TWI612340B - Transparent rib structure, composite optical prism and method for forming optical prism - Google Patents
Transparent rib structure, composite optical prism and method for forming optical prism Download PDFInfo
- Publication number
- TWI612340B TWI612340B TW105126024A TW105126024A TWI612340B TW I612340 B TWI612340 B TW I612340B TW 105126024 A TW105126024 A TW 105126024A TW 105126024 A TW105126024 A TW 105126024A TW I612340 B TWI612340 B TW I612340B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- interface
- rib
- optical
- ridge
- Prior art date
Links
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
一種複合光學稜鏡,包含基材、第一稜峰、第二稜峰與第一凹谷。基材對於預定光源具有高穿透性。第一稜峰位於基材上並與基材間有第一介面。第二稜峰位於基材上並與基材間有第二介面。第一凹谷位於基材上,以及第一稜峰與第二稜峰之間。A composite optical raft comprising a substrate, a first ridge, a second ridge and a first valley. The substrate has high penetration for a predetermined source. The first ridge is located on the substrate and has a first interface with the substrate. The second peak is located on the substrate and has a second interface with the substrate. The first valley is located on the substrate and between the first peak and the second peak.
Description
本發明大致上關於一種透明凸肋結構、複合光學稜鏡與形成光學稜鏡的方法。特定言之,本發明特別針對以階段式聚合步驟的方法,最後一起建立出光學稜鏡中的基材與複數個稜峰,而得到可以作為整合式光學稜鏡用的透明凸肋結構,以及形成此光學稜鏡的方法。The present invention generally relates to a transparent rib structure, a composite optical yoke, and a method of forming an optical raft. In particular, the present invention is particularly directed to a method of a staged polymerization step, in which a substrate and a plurality of peaks in an optical crucible are finally formed together to obtain a transparent rib structure which can be used as an integrated optical unit, and A method of forming this optical enthalpy.
稜鏡是一種透明的光學元件,是由兩個或兩個以上的折射平面構成的透明元件,通常是指截面為特定幾何形狀的柱狀光學透鏡。稜鏡藉由拋光後平坦的表面折射光線,當光線穿透稜鏡時,由於色散作用導致顏色分離為光譜中的顏色,稜鏡也可以用來反射或分裂成不同的偏振光。最常見的稜鏡為三稜鏡,這是一種截面為三角形的柱狀透鏡,長方形為三個面所組成的三稜峰。稜鏡的基本功能有二,一種是使光線發生折射;另一種是產生色散效果。Helium is a transparent optical element that is a transparent element composed of two or more refractive planes, and generally refers to a cylindrical optical lens having a specific geometry in cross section.稜鏡The light is refracted by the flat surface after polishing. When the light penetrates the 稜鏡, the color is separated into the color in the spectrum due to the dispersion effect, and 稜鏡 can also be used to reflect or split into different polarized lights. The most common 稜鏡 is three 稜鏡, which is a lenticular lens with a triangular cross section and a rectangular triangle with three faces. There are two basic functions of 稜鏡, one is to refract light, and the other is to produce dispersion.
在習知製作稜鏡片的過程中,會遇到聚合反應後氣泡累積在稜鏡尖端附近的瑕疵。第9圖繪示在先前技藝光學稜鏡中,稜鏡尖端有氣泡的瑕疵。由第9圖的觀察可以知道,因為氣泡累積在稜鏡的尖端,導致光學稜鏡整體的光學品質劣化。In the process of making a septum, it is encountered that the bubbles accumulate in the vicinity of the tip of the crucible after the polymerization reaction. Fig. 9 is a view showing a flaw in the prior art optical raft with a bubble at the tip end. As can be seen from the observation of Fig. 9, since the bubble accumulates at the tip end of the crucible, the optical quality of the entire optical pickup is deteriorated.
有鑑於此,本發明提出了一種透明凸肋結構、複合光學稜鏡與形成光學稜鏡的方法。由於本發明形成光學稜鏡的方法,無論是所得到的稜峰或是角形凸肋中,既沒有空穴或是氣泡的殘留,分段式的聚合步驟也不會在基材與稜峰或是角形凸肋之間產生光學上的介面。這樣一來,就會使得本發明所提出的透明凸肋結構或是複合光學稜鏡,同時兼具簡單的製作過程與絕佳的光學品質,於是本發明的透明凸肋結構或是複合光學稜鏡,自然極具光學稜鏡產品上進步性的價值。In view of this, the present invention proposes a transparent rib structure, a composite optical yoke, and a method of forming an optical yoke. Due to the method of forming an optical enthalpy of the present invention, neither the voids nor the bubbles remain in the obtained ribs or angular ribs, and the segmented polymerization step does not occur on the substrate and the ribs or An optical interface is created between the angular ribs. In this way, the transparent rib structure proposed by the present invention or the composite optical yoke has both a simple manufacturing process and excellent optical quality, and thus the transparent rib structure or the composite optical rib of the present invention. Mirrors are naturally of progressive value in optical products.
本發明在第一方面提出了一種透明凸肋結構。本發明的透明凸肋結構,包含基材、第一角形凸肋、第二角形凸肋與第一凹谷。基材對於預定光源具有高穿透性。第一角形凸肋具有第一頂角與第一高度,並自基材垂直延伸。第一角形凸肋對於基材具有相異之聚合性質。第二角形凸肋具有第二頂角與第二高度,並自基材垂直延伸。第二角形凸肋與第一角形凸肋之聚合性質相同。位於基材上以及第一角形凸肋與第二角形凸肋間之第一凹谷,使得透明凸肋結構成為整合式光學稜鏡。The present invention proposes a transparent rib structure in the first aspect. The transparent rib structure of the present invention comprises a substrate, a first angular rib, a second angular rib and a first valley. The substrate has high penetration for a predetermined source. The first angular rib has a first apex angle and a first height and extends perpendicularly from the substrate. The first angular ribs have different polymeric properties for the substrate. The second angular rib has a second apex angle and a second height and extends perpendicularly from the substrate. The second angular ribs have the same polymeric properties as the first angular ribs. The first valley on the substrate and between the first angular rib and the second angular rib causes the transparent rib structure to be an integrated optical raft.
在本發明一實施方式中,透明凸肋結構,更包含玻璃底材,使得基材夾置於玻璃底材與第一凹谷之間。In an embodiment of the invention, the transparent rib structure further comprises a glass substrate such that the substrate is sandwiched between the glass substrate and the first valley.
在本發明另一實施方式中,基材、第一角形凸肋與第二角形凸肋之高分子材料為同系物。In another embodiment of the present invention, the base material, the first angular rib and the second angular rib are made of a homologue.
在本發明另一實施方式中,基材、第一角形凸肋與第二角形凸肋分別具有實質上相同之折射率。In another embodiment of the invention, the substrate, the first angular rib and the second angular rib each have substantially the same refractive index.
在本發明另一實施方式中,聚合性質選自由聚合度、統計平均分子量、玻璃轉化溫度與結晶熔化溫度所組成之群組。In another embodiment of the invention, the polymeric properties are selected from the group consisting of degrees of polymerization, statistical average molecular weight, glass transition temperature, and crystalline melting temperature.
