WO2009122594A1 - 基本波ビート成分検出方法及びそれを用いる被測定信号のサンプリング装置並びに波形観測システム - Google Patents

基本波ビート成分検出方法及びそれを用いる被測定信号のサンプリング装置並びに波形観測システム Download PDF

Info

Publication number
WO2009122594A1
WO2009122594A1 PCT/JP2008/056809 JP2008056809W WO2009122594A1 WO 2009122594 A1 WO2009122594 A1 WO 2009122594A1 JP 2008056809 W JP2008056809 W JP 2008056809W WO 2009122594 A1 WO2009122594 A1 WO 2009122594A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
sampling
peak
under measurement
Prior art date
Application number
PCT/JP2008/056809
Other languages
English (en)
French (fr)
Inventor
幸夫 津田
Original Assignee
アンリツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アンリツ株式会社 filed Critical アンリツ株式会社
Priority to US12/308,263 priority Critical patent/US8195416B2/en
Priority to EP08739915.0A priority patent/EP2261681A4/en
Priority to CA002653572A priority patent/CA2653572A1/en
Priority to PCT/JP2008/056809 priority patent/WO2009122594A1/ja
Priority to JP2008550981A priority patent/JP4925018B2/ja
Publication of WO2009122594A1 publication Critical patent/WO2009122594A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/20Measurement of non-linear distortion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/02Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form
    • G01R13/0218Circuits therefor
    • G01R13/0272Circuits therefor for sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • G01R23/14Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage by heterodyning; by beat-frequency comparison

