WO2009122922A1 - セメントボンド塊成鉱の製造方法 - Google Patents

セメントボンド塊成鉱の製造方法 Download PDF

Info

Publication number
WO2009122922A1
WO2009122922A1 PCT/JP2009/055399 JP2009055399W WO2009122922A1 WO 2009122922 A1 WO2009122922 A1 WO 2009122922A1 JP 2009055399 W JP2009055399 W JP 2009055399W WO 2009122922 A1 WO2009122922 A1 WO 2009122922A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellets
vertical container
curing
cement
mini
Prior art date
Application number
PCT/JP2009/055399
Other languages
English (en)
French (fr)
Inventor
清太 上川
修史 真島
光正 久保
Original Assignee
株式会社テツゲン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テツゲン filed Critical 株式会社テツゲン
Priority to CN2009801200394A priority Critical patent/CN102046819B/zh
Priority to CA2719899A priority patent/CA2719899C/en
Priority to US12/736,362 priority patent/US8435439B2/en
Priority to BRPI0910107-1A priority patent/BRPI0910107B1/pt
Priority to KR1020107023849A priority patent/KR101187063B1/ko
Priority to AU2009233017A priority patent/AU2009233017B2/en
Priority to EP09728133.1A priority patent/EP2264195A4/en
Publication of WO2009122922A1 publication Critical patent/WO2009122922A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/214Sintering; Agglomerating in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing a cement bond agglomerate.
  • FIG. 5 is a diagram showing a process for producing cold pellets for a blast furnace by conventional yard curing.
  • Portland cement is added as a binder using raw materials made of ironworks dust and / or fine ore, mixed in a kneader, granulated with a pan pelletizer, and passed through a screen.
  • the curing mountain is crushed using an excavator, loaded again in the secondary curing yard, and then cured for another week to achieve the predetermined strength. It will be paid out when it comes out and used in a blast furnace.
  • the composition of the particle size of the metal-containing carbon-containing dust generated from the steel mill is set to the ratio of the coarse fraction to the fine fraction.
  • a method for producing dust cold pellets is proposed, in which ore powder is blended as necessary so that it falls within the appropriate particle size distribution range and granulated by adding a binder such as cement to an appropriate moisture content. ing.
  • powdered iron-containing raw material is mixed with granulated blast furnace pulverized powder and gypsum, granulated or agglomerated, and not fired.
  • blast furnace granulation and gypsum are pulverized to a specific surface area of 4000 cm 2 / g or more and then blended at a rate of 6 to 9% with respect to the iron-containing raw material at a temperature of 40 ° C or higher.
  • a method for producing a non-fired agglomerated mineral is proposed in which an agent is added, kneaded with water and agglomerated, and then cured while being kept warmed after being loaded in a curing yard.
  • FIG. 6 is a diagram showing a manufacturing process of a conventional mini pellet for sintering.
  • bentonite is used as a binder for raw materials made of ironworks-generated dusts and / or fine ore, mixed in a kneader, and then granulated into small-diameter pellets with a diameter of 2 to 7 mm with a pan pelletizer.
  • a mini-pellet method in which the powder is passed through a screen and directly supplied to a sintering machine without being cured has been industrially applied.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 59-107036
  • granulation is performed by adding moisture to non-carbon-containing dust collection dust generated in each step of the steelmaking process.
  • non-sintered mini-pellets for sintered raw materials with blast furnace gas ash deposited on the surface have been proposed.
  • the blast furnace cold pellet method described above requires a curing yard and requires a large facility space.
  • the secondary curing yard uses a part of the ore yard, so the secondary curing yard will reduce the ore yard capacity, and the iron ore yard capacity is not enough. There is. Further, in the yard curing, a crushing operation is required after the primary curing, and dust generation at that time becomes an environmental problem. In addition, the crushing work takes manpower, and the product yield decreases due to crushing.
  • the water spray adheres to the cold pellets when the blast furnace is charged.
  • the total moisture content is 7-8% when combined with the crystallization water associated with the hydration reaction. Exceeds 10%. For this reason, there is a problem in that the amount of use in the blast furnace is limited because an adverse effect of lowering the top temperature of the blast furnace appears when the amount used is increased.
  • the moisture content of the mini pellets is as high as 12 to 15%, which makes it easy to cause shelves and shelves on the inner wall of the sintered storage tank.
  • the amount of mini pellets cut out from the storage tank varies.
  • the mini-pellet method is introduced, but the mini-pellet is abandoned, and the moisture is lowered to 10% or less and supplied to the sintering as mere kneaded dust to prevent presence.
  • the actual condition is that the sintering productivity is reduced due to the deterioration of the air permeability of the sintered bed accompanying the addition of fine dusts.
