+100(℃)〜Tg+200(℃)、好ましくはTg+150(℃)〜Tg+200(℃)の樹脂温度で、かつTg−50(℃)〜Tg(℃)、好ましくはTg−30(℃)〜Tg(℃)の金型温度で射出成形する。なお、前記Tgは、用いる熱可塑性樹脂のガラス転移温度である。また、射出速度は、20mm/sec〜200mm/sec、好ましくは40mm/sec〜180mm/secである。
The light guide plate of the present invention is a light guide plate having a light incident surface with an arithmetic average roughness Ra of more than 0.4 μm and not more than 2.0 μm in a light guide plate for a liquid crystal display device, and more preferably an arithmetic operation of the light incident surface. A light guide plate having an average roughness Ra of 0.45 μm or more and 1.5 μm or less, more preferably a light guide plate having an arithmetic average roughness Ra of a light incident surface of 0.6 μm or more and 1.3 μm or less. When the arithmetic average roughness Ra of the light incident surface is 0.4 μm or less, chromaticity unevenness may increase. If the arithmetic average roughness Ra of the light incident surface exceeds 2.0 μm, the luminance unevenness may increase. By setting the arithmetic average roughness Ra of the light incident surface to more than 0.4 μm and less than 2.0 μm, both chromaticity unevenness and luminance unevenness are reduced, and the appearance of bright lines and dark bands appearing parallel to the light incident surface is prevented. can do.
The shape of the light guide plate of the present invention is not particularly limited. For example, one of the side surfaces is a light incident surface, the side surface orthogonal to the light incident surface is substantially trapezoidal, and the thickness gradually decreases as the distance from the light incident surface increases. It can be a light plate, or it can be formed by combining a light guide plate having a substantially trapezoidal side surface, or it has a flat plate shape with a constant thickness, and two opposite side surfaces are light incident surfaces. It can also be used as a light guide plate. Since the light guide plate whose thickness gradually decreases as it moves away from the light incident surface can emit illumination light efficiently, it can be suitably used.
In the present invention, the arithmetic mean roughness Ra of the light incident surface is determined according to JIS B 06013. for a roughness curve obtained by removing a surface waviness component longer than a predetermined wavelength from the cross-sectional curve with a phase compensation high-pass filter. Or can be read directly using an ultra-deep shape measuring microscope or the like.
In the light guide plate of the present invention, there is no particular limitation on the method of setting the arithmetic average roughness Ra of the light incident surface to more than 0.4 μm and not more than 2.0 μm. For example, the arithmetic average roughness Ra of the surface corresponding to the light incident surface Can be transferred to the molded product by injection molding using a mold of more than 0.4 μm and not more than 2.0 μm, or on the light incident surface of the light guide plate obtained by injection molding. Further, the surface can be roughened by cutting, grinding, sandblasting, or the like, so that the arithmetic average roughness Ra is more than 0.4 μm and not more than 2.0 μm.
In the light guide plate of the present invention, of the surfaces substantially orthogonal to the light incident surface, one of the two surfaces having a large area is the light reflecting surface, and the other is the light emitting surface.
In the light guide plate of the present invention, the shape of the light reflecting surface is not particularly limited, and for example, a prism pattern, a grain pattern having a fine concavo-convex pattern, a pattern having a number of minute hemispherical or cylindrical projections, white or semi A reflection pattern printed with a transparent ink can be formed. The present invention is particularly effective for the light reflecting surface of the prism pattern.
In the light guide plate of the present invention, the shape of the light exit surface is not particularly limited, and may be a texture pattern having a fine concavo-convex pattern, a pattern having a number of minute hemispherical or cylindrical protrusions, and the like.
In the light guide plate of the present invention, by providing a fine concavo-convex pattern on the light reflecting surface and / or the light emitting surface, it is possible to scatter light uniformly and reduce chromaticity unevenness and brightness unevenness, Luminance can be improved by efficiently emitting light. Furthermore, if the pattern is a pattern having minute hemispherical protrusions, it is effective because chromaticity unevenness and brightness unevenness can be further reduced.
The light guide plate of the present invention is not particularly limited by its manufacturing method, but in the method of manufacturing a light guide plate by injection molding of a thermoplastic resin, the arithmetic average roughness Ra of the mold surface corresponding to the light incident surface exceeds 0.4 μm. It is 2.0 μm or less, more preferably 0.45 μm or more and 1.5 μm or less. By injection-molding the thermoplastic resin, the shape of the mold surface corresponding to the light incident surface is almost accurately transferred to the light incident surface of the light guide plate which is a molded product. When the arithmetic mean roughness Ra of the mold surface corresponding to the light incident surface is 0.4 μm or less, there is a possibility that the chromaticity unevenness becomes large. When the arithmetic mean roughness Ra of the mold surface corresponding to the light incident surface exceeds 2.0 μm, the luminance unevenness may increase.
In the method of the present invention, there is no particular limitation on the method of setting the arithmetic mean roughness Ra of the mold surface corresponding to the light incident surface to more than 0.4 μm and not more than 2.0 μm. For example, the mold surface can be directly processed. Alternatively, a stamper having a surface arithmetic average roughness Ra of more than 0.4 μm and not more than 2.0 μm can be attached to a mold surface corresponding to the light incident surface. The stamper can be suitably used because a light guide plate having a different arithmetic average roughness Ra of the light incident surface can be manufactured by exchanging the stamper using a single mold. There is no restriction | limiting in particular in the material of a stamper, For example, a stainless steel plate, a nickel plate, etc. can be mentioned. The thickness of the stamper is preferably 0.2 to 2 mm, and more preferably 0.2 to 1 mm.