Definitions

  • the present invention relates to a fundamental wave beat component detection method, a measurement device sampling apparatus and a waveform observation system using the same, and in particular, performs sampling on an optical signal modulated with a high-speed repetitive signal to obtain waveform information thereof, In the system for observation, even when the signal under measurement is a signal having a plurality of harmonic components having the same power, it is possible to accurately detect the repetition frequency of the signal under measurement and acquire stable waveform information.
  • the present invention relates to a fundamental wave beat component detection method enabling observation, a signal under measurement sampling apparatus using the method, and a waveform observation system.
  • the waveform observation apparatus 10 shown in FIG. 10 is used.
  • This waveform observation apparatus 10 is a predetermined value (offset delay time) from N times the repetition period Tx of the waveform of the input optical signal to be measured P (N is an arbitrary integer greater than or equal to 1, for example, 100, 1000, etc.).
  • optical sampling pulse Ps generated by the optical sampling pulse generating means 11 is input to the optical sampling unit 12 together with the measured optical signal P.
  • pulse light obtained by sampling the optical signal P to be measured with the optical sampling pulse Ps is photoelectrically converted to be converted into an electric pulse signal Eo to be analog / digital (A / D) is output to the converter 13.
  • the A / D converter 13 converts the amplitude intensity of the electric pulse signal Eo into digital data and stores it in the waveform data memory 14.
  • the series of waveform data stored in the waveform data memory 14 is read by the display control means 15 and then displayed on the display 16 as the waveform of the measured optical signal P.
  • Such a sampling type waveform observation apparatus 10 is disclosed in, for example, Patent Document 1 described below.
  • the observation modes required for the waveform observation apparatus 10 as described above include a persistence mode and an averaging mode.
  • the persistence mode is a mode in which the measurement optical signal P is sampled, the acquired data is displayed on the screen of the display for a certain period of time, and the measurement waveform is displayed by the afterimage. Waveform changes can be observed almost in real time.
  • the averaging mode is a mode for sampling the measured optical signal P, averaging the waveform data for a plurality of data acquisition periods, and displaying the averaged waveform, and removing noise components. Waveform observation is possible.
  • the waveform of the measured optical signal is displayed as an afterimage as described above if sampling is not started from the same phase position of the repetitive waveform of the measured optical signal P when the measured optical signal P is sampled. Inconvenience that the displayed waveform is shifted in the time axis direction every time.
  • the averaging process cannot be performed correctly and the waveform cannot be reproduced correctly, and the waveform phase and amplitude fluctuation cannot be correctly grasped.
  • the repetition period of the waveform of the signal under measurement or the frequency (bit rate) of the signal itself needs to be known.
  • this type of waveform observing apparatus requires an optical mixer that generates an optical sampling pulse with a narrow width or mixes light with each other. If the display unit is included, the entire apparatus becomes complicated and expensive. There is a problem.
  • the signal under measurement is a sine wave having a single frequency Fx
  • the frequency component of the signal Sx obtained by sampling the signal under sampling with a temporary sampling frequency Fs ′ will be considered.
  • sampling pulse is an ideal pulse having an infinitely small width
  • the signal Sx obtained by sampling with this sampling pulse includes a difference and sum component between the frequency Fx of the signal under measurement and each frequency n ⁇ Fs ′.
  • the component having the lowest frequency is the difference frequency from the spectrum component of the frequency n ⁇ Fs ′ closest to the frequency Fx or the frequency (n + 1) ⁇ Fs ′, as shown in FIGS.
  • the difference frequency Fh ′ can be expressed as follows.
  • Fh ′ mod [Fx, Fs ′] (when mod [Fx, Fs ′] ⁇ Fs ′ / 2)
  • Fh ′ (Fs ′ / 2) ⁇ mod [Fx, Fs ′] (when mod [Fx, Fs]> Fs / 2)
  • mod [A, B] represents the remainder when A is divided by B.
  • this difference frequency Fh ′ is Fs ′ / 2 at the maximum, it can be easily extracted by using a low-pass filter having a band upper limit Fs ′ / 2.
  • the change ⁇ Fh of the difference frequency Fh ′ accompanying the minute change ⁇ Fs of the temporary sampling frequency Fs ′ is given by the following equation obtained by differentiating the difference frequency Fh ′ with respect to the frequency Fs ′.
  • the symbol quotient [A, B] represents an integer quotient when A is divided by B.
  • FIG. 14 is a flowchart showing an example of the procedure of the method for detecting the repetition frequency of the signal under measurement as described above.
  • the signal under measurement is sampled at the provisional sampling frequency Fs ′ (step S1), and the frequency Fh of the specific signal that appears in the band of 1 ⁇ 2 or less of the provisional sampling frequency Fs ′ among the signals obtained by the sampling. 'Is detected (step S2).
  • the temporary sampling frequency Fs ′ is changed by a minute amount ⁇ Fs (for example, 1 Hz) (step S3), and the frequency change amount ⁇ Fh of the specific signal at that time is detected (step S4).
  • a minute amount ⁇ Fs for example, 1 Hz
  • the repetition frequency Fx of the signal under measurement is calculated by substituting the temporary sampling frequency Fs ′ and its frequency change amount ⁇ Fs, the frequency Fh ′ of the specific signal and its frequency change amount ⁇ Fh into the following equation (1). (Step S5).
  • Patent Document 2 discloses a waveform observation system including a sampling device to which the above-described measurement signal repetition frequency detection method is applied.
  • FIG. 15 shows the configuration of a waveform observation system 20 including a sampling device to which the above-mentioned signal under measurement repetition frequency detection method is applied.
  • the waveform observation system 20 includes a sampling device 21 and a digital oscilloscope 60.
  • the sampling device 21 is a narrow-width light generated from the sampling pulse generator 25 based on the clock signal C generated by the signal generator 24 by the optical sampling unit 26 using the optical signal P to be measured input from the input terminal 21a. Sampling is performed with a sampling pulse, which is a pulse, to obtain a pulse signal Eo as waveform information.
  • the digital oscilloscope 60 stores and displays the waveform information obtained by the sampling device 21.
  • This sampling device 21 is designated when the repetition period of the waveform to be observed is accurately known, and when the repetition period of the waveform to be observed is unknown or only its approximate value is known.
  • An automatic setting mode is provided, and the manual setting mode and the automatic setting mode can be selectively designated by operating an operation unit (not shown).
  • the clock signal C and the trigger signal G generated by the signal generator 24 can be output to the outside via the clock output terminal 21b and the trigger output terminal 21d, respectively.
  • the pulse signal Eo from the optical sampling unit 26 is configured to be output to the outside via the sample signal output terminal 21c.
  • the output terminals 21b to 21d of the sampling device 21 are connected to the external clock input terminal 60a, the first channel input terminal 60b, and the second channel input terminal 60c of the digital oscilloscope 60, respectively.
  • the digital oscilloscope 60 arbitrarily designates an external clock synchronization function for performing A / D conversion processing on signals input from the channel input terminals 60b and 60c in synchronization with a clock signal input to the external clock input terminal 60a.
  • an external trigger function for storing data obtained by A / D conversion processing as waveform data for each channel, and a waveform display function for displaying the stored waveform data on the time axis. Configured so that any of the persistence display mode and averaged display mode can be selected as the mode. It has been.
  • an optical signal to be measured P having a substantially rectangular wave with a duty ratio of 50% is input to the input terminal 21a, and the approximate repetition period Tx ′ (frequency Fx ′) of the waveform is input.
  • the information corresponding to the sampling offset delay time ⁇ T are designated by the parameter designation unit 22 and the automatic setting mode is designated by an operation unit (not shown).
  • the calculation unit 23 calculates a temporary sampling frequency Fs ′ and a trigger frequency Fg ′ based on the designated approximate repetition frequency Fx ′ and offset delay time ⁇ T, and sets them in the signal generation unit 24.
  • the calculation unit 23 performs calculation using a specified value, for example, 10 GHz as the repetition frequency Fx ′.
  • the signal generator 24 outputs a clock signal C having a temporary sampling frequency Fs ′.
  • the optical sampling unit 26 samples the measured optical signal P at the temporary sampling frequency Fs ′, and the pulse signal Eo obtained by the sampling is input to the specific signal frequency detection unit 27.
  • the specific signal frequency detection unit 27 uses, as the specific signal, a frequency component having the highest level that appears in a band of 1 ⁇ 2 or less of the temporary sampling frequency Fs ′ among the frequency components included in the pulse signal Eo obtained by the sampling.
  • the frequency Fh ′ is detected.
  • the spectrum of the optical sampling pulse Ps used for sampling appears at intervals of the frequency Fs ′ as shown in FIG. 17, and the spectrum of the waveform of the measured optical signal P appears at intervals of the frequency Fx. Moreover, the higher the level, the smaller the level.
  • the specific signal frequency detection unit 27 obtains the difference frequency Fh ′ between the lowest-order frequency Fx and the temporary sampling frequency component n ⁇ Fs ′ closest to the frequency Fx as the frequency of the specific signal, and repeat frequency calculation unit To 28.
  • the repetition frequency calculation unit 28 stores the frequency Fh ′ and instructs the signal generation unit 24 to perform provisional sampling.
  • An instruction is given to change the frequency Fs ′ by a minute amount (for example, 1 Hz).
  • the provisional sampling frequency Fs ′ with respect to the optical signal P to be measured is changed by a minute amount ⁇ Fs, and the specific signal detected by the specific signal frequency detection unit 27 is changed along with this change.
  • the frequency changes by ⁇ Fh, and the repetition frequency Fx of the waveform of the optical signal is calculated from the change amount by the following equation and set in the calculation unit 23.
  • the calculation unit 23 calculates a normal sampling frequency Fs and a trigger frequency Fg that exactly correspond to the input signal on the basis of the accurate repetition frequency Fx calculated by the repetition frequency calculation unit 28 and sets it in the signal generation unit 24. .
  • the measured optical signal P is sampled by the optical sampling pulse Ps, and the pulse signal Eo obtained by the sampling is sent from the optical sampling unit 26 via the sample signal output terminal 21c as shown in FIG.
  • the signal is input to the first channel input terminal 60 b of the digital oscilloscope 60.
  • the signal generator 24 generates a trigger signal G having a period equal to the period of the waveform of the envelope connecting the peaks of the pulse signal Eo, via the trigger output terminal 21d.
  • a trigger signal G having a period equal to the period of the waveform of the envelope connecting the peaks of the pulse signal Eo, via the trigger output terminal 21d.
  • FIG. 18A shows the time axis of the waveform shown in FIG.
  • the digital oscilloscope 60 performs A / D conversion processing on the pulse signal Eo in synchronization with the clock signal C, sequentially outputs envelope data connecting the peak points of the pulse signal Eo as optical signal waveform data, and trigger signal G The acquisition of the waveform data is started from the timing when the trigger level exceeds the trigger level in the predetermined direction.
  • the waveform of the optical signal P is displayed as an afterimage at the point of the offset delay time ⁇ T interval.
  • the digital oscilloscope 60 starts to acquire waveform data at every timing when the trigger signal G exceeds the trigger level in a predetermined direction, and updates and displays the waveform. As described above, the sampling frequency and trigger frequency of the sampling device 20 are displayed. Corresponds accurately to the repetition frequency of the waveform of the input optical signal P, so that the position of the displayed waveform is not always shifted, and stable waveform observation can be performed.
  • the method of detecting the repetition frequency of the signal under measurement disclosed in Patent Document 2 is summarized as follows: fs / 2 or less of signals obtained when the signal under measurement is sampled at a certain repetition frequency fs.
  • the frequency fh of the specific signal appearing in the band is measured, and then the frequency change amount dfh of the specific signal obtained when sampling is performed by changing the sampling frequency by the minute frequency dfs.
  • fx fh ⁇ fs ⁇ dfh / dfs (when 0> dfh / dfs)
  • fx ⁇ fh + fs ⁇ dfh / dfs (when 0 ⁇ dfh / dfs)
  • specific measurement of the frequency change amount dfh of the specific signal is performed, for example, as follows.
  • a signal under measurement having a waveform as shown in FIG. 24A is sampled at a certain repetition frequency fs, and the obtained signal is obtained by using a technique such as Fourier transform, as shown in FIG. A spectrum as shown in (b) is obtained.
  • the frequency component having the maximum peak power in the band of fs / 2 or less is detected as a specific signal, and the frequency fh is obtained.
  • the signal under measurement is sampled by changing the sampling frequency by the minute frequency dfs, and a spectrum as shown in FIG. 24C is obtained using the same method as described above.
  • a frequency component having the maximum peak power in a band of 1 ⁇ 2 or less of the sampling frequency is detected as a specific signal, and the frequency fh of the specific signal before the sampling frequency is changed from that frequency.
  • the frequency change amount dfh of the specific signal with respect to the sampling frequency change is obtained by subtracting.
  • Patent Document 2 the method for detecting the repetition frequency of the signal under measurement disclosed in Patent Document 2 still has the following problems to be solved.
  • the signal under measurement is a signal having a plurality of harmonic components having the same power, a large error may occur in the measurement result of the repetition frequency detection of the signal under measurement. is there.
  • the signal under measurement is a signal “having a plurality of harmonic components having the same power”, for example, there are the following cases.
  • the pulse width is narrow with respect to the pulse period
  • the pulse width w is narrow with respect to the pulse period 1 / fx.
  • the pulse width is narrower than the pulse period, the power of the harmonic component is only gradually reduced, and there are many harmonic components.
  • the spectrum includes a harmonic 2fx / frequency having a frequency fx / 5 obtained by dividing the pulse repetition frequency (or bit rate) fx by the pattern length (bit length). 5, 3fx / 5, 4fz / 5 ... many components exist.
  • each spectrum power varies greatly depending on the duty and waveform indicating how much the signal state is maintained per time slot.
  • the signal obtained by sampling the signal under measurement includes a plurality of frequency components of the signal under measurement.
  • harmonic components of sampling frequencies closest to those frequencies appear as shown in FIG.
  • the spectrum powers of the plurality of beat frequency components may be similar, and which spectrum component should be focused on. In some cases, it may not be possible to determine whether a spectrum component is a peak component by simply comparing the peak power.
  • the repetition frequency of the signal under measurement disclosed in Patent Document 2 is a signal under measurement having a repetition frequency of about 10 GHz and a pulse width of about 5 picoseconds as shown in FIG.
  • the case where the detection method is applied will be specifically described below.
  • this signal under measurement is sampled at a sampling frequency of 10 MHz, for example, and Fourier transform is performed on the obtained signal, a plurality of peak signals having the same peak power are obtained as shown in FIG. A spectrum is obtained.
  • the peak signal indicated by the arrow in the figure having the highest peak power is detected as a specific signal from the spectrum as shown in FIG. 25C, and its frequency 2.6 MHz is obtained. .
  • this calculation result is 200.005 GHz for the signal under measurement having a repetition frequency of about 10 GHz, it is clearly wrong.
  • the beat frequency component (harmonic beat component) caused by the second harmonic component (about 20 GHz) of the signal under measurement was first determined to be a specific signal and detected.
  • the beat frequency component (harmonic beat component) caused by the fundamental wave (about 10 GHz) of the signal under measurement was determined to be a specific signal and detected.
  • the signal under measurement has a plurality of harmonic components having the same power.
  • the repetition frequency of the signal under measurement cannot be accurately detected from the sampling result, stable waveform information cannot be acquired and observed, and the entire system cannot be easily configured.
  • the object of the present invention is to solve these problems, and even when the signal under measurement is a signal having a plurality of harmonic components having the same power, among the plurality of peak signals included in the sampling result, A fundamental wave beat component detection method for discriminating which peak signal is a beat component due to the fundamental wave component of the signal under measurement, and using this to accurately detect the repetition frequency of the signal under measurement.
  • a third stage (S14, S15) to calculate The respective theoretical frequencies fc [i, j] of the harmonic beat components sequentially calculated for each peak signal in the third step (S14, S15) are detected in the second step (S13).
  • the harmonic beat components that best match the frequency fb [i] of the plurality of peak signals are sequentially compared with the frequencies fb [i] of the plurality of peak signals.
  • a fourth step of determining that the peak signal giving the theoretical frequency fc [k, j] (k is an integer) is the fundamental beat component caused by the fundamental wave of the signal under measurement (P) ( S16, S17, S18),
  • a fundamental wave beat component detecting method is provided.
  • fb [i] is the frequency of the fundamental beat component
  • fc [i, j] mod (j ⁇ fb [i], fs) ... mod (j ⁇ fb [i], fs) ⁇ fs / 2
  • fc [i, j] fs ⁇ mod (j ⁇ fb [i], fs)... fundamental wave beat component detection method according to the first aspect, wherein calculation is performed based on the case of mod (j ⁇ fb [i], fs) ⁇ fs / 2 Is provided.
  • the fourth step (S16, S17, S18) A fifth step (S19, S20) for sequentially calculating the sum of absolute values of frequency differences between the theoretical frequencies fc [i, j] of the harmonic beat components and the plurality of peak signals closest to them.
  • k, j] (k is an integer)
  • a sixth step (S21) for determining that the peak signal is the fundamental beat component caused by the fundamental wave of the signal under measurement (P).
  • a fundamental wave beat component detection method is provided.
  • An input terminal (21a) for inputting a signal under measurement (P); A signal generator (24) for generating a clock signal (C) having a designated sampling frequency; A sampling pulse generator (25) for generating a sampling pulse synchronized with the clock signal (C); A sampling section (26) for sampling the signal under measurement (P) input to the input terminal (21a) with the sampling pulse; A spectrum analysis unit (51) for receiving an output signal from the sampling unit (26) and outputting a spectrum of the output signal; Among the spectrum output from the spectrum analysis unit (51), a plurality of peak signals appearing in a band of 1 ⁇ 2 or less of the designated sampling frequency are detected, and the frequencies Fb [i] ( peak signal detector (52) for obtaining i 1, 2, 3,.
  • each of the plurality of peak signals detected by the peak signal detector (52) is a beat component (fundamental beat component) caused by the fundamental wave of the signal under measurement (P)
  • a theoretical frequency calculation unit (53) for calculating The plurality of theoretical frequencies Fc [i, j] of the harmonic beat components sequentially calculated for each peak signal by the theoretical frequency calculator (53) are obtained by the peak signal detector (52).
  • the peak beat signal frequency Fb [i] is sequentially compared, and based on the comparison result, the harmonic beat component theory that best matches the frequency Fb [i] of the plurality of peak signals.
  • the peak signal giving the frequency Fc [k, j] (k is an integer) is determined to be the fundamental wave beat component (specific signal) caused by the fundamental wave of the signal under measurement (P), and the peak A fundamental beat component frequency output unit (50) for outputting the frequency Fb [k] of the signal as a specific signal frequency (Fh ′);
  • the provisional sampling frequency (Fs ′) is designated to the signal generator (24), and the provisional sampling frequency is changed by a predetermined amount ( ⁇ Fs), and the specific signal frequency relative to the amount of change in the sampling frequency is changed.
  • a change amount ( ⁇ Fh) is obtained, and based on the temporary sampling frequency, the specific signal frequency with respect to the temporary sampling frequency, the change amount of the sampling frequency, and the change amount of the specific signal frequency, the signal under measurement
  • a sampling apparatus for a signal under measurement is provided.
  • the fundamental beat component frequency output unit (50) Sequentially calculating the sum of absolute values of frequency differences between the theoretical frequencies Fc [i, j] of the harmonic beat components and the plurality of peak signals closest to them; Among the plurality of peak signals, a theoretical frequency Fc [k, j] (k is an integer) of the harmonic beat component that minimizes the sum of the absolute values sequentially calculated for each peak signal is given.
  • the peak signal is determined to be the fundamental wave beat component caused by the fundamental wave of the signal under measurement (P), and the frequency Fb [k] of the peak signal is output as the specific signal frequency (Fh ′).
  • a sampling apparatus for a signal under measurement there is provided.
  • the fundamental beat component frequency output unit (50) Sequentially calculating the absolute value of the frequency difference between each theoretical frequency Fc [i, j] of the harmonic beat component and the plurality of peak signals closest thereto, From the absolute values sequentially calculated for each of the peak signals, by sequentially extracting a specified number of sets in order from the smallest value and calculating their sum sequentially, Among the plurality of peak signals, the theoretical frequency Fc [k, j] (k is the harmonic beat component that minimizes the sum of the prescribed number of absolute values calculated sequentially for each peak signal.
  • the peak signal giving an integer is determined to be the fundamental wave beat component caused by the fundamental wave of the signal under measurement (P), and the frequency Fb [k] of the peak signal is determined as the specific signal frequency (Fh ′). ) Is output as a signal to be measured, according to the sixth aspect.
  • An input terminal (21a) for inputting a signal under measurement (P); A signal generator (24) for generating a clock signal (C) having a designated sampling frequency; A sampling pulse generator (25) for generating a sampling pulse synchronized with the clock signal (C); A sampling section (26) for sampling the signal under measurement (P) input to the input terminal (21a) with the sampling pulse; A spectrum analysis unit (51) for receiving an output signal from the sampling unit (26) and outputting a spectrum of the output signal; Among the spectrum output from the spectrum analysis unit (51), a plurality of peak signals appearing in a band of 1 ⁇ 2 or less of the designated sampling frequency are detected, and the frequencies Fb [i] ( peak signal detector (52) for obtaining i 1, 2, 3,.
  • each of the plurality of peak signals detected by the peak signal detector (52) is a beat component (fundamental beat component) caused by the fundamental wave of the signal under measurement P
  • the peak beat signal frequency Fb [i] is sequentially compared, and based on the comparison result, the harmonic beat component theory that best matches the frequency Fb [i] of the plurality of peak signals.
  • the peak signal giving the frequency Fc [k, j] (k is an integer) is determined to be the fundamental wave beat component caused by the fundamental wave of the signal under measurement (P), and the frequency Fb of the peak signal is determined.
  • the provisional sampling frequency (Fs ′) is designated to the signal generator (24), and the provisional sampling frequency is changed by a predetermined amount ( ⁇ Fs), and the specific signal frequency relative to the amount of change in the sampling frequency is changed.
  • a change amount ( ⁇ Fh) is obtained, and based on the temporary sampling frequency, the specific signal frequency with respect to the temporary sampling frequency, the change amount of the sampling frequency, and the change amount of the specific signal frequency, the signal under measurement
  • a display control unit (46) for reading out a series of waveform data stored in the waveform data memory (45) and displaying it on the time axis of the display unit (46) at intervals corresponding to the offset delay time ( ⁇ T); A system for observing a waveform of a signal under measurement is provided.
  • the fundamental beat component frequency output unit (50) Sequentially calculating the sum of absolute values of frequency differences between the theoretical frequencies Fc [i, j] of the harmonic beat components and the plurality of peak signals closest to them; Among the plurality of peak signals, a theoretical frequency Fc [k, j] (k is an integer) of the harmonic beat component that minimizes the sum of the absolute values sequentially calculated for each peak signal is given.
  • the peak signal is determined to be the fundamental wave beat component caused by the fundamental wave of the signal under measurement (P), and the frequency Fb [k] of the peak signal is output as the specific signal frequency (Fh ′).
  • a waveform observation system for a signal under measurement according to a tenth aspect is provided.
  • the fundamental beat component frequency output unit (50) Sequentially calculating the absolute value of the frequency difference between each theoretical frequency Fc [i, j] of the harmonic beat component and the plurality of peak signals closest thereto, From the absolute values sequentially calculated for each of the peak signals, by sequentially extracting a specified number of sets in order from the smallest value and calculating their sum sequentially, Among the plurality of peak signals, the theoretical frequency Fc [k, j] (k is the harmonic beat component that minimizes the sum of the prescribed number of absolute values calculated sequentially for each peak signal.
  • the peak signal giving an integer is determined to be the fundamental wave beat component caused by the fundamental wave of the signal under measurement (P), and the frequency Fb [k] of the peak signal is determined as a specific signal frequency (Fh ′).
  • Fh ′ a specific signal frequency
  • the fundamental wave beat component detection method of the present invention is 1 ⁇ 2 of the certain sampling frequency fs in the spectrum obtained by analyzing the signal obtained by sampling the signal under measurement P at the certain frequency fs.
  • the signal under measurement P is the same by measuring the repetition frequency of the signal under measurement P using the above-mentioned fundamental wave beat component detection method. Even in the case of a signal having a plurality of harmonic components having a high power, the signal under measurement P can be sampled with high accuracy and the waveform of the signal under measurement P can be observed with high accuracy.
  • FIG. 1 is a flowchart for explaining the procedure of the fundamental wave beat component detection method according to the first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the principle of the fundamental wave beat component detection method according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart for explaining the procedure of the fundamental wave beat component detection method according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram for explaining a configuration of a waveform observation system including a signal under measurement sampling apparatus according to the second embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration example of a main part of a waveform observation system including a signal under measurement sampling apparatus according to the second embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the operation of the main part of the waveform observation system including the sampling apparatus for the signal under measurement according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration example of a main part of a waveform observation system including a signal under measurement sampling apparatus according to the second embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a configuration example of a main part of a waveform observation system including a measured signal sampling apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a block diagram for explaining the configuration of a waveform observation system including a signal under measurement sampling apparatus according to the third embodiment of the present invention.
  • FIG. 10 is a block diagram shown for explaining the configuration of a conventional waveform observation apparatus.
  • FIG. 10 is a block diagram shown for explaining the configuration of a conventional waveform observation apparatus.
  • FIG. 11 is a figure shown in order to demonstrate operation
  • FIG. 12 is a diagram for explaining the principle of the method for detecting the repetition frequency of the signal under measurement according to the Japanese prior application filed by the present inventor.
  • FIG. 13 is a diagram for explaining the principle of the method for detecting the repetition frequency of the signal under measurement according to the Japanese prior application filed by the present inventor.
  • FIG. 14 is a flowchart shown for explaining the method for detecting the repetition frequency of the signal under measurement according to the Japanese prior application filed by the present inventor.
  • FIG. 15 is a block diagram shown for explaining the configuration of a waveform observation system including a measured signal sampling apparatus according to the Japanese prior application filed by the inventor of the present application.
  • FIG. 12 is a diagram for explaining the principle of the method for detecting the repetition frequency of the signal under measurement according to the Japanese prior application filed by the present inventor.
  • FIG. 13 is a diagram for explaining the principle of the method for detecting the repetition frequency of the signal under measurement according to the Japanese
  • FIG. 16 is a diagram for explaining the operation of the main part of the waveform observation system including the measured signal sampling apparatus according to the Japanese prior application filed by the inventor of the present application.
  • FIG. 17 is a diagram for explaining the operation of the main part of the waveform observation system including the measured signal sampling apparatus according to the Japanese prior application filed by the inventor of the present application.
  • FIG. 18 is a diagram for explaining the operation of the main part of the waveform observation system including the measured signal sampling device according to the Japanese prior application filed by the inventor of the present application.
  • FIG. 19 is a diagram for explaining an example of an observation waveform obtained by a waveform observation system including a signal-under-measurement sampling apparatus according to the Japanese prior application filed by the present inventor.