在本發明另一實施方式中,第一頂角與第二頂角具有相同之角度。In another embodiment of the invention, the first apex angle and the second apex angle have the same angle.
在本發明另一實施方式中,第一高度與第二高度不相同。In another embodiment of the invention, the first height is different from the second height.
在本發明另一實施方式中,透明凸肋結構,更包含:In another embodiment of the present invention, the transparent rib structure further comprises:
一第三角形凸肋,自基材垂直延伸,而使得一第二凹谷位於基材上以及位於第三角形凸肋與第二角形凸肋之間。A triangular rib extends perpendicularly from the substrate such that a second valley is located on the substrate and between the third triangular rib and the second angular rib.
本發明在第二方面又提出了一種複合光學稜鏡。本發明的複合光學稜鏡,包含基材、第一稜峰、第二稜峰與第一凹谷。基材對於預定光源具有高穿透性。第一稜峰位於基材上並具有第一頂角與第一高度。第一稜峰與基材間具有第一介面。第二稜峰位於基材上並具有第二頂角與第二高度。第二稜峰與基材間具有第二介面。第一凹谷位於基材上以及第一稜峰與第二稜峰之間。The invention further proposes a composite optical raft in a second aspect. The composite optical raft of the present invention comprises a substrate, a first ridge, a second ridge and a first valley. The substrate has high penetration for a predetermined source. The first ridge is located on the substrate and has a first apex angle and a first height. The first edge has a first interface between the substrate and the substrate. The second peak is on the substrate and has a second apex angle and a second height. The second edge has a second interface between the substrate and the substrate. The first valley is located on the substrate and between the first and second peaks.
在本發明一實施方式中,複合光學稜鏡,更包含玻璃底材,使得基材夾置於玻璃底材與第一凹谷之間。In an embodiment of the invention, the composite optical raft further comprises a glass substrate such that the substrate is sandwiched between the glass substrate and the first valley.
在本發明另一實施方式中,第一介面與第二介面分別為一高分子材料介面,高分子材料介面兩側分別具有不同之一種高分子性質。In another embodiment of the present invention, the first interface and the second interface are respectively a polymer material interface, and the polymer material interface has different polymer properties on both sides.
在本發明另一實施方式中,高分子性質選自由聚合度、統計平均分子量、玻璃轉化溫度與結晶熔化溫度所組成之群組。In another embodiment of the invention, the polymeric property is selected from the group consisting of a degree of polymerization, a statistical average molecular weight, a glass transition temperature, and a crystallization melting temperature.
在本發明另一實施方式中,基材、第一稜峰與第二稜峰分別具有實質上相同之折射率,使得第一介面與第二介面都不是一種光學性質差異介面。In another embodiment of the invention, the substrate, the first ridge and the second ridge have substantially the same refractive index, such that the first interface and the second interface are not an optical property difference interface.
在本發明另一實施方式中,第一頂角與第二頂角具有相同之角度。In another embodiment of the invention, the first apex angle and the second apex angle have the same angle.
在本發明另一實施方式中,第一高度與第二高度不同。In another embodiment of the invention, the first height is different from the second height.
在本發明另一實施方式中,複合光學稜鏡,更包含:In another embodiment of the present invention, the composite optical 稜鏡 further includes:
一第三稜峰,位於基材上,而使得一第二凹谷位於基材上以及位於第三稜峰與第二稜峰之間。A third ridge is located on the substrate such that a second valley is located on the substrate and between the third peak and the second peak.
本發明在第三方面另提出了一種形成光學稜鏡的方法。首先,提供具有第一柱狀凹槽與第二柱狀凹槽的模板。其次,在第一柱狀凹槽與第二柱狀凹槽中分別填滿第一可聚合材料,但使得第一可聚合材料不會串連第一柱狀凹槽與第二柱狀凹槽。然後,進行預聚合步驟,使得第一柱狀凹槽與第二柱狀凹槽中之第一可聚合材料成為預聚合材料。繼續,再次塗佈第二可聚合材料,使得第二可聚合材料同時接觸第一柱狀凹槽中與第二柱狀凹槽中的預聚合材料。接著,將玻璃底材蓋在第二可聚合材料上。再來,進行終聚合步驟,而使得預聚合材料與第二可聚合材料一起聚合,而分別成為第一終聚合材料與第二終聚合材料,即得到光學稜鏡。位於第一柱狀凹槽中與第二柱狀凹槽中的預聚合材料,與第二可聚合材料一起聚合後,分別產生第一介面與第二介面。The invention further proposes a method of forming an optical raft in a third aspect. First, a template having a first cylindrical groove and a second cylindrical groove is provided. Secondly, the first columnar groove and the second columnar groove are respectively filled with the first polymerizable material, but the first polymerizable material is not connected in series with the first columnar groove and the second columnar groove. . Then, a prepolymerization step is performed such that the first polymerizable material in the first columnar groove and the second columnar groove becomes a prepolymerized material. Continuing, the second polymerizable material is again coated such that the second polymerizable material simultaneously contacts the prepolymerized material in the first cylindrical groove and the second cylindrical groove. Next, the glass substrate is overlaid on the second polymerizable material. Further, a final polymerization step is carried out such that the prepolymerized material is polymerized together with the second polymerizable material to become the first final polymeric material and the second final polymeric material, respectively, to obtain an optical enthalpy. The prepolymerized material in the first columnar groove and the second columnar groove is polymerized together with the second polymerizable material to produce a first interface and a second interface, respectively.
在本發明一實施方式中,第一終聚合材料與第二終聚合材料分別具有不同之高分子性質,此高分子性質選自由聚合度、統計平均分子量、玻璃轉化溫度與結晶熔化溫度所組成之群組。In an embodiment of the invention, the first final polymeric material and the second final polymeric material respectively have different polymeric properties selected from the group consisting of polymerization degree, statistical average molecular weight, glass transition temperature and crystallization melting temperature. Group.
在本發明另一實施方式中,預聚合材料與可聚合材料一起聚合後分別具有實質上相同之折射率,使得第一介面與第二介面為高分子材料介面,而非光學性質差異介面。In another embodiment of the present invention, the prepolymerized material and the polymerizable material are respectively polymerized to have substantially the same refractive index, such that the first interface and the second interface are polymer material interfaces, rather than optical property difference interfaces.
在本發明另一實施方式中,第一柱狀凹槽具有一第一底角,第二柱狀凹槽具有第二底角,且第一底角與第二底角具有相同之角度。In another embodiment of the invention, the first cylindrical groove has a first bottom angle, the second cylindrical groove has a second bottom angle, and the first bottom angle has the same angle as the second bottom angle.
在本發明另一實施方式中,第一柱狀凹槽之深度與第二柱狀凹槽之深度不相同。In another embodiment of the invention, the depth of the first cylindrical groove is different from the depth of the second cylindrical groove.
在本發明另一實施方式中,形成光學稜鏡的方法,更包含:In another embodiment of the present invention, a method of forming an optical , further includes:
模板具有第三柱狀凹槽,使得經過終聚合步驟後,位於第三柱狀凹槽中的第三終聚合材料與該第二終聚合材料一起界定第三介面。The template has a third cylindrical recess such that after the final polymerization step, the third final polymeric material in the third cylindrical recess together with the second final polymeric material defines a third interface.