In the method of the present invention, there is no particular limitation on the method of setting the arithmetic average roughness Ra of the mold surface or stamper surface to more than 0.4 μm and not more than 2.0 μm. For example, a triangular pyramid, a quadrangular pyramid, A shape such as a hexagonal pyramid can be formed by grinding, or roughened by sandblasting using an abrasive.
In the method of the present invention, it is preferable to inject molten resin from a mold surface other than the mold surface corresponding to the light incident surface into the mold cavity. By injecting molten resin from a mold surface other than the mold surface corresponding to the light incident surface into the mold cavity, the molten resin has an arithmetic average roughness Ra of more than 0.4 μm and not more than 2.0 μm. Since it flows so as to collide with the surface corresponding to the incident surface, the shape of the mold surface corresponding to the light incident surface can be accurately and reproducibly transferred to the molded product. There is no particular limitation on the mold surface other than the surface corresponding to the light incident surface for injecting molten resin, the mold surface corresponding to the light reflecting surface, the mold surface corresponding to the light emitting surface, and the light incident surface orthogonal to Either a mold surface corresponding to the side surface or a mold surface corresponding to the side surface facing the light incident surface can be used. Among these, the mold surface corresponding to the side surface orthogonal to the light incident surface has little influence on the image quality of the display screen of the liquid crystal display device by the gate mark, and is provided near the light incident surface and melted. Can be suitably used because the flow distance until reaching the mold surface corresponding to the light incident surface can be shortened to prevent an increase in viscosity due to a temperature drop of the molten resin.
In the method of the present invention, the molten resin is preferably injected from two mold surfaces corresponding to two side surfaces orthogonal to the light incident surface of the light guide plate. By providing one gate each on the two mold surfaces and injecting molten resin from two locations, the flow distance of the molten resin in the mold is reduced and the molding cycle is shortened. In this case, it is possible to prevent the increase in viscosity due to the temperature decrease of the molten resin in, and accurately transfer the shape of the mold surface to the light guide plate which is a molded product.
In the method of the present invention, the position of the gate provided on the mold surface corresponding to the side surface orthogonal to the light incident surface of the light guide plate is 0 mm or more away from the mold surface corresponding to the light incident surface, and the mold corresponding to the light incident surface. It is preferably within 0.5 times the length of the side surface from the surface, is 0 mm or more away from the mold surface corresponding to the light incident surface, and is 0 times the length of the side surface from the mold surface corresponding to the light incident surface. More preferably within 3 times. The gate is a mold surface corresponding to the side surface orthogonal to the light incident surface, and is present at a position exceeding 0.5 times the length of the mold surface corresponding to the side surface from the mold surface corresponding to the light incident surface. , The flow distance until the molten resin reaches the mold surface corresponding to the light incident surface becomes long, and the viscosity of the molten resin increases due to the temperature decrease, so the transfer of the mold surface corresponding to the light incident surface is insufficient. There is a risk. Further, it is preferable that the gates exist at two points on the left and right sides because the flow distance of the molten resin is shortened.
The thermoplastic resin used in the present invention is not particularly limited, and examples thereof include resins having an alicyclic structure, methacrylic resin, polycarbonate, polystyrene, acrylonitrile-styrene copolymer, methyl methacrylate-styrene copolymer, and polyethersulfone. Can be mentioned. Among these, a resin having an alicyclic structure can be suitably used. Since the resin having an alicyclic structure has good fluidity of the molten resin, the mold cavity can be filled with a low injection pressure using a pinpoint gate, and the shape of the mold surface can be accurately transferred. The weld line is less likely to be generated and the hygroscopic property is extremely low, so that the dimensional stability is excellent, the light guide plate is not warped, and the specific gravity is small, so that the light guide plate can be reduced in weight.
Examples of the resin having an alicyclic structure include a ring-opening polymer or a ring-opening copolymer of a norbornene monomer or a hydrogenated product thereof, an addition polymer or an addition copolymer of a norbornene monomer, or Those hydrogenated products, polymers of monocyclic olefin monomers or hydrogenated products thereof, polymers of cyclic conjugated diene monomers or hydrogenated products thereof, vinyl alicyclic hydrocarbon monomers Or a hydrogenated product thereof, a polymer of a vinyl aromatic hydrocarbon monomer, or a hydrogenated product of an unsaturated bond part containing an aromatic ring of the copolymer. Among these, hydrogenated products of norbornene-based monomer polymers and hydrogenated products of unsaturated bonds containing aromatic rings of vinyl aromatic hydrocarbon-based monomer polymers have mechanical strength and heat resistance. Since it is excellent in property, it can be used especially suitably.
In the present invention, if necessary, other polymers, compounding agents, fillers and the like may be mixed with the thermoplastic resin for injection molding. Examples of the other polymer include polybutadiene and poly (meth) acrylic acid ester. Examples of the compounding agent include an antioxidant, an ultraviolet absorber, a light stabilizer, a lubricant, a plasticizer, an antistatic agent, a fluorescent whitening agent, and a light diffusing agent. Examples of the light diffusing agent include fine particles composed of a cross-linked product such as polystyrene polymer, polysiloxane polymer, poly (meth) acrylate polymer, fluorine resin fine particles, barium sulfate, calcium carbonate, silica. And talc.