  • FIG. 20 is a waveform diagram shown for explaining an example when the signal under measurement is a signal having a plurality of harmonic components having the same power.
  • FIG. 21 is a waveform diagram shown for explaining another example when the signal under measurement is a signal having a plurality of harmonic components having the same power.
  • FIG. 22 is a block diagram and a waveform diagram for explaining another example in the case where the signal under measurement is a signal having a plurality of harmonic components having the same power.
  • FIG. 23 is a waveform diagram shown for explaining a different example when the signal under measurement is a signal having a plurality of harmonic components having the same power.
  • FIG. 24 is a waveform diagram shown for explaining the operation of the waveform observation system including the measured signal sampling apparatus according to the Japanese prior application filed by the inventor of the present application.
  • FIG. 25 is a waveform diagram for explaining a different example when the signal under measurement is a signal having a plurality of harmonic components having the same power.
  • FIG. 26 shows a signal having a plurality of harmonic components having the same power as the signal to be measured as shown in FIG. 25A by the fundamental beat component detection method according to the first embodiment of the present invention. It is a wave form diagram shown in order to demonstrate the case where it applies to.
  • FIG. 27 shows a signal having a plurality of harmonic components having the same power as the signal to be measured as shown in FIG. 25A by the fundamental beat component detection method according to the first embodiment of the present invention. It is a wave form diagram shown in order to demonstrate the case where it applies to.
  • FIG. 26 shows a signal having a plurality of harmonic components having the same power as the signal to be measured as shown in FIG. 25A by the fundamental beat component detection method according to the first embodiment of the present invention. It is a wave form diagram shown in order to demonstrate the case where it applies to.
  • FIG. 26 shows
  • FIG. 28 is a waveform diagram shown for explaining the operation of the waveform observation system including the signal under measurement sampling apparatus according to the second embodiment of the present invention.
  • FIG. 29 is a waveform diagram shown for explaining the operation of the waveform observation system including the measured signal sampling apparatus according to the second embodiment of the present invention.
  • FIG. 1 is a flowchart for explaining the procedure of the fundamental wave beat component detection method according to the first embodiment of the present invention.
  • the fundamental wave beat component detection method basically includes a first step of analyzing a signal obtained by sampling the signal under measurement P at a sampling frequency fs and obtaining a spectrum thereof, and the first step.
  • the peak signals detected by the second stage are assumed to be beat components (fundamental beat components) caused by the fundamental wave of the signal under measurement P.
  • the harmonic beats of the plurality of peak signals are sequentially compared with the frequency fb [i], and the harmonic beats that most closely match those frequencies fb [i] among the plurality of peak signals based on the comparison result.
  • a fourth step of determining that the peak signal giving the theoretical frequency fc [k, j] (k is an integer) of the component is the fundamental beat component caused by the fundamental wave of the signal under measurement P; It is characterized by having.
  • the optical signal to be measured P is sampled with a sampling signal Ps having a certain sampling frequency fs (step S11).
  • the signal obtained by sampling in step S11 is analyzed to obtain its spectrum.
  • a plurality of peak signals appearing in a band of 1/2 or less of the certain sampling frequency fs are detected, and these are detected.
  • each of the plurality of peak signals detected in steps S12 and S13 is a beat component (fundamental beat component) caused by the fundamental wave of the signal under measurement P
  • the harmonics of the signal under measurement P are assumed.
  • the theoretical frequencies fc [i, j] of the harmonic beat components sequentially calculated for each peak signal in steps S14 and S15 are the frequencies of the plurality of peak signals obtained in steps S12 and S13. It is sequentially compared with fb [i] (steps S16 and S17).
  • step S18 based on the result of the sequential comparison for each peak signal in steps S16 and S17, the theoretical frequency of the harmonic beat component that best matches the frequency fb [i] of the plurality of peak signals. It is judged that the peak signal giving fc [i, j] is the fundamental beat component (step S18).
  • the fundamental wave beat component detection method according to the first embodiment of the present invention as described above is a signal under measurement having a plurality of harmonic components having the same power as shown in FIG.
  • P repetition frequency
  • pulse width 5 picoseconds
  • the signal P to be measured is sampled at a sampling frequency of 10 MHz, for example, and the signal obtained by the sampling is analyzed by a technique such as high-speed Fourier transform, as shown in FIG. The spectrum as shown is obtained.
  • step S13 as indicated by an arrow in FIG. 26 (a), the maximum peak power appearing in a band of 5 MHz or less, which is half the sampling frequency, of the spectrum obtained in step S12.
  • a peak signal of a frequency component having (Pmax) is detected.
  • fc [i, j] mod (j ⁇ fb [i], fs)... mod (j ⁇ fb [i], fs) ⁇ fs / 2
  • fc [i, j] fs ⁇ mod (j ⁇ fb [i ], Fs)... Mod (j ⁇ fb [i], fs) ⁇ fs / 2.
  • FIG. 2 is a diagram for explaining how the theoretical harmonic beat components calculated based on the above formula are arranged on the frequency axis.
  • the peak signal indicated by the numerical value 1 is represented by the fundamental wave.
  • the frequency of the harmonic beat component is calculated assuming the beat component.
  • the numbers 2 to 10 indicate the calculated orders of the harmonic beat components, where the second to third harmonic beat components are simply frequency positions of the order of the fundamental beat component frequency. However, in the case of higher-order beat components, the frequency multiplied by the order becomes fs / 2 or more, so that frequency folding occurs.
  • the 4th to 7th harmonic beat components are arranged at a frequency position obtained by folding a frequency position obtained by multiplying the order of the fundamental wave beat component frequency around fs / 2.
  • the 8th to 10th harmonic beat components are arranged at frequency positions obtained by folding the frequency position obtained by multiplying the order of the fundamental wave beat component frequency around fs / 2 and fs, respectively.
  • an arrow A shows how such a frequency is folded.
  • fb [1] 0.8 MHz
  • fc [1, j] 2 to 7
  • fc [1, j] ⁇ 1.6, 2.4, 3.2, 4.0, 4.8, 4.4 ⁇ MHz
  • step S16, S17, and S18 the frequency difference between each theoretical frequency fc [i, j] of the harmonic beat component and the plurality of peak signals closest to them.
  • step S19 and S20 the absolute values are sequentially calculated (steps S19 and S20), and among the plurality of peak signals, the sum of the absolute values sequentially calculated for each of the peak signals by the steps S19 and S20 is calculated. It is determined that the peak signal giving the theoretical frequency fc [k, j] (k is an integer) of the harmonic beat component that is minimized is the fundamental beat component (step S21).
  • the spectrum of FIG. 27D is clearly observed and actually observed as shown in FIG. It is similar to the spectrum of a plurality of peak signals, and the fourth peak signal from the left in FIG. 26B can be determined as the fundamental wave beat component.
  • the absolute frequency difference between each theoretical frequency fc [i, j] of the harmonic beat component and the plurality of peak signal frequencies fb [i] closest to them are calculated sequentially (steps S22 and S23), and a specified number of sets in the order of decreasing values are extracted from the absolute values sequentially calculated for each peak signal in steps S22 and S23.
  • the respective sums are sequentially calculated (steps S24 and S25), so that among the plurality of peak signals, the prescribed number of absolute values of the predetermined number of sets that are sequentially calculated for each peak signal by the steps S24 and S25. It is determined that the peak signal giving each theoretical frequency fc [k, j] of the harmonic beat component that minimizes the sum is the fundamental beat component (step S26). It may be.
  • the peak power of a harmonic component of a certain order is very small compared to the power of a higher harmonic component depending on the signal under measurement.
  • this is a technique that takes this into consideration.
  • each of a plurality of beat components obtained by sampling the signal under measurement is a beat component due to which order frequency component of the signal under measurement. It is possible to determine whether it exists.
  • the frequency of the harmonic beat component can also be obtained according to the calculation formula of the theoretical frequency of the harmonic beat component described above.
  • a signal obtained by sampling the signal under measurement P at a certain sampling frequency fs is analyzed to obtain a spectrum of the signal.
  • a plurality of peak signals appearing in a band less than or equal to 1 ⁇ 2 of the certain sampling frequency fs are detected, and the frequencies fb [i] of the plurality of peak signals are obtained.
  • the logical frequency fc [i, j] is sequentially compared with the frequency fb [i] of the plurality of peak signals, and based on the result of the sequential comparison for each peak signal, among the plurality of peak signals,
  • the peak signal that gives the theoretical frequency fc [k, j] (k is an integer) of the harmonic beat component that most closely matches the frequency fb [i] of the above is determined to be the fundamental wave beat component. Therefore, even when the signal under measurement P is a signal having a plurality of harmonic components having the same power, the fundamental wave beat component that is a beat component resulting from the fundamental wave component of the signal under measurement P is correctly detected. can do.
  • FIG. 4 is a block diagram for explaining a configuration of a waveform observation system including a signal under measurement sampling apparatus according to the second embodiment of the present invention.
  • the waveform observation system 20 according to the second embodiment is described above in order to perform step S11 of the fundamental wave beat component detection method according to the first embodiment as shown in FIG.
  • the parameter specifying unit 22, the calculation unit 23, the signal generation unit 24, and the sampling pulse generation unit 25 are the same as those of the waveform observation system 20 including the sampling device of the signal under measurement according to the Japanese prior application of the present inventor shown in FIG. And an optical sampling unit 26 and a repetition frequency calculation unit 28.
  • the waveform observation system 20 specifically performs steps S12 to S18 of the fundamental wave beat component detection method according to the first embodiment described above, as shown in FIG.
  • FIG. 4 parts that are configured in the same manner as in FIG. 15 described above are denoted by the same reference numerals, description thereof is omitted, and parts that are not described in FIG. 15 are described below. To do.
  • the parameter specifying unit 22 is for specifying information corresponding to the repetition period Tx of the waveform of the optical signal to be measured P and the sampling offset delay time ⁇ T by operating an operation unit (not shown).
  • the manual setting mode In this case, an accurate repetition period Tx is specified, and in the automatic setting mode, the approximate value Tx ′ is specified or nothing is specified.
  • the designation information may be not only the period value but also a frequency value corresponding to the period value, and may be information such as a number for designating one from preset values.
  • the calculation unit 23 Based on the information specified by the parameter specification unit 22 or the fundamental frequency information of the signal under measurement P output from the repetition frequency calculation unit 28 described later, the calculation unit 23 repeats the repetition period Tx of the signal under measurement P (or its frequency). A sampling period Ts (sampling frequency Fs) that is different from the integer (N) times the approximate value Tx ′) by an offset delay time ⁇ T is calculated.
  • the calculation unit 23 calculates, as a trigger period Tg (frequency Fg), a time necessary for obtaining data for one period of the waveform to be observed with the calculated sampling period with a resolution of ⁇ T.
  • Fs Fx / (N + Fx ⁇ ⁇ T) It is calculated by the operation of
  • the trigger frequency Fg is as described above.
  • the signal generator 24 is a clock signal C of the sampling frequency Fs calculated by the calculator 23 or the temporary sampling frequency Fs ′ designated by the repetition frequency calculator 28, and a narrow pulse by the optical sampling pulse generator 25 described later.
  • a high-frequency signal U and a trigger signal G having a frequency Fg necessary for generating light are generated and output.
  • the configuration of the signal generator 24 is arbitrary.
  • the signal U is generated by multiplying a stable and accurate reference signal (for example, 1 GHz ⁇ 1 MHz), and the clock signal is divided by dividing the signal U.
  • C and trigger signal G are generated.
  • the optical sampling pulse generator 25 generates an optical sampling pulse Ps having a period equal to that of the clock signal C output from the signal generator 24.
  • the pulse width of the optical sampling pulse Ps generated by the optical sampling pulse generator 25 determines the upper limit of the sampling time resolution. The narrower the pulse width, the higher the time resolution can be sampled.
  • the optical sampling pulse generator 25 enters the continuous light CW emitted from the light source 25a into the modulator 25b and modulates it with the signal U as shown in FIG. Then, as shown in FIG. 6A, the pulse light Pa having a relatively narrow width is generated with the period Tu of the signal U, and the pulse light Pa is input to the thinning unit 25c.
  • the thinning-out unit 25c has an optical switch that is turned on for a short time in the cycle of the clock signal C, and outputs the pulsed light Pb having the cycle Ts of the clock signal C as shown in FIG.
  • This pulsed light Pb is input to an automatic gain control type fiber amplifier 25d, amplified to pulsed light Pb 'having an appropriate intensity, and incident on the dispersion reducing fiber 25e.
  • An optical sampling pulse Ps having a narrow width (for example, 0.1 ps or less) is emitted from the dispersion reducing fiber 25e having received the pulse light Pb ′ having an appropriate intensity with a period Ts as shown in FIG. Is done.
  • the optical sampling unit 26 includes an optical mixer 26a and a photoelectric converter 26b.
  • the optical sampling unit 26a receives the optical signal P and the optical sampling pulse Ps input from the input terminal 21a.
  • the optical signal P to be measured is sampled by the optical sampling pulse Ps, and the pulsed light Po obtained by the sampling is converted into an electrical pulse signal Eo by the photoelectric converter 26b and output.
  • the spectrum analyzing unit 51 receives the pulse signal Eo sampled and output by the optical sampling unit 26 with the sampling pulse Ps, and obtains the spectrum of the signal Eo.
  • the peak signal detection unit 52 detects a plurality of peak signals appearing in a band of 1/2 or less of the sampling frequency from the spectrum obtained by the spectrum analysis unit 51.
  • the spectrum analysis unit 51 and the peak signal detection unit 52 input the pulse signal Eo to the A / D converter 51a and sample the peak value in synchronization with the clock signal C. Then, the digital value sequence is subjected to processing such as FFT (high-speed Fourier transform) calculation by the arithmetic processing unit 51c to calculate a spectrum. Of the spectrum, 1 / of the sampling frequency is calculated. A plurality of peak signals appearing in a band of 2 or less are detected, and frequencies Fb [i] of the plurality of peak signals are obtained.
  • FFT high-speed Fourier transform
  • the fundamental wave beat component frequency output unit 50 calculates each theoretical frequency Fc [i, j] of the harmonic beat component for each of the plurality of peak signals sequentially calculated for each peak signal by the theoretical frequency calculation unit 53,
  • the frequency Fb [i] of the plurality of peak signals obtained by the peak signal detection unit 52 is sequentially compared, and the theoretical frequency Fc [k, j] (k is an integer) of the harmonic beat component that most closely matches.
  • the given peak signal is determined to be the fundamental wave beat component (specific signal), and the frequency Fb [k] is output to the repetitive frequency calculation unit 28 described later as the specific signal frequency (Fh ′).
  • the repetitive frequency calculating unit 28 operates when the automatic setting mode is specified in the parameter specifying unit 22.
  • the temporary sampling frequency Fs ′ is specified to the signal generating unit 24, and the temporary sampling frequency is set.
  • the specific signal frequency Fh ′ output from the fundamental wave beat component frequency output unit 50 when the signal under measurement P is sampled by Fs ′ is stored.
  • the repetition frequency calculation unit 28 instructs the signal generation unit 24 to change the temporary sampling frequency by a minute amount ⁇ Fs, and at the sampling frequency changed by the minute amount ⁇ Fs, the measured signal P Is calculated from the specific signal frequency output from the fundamental wave beat component frequency output unit 50, and the provisional sampling frequency Fs ′ and the specific signal frequency Fh ′ corresponding thereto are calculated. Based on the change amount ⁇ Fs of the temporary sampling frequency and the specific signal frequency change amount ⁇ Fh corresponding thereto, an accurate repetition frequency Fx of the optical signal P to be measured is calculated and output to the calculation unit 23.
  • an operation unit (not shown) is used.
  • ⁇ T for example, 100 picoseconds
  • the automatic setting mode in the parameter specifying unit 22.
  • the repetition frequency calculation unit 28 starts to operate, and first, for example, 10 MHz is designated as a temporary sampling frequency for the signal generation unit 24.
  • the signal generation unit 24 outputs a clock signal C having a designated frequency of 10 MHz to the sampling pulse generation unit 25.
  • the sampling pulse generation unit 25 receiving the clock signal C receives a sampling pulse Ps synchronized with the clock signal C from the optical sampling unit 26. Is output.
  • the optical signal to be measured P input to the input terminal 21a is sampled by the optical sampling unit 26 with the sampling pulse Ps output from the sampling pulse generation unit 25, converted into an electric signal Eo, and output.
  • the spectrum analysis unit 51 Upon receiving the electrical signal Eo, the spectrum analysis unit 51 analyzes the signal and outputs, for example, a spectrum as shown in FIG.
  • the peak signal detection unit 52 Upon receiving this spectrum, the peak signal detection unit 52, as shown by the arrow in FIG. 26 (a) described above, has the largest peak in the band of 5 MHz or less, which is 1/2 of the tentative sampling frequency. A frequency component having power is detected, and seven peak signals having a peak power equal to or higher than, for example, Pmax / 2 of the peak power (Pmax) of the frequency component are detected ((b) in FIG. 26 described above).
  • the fundamental beat component frequency output unit 50 that receives the theoretical frequency Fc [i, j] of these harmonic beat components and the frequencies Fb [i] of the plurality of peak signals output from the peak signal detection unit 52.
  • the sum of absolute values of frequency differences between the respective theoretical frequencies Fc [i, j] of the harmonic beat components and the plurality of peak signals closest thereto are sequentially calculated, and among the plurality of peak signals,
  • the peak signal giving the theoretical frequency Fc [k, j] (k is an integer) of the harmonic beat component that minimizes the sum of the absolute values sequentially calculated for each peak signal is the measured signal. It is determined that the fundamental wave beat component (specific signal) is caused by the fundamental wave of the signal P, and the frequency Fb [k] of the peak signal is output as the specific signal frequency (Fh ′).
  • the fundamental beat component frequency output unit 50 sequentially calculates the absolute value of the frequency difference between each theoretical frequency Fc [1, j] of the harmonic beat component and the plurality of peak signals closest to them, From the absolute values that are sequentially calculated, only a specified number of sets in order from the smallest value are taken out and their sums are calculated sequentially, and the sum of the absolute values of the specified numbers that are sequentially calculated is the smallest. It is determined that the peak signal giving the respective theoretical frequencies Fc [k, j] (k is an integer) of the harmonic beat component is the fundamental beat component, and the frequency Fb [k] is the specific signal.
  • the frequency Fh ′ may be repeatedly output to the frequency calculation unit 28.
  • the repetition frequency calculation unit 28 stores the frequency Fh ′ of the specific signal.
  • the signal generator 24 is instructed to change the sampling frequency by a predetermined minute amount (for example, 100 Hz).
  • the signal generator 24 increases the temporary sampling frequency for the signal under measurement P by 100 Hz, and the spectrum analyzer 51 outputs the spectrum as shown in FIG.
  • each of the seven peak signals is used as a fundamental beat component in the same manner as described above.
  • FIG. 29 shows a spectrum diagram of these calculated harmonic beat components.
  • the fundamental beat component frequency output unit 50 that receives the theoretical frequency Fc [i, j] of these harmonic beat components and the frequencies Fb [i] of a plurality of peak signals output from the peak signal detection unit 52
  • Is a fundamental wave beat component (specific signal), and its frequency Fb [4] 2.6 MHz is output again to the repeated frequency calculation unit 28 as the specific signal frequency.
  • provisional sampling frequency Fs ′ 10 MHz
  • specific signal frequency Fh ′ 2.7 MHz for provisional sampling frequency Fs ′
  • the calculated normal sampling frequency Fs is designated to the signal generator 24.
  • a sampling pulse having the regular sampling frequency Fs is generated from the sampling pulse generator 25 instead of the temporary sampling frequency Fs ′, and the measured signal P is sampled by the optical sampling unit 26. .
  • the signal to be measured P is sampled by the optical sampling unit 26 with the sampling pulse having the normal sampling frequency Fs, and the pulse signal Eo output from the optical sampling unit 26 is the same as described above with reference to FIG. It is captured and displayed on the digital oscilloscope 60.
  • the measured signal sampling apparatus and waveform observation system according to the second embodiment of the present invention, even when the measured signal P is a signal having a plurality of harmonic components having the same power, Since the accurate repetition frequency of the signal under measurement P can be detected by using the fundamental wave beat component detection method according to the first embodiment of the present invention, the signal under measurement P can be sampled with high accuracy. In addition, the waveform of the signal under measurement P can be observed with high accuracy.
  • FIG. 9 is a block diagram for explaining the configuration of the waveform observation system according to the third embodiment of the present invention.
  • the waveform observation system 40 according to the third embodiment has a configuration in which the functions of the sampling device 21 and the digital oscilloscope 60 constituting the waveform observation system 20 according to the second embodiment are housed and integrated in a common housing. It has been.
  • the waveform observation system 40 includes an A / D converter 43, data acquisition control, in addition to the components of the sampling device 21 of FIG. 4 according to the second embodiment.
  • a unit 44 a waveform data memory 45, a display control unit 46, a display unit 47, and an observation mode designating unit 48.
  • the A / D converter 43 performs an A / D conversion process on the pulse signal Eo output from the optical sampling unit 26 with a clock signal C from the signal generation unit 24 (or a higher-speed clock synchronized with the clock signal C).
  • the peak value data Dp of the pulse signal Eo obtained by the A / D conversion process is output to the data acquisition control unit 44.
  • the data acquisition controller 44 starts writing the data Dp to the waveform data memory 45 in synchronization with the clock signal C from the rising (or falling) timing of the trigger signal G from the signal generator 24, When the number of data has been written, the operation of waiting until the trigger signal G rises next is repeated.
  • the number of data written in the waveform data memory 45 corresponds to the number of display points on the time axis displayed on the display unit 47 described later.
  • the display control unit 46 forms a waveform display unit together with the display unit 47, displays a coordinate screen composed of a time axis and a voltage axis on the display unit 47, and a series of data Dp stored in the waveform data memory 45. Are plotted and displayed on the coordinate screen, and a waveform corresponding to the read series of data Dp is displayed.
  • the display control unit 46 performs processing and display processing on the data Dp stored in the waveform data memory 45 in accordance with the observation mode specified by the observation mode specifying unit 48.
  • a series of data Dp stored in the waveform data memory 45 is displayed by leaving an afterimage, and when the averaging mode is designated, a series of data stored in the waveform data memory 45 is displayed.
  • a predetermined set of data Dp is obtained and averaged, and a series of data obtained by the averaging is overlaid and displayed as a waveform.
  • the operation of the waveform observation system 40 configured in this way is the same as that of the waveform observation system 20, and even when the signal under measurement P is a signal having a plurality of harmonic components having the same power, It is possible to detect an accurate repetition frequency of the measurement signal P, and since a sampling frequency and a trigger frequency corresponding to the accurate repetition frequency of the detected signal under measurement P are set, the fundamental wave of the signal under measurement P is set. Even a waveform whose frequency is unknown or only an approximate value is known can be displayed stably.
  • a trigger signal G that rises only once may be output.
  • waveform observation systems 20 and 40 described above similarly apply the present invention to an E / O sampling method in which an electrical signal is sampled with an optical pulse instead of an O / O sampling method in which the optical signal is sampled with an optical pulse. can do.
  • the measured signal waveform observation system basically generates an input terminal 21a for inputting the measured signal P and a clock signal C having a designated sampling frequency.
  • a spectrum analysis unit 51 that receives an output signal from the sampling unit 26 and outputs a spectrum of the output signal, and of the spectrum output from the spectrum analysis unit 51, the half of the designated sampling frequency A plurality of peak signals appearing in the following bands are detected, and the plurality of peak signals are detected.
  • the respective theoretical frequencies Fc [i, j] of the harmonic beat components are sequentially compared with the frequencies Fb [i] of the plurality of peak signals obtained by the peak signal detection unit 52, and the comparison is made. Based on the result, the plurality of The peak signal that gives the theoretical frequency Fc [k, j] of the harmonic beat component that most closely matches the frequency Fb [i] of the peak signal is caused by the fundamental wave of the signal under measurement P.
  • the fundamental wave beat component frequency output unit 50 that determines that it is the fundamental wave beat component and outputs the frequency Fb [k] of the peak signal as the specific signal frequency Fh ′, and a temporary sampling frequency While designating Fs ′ and changing the temporary sampling frequency by a predetermined amount ⁇ Fs, the change amount ⁇ Fh of the specific signal frequency with respect to the change amount ⁇ Fs of the sampling frequency is obtained, and the temporary sampling frequency Fs ′ and the temporary sampling are obtained.
  • the frequency Fh ′ of the specific signal with respect to the frequency, the change amount ⁇ Fs of the sampling frequency, and the frequency change amount ⁇ Fh of the specific signal Based on the repetition frequency Fx for calculating the repetition frequency Fx of the waveform of the signal under measurement P, and an integer multiple of the repetition period Tx corresponding to the repetition frequency Fx calculated by the repetition frequency calculation unit 28 A calculation unit 23 that calculates a frequency Fs corresponding to a period Ts that is different by a predetermined offset delay time ⁇ T as a normal sampling frequency for the signal under measurement P, and designates the normal sampling frequency to the signal generation unit 24; An analog / digital (A / D) converter 43 for converting a signal sampled and output from the sampling unit 26 with the regular sampling pulse into digital waveform data Dp, and the A / D converter A waveform data memory 45 for storing the waveform data Dp output from 43; A data acquisition controller 44 for writing the waveform data Dp output from the A / D converter 43 to the waveform data memory 45 in synchronization
  • each theoretical frequency Fc [i, j] of the harmonic beat component and the plurality of peak signals closest to them are obtained.
  • the sum of absolute values of frequency differences is calculated sequentially (steps S19 and S20), and the theoretical frequency Fc [k, j] of the harmonic beat component that minimizes the sum of the absolute values (k is an integer).
  • the frequency Fb [k] of the peak signal is output as the specific signal frequency Fh ′ (step S21).
  • the theoretical frequencies Fc [i, j] of the harmonic beat components and the plurality of peak signals closest to them. are sequentially calculated (steps S22 and S23), and the absolute values sequentially calculated for the respective peak signals by the steps S22 and S23 are in ascending order.
  • a predetermined number of sets are sequentially taken out and their sums are calculated sequentially (steps S24 and S25), so that the sum of the absolute values of the predetermined number of sets calculated sequentially in steps S24 and S25 is obtained.
  • the peak signal giving each theoretical frequency Fc [k, j] (k is an integer) of the harmonic beat component that is minimized is determined to be a fundamental wave beat component (specific signal), Over frequency Fb [k] of the click signal is output as the specific signal frequency Fh 'may be (Step S26) As.
  • the measured signal P is Even when the signals have a plurality of harmonic components having the same power, the accurate repetition frequency of the signal under measurement P is detected by using the fundamental wave beat component detection method according to the first embodiment. Therefore, the signal under measurement P can be sampled with high accuracy and the waveform of the signal under measurement P can be observed with high accuracy.
  • the signal under measurement is a signal having a plurality of harmonic components having the same power
  • a plurality of signals obtained by sampling the signal under measurement are obtained. Acquisition of stable waveform information of the signal under measurement by using a fundamental wave beat component detection method that can determine which order frequency component of the signal under measurement is a beat component due to each beat component of Further, it is possible to provide a sampling apparatus and a waveform observation system that can easily configure the entire system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 同じ様なパワーを有する複数の高調波成分を持つ被測定信号の繰り返し周波数(基本波成分)を正確に検出するために、あるサンプリング周波数fsでサンプリングした被測定信号から得られるスペクトラムのうち、前記周波数fsの1/2以下の帯域に現れる複数のピーク信号の周波数fb[i]を求め、前記複数のピーク信号それぞれを、前記サンプリング周波数を変化させる前後における、前記被測定信号の基本波に起因するビート成分(基本波ビート成分)であると仮定して、前記被測定信号の高調波成分に起因するビート成分(高調波ビート成分)の各理論周波数fc[i,j]を順次計算し、前記各理論周波数fc[i,j]を前記複数のピーク信号の周波数fb[i]と順次比較し、前記複数のピーク信号の周波数fb[i]と最も一致する理論周波数fc[k,j]を与える前記ピーク信号を、前記被測定信号の基本波に起因する基本波ビート成分であると判断するようにした基本波ビート成分周波数検出方法。