  • the gist of the invention is that Portland cement is added as a binder to ironworks-generated dust and / or fine ore, and after mixing, humidity conditioning and kneading processes, granulation is performed with a pan pelletizer, and then curing is performed to obtain the required crushing strength.
  • a moving bed is formed by inserting raw pellets from the top of a vertical container that has the following three conditions and discharging from the bottom.
  • the present invention resides in a method for producing a cement bond agglomerate characterized in that it is cured by heat of hydration reaction of cement during a period from charging to discharging of raw pellets.
  • 1) Have a taper of 1/10 to 1/30 spreading downward on the whole or upper part of the vertical container body 2)
  • a feeder can be placed to ensure that the charge descends due to the piston flow.
  • the cured pellets discharged from the bottom of the vertical container are immediately removed by a bucket elevator. Having a supply device that can prevent the charging surface of the vertical container from being lowered by lifting up to the top of the mold container and supplying it instead of raw pellets.
  • a curing yard that requires a large installation space can be omitted, so that the manufacturing facility can be made compact and the facility installation location can be freely selected.
  • the degree is increased and the crushing work after the primary curing is not required, so that environmental improvement, labor saving, and yield improvement are possible.
  • the cold pellets are dried, a decrease in the top temperature when using the blast furnace can be avoided, so that the amount used in the blast furnace can be increased.
  • mini-pellet method it is easy to conceive of producing mini-pellets using Portland cement as a binder.
  • conventional yard curing method there is a problem of the curing yard installation space, crushing after curing. Because there are environmental problems due to dust generation, manpower problems for crushing, and problems of yield reduction due to crushing, there are no industrially implemented examples.
  • the mini-pellet method which is a simple dust treatment method, can be industrially implemented, and it is possible to avoid a decrease in the productivity of sintering due to the direct addition of dusts. It is effective.
  • FIG. 1 is a diagram showing a manufacturing process of a cold pellet for a blast furnace according to the present invention.
  • a manufacturing method that does not require yard curing is provided. It is to provide.
  • the details of the vertical container will be described later.
  • the type of the dryer is not limited as long as it is a continuous type. A band dryer or a vertical moving bed dryer can be used.
  • FIG. 2 is a diagram showing a production process of a mini-pellet for sintering according to the present invention.
  • a Portland-based cement is used as a binder, and after curing to a predetermined strength in a vertical container, a manufacturing method that does not require yard curing is provided by replenishing the sintered storage tank.
  • FIG. 3 is an overall schematic view showing functions that the vertical container according to the present invention should have.
  • the raw pellets 2 are charged from the upper part of the vertical container 1 and are charged continuously from the table feeder 4 installed at the lower part of the vertical container 1 as the cured agglomerate 7.
  • the moving layer 3 that descends is formed.
  • the curing of the raw pellets 2 proceeds by the hydration reaction of the Portland cement, and when the curing progresses to a predetermined strength, the rotation of the driving device 5 causes the table feeder 4 to rotate. Cut out by the cutout opening 6.
  • the cut agglomerated ore 7 cut out is transported to the next step 9 via the switching device 8 in a steady state, but in a non-steady state such as a pause of the raw pellet manufacturing process, the switching device 8 is switched, The bucket elevator 10 is charged again from the top of the vertical container 1.
  • the shape of the bowl-shaped container 1 is basically spread downward.
  • the moisture after granulation of cold pellets for blast furnace and mini pellets for sintering is about 10 to 13% and 12 to 15%, respectively. For this reason, it is possible to prevent dwelling and shelf hanging by spreading downward.
  • a lateral movement is added, so the effect of suppressing the mutual adhesion of cement bond agglomerates described later is increased.
  • the optimum angle is 1/10 to 1/30.
  • the cured agglomerate cut out from the vertical container is immediately supplied from the upper part of the vertical container, It is necessary to keep the surface of the charge in a steady position.
  • the agglomerated ore that has been cured does not have to be cut out from the vertical container, and for example, agglomerated ore that has been stored in a separate storage tank may be supplied.
  • the supply of cured agglomerates is stopped and the supply of raw pellets is resumed.
  • the shape of the bowl-shaped container 1 is not limited to simply spreading downward, and various shapes can be adopted as shown in FIGS. 4 (a) and 4 (b). If cement bond agglomerates immediately after granulation are likely to stick to each other, increasing the descending speed and increasing the lateral movement by increasing the taper at the top of the vertical container will help prevent sticking. Is. In such a case, the shape shown in FIG. The gradient is 1/10 for the upper quarter of the vertical container and 1/20 for the lower 3/4. Conversely, if the agglomerates are difficult to stick to each other, the lower part of the fuselage can be made straight without a taper as shown in FIG. The upper slope of the fuselage at that time is 1/10 to 1/30.