本發明首先提供一種形成光學稜鏡的方法。用這種方法所形成的光學稜鏡,還可以作為整合式光學稜鏡用的透明凸肋結構。The present invention first provides a method of forming an optical enthalpy. The optical cymbal formed by this method can also be used as a transparent rib structure for integrated optical tampering.
第1圖至第6圖繪示本發明方法的例示性流程。請參閱第1圖,首先,使用模板105來製作光學稜鏡。所使用的模板105具有一整片平面106與位於平面中的複數個柱狀凹槽,例如第一柱狀凹槽110與第二柱狀凹槽120。第一柱狀凹槽110與第二柱狀凹槽120在平面106上彼此平行延伸。第1圖繪示本發明模板105之示意圖。模板105的形狀可以是圓形、橢圓形或是矩形,模板105所使用的材料可以是塑類材料。柱狀凹槽的寬度可以相同或不同,例如柱狀凹槽的寬度可以介於0.03公厘~1.00公厘間。Figures 1 through 6 illustrate an exemplary flow of the method of the present invention. Referring to Figure 1, first, an optical raft is made using the template 105. The template 105 used has a single piece of plane 106 and a plurality of columnar grooves in the plane, such as a first cylindrical groove 110 and a second cylindrical groove 120. The first cylindrical recess 110 and the second cylindrical recess 120 extend parallel to each other on the plane 106. FIG. 1 is a schematic view of a template 105 of the present invention. The shape of the template 105 may be circular, elliptical or rectangular, and the material used for the template 105 may be a plastic-like material. The width of the columnar grooves may be the same or different, for example, the width of the columnar grooves may be between 0.03 mm and 1.00 mm.
第1A圖繪示第1圖之側視圖。請分別參閱第1圖與第1A圖,較佳者,模板105的同一平面106還可以安排有更多的柱狀凹槽,例如第三柱狀凹槽130、第四柱狀凹槽140或是更多的柱狀凹槽。本發明以各圖中所繪示之第一柱狀凹槽110、第二柱狀凹槽120、第三柱狀凹槽130與第四柱狀凹槽140等四者作為非限制性的範例。第三柱狀凹槽130與第四柱狀凹槽140,也與第一柱狀凹槽110以及第二柱狀凹槽120一樣是彼此平行延伸。Fig. 1A is a side view showing Fig. 1. Please refer to FIG. 1 and FIG. 1A respectively. Preferably, the same plane 106 of the template 105 can also be arranged with more columnar grooves, such as the third columnar groove 130, the fourth column groove 140 or It is more columnar grooves. The present invention is a non-limiting example of the first columnar groove 110, the second columnar groove 120, the third columnar groove 130, and the fourth columnar groove 140, which are illustrated in the respective figures. . The third columnar groove 130 and the fourth columnar groove 140, as well as the first columnar groove 110 and the second columnar groove 120, extend parallel to each other.
每一個柱狀凹槽都有自己的頂角與深度。例如,第一柱狀凹槽110具有第一頂角111與第一深度112、第二柱狀凹槽120具有第二頂角121與第二深度122、第三柱狀凹槽130具有第三頂角131與第三深度132、又第四柱狀凹槽140具有第四頂角141與第四深度142。依光學稜鏡之規格需求而定,不同的柱狀凹槽的頂角與深度可以相同也可以不同。例如,柱狀凹槽頂角的角度範圍可以介於20度~70度之間,深度可以介於0.1公厘~1.0公厘之間,深寬比可以為1:1~1:3。第1A圖繪示第一柱狀凹槽110、第二柱狀凹槽120、第三柱狀凹槽130與第四柱狀凹槽140的頂角相同,第一柱狀凹槽110與第二柱狀凹槽120的深度同為200微米,第三柱狀凹槽130與第四柱狀凹槽140的深度同為400微米。Each cylindrical groove has its own apex angle and depth. For example, the first columnar groove 110 has a first apex angle 111 and a first depth 112, the second columnar groove 120 has a second apex angle 121 and a second depth 122, and the third columnar groove 130 has a third The top corner 131 and the third depth 132 and the fourth columnar recess 140 have a fourth top angle 141 and a fourth depth 142. The top angle and depth of different columnar grooves may be the same or different depending on the requirements of the optical specifications. For example, the apex angle of the columnar groove may range from 20 degrees to 70 degrees, the depth may range from 0.1 mm to 1.0 mm, and the aspect ratio may range from 1:1 to 1:3. FIG. 1A illustrates that the first columnar groove 110, the second columnar groove 120, the third columnar groove 130 and the fourth columnar groove 140 have the same apex angle, and the first columnar groove 110 and the first column The depth of the two columnar grooves 120 is 200 micrometers, and the depths of the third columnar groove 130 and the fourth columnar groove 140 are 400 micrometers.
換言之,第一柱狀凹槽110與第二柱狀凹槽120可以視為位於第一光學區域中故具有相同的光學參數,而第三柱狀凹槽130與第四柱狀凹槽140則可以視為位於鄰近第一光學區域的第二光學區域中,故具有相異的光學參數。因為模板105的平面106可以同時容納光學參數相異的多組光學區域,所以不同柱狀凹槽間的距離D也可以相同或是不同。不同柱狀凹槽間的距離D可以介於2公厘~15公厘之間。例如,第一柱狀凹槽110與第二柱狀凹槽120間的距離D 1、第二柱狀凹槽120與第三柱狀凹槽130間的距離D 2、第三柱狀凹槽130與第四柱狀凹槽140間的距離D 3可以視情況需要調整而為相同或是不同。第1A圖繪示D 1<D 2<D 3。 In other words, the first columnar groove 110 and the second columnar groove 120 can be regarded as having the same optical parameter in the first optical region, and the third columnar groove 130 and the fourth columnar groove 140 are It can be considered to be located in the second optical region adjacent to the first optical region, and thus has different optical parameters. Since the plane 106 of the template 105 can simultaneously accommodate multiple sets of optical regions having different optical parameters, the distance D between the different cylindrical grooves can be the same or different. The distance D between the different columnar grooves may be between 2 mm and 15 mm. For example, a first cylindrical recess 110 and the second cylindrical recess 120 a distance D 1, a second cylindrical recess 120 and the third cylindrical recess distance D 130 between the two, the third cylindrical recess The distance D 3 between the 130 and the fourth cylindrical recess 140 may be adjusted to be the same or different as needed. Figure 1A shows D 1 <D 2 <D 3 .