Description

基本波ビート成分検出方法及びそれを用いる被測定信号のサンプリング装置並びに波形観測システム
 本発明は基本波ビート成分検出方法及びそれを用いる被測定信号のサンプリング装置並びに波形観測システムに係り、特に、高速な繰り返し信号で変調された光信号に対するサンプリングを行ってその波形情報を取得し、観測するためのシステムにおいて、被測定信号が、同じ様なパワーを有する複数の高調波成分を持つ信号である場合でも、被測定信号の繰り返し周波数を正確に検出し、安定な波形情報の取得と観測ができるようにする基本波ビート成分検出方法及びそれを用いる被測定信号のサンプリング装置並びに波形観測システムに関する。
 例えば、高速な繰り返し信号で変調された光信号の波形のデータを取得して観測するために、図10に示す波形観測装置10が用いられている。
 この波形観測装置10は、入力される被測定光信号Pの波形の繰り返し周期TxのN倍(Nは1以上の任意の整数で、例えば、100、1000等)より所定値(オフセット遅延時間)ΔTだけ長い繰り返し周期Ts(=N・Tx+ΔT)を有し、パルス幅が狭い光サンプリングパルスPsを光サンプリングパルス発生手段11によって生成する。
 そして、この光サンプリングパルス発生手段11によって生成された光サンプリングパルスPsは、被測定光信号Pと共に、光サンプリング部12に入力される。
 この光サンプリング部12では、被測定光信号Pを光サンプリングパルスPsでサンプリングすることによって得られたパルス光が、光電変換されることにより、電気のパルス信号Eoに変換されてアナログ/デジタル(A/D)変換器13に出力される。
 このA/D変換器13は、電気のパルス信号Eoの振幅強度をデジタルのデータに変換して波形データメモリ14に記憶させる。
 この波形データメモリ14に記憶された一連の波形データは、表示制御手段15によって読み出された後、表示器16に被測定光信号Pの波形として表示される。
 このようなサンプリング方式の波形観測装置10では、図11の(a)に示すように、被測定光信号Pの繰り返し波形がN回連続して入力される毎に、光サンプリングパルスPsによるサンプリングタイミングが図11の(b)のように、ΔT時間ずつシフトしていくため、周期Txに比べて格段に低速なサンプリングで、被測定光信号Pの波形を高分解能でサンプリングして得られる一連の波形データを表示器16の画面上で観測することができる。
 このようなサンプリング方式の波形観測装置10は、例えば、以下に記す特許文献1に開示されている。
 ところで、上記のような波形観測装置10に要求される観測モードには、パーシステンスモード、平均化モード等がある。
 パーシステンスモードは、被測定光信号Pをサンプリングしてその取得データを表示器の画面上にある一定時間表示し、その残像によって測定波形を表示するという動作を繰り返すモードであり、被測定光信号の波形の変化をほぼリアルタイムに観測することができる。
 また、平均化モードは、被測定光信号Pをサンプリングしてその複数のデータ取得期間分の波形データの平均化処理を行い、その平均化された波形を表示するモードであり、ノイズ成分を除去した波形観測が可能となる。
 しかるに、被測定光信号Pのサンプリング時にサンプリングが被測定光信号Pの繰り返し波形の同一位相位置から開始されないと、上記のように被測定光信号の波形を残像によって表示していく観測モードの場合には、表示される波形が時間軸方向に毎回ずれたりするという不都合が生じる。
 また、平均化モードでは、平均化処理が正しく行えず波形を正しく再現できなくなると共に、波形の位相や振幅の変動の大きさを正しく把握することができなくなる。
 このため、被測定信号の波形の繰り返し周期、あるいはその信号自体の周波数(ビットレート)が既知である必要がある。
 しかし、場合によっては、観測対象となる被測定信号の波形の繰り返し周期や周波数の概略値は分かっていても、その正確な値が不明な状況では、観測対象となる被測定信号の波形に対して正しいサンプリング周期の設定が行えず、所望の波形を観測することができないという問題がある。
 また、この種の波形観測装置において、狭い幅の光サンプリングパルスを生成したり、光同士のミキシングを行なう光ミキサ等が必要であり、表示部を含めると装置全体が複雑化し高価になるという別の問題がある。
 そこで、本願発明者は、これらの問題を解決するために、日本国における先願として、以下に記す特許文献2に開示されているような被測定信号の繰り返し周波数検出方法を提案している。
 次に、この特許文献2に開示されている被測定信号の繰り返し周波数検出方法の原理について説明する。
 ここでは、被測定信号を単一周波数Fxの正弦波と仮定し、これを仮のサンプリング周波数Fs′でサンプリングして得られる信号Sxの周波数成分について考察する。
 サンプリングパルスが幅無限小の理想パルスであれば、その周波数成分は、図12に示すように、周波数n・Fs′の各スペクトラムを有する(n=0,1,2,…)。
 したがって、このサンプリングパルスでサンプリングして得られた信号Sxには、被測定信号の周波数Fxと各周波数n・Fs′との差及び和の成分が含まれる。
 この中で最も周波数が低い成分は、図13の(a)、(b)に示すように、周波数Fxに最も近い周波数n・Fs′のスペクトラム成分との差周波数あるいは周波数(n+1)・Fs′のスペクトラム成分との差周波数であり、その差周波数Fh′は、次のように表すことができる。
 Fh′=mod[Fx,Fs′]…(mod[Fx,Fs′]≦Fs′/2の場合)
 Fh′=(Fs′/2)-mod[Fx,Fs′]…(mod[Fx,Fs]>Fs/2の場合)
 ただし、記号mod[A,B]は、AをBで割ったときの余りを表す。
 この差周波数Fh′は最大でFs′/2なので、帯域上限Fs′/2の低域通過フィルタを用いることにより簡単に抽出することができる。
 ここで、仮のサンプリング周波数Fs′の微小な変化δFsに伴う差周波数Fh′の変化δFhは、差周波数Fh′を周波数Fs′について微分した次の式で与えられる。
 δFh/δFs=-quotient[Fx,Fs′]…(0<mod[Fx,Fs′]<Fs′/2の場合)
 δFh/δFs=1+quotient[Fx,Fs′]…(mod[Fx,Fs′]>Fs′/2の場合)
 ただし、記号quotient[A,B]は、AをBで割ったときの整数商を表す。
 上記結果、及び次の商と余りの関係、
 mod[Fx,Fs′]=Fx-Fs′・quotient[Fx,Fs′]
から、被測定信号の周波数Fxは、次の演算で求めることができる。
 Fx=Fh′-Fs′・δFh/δFs         …(0>δFhの場合)
 Fx=-Fh′+Fs′・δFh/δFs        …(0<δFhの場合)
 図14は、以上のような被測定信号の繰り返し周波数検出方法の手順の一例を示すフローチャートである。
 まず、仮のサンプリング周波数Fs′で被測定信号をサンプリングし(ステップS1)、そのサンプリングによって得られた信号のうち、仮のサンプリング周波数Fs′の1/2以下の帯域に現れる特定信号の周波数Fh′を検出する(ステップS2)。
 そして、仮のサンプリング周波数Fs′を微小量ΔFs(例えば、1Hz)だけ変化させ(ステップS3)、そのときの特定信号の周波数変化量ΔFhを検出する(ステップS4)。
 そして、仮のサンプリング周波数Fs′とその周波数変化量ΔFs、特定信号の周波数Fh′とその周波数変化量ΔFhとを次式(1)に代入することにより、被測定信号の繰り返し周波数Fxを算出する(ステップS5)。
 Fx=Fh′-Fs′・ΔFh/ΔFs         …(0>ΔFhの場合)
 Fx=-Fh′+Fs′・ΔFh/ΔFs        …(0<ΔFhの場合)
                                   …(1)
 これにより、波形情報を取得して観測するシステムの場合には、この周波数検出処理を被測定信号について予め行い、それによって得られた周波数Fxに対応した正規のサンプリング周波数Fsを設定すれば、被測定信号の波形情報の取得及び観測を正確に行うことができる。
 また、特許文献2には、上記のような被測定信号の繰り返し周波数検出方法を適用したサンプリング装置を含む波形観測システムが開示されている。
 図15は、上記被測定信号の繰り返し周波数検出方法を適用したサンプリング装置を含む波形観測システム20の構成を示している。
 この波形観測システム20は、サンプリング装置21とデジタルオシロスコープ60によって構成されている。
 サンプリング装置21は、入力端子21aから入力される被測定光信号Pを光サンプリング部26により、信号発生部24が生成したクロック信号Cに基づいてサンプリングパルス発生部25から発生される幅の狭い光パルスであるサンプリングパルスでサンプリングしてその波形情報としてのパルス信号Eoを取得する。
 デジタルオシロスコープ60は、サンプリング装置21によって得られた波形情報を記憶し、表示する。
 このサンプリング装置21は、観測対象の波形の繰り返し周期が正確に分かっているような場合に指定する手動設定モードと、観測対象の波形の繰り返し周期が不明あるいはその概略値しか分からない場合に指定する自動設定モードとを有し、図示しない操作部の操作等によって、その手動設定モードと自動設定モードとを選択的に指定できるようになっている。
 なお、信号発生部24が生成したクロック信号C及びトリガ用信号Gは、それぞれ、クロック出力端子21b及びトリガ出力端子21dを介して外部に出力できるようになっている。
 同様に、光サンプリング部26からのパルス信号Eoは、サンプル信号出力端子21cを介して外部へ出力できるように構成されている。
 このサンプリング装置21の各出力端子21b~21dは、デジタルオシロスコープ60の外部クロック入力端子60a、第1チャネル入力端子60b、第2チャネル入力端子60cにそれぞれ接続されている。
 デジタルオシロスコープ60は、各チャネル入力端子60b、60cから入力される信号に対するA/D変換処理を外部クロック入力端子60aに入力されるクロック信号に同期して行う外部クロック同期機能と、任意に指定したチャネル入力端子またはトリガ入力端子の入力信号の電圧が任意に設定したしきい値を所定方向に越えたタイミングから一定時間(時間軸の表示幅および表示ポイント数等に依存する)が経過する間にA/D変換処理によって得られたデータを波形データとしてチャネル毎に記憶する外部トリガ機能と、その記憶した波形データを時間軸上に表示する波形表示機能とを有しており、この波形表示のモードとして、前記したパーシステンス表示モード、平均化表示モードのいずれかを任意に選択できるように構成されている。
 次に、上記波形観測システム20の動作を説明する。
 始めに、例えば、図16の(a)に示すようにデューティ比50パーセントのほぼ矩形波の被測定光信号Pを入力端子21aに入力し、その波形の概略の繰り返し周期Tx′(周波数Fx′)およびサンプリングのオフセット遅延時間ΔTに対応した情報をパラメータ指定部22によって指定すると共に、図示しない操作部により自動設定モードを指定する。
 演算部23は、指定された概略の繰り返し周波数Fx′とオフセット遅延時間ΔTに基づいて、仮のサンプリング周波数Fs′、トリガ周波数Fg′をそれぞれ算出し、信号発生部24に設定する。
 なお、繰り返し周期Tx′(周波数Fx′)の指定がない状態で、自動設定モードが指定された場合には、演算部23は、規定値、例えば、10GHzを繰り返し周波数Fx′として演算を行う。
 このため、信号発生部24からは、仮のサンプリング周波数Fs′のクロック信号Cが出力される。
 そして、光サンプリング部26では被測定光信号Pに対して仮のサンプリング周波数Fs′によるサンプリングが行われ、そのサンプリングで得られたパルス信号Eoが特定信号周波数検出部27に入力される。
 特定信号周波数検出部27は、そのサンプリングで得られたパルス信号Eoに含まれる周波数成分のうち、仮のサンプリング周波数Fs′の1/2以下の帯域に現れる最もレベルが高い周波数成分を特定信号とし、その周波数Fh′を検出する。
 この光信号の波形の場合、サンプリングに用いられる光サンプリングパルスPsのスペクトラムは、図17に示すように周波数Fs′間隔で現れ、被測定光信号Pの波形のスペクトラムは周波数Fxの間隔で現れ、しかも、高次のもの程レベルが小さくなる。
 したがって、特定信号周波数検出部27は、最低次の周波数Fxと、その周波数Fxに最も近い仮のサンプリング周波数成分n・Fs′との差周波数Fh′を特定信号の周波数として求め、繰り返し周波数算出部28に出力する。
 このようにして仮のサンプリング周波数Fs′についての特定信号の周波数Fh′が得られると、繰り返し周波数算出部28は、この周波数Fh′を記憶するとともに、信号発生部24に対して、仮のサンプリング周波数Fs′を微小量(例えば、1Hz)変化させるように指示する。
 この指示を受けた信号発生部24により、被測定光信号Pに対する仮のサンプリング周波数Fs′が微小量ΔFsだけ変化し、この変化に伴って、特定信号周波数検出部27によって検出される特定信号の周波数がΔFhだけ変化することになり、この変化量から光信号の波形の繰り返し周波数Fxが次式により算出され、演算部23に設定される。
 Fx=Fh′-Fs′・ΔFh/ΔFs
 演算部23は、この繰り返し周波数算出部28によって算出された正確な繰り返し周波数Fxに基づいて入力信号に正確に対応した正規のサンプリング周波数Fs及びトリガ周波数Fgを計算し、信号発生部24に設定する。
 これによって、被測定光信号Pの波形の繰り返し周期Txに対し、N・Tx+ΔTに等しい周期を有するクロック信号Cと光サンプリングパルスPsが図16の(b)、(c)に示すように生成される。
 そして、被測定光信号Pが光サンプリングパルスPsでサンプリングされ、そのサンプリングで得られたパルス信号Eoが、図16の(d)に示すように光サンプリング部26からサンプル信号出力端子21cを介してデジタルオシロスコープ60の第1チャネル入力端子60bに入力される。
 また、信号発生部24からは、図18の(b)に示すようにパルス信号Eoのピークを結ぶ包絡線の波形の周期と等しい周期のトリガ用信号Gが生成され、トリガ出力端子21dを介してデジタルオシロスコープ60の第2チャネル入力端子60cに入力される。
 なお、図18の(a)は、図16の(d)に示す波形の時間軸を縮めて示したものである。
 デジタルオシロスコープ60は、パルス信号Eoに対するA/D変換処理をクロック信号Cに同期して行い、パルス信号Eoのピーク点を結ぶ包絡線のデータを光信号波形データとして順次出力し、トリガ用信号Gがトリガレベルを所定方向に超えるタイミングから、その波形データの取得を開始する。
 このため、デジタルオシロスコープ60の画面上に、例えば、図19に示すように、光信号Pの波形がオフセット遅延時間ΔT間隔のポイントで残像表示される。
 デジタルオシロスコープ60は、トリガ用信号Gがトリガレベルを所定方向に超えるタイミング毎に波形データの取得を開始して、波形を更新表示するが、前記したように、サンプリング装置20のサンプリング周波数やトリガ周波数は、入力される光信号Pの波形の繰り返し周波数に対して正確に対応しているので、常に表示される波形の位置がずれることはなく、安定な波形観測を行うことができる。
特開2002-071725号公報 特開2006-3327号公報
 すなわち、上記特許文献2に開示されている被測定信号の繰り返し周波数検出方法は、要約すると、被測定信号を、ある繰り返し周波数fsにてサンプリングした場合に得られた信号のうち、fs/2以下の帯域に現れる特定信号の周波数fhを測定し、次に、サンプリング周波数を微小周波数dfsだけ変化させてサンプリングした場合に得られた特定信号の周波数変化量dfhを測定し、次式にて被測定用の信号の繰り返し周波数fxを求める方法である。
 fx=fh-fs・dfh/dfs       …(0>dfh/dfsの場合)
 fx=-fh+fs・dfh/dfs      …(0<dfh/dfsの場合)
 ここで、特定信号の周波数変化量dfhの具体的な測定は、例えば、次のようにして行われる。
 まず、例えば、図24の(a)に示すような波形を有する被測定信号を、ある繰り返し周波数fsにてサンプリングし、得られた信号を、例えば、フーリェ変換などの手法を用いて図24の(b)に示すようなスペクトラムを得る。
 次に、fs/2以下の帯域の最大のピークパワーを有する周波数成分を特定信号と判断して検出し、その周波数fhを得る。
 次に、サンプリング周波数を微小周波数dfsだけ変化させて被測定信号をサンプリングし、前述と同様な手法を用いて図24の(c)に示すようなスペクトラムを得る。
 次に、前述と同様にして、サンプリング周波数の1/2以下の帯域の最大のピークパワーを有する周波数成分を特定信号と判断して検出し、その周波数からサンプリング周波数変化前の特定信号の周波数fhを引き算することにより、サンプリング周波数変化に対する特定信号の周波数変化量dfhを求めるようにしている。
 しかるに、この特許文献2に開示されている被測定信号の繰り返し周波数検出方法においても、まだ解決すべき以下のような問題を有している。
 それは、被測定信号が、同じ様なパワーを有する複数の高調波成分を持つ信号である場合には、被測定信号の繰り返し周波数検出の測定結果に大きな誤差が生じてしまう場合があるということである。
 被測定信号が、「同じ様なパワーを有する複数の高調波成分を持つ」信号である場合としては、例えば、以下に示すような場合がある。
 (1)パルス周期に対して、パルス幅が狭い場合
 例えば、図20の(a)に示すように、パルス周期1/fxに対して、パルス幅wが狭い場合であり、そのスペクトラムには、図20の(b)に示すように、パルスの繰り返し周波数fx(あるいはビットレート)の高調波2fx、3fx、4fx…成分が多数存在する。
 この場合、パルス周期と比ベてパルス幅が狭いほど、高調波成分のパワーは徐々にしか小さくならず、多くの高調波成分が存在する。
 (2)データ変調のパターンによる場合
 例えば、図21の(a)に示すように、例えば、パルスの繰り返し周波数(あるいはビットレート)がfxで、データ01011のパターン長5ビットのデータ変調された信号の場合であり、そのスペクトラムには、図21の(b)に示すように、パルスの繰り返し周波数(あるいはビットレート)fxをパターン長(ビット長)で割った周波数fx/5の高調波2fx/5、3fx/5、4fz/5…成分が多数存在する。
 この場合、各スペクトラムパワーは、1タイムスロット当たりどれだけの割合で信号状態を保つかを示すデューティや波形によって大きく変化する。
 (3)時分割多重の場合等で、タイムスロット位置が各チャンネルでずれてしまっている場合
 図22の(a)に示すように、各々のビットレートがfx/4である4つのチャンネルを光・時分割多重(O-TDM)により、一つの信号とする場合において、各チャンネルのタイムスロット位置が等時間間隔になっている場合には、通常、fx/4の高調波成分は抑圧されて小さくなり、fx(及びその高調波成分)が支配的となるが、図22の(b)に示すように、各チャンネルのタイムスロット位置が等時間間隔になっていない場合には、図22の(c)に示すように、各チャンネルのビットレートfx/4の高調波が2fx/4、3fx/4、4fx/4…成分が抑圧されずに大きくなる。
 (4)上記(1)、(2)、(3)のそれぞれの場合が複合した場合
 次に、被測定信号が、上述した(1)、(2)、(3)、(4)の場合のように、同じ様なパワーを有する複数の高調波成分を持つ信号である場合に、被測定信号の繰り返し周波数検出の測定結果に大きな誤差が発生する原因について説明する。
 まず、被測定信号とサンプリング信号のスペクトラム関係は、図23の(a)に示すような関係であるため、被測定信号をサンプリングすることによって得られる信号には、被測定信号の複数の周波数成分(fx/3、2fx/3、fx…)と、それら周波数に最も近いサンプリング周波数の高調波成分とによる複数のビート周波数成分が図23の(b)に示すように現れることになる。
 しかるに、上述した(1)、(2)、(3)、(4)のような場合には、それら複数のビート周波数成分のスペクトラムパワーが類似していることがあり、どのスペクトラム成分が着目したいスペクトラム成分なのかをピークパワーを比較するだけでは判断することができない場合がある。
 このような場合の具体的な例として、図25の(a)に示す繰り返し周波数が約10GHz、パルス幅約5ピコ秒の被測定信号に特許文献2に開示されている被測定信号の繰り返し周波数検出方法を適用する場合について以下に具体的に説明する。
 この被測定信号を例えばサンプリング周波数10MHzにてサンプリングし、得られた信号にフーリェ変換等を施すと、図25の(b)に示すように、いずれも同様なピークパワーを有する複数のピーク信号のスペクトラムが得られる。
 これら複数のピーク信号の中から、ピークパワーが最も大きい図中矢印で示すピーク信号を特定信号として検出し、その周波数fh=4.6MHzを得る。
 次に、サンプリング周波数を微小周波数、例えば、dfs=100Hzだけ変化させて被測定信号をサンプリングし、前述と同様な手法を用いて図25の(c)に示すようなスペクトラムを得る。
 次に、前述と同様にして、図25の(c)に示すようなスペクトラムの中から、ピークパワーが最も大きい図中矢印で示すピーク信号を特定信号として検出し、その周波数2.6MHzを得る。
 したがって、サンプリング周波数の変化量dfsに対する特定信号周波数の変化量dfhが、2.6MHz-4.6MHz=-2MHzと算出される。
 これにより、被測定信号の繰り返し周波数は、
 fx=fh-fs・dfh/dfs
   =4.6MHz-10MHz・(-2MHz)/100Hz
   =200.005GHz
と算出されるが、この算出結果は約10GHzの繰り返し周波数を有する被測定信号に対し200.005GHzとなっているので、明らかに間違っていることになる。
 これは、サンプリング周波数を変化させる前後にて、被測定信号の異なる次数の高調波成分に起因するビート周波数成分をそれぞれ特定信号であると判断して検出してしまったためである。
 すなわち、この例では、最初に、被測定信号の2次の高調波成分(約20GHz)に起因するビート周波数成分(高調波ビート成分)を特定信号であると判断して検出していたのに対し、サンプリング周波数を100Hz変化させた後においては、被測定信号の基本波(約10GHz)に起因するビート周波数成分(高調波ビート成分)を特定信号であると判断して検出していたためである。
 このように、上記特許文献2に開示されている被測定信号の繰り返し周波数検出方法では、サンプリング周波数を変化させる前後でのビート信号の周波数を測定する際に、サンリング周波数を変化させる前後で異なるビート成分に着目してしまった場合には、測定結果が全くでらめな値となってしまうことになる。
 したがって、上記特許文献2に開示されている被測定信号の繰り返し周波数検出方法及びそれを用いるサンプリング装置及び波形観測システムでは、被測定信号が、同じ様なパワーを有する複数の高調波成分を持つ信号である場合には、サンプリング結果から被測定信号の繰り返し周波数を正確に検出することができないので、安定な波形情報の取得と観測ができないと共に、システム全体を簡易に構成することができないという問題を有している。
 本発明の目的は、これらの問題を解決して、被測定信号が、同じ様なパワーを有する複数の高調波成分を持つ信号である場合でも、サンプリング結果に含まれる複数のピーク信号のうち、どのピーク信号が被測定信号の基本波成分に起因するビート成分であるか否かを判別する基本波ビート成分検出方法及びそれを用いて被測定信号の繰り返し周波数を正確に検出することにより被測定信号の安定な波形情報の取得と観測ができ、さらに、システム全体を簡易に構成することができるサンプリング装置及び波形観測システムを提供することである。
 前記目的を達成するために、本発明の第1の態様によると、
 被測定信号(P)をあるサンプリング周波数fsでサンプリングして得られる信号を解析し、そのスペクトラムを得る第1の段階(S11、S12)と、
 前記第1の段階(S11、S12)により得られた前記スペクトラムのうち、前記あるサンプリング周波数fsの1/2以下の帯域に現れる複数のピーク信号を検出し、それら複数のピーク信号の周波数fb[i](i=1,2,3…)を求める第2の段階(S13)と、
 前記第2の段階(S13)によって検出された前記複数のピーク信号それぞれを前記被測定信号(P)の基本波に起因するビート成分(基本波ビート成分)であると仮定して、前記被測定信号(P)の高調波成分に起因するビート成分(高調波ビート成分)の各理論周波数fc[i,j](i=1,2,3…,j=1,2,3…)を順次に計算する第3の段階(S14、S15)と、
 前記第3の段階(S14、S15)によって各ピーク信号毎に順次に計算された前記高調波ビート成分の前記各理論周波数fc[i,j]を前記第2の段階(S13)によって検出された前記複数のピーク信号の周波数fb[i]と順次に比較し、その比較された結果に基づいて、前記複数のピーク信号のうち、それらの周波数fb[i]と最も一致する前記高調波ビート成分の理論周波数fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断する第4の段階(S16、S17、S18)と、
 を具備する基本波ビート成分検出方法が提供される。
 前記目的を達成するために、本発明の第2の態様によると、
 前記第3の段階(S14、S15)は、
 前記fb[i]を前記基本波ビート成分の周波数であると仮定した場合の、前記被測定信号(P)のj次の高調波成分に起因する高調波ビート成分の理論周波数fc[i,j]を、次式
 fc[i,j]=mod(j・fb[i],fs)…mod(j・fb[i],fs)<fs/2の場合
 fc[i,j]=fs-mod(j・fb[i],fs)…mod(j・fb[i],fs)≧fs/2の場合
に基づいて計算することを特徴とする第1の態様に従う基本波ビート成分検出方法が提供される。
 前記目的を達成するために、本発明の第3の態様によると、
 前記第4の段階(S16、S17、S18)は、
 前記高調波ビート成分の前記各理論周波数fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値の和を順次に計算する第5の段階(S19、S20)と、
 前記複数のピーク信号のうち、前記第5の段階(S19、S20)によって前記各ピーク信号毎に順次に計算される前記絶対値の和が最小となる前記高調波ビート成分の各理論周波数fc[k,j](kはある整数)を与える前記ピーク信号を前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断する第6の段階(S21)とを有することを特徴とする第2の態様に従う基本波ビート成分検出方法が提供される。
 前記目的を達成するために、本発明の第4の態様によると、
 前記第4の段階(S18)は、
 前記高調波ビート成分の前記各理論周波数fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値を順次に計算する第7の段階(S22、S23)と、
 前記第7の段階(S22、S23)によって前記各ピーク信号毎に順次に計算される前記絶対値の中から、値が小さい順にある規定数組だけ順次に取り出してそれらの和を順次に計算する第8の段階(S24、S25)と、
 前記複数のピーク信号のうち、前記第8の段階(S24、S25)によって前記各ピーク信号毎に順次に計算される前記規定数組の絶対値の和が最小となる前記高調波ビート成分の理論周波数fc[k,j](kはある整数)を与える前記ピーク信号を前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断する第9の段階(S26)とを有することを特徴とする第2の態様に従う基本波ビート成分検出方法が提供される。
 前記目的を達成するために、本発明の第5の態様によると、
 被測定信号(P)を入力するための入力端子(21a)と、
 指定されたサンプリング周波数のクロック信号(C)を生成する信号発生部(24)と、
 前記クロック信号(C)に同期したサンプリングパルスを発生するサンプリングパルス発生部(25)と、
 前記入力端子(21a)に入力された前記被測定信号(P)を前記サンプリングパルスによってサンプリングするサンプリング部(26)と、
 前記サンプリング部(26)からの出力信号を受け、該出力信号のスペクトラムを出力するスペクトラム解析部(51)と、
 前記スペクトラム解析部(51)から出力されるスペクトラムのうち、前記指定されたサンプリング周波数の1/2以下の帯域に現れる複数のピーク信号を検出し、該複数のピーク信号の周波数Fb[i](i=1,2,3…)を求めるするピーク信号検出部(52)と、
 前記ピーク信号検出部(52)によって検出された前記複数のピーク信号それぞれを前記被測定信号(P)の基本波に起因するビート成分(基本波ビート成分)であると仮定して、前記被測定信号(P)の高調波成分に起因するビート成分(高調波ビート成分)の各理論周波数Fc[i,j](i=1,2,3…,j=1,2,3…)を順次に計算する理論周波数算出部(53)と、
 前記理論周波数算出部(53)によって各ピーク信号毎に順次に計算された前記高調波ビート成分の各理論周波数Fc[i,j]を、前記ピーク信号検出部(52)によって得られた前記複数のピーク信号の周波数Fb[i]と順次に比較し、その比較された結果に基づいて、前記複数のピーク信号のうち、それらの周波数Fb[i]と最も一致する前記高調波ビート成分の理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分(特定信号)であると判断し、当該ピーク信号の周波数Fb[k]を特定信号周波数(Fh′)として出力する基本波ビート成分周波数出力部(50)と、