In the light guide plate production method of the present invention, the resin temperature is Tg (° C.) + 100 (° C.) to Tg + 200 (° C.), preferably Tg + 150 (° C.) to Tg + 200 (° C.), and Tg−50 (° C.) to Tg. Injection molding is performed at a mold temperature of (° C.), preferably Tg-30 (° C.) to Tg (° C.). The Tg is the glass transition temperature of the thermoplastic resin used. The injection speed is 20 mm / sec to 200 mm / sec, preferably 40 mm / sec to 180 mm / sec.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
脂環式構造を有する樹脂[日本ゼオン(株)、ZEONOR1060R]を用いて、15インチ型導光板を射出成形により作製した。
導光板の寸法は、縦230mm、横306mmであって、横306mm側の光入射面となる側面の厚さ2.0mm、光入射面と対向する側面の厚さ0.6mmであり、他の2側面は台形である。
金型の光反射面に対応する面には、ニッケル板を加工したピッチ50μm、頂角120度で、光入射面とほぼ直交するプリズム形状を有するスタンパーを取り付けた。また、金型の光出射面に対応する面には、ニッケル板を#600のアルミナ研磨材を用いて0.15MPaの圧力でサンドブラストすることにより、シボ模様を形成したスタンパーを取り付けた。ゲートは、金型の光入射面に対応する面にファンゲートを設けた。
射出成形機(型締力3,440kN)を用い、溶融樹脂温度275℃、金型温度80℃で導光板を射出成形した。射出成形は、射出1秒、射出後50MPaの保圧7秒、その後の冷却17秒、取り出し5秒で行うことができたが、取り出し後、成形機の横で行う成形品のゲートの切断と入光面の処理に57秒かかってしまったため、全体のサイクルタイムは57秒であった。
射出成形品の光入射面に存在するゲートをエンドミルにより切断し、多結晶ダイヤ砥粒をバインダーで固めたバイトで切削することにより粗面化し、超深度形状測定顕微鏡[(株)キーエンス、VK−9500]を用いて、Fig.2に示す光入射面1Aの端からx方向に30.6mmの2点と中央の1点(図中黒点)において、測定範囲200μm角について算術平均粗さRaを測定した。得られた導光板の光入射面の算術平均粗さRaの平均値は、0.98μmであった。また、算術平均粗さRaの最小値と最大値の比として求めた粗さムラは57%であり、光入射面の粗さムラは良好ではなかった。
得られた導光板の光反射面に、反射シートとして銀シート[三井化学(株)、エンハーンスター]を積層し、光出射面に逆プリズムシート[三菱レイヨン(株)、M268Y]と拡散シート[(株)ツジデン、D117TF]を積層し、光入射面に冷陰極蛍光ランプ[ハリソン東芝ライティング(株)、MBVM16J]を取り付け、冷陰極蛍光ランプを内面が銀色の反射板で覆ってバックライトを作製した。
冷陰極蛍光ランプに点灯して1時間後に、表示画面の色度座標yを、Fig.3に示す表示画面1Bの縦方向を10等分する9本の線分のうち光入射面1Aに最も近い線分N上と、光入射面から最も遠い線分F上で、線分を10等分する9点についてそれぞれ二次元色分布測定装置[ミノルタ(株)、CA−1500W]を用いて測定し、線分N上の色度座標の平均値と、線分F上の色度座標の平均値の差として、色度ムラΔyを求めた。色度ムラΔyは、0.012であった。また、Fig.3に示す表示画面の縦方向を10等分する9本の線分と、横方向を10等分する9本の線分の交点である81点において、二次元色分布測定装置[ミノルタ(株)、CA−1500W]を用いて輝度を測定し、輝度の最小値と最大値の比として輝度均整度を求めた。輝度均整度は50%であった。
反射シートを白シート[東レ(株)、E60L]に取り替えて、同じ測定を行った。色度ムラΔyは0.012であり、輝度均整度は34%であった。
実施例2
金型の光入射面に対応する面に、ニッケル板を#1200のアルミナ研磨材を用いて0.47MPaの圧力でサンドブラストすることにより、算術平均粗さRa0.97μmの凹凸模様を形成したスタンパーを取り付け、光入射面と直交する1側面の光入射面から23mm離れ、厚さ方向の中央の位置にピンポイントゲート1個を設けた以外は、実施例1と同様にして導光板を作製し、評価を行った。
射出成形は、射出1秒、射出後50MPaの保圧7秒、その後の冷却17秒、取り出し5秒のサイクルタイム30秒で行うことができ、その間に成形品のゲート処理も済ませることができた。
得られた導光板の光入射面の算術平均粗さRaの平均値は、0.90μmであった。算術平均粗さRaの最小値と最大値の比として求めた粗さムラは82%であり、光入射面の粗さムラは良好ではなかった。
反射シートとして銀シートを用いたとき、色度ムラΔyは0.013であり、輝度均整度は50%であった。反射シートとして白シートを用いたとき、色度ムラΔyは0.012であり、輝度均整度は34%であった。
実施例3
金型の光入射面に対応する面に、ニッケル板を#1200のアルミナ研磨材を用いて0.15MPaの圧力でサンドブラストすることにより、算術平均粗さRa0.51μmの凹凸模様を形成したスタンパーを取り付け、光入射面と直交する両側面の光入射面から23mm離れ、厚さ方向の中央の位置にピンポイントゲート各1個を設けた以外は、実施例1と同様にして、導光板を作製し、評価を行った。
射出成形は、射出1秒、射出後50MPaの保圧7秒、その後の冷却17秒、取り出し5秒のサイクルタイム30秒で行うことができ、その間に成形品のゲート処理も済ませることができた。
得られた導光板の光入射面の算術平均粗さRaの平均値は、0.49μmであった。算術平均粗さRaの最小値と最大値の比として求めた粗さムラは90%であり、光入射面の粗さムラは良好であった。
反射シートとして銀シートを用いたとき、色度ムラΔyは0.017であり、輝度均整度は48%であった。反射シートとして白シートを用いたとき、色度ムラΔyは0.013であり、輝度均整度は41%であった。