其次,請參閱第2圖,分別獨立地在各別柱狀凹槽中填滿可聚合材料150,例如分別獨立地在第一柱狀凹槽110、第二柱狀凹槽120、第三柱狀凹槽130與第四柱狀凹槽140中填滿可聚合材料150以點膠器(圖未示)注入。較佳者,因為是分別獨立地在各別柱狀凹槽中填滿可聚合材料150,所以可聚合材料150只會單純地填入各別柱狀凹槽中,但是不會將各柱狀凹槽串連,或是稱為連通,在一起。第2A圖繪示第2圖之側視圖。可聚合材料150至少要填平各柱狀凹槽,較佳者,可聚合材料150還可以填滿各別柱狀凹槽形成凸面。第2A圖繪示可聚合材料150平填在第一柱狀凹槽110與第二柱狀凹槽120中,而可聚合材料150填滿第三柱狀凹槽130與第四柱狀凹槽140。但是請注意,不要將可聚合材料150滿溢出各柱狀凹槽,使得可聚合材料150將柱狀凹槽連通在一起。Next, referring to FIG. 2, the respective columnar grooves are independently filled with the polymerizable material 150, for example, respectively in the first columnar groove 110, the second columnar groove 120, and the third column. The shaped recess 130 and the fourth cylindrical recess 140 are filled with the polymerizable material 150 to be injected by a dispenser (not shown). Preferably, since the polymerizable material 150 is filled in the respective columnar grooves independently, the polymerizable material 150 is simply filled into the respective columnar grooves, but the columnar shapes are not The grooves are connected in series, or connected to each other. Figure 2A shows a side view of Figure 2. The polymerizable material 150 is at least filled with the respective columnar grooves. Preferably, the polymerizable material 150 may also fill the respective columnar grooves to form a convex surface. 2A illustrates that the polymerizable material 150 is filled flat in the first columnar groove 110 and the second columnar groove 120, and the polymerizable material 150 fills the third columnar groove 130 and the fourth columnar groove. 140. Note, however, that the polymerizable material 150 is not to overflow the respective columnar grooves such that the polymerizable material 150 connects the columnar grooves together.
可聚合材料150為一種有機的,可進行聚合反應的液體。可進行的聚合反應可以是,陰離子聚合反應、陽離子聚合反應、自由基聚合反應或是縮合聚合反應。可聚合材料150較佳為液體,所以可聚合材料150才會很容易就能完全填入柱狀凹槽中而不會留下空隙。更佳者,可聚合材料150在完全聚合後體積的縮小率愈小愈理想。可聚合材料150可以是光學塑材,並包含適當之聚合起始劑,例如Darocur。可聚合材料150的黏度可以是介於10cp~20000cp之間。The polymerizable material 150 is an organic liquid that can undergo polymerization. The polymerization which can be carried out may be an anionic polymerization reaction, a cationic polymerization reaction, a radical polymerization reaction or a condensation polymerization reaction. The polymerizable material 150 is preferably a liquid so that the polymerizable material 150 can be easily filled completely into the cylindrical grooves without leaving voids. More preferably, the smaller the reduction in volume of the polymerizable material 150 after complete polymerization, the more desirable. The polymerizable material 150 can be an optical plastic and includes a suitable polymerization initiator such as Darocur. The viscosity of the polymerizable material 150 can be between 10 cp and 20000 cp.
然後,請參閱第3圖,進行預聚合步驟,使得第一柱狀凹槽110、第二柱狀凹槽120、第三柱狀凹槽130與第四柱狀凹槽140中填滿的可聚合材料150,經由不完全的聚合反應聚合成為預聚合材料。進行的預聚合步驟一定是不完全的聚合反應,要使得可聚合材料150不完全地聚合成預聚合材料159,所以預聚合材料159較佳為由相對較少的重複單元所結合而成的聚合物,即寡聚物(oligomer)。不完全聚合的預聚合材料159較佳不是固體,而是黏度較原先可聚合材料150的黏度還要高之高黏度液體。第3A圖繪示第3圖之側視圖。Then, referring to FIG. 3, the pre-polymerization step is performed such that the first columnar groove 110, the second columnar groove 120, the third columnar groove 130, and the fourth columnar groove 140 are filled. The polymeric material 150 is polymerized into a prepolymerized material via incomplete polymerization. The prepolymerization step carried out must be an incomplete polymerization reaction, so that the polymerizable material 150 is not completely polymerized into the prepolymerized material 159, so the prepolymerized material 159 is preferably a combination of relatively few repeating units. An oligomer, an oligomer. The incompletely polymerized prepolymerized material 159 is preferably not a solid but a high viscosity liquid having a viscosity higher than that of the original polymerizable material 150. Figure 3A shows a side view of Figure 3.
建議依據可聚合材料150的化學性質,來決定如何進行預聚合步驟的不完全聚合反應。例如,可以以熱或是光來進行預聚合步驟的不完全聚合反應。例如,如果可聚合材料150以熱來進行預聚合步驟的不完全聚合反應,可聚合材料150可以處於約3分鐘~30分鐘的時間升溫至約150˚C。要不然,如果可聚合材料150以光來進行預聚合步驟的不完全聚合反應,可聚合材料150可以處於能量密度約為1焦耳/平方公分~6焦耳/平方公分,365奈米的紫外光下約2分鐘~10分鐘時間。或是,也可以利用增加照度、能量或者是持溫時間,例如時間法、吸光法來決定預聚合步驟的反應終點。例如,確認產品形狀不再變化以確認反應終點。It is recommended to determine how to carry out the incomplete polymerization of the prepolymerization step depending on the chemical nature of the polymerizable material 150. For example, incomplete polymerization of the prepolymerization step can be carried out by heat or light. For example, if the polymerizable material 150 is subjected to incomplete polymerization of the prepolymerization step by heat, the polymerizable material 150 may be heated to about 150 ̊C over a period of about 3 minutes to 30 minutes. Alternatively, if the polymerizable material 150 is subjected to incomplete polymerization of the prepolymerization step by light, the polymerizable material 150 may be at an energy density of about 1 Joules per square centimeter to 6 Joules per square centimeter, under 365 nm of ultraviolet light. About 2 minutes to 10 minutes. Alternatively, it is also possible to determine the reaction end point of the prepolymerization step by increasing the illuminance, energy or temperature holding time, such as time method and light absorption method. For example, confirm that the shape of the product is no longer changing to confirm the end of the reaction.
繼續,請參閱第4圖,再次將可聚合材料160以點膠器(圖未示)注入並進行壓合,塗佈在模板105的平面106上,使得第二可聚合材料160同時接觸所有的柱狀凹槽中的預聚合材料159。第二可聚合材料160塗佈平整之後的厚度可以介於60微米~400微米之間。第4A圖繪示第4圖之側視圖。可聚合材料160如同可聚合材料150,也是一種可進行聚合反應的液體。可聚合材料150與可聚合材料160可以是相同的,可進行聚合反應的液體。或是視情況需要,可聚合材料150與可聚合材料160也可以是不同的,可進行相同聚合條件的液體。可聚合材料160可以參閱前述可聚合材料150的說明內容。Continuing, referring to Fig. 4, the polymerizable material 160 is again injected and pressed in a dispenser (not shown) and coated on the plane 106 of the template 105 such that the second polymerizable material 160 contacts all of the same simultaneously. Prepolymerized material 159 in the cylindrical recess. The thickness of the second polymerizable material 160 after application of the flattening may be between 60 micrometers and 400 micrometers. Figure 4A shows a side view of Figure 4. The polymerizable material 160, like the polymerizable material 150, is also a liquid that can undergo polymerization. The polymerizable material 150 and the polymerizable material 160 may be the same liquid that can undergo polymerization. Alternatively, the polymerizable material 150 and the polymerizable material 160 may be different and may be subjected to the same polymerization conditions. The polymerizable material 160 can be referred to the description of the aforementioned polymerizable material 150.