 前記信号発生部(24)に対し、仮のサンプリング周波数(Fs′)を指定すると共に、前記仮のサンプリング周波数を所定量(ΔFs)変化させて、該サンプリング周波数の変化量に対する前記特定信号周波数の変化量(ΔFh)を求め、前記仮のサンプリング周波数と、該仮のサンプリング周波数に対する前記特定信号周波数と、前記サンプリング周波数の変化量及び前記特定信号周波数の変化量とに基づいて、前記被測定信号(P)の波形の繰り返し周波数(Fx)を算出する繰り返し周波数算出部(28)と、
 前記繰り返し周波数算出部(28)によって算出された繰り返し周波数(Fx)に対応する繰り返し周期(Tx)の整数倍に対して所定のオフセット遅延時間(ΔT)だけ差のある周期(Ts)に対応する周波数を前記被測定信号(P)に対する正規のサンプリング周波数(Fs)として算出し、該正規のサンプリング周波数を前記信号発生部(24)に指定する演算部(23)と、
 前記信号発生部(24)からの前記クロック信号(C)を外部へ出力するためのクロック出力端子(21b)と、
 前記サンプリング部(26)から出力された信号を外部へ出力するためのサンプル信号出力端子(21c)と、
 を具備することを特徴とする被測定信号のサンプリング装置が提供される。
 前記目的を達成するために、本発明の第6の態様によると、
 前記理論周波数算出部(53)は、
 前記Fb[i]を前記基本波ビート成分の周波数であると仮定した場合の、前記被測定信号(P)のj次の高調波成分に起因する高調波ビート成分の理論周波数Fc[i,j]を、次式
 Fc[i,j]=mod(j・Fb[i],Fs′)…mod(j・Fb[i],Fs′)<Fs′/2の場合
 Fc[i,j]=Fs′-mod(j・Fb[i],Fs′)…mod(j・Fb[i],Fs′)≧Fs′/2の場合
に基づいて計算することを特徴とする第5の態様に従う被測定信号のサンプリング装置が提供される。
 前記目的を達成するために、本発明の第7の態様によると、
 前記基本波ビート成分周波数出力部(50)は、
 前記高調波ビート成分の前記各理論周波数Fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値の和を順次に計算し、
 前記複数のピーク信号のうち、前記各ピーク信号毎に順次に計算される前記絶対値の和が最小となる前記高調波ビート成分の理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断し、当該ピーク信号の周波数Fb[k]を前記特定信号周波数(Fh′)として出力することを特徴とする第6の態様に従う被測定信号のサンプリング装置が提供される。
 前記目的を達成するために、本発明の第8の態様によると、
 前記基本波ビート成分周波数出力部(50)は、
 前記高調波ビート成分の前記各理論周波数Fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値を順次に計算すると共に、
 前記各ピーク信号毎に順次に計算される前記絶対値の中から、値が小さい順にある規定数組だけ順次に取り出してそれらの和を順次に計算することにより、
 前記複数のピーク信号のうち、前記各ピーク信号毎に順次に計算される前記規定数組の絶対値の和が最小となる前記高調波ビート成分の理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断し、当該ピーク信号の周波数Fb[k]を前記特定信号周波数(Fh′)として出力することを特徴とする第6の態様に従う被測定信号のサンプリング装置が提供される。
 前記目的を達成するために、本発明の第9の態様によると、
 被測定信号(P)を入力するための入力端子(21a)と、
 指定されたサンプリング周波数のクロック信号(C)を生成する信号発生部(24)と、
 前記クロック信号(C)に同期したサンプリングパルスを発生するサンプリングパルス発生部(25)と、
 前記入力端子(21a)に入力された前記被測定信号(P)を前記サンプリングパルスによってサンプリングするサンプリング部(26)と、
 前記サンプリング部(26)からの出力信号を受け、該出力信号のスペクトラムを出力するスペクトラム解析部(51)と、
 前記スペクトラム解析部(51)から出力されるスペクトラムのうち、前記指定されたサンプリング周波数の1/2以下の帯域に現れる複数のピーク信号を検出し、該複数のピーク信号の周波数Fb[i](i=1,2,3…)を求めるするピーク信号検出部(52)と、
 前記ピーク信号検出部(52)によって検出された前記複数のピーク信号それぞれを前記被測定信号Pの基本波に起因するビート成分(基本波ビート成分)であると仮定して、前記被測定信号(P)の高調波成分に起因するビート成分(高調波ビート成分)の各理論周波数Fc[i,j](i=1,2,3…,j=1,2,3…)を順次に計算する理論周波数算出部(53)と、
 前記理論周波数算出部(53)によって各ピーク信号毎に順次に計算された前記高調波ビート成分の各理論周波数Fc[i,j]を、前記ピーク信号検出部(52)によって得られた前記複数のピーク信号の周波数Fb[i]と順次に比較し、その比較された結果に基づいて、前記複数のピーク信号のうち、それらの周波数Fb[i]と最も一致する前記高調波ビート成分の理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断し、当該ピーク信号の周波数Fb[k]を特定信号周波数(Fh′)として出力する基本波ビート成分周波数出力部(50)と、
 前記信号発生部(24)に対し、仮のサンプリング周波数(Fs′)を指定すると共に、前記仮のサンプリング周波数を所定量(ΔFs)変化させて、該サンプリング周波数の変化量に対する前記特定信号周波数の変化量(ΔFh)を求め、前記仮のサンプリング周波数と、該仮のサンプリング周波数に対する前記特定信号周波数と、前記サンプリング周波数の変化量及び前記特定信号周波数の変化量とに基づいて、前記被測定信号(P)の波形の繰り返し周波数(Fx)を算出する繰り返し周波数算出部(28)と、
 前記繰り返し周波数算出部(28)によって算出された繰り返し周波数(Fx)に対応する繰り返し周期(Tx)の整数倍に対して所定のオフセット遅延時間(ΔT)だけ差のある周期(Ts)に対応する周波数を前記被測定信号(P)に対する正規のサンプリング周波数(Fs)として算出し、該正規のサンプリング周波数を前記信号発生部(24)に指定する演算部(23)と、
 前記サンプリング部(26)から前記正規のサンプリングパルスでサンプリングされて出力される信号をデジタルの波形データに変換して出力するアナログ/デジタル(A/D)変換器(43)と、
 前記A/D変換器(43)から出力される前記波形データを記憶するための波形データメモリ(45)と、
 前記A/D変換器(43)から出力される前記波形データを前記信号発生部(24)からの前記クロック信号(C)に同期して前記波形データメモリ(45)に書き込むデータ取得制御部(44)と、
 前記波形データメモリ(45)に記憶された一連の波形データを読み出して表示部(46)の時間軸上に前記オフセット遅延時間(ΔT)に対応する間隔で表示する表示制御部(46)と、
 を具備する被測定信号の波形観測システムが提供される。
 前記目的を達成するために、本発明の第10の態様によると、
 前記理論周波数算出部(53)は、
 前記Fb[i]を前記基本波ビート成分の周波数であると仮定した場合の、前記被測定信号(P)のj次の高調波成分に起因する高調波ビート成分の理論周波数Fc[i,j]を、次式
 Fc[i,j]=mod(j・Fb[i],Fs′)…mod(j・Fb[i],Fs′)<Fs′/2の場合
 Fc[i,j]=Fs′-mod(j・Fb[i],Fs′)…mod(j・Fb[i],Fs′)≧Fs′/2の場合
に基づいて計算することを特徴とする第9の態様に従う被測定信号の波形観測システムが提供される。
 前記目的を達成するために、本発明の第11の態様によると、
 前記基本波ビート成分周波数出力部(50)は、
 前記高調波ビート成分の前記各理論周波数Fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値の和を順次に計算し、
 前記複数のピーク信号のうち、前記各ピーク信号毎に順次に計算される前記絶対値の和が最小となる前記高調波ビート成分の理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断し、当該ピーク信号の周波数Fb[k]を前記特定信号周波数(Fh′)として出力することを特徴とする第10の態様に従う被測定信号の波形観測システムが提供される。
 前記目的を達成するために、本発明の第12の態様によると、
 前記基本波ビート成分周波数出力部(50)は、
 前記高調波ビート成分の前記各理論周波数Fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値を順次に計算すると共に、
 前記各ピーク信号毎に順次に計算される前記絶対値の中から、値が小さい順にある規定数組だけ順次に取り出してそれらの和を順次に計算することにより、
 前記複数のピーク信号のうち、前記各ピーク信号毎に順次に計算される前記規定数組の絶対値の和が最小となる前記高調波ビート成分の理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断し、当該ピーク信号の周波数Fb[k]を特定信号周波数(Fh′)として出力することを特徴とする第10の態様に従う被測定信号の波形観測システムが提供される。
 以上のように、本発明の基本波ビート成分検出方法は、被測定信号Pをある周波数fsでサンプリングして得られる信号を解析して得られるスペクトラムのうち、前記あるサンプリング周波数fsの1/2以下の帯域に現れる複数のピーク信号を検出し、それら複数のピーク信号の周波数fb[i](i=1,2,3…)を求め、これら複数のピーク信号それぞれを前記被測定信号Pの基本波に起因するビート成分(基本波ビート成分)であると仮定したときの、前記被測定信号Pの高調波成分に起因するビート成分(高調波ビート成分)の各理論周波数fc[i,j](i=1,2,3…,j=1,2,3…)を順次に計算し、これら高調波ビート成分の各理論周波数fc[i,j]と前記複数のピーク信号の周波数fb[i]と順次に比較し、各ピーク信号毎に順次に比較された結果に基づいて、前記複数のピーク信号のうち、それらの周波数fb[i]と最も一致する前記高調波ビート成分の理論周波数fc[k,j](kはある整数)を与える前記ピーク信号を、基本波ビート成分であると判断するようにしているので、被測定信号Pが、同じ様なパワーを有する複数の高調波成分を持つ信号である場合でも、基本波ビート成分を誤りなく高精度に検出することができる。
 また、本発明の被測定信号のサンプリング装置及び波形観測システムにおいては、上記基本波ビート成分検出方法を用いて、被測定信号Pの繰り返し周波数を測定することにより、被測定信号Pが、同じ様なパワーを有する複数の高調波成分を持つ信号である場合でも、被測定信号Pを高精度にサンプリングすることができると共に、被測定信号Pの波形観測を高精度に行うことができる。
図1は、本発明の第1の実施形態による基本波ビート成分検出方法の手順を説明するために示すフローチャートである。 図2は、本発明の第1の実施形態による基本波ビート成分検出方法の原理を説明するために示す図である。 図3は、本発明の第1の実施形態による基本波ビート成分検出方法の手順を説明するために示すフローチャートである。 図4は、本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの構成を説明するために示すブロック図である。 図5は、本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの要部の構成例を示すブロック図である。 図6は、本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの要部の動作を説明するために示す図である。 図7は、本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの要部の構成例を示すブロック図である。 図8は、本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの要部の構成例を示すブロック図である。 図9は、本発明の第3の実施形態による被測定信号のサンプリング装置を含む波形観測システムの構成を説明するために示すブロック図である。 図10は、従来の波形観測装置の構成を説明するために示すブロック図である。 図11は、従来の波形観測装置の動作を説明するために示す図である。 図12は、本願発明者の日本国先願による被測定信号の繰り返し周波数検出方法の原理を説明するために示す図である。 図13は、本願発明者の日本国先願による被測定信号の繰り返し周波数検出方法の原理を説明するために示す図である。 図14は、本願発明者の日本国先願による被測定信号の繰り返し周波数検出方法を説明するために示すフローチャートである。 図15は、本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システムの構成を説明するために示すブロック図である。 図16は、本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システムの要部の動作を説明するために示す図である。 図17は、本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システムの要部の動作を説明するために示す図である。 図18は、本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システムの要部の動作を説明するために示す図である。 図19は、本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システムによる観測波形の一例を説明するために示す図である。 図20は、被測定信号が、同じ様なパワーを有する複数の高調波成分を持つ信号である場合についての一例を説明するために示す波形図である。 図21は、被測定信号が、同じ様なパワーを有する複数の高調波成分を持つ信号である場合についての別の例を説明するために示す波形図である。 図22は、被測定信号が、同じ様なパワーを有する複数の高調波成分を持つ信号である場合についてのさらに別の例を説明するために示すブロック図と波形図である。 図23は、被測定信号が、同じ様なパワーを有する複数の高調波成分を持つ信号である場合についての異なる例を説明するために示す波形図である。 図24は、本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システムの動作を説明するために示す波形図である。 図25は、被測定信号が、同じ様なパワーを有する複数の高調波成分を持つ信号である場合についての異なる例を説明するために示す波形図である。 図26は、本発明の第1の実施形態による基本波ビート成分検出方法を、図25の(a)に示したような被測定信号として同じ様なパワーを有する複数の高調波成分を持つ信号に適用する場合について説明するために示す波形図である。 図27は、本発明の第1の実施形態による基本波ビート成分検出方法を、図25の(a)に示したような被測定信号として同じ様なパワーを有する複数の高調波成分を持つ信号に適用する場合について説明するために示す波形図である。 図28は、本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの動作を説明するために示す波形図である。 図29は、本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの動作を説明するために示す波形図である。
 以下、図面を参照して本発明による実施形態について説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態による基本波ビート成分検出方法の手順を説明するために示すフローチャートである。
 本発明による基本波ビート成分検出方法は、基本的に、被測定信号Pをあるサンプリング周波数fsでサンプリングして得られる信号を解析し、そのスペクトラムを得る第1の段階と、前記第1の段階により得られた前記スペクトラムのうち、前記あるサンプリング周波数fsの1/2以下の帯域に現れる複数のピーク信号を検出し、それら複数のピーク信号の周波数fb[i](i=1,2,3…)を求める第2の段階と、前記第2の段階によって検出された前記複数のピーク信号それぞれを前記被測定信号Pの基本波に起因するビート成分(基本波ビート成分)であると仮定して、前記被測定信号Pの高調波成分に起因するビート成分(高調波ビート成分)の各理論周波数fc[i,j](i=1,2,3…,j=1,2,3…)を順次に計算する第3の段階と、前記第3の段階によって各ピーク信号毎に順次に計算された前記高調波ビート成分の前記各理論周波数fc[i,j]を前記第2の段階によって検出された前記複数のピーク信号の周波数fb[i]と順次に比較し、その比較された結果に基づいて、前記複数のピーク信号のうち、それらの周波数fb[i]と最も一致する前記高調波ビート成分の理論周波数fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号Pの基本波に起因する前記基本波ビート成分であると判断する第4の段階とを具備することを特徴としている。
 具体的には、図1に示すように、まず、被測定光信号Pがあるサンプリング周波数fsを有するサンプリング信号Psでサンプリングされる(ステップS11)。
 次に、ステップS11におけるサンプリングによって得られる信号を解析し、そのスペクトラムを得、得られたスペクトラムのうち、前記あるサンプリング周波数fsの1/2以下の帯域に現れる複数のピーク信号が検出され、それら複数のピーク信号の周波数fb[i](i=1,2,3…)が求められる(ステップS12、S13)。
 次に、ステップS12、S13によって検出された複数のピーク信号それぞれを前記被測定信号Pの基本波に起因するビート成分(基本波ビート成分)であると仮定して、被測定信号Pの高調波成分に起因するビート成分(高調波ビート成分)の各理論周波数fc[i,j](i=1,2,3…,j=1,2,3…)が順次に計算される(ステップS14、S15)。
 次に、ステップS14、S15によって各ピーク信号毎に順次に計算された前記高調波ビート成分の各理論周波数fc[i,j]が、前記ステップS12、S13によって得られた複数のピーク信号の周波数fb[i]と順次に比較される(ステップS16、S17)。
 次に、ステップS16、S17によって各ピーク信号毎に順次に比較された結果に基づいて、前記複数のピーク信号のうち、それらの周波数fb[i]と最も一致する前記高調波ビート成分の理論周波数fc[i,j]を与える前記ピーク信号が、前記基本波ビート成分であると判断される(ステップS18)。
 以上のような本発明の第1の実施形態による基本波ビート成分検出方法を、前述した図25の(a)に示したような同じ様なパワーを有する複数の高調波成分を持つ被測定信号P(繰り返し周波数=約10GHz、パルス幅=5ピコ秒)に適用する場合について、以下に詳細に説明する。
 前記ステップS11、S12では、被測定信号Pが、例えばサンプリング周波数10MHzにてサンプリングされ、サンプリングによって得られた信号が、例えば高速フーリェ変換などの手法により解析され、前述した図25の(b)に示したようなスペクトラムが得られる。
 前記ステップS13では、図26の(a)に矢印で示すように、前記ステップS12にて得られたスペクトラムのうち、サンプリング周波数の1/2の周波数である5MHz以下の帯域に現れる最大のピークパワー(Pmax)を有する周波数成分のピーク信号が、まず、検出される。
 次に、図26の(b)に示すように、前記最大のピークパワー(Pmax)の例えば1/2のピークパワーを有する7個のピーク信号が検出される。
 次に、それら検出された7個のピーク信号の周波数が、fb[i]により、fb[1]=0.8MHz、fb[2]=1.1MHz、fb[3]=1.9MHz、fb[4]=2.7MHz、fb[5]=3.5MHz、fb[6]=3.8MHz、fb[7]=4.6MHzと周波数の低い順に求められる。
 前記ステップS14、S15では、以上のようにして検出された各々のピーク信号を基本波ビート成分であると仮定した場合の高調波ビート成分の理論周波数fc[i,j]が、次式
 fc[i,j]=mod(j・fb[i],fs)…mod(j・fb[i],fs)<fs/2の場合
 fc[i,j]=fs-mod(j・fb[i],fs)…mod(j・fb[i],fs)≧fs/2の場合
に基づいて計算される。
 図2は、上式に基づいて計算される理論高調波ビート成分が、周波数軸上でどのように配置されるかを説明するために示す図であり、数値の1で示すピーク信号を基本波ビート成分と仮定し高調波ビート成分の周波数を計算している。
 図2中、2~10の数字は計算された高調波ビート成分の次数を示しており、ここで、2~3次の高調波ビート成分は単純に基本波ビート成分周波数の次数倍の周波数位置に配置されるが、それより高次のビート成分の場合には次数倍した周波数がfs/2以上となるため周波数折り返しが発生する。
 すなわち、4~7次の高調波ビート成分は基本波ビート成分周波数の次数倍した周波数位置をfs/2を中心として折り返した周波数位置に配置される。
 また、8~10次の高調波ビート成分は基本波ビート成分周波数の次数倍した周波数位置をfs/2及びfsを中心としてそれぞれ折り返した周波数位置に配置される。
 図2において、矢印Aは、このような周波数が折り返される様子を示している。
 この高調波ビート成分の理論周波数fc[i,j]の計算は、図26の(b)の場合、上述したようにして検出される7個のピーク信号(i=1~7)についてそれぞれ順次に行われる。
 具体的には、まず、fb[1](=0.8MHz)のピーク信号を基本波ビート成分であると仮定した場合の高調波ビート成分の理論周波数fc[1,j](j=2~7)は、
 fc[1,j]
 ={1.6,2.4,3.2,4.0,4.8,4.4}MHz
と計算され、以下同様に、i=2~7の場合についても
 fc[2,j]
 ={2.2,3.3,4.4,4.5.3.4,2.3}MHz
 fc[3,j]
 ={3.8,4.3,2.4,0.5,1.4,3.3}MHz
 fc[4,j]
 ={4.6,1.9,0.8,3.5,3.8,1.1}MHz
 fc[5,j]
 ={3.0,0.5,4.0,2.5.1.0,4.5}MHz
 fc[6,j]
 ={2.4,1.4,4.8,1.0,2.8,3.4}MHz
 fc[7,j]
 ={0.8,3.8,1.6,3.0,2.4,2.2}MHz
と順次に計算される。
 これらの計算された高調波ビート成分の理論周波数をスペクトラムにすると、図27の(a)~(g)に示すようになる(但し、各高調波ビート成分のピークパワーは全て同じとしている)。
 ここで、図27の(a)~(g)は、検出した複数のピーク信号の周波数fb[i]のi=1~7の順にそれぞれを基本波ビート成分周波数であると仮定した場合の各高調波ビート成分のスペクトラム図に各々対応している。
 前記ステップS16、S17、S18では、図3の(a)に示すように、前記高調波ビート成分の各理論周波数fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値の和が順次に計算される(ステップS19、S20)と共に、前記複数のピーク信号のうち、前記ステップS19、S20によって前記各ピーク信号毎に順次に計算される前記絶対値の和が最小となる前記高調波ビート成分の理論周波数fc[k,j](kはある整数)を与える前記ピーク信号が前記基本波ビート成分であると判断される(ステップS21)。
 上述した図27の(a)~(g)の場合では、まず、fb[1](=0.8MHz)を基本波ビート成分であると仮定した場合の高調波ビート成分の理論周波数fc[1,j](j=2,3,4…7)={1.6,2.4,3.2,4.0,4.8,4.4}MHzの6個の要素に最も近いfb[i]の要素として{1.9,2.7,3.5,3.8,4.6,4.6}MHzが順にそれぞれ選び出され(このとき、この例のように一度選んだ要素を重複して選んでも良いし、あるいは、一つの要素は一回のみしか選ばれないようにしても良い)、これら選ばれた各要素とfc[1,j]との各要素の差の絶対値が{0.3,0.3,0.3,0.2,0.2,0.2}MHzとして計算され、これら6つの絶対値の和1.5MHzが計算される。
 次に、fc[i,j](j=2,3,4…7)のiが2~7の場合についても上記と同様に、絶対値の和の計算が行われ、その結果が{1.3,1.4,0.0,1.2,1.1,1.2}MHzと得られる。
 したがって、この例の場合では、検出した7個のピーク信号のうち、最も小さい誤差0.0MHzとなるfc[4,j]を与えるi=4のピーク信号が前記基本波ビート成分であると判断されることになる。
 なお、どのピーク成分を基本波ビート成分であると仮定した場合に高調波ビート成分の理論周波数fc[i,j]が実際に観測した複数のピーク信号周波数fb[i]に最も一致しているかを判定する方法は、上述したように絶対値の和を計算する以外にも、差の二乗和を用いる方法、相関を求める方法、あるいは、図27の(a)~(g)に示すような高調波ビート成分のスペクトラム図を作り、図26の(b)に示すような実際に観測した複数のピーク信号のスペクトラムと視覚的に比較する方法を用いるようにしても良い。
 図27の(a)~(g)に示すような高調波ビート成分のスペクトラム図の場合、図27の(d)のスペクトラムが明らかに、図26の(b)に示すような実際に観測した複数のピーク信号のスペクトラムと類似しており、図26の(b)の左から4番目のピーク信号を前記基本波ビート成分であると判断することができる。
 また、図3の(b)に示すように、前記高調波ビート成分の各理論周波数fc[i,j]と、それらに最も近い前記複数のピーク信号周波数fb[i]との周波数差の絶対値が順次に計算される(ステップS22、S23)と共に、前記ステップS22、S23によって前記各ピーク信号毎に順次に計算される前記絶対値の中から、値が小さい順にある規定数組だけ取り出してそれぞれの和が順次に計算される(ステップS24、S25)ことにより、前記複数のピーク信号のうち、前記ステップS24、S25によって各ピーク信号毎に順次に計算される前記規定数組の絶対値の和が最小となる前記高調波ビート成分の各理論周波数fc[k,j]を与えるピーク信号が前記基本波ビート成分であると判断される(ステップS26)ようにしてもよい。
 このような図3の(b)に示す手法は、被測定信号によっては、ある次数の高調波成分のピークパワーが、それよりも高い次数の高調波成分のパワーに比して、非常に小さい場合もあり、そのような場合には、連続した一連の高調波ビート成分が検出されないことになるので、それを考慮した手法である。
 なお、以上述べたような基本波ビート成分検出方法を用いることにより、被測定信号をサンプリングすることによって得られる複数のビート成分それぞれが、被測定信号のどの次数の周波数成分に起因するビート成分であるかを判別することが可能である。
 すなわち、検出した基本波ビート成分の周波数を元に、前述した高調波ビート成分の理論周波数の計算式に従って高調波ビート成分の周波数も得ることができる。
 したがって、本発明の第1の実施形態による基本波ビート成分検出方法によれば、被測定信号Pをあるサンプリング周波数fsでサンプリングして得られる信号を解析してその信号のスペクトラムを得、得られたスペクトラムのうち、前記あるサンプリング周波数fsの1/2以下の帯域に現れる複数のピーク信号を検出し、それら複数のピーク信号の周波数fb[i]を求め、これら複数のピーク信号それぞれを前記被測定信号Pの基本波に起因するビート成分(基本波ビート成分)であると仮定して、前記被測定信号Pの高調波成分に起因するビート成分(高調波ビート成分)の各理論周波数fc[i,j](i=1,2,3…,j=1,2,3…)を順次に計算し、各ピーク信号毎に順次に計算された前記高調波ビート成分の前記各理論周波数fc[i,j]を前記複数のピーク信号の周波数fb[i]と順次に比較し、各ピーク信号毎に順次に比較された結果に基づいて、前記複数のピーク信号のうち、それらの周波数fb[i]と最も一致する前記高調波ビート成分の理論周波数fc[k,j](kはある整数)を与える前記ピーク信号を、前記基本波ビート成分であると判断するようにしているので、被測定信号Pが、同じ様なパワーを有する複数の高調波成分を持つ信号である場合でも、被測定信号Pの基本波成分に起因するビート成分である基本波ビート成分を正しく検出することができる。
(第2の実施形態)
 図4は、本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの構成を説明するために示すブロック図である。
 この第2の実施形態による波形観測システム20は、具体的には、図4に示すように、前述した第1の実施形態による基本波ビート成分検出方法のステップS11を遂行するために、前述した図15に示す本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システム20と同様のパラメータ指定部22と、演算部23と、信号発生部24と、サンプリングパルス発生部25と、光サンプリング部26、繰り返し周波数算出部28とを有している。
 また、この第2の実施形態による波形観測システム20は、具体的には、図4に示すように、前述した第1の実施形態による基本波ビート成分検出方法のステップS12乃至S18を遂行するために、前述した図15に示す本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システム20には見られないスペクトラム解析部51と、ピーク信号検出部52と、理論周波数算出部53と、基本波ビート成分周波数出力部50とを有している。