実施例4
金型の光入射面に対応する面に、ニッケル板を#1200のアルミナ研磨材を用いて0.47MPaの圧力でサンドブラストすることにより、算術平均粗さRa0.97μmの凹凸模様を形成したスタンパーを取り付けた以外は、実施例3と同様にして、導光板を作製し、評価を行った。
射出成形は実施例3と同じサイクルタイム30秒で行うことができた。得られた導光板の光入射面の算術平均粗さRaの平均値は、0.94μmであり、算術平均粗さRaのムラは91%であり、光入射面の粗さムラは良好であった。
反射シートとして銀シートを用いたとき、色度ムラΔyは0.010であり、輝度均整度は53%であった。反射シートとして白シートを用いたとき、色度ムラΔyは0.010であり、輝度均整度は38%であった。
実施例5
金型の光入射面に対応する面に、ニッケル板を#1200のアルミナ研磨材を用いて0.74MPaの圧力でサンドブラストすることにより、算術平均粗さRa1.37μmの凹凸模様を形成したスタンパーを取り付けた以外は、実施例3と同様にして、導光板を作製し、評価を行った。
射出成形は実施例3と同じサイクルタイム30秒で行うことができた。得られた導光板の光入射面の算術平均粗さRaの平均値は、1.34μmであり、算術平均粗さRaのムラは94%であり、光入射面の粗さムラは良好であった。
反射シートとして銀シートを用いたとき、色度ムラΔyは0.008であり、輝度均整度は39%であった。反射シートとして白シートを用いたとき、色度ムラΔyは0.006であり、輝度均整度は34%であった。
実施例6
金型の光出射面に対応する面に、直径6μm、高さ3μm、底面積28.3μmの半球状の凸部を、底面積の合計が光出射面の全表面積の16%になるように分散配置できるスタンパーを取り付けた以外は実施例4と同様にして、導光板を作製し、評価を行った。
なお、前記半球状凸部は、正方格子配列とし、密度が光入射面側が低く、光入射面と対向する側面側が高くなるように配置した。すなわち、光出射面を、光入射面に平行に10等分に分割し、光入射面に接する領域に、その領域に占める半球状凸部の底面積の合計割合が10.66%になるように、正方格子配列の半球状凸部を設けると共に、光入射面と対向する側面に接する領域に、その領域に占める半球状凸部の底面積の合計割合が21.33%になるように、正方格子配列の半球状凸部を設け、その他の領域の正方格子配列の半球状凸部の密度を直線的に変化させた。
射出成形は、実施例4と同じサイクルタイム30秒で行うことができた。得られた導光板の光入射面の算術平均粗さRaの平均値は、0.94μmであり、算術平均粗さRaの均整度は91%であり、光入射面の粗さムラは良好であった。
反射シートとして銀シートを用いたとき、色度ムラΔyは0.008であり、輝度均整度は55%であった。反射シートとして白シートを用いたとき、色度ムラΔyは0.008であり、輝度均整度は40%であった。
比較例1
射出成形品の処理を単結晶ダイヤモンド製のバイトで行うこと以外は、実施例1と同様にして、導光板を作製し、評価を行った。
得られた導光板の光入射面の算術平均粗さRaの平均値は0.20μmであり、算術平均粗さRaのムラは69%であり、光入射面の粗さムラは良好ではなかった。
反射シートとして銀シートを用いたとき、色度ムラΔyは0.020であり、輝度均整度は35%であった。反射シートとして白シートを用いたとき、色度ムラΔyは0.018であり、輝度均整度は35%であった。
比較例2
金型の光入射面に対応する面に、ニッケル板を#1800のアルミナ研磨材を用いて0.88MPaの圧力でサンドブラストすることにより、算術平均粗さRa2.30μmの凹凸模様を形成したスタンパーを取り付けた以外は、実施例3と同様にして、導光板を作製し、評価を行った。
射出成形は実施例3と同じサイクルタイム30秒で行うことができた。得られた導光板の光入射面の算術平均粗さRaの平均値は、2.22μmであり、算術平均粗さRaのムラは90%であり、光入射面の粗さムラは良好であった。
反射シートとして銀シートを用いたとき、色度ムラΔyは0.008であり、輝度均整度は25%であった。反射シートとして白シートを用いたとき、色度ムラΔyは0.006であり、輝度均整度は22%であった。
比較例3
金型の光入射面に対応する面に、鏡面のニッケル板からなるスタンパーを取り付けた以外は、実施例3と同様にして、導光板を作製し、評価を行った。射出成形は実施例3と同じサイクルタイム30秒で行うことができた。
反射シートとして銀シートを用いたとき、色度ムラΔyは0.020であり、輝度均整度は34%であった。反射シートとして白シートを用いたとき、色度ムラΔyは0.018であり、輝度均整度は35%であった。
実施例1〜6及び比較例1〜3の結果を、第1表に示す。

Figure 2006041195
第1表に見られるように、光入射面の算術平均粗さRaが0.49〜1.34である実施例1〜6の導光板は、反射シートとして銀シートを用いた場合も、白シートを用いた場合も、色度ムラΔyが小さく、輝度均整度が高く、液晶表示装置の表示画面の画質に優れている。これに対して、光入射面の算術平均粗さRaが0.20μmである比較例1の導光板は、色度ムラΔyが大きい。光入射面の算術平均粗さRaが2.22である比較例2の導光板は、色度ムラΔyは小さいが、輝度均整度が低い。光入射面を鏡面とした比較例3の導光板は、色度ムラΔyが大きい。
金型の2つの側面にそれぞれ1個ずつのピンポイントゲートを設けた実施例3〜6及び比較例2では、成形サイクルが短く、光入射面に設けたスタンパーの凹凸模様が正確に成形品に転写されて、光入射面の粗さムラが小さい。これに対して、金型の1つの側面のみにピンポイントゲート1個を設けた実施例2では、スタンパーの凹凸模様の転写が不十分で、光入射面の粗さムラが大きい。光入射面にファンゲートを設けた実施例1及び比較例1では、ゲート処理に時間がかかって成形サイクルが長くなっている。Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
A 15-inch light guide plate was produced by injection molding using a resin having an alicyclic structure [Nippon Zeon Co., Ltd., ZEONOR1060R].