接著,請參閱第5圖,將視情況需要的玻璃底材170蓋在尚未聚合過、仍是液態的第二可聚合材料160上。玻璃底材170可以是光學玻璃或工業玻璃,厚度可以是介於200微米~1300微米之間。第5A圖繪示第5圖之側視圖。如果不使用玻璃底材170,則繼續進入下一個步驟。Next, referring to Fig. 5, the glass substrate 170 as needed is placed over the second polymerizable material 160 which has not yet been polymerized and is still liquid. The glass substrate 170 can be optical glass or industrial glass and can have a thickness between 200 microns and 1300 microns. Fig. 5A is a side view showing Fig. 5. If the glass substrate 170 is not used, proceed to the next step.
再來,請參閱第6圖,在不完全的聚合反應之後又再度進行另一次的聚合反應,稱為終聚合步驟。但是與預聚合步驟所代表的不完全聚合反應所不同的是,終聚合步驟一定是進行一個完全的聚合反應過程。在經過終聚合步驟之後,預聚合材料159與第二可聚合材料160就會一起聚合,但是預聚合材料159成為第一終聚合材料151,第二可聚合材料160則成為第二終聚合材料161,第三柱狀凹槽130中有第三終聚合材料151。此時,第一終聚合材料151、第二終聚合材料161與視情況需要的玻璃底材170一起構成了作為光學稜鏡用的透明凸肋結構,而得到本發明所提供的複合光學稜鏡100。第一終聚合材料151、第二終聚合材料161與視情況需要的玻璃底材170對於一預定光源都具有高穿透性。Next, referring to Fig. 6, another polymerization reaction is carried out after the incomplete polymerization reaction, which is called a final polymerization step. However, unlike the incomplete polymerization represented by the prepolymerization step, the final polymerization step must be a complete polymerization process. After the final polymerization step, the prepolymerized material 159 and the second polymerizable material 160 are polymerized together, but the prepolymerized material 159 becomes the first final polymeric material 151 and the second polymerizable material 160 becomes the second final polymeric material 161. The third columnar groove 130 has a third final polymeric material 151 therein. At this time, the first final polymeric material 151 and the second final polymeric material 161 together with the glass substrate 170 as occasionally required constitute a transparent rib structure for optical enamel, and the composite optical enthalpy provided by the present invention is obtained. 100. The first final polymeric material 151, the second final polymeric material 161, and optionally the glass substrate 170 are highly penetrating for a predetermined source of light.
第6A圖依據第6圖所繪示之側視圖。在本發明的一項特徵中,位於各柱狀凹槽中的預聚合材料159,與第二可聚合材料160一起聚合後,分別產生第一介面113與第二介面123。在本發明的一項特徵中,第一介面113與第二介面123是一種材料性質的介面,而不是一種光學性質差異介面。換句話說,第一終聚合材料151與第二終聚合材料161具有實質上相同之折射率,也就是說第一終聚合材料151與第二終聚合材料161折射率的差異,小到可以忽略不計或是觀察不到。較佳者,第一終聚合材料151與第二終聚合材料161具有相同之折射率,因此在第一介面113與第二介面123之間,不視為存在有光學性質,例如折射率或是反射面,上的差異,而是視為材料性質上的差異。類似地,位於第三柱狀凹槽130中的第一終聚合材料151與該第二終聚合材料161,經過終聚合步驟後一起界定第三介面133。又位於第四柱狀凹槽140中的第一終聚合材料151與該第二終聚合材料161,經過終聚合步驟後一起界定第四介面143。Fig. 6A is a side view according to Fig. 6. In a feature of the invention, the prepolymerized material 159 located in each of the columnar grooves is polymerized together with the second polymerizable material 160 to produce a first interface 113 and a second interface 123, respectively. In a feature of the invention, the first interface 113 and the second interface 123 are a material interface rather than an optical property interface. In other words, the first final polymeric material 151 and the second final polymeric material 161 have substantially the same refractive index, that is, the difference in refractive index between the first final polymeric material 151 and the second final polymeric material 161 is negligibly small. Do not count or not observe. Preferably, the first final polymeric material 151 and the second final polymeric material 161 have the same refractive index, so that between the first interface 113 and the second interface 123, there is no optical property, such as refractive index or The difference in the reflective surface is considered as the difference in material properties. Similarly, the first final polymeric material 151 located in the third cylindrical recess 130 and the second final polymeric material 161 together define a third interface 133 after the final polymerization step. The first final polymeric material 151, which is again located in the fourth cylindrical recess 140, and the second final polymeric material 161 together define a fourth interface 143 after the final polymerization step.
也就是說,位於各柱狀凹槽中的預聚合材料159與第二可聚合材料160,在聚合後所分別產生第一介面113、第二介面123、第三介面133與第四介面143,分別分隔了不同高分子性質之高分子材料介面。由於在終聚合步驟之前,預聚合材料159與第二可聚合材料160的起始狀態,例如黏度、聚合度、化學性質或是主鍊長度,可能不同,於是造成了在各自完全聚合後,第一終聚合材料151與第二終聚合材料161各自具有不同的高分子性質。在本發明一實施方式中,第一介面113、第二介面123、第三介面133與第四介面143間所分隔的高分子性質,可以是聚合度、統計平均分子量、分散度、玻璃轉化溫度與結晶熔化溫度其中之至少一者。That is, the prepolymerized material 159 and the second polymerizable material 160 located in each of the columnar grooves respectively generate a first interface 113, a second interface 123, a third interface 133 and a fourth interface 143 after polymerization. The interface of polymer materials with different polymer properties is separated. Since the initial state of the prepolymerized material 159 and the second polymerizable material 160, such as viscosity, degree of polymerization, chemical property or length of the main chain, may be different before the final polymerization step, it is caused after the respective polymerizations are completely A final polymeric material 151 and a second final polymeric material 161 each have different polymeric properties. In an embodiment of the present invention, the polymer properties separated by the first interface 113, the second interface 123, the third interface 133, and the fourth interface 143 may be polymerization degree, statistical average molecular weight, dispersion, and glass transition temperature. At least one of the melting temperature with the crystal.
由於聚合物(polymer),亦稱為高分子,通常是一群分子量不同或是結構形態不同的同系物(a homologue in homologous series),的混合物,所以在此所指聚合物的聚合度(degree of polymerization),是指聚合物中同系物的平均聚合度,可以以統計平均值來表示。同系物分子量的統計平均值,則稱為統計平均分子量。目前已知有多種不同的方法,可以用來計算聚合物的統計平均分子量。例如,端基分析法、沸點上升法、凝固點下降法、蒸氣壓下降法、滲透壓法、光散射法、黏度法、超速離心沉澱法、擴散法、電子顯微鏡法或凝膠滲透色譜法…等等。所得到的統計平均分子量,可以是數量平均分子量(M n)、重量平均分子量(M w)、黏度平均分子量(M η)、或是Z均分子量(z-average molecular weight, M z)。視情況需要,非平均分子量的峰值分子量(peak molecular weight, M p)也適用。不同的統計分子量都有各自優缺點和適用的分子量範圍,同時各種不同的方法所得到的分子量的統計平均值也不盡相同。前述高分子性質、聚合物的統計平均分子量與其計算方法,為本領域一般技藝人士在進行本發明預聚合步驟與終聚合步驟時所具備之背景知識,以利本領域之一般技藝人士決定如何適當實施本發明。 Since a polymer, also called a polymer, is usually a mixture of a group of molecular weights or homologue in homologous series, the degree of polymerization of the polymer referred to herein is Polymerization refers to the average degree of polymerization of homologues in a polymer and can be expressed as a statistical average. The statistical average of the molecular weight of the homologue is called the statistical average molecular weight. A number of different methods are currently known which can be used to calculate the statistical average molecular weight of a polymer. For example, end group analysis, boiling point rise method, freezing point drop method, vapor pressure drop method, osmotic pressure method, light scattering method, viscosity method, ultracentrifugation precipitation method, diffusion method, electron microscope method or gel permeation chromatography method, etc. Wait. The statistical average molecular weight obtained may be a number average molecular weight (M n ), a weight average molecular weight (M w ), a viscosity average molecular weight (M η ), or a z-average molecular weight (M z ). The peak molecular weight (M p ) of the non-average molecular weight is also applicable as the case requires. Different statistical molecular weights have their own advantages and disadvantages and the applicable molecular weight range, and the statistical average values of the molecular weights obtained by various methods are also different. The foregoing polymer properties, the statistical average molecular weight of the polymer, and the calculation method thereof are the background knowledge of those skilled in the art in carrying out the prepolymerization step and the final polymerization step of the present invention, so that those skilled in the art can decide how to properly The invention is implemented.
如第7圖所繪示,將上述的第一終聚合材料151、第二終聚合材料161與視情況需要的玻璃底材170脫模後,就得到本發明所提供的複合光學稜鏡100,也是作為光學稜鏡用的透明凸肋結構,包含視情況需要的底材170(matrix)、基材160(substrate)、第一稜峰(亦稱為第一角形凸肋)115、第二稜峰(亦稱為第二角形凸肋)125與第一凹谷181。視情況需要的底材171對於預定光源具有高穿透性。視情況需要的底材170可以為一整片,定義不同光學區域之玻璃底材,使得基材161夾置於底材170與第一凹谷181之間。As shown in FIG. 7 , after the first final polymeric material 151 , the second final polymeric material 161 and the glass substrate 170 as needed are demolded, the composite optical raft 100 provided by the present invention is obtained. Also used as a transparent rib structure for optical enamel, comprising a substrate 170 (matrix), a substrate 160, a first ridge (also referred to as a first rib) 115, and a second rib as needed. A peak (also referred to as a second angular rib) 125 and a first valley 181. The substrate 171 as needed is highly penetrating for a predetermined light source. The substrate 170 as desired may be a single piece, defining a glass substrate of a different optical area such that the substrate 161 is sandwiched between the substrate 170 and the first valley 181.
第一稜峰115,也就是第一角形凸肋,具有第一頂角111與第一高度112。第一稜峰115的第一頂角111與第一高度112,即界定了第一稜峰115的光學性質。例如,第一頂角111的角度範圍可以介於20度~50度之間,第一高度112可以介於0.1微米~1.0微米之間,深寬比可以介於1:1~1:3之間。第一稜峰115即位於基材160上並自基材160向上延伸,例如,向上垂直延伸。第一稜峰115與基材160各自為一種高分子聚合物,但是因為各自具有相異之聚合性質,所以第一稜峰115與基材160間具有第一介面113。The first ridge 115, that is, the first angular rib, has a first apex angle 111 and a first height 112. The first apex angle 111 of the first ridge 115 and the first height 112 define the optical properties of the first ridge 115. For example, the angle of the first apex angle 111 may range between 20 degrees and 50 degrees, the first height 112 may be between 0.1 micrometers and 1.0 micrometers, and the aspect ratio may be between 1:1 and 1:3. between. The first ridge 115 is located on the substrate 160 and extends upwardly from the substrate 160, for example, extending vertically upward. The first ridge 115 and the substrate 160 are each a high molecular polymer, but because of their different polymeric properties, the first ridge 115 and the substrate 160 have a first interface 113.
第二稜峰125,也就是第二角形凸肋,具有第二頂角121與第二高度122。第二稜峰125的第二頂角121與第二高度122,即界定了第二稜峰125的光學性質,第7圖繪示第一稜峰115與第二稜峰125一起位於第一光學區域101中。例如,第二頂角121的角度範圍可以介於20度~50度之間,第二高度122可以介於0.1微米~1.0微米之間,深寬比可介於1:1~1:3之間。第二稜峰125即位於基材160上並自基材160向上延伸,例如,向上垂直延伸。The second ridge 125, that is, the second angular rib, has a second apex angle 121 and a second height 122. The second apex angle 121 and the second height 122 of the second ridge 125 define the optical properties of the second ridge 125, and FIG. 7 illustrates that the first ridge 115 and the second ridge 125 are located together in the first optics. In area 101. For example, the angle of the second apex angle 121 may range between 20 degrees and 50 degrees, the second height 122 may be between 0.1 micrometers and 1.0 micrometers, and the aspect ratio may be between 1:1 and 1:3. between. The second ridge 125 is located on the substrate 160 and extends upwardly from the substrate 160, for example, extending vertically upward.
第一稜峰115與第二稜峰125為相同之高分子聚合物,所以彼此的聚合性質相同。雖然第二稜峰125與基材160各自為一種高分子聚合物,但是因為各自具有相異之聚合性質,所以第二稜峰125與基材160間具有第二介面123。The first peak 115 and the second peak 125 are the same high molecular polymer, so the polymerization properties are the same. Although the second ridge 125 and the substrate 160 are each a high molecular polymer, the second ridges 125 and the substrate 160 have a second interface 123 because of their different polymeric properties.
視情況需要,基材160上還可以有第三稜峰135與第四稜峰145。類似地,第三稜峰135,也就是第三角形凸肋,有第三頂角131與第三高度132,第四稜峰145有第四頂角141與第四高度142。第三稜峰135與基材160各自為一種高分子聚合物,但是因為各自具有相異之聚合性質,所以第三稜峰135與基材160間具有第三介面133。第四稜峰145與基材160也各自為一種高分子聚合物,但是因為各自具有相異之聚合性質,所以第四稜峰145與基材160間也具有第四介面143。第7圖繪示第三稜峰135與第四稜峰145一起位於與第一稜峰115與第二稜峰125的第一光學區域101不同的第二光學區域102中,所以儘管其角度相同,但是其高度不同。The substrate 160 may have a third peak 135 and a fourth peak 145 as needed. Similarly, the third ridge 135, that is, the third triangular rib, has a third apex angle 131 and a third height 132, and the fourth ridge 145 has a fourth apex angle 141 and a fourth height 142. The third ridge 135 and the substrate 160 are each a high molecular polymer, but because of their different polymeric properties, the third rib 135 and the substrate 160 have a third interface 133. The fourth ridge 145 and the substrate 160 are also each a high molecular polymer, but because of their different polymeric properties, the fourth rib 145 and the substrate 160 also have a fourth interface 143. Figure 7 shows that the third edge 135 and the fourth peak 145 are located in the second optical region 102 different from the first optical region 101 of the first peak 115 and the second peak 125, so although the angle is the same , but its height is different.