 なお、図4において、前述した図15と同様に構成される部分については、同一の参照符号を付してそれらの説明を省略し、以下では図15で説明されなかった部分について説明するものとする。
 パラメータ指定部22は、図示しない操作部の操作等によって、被測定光信号Pの波形の繰り返し周期Txとサンプリングのオフセット遅延時間ΔTに対応する情報を指定するためのものであり、前記手動設定モードのときには、正確な繰り返し周期Txを指定すると共に、自動設定モードの場合には、その概略値Tx′を指定するか、あるいは何も指定しない。
 なお、この指定情報は、周期値だけでなく、それに対応した周波数値であっても良いと共に、予め設定されている値から一つを指定する番号等の情報であってもよい。
 また、信号の周期と周波数とは、その一方が決まれば他方が一義的に特定されるので、「周期」及びその関係を「周波数」及びその関係に置き換えたものや、逆に「周波数」及びその関係を「周期」及びその関係に置き換えたものも含まれるものとする。
 演算部23は、パラメータ指定部22によって指定された情報または後述する繰り返し周波数算出部28によって出力される被測定信号Pの基本波周波数情報に基づいて、被測定信号Pの繰り返し周期Tx(またはその概略値Tx′)の整数(N)倍に対してオフセット遅延時間ΔTだけ差のあるサンプリング周期Ts(サンプリング周波数Fs)を算出する。
 また、この演算部23は、算出したサンプリング周期で観測対象の波形の1周期分のデータをΔTの分解能で得るのに必要な時間をトリガ周期Tg(周波数Fg)として算出する。
 すなわち、あるサンプリング周波数Fs(=1/Ts)は、Ts=N・Tx+ΔTの関係から、
 Fs=Fx/(N+Fx・ΔT)
の演算によって求められる。
 また、トリガ周波数Fgは、前記したように、
 Fg=mod[Fx,Fs]=Fs・Fx・ΔT
の演算によって得られる。
 例えば、Fx=1GHz、ΔT=0.1ps、サンプリング周波数Fsの設定可能範囲を10MHz±1kHzとすると、
 10/(N+10・0.1×10-12
が、9.999MHzから10.001MHzの範囲に入る整数Nを求め、そのNについてFs=Fx/(N+Fx・ΔT)を満たす周波数Fsを求めればよく、上記数値例では、N=100、Fs=9.99999MHzが得られる。
 また、上記数値例のトリガ周波数Fgは、
 Fg=Fs・Fx・ΔT
   =9.99999×10・1×10・0.1×10-12
   =9.99999×10(MHz)
となる。
 信号発生部24は、演算部23で算出されたサンプリング周波数Fsあるいは繰り返し周波数算出部28から指定された仮のサンプリング周波数Fs′のクロック信号C、後述する光サンプリングパルス発生部25で幅の狭いパルス光を生成させるために必要な高い周波数の信号Uおよび周波数Fgのトリガ用信号Gを生成して出力する。
 この信号発生部24の構成は任意であるが、例えば、安定で精度の高い基準信号(例えば、1GHz±1MHz)を逓倍して信号Uを生成し、その信号Uを分周して上記クロック信号Cおよびトリガ用信号Gを発生するように構成されている。
 光サンプリングパルス発生部25は、信号発生部24が出力するクロック信号Cと等しい周期の光サンプリングパルスPsを発生する。
 この光サンプリングパルス発生部25が発生する光サンプリングパルスPsのパルス幅は、サンプリングの時間分解能の上限を決定するものであり、パルス幅が狭い程、高い時間分解能でサンプリングを行なうことができる。
 この狭い光サンプリングパルスを得るために、光サンプリングパルス発生部25は、例えば、図5に示しているように、光源25aから出射される連続光CWを変調器25bに入射して信号Uで変調して、図6の(a)に示すように比較的狭い幅のパルス光Paを信号Uの周期Tuで生成し、そのパルス光Paを間引部25cに入力する。
 間引部25cは、クロック信号Cの周期で短時間だけオンする光スイッチを有し、図6の(b)に示すようにクロック信号Cの周期Tsのパルス光Pbを出力する。
 このパルス光Pbは自動利得制御型のファイバアンプリファイヤ25dに入力され、適正な強度のパルス光Pb′に増幅されて分散減少ファイバ25eに入射される。
 この適正な強度のパルス光Pb′を受けた分散減少ファイバ25eからは、図6の(c)に示すように幅が狭い(例えば、0.1ps以下)の光サンプリングパルスPsが周期Tsで出射される。
 光サンプリング部26は、例えば、図7に示しているように、光ミキサ26aと、光電変換器26bとからなり、入力端子21aから入力される光信号Pと光サンプリングパルスPsとを光ミキサ26aに入力して、被測定光信号Pを光サンプリングパルスPsでサンプリングし、そのサンプリングによって得られたパルス光Poを光電変換器26bによって電気のパルス信号Eoに変換して出力する。
 スペクトラム解析部51は、光サンプリング部26によってサンプリングパルスPsでサンプリングされて出力されるパルス信号Eoを受けて、その信号Eoのスペクトラムを求める。
 ピーク信号検出部52は、スペクトラム解析部51で得られたスペクトラムのうち、サンプリング周波数の1/2以下の帯域に現れる複数のピーク信号を検出する。
 ここで、スペクトラム解析部51及びピーク信号検出部52は、例えば、図8に示すように、パルス信号EoをA/D変換器51aに入力してそのピーク値をクロック信号Cに同期してサンプリングしてデジタル値に変換し、そのデジタル値列に対して、演算処理部51cにより、FFT(高速フーリェ変換)演算等の処理を行ってスペクトラムを計算し、そのスペクトラムのうち、サンプリング周波数の1/2以下の帯域に現れる複数のピーク信号を検出し、それらの複数のピーク信号の周波数Fb[i]を求める。
 理論周波数算出部53は、ピーク信号検出部52によって検出された複数のピーク信号それぞれを被測定信号Pの基本波に起因するビート成分(基本波ビート成分)であると仮定して、被測定信号Pの高調波成分に起因するビート成分(高調波ビート成分)の各理論周波数Fc[i,j](i=1,2,3…,j=1,2,3…)を順次に計算して、後述の基本波ビート成分周波数出力部50に供給する。
 基本波ビート成分周波数出力部50は、理論周波数算出部53によって各ピーク信号毎に順次に計算された前記複数のピーク信号それぞれについての高調波ビート成分の各理論周波数Fc[i,j]を、ピーク信号検出部52によって得られる前記複数のピーク信号の周波数Fb[i]と順次に比較し、最も一致する前記高調波ビート成分の各理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号を、前記基本波ビート成分(特定信号)であると判断し、その周波数Fb[k]を特定信号周波数(Fh′)として後述する繰り返し周波数算出部28へ出力する。
 繰り返し周波数算出部28は、前記パラメータ指定部22に自動設定モードが指定された場合に動作し、まず、信号発生部24に対して仮のサンプリング周波数Fs′を指定すると共に、その仮のサンプリング周波数Fs′で被測定信号Pを前記サンプリングしたときに前記基本波ビート成分周波数出力部50から出力される前記特定信号周波数Fh′を記憶する。
 次に、繰り返し周波数算出部28は、前記信号発生部24に対して仮のサンプリング周波数を微少量ΔFsだけ変化させるように指示すると共に、その微少量ΔFsだけ変化させたサンプリング周波数で被測定信号Pをサンプリングしたときに前記基本波ビート成分周波数出力部50から出力される前記特定信号周波数よりその周波数変化量ΔFhを算出し、前記仮のサンプリング周波数Fs′、それに対応する前記特定信号周波数Fh′、前記仮のサンプリング周波数の変化量ΔFs及びそれに対応する前記特定信号周波数変化量ΔFhに基づき、被測定光信号Pの正確な繰り返し周波数Fxを計算して、前記演算部23に出力する。
 次に、以上のような本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの動作を説明する。
 始めに、例えば、前述の図25の(a)に示すような被測定光信号P(繰り返し周波数=約10GHz、パルス幅=約5ピコ秒)を入力端子21aに入力すると共に、図示しない操作部によってサンプリングのオフセット遅延時間ΔT(例えば、100ピコ秒)及び自動設定モードをパラメータ指定部22に指定する。
 自動設定モードが設定されるのに伴い、繰り返し周波数算出部28が動作を開始し、まず、信号発生部24に対して仮のサンプリング周波数として、例えば、10MHzが指定される。
 信号発生部24は指定された周波数10MHzのクロック信号Cをサンプリングパルス発生部25へ出力し、それを受けたサンプリングパルス発生部25からはクロック信号Cに同期したサンプリングパルスPsが光サンプリング部26へ出力される。
 入力端子21aに入力された被測定光信号Pは、光サンプリング部26において、サンプリングパルス発生部25から出力されるサンプリングパルスPsでサンプリングされ、電気信号Eoに変換されて出力される。
 電気信号Eoを受けたスペクトラム解析部51は、その信号を解析し、例えば、前述の図25の(b)に示すようなスペクトラムを出力する。
 このスペクトラムを受けたピーク信号検出部52は、前述の図26の(a)の矢印で示すように、このスペクトラムのうち、仮のサンプリング周波数の1/2の5MHz以下の帯域にある最大のピークパワーを有する周波数成分を検出し、その周波数成分のピークパワー(Pmax)の例えばPmax/2以上のピークパワーを有する7個のピーク信号を検出する(前述の図26の(b))。
 そして、それらの周波数(Fb[1]=0.8MHz、Fb[2]=1.1MHz、Fb[3]=1.9MHz、Fb[4]=2.7MHz、Fb[5]=3.5MHz、Fb[6]=3.8MHz、Fb[7]=4.6MHz)が計算され、理論周波数算出部53及び基本波ビート成分周波数出力部50へ出力される。
 これらの複数のピーク信号の周波数Fb[i]を受けた前記理論周波数算出部53においては、次式
 Fc[i,j]=mod(j・Fb[i],Fs′)…mod(j・Fb[i],Fs′)<Fs′/2の場合
 Fc[i,j]=Fs′-mod(j・Fb[i],Fs′)…mod(j・Fb[i],Fs′)≧Fs′/2の場合
に基づいて、検出した各々のピーク信号を基本波ビート成分であると仮定した場合の前記高調波ビート成分の各理論周波数Fc[i,j]が計算される。
 前述の図26の(b)の場合においては、前記7個のピーク信号の周波数Fb[i](i=1~7)についてそれぞれ順次に計算され、Fb[1](=0.8MHz)を基本波ビート成分であると仮定した場合の理論周波数Fc[1,j](j=2,3,4…7)は、
 Fc[1,j]
 ={1.6,2.4,3.2,4.0,4.8,4.4}MHz
と計算され、以下同様にi=2~7の場合についても
 Fc[2,j]
 ={2.2,3.3,4.4,4.5,3.4,2.3}MHz
 Fc[3,j]
 ={3.8,4.3,2.4,0.5,1.4,3.3}MHz
 Fc[4,j]
 ={4.6,1.9,0.8,3.5,3.8,1.1}MHz
 Fc[5,j]
 ={3.0,0.5,4.0,2.5,1.0,4.5}MHz
 Fc[6,j]
 ={2.4,1.4,4.8,1.0,2.8,3.4}MHz
 Fc[7,j]
 ={0.8,3.8,1.6,3.0,2.4,2.2}MHz
と順次に計算され、基本波ビート成分周波数出力部50へ出力される。
 これら高調波ビート成分の理論周波数Fc[i,j]と、前記ピーク信号検出部52から出力される前記複数のピーク信号の周波数Fb[i]を受けた前記基本波ビート成分周波数出力部50では、前記高調波ビート成分の各理論周波数Fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値の和が順次に計算され、前記複数のピーク信号のうち、前記各ピーク信号毎に順次に計算される前記絶対値の和が最小となる前記高調波ビート成分の理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号が、前記被測定信号Pの基本波に起因する前記基本波ビート成分(特定信号)であると判断され、当該ピーク信号の周波数Fb[k]が前記特定信号周波数(Fh′)として出力される。
 前述の図26の(b)の場合においては、まず、Fb[1](=0.8MHz)を基本波ビート成分であると仮定した場合の高調波ビート成分の理論周波数Fc[1,j](j=2,3,4…7)={1.6,2.4,3.2,4.0,4.8,4.4}MHzの6個の要素に最も近いFb[i]の要素として{1.9,2.7,3.5,3.8,4.6,4.6}MHzが順にそれぞれ選び出され(このとき、この例のように一度選んだ要素を重複して選んでも良いし、あるいは、一つの要素は一回のみしか選ばれないようにしても良い)、これら選ばれた各要素とFc[1,j]との各要素の差の絶対値が{0.3,0.3,0.3,0.2,0.2,0.2}MHzとして計算され、これら6つの絶対値の和1.5MHzが計算される。
 次に、Fc[i,j](j=2,3,4…7)のiが2~7の場合についても上記と同様に、絶対値の和の計算が行われ、その結果が{1.3,1.4,0.0,1.2,1.1,1.2}MHzと計算される。
 そして、この例の場合では、検出した7個のピーク信号のうち、最も小さい誤差0.0MHzとなるFc[4,j]を与えるi=4のピーク信号が前記基本波ビート成分であると判断され、その周波数Fb[4]=2.7MHzが前記特定信号周波数Fh′として繰り返し周波数算出部28へ出力される。
 また、基本波ビート成分周波数出力部50では、前記高調波ビート成分の各理論周波数Fc[1,j]とそれらに最も近い前記複数のピーク信号との周波数差の絶対値が順次に計算され、前記順次に計算される前記絶対値の中から値が小さい順にある規定数組だけ取り出してそれらの和が順次に計算され、前記順次に計算される前記規定数組の絶対値の和が最小となる前記高調波ビート成分の前記各理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号が前記基本波ビート成分であると判断され、その周波数Fb[k]が前記特定信号周波数Fh′として繰り返し周波数算出部28へ出力されるようにしても良い。
 このようにして、仮のサンプリング周波数Fs′(=10MHz)についての特定信号周波数Fh′(=2.7MHz)が得られると、繰り返し周波数算出部28は、この特定信号の周波数Fh′を記憶すると共に、信号発生部24に対してサンプリング周波数を所定の微小量(例えば、100Hz)だけ変化させるように指示する。
 この指示を受けた信号発生部24により、被測定信号Pに対する仮のサンプリング周波数が100Hzだけ高くなり、前記スペクトラム解析部51から前述の図25の(c)に示すようなスペクトラムが出力される。
 このスペクトラムを受けたピーク信号検出部52は、前述したと同様にして、図28の(a)に矢印で示すような最大ピークPmaxの半分のPmax/2以上のピークパワーを有する7個のピーク信号を図28の(b)に示すように検出し、それらの周波数(Fb[1]=0.3999MHz、Fb[2]=1.8002MHz、Fb[3]=2.2001MHz、Fb[4]=2.6MHz、Fb[5]=2.9999MHz、Fb[6]=4.4002MHz、Fb[7]=4.8001MHz)が計算され、理論周波数算出部53及び基本波ビート成分周波数出力部50へ出力される。
 これらの複数のピーク信号の周波数Fb[i](i=1~7)を受けた理論周波数算出部53においては、前述したと同様にして、それら7個のピーク信号各々を基本波ビート成分であると仮定した場合の高調波ビート成分の各理論周波数Fc[i,j]が、
 Fc[1,j]
 ={0.7998,1.1997,1.5996,
      1.9995,2.3994,2.7993}MHz
 Fc[2,j]
 ={3.6004,4.5995,2.7993,
      0.9991,0.8011,2.6013}MHz
 Fc[3,j]
 ={4.4002,3.3998,1.1997,
      1.0004,3.2005,4.5995}MHz
 Fc[4,j]
 ={4.8001,2.2001,0.3999,
      2.9999,4.4002,1.8002}MHz
 Fc[5,j]
 ={4.0003,1.0004,1.9995,
      4.9994,2.0008,0.9991}MHz
 Fc[6,j]
 ={1.1997,3.2005,3.3994,
      2.0008,3.5991,0.8011}MHz
 Fc[7,j]
 ={0.3990,4.4002,0.7998,
      4.0003,1.1997,3.6004}MHz
と順次に計算され、基本波ビート成分周波数出力部50へ出力される。
 図29は、これらの計算された高調波ビート成分のスペクトラム図を示している。
 これらの高調波ビート成分の理論周波数Fc[i,j]と前記ピーク信号検出部52から出力される複数のピーク信号の周波数Fb[i]とを受けた前記基本波ビート成分周波数出力部50は、前述したと同様にして高調波ビート成分の理論周波数Fc[i,j]とそれらに最も近い前記複数のピーク信号の周波数との周波数差の絶対値の和が{1.7989,2.0008,2.0008,0.0,2.1975,2.2001,2.0008}MHzと順次に計算され、最も小さい誤差0.0MHzとなるFc[4,j]を与えるi=4のピーク信号が基本波ビート成分(特定信号)であると判断され、その周波数Fb[4]=2.6MHzが前記特定信号周波数として繰り返し周波数算出部28へ再び出力される。
 繰り返し周波数算出部28は、この特定信号の周波数2.6MHzから先に記憶していた2.7MHzを減算することにより、仮のサンプリング周波数の所定の微少の変化量ΔFs=100Hzに対する特定信号の周波数の変化量ΔFh=2.6MHz-2.7MHz=-100kHzを計算すると共に、仮のサンプリング周波数Fs′=10MHz、仮のサンプリング周波数Fs′に対する特定信号周波数Fh′=2.7MHz、仮のサンプリング周波数の所定の変化量ΔFs=100Hz、及びその仮のサンプリング周波数の所定の変化に対する特定信号周波数の変化量ΔFh=-100kHzより、被測定信号Pの正確な繰り返し周波数Fxが、
 Fx=Fh′-Fs′・ΔFh/ΔFs
   =2.7MHz-10MHz・(-100kHz)/100Hz
   =10.0027GHz
と計算され、演算部23に設定される。
 演算部23は、この繰り返し周波数算出部28によって出力された被測定信号Pの正確な繰り返し周波数Fx=10.0027GHzに対応する繰り返し周期Txの整数(N)倍に対してパラメータ指定部22によって指定された所定のオフセット遅延時間ΔT=100ピコ秒だけ差のある周期Tsに対応する周波数Fs、すなわち、前記被測定信号Pに対する正確なサンプリング周波数を
 Fs=Fx/(N+Fx・ΔT)
により、約10002689.994Hz(N=1000にて)のように算出し、この算出された正規のサンプリング周波数Fsを前記信号発生部24に指定する。
 これにより、サンプリングパルス発生部25からは、前記仮のサンプリング周波数Fs′に代わり、前記正規のサンプリング周波数Fsを有するサンプリングパルスが発生され、前記光サンプリング部26によって前記被測定信号Pがサンプリングされる。
 そして、光サンプリング部26によって被測定信号Pが前記正規のサンプリング周波数Fsを有するサンプリングパルスでサンプリングされて、光サンプリング部26から出力されるパルス信号Eoは、前述した図15の説明と同様にしてデジタルオシロスコープ60に取り込まれて表示される。
 したがって、本発明の第2の実施形態による被測定信号のサンプリング装置及び波形観測システムによれば、被測定信号Pが、同じ様なパワーを有する複数の高調波成分を持つ信号である場合でも、上記本発明の第1の実施形態による基本波ビート成分検出方法を用いることにより、被測定信号Pの正確な繰り返し周波数を検出することができるので、被測定信号Pを高精度にサンプリングすることができると共に、被測定信号Pの波形観測を高精度に行うことができる。
(第3の実施形態)
 図9は、本発明の第3の実施形態による波形観測システムの構成を説明するために示すブロック図である。
 この第3の実施形態による波形観測システム40は、上記第2の実施形態による波形観測システム20を構成するサンプリング装置21とデジタルオシロスコープ60の機能とを共通の筐体内に収容して一体化した構成となされている。
 具体的には、この第3の実施形態による波形観測システム40は、前記した第2の実施形態による図4のサンプリング装置21の各構成要素の他に、A/D変換器43、データ取得制御部44、波形データメモリ45、表示制御部46、表示部47及び観測モード指定部48を備えている。
 A/D変換器43は、光サンプリング部26から出力されるパルス信号Eoに対するA/D変換処理を、前記信号発生部24からのクロック信号C(または該クロック信号Cに同期したより高速のクロック信号でもよい)を受ける毎に行うことにより、そのA/D変換処理によって得られたパルス信号Eoのピーク値のデータDpをデータ取得制御部44に出力する。
 データ取得制御部44は、前記信号発生部24からのトリガ用信号Gの立ち上がり(または立ち下がり)タイミングから、波形データメモリ45に対するデータDpの書き込みを前記クロック信号Cに同期して開始し、所定数のデータの書き込みが終了すると、次にトリガ用信号Gが立ち上がるまで待機するという動作を繰り返す。
 なお、波形データメモリ45に書き込むデータの数は、後述する表示部47に表示される時間軸の表示ポイント数に対応する。
 表示制御部46は、表示部47と共に波形表示部を形成するものであり、時間軸と電圧軸とからなる座標画面を表示部47に表示させ、波形データメモリ45に記憶された一連のデータDpを読み出して、座標画面上にプロット表示して、その読み出した一連のデータDpに対応する波形を表示する。
 なお、この表示制御部46は、観測モード指定部48によって指定された観測モードに応じて、波形データメモリ45に記憶されたデータDpに対する加工処理及び表示処理を行う。
 すなわち、パーシステンスモードが指定された場合、波形データメモリ45に記憶された一連のデータDpを残像を残すことで波形表示し、平均化モードが指定された場合、波形データメモリ45に記憶された一連のデータDpを所定組求めて、その平均化処理を行い、その平均化処理で得られた一連のデータを重ねて波形として表示する。
 このように構成された波形観測システム40の動作は、前記波形観測システム20と同様であり、被測定信号Pが、同じ様なパワーを有する複数の高調波成分を持つ信号である場合でも、被測定信号Pの正確な繰り返し周波数を検出することが可能であり、その検出した被測定信号Pの正確な繰り返し周波数に対応したサンプリング周波数とトリガ周波数が設定されるので、被測定信号Pの基本波周波数が未知あるいは概略値しか分からない波形であっても、安定に表示させることができる。
 なお、被測定信号Pの波形の情報を単発的に取得して表示する場合には、上記のように周期的なトリガ用信号Gを生成する必要がなく、例えば、手動のトリガ操作に応じて1回だけ立ち上がるトリガ用信号Gを出力すればよい。
 また、上記した波形観測システム20、40は、光信号を光パルスでサンプリングするO/Oサンプリング方式に代えて、電気信号を光パルスでサンプリングするE/Oサンプリング方式についても本発明を同様に適用することができる。
 そして、本発明の第3実施形態による被測定信号の波形観測システムは、基本的には、被測定信号Pを入力するための入力端子21aと、指定されたサンプリング周波数のクロック信号Cを生成する信号発生部24と、前記クロック信号Cに同期したサンプリングパルスPsを発生するサンプリングパルス発生部25と、前記入力端子21aに入力された前記被測定信号Pを前記サンプリングパルスPsによってサンプリングするサンプリング部26と、前記サンプリング部26からの出力信号を受け、該出力信号のスペクトラムを出力するスペクトラム解析部51と、前記スペクトラム解析部51から出力されるスペクトラムのうち、前記指定されたサンプリング周波数の1/2以下の帯域に現れる複数のピーク信号を検出し、該複数のピーク信号の周波数Fb[i](i=1,2,3…)を求めるピーク信号検出部52と、前記ピーク信号検出部52によって検出された前記複数のピーク信号それぞれを前記被測定信号(P)の基本波に起因するビート成分(基本波ビート成分)であると仮定して、前記被測定信号Pの高調波成分に起因するビート成分(高調波ビート成分)の各理論周波数Fc[i,j](i=1,2,3…,j=1,2,3…)を順次に計算する理論周波数算出部53と、前記理論周波数算出部53によって各ピーク信号毎に順次に計算された前記高調波ビート成分の前記各理論周波数Fc[i,j]を、前記ピーク信号検出部52によって得られた前記複数のピーク信号の周波数Fb[i]と順次に比較し、その比較された結果に基づいて、前記複数のピーク信号のうち、それらの周波数Fb[i]と最も一致する前記高調波ビート成分の前記理論周波数Fc[k,j]を与える前記ピーク信号を、前記被測定信号Pの基本波に起因する基本波ビート成分であると判断し、当該ピーク信号の周波数Fb[k]を特定信号周波数Fh′として出力する基本波ビート成分周波数出力部50と、前記信号発生部24に対し、仮のサンプリング周波数Fs′を指定すると共に、仮のサンプリング周波数を所定量ΔFs変化させて、該サンプリング周波数の変化量ΔFsに対する前記特定信号周波数の変化量ΔFhを求め、仮のサンプリング周波数Fs′と、該仮のサンプリング周波数に対する前記特定信号の周波数Fh′と、前記サンプリング周波数の変化量ΔFs及び前記特定信号の周波数変化量ΔFhとに基づいて、前記被測定信号Pの波形の繰り返し周波数Fxを算出する繰り返し周波数算出部28と、前記繰り返し周波数算出部28によって算出された繰り返し周波数Fxに対応する繰り返し周期Txの整数倍に対して所定のオフセット遅延時間ΔTだけ差のある周期Tsに対応する周波数Fsを前記被測定信号Pに対する正規のサンプリング周波数として算出し、該正規のサンプリング周波数を前記信号発生部24に指定する演算部23と、前記サンプリング部26から前記正規のサンプリングパルスでサンプリングされて出力される信号をデジタルの波形データDpに変換して出力するアナログ/デジタル(A/D)変換器43と、前記A/D変換器43から出力される前記波形データDpを記憶するための波形データメモリ45と、前記A/D変換器43から出力される前記波形データDpを前記信号発生部24からの前記クロック信号Cに同期して前記波形データメモリ45に書き込むデータ取得制御部44と、前記波形データメモリ45に記憶された一連の波形データを読み出して表示部47の時間軸上に前記オフセット遅延時間ΔTに対応する間隔で表示する表示制御部46とを具備することを特徴としている。
 前記理論周波数算出部53では、前記Fb[i]を前記基本波ビート成分の周波数であると仮定した場合の、前記被測定信号Pのj次の高調波成分に起因する高調波ビート成分の理論周波数Fc[i,j]が、次式
 Fc[i,j]=mod(j・Fb[i],Fs′)…mod(j・Fb[i],Fs′)<Fs′/2の場合
 Fc[i,j]=Fs′-mod(j・Fb[i],Fs′)…mod(j・Fb[i],Fs′)≧Fs′/2の場合
に基づいて計算される。
 前記基本波ビート成分周波数出力部50では、図3の(a)に示すように、前記高調波ビート成分の各理論周波数Fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値の和が順次に計算される(ステップS19、S20)と共に、該絶対値の和が最小となる前記高調波ビート成分の理論周波数Fc[k,j](kはある整数)を与えるピーク信号が基本波ビート成分(特定信号)であると判断され、当該ピーク信号のの周波数Fb[k]が特定信号周波数Fh′として出力される(ステップS21)。
 また、前記基本波ビート成分周波数出力部50では、図3の(b)に示すように、前記高調波ビート成分の各理論周波数Fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値が順次に計算される(ステップS22、S23)と共に、前記ステップS22、S23によって前記各ピーク信号毎に順次に計算される前記絶対値の中から、値が小さい順にある規定数組だけ順次に取り出されて、それらの和が順次に計算される(ステップS24、S25)ことにより、前記ステップS24、S25によって前記順次に計算される前記規定数組の絶対値の和が最小となる前記高調波ビート成分の各理論周波数Fc[k,j](kはある整数)を与えるピーク信号が基本波ビート成分(特定信号)であると判断され、当該ピーク信号の周波数Fb[k]が前記特定信号周波数Fh′として出力される(ステップS26)ようにしても良い。
 すなわち、本発明の第3の実施形態による被測定信号の波形観測システム40においては、上記第2の実施形態による被測定信号のサンプリング装置及び波形観測システム20と同様に、被測定信号Pが、同じ様なパワーを有する複数の高調波成分を持つ信号である場合でも、上記第1の実施形態による基本波ビート成分検出方法を用いることにより、被測定信号Pの正確な繰り返し周波数を検出することができるので、被測定信号Pを高精度にサンプリングすることができると共に、被測定信号Pの波形観測を高精度に行うことができる。
 したがって、以上詳述したように、本発明によれば、被測定信号が、同じ様なパワーを有する複数の高調波成分を持つ信号である場合でも、被測定信号をサンプリングすることによって得られる複数のビート成分それぞれが、被測定信号のどの次数の周波数成分に起因するビート成分であるかを判別することができる基本波ビート成分検出方法を用いることにより、被測定信号の安定な波形情報の取得と観測ができ、さらに、システム全体を簡易に構成することができるサンプリング装置及び波形観測システムを提供することができる。