The dimensions of the light guide plate are 230 mm in length and 306 mm in width, the thickness of the side surface serving as the light incident surface on the side of 306 mm in width is 2.0 mm, and the thickness of the side surface facing the light incident surface is 0.6 mm. Two sides are trapezoidal.
On the surface corresponding to the light reflection surface of the mold, a stamper having a prism shape substantially perpendicular to the light incident surface at a pitch of 50 μm and an apex angle of 120 degrees was formed. Further, a stamper having a texture pattern was attached to the surface corresponding to the light emitting surface of the mold by sandblasting a nickel plate with a # 600 alumina abrasive at a pressure of 0.15 MPa. The gate was provided with a fan gate on the surface corresponding to the light incident surface of the mold.
Using an injection molding machine (clamping force 3,440 kN), the light guide plate was injection molded at a molten resin temperature of 275 ° C. and a mold temperature of 80 ° C. Injection molding could be performed in 1 second after injection, holding pressure of 50 MPa after injection for 7 seconds, then cooling for 17 seconds, and removal for 5 seconds. Since the processing of the light incident surface took 57 seconds, the total cycle time was 57 seconds.
The gate existing on the light incident surface of the injection-molded product is cut by an end mill and roughened by cutting a polycrystalline diamond abrasive grain with a bite hardened with a binder, and an ultra-deep shape measuring microscope [Keyence Corporation, VK- 9500], FIG. The arithmetic average roughness Ra was measured for a measuring range of 200 μm square at two points of 30.6 mm in the x direction from the end of the light incident surface 1A shown in FIG. The average value of the arithmetic average roughness Ra of the light incident surface of the obtained light guide plate was 0.98 μm. Further, the roughness unevenness obtained as the ratio between the minimum value and the maximum value of the arithmetic average roughness Ra was 57%, and the roughness unevenness of the light incident surface was not good.
A silver sheet [Mitsui Chemicals, Inc., Enhan Star] is laminated on the light reflecting surface of the obtained light guide plate, and a reverse prism sheet [Mitsubishi Rayon Co., M268Y] and a diffusion sheet are laminated on the light emitting surface. [Tsujiden Co., Ltd., D117TF] are stacked, and a cold cathode fluorescent lamp [Harrison Toshiba Lighting Co., Ltd., MBVM16J] is attached to the light incident surface, and the cold cathode fluorescent lamp is covered with a silver-colored reflector on the inner surface. Produced.
One hour after turning on the cold cathode fluorescent lamp, the chromaticity coordinate y of the display screen is displayed as FIG. Among the nine line segments that divide the vertical direction of the display screen 1B shown in FIG. 3 into 10 equal parts, the line segment is 10 on the line segment N closest to the light incident surface 1A and the line segment F farthest from the light incident surface. Nine equally divided points were measured using a two-dimensional color distribution measuring apparatus [Minolta, Inc., CA-1500W], and the average value of chromaticity coordinates on line N and chromaticity coordinates on line F were measured. The chromaticity unevenness Δy was determined as the difference between the average values of the two. The chromaticity unevenness Δy was 0.012. Also, FIG. 3 is a two-dimensional color distribution measuring apparatus [Minolta Co., Ltd.] at 81 points which are the intersections of nine line segments that divide the vertical direction of the display screen shown in 3 into 10 equal parts and nine line segments that divide the horizontal direction into 10 equal parts. ), CA-1500W], and the luminance uniformity was determined as the ratio between the minimum value and the maximum value of the luminance. The luminance uniformity was 50%.
The same measurement was performed by replacing the reflective sheet with a white sheet [Toray Industries, Inc., E60L]. The chromaticity unevenness Δy was 0.012, and the luminance uniformity was 34%.
Example 2
A stamper on which a concavo-convex pattern having an arithmetic average roughness Ra of 0.97 μm was formed by sandblasting a nickel plate at a pressure of 0.47 MPa using a # 1200 alumina abrasive on the surface corresponding to the light incident surface of the mold. Mounting, producing a light guide plate in the same manner as in Example 1 except that one pinpoint gate is provided at a central position in the thickness direction, 23 mm away from the light incident surface on one side surface orthogonal to the light incident surface, Evaluation was performed.
The injection molding can be performed with an injection time of 1 second, a holding pressure of 50 MPa after injection, a cooling time of 17 seconds, a cooling time of 5 seconds, and a removal time of 5 seconds. During that time, the molded product can be gated. .
The average value of the arithmetic average roughness Ra of the light incident surface of the obtained light guide plate was 0.90 μm. The roughness unevenness determined as the ratio between the minimum value and the maximum value of the arithmetic average roughness Ra was 82%, and the roughness unevenness of the light incident surface was not good.