  • Table 1 cold pellets for a blast furnace were manufactured using a vertical container.
  • Table 2 shows the composition of dusts and fine ore used as raw materials for cold pellets for blast furnaces.
  • the powder ore used was sintered and previously pulverized with a ball mill so that -44 ⁇ m was about 60%.
  • Table 1 shows the results of two operations each of three levels in which the target strength of the product pellets was set to 100, 120, and 160 kg / cm 2 .
  • the blending ratio was set according to the type of blended raw material and the target strength.
  • the operation was carried out in a vertical container with a taper (gradient) of 1/20, an average descent rate of 1.39 cm / min, a residence time of 24 hours, and the crushing strength (drying) when cut out from the vertical container after 24 hours.
  • a taper grade
  • Pre-strength and display Pre-strength and display), and it was dried at 200 ° C. for 30 minutes using a band dryer, dried to less than 1% moisture, and then cooled, and then the crushing strength (displayed after drying) was displayed.
  • the ratio between the strength before drying and the strength after drying is the front / back ratio (%). Looking at the results of operation, the strength after drying was almost the same as the target strength, and cold pellets that could withstand use in a blast furnace could be manufactured.
  • the crushing strength of the cured pellets is about 60% to 80% of the target strength of the product pellets. It was found that if the internal residence time is set, the crushing strength of the product pellets after drying is almost the target strength. When it is desired to shorten the residence time, it is possible to adjust by using an ultra-early strong cement or a hydration reaction accelerator.
  • the reason why the strength increases from 60% to 80% to 100% by drying the cured pellet can be considered as follows.
  • water existing between the dust particles evaporates and aggregates. This is due to the capillary tension calculated by the surface tension of the water and the radius of curvature of the water existing between the particles, and the intermolecular attractive force (van der Waals force) also works.
  • van der Waals force van der Waals force
  • the curing time is 24 hours from the viewpoint of downsizing the vertical container. Also, in the existing yard curing, it is possible to omit the secondary curing yard by drying the completed pellets in the primary curing yard.
  • Table 3 shows examples in which mini-pellets for sintering were manufactured using a vertical container and used up to 5% in the raw material of the sintering machine.
  • Table 4 shows the composition of dusts used as raw materials for mini-pellets. This operation is performed at two levels with different blending ratios of early-strength cement.
  • the taper (gradient) of the vertical container is 1/10 for the upper 1/4 of the vertical container body and 1/20 for the lower 3/4.
  • the descending speed was 1.39 cm / min, the residence time was 24 hours, and the crushing strength when cut out from the vertical container after 24 hours and the raw pellet strength immediately after granulation were displayed.
  • Table 3 shows the curing that is discharged from the vertical container when the height of the vertical container is H (m) and the bulk density of the raw pellets charged in the vertical container is ⁇ B (t / m 3 ).
  • the reference strength to be achieved by the crushing strength of the finished pellets was expressed as 1/5 ⁇ H ⁇ B (kg / cm 2 ).
  • the static pressure due to the upper mini-pellet applied to the lowest mini-pellet of the bowl-shaped container is 1/10 ⁇ H ⁇ B because the wall effect disappears from the shape of the lower spread, but the crushing strength of the mini-pellet particles is considerable.
  • the double is used as a reference value. Both levels of operational performance were able to achieve this standard value.
  • a curing yard that requires a large installation space can be omitted, so that the manufacturing facility can be made compact and the facility installation location can be freely selected.
  • the degree is increased and the crushing work after the primary curing is not required, so that environmental improvement, labor saving, and yield improvement are possible.
  • the cold pellets are dried, a decrease in the top temperature when using the blast furnace can be avoided, so that the amount used in the blast furnace can be increased.
  • the mini-pellet method which is a simple dust treatment method, can be industrially implemented, and it is possible to avoid a decrease in the productivity of sintering due to the direct addition of dusts.
  • This method is suitable for use in a similar method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 本発明は、環境改善、省力化、歩留改善が可能となるヤード養生によらないセメントボンド塊成鉱の製造方法を提供するために、製鉄所発生ダスト類、および/または微粉鉱石にバインダーとしてポルトランド系セメントを加え、混合、調湿、混練工程を経た後、パンペレタイザーで造粒し、しかる後に養生することで所要の圧潰強度を持った高炉向けコールドペレット、または焼結向けミニペレットを製造する方法において、竪型容器の上部から生ペレットを装入し下端から排出することで移動層を形成せしめ、生ペレットの装入から排出までの期間で養生することを特徴とする、セメントボンド塊成鉱の製造方法にある。