Claims (12)

  1.  被測定信号(P)をあるサンプリング周波数(fs)でサンプリングして得られる信号を解析し、そのスペクトラムを得る第1の段階(ステップS11、S12)と、
     前記第1の段階により得られた前記スペクトラムのうち、前記あるサンプリング周波数fsの1/2以下の帯域に現れる複数のピーク信号を検出し、それら複数のピーク信号の周波数fb[i](i=1,2,3…)を求める第2の段階(ステップS13)と、
     前記第2の段階によって検出された前記複数のピーク信号それぞれを前記被測定信号Pの基本波に起因するビート成分(基本波ビート成分)であると仮定して、前記被測定信号Pの高調波成分に起因するビート成分(高調波ビート成分)の各理論周波数fc[i,j](i=1,2,3…,j=1,2,3…)を順次に計算する第3の段階(ステップS14、S15)と、
     前記第3の段階によって各ピーク信号毎に順次に計算された前記高調波ビート成分の前記各理論周波数fc[i,j]を前記第2の段階によって検出された前記複数のピーク信号の周波数fb[i]と順次に比較し、その比較された結果に基づいて、前記複数のピーク信号のうち、それらの周波数fb[i]と最も一致する前記高調波ビート成分の理論周波数fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断する第4の段階(ステップS16、S17、S18)と、
     を具備する基本波ビート成分検出方法。
  2.  前記第3の段階は、
     前記fb[i]を前記基本波ビート成分の周波数であると仮定した場合の、前記被測定信号Pのj次の高調波成分に起因する高調波ビート成分の理論周波数fc[i,j]を、次式
     fc[i,j]=mod(j・fb[i],fs)…mod(j・fb[i],fs)<fs/2の場合
     fc[i,j]=fs-mod(j・fb[i],fs)…mod(j・fb[i],fs)≧fs/2の場合
    に基づいて計算する
    ことを特徴とする請求項1に記載の基本波ビート成分検出方法。
  3.  前記第4の段階は、
     前記高調波ビート成分の前記各理論周波数fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値の和を順次に計算する第5の段階(ステップS19、S20)と、
     前記複数のピーク信号のうち、前記第5の段階によって前記各ピーク信号毎に順次に計算される前記絶対値の和が最小となる前記高調波ビート成分の理論周波数fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断する第6の段階(ステップS21)と、
     を有することを特徴とする請求項2に記載の基本波ビート成分検出方法。
  4.  前記第4の段階は、
     前記高調波ビート成分の前記各理論周波数fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値を順次に計算する第7の段階(ステップS22、S23)と、
     前記第7の段階によって前記各ピーク信号毎に順次に計算される前記絶対値の中から、値が小さい順にある規定数組だけ順次に取り出してそれらの和を順次に計算する第8の段階(ステップS24、S25)と、
     前記複数のピーク信号のうち、前記第8の段階によって前記各ピーク信号毎に順次に計算される前記規定数組の絶対値の和が最小となる前記高調波ビート成分の理論周波数fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断する第9の段階(ステップS26)と、
     を有することを特徴とする請求項2に記載の基本波ビート成分検出方法。
  5.  被測定信号(P)を入力するための入力端子(21a)と、
     指定されたサンプリング周波数のクロック信号(C)を生成する信号発生部(24)と、
     前記クロック信号(C)に同期したサンプリングパルスを発生するサンプリングパルス発生部(25)と、
     前記入力端子に入力された前記被測定信号(P)を前記サンプリングパルスによってサンプリングするサンプリング部(26)と、
     前記サンプリング部からの出力信号を受け、該出力信号のスペクトラムを出力するスペクトラム解析部(51)と、
     前記スペクトラム解析部から出力されるスペクトラムのうち、前記指定されたサンプリング周波数の1/2以下の帯域に現れる複数のピーク信号を検出し、該複数のピーク信号の周波数Fb[i](i=1,2,3…)を求めるするピーク信号検出部(52)と、
     前記ピーク信号検出部によって検出された前記複数のピーク信号それぞれを前記被測定信号(P)の基本波に起因するビート成分(基本波ビート成分)であると仮定して、前記被測定信号(P)の高調波成分に起因するビート成分(高調波ビート成分)の各理論周波数Fc[i,j](i=1,2,3…,j=1,2,3…)を順次に計算する理論周波数算出部(53)と、
     前記理論周波数算出部によって各ピーク信号毎に順次に計算された前記高調波ビート成分の各理論周波数Fc[i,j]を、前記ピーク信号検出部によって得られた前記複数のピーク信号の周波数Fb[i]と順次に比較し、その比較された結果に基づいて、前記複数のピーク信号のうち、それらの周波数Fb[i]と最も一致する前記高調波ビート成分の理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断し、当該ピーク信号の周波数Fb[k]を特定信号周波数(Fh′)として出力する基本波ビート成分周波数出力部(50)と、
     前記信号発生部に対し、仮のサンプリング周波数(Fs′)を指定すると共に、該仮のサンプリング周波数を所定量(ΔFs)変化させて、該サンプリング周波数の変化量に対する前記特定信号周波数の変化量(ΔFh)を求め、前記仮のサンプリング周波数と、該仮のサンプリング周波数に対する前記特定信号周波数と、前記サンプリング周波数の変化量及び前記特定信号周波数の変化量とに基づいて、前記被測定信号(P)の波形の繰り返し周波数(Fx)を算出する繰り返し周波数算出部(28)と、
     前記繰り返し周波数算出部によって算出された前記被測定信号(P)の波形の繰り返し周波数に対応する繰り返し周期(Tx)の整数倍に対して所定のオフセット遅延時間(ΔT)だけ差のある周期(Ts)に対応する周波数を前記被測定信号(P)に対する正規のサンプリング周波数(Fs)として算出し、該正規のサンプリング周波数を前記信号発生部に指定する演算部(23)と、
     前記クロック信号(C)を外部へ出力するためのクロック出力端子(21b)と、
     前記サンプリング部から出力された信号を外部へ出力するためのサンプル信号出力端子(21c)と、
     を具備することを特徴とする被測定信号のサンプリング装置。
  6.  前記理論周波数算出部は、
     前記Fb[i]を前記基本波ビート成分の周波数であると仮定した場合の、前記被測定信号(P)のj次の高調波成分に起因する高調波ビート成分の理論周波数Fc[i,j]を、次式
     Fc[i,j]=mod(j・Fb[i],Fs′)…mod(j・Fb[i],Fs′)<Fs′/2の場合
     Fc[i,j]=Fs′-mod(j・Fb[i],Fs′)…mod(j・Fb[i],Fs′)≧Fs′/2の場合
    に基づいて計算する
     ことを特徴とする請求項5に記載の被測定信号のサンプリング装置。
  7.  前記基本波ビート成分周波数出力部は、
     前記高調波ビート成分の前記各理論周波数Fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値の和を順次に計算し、
     前記複数のピーク信号のうち、前記各ピーク信号毎に順次に計算される前記絶対値の和が最小となる前記高調波ビート成分の理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断し、当該ピーク信号の周波数Fb[k]を前記特定信号周波数(Fh′)として出力する
     ことを特徴とする請求項6に記載の被測定信号のサンプリング装置。
  8.  前記基本波ビート成分周波数出力部は、
     前記高調波ビート成分の前記各理論周波数Fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値を順次に計算すると共に、
     前記各ピーク信号毎に順次に計算される前記絶対値の中から、値が小さい順にある規定数組だけ順次に取り出してそれらの和を順次に計算することにより、
     前記複数のピーク信号のうち、前記各ピーク信号毎に順次に計算される前記規定数組の絶対値の和が最小となる前記高調波ビート成分の理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断し、当該ピーク信号の周波数Fb[k]を前記特定信号周波数(Fh′)として出力する
     ことを特徴とする請求項6に記載の被測定信号のサンプリング装置。
  9.  被測定信号(P)を入力するための入力端子(21a)と、
     指定されたサンプリング周波数(fs)のクロック信号(C)を生成出力する信号発生部(24)と、
     前記クロック信号に同期したサンプリングパルスを発生するサンプリングパルス発生部(25)と、
     前記入力端子に入力された前記被測定信号(P)を前記サンプリングパルス(Ps)によってサンプリングするサンプリング部(26)と、
     前記サンプリング部からの出力信号を受け、該出力信号のスペクトラムを出力するスペクトラム解析部(51)と、
     前記スペクトラム解析部から出力されるスペクトラムのうち、前記指定されたサンプリング周波数の1/2以下の帯域に現れる複数のピーク信号を検出し、該複数のピーク信号の周波数Fb[i](i=1,2,3…)を求めるピーク信号検出部(52)と、
     前記ピーク信号検出部によって検出された前記複数のピーク信号それぞれを前記被測定信号(P)の基本波に起因するビート成分(基本波ビート成分)であると仮定して、前記被測定信号(P)の高調波成分に起因するビート成分(高調波ビート成分)の各理論周波数Fc[i,j](i=1,2,3…,j=1,2,3…)を順次に計算する理論周波数算出部(53)と、
     前記理論周波数算出部によって各ピーク信号毎に順次に計算された前記高調波ビート成分の各理論周波数Fc[i,j]を、前記ピーク信号検出部(52)によって得られた前記複数のピーク信号の周波数Fb[i]と順次に比較し、その比較された結果に基づいて、前記複数のピーク信号のうち、それらの周波数Fb[i]と最も一致する前記高調波ビート成分の理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断し、当該ピーク信号の周波数Fb[k]を特定信号周波数(Fh′)として出力する基本波ビート成分周波数出力部(50)と、
     前記信号発生部に対し、仮のサンプリング周波数(Fs′)を指定すると共に、仮のサンプリング周波数を所定量(ΔFs)変化させて、該サンプリング周波数の変化量に対する前記特定信号周波数の変化量(ΔFh)を求め、前記仮のサンプリング周波数と、該仮のサンプリング周波数に対する前記特定信号周波数と、前記サンプリング周波数の変化量及び前記特定信号周波数の変化量とに基づいて、前記被測定信号(P)の波形の繰り返し周波数(Fx)を算出する繰り返し周波数算出部(28)と、
     前記繰り返し周波数算出部によって算出された前記被測定信号(P)の波形の繰り返し周波数に対応する繰り返し周期(Tx)の整数倍に対して所定のオフセット遅延時間(ΔT)だけ差のある周期(Ts)に対応する周波数を前記被測定信号Pに対する正規のサンプリング周波数(Fs)として算出し、該正規のサンプリング周波数を前記信号発生部に指定する演算部(23)と、
     前記サンプリング部から前記正規のサンプリングパルスでサンプリングされて出力される信号をデジタルの波形データに変換して出力するアナログ/デジタル(A/D)変換器(43)と、
     前記A/D変換器から出力される前記波形データを記憶するための波形データメモリ(45)と、
     前記A/D変換器から出力される前記波形データを前記信号発生部からの前記クロック信号に同期して前記波形データメモリに書き込むデータ取得制御部(44)と、
     前記波形データメモリに記憶された一連の波形データを読み出して表示部(47)の時間軸上に前記オフセット遅延時間に対応する間隔で表示する表示制御部(46)と、
     を具備する被測定信号の波形観測システム。
  10.  前記理論周波数算出部は、
     前記Fb[i]を前記基本波ビート成分の周波数であると仮定した場合の、前記被測定信号Pのj次の高調波成分に起因する高調波ビート成分の理論周波数Fc[i,j]を、次式
     Fc[i,j]=mod(j・Fb[i],Fs′)…mod(j・Fb[i],Fs′)<Fs′/2の場合
     Fc[i,j]=Fs′-mod(j・Fb[i],Fs′)…mod(j・Fb[i],Fs′)≧Fs′/2の場合
    に基づいて計算する
     ことを特徴とする請求項9に記載の被測定信号の波形観測システム。
  11.  前記基本波ビート成分周波数出力部は、
     前記高調波ビート成分の前記各理論周波数Fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値の和を順次に計算し、
     前記複数のピーク信号のうち、前記各ピーク信号毎に順次に計算される前記絶対値の和が最小となる前記高調波ビート成分の理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断し、当該ピーク信号の周波数Fb[k]を前記特定信号周波数(Fh′)として出力する
     ことを特徴とする請求項10に記載の被測定信号の波形観測システム。
  12.  前記基本波ビート成分周波数出力部は、
     前記高調波ビート成分の前記各理論周波数Fc[i,j]と、それらに最も近い前記複数のピーク信号との周波数差の絶対値を順次に計算すると共に、
     前記各ピーク信号毎に順次に計算される前記絶対値の中から、値が小さい順にある規定数組だけ順次に取り出してそれらの和を順次に計算することにより、
     前記複数のピーク信号のうち、前記各ピーク信号毎に順次に計算される前記規定数組の絶対値の和が最小となる前記高調波ビート成分の理論周波数Fc[k,j](kはある整数)を与える前記ピーク信号を、前記被測定信号(P)の基本波に起因する前記基本波ビート成分であると判断し、当該ピーク信号の周波数Fb[k]を前記特定信号周波数(Fh′)として出力する
     ことを特徴とする請求項10に記載の被測定信号の波形観測システム。
PCT/JP2008/056809 2008-04-04 2008-04-04 基本波ビート成分検出方法及びそれを用いる被測定信号のサンプリング装置並びに波形観測システム WO2009122594A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/308,263 US8195416B2 (en) 2008-04-04 2008-04-04 Fundamental wave beat component detecting method and measuring target signal sampling apparatus and waveform observation system using the same
EP08739915.0A EP2261681A4 (en) 2008-04-04 2008-04-04 METHOD FOR DETECTING A BASIC SHAFT COMPONENT, SENSOR FOR MEASURING A SIGNAL THEREFOR AND A WAVEFORM MONITORING SYSTEM
CA002653572A CA2653572A1 (en) 2008-04-04 2008-04-04 Fundamental wave beat component detecting method and measuring target signal sampling apparatus and waveform observation system using the same
PCT/JP2008/056809 WO2009122594A1 (ja) 2008-04-04 2008-04-04 基本波ビート成分検出方法及びそれを用いる被測定信号のサンプリング装置並びに波形観測システム
JP2008550981A JP4925018B2 (ja) 2008-04-04 2008-04-04 基本波ビート成分検出方法及びそれを用いる被測定信号のサンプリング装置並びに波形観測システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056809 WO2009122594A1 (ja) 2008-04-04 2008-04-04 基本波ビート成分検出方法及びそれを用いる被測定信号のサンプリング装置並びに波形観測システム