When a silver sheet was used as the reflection sheet, the chromaticity unevenness Δy was 0.013, and the luminance uniformity was 50%. When a white sheet was used as the reflection sheet, the chromaticity unevenness Δy was 0.012, and the luminance uniformity was 34%.
Example 3
A stamper on which a concavo-convex pattern having an arithmetic average roughness Ra of 0.51 μm was formed by sandblasting a nickel plate at a pressure of 0.15 MPa using a # 1200 alumina abrasive on the surface corresponding to the light incident surface of the mold. A light guide plate is manufactured in the same manner as in Example 1 except that one pinpoint gate is provided at the center position in the thickness direction at a distance of 23 mm from the light incident surfaces on both sides orthogonal to the light incident surface. And evaluated.
The injection molding can be performed with an injection time of 1 second, a holding pressure of 50 MPa after injection, a cooling time of 17 seconds, a cooling time of 5 seconds, and a removal time of 5 seconds. During that time, the molded product can be gated. .
The average value of the arithmetic average roughness Ra of the light incident surface of the obtained light guide plate was 0.49 μm. The roughness unevenness determined as the ratio between the minimum value and the maximum value of the arithmetic average roughness Ra was 90%, and the roughness unevenness of the light incident surface was good.
When a silver sheet was used as the reflection sheet, the chromaticity unevenness Δy was 0.017, and the brightness uniformity was 48%. When a white sheet was used as the reflection sheet, the chromaticity unevenness Δy was 0.013, and the luminance uniformity was 41%.
Example 4
A stamper on which a concavo-convex pattern having an arithmetic average roughness Ra of 0.97 μm is formed by sandblasting a nickel plate with a pressure of 0.47 MPa using a # 1200 alumina abrasive on the surface corresponding to the light incident surface of the mold. A light guide plate was produced and evaluated in the same manner as in Example 3 except that it was attached.
Injection molding could be performed with the same cycle time of 30 seconds as in Example 3. The average value of the arithmetic average roughness Ra of the light incident surface of the obtained light guide plate is 0.94 μm, the unevenness of the arithmetic average roughness Ra is 91%, and the unevenness of roughness of the light incident surface is good. It was.
When a silver sheet was used as the reflection sheet, the chromaticity unevenness Δy was 0.010, and the luminance uniformity was 53%. When a white sheet was used as the reflective sheet, the chromaticity unevenness Δy was 0.010, and the luminance uniformity was 38%.
Example 5
A stamper on which a concavo-convex pattern having an arithmetic average roughness Ra of 1.37 μm was formed by sandblasting a nickel plate at a pressure of 0.74 MPa using a # 1200 alumina abrasive on the surface corresponding to the light incident surface of the mold. A light guide plate was produced and evaluated in the same manner as in Example 3 except that it was attached.
Injection molding could be performed with the same cycle time of 30 seconds as in Example 3. The average value of the arithmetic average roughness Ra of the light incident surface of the obtained light guide plate is 1.34 μm, the unevenness of the arithmetic average roughness Ra is 94%, and the unevenness of the light incident surface is good. It was.
When a silver sheet was used as the reflection sheet, the chromaticity unevenness Δy was 0.008, and the luminance uniformity was 39%. When a white sheet was used as the reflection sheet, the chromaticity unevenness Δy was 0.006, and the luminance uniformity was 34%.
Example 6
A hemispherical convex part having a diameter of 6 μm, a height of 3 μm, and a bottom area of 28.3 μm 2 is formed on the surface corresponding to the light emission surface of the mold so that the total bottom area is 16% of the total surface area of the light emission surface. A light guide plate was prepared and evaluated in the same manner as in Example 4 except that a stamper that could be dispersedly arranged was attached.
The hemispherical protrusions were arranged in a square lattice arrangement so that the density was low on the light incident surface side and the side surface facing the light incident surface was high. That is, the light exit surface is divided into 10 equal parts in parallel to the light incident surface, and the total ratio of the bottom area of the hemispherical projections in the region in contact with the light incident surface is 10.66%. In addition, a hemispherical convex portion of a square lattice arrangement is provided, and the total proportion of the bottom area of the hemispherical convex portion in the region is 21.33% in the region in contact with the side surface facing the light incident surface. A hemispherical convex portion of a square lattice arrangement was provided, and the density of the hemispherical convex portions of the square lattice arrangement in other regions was linearly changed.
Injection molding could be performed with the same cycle time of 30 seconds as in Example 4. The average value of the arithmetic average roughness Ra of the light incident surface of the obtained light guide plate is 0.94 μm, the degree of uniformity of the arithmetic average roughness Ra is 91%, and the roughness of the light incident surface is good. there were.
When a silver sheet was used as the reflection sheet, the chromaticity unevenness Δy was 0.008, and the luminance uniformity was 55%. When a white sheet was used as the reflection sheet, the chromaticity unevenness Δy was 0.008, and the luminance uniformity was 40%.
Comparative Example 1
A light guide plate was produced and evaluated in the same manner as in Example 1 except that the injection molded product was processed with a single crystal diamond tool.
The average value of the arithmetic average roughness Ra of the light incident surface of the obtained light guide plate was 0.20 μm, the unevenness of the arithmetic average roughness Ra was 69%, and the unevenness of the light incident surface was not good. .
When a silver sheet was used as the reflection sheet, the chromaticity unevenness Δy was 0.020, and the luminance uniformity was 35%. When a white sheet was used as the reflective sheet, the chromaticity unevenness Δy was 0.018, and the luminance uniformity was 35%.
Comparative Example 2
A stamper on which a concavo-convex pattern having an arithmetic average roughness Ra of 2.30 μm was formed by sandblasting a nickel plate at a pressure of 0.88 MPa using a # 1800 alumina abrasive on the surface corresponding to the light incident surface of the mold. A light guide plate was produced and evaluated in the same manner as in Example 3 except that it was attached.
Injection molding could be performed with the same cycle time of 30 seconds as in Example 3. The average value of the arithmetic average roughness Ra of the light incident surface of the obtained light guide plate is 2.22 μm, the unevenness of the arithmetic average roughness Ra is 90%, and the unevenness of roughness of the light incident surface is good. It was.
When a silver sheet was used as the reflection sheet, the chromaticity unevenness Δy was 0.008, and the luminance uniformity was 25%. When a white sheet was used as the reflection sheet, the chromaticity unevenness Δy was 0.006, and the luminance uniformity was 22%.
Comparative Example 3
A light guide plate was prepared and evaluated in the same manner as in Example 3 except that a stamper made of a mirror nickel plate was attached to the surface corresponding to the light incident surface of the mold. Injection molding could be performed with the same cycle time of 30 seconds as in Example 3.
When a silver sheet was used as the reflection sheet, the chromaticity unevenness Δy was 0.020, and the luminance uniformity was 34%. When a white sheet was used as the reflective sheet, the chromaticity unevenness Δy was 0.018, and the luminance uniformity was 35%.
The results of Examples 1 to 6 and Comparative Examples 1 to 3 are shown in Table 1.
Figure 2006041195
As can be seen in Table 1, the light guide plates of Examples 1 to 6 in which the arithmetic average roughness Ra of the light incident surface is 0.49 to 1.34 are white even when a silver sheet is used as the reflection sheet. Even when the sheet is used, the chromaticity unevenness Δy is small, the luminance uniformity is high, and the image quality of the display screen of the liquid crystal display device is excellent. On the other hand, the light guide plate of Comparative Example 1 in which the arithmetic average roughness Ra of the light incident surface is 0.20 μm has large chromaticity unevenness Δy. The light guide plate of Comparative Example 2 in which the arithmetic average roughness Ra of the light incident surface is 2.22 has small chromaticity unevenness Δy but low luminance uniformity. The light guide plate of Comparative Example 3 in which the light incident surface is a mirror surface has large chromaticity unevenness Δy.
In Examples 3 to 6 and Comparative Example 2 in which one pinpoint gate is provided on each of the two side surfaces of the mold, the molding cycle is short, and the uneven pattern of the stamper provided on the light incident surface is accurately formed into a molded product. The roughness of the light incident surface is small due to the transfer. On the other hand, in Example 2 in which one pinpoint gate is provided only on one side surface of the mold, the uneven pattern of the stamper is not sufficiently transferred, and the roughness of the light incident surface is large. In Example 1 and Comparative Example 1 in which a fan gate is provided on the light incident surface, the gate processing takes time and the molding cycle is long.

本発明の導光板は、光入射面の算術平均粗さRaが0.4μmを超え2.0μm以下であるので、液晶表示装置に用いて、色度ムラと輝度ムラがともに小さい優れた画質の表示画面を得ることができる。本発明の導光板の製造方法によれば、光入射面の凹凸模様を射出成形金型面又はスタンパー面の転写により形成するので、高品質の導光板を効率よく経済的に製造することができる。  In the light guide plate of the present invention, the arithmetic average roughness Ra of the light incident surface is more than 0.4 μm and 2.0 μm or less. A display screen can be obtained. According to the light guide plate manufacturing method of the present invention, the uneven pattern on the light incident surface is formed by transferring the injection mold surface or stamper surface, so that a high quality light guide plate can be manufactured efficiently and economically. .

Claims (12)

液晶表示装置用の導光板において、光入射面の算術平均粗さRaが0.4μmを超え2.0μm以下であることを特徴とする導光板。A light guide plate for a liquid crystal display device, wherein an arithmetic average roughness Ra of a light incident surface is more than 0.4 μm and not more than 2.0 μm. 光入射面の算術平均粗さRaが0.45μm以上1.5μm以下である請求の範囲1記載の導光板。The light guide plate according to claim 1, wherein the arithmetic average roughness Ra of the light incident surface is 0.45 μm or more and 1.5 μm or less. 光入射面から離れるにつれて厚さが薄くなっている請求の範囲1記載の導光板。The light guide plate according to claim 1, wherein the thickness of the light guide plate decreases as the distance from the light incident surface increases. さらに、光反射面を有し、前記光反射面に光入射面と直交する方向のプリズム形状が形成された請求の範囲1記載の導光板。The light guide plate according to claim 1, further comprising a light reflecting surface, wherein a prism shape in a direction perpendicular to the light incident surface is formed on the light reflecting surface. 前記導光板が、脂環式構造を有する樹脂を含んでいるものである請求の範囲1記載の導光板。The light guide plate according to claim 1, wherein the light guide plate contains a resin having an alicyclic structure. 熱可塑性樹脂の射出成形による導光板の製造方法において、光入射面に対応する金型面の算術平均粗さRaが0.4μmを超え2.0μm以下であることを特徴とする導光板の製造方法。In the method for manufacturing a light guide plate by injection molding of a thermoplastic resin, the arithmetic mean roughness Ra of the mold surface corresponding to the light incident surface is more than 0.4 μm and not more than 2.0 μm. Method. 光入射面に対応する金型面以外の金型面から溶融した樹脂を金型キャビティに注入する請求の範囲6記載の導光板の製造方法。The light guide plate manufacturing method according to claim 6, wherein a resin melted from a mold surface other than the mold surface corresponding to the light incident surface is injected into the mold cavity. 光入射面に対応する金型面以外の金型面が、光反射面に対応する金型面、光出射面に対応する金型面、光入射面と直交する側面に対応する金型面のいずれかである請求の範囲7記載の導光板の製造方法。A mold surface other than the mold surface corresponding to the light incident surface is a mold surface corresponding to the light reflecting surface, a mold surface corresponding to the light emitting surface, and a mold surface corresponding to the side surface orthogonal to the light incident surface. The method for producing a light guide plate according to claim 7, which is any one of the methods. 光入射面と直交する側面に対応する金型面から溶融した樹脂を金型キャビティに注入する請求の範囲8記載の製造方法。The manufacturing method according to claim 8, wherein a molten resin is injected into a mold cavity from a mold surface corresponding to a side surface orthogonal to the light incident surface. 光入射面と直交する側面に対応する金型面に設けるゲートの位置が、光入射面に対応する金型面から0mm以上離れ、光入射面に対応する金型面から該側面長さの0.5倍以内にある請求の範囲9記載の導光板の製造方法。The position of the gate provided on the mold surface corresponding to the side surface orthogonal to the light incident surface is 0 mm or more away from the mold surface corresponding to the light incident surface, and the length of the side surface is 0 from the mold surface corresponding to the light incident surface. 10. The method for producing a light guide plate according to claim 9, which is within 5 times. 熱可塑性樹脂が、脂環式構造を有する樹脂である請求の範囲6ないし10のいずれかに記載の製造方法。The production method according to any one of claims 6 to 10, wherein the thermoplastic resin is a resin having an alicyclic structure. 請求の範囲1ないし5のいずれかに記載の導光板を有する液晶表示装置。A liquid crystal display device comprising the light guide plate according to claim 1.
JP2006541002A 2004-10-13 2005-10-12 Light guide plate and manufacturing method thereof Pending JPWO2006041195A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004298502 2004-10-13
JP2004298502 2004-10-13
PCT/JP2005/019164 WO2006041195A1 (en) 2004-10-13 2005-10-12 Light guide plate and method for producing same

Publications (1)

Publication Number Publication Date
JPWO2006041195A1 true JPWO2006041195A1 (en) 2008-05-22

Family

ID=36148479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006541002A Pending JPWO2006041195A1 (en) 2004-10-13 2005-10-12 Light guide plate and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JPWO2006041195A1 (en)
KR (1) KR20070084193A (en)
TW (1) TW200615666A (en)
WO (1) WO2006041195A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503108A (en) * 2011-01-05 2014-02-06 クゥアルコム・メムス・テクノロジーズ・インコーポレイテッド Light guide with uniform light distribution

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925431B2 (en) * 2006-10-23 2012-04-25 シチズン電子株式会社 Thin light guide plate forming method
EP2239492A1 (en) * 2008-02-07 2010-10-13 Sony Corporation Light guide plate, surface illumination device, liquid crystal display device, and manufacturing method for the light guide plate
US9632353B2 (en) * 2012-02-17 2017-04-25 3M Innovative Properties Company Backlight light guide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10133023A (en) * 1996-10-30 1998-05-22 Mitsubishi Chem Corp Surface light source device
JP2000221328A (en) * 1999-01-29 2000-08-11 Nippon Zeon Co Ltd Light transmission plate
JP3852658B2 (en) * 1999-12-01 2006-12-06 株式会社エンプラス Light guide plate, side light type surface light source device, and liquid crystal display device
JP2003109417A (en) * 2000-12-12 2003-04-11 International Manufacturing & Engineering Services Co Ltd Surface light source device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503108A (en) * 2011-01-05 2014-02-06 クゥアルコム・メムス・テクノロジーズ・インコーポレイテッド Light guide with uniform light distribution

Also Published As

Publication number Publication date
TW200615666A (en) 2006-05-16
WO2006041195A1 (en) 2006-04-20
KR20070084193A (en) 2007-08-24

Similar Documents

Publication Publication Date Title
JPWO2007032469A1 (en) Direct backlight unit
WO2011043466A1 (en) Image display device
JP4552563B2 (en) Direct backlight unit
KR20070045287A (en) Direct-under backlight
JP2008041328A (en) Direct backlight device
KR20080077105A (en) Directly-below type backlight device
JP2006302876A (en) Direct type backlight device
JP2007294295A (en) Direct-downward backlight device
JP5614128B2 (en) Optical sheet, backlight unit and display device
US20190383992A1 (en) Light guide film and backlight unit
JPWO2006041195A1 (en) Light guide plate and manufacturing method thereof
JP2007163810A (en) Light diffusion plate and direct backlight device
JP2006310150A (en) Direct backlight device
JP2006196369A (en) Light guide plate and backlight device
JP2010066664A (en) Light diffusion plate, direct backlight device, and liquid crystal display device
JP2012204192A (en) Backlight device
JP5741121B2 (en) A mold for manufacturing an optical lens sheet for controlling an illumination optical path, the sheet manufactured using the mold, a method of manufacturing the sheet using the mold, a liquid crystal display device, and a display
WO2009096293A1 (en) Direct backlighting device
JP2005209558A (en) Light guide plate and backlight
JP2007001290A (en) Optical flat plate member and manufacturing method therefor
JP5593653B2 (en) Light guide plate, backlight unit and display device
JP2005293940A (en) Light guide plate and backlight using the same
JP2006108032A (en) Light guide body for surface light source, its manufacturing method as well as surface light source device
JP2006155926A (en) Direct backlight device
JP2012098595A (en) Mold member for manufacturing light guide, and manufacturing method thereof