Description

セメントボンド塊成鉱の製造方法
 本発明は、セメントボンド塊成鉱を製造する方法に関するものである。
 近年、環境対策設備の増強と共に、製鉄所内回収ダスト量が増加しており、これらのダストを直径10~20mmのペレットに塊成化して高炉原料とする方法として、水和結合剤によるコールドペレット法が工業的に適用されている。このコールドペレット法の具体的方法を図5に示す。図5は、従来のヤード養生による高炉向けコールドペレットの製造工程を示す図である。この図に示すように、製鉄所発生ダスト類、および/または微粉鉱石からなる原料をバインダーとしてポルトランド系セメントを加え、混練機にて混合した後パンペレタイザーにて造粒し、スクリーンを通した後、1次養生ヤードで約3日間養生して初期強度が出た時点でショベルを用いて養生山を解砕し、2次養生ヤードに再度積みつけ、さらに1週間養生して所定の強度が出たところで払い出し、高炉で使用するというものである。
 上記例として例えば特開昭53-130202号公報(特許文献1)に開示しているように、製鉄所より発生する含金属含炭素ダストの配合の粒度構成を粗粒分と微粒分との比を選んで適正な粒度分布の範囲内になるように必要に応じて鉱石粉を配合し、適正な含水率にしてセメント等のバインダーを添加して造粒するダストコールドペレットの製造方法が提案されている。また、特開昭63-83231号公報(特許文献2)に開示しているように、粉状の含鉄原料に高炉水砕微粉末と石膏とを配合し、造粒もしくは団塊化せしめて非焼成のペレットもしくはブリケットを製造する際、高炉水砕と石膏を比表面積4000cm/g以上に微粉砕後、40℃以上の状態で含鉄原料に対して6~9%の割合で配合し、アルカリ刺激剤を添加して水と混練及び塊成化処理をした後養生ヤードへの積付け後保温しながら養生する非焼成塊成鉱の製造法が提案されている。
 一方、上記コールドペレット法よりも簡便にダストを処理する方法として、焼結用ミニペレット法がある。図6は、従来の焼結向けミニペレットの製造工程を示す図である。この図に示すように、製鉄所発生ダスト類、および/または微粉鉱石からなる原料をバインダーとしてベントナイトを用い、混練機にて混合した後パンペレタイザーにて直径2~7mmの小径ペレットに造粒し、スクリーンを通した後、養生せずに直接焼結機に供給するミニペレット法も工業的に適用されてきた。
 上記例として、例えば特開昭59-107036号公報(特許文献3)に開示しているように、銑鋼一環工程の各工程において発生する非含炭集塵ダストに水分を添加し造粒した後、その表面に高炉ガス灰を被着せしめた焼結原料用非焼成ミニペレットが提案されている。
特開昭53-130202号公報 特開昭63-83231号公報 特開昭59-107036号公報
 上述した高炉用コールドペレット法は、養生ヤードが必要で、多大な設備スペースを必要とする。特に2次養生ヤードは鉱石ヤードの一部を使用することから、2次養生ヤードが鉱石ヤード能力を低下させることになり、鉱石ヤード能力が不足気味の製鉄所では滞船料を発生させるという問題がある。また、ヤード養生では、1次養生後に解砕作業が必要
で、その際の発塵が環境上の問題となる。また、解砕作業に人手が掛かり、解砕により成品歩留りが低下する。
 また、2次養生ヤードでは発塵防止のためヤード散水を実施するため、高炉装入時のコールドペレットの付着水分は7~8%にもなり、水和反応に伴う結晶水と合わせると合計水分は10%を超える。このため使用量が増えると高炉の炉頂温度を低下させる弊害が出ることから、高炉での使用量が制限されるという問題がある。
 一方、焼結用ミニペレット法においては、バインダーとして通常ベントナイトを用いてダスト類を造粒したものであることから、圧潰強度は0.8kg/cm程度しかなく、セメントをバインダーとして養生したものと比べると脆弱で、焼結貯鉱槽への補給時の落差、貯鉱槽での貯留中の上部ミニペレットによる静圧、或いは降下中のミニペレット同士の摩擦により崩壊・粉化しやすい。
 また、ミニペレットの水分は12~15%と高く、このため焼結貯鉱槽内壁への居付き・棚吊りを起こしやすい。この結果、貯鉱槽からのミニペレット切り出し量が変動する。上記の理由で、ミニペレット法を導入したもののミニペレット化を断念し、居付き防止のために水分を10%以下に下げて単なる混練ダストとして焼結に供給している例が多い。この結果、微粉ダスト類の添加に伴う焼結ベットの通気性悪化による焼結生産性低下を招いているのが実状である。
 上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、セメントボンド塊成鉱の製造方法を提供するものである。その発明の要旨とするところは、
製鉄所発生ダスト類、および/または微粉鉱石にバインダーとしてポルトランド系セメントを加え、混合、調湿、混練工程を経た後、パンペレタイザーで造粒し、しかる後に養生することで所要の圧潰強度を持った高炉向けコールドペレット、または焼結向けミニペレットを製造する方法において、以下の三つの条件を併せ持つ竪型容器の上部から生ペレットを装入し下端から排出することで移動層を形成せしめ、生ペレットの装入から排出までの期間にセメントの水和反応熱により養生することを特徴とする、セメントボンド塊成鉱の製造方法にある。
1)下広がりの1/10~1/30のテーパを竪型容器胴体の全体または上部に有すること
2)竪型容器下端に、該竪型容器下部の断面積全体をカバーできる大きさのテーブルフィーダーを配置し、装入物がピストンフローで降下することを保証できること
3)生ペレットの装入が停止した際に、竪型容器下部から排出される養生済みのペレットを、バケットエレベーターにより直ちに竪型容器上部まで持ち上げ、かつ生ペレットの代りに供給することで、竪型容器の装入面の低下を防止できる供給装置を有すること。
 以上述べたように、本発明による高炉向けコールドペレット法においては、多大な設置スペースを必要とする養生ヤードを省略できることから、製造設備をコンパクトにすることが可能となり、設備設置場所の選択の自由度が増し、1次養生後の解砕作業が不要となるため、環境改善、省力化、歩留改善が可能となる。また、鉱石ヤード不足の製鉄所では、ヤード養生方式を本発明に変更することで滞船料の削減が可能となる。さらに、コールドペレットを乾燥するため、高炉使用時の炉頂温度の低下を回避できることから、高炉での使用量を増加させることができる。
 また、本発明によるミニペレット法においては、ポルトランド系セメントをバインダーとしてミニペレットを製造することは容易に着想できることであるが、従来のヤード養生
法では養生ヤード設置スペースの問題、養生後解砕時の発塵による環境問題、解砕のための人手の問題、解砕に伴う歩留り低下の問題があることから、工業的に実施された例が無かったものを、本発明により、上記問題が解消されることに加えて、焼結貯鉱槽でのミニペレットの崩壊・粉化を起こさないだけの十分な強度を持たせることが可能であり、また強度が出てから補給することから焼結貯鉱槽内壁への居付き・棚吊りも回避できる。
 さらに、上記の結果、簡便なダスト類処理法であるミニペレット法が工業的に実施可能となり、ダスト類の直接添加に伴う焼結の生産性の低下を回避することが可能となる等極めて優れた効果を奏するものである。
 本発明のその他の特徴および利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には同じ参照番号を付す。
本発明に係る高炉向けコールドペレットの製造工程を示す図である。 本発明の焼結向けミニペレットの製造工程を示す図である。 本発明に係る竪型容器が具備すべき機能を示す全体概略図である。 竪型容器の各種形状を示す図である。 従来のヤード養生による高炉向けコールドペレットの製造工程を示す図である。 従来の焼結向けミニペレットの製造工程を示す図である。
符号の説明
 1 竪型容器
 2 生ペレット
 3 移動層
 4 テーブルフィーダー
 5 フィーダー駆動装置
 6 切出口
 7 養生済み塊成鉱
 8 切替え装置
 9 次工程
 10 バケットエレベーター
 以下、本発明について図面に従って詳細に説明する。
図1は、本発明に係る高炉向けコールドペレットの製造工程を示す図である。この図1に示すように、図5に示した従来法の1次養生ヤードと2次養生ヤードを、本発明では竪型容器と乾燥機に置き換えることで、ヤード養生を必要としない製造方法を提供するものである。なお、竪型容器の詳細は後述する。乾燥機は、連続式であれば形式は問わない。バンドドライヤ、竪型移動層式乾燥機などの採用が可能である。
 図2は、本発明の焼結向けミニペレットの製造工程を示す図である。この図2に示すように、ポルトランド系セメントをバインダーとし、竪型容器内で所定強度まで養生した後
、焼結貯鉱槽に補給することで、ヤード養生を必要としない製造方法を提供するものである。図3は、本発明に係る竪型容器が具備すべき機能を示す全体概略図である。竪型容器1の上部から生ペレット2が装入され、竪型容器1内の下部に設置されたテーブルフィーダー4より養生済み塊成鉱7として切り出されるまでの間に、装入物は絶え間なく降下する移動層3を形成する。
 移動層3の頂部から下端まで移動する間に、ポルトランド系セメントの水和反応により生ペレット2の養生が進み、所定強度にまで養生が進んだところで、駆動装置5の回転によりテーブルフィーダー4の切り出し口6により切り出される。切り出された養生済み塊成鉱7は、定常時は切替え装置8を経由して次工程9へ輸送されるが、生ペレット製造工程の休止等の非定常時には、切替え装置8を切換えることで、バケットエレベーター10により竪型容器1の頂部から再度装入される。
 竪型容器1の形状は下広がりを基本とする。高炉向けコールドペレットおよび焼結向けミニペレットの造粒後の水分はそれぞれ10~13%、12~15%程度あるため、竪型容器の壁に極めて付着しやすい性質を持つ。このため下広がりとすることで、居付き・棚吊りを防止する。また、下広がりとすることで、装入物の切り出しに伴う下向きの動きに加えて横方向の動きが加わることから、後述するセメントボンド塊成鉱の相互付着を抑制する効果が大きくなる。下広がりのテーパの程度については、最適な角度は1/10~1/30とする。
 また、全ての装入物が所定の養生時間を確実に確保するためには、後入れ先出し現象を防止することが重要である。このため装入物がピストンフローで降下することを保証できる切り出し装置を具備する必要がある。例えば、竪型容器下部の断面積全体をカバーできる大きさのテーブルフィーダーを採用することで対応可能となる。
 また、竪型容器内でセメントボンド塊成鉱を相互に水和反応で固着させないためには、常時所定の降下速度で装入物を移動させ続ける必要がある。したがって、造粒系統が故障で休止した場合、生ペレットの供給が停止する結果、竪型容器内の装入物上面は低下し続けることになる。装入物表面がかなり低下した状態で造粒系統の運転を再開すると、強度の低い生ペレットを装入物表面まで落下させることになり、その場合生ペレットは落下衝撃に耐えられず崩壊してしまうことになる。
 上記のような問題を起こさせないためには、装入物表面が低下し始めたら、直ちに竪型容器から切り出された養生済みの塊成鉱を竪型容器の上部から供給し、竪型容器内の装入物表面を定常位置に保持する必要がある。養生済みの塊成鉱は竪型容器から切り出されたものでなくてもよく、例えば、別途設けた貯槽に蓄えておいた養生済み塊成鉱を供給することでもかまわない。造粒系統が故障から復旧したら、養生済み塊成鉱の供給を停止し、生ペレットの供給を再開する。また、工場の定期修繕等により、長時間造粒系統が停止する場合には、竪型容器内の装入物が全て養生済み塊成鉱に置換されるまで養生済み塊成鉱の供給を継続し、置換が完了すれば装入と切り出しを停止する。
 竪型容器1の形状については、単なる下広がりでけでなく、図4の(a)、(b)に示したとおり様々な形状を採用することができる。造粒直後のセメントボンド塊成鉱が相互に固着しやすい場合には、降下速度を大きくするとともに、竪型容器上部のテーパを大きく取ることで横方向の動きを大きくすることが固着防止に効果的である。このような場合には図4の(a)の形状が望ましい。その勾配は竪型容器上部1/4が1/10、下部3/4が1/20とする。逆に、塊成鉱が相互に固着しにくい場合には、図4の(b)に示すとおり胴体下部はテーパをなくし直胴とすることも可能である。その時の胴体の上部勾配は、1/10~1/30とする。
 以下、本発明について実施例によって具体的に説明する。
表1に示すように、竪型容器を用いて高炉向けコールドペレットを製造した。また、表2に、高炉向けコールドペレットの原料として使用したダスト類および粉鉱石の配合を示す。粉鉱石は焼結用のものを-44μmが60%程度となるように事前にボールミルで粉砕したものを使用した。表1には、成品ペレットの目標強度を100、120、160kg/cmに設定した3水準の操業を各2回実施した結果を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
早強セメントは、配合原料の種類と目標強度に応じて配合比率を設定した。
 操業は、竪型容器のテーパ(勾配)が1/20、平均降下速度が1.39cm/分、滞留時間が24時間で実施し、24時間後に竪型容器から切り出した時の圧潰強度(乾燥前強度と表示)と、それをバンドドライヤを用いて200℃で30分間乾燥して水分1%未満に乾燥し、次いで冷却した後の圧潰強度(乾燥後強度と表示)を表示した。乾燥前の強度と乾燥後の強度の比が前/後比率(%)である。操業実績を見ると、乾燥後強度はほぼ目標強度に近い値が得られており、高炉での使用に十分耐えられるコールドペレットが製造できた。
 また、前/後比率(%)の値から、養生済みペレットの圧潰強度が成品ペレットの目標強度の60%から80%程度となるようにポルトランド系セメントの種類、添加比率、および竪型容器内滞留時間を設定しておけば、乾燥後の成品ペレットの圧潰強度はほぼ目標強度に近いものが得られることが判明した。滞留時間を短縮したい場合には、超早強セメント、或いは水和反応促進剤の使用によって調整することも可能である。
 なお、養生済みペレットを乾燥することで、60%から80%の強度が100%にまで強度が増加する理由については、次のように考えられる。24時間程度の水和初期に乾燥することにより、ダスト粒子間に存在する水が蒸発して凝集する。これは水の表面張力と粒子間に存在する水の曲率半径で算出される毛細管張力によるもので、分子間引力(ファンデルワールス力)も働いている。このため、ペレットは収縮し強度が増加する。また、セメント粒子も水の中に存在して水和物が生成しており、温度がかかることによる水和促進も強度向上に寄与している。
 なお、養生期間が長くなると、セメントの水和が進み、ある程度の組織が出来上がっていることから、粒子間の収縮が拘束されるため、乾燥による強度増強は僅かとなる。種々研究をした結果、乾燥により顕著に強度の増加が見られるのは、ダスト類と早強セメントの組合せでは、24時間から72時間で、120時間を超えると強度増加は僅かとなることが判明した。したがって、本発明の実施例では、竪型容器を小型化する観点から、養生時間を24時間としたものである。また、既存のヤード養生においても一次養生ヤードでの完了したペレットを乾燥することで二次養生ヤードを省略することも可能である。
 次に、竪型容器を用いて焼結用ミニペレットを製造し、焼結機の配合原料中5%まで使用した実施例を表3に示す。また、表4にはミニペレットの原料として使用したダスト類の配合を示す。この操業は、早強セメントの配合比率を変えた2水準とし、竪型容器のテーパ(勾配)は、竪型容器胴体上部1/4が1/10、下部3/4が1/20、平均降下速度が1.39cm/分、滞留時間が24時間で実施し、24時間後に竪型容器から切り出した時の圧潰強度と造粒直後の生ペレット強度とを表示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
表3には、竪型容器の高さがH(m)、竪型容器内に装入した生ペレットの嵩密度が
ρ(t/m)の時、竪型容器から排出される養生済みペレットの圧潰強度が達成すべき基準強度を1/5・Hρ(kg/cm)として表示した。
 竪型容器の最下部のミニペレットにかかる上部ミニペレットによる静圧は、下広がりの形状から壁効果がなくなるため、1/10・Hρとなるが、ミニペレット粒子の圧潰強度には相当のバラツキがあり平均よりもかなり低い強度しか持たない粒子もあることを考慮し、粉化を極力抑制する見地から、その2倍を基準値としたものである。2水準の操業実績は、ともにこの基準値を達成することができた。この2水準のミニペレットを焼結機の配合原料中5%配合して、焼結機の操業を実施した結果、ダスト類をミニペレット化せずにそのまま添加した場合に比べて、それぞれ107.6%、109.5%の生産性改善を達成することができた。
 以上述べたように、本発明による高炉向けコールドペレット法においては、多大な設置スペースを必要とする養生ヤードを省略できることから、製造設備をコンパクトにすることが可能となり、設備設置場所の選択の自由度が増し、1次養生後の解砕作業が不要となるため、環境改善、省力化、歩留改善が可能となる。また、鉱石ヤード不足の製鉄所では、ヤード養生方式を本発明に変更することで滞船料の削減が可能となる。さらに、コールドペレットを乾燥するため、高炉使用時の炉頂温度の低下を回避できることから、高炉での使用量を増加させることができる。
 さらに、上記の結果、簡便なダスト類処理法であるミニペレット法が工業的に実施可能となり、ダスト類の直接添加に伴う焼結の生産性の低下を回避することが可能となる。この方法は、これに類する方法に用いるのに適している。
 本発明は、上記実施の形態に制限されるものではなく、本発明の精神および範囲から離脱することなく、様々な変更および変形が可能である。したがって、本発明の範囲を公にするために、以下の請求項を添付する。
優先権の主張
 本願は、2008年3月31日提出の日本国特許出願特願2008-89507を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (1)

  1. 製鉄所発生ダスト類、および/または微粉鉱石にバインダーとしてポルトランド系セメントを加え、混合、調湿、混練工程を経た後、パンペレタイザーで造粒し、しかる後に養生することで所要の圧潰強度を持った高炉向けコールドペレット、または焼結向けミニペレットを製造する方法において、以下の三つの条件を併せ持つ竪型容器の上部から生ペレットを装入し下端から排出することで移動層を形成せしめ、生ペレットの装入から排出までの期間にセメントの水和反応熱により養生することを特徴とする、セメントボンド塊成鉱の製造方法。
    1)下広がりの1/10~1/30のテーパを竪型容器胴体の全体または上部に有すること
    2)竪型容器下端に、該竪型容器下部の断面積全体をカバーできる大きさのテーブルフィーダーを配置し、装入物がピストンフローで降下することを保証できること
    3)生ペレットの装入が停止した際に、竪型容器下部から排出される養生済みのペレットを、バケットエレベーターにより直ちに竪型容器上部まで持ち上げ、かつ生ペレットの代りに供給することで、竪型容器の装入面の低下を防止できる供給装置を有すること。
PCT/JP2009/055399 2008-03-31 2009-03-19 セメントボンド塊成鉱の製造方法 WO2009122922A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN2009801200394A CN102046819B (zh) 2008-03-31 2009-03-19 水泥粘结团块矿的制造方法
CA2719899A CA2719899C (en) 2008-03-31 2009-03-19 Method of production of cement bonded agglomerated ore
US12/736,362 US8435439B2 (en) 2008-03-31 2009-03-19 Method of production of cement bonded agglomerated ore
BRPI0910107-1A BRPI0910107B1 (pt) 2008-03-31 2009-03-19 Método de produção de minério aglomerado ligado com cimento
KR1020107023849A KR101187063B1 (ko) 2008-03-31 2009-03-19 시멘트 본드 괴성광의 제조 방법
AU2009233017A AU2009233017B2 (en) 2008-03-31 2009-03-19 Process for producing cement-bonded ore agglomerates
EP09728133.1A EP2264195A4 (en) 2008-03-31 2009-03-19 METHOD FOR MANUFACTURING AGGLOMERATES OF ORE BORED WITH CEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008089507A JP4327222B1 (ja) 2008-03-31 2008-03-31 セメントボンド塊成鉱の製造方法
JP2008-089507 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122922A1 true WO2009122922A1 (ja) 2009-10-08

Family

ID=41135305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055399 WO2009122922A1 (ja) 2008-03-31 2009-03-19 セメントボンド塊成鉱の製造方法

Country Status (9)

Country Link
US (1) US8435439B2 (ja)
EP (1) EP2264195A4 (ja)
JP (1) JP4327222B1 (ja)
KR (1) KR101187063B1 (ja)
CN (1) CN102046819B (ja)
AU (1) AU2009233017B2 (ja)
BR (1) BRPI0910107B1 (ja)
CA (1) CA2719899C (ja)
WO (1) WO2009122922A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101499317B1 (ko) * 2013-04-30 2015-03-05 현대제철 주식회사 제철소 부산물을 이용한 브리켓 제조방법
JP6525806B2 (ja) * 2015-08-10 2019-06-05 日本製鉄株式会社 製鉄ダストの事前処理方法
CN113136487B (zh) * 2021-04-07 2021-12-31 内蒙古金辉稀矿股份有限公司 一种基于球团矿生产的膨润土添加剂制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53130202A (en) 1977-04-20 1978-11-14 Nippon Steel Corp Preparation of cold pellet of dust
JPS56105432A (en) * 1980-01-28 1981-08-21 Sumitomo Metal Ind Ltd Method and apparatus for producing cold-briquetted ore
JPS58133335A (ja) * 1982-02-02 1983-08-09 Nippon Kokan Kk <Nkk> 非焼成塊成鉱の製造方法および装置
JPS59107036A (ja) 1982-12-10 1984-06-21 Nippon Steel Corp 焼結原料用非焼成ミニペレツト
JPS6383231A (ja) 1986-09-26 1988-04-13 Tetsugen:Kk 非焼成塊成鉱の製造法
JP2008089507A (ja) 2006-10-04 2008-04-17 Toyota Motor Corp センサ取り付け構造
JP2008163399A (ja) * 2006-12-28 2008-07-17 Denka Consult & Eng Co Ltd 微粉末塊成化物の養生装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565623B2 (en) * 2001-03-20 2003-05-20 Startec Iron Llc Method and apparatus for curing self-reducing agglomerates
US7896963B2 (en) * 2003-09-23 2011-03-01 Hanqing Liu Self-reducing, cold-bonded pellets
JP7076387B2 (ja) 2019-01-16 2022-05-27 三菱電機株式会社 半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53130202A (en) 1977-04-20 1978-11-14 Nippon Steel Corp Preparation of cold pellet of dust
JPS56105432A (en) * 1980-01-28 1981-08-21 Sumitomo Metal Ind Ltd Method and apparatus for producing cold-briquetted ore
JPS58133335A (ja) * 1982-02-02 1983-08-09 Nippon Kokan Kk <Nkk> 非焼成塊成鉱の製造方法および装置
JPS59107036A (ja) 1982-12-10 1984-06-21 Nippon Steel Corp 焼結原料用非焼成ミニペレツト
JPS6383231A (ja) 1986-09-26 1988-04-13 Tetsugen:Kk 非焼成塊成鉱の製造法
JP2008089507A (ja) 2006-10-04 2008-04-17 Toyota Motor Corp センサ取り付け構造
JP2008163399A (ja) * 2006-12-28 2008-07-17 Denka Consult & Eng Co Ltd 微粉末塊成化物の養生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUNEO MIYASHITA ET AL.: "Cold Pellet no Renzoku Kyusoku Yojo Process no Kaihatsu Oyobi Seihin no Seijo Hyoka", JOURNAL OF THE IRON & STEEL INSTITUTE OF JAPAN, vol. 69, no. 16, December 1983 (1983-12-01), pages 1974 - 1981, XP008141930 *

Also Published As

Publication number Publication date
KR101187063B1 (ko) 2012-09-28
KR20100124846A (ko) 2010-11-29
JP4327222B1 (ja) 2009-09-09
BRPI0910107A8 (pt) 2017-10-17
EP2264195A4 (en) 2016-03-02
CN102046819A (zh) 2011-05-04
AU2009233017B2 (en) 2011-10-20
JP2009242848A (ja) 2009-10-22
US8435439B2 (en) 2013-05-07
CA2719899A1 (en) 2009-10-08
BRPI0910107A2 (pt) 2016-06-21
CA2719899C (en) 2013-11-26
CN102046819B (zh) 2013-04-10
AU2009233017A1 (en) 2009-10-08
US20110037206A1 (en) 2011-02-17
EP2264195A1 (en) 2010-12-22
BRPI0910107B1 (pt) 2018-05-22

Similar Documents

Publication Publication Date Title
JP2008095177A (ja) 高炉用含炭非焼成ペレットの製造方法
WO2009122922A1 (ja) セメントボンド塊成鉱の製造方法
JP2007197783A (ja) 回転炉床式還元炉での酸化金属の還元方法
JP5114742B2 (ja) 高炉用含炭非焼成ペレットの製造方法
JP4984488B2 (ja) 半還元焼結鉱の製造方法
JP2011063835A (ja) 塊成化状高炉用原料の強度改善方法
JP3863052B2 (ja) 高炉原料装入方法
WO1994005817A1 (en) Method for producing sintered ore
JP6680167B2 (ja) 高炉用含炭非焼成塊成鉱の製造方法
CN106191430B (zh) 一种抑制corex竖炉内球团黏结的涂层材料及其制备和使用方法
JP6020840B2 (ja) 焼結原料の製造方法
JP2002226920A (ja) 焼結鉱の製造方法および焼結鉱
JP5910542B2 (ja) 竪型溶解炉を用いた溶銑の製造方法
JP5131058B2 (ja) 鉄含有ダスト塊成化物および溶銑製造方法
JP6996485B2 (ja) 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法
JP6885386B2 (ja) 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法
JP6188022B2 (ja) スラグの製造方法及びスラグの製造システム
JP6992734B2 (ja) 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法
JP5867428B2 (ja) 竪型溶解炉を用いた溶銑の製造方法
JP2013087350A (ja) 非焼成溶銑脱りん材および非焼成溶銑脱りん材を用いた溶銑の脱りん方法
JP7227053B2 (ja) 焼結鉱の製造方法
JP3485787B2 (ja) 高炉用原料の装入方法
WO2022201562A1 (ja) 銑鉄製造方法
JP2003027150A (ja) 耐粉化特性に優れた非焼成塊成鉱の製造方法および非焼成塊成鉱
JPS62174334A (ja) 鉄鉱石ブリケツトの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120039.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728133

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2719899

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009233017

Country of ref document: AU

Ref document number: 6905/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009728133

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009233017

Country of ref document: AU

Date of ref document: 20090319

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107023849

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12736362

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0910107

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100930