基材160與各稜峰具有實質上相同之折射率,也就是說,各稜峰的第一終聚合材料151與基材160的第二終聚合材料161的折射率差異,小到可以忽略不計或是觀察不到。較佳者,第一終聚合材料151與第二終聚合材料161具有相同之折射率,因此在第一介面113、第二介面123、第三介面133與第四介面143之間,不視為存在有光學性質,例如折射率或是反射面,上的差異,而是視為材料性質上的差異,因此各介面不視為是一種光學性質差異介面,而是一種材料性質的介面。The substrate 160 has substantially the same refractive index as each of the ridges, that is, the difference in refractive index between the first final polymeric material 151 of each ridge and the second final polymeric material 161 of the substrate 160 is negligibly small Or not observed. Preferably, the first final polymeric material 151 and the second final polymeric material 161 have the same refractive index, and therefore are not considered to be between the first interface 113, the second interface 123, the third interface 133 and the fourth interface 143. There are optical properties, such as differences in refractive index or reflective surface, but are considered as differences in material properties, so each interface is not considered to be an optical property difference interface, but a material property interface.
雖然基材160、第一稜峰115與第二稜峰125之高分子材料為同系物,但是第一介面113、第二介面123、第三介面133與第四介面143間卻分隔了不同的高分子性質。也就是說,高分子材料介面兩側分別具有不同之高分子性質。在本發明一實施方式中,第一介面113、第二介面123、第三介面133與第四介面143間所分隔的高分子性質,可以是聚合度、統計平均分子量、分散度、玻璃轉化溫度與結晶熔化溫度其中之至少一者。高分子性質的細節請參閱前述內容。Although the polymer material of the substrate 160, the first ridge 115 and the second ridge 125 is a homologue, the first interface 113, the second interface 123, the third interface 133 and the fourth interface 143 are separated by different Polymer properties. That is to say, the polymer material interface has different polymer properties on both sides. In an embodiment of the present invention, the polymer properties separated by the first interface 113, the second interface 123, the third interface 133, and the fourth interface 143 may be polymerization degree, statistical average molecular weight, dispersion, and glass transition temperature. At least one of the melting temperature with the crystal. Please refer to the above for details of polymer properties.
在基材上、以及第一稜峰115與第二稜峰125之間則另具有梯形的第一凹谷181。第一凹谷180的尺寸係由稜峰的頂角與間距D 1所決定,也是本發明整合式光學稜鏡的光學性質之一。類似地,第二稜峰125與第三稜峰135之間有梯形的第二凹谷182。第三稜峰135與第四稜峰145之間有梯形的第三凹谷183。請注意,第二凹谷182位在第一光學區域101與第二光學區域102的邊界上,既不屬於第一光學區域101,也不屬於第二光學區域102。複合光學稜鏡100中,稜峰的間隔、頂角與高度,需要經由不斷的實驗來找出最適合於光學稜鏡的尺寸。 A first trapezoidal first valley 181 is further provided on the substrate and between the first peak 115 and the second peak 125. The size of the first valley 180 is determined by the apex angle of the ridges and the spacing D 1 and is also one of the optical properties of the integrated optical raft of the present invention. Similarly, there is a trapezoidal second valley 182 between the second peak 125 and the third peak 135. There is a trapezoidal third valley 183 between the third peak 135 and the fourth peak 145. Please note that the second valley 182 is located on the boundary of the first optical region 101 and the second optical region 102, and does not belong to the first optical region 101 nor to the second optical region 102. In the composite optical crucible 100, the spacing, apex angle and height of the ridges need to be continuously tested to find the most suitable size for the optical raft.
第8圖繪示本發明的複合光學稜鏡100中,某一稜峰的上視照片。由第8圖觀察可以知道,由本發明方法所製得的複合光學稜鏡,其中稜峰的光學性質優良又不含氣泡。於是本發明所提供的的透明凸肋結構或是複合光學稜鏡,因此自然極具光學稜鏡產品上進步性的價值。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。Fig. 8 is a top view of a certain ridge in the composite optical disk 100 of the present invention. As can be seen from Fig. 8, the composite optical tweezers produced by the method of the present invention have excellent optical properties of the ribs and no bubbles. Therefore, the transparent rib structure provided by the present invention is a composite optical yoke, and therefore naturally has an advanced value in optical enamel products. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
100‧‧‧複合光學稜鏡/透明凸肋結構100‧‧‧Composite optical 稜鏡/transparent rib structure
101‧‧‧第一光學區域101‧‧‧First optical zone
102‧‧‧第二光學區域102‧‧‧Second optical zone
105‧‧‧模板105‧‧‧ Template
106‧‧‧平面106‧‧‧ plane
110‧‧‧第一柱狀凹槽110‧‧‧First cylindrical groove
111‧‧‧第一頂角111‧‧‧first top corner
112‧‧‧第一深度/高度112‧‧‧First Depth/Height
113‧‧‧第一介面113‧‧‧ first interface
115‧‧‧第一稜峰/第一角形凸肋115‧‧‧First ridge/first angle rib
120‧‧‧第二柱狀凹槽120‧‧‧Second cylindrical groove
121‧‧‧第二頂角121‧‧‧second top corner
122‧‧‧第二深度/高度122‧‧‧Second depth/height
123‧‧‧第二介面123‧‧‧Second interface
125‧‧‧第二稜峰/第二角形凸肋125‧‧‧Secondary peak/second angular rib
130‧‧‧第三柱狀凹槽130‧‧‧3rd cylindrical groove
131‧‧‧第三頂角131‧‧‧3rd corner
132‧‧‧第三深度/高度132‧‧‧ Third Depth/Height
133‧‧‧第三介面133‧‧‧ third interface
135‧‧‧第三稜峰/第三角形凸肋135‧‧‧third ridge/triangular rib
140‧‧‧第四柱狀凹槽140‧‧‧fourth cylindrical groove
141‧‧‧第四頂角141‧‧‧fourth corner
142‧‧‧第四深度/高度142‧‧‧4th depth/height
143‧‧‧第四介面143‧‧‧Fourth interface
145‧‧‧第四稜峰145‧‧‧fourth peak
150‧‧‧可聚合材料150‧‧‧Polymerizable materials
151‧‧‧第一終聚合材料/第三終聚合材料151‧‧‧First final polymeric material/third final polymeric material
159‧‧‧預聚合材料159‧‧‧Prepolymer materials
160‧‧‧可聚合材料160‧‧‧Polymerizable materials
161‧‧‧第二終聚合材料基材161‧‧‧Second final polymeric substrate
170‧‧‧底材170‧‧‧Substrate
181‧‧‧第一凹谷181‧‧‧The first valley
182‧‧‧第二凹谷182‧‧‧second valley
183‧‧‧第三凹谷183‧‧‧The third valley
D1‧‧‧距離D 1 ‧‧‧Distance
D2‧‧‧距離D 2 ‧‧‧Distance
D3‧‧‧距離D 3 ‧‧‧Distance
第1圖至第6圖繪示本發明方法的例示性流程。 第1A圖繪示第1圖之側視圖。 第2A圖繪示第2圖之側視圖。 第3A圖繪示第3圖之側視圖。 第4A圖繪示第4圖之側視圖。 第5A圖繪示第5圖之側視圖。 第6A圖繪示第6圖之側視圖。 第7圖繪示本發明的複合光學稜鏡之示意圖。 第8圖繪示本發明的複合光學稜鏡中,某一稜峰的上視照片。 第9圖繪示在先前技藝光學稜鏡中,稜鏡尖端有氣泡的瑕疵。Figures 1 through 6 illustrate an exemplary flow of the method of the present invention. Fig. 1A is a side view showing Fig. 1. Figure 2A shows a side view of Figure 2. Figure 3A shows a side view of Figure 3. Figure 4A shows a side view of Figure 4. Fig. 5A is a side view showing Fig. 5. Fig. 6A is a side view showing Fig. 6. Figure 7 is a schematic view of the composite optical raft of the present invention. Figure 8 is a top view of a certain ridge in the composite optical raft of the present invention. Fig. 9 is a view showing a flaw in the prior art optical raft with a bubble at the tip end.
100‧‧‧複合光學稜鏡/透明凸肋結構 100‧‧‧Composite optical 稜鏡/transparent rib structure
101‧‧‧第一光學區域 101‧‧‧First optical zone
102‧‧‧第二光學區域 102‧‧‧Second optical zone
111‧‧‧第一頂角 111‧‧‧first top corner
112‧‧‧第一深度/高度 112‧‧‧First Depth/Height
113‧‧‧第一介面 113‧‧‧ first interface
115‧‧‧第一稜峰/第一角形凸肋 115‧‧‧First ridge/first angle rib
121‧‧‧第二頂角 121‧‧‧second top corner
122‧‧‧第二深度/高度 122‧‧‧Second depth/height
123‧‧‧第二介面 123‧‧‧Second interface
125‧‧‧第二稜峰/第二角形凸肋 125‧‧‧Secondary peak/second angular rib
131‧‧‧第三頂角 131‧‧‧3rd corner
132‧‧‧第三深度/高度 132‧‧‧ Third Depth/Height
133‧‧‧第三介面 133‧‧‧ third interface
135‧‧‧第三稜峰/第三角形凸肋 135‧‧‧third ridge/triangular rib
141‧‧‧第四頂角 141‧‧‧fourth corner
142‧‧‧第四深度/高度 142‧‧‧4th depth/height
143‧‧‧第四介面 143‧‧‧Fourth interface
145‧‧‧第四稜峰 145‧‧‧fourth peak
151‧‧‧第一終聚合材料 151‧‧‧ First final polymeric material
161‧‧‧第二終聚合材料基材 161‧‧‧Second final polymeric substrate
170‧‧‧底材 170‧‧‧Substrate
181‧‧‧第一凹谷 181‧‧‧The first valley
182‧‧‧第二凹谷 182‧‧‧second valley
183‧‧‧第三凹谷 183‧‧‧The third valley
D1‧‧‧距離 D 1 ‧‧‧Distance
D2‧‧‧距離 D 2 ‧‧‧Distance
D3‧‧‧距離 D 3 ‧‧‧Distance
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105126024A TWI612340B (en) | 2016-08-16 | 2016-08-16 | Transparent rib structure, composite optical prism and method for forming optical prism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105126024A TWI612340B (en) | 2016-08-16 | 2016-08-16 | Transparent rib structure, composite optical prism and method for forming optical prism |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI612340B true TWI612340B (en) | 2018-01-21 |
TW201807437A TW201807437A (en) | 2018-03-01 |
Family
ID=61728496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105126024A TWI612340B (en) | 2016-08-16 | 2016-08-16 | Transparent rib structure, composite optical prism and method for forming optical prism |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI612340B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW534913B (en) * | 2000-07-28 | 2003-06-01 | Goodrich Corp | Polymers for forming optical waveguides; optical waveguides formed therefrom; and methods for making same |
CN1894605A (en) * | 2003-12-23 | 2007-01-10 | 瑞弗莱克塞特公司 | Light-redirecting optical structure and process for forming same |
TW200832001A (en) * | 2006-11-24 | 2008-08-01 | Zeon Corp | Optical flat plate member and method for manufacturing optical flat plate member |
TW200930950A (en) * | 2007-11-30 | 2009-07-16 | 3M Innovative Properties Co | Improved light guide |
-
2016
- 2016-08-16 TW TW105126024A patent/TWI612340B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW534913B (en) * | 2000-07-28 | 2003-06-01 | Goodrich Corp | Polymers for forming optical waveguides; optical waveguides formed therefrom; and methods for making same |
CN1894605A (en) * | 2003-12-23 | 2007-01-10 | 瑞弗莱克塞特公司 | Light-redirecting optical structure and process for forming same |
TW200832001A (en) * | 2006-11-24 | 2008-08-01 | Zeon Corp | Optical flat plate member and method for manufacturing optical flat plate member |
TW200930950A (en) * | 2007-11-30 | 2009-07-16 | 3M Innovative Properties Co | Improved light guide |
Also Published As
Publication number | Publication date |
---|---|
TW201807437A (en) | 2018-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5539894B2 (en) | Method for manufacturing article having recess | |
US9128220B2 (en) | Light guide body with continuously variable refractive index, and devices using such body | |
CN102016701B (en) | Blunt tip prism film and methods for making the same | |
KR100825904B1 (en) | Prism sheet having wet-out property and lcd back light unit thereby | |
JP2009532717A (en) | Structured composite optical film | |
KR101520005B1 (en) | Method for manufacturing Micro Lens Array | |
TW201527787A (en) | Microstructured diffuser comprising first microstructured layer and coating, optical stacks, and method | |
KR102450088B1 (en) | Microstructured light guide plate and device comprising same | |
CN112147726B (en) | Novel quadrangular frustum pyramid brightness enhancement film, application thereof and fusible structured adhesive tape | |
KR20140024393A (en) | Diffuser film with controlled light collimation | |
US20090147385A1 (en) | Prism sheet and method for making the same | |
Hu et al. | Fabrication of bifocal microlens arrays based on controlled electrohydrodynamic reflowing of pre-patterned polymer | |
EP2719670A1 (en) | Methods for forming glass elliptical and spherical shell mirror blanks | |
TWI612340B (en) | Transparent rib structure, composite optical prism and method for forming optical prism | |
JP2018045015A (en) | Transparent rib structure, composite optical prism, and method of forming optical prism | |
KR101514497B1 (en) | Laminated optical films having one or more buffer layers | |
CN111435204A (en) | Quadrangular frustum pyramid brightness enhancement film and preparation method thereof | |
WO2005071450A1 (en) | Method of manufacturing three-dimensional photonic crystal | |
CN210347974U (en) | Novel trapezoidal brightness enhancement film and backlight module | |
EP1578579B1 (en) | Micro-mechanical thermo structure and method for manufacturing such micro-mechanical structure | |
Dai et al. | Rapid fabrication of mini droplet lens array with tunable focal length | |
KR101209803B1 (en) | Method for manufacturing one body type optical film and one body type optical film | |
CN210605043U (en) | Four-edged stand brightness enhancement film | |
KR20160148915A (en) | Condensing Module for Banding Reduction and Back Light Unit Having the Same | |
KR100776714B1 (en) | Light guide plate for back-light with prism interface and the manufacturing method thereof |