Publications (1)

Publication Number Publication Date
WO2009122594A1 true WO2009122594A1 (ja) 2009-10-08

Family

ID=41135011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056809 WO2009122594A1 (ja) 2008-04-04 2008-04-04 基本波ビート成分検出方法及びそれを用いる被測定信号のサンプリング装置並びに波形観測システム

Country Status (5)

Country Link
US (1) US8195416B2 (ja)
EP (1) EP2261681A4 (ja)
JP (1) JP4925018B2 (ja)
CA (1) CA2653572A1 (ja)
WO (1) WO2009122594A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033164A (zh) * 2010-11-16 2011-04-27 哈尔滨工业大学 一种计算电信号的基波分量采样信号序列的方法和系统
WO2020171145A1 (ja) * 2019-02-21 2020-08-27 日本電信電話株式会社 パルス列信号の周期推定装置、パルス列信号の周期推定方法およびパルス列信号の周期推定プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201309823D0 (en) * 2013-06-01 2013-07-17 Metroic Ltd Current measurement
WO2016093052A1 (ja) * 2014-12-09 2016-06-16 日本電気株式会社 位置検出システム、その方法およびそのプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071725A (ja) 2000-08-31 2002-03-12 Anritsu Corp 波形測定装置
JP2004028960A (ja) * 2002-06-28 2004-01-29 Anritsu Corp 波形観測装置
JP2006003326A (ja) * 2004-06-21 2006-01-05 Anritsu Corp サンプリング装置および波形観測システム
JP2006003327A (ja) 2004-06-21 2006-01-05 Anritsu Corp 周波数検出方法、サンプリング装置および波形観測システム
JP2006047304A (ja) * 2004-07-05 2006-02-16 Chube Univ 周波数測定装置
JP2007010411A (ja) * 2005-06-29 2007-01-18 Anritsu Corp サンプリング装置および波形観測システム
JP2008051593A (ja) * 2006-08-23 2008-03-06 Yokogawa Electric Corp 標本化装置及び標本化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162723A (en) * 1991-02-11 1992-11-10 Hewlett-Packard Company Sampling signal analyzer
US6026418A (en) * 1996-10-28 2000-02-15 Mcdonnell Douglas Corporation Frequency measurement method and associated apparatus
NL1013500C2 (nl) * 1999-11-05 2001-05-08 Huq Speech Technologies B V Inrichting voor het schatten van de frequentie-inhoud of het spectrum van een geluidssignaal in een ruizige omgeving.
US6529843B1 (en) * 2000-04-12 2003-03-04 David J. Carpenter Beat rate tuning system and methods of using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071725A (ja) 2000-08-31 2002-03-12 Anritsu Corp 波形測定装置
JP2004028960A (ja) * 2002-06-28 2004-01-29 Anritsu Corp 波形観測装置
JP2006003326A (ja) * 2004-06-21 2006-01-05 Anritsu Corp サンプリング装置および波形観測システム
JP2006003327A (ja) 2004-06-21 2006-01-05 Anritsu Corp 周波数検出方法、サンプリング装置および波形観測システム
JP2006047304A (ja) * 2004-07-05 2006-02-16 Chube Univ 周波数測定装置
JP2007010411A (ja) * 2005-06-29 2007-01-18 Anritsu Corp サンプリング装置および波形観測システム
JP2008051593A (ja) * 2006-08-23 2008-03-06 Yokogawa Electric Corp 標本化装置及び標本化方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033164A (zh) * 2010-11-16 2011-04-27 哈尔滨工业大学 一种计算电信号的基波分量采样信号序列的方法和系统
WO2020171145A1 (ja) * 2019-02-21 2020-08-27 日本電信電話株式会社 パルス列信号の周期推定装置、パルス列信号の周期推定方法およびパルス列信号の周期推定プログラム
JPWO2020171145A1 (ja) * 2019-02-21 2021-10-14 日本電信電話株式会社 パルス列信号の周期推定装置、パルス列信号の周期推定方法およびパルス列信号の周期推定プログラム
JP7070790B2 (ja) 2019-02-21 2022-05-18 日本電信電話株式会社 パルス列信号の周期推定装置、パルス列信号の周期推定方法およびパルス列信号の周期推定プログラム

Also Published As

Publication number Publication date
US8195416B2 (en) 2012-06-05
EP2261681A1 (en) 2010-12-15
EP2261681A4 (en) 2014-11-05
CA2653572A1 (en) 2009-10-04
JP4925018B2 (ja) 2012-04-25
US20100299092A1 (en) 2010-11-25
JPWO2009122594A1 (ja) 2011-07-28

Similar Documents

Publication Publication Date Title
JP4925017B2 (ja) 被測定信号の繰り返し周波数検出方法及びそれを用いるサンプリング装置並びに波形観測システム
US5151869A (en) Frequency domain fluorometry using coherent sampling
US9239349B2 (en) Time domain electromagnetic interference monitoring method and system
JP4803846B2 (ja) 光信号同期サンプリング装置及びその方法並びにそれを用いる光信号モニタ装置及びその方法
JP4925018B2 (ja) 基本波ビート成分検出方法及びそれを用いる被測定信号のサンプリング装置並びに波形観測システム
JP4686272B2 (ja) サンプリング装置および波形観測システム
JP4729273B2 (ja) 周波数検出方法、サンプリング装置および波形観測システム
JP4074538B2 (ja) 光サンプリング装置および光波形観測システム
JP2006003326A (ja) サンプリング装置および波形観測システム
JP5807222B2 (ja) 光スペクトル計測装置
JP4476709B2 (ja) サンプリング装置および波形観測システム
JP5372447B2 (ja) サンプリング装置および信号モニタ
US10241031B2 (en) Measuring device and measuring method
JP4621374B2 (ja) 時間応答測定方法および装置
JP2011013328A (ja) 光変調器における動作条件推定方法及び光スペクトラムアナライザ
JPH0227225A (ja) 光干渉信号抽出装置
JP2002156397A (ja) スペクトラム測定方法、スペクトラムアナライザおよびスペクトラム測定システム
JP2006314462A (ja) 生体光計測装置
JPH0579916A (ja) 時間分解フーリエ分光測定法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008550981

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2008739915

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008739915

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2653572

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12308263

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE