WO2009119814A1 - 繊維状塩基性硫酸マグネシウム粒子の連続的製造方法 - Google Patents

繊維状塩基性硫酸マグネシウム粒子の連続的製造方法 Download PDF

Info

Publication number
WO2009119814A1
WO2009119814A1 PCT/JP2009/056307 JP2009056307W WO2009119814A1 WO 2009119814 A1 WO2009119814 A1 WO 2009119814A1 JP 2009056307 W JP2009056307 W JP 2009056307W WO 2009119814 A1 WO2009119814 A1 WO 2009119814A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium sulfate
particles
aqueous dispersion
basic magnesium
fibrous basic
Prior art date
Application number
PCT/JP2009/056307
Other languages
English (en)
French (fr)
Inventor
透 足立
Original Assignee
宇部マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部マテリアルズ株式会社 filed Critical 宇部マテリアルズ株式会社
Priority to JP2010505844A priority Critical patent/JP5394369B2/ja
Priority to CN2009801194849A priority patent/CN102046534B/zh
Priority to US12/934,714 priority patent/US8114366B2/en
Publication of WO2009119814A1 publication Critical patent/WO2009119814A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/40Magnesium sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Definitions

  • the present invention relates to a method for continuously producing fibrous basic magnesium sulfate particles.
  • Fibrous particles of basic magnesium sulfate [MgSO 4 .5Mg (OH) 2 .3H 2 O] are used as reinforcing materials such as paper, resin and rubber, or as raw materials for filter media.
  • As a method for producing fibrous basic magnesium sulfate particles the following method is known.
  • Patent Document 1 describes a method for producing fibrous basic magnesium sulfate particles utilizing a hydrothermal reaction.
  • magnesium hydroxide or magnesium oxide is dispersed in a magnesium sulfate aqueous solution so that its concentration is 25% by mass or less, and then hydrothermally heated at a temperature of 100 to 300 ° C., preferably 120 to 300 ° C.
  • a method for producing fibrous basic magnesium sulfate particles by reaction is disclosed.
  • Patent Document 2 as a method for producing fibrous basic magnesium sulfate particles that do not particularly require a hydrothermal reaction, an aqueous dispersion obtained by dispersing magnesium oxide powder in a soluble sulfate-containing aqueous solution, preferably under normal pressure, is used.
  • a method is disclosed in which heat-reaction is carried out at a temperature of not less than C ° C. and not more than the boiling point to produce a cage-like basic magnesium sulfate, and then crushing is performed by applying a strong shearing force to the cage-like product.
  • JP-A-56-149318 Japanese Patent Laid-Open No. 3-122012
  • an object of the present invention is to provide a method capable of continuously producing fibrous basic magnesium sulfate particles without using a hydrothermal reaction and without requiring a crushing step.
  • the present inventors while heating an aqueous dispersion in which fibrous basic magnesium sulfate seed particles are dispersed with stirring, supplying magnesium sulfate and magnesium hydroxide to the seed particle aqueous dispersion, fibrous basic magnesium sulfate seed particles grow in an aqueous dispersion without utilizing a hydrothermal reaction. That is, when the fibrous basic magnesium sulfate seed particles are present, the basic magnesium sulfate generated by the reaction of magnesium sulfate and magnesium hydroxide in the presence of water is deposited on the surface (particularly the end face) of the seed particles, It has been found that seed particles grow in the longitudinal direction.
  • the present inventor prepares a seed particle aqueous dispersion in which fibrous basic magnesium sulfate particles are dispersed as seed particles in a reaction vessel, and heats the aqueous dispersion under stirring with water in the reaction vessel.
  • An aqueous dispersion is prepared by continuously supplying magnesium oxide and magnesium sulfate and precipitating the basic magnesium sulfate produced by the reaction of magnesium sulfate and magnesium hydroxide in the presence of water on the surface of the seed particles.
  • the amount of fibrous basic magnesium sulfate particles is increased, and the aqueous dispersion of the increased amount of fibrous basic magnesium sulfate particles is continuously removed from the reaction vessel, and the fibrous basic magnesium sulfate particles are recovered from the reaction mixture.
  • this invention exists in the continuous manufacturing method of the fibrous basic magnesium sulfate particle
  • Magnesium sulfate and magnesium hydroxide in the presence of water can be obtained by continuously supplying magnesium hydroxide and magnesium sulfate to the reaction vessel while heating the seed particle aqueous dispersion with stirring.
  • the aqueous medium of the seed particle aqueous dispersion used in the step (1) is a magnesium sulfate aqueous solution having a concentration of 1 to 40% by mass.
  • the fibrous basic magnesium sulfate seed particles used in the step (1) have an average thickness in the range of 0.1 to 1.0 ⁇ m and an average length in the range of 8 to 30 ⁇ m.
  • the magnesium hydroxide supplied to the reaction vessel is particles having an average particle size in the range of 0.01 to 100 ⁇ m.
  • magnesium hydroxide particles in the aqueous dispersion are used with respect to the total amount of magnesium hydroxide particles and fibrous basic magnesium sulfate particles in the aqueous dispersion. It is supplied under the condition that the amount of particles is maintained in the range of 0.05 to 20% by mass.
  • magnesium sulfate is supplied to the reaction vessel as an aqueous magnesium sulfate solution having a concentration of 1 to 40% by mass.
  • magnesium hydroxide and magnesium sulfate are supplied to the reaction vessel at a ratio of 0.2 to 100 mol of magnesium sulfate with respect to 1 mol of magnesium hydroxide.
  • the seed particle aqueous dispersion is heated at a temperature of 90 ° C. or higher.
  • the liquid obtained by collecting the fibrous basic magnesium sulfate particles from the aqueous dispersion in the step (4) is supplied into the seed particle aqueous dispersion used in the step (1).
  • fibrous basic magnesium sulfate particles can be produced industrially advantageously.
  • a seed particle aqueous dispersion in which fibrous basic magnesium sulfate particles are dispersed as seed particles in an aqueous medium is prepared in a reaction vessel, and then the seed particle aqueous dispersion in the reaction vessel is stirred. While heating and heating, magnesium hydroxide and magnesium sulfate are continuously supplied to the reaction vessel, and the basic magnesium sulfate produced by the reaction of magnesium sulfate and magnesium hydroxide in the presence of water is converted into the fibrous base. On the surface of the conductive magnesium sulfate seed particles.
  • the heating temperature of the aqueous seed particle dispersion is preferably 90 ° C. or higher, more preferably 95 ° C. or higher and the boiling point or lower of the aqueous seed particle dispersion.
  • the fibrous basic magnesium sulfate particles used as seed particles preferably have an average thickness in the range of 0.1 to 1.0 ⁇ m and an average length in the range of 8 to 30 ⁇ m.
  • the seed particles for example, particles produced by reacting magnesium sulfate with magnesium hydroxide or magnesium oxide using a hydrothermal synthesis method can be used.
  • the aqueous medium of the seed particle aqueous dispersion is preferably a magnesium sulfate aqueous solution having a concentration of 1 to 40% by mass.
  • the concentration of the fibrous basic magnesium sulfate particles in the seed particle aqueous dispersion is preferably in the range of 0.5 to 10% by mass.
  • the ratio of magnesium hydroxide and magnesium sulfate that are continuously supplied to the reaction vessel as a raw material for producing fibrous basic magnesium sulfate particles is such that the amount of magnesium sulfate exceeds the theoretical amount necessary to produce basic magnesium sulfate.
  • the ratio that is, the ratio in which the amount of magnesium sulfate is 0.2 mol or more with respect to 1 mol of magnesium hydroxide is preferable.
  • the amount of magnesium sulfate is more preferably in the range of 0.2 to 100 mol, particularly preferably in the range of 0.2 to 10 mol, with respect to 1 mol of magnesium hydroxide.
  • Magnesium sulfate is preferably supplied to the reaction vessel as an aqueous solution or powder, and particularly preferably supplied as an aqueous solution.
  • the concentration of the magnesium sulfate aqueous solution is preferably in the range of 1 to 40% by mass.
  • the magnesium hydroxide supplied to the reaction vessel is preferably particles having an average particle diameter in the range of 0.01 to 100 ⁇ m, particularly in the range of 0.1 to 10 ⁇ m.
  • Magnesium hydroxide can be supplied to the reaction vessel as a powder or an aqueous dispersion, and is particularly preferably supplied as an aqueous dispersion.
  • Magnesium hydroxide and magnesium sulfate may be supplied separately to the reaction vessel, or may be mixed and supplied. Further, the magnesium hydroxide particles may be dispersed in an aqueous magnesium sulfate solution and supplied to the reaction vessel.
  • the supply amount of magnesium hydroxide particles to the reaction vessel is the total amount of solids in the aqueous dispersion (total amount of fibrous basic magnesium sulfate particles and magnesium hydroxide particles).
  • the amount of magnesium hydroxide particles in the aqueous dispersion is preferably maintained in the range of 0.05 to 20% by mass, more preferably in the range of 1 to 10% by mass, and particularly preferably in the range of 1 to 5% by mass. It is desirable that the amount to be adjusted. That is, it is preferable to appropriately measure the amount of magnesium hydroxide particles in the solid content of the aqueous dispersion and adjust the supply amount of magnesium hydroxide particles so that the amount of magnesium hydroxide particles falls within the above range.
  • the amount (mass%) of magnesium hydroxide particles in the solid content of the aqueous dispersion can be determined, for example, by the following method. 1) Filter the aqueous dispersion, wash the solid content, and dry it to obtain a sample. 2) Weigh accurately 0.4 to 0.5 g of the dried sample in a conical beaker, and let the mass be s (g). 3) Add 2 to 3 drops of methyl orange as an indicator and add 1 / 10N hydrochloric acid dropwise until the sample is completely dissolved, and let this drop amount be a (mL).
  • the basic magnesium sulfate produced by the reaction of magnesium sulfate and magnesium hydroxide in the presence of water precipitates mainly on the end faces of the seed particles and grows the seed particles in the longitudinal direction, but the seed particles grown in the longitudinal direction Is easily broken by stirring, the fibrous basic magnesium sulfate particles in the aqueous dispersion have an average thickness in the range of 0.1 to 1.0 ⁇ m and an average length in the range of 8 to 30 ⁇ m. is there.
  • the increased amount of the aqueous dispersion of fibrous basic magnesium sulfate particles is continuously taken out from the reaction vessel, and then the fibrous basic magnesium sulfate particles are recovered from the aqueous dispersion taken out from the reaction vessel.
  • a method for recovering the fibrous basic magnesium sulfate particles from the aqueous dispersion known solid-liquid separation methods such as filtration, decantation and centrifugation can be used.
  • the liquid component from which the fibrous basic magnesium sulfate particles have been recovered and removed normally has magnesium sulfate dissolved therein, and can be recovered and used as an aqueous magnesium sulfate solution.
  • FIG. 1 shows a method for producing fibrous basic magnesium sulfate particles according to the present invention, and further, a fibrous material for recovering and utilizing a magnesium sulfate aqueous solution produced in accordance with the production method for fibrous basic magnesium sulfate particles. It is a block diagram explaining a basic magnesium sulfate particle manufacturing apparatus.
  • the seed particle aqueous dispersion stored in the seed particle aqueous dispersion storage tank 1 is sent to the reaction vessel 8 by the pump 2.
  • the reaction vessel 8 includes a stirrer 9 and a heating jacket 10, and heats the seed particle aqueous dispersion prepared in the reaction vessel while stirring.
  • the magnesium hydroxide particles stored in the magnesium hydroxide storage tank 3, the magnesium sulfate aqueous solution stored in the magnesium sulfate aqueous solution storage tank 4, and the water stored in the water storage tank 5 each have a predetermined amount.
  • the mixture is sent to the raw material preparation tank 6 at a ratio, uniformly mixed in the raw material preparation tank 6, and continuously sent to the reaction vessel 8 by the metering pump 7 as an aqueous magnesium sulfate solution in which magnesium hydroxide particles are dispersed.
  • the aqueous dispersion of fibrous basic magnesium sulfate particles increased by the basic magnesium sulfate produced by the reaction of magnesium sulfate and magnesium hydroxide in the presence of water is continuously taken out. Then, after being temporarily stored in the reactant storage tank 11, it is sent to the solid-liquid separator 12. In the solid-liquid separator 12, the aqueous dispersion is separated into a solid content and a liquid content.
  • the solid content mainly composed of fibrous basic magnesium sulfate particles is refined by a process such as washing and drying, and then the fibrous basic magnesium sulfate particles are used as reinforcing materials such as paper, resin and rubber, or filter media. It is used as a raw material.
  • the liquid (magnesium sulfate aqueous solution) recovered in the solid-liquid separator 12 is sent to the recovered magnesium sulfate aqueous solution storage tank 13, temporarily stored, and then sent to the raw material preparation tank 6 as a magnesium sulfate source. And in the raw material preparation tank 6, it mixes with magnesium sulfate aqueous solution and magnesium hydroxide particle, and is supplied to the reaction container 8 as magnesium sulfate aqueous solution in which the magnesium hydroxide particle is disperse
  • the liquid component recovered in the solid-liquid separator 12 usually has a magnesium sulfate concentration higher than that of the aqueous dispersion in the reaction vessel 8 due to evaporation of water as a solvent.
  • Example 1 Using the apparatus for producing fibrous basic magnesium sulfate particles shown in FIG. 1, fibrous basic magnesium sulfate particles were produced by the following method.
  • the seed particle aqueous dispersion prepared as follows was charged into the seed particle aqueous dispersion storage tank 1.
  • a beaker with an internal volume of 2 L was charged with 1032.0 g of water and 715.6 g of magnesium sulfate heptahydrate, and magnesium sulfate heptahydrate was dissolved in water to give a magnesium sulfate aqueous solution having a concentration of 20.0% by mass in 1747. 0.6 g was prepared.
  • Magnesium hydroxide storage tank 3 was charged with an aqueous dispersion of magnesium hydroxide particles having a concentration of 35.9% by mass (average particle size: 3.0 ⁇ m).
  • the magnesium sulfate aqueous solution storage tank 4 was charged with a magnesium sulfate aqueous solution having a concentration of 21.3 mass%.
  • magnesium sulfate aqueous solution in the magnesium sulfate aqueous solution storage tank 4 was supplied to the raw material preparation tank 6.
  • 24 g of the magnesium hydroxide particle aqueous dispersion in the magnesium hydroxide storage tank 3 is supplied to the aqueous solution, and the magnesium sulfate concentration is 20.1% by mass.
  • 432.6 g of an aqueous magnesium sulfate solution in which magnesium hydroxide particles having a concentration of 2.0% by mass were dispersed was prepared.
  • the magnesium sulfate aqueous solution in the magnesium sulfate aqueous solution storage tank 4 is supplied to the raw material preparation tank 6 at a supply rate of 408.6 g / hour, and the magnesium hydroxide in the magnesium hydroxide storage tank 3 is supplied.
  • the aqueous particle dispersion was continuously fed at a feed rate of 24 g / hour.
  • the total amount of the seed particle aqueous dispersion in the seed particle aqueous dispersion storage tank 1 was supplied to the reaction vessel (internal volume: 1.5 L) 8 by the pump 2.
  • the seed particle aqueous dispersion in the reaction vessel 8 was heated using the heating jacket 10 while stirring with the stirrer 9 under the condition of a stirring rate of 250 ppm.
  • the magnesium hydroxide particles in the raw material preparation tank 6 are dispersed using the metering pump 7 in the reaction vessel 8 while stirring.
  • the dispersed magnesium sulfate aqueous solution was continuously supplied at a supply rate of 433 g / hour (magnesium hydroxide particle amount: 8.6 g / hour).
  • the aqueous dispersion continuously overflowed from the outlet of the reaction vessel is once stored in the reactant storage tank 11 and then the solid-liquid separator 12 (suction) The solid content and the filtrate were separated.
  • the solid content separated by the solid-liquid separator 12 was washed with water by a washing machine and then dried by a dryer.
  • One filtrate (magnesium sulfate aqueous solution) was stored in a recovered magnesium sulfate aqueous solution storage tank 13.
  • the magnesium sulfate aqueous solution in which the magnesium hydroxide particles were dispersed from the raw material preparation tank 6 was continuously supplied for 10 hours. During that time, the aqueous dispersion in the reaction vessel 8 was sampled every hour, and the amount of magnesium hydroxide particles in the solid content of the aqueous dispersion was measured. The amount did not exceed 4% by mass.
  • the obtained solid content was measured with an X-ray diffraction pattern and observed with an electron microscope. From the measurement result of the X-ray diffraction pattern, it was confirmed that the solid content was basic magnesium sulfate. Moreover, from the observation result of the particle shape by an electron microscope, it was confirmed that the basic magnesium sulfate is a fibrous particle having an average thickness of 0.4 ⁇ m and an average length of 19.9 ⁇ m. The amount of magnesium hydroxide particles mixed in the solid content was 1.5% by mass.
  • Table 1 shows the charged amounts and yields of the fibrous basic magnesium sulfate particles and magnesium hydroxide particles in Example 1 above.
  • the amount of fibrous basic magnesium sulfate particles charged is the amount of seed particles supplied to the reaction vessel.
  • the amount of magnesium hydroxide particles charged is the amount of magnesium hydroxide particles supplied to the reaction vessel.
  • the yield of fibrous basic magnesium sulfate particles and magnesium hydroxide particles is determined based on the content in the collected solids and the aqueous dispersion in the reaction vessel at the time when the supply of the magnesium sulfate aqueous solution containing magnesium hydroxide particles is completed. And the total content.
  • the amount of fibrous basic magnesium sulfate particles produced by the reaction of magnesium hydroxide particles and magnesium sulfate was 115.5 g (167.9 g-52.4 g).
  • Example 2 In the process (5) of Example 1, the recovered magnesium sulfate aqueous solution stored in the recovered magnesium sulfate aqueous solution storage tank 13 in the process (6) in the raw material preparation tank 6, the water in the water storage tank 5, and the magnesium sulfate aqueous solution storage.
  • the magnesium sulfate aqueous solution in the tank 4 and the magnesium hydroxide particle aqueous dispersion in the magnesium hydroxide storage tank 3 are supplied, the magnesium sulfate concentration is 20.1% by mass, and the magnesium hydroxide particle concentration is 2.0% by mass.
  • Fibrous basic magnesium sulfate particles were produced in the same manner as in Example 1 except that an aqueous magnesium sulfate solution in which the magnesium hydroxide particles were dispersed was prepared.
  • the recovered magnesium sulfate aqueous solution storage tank 13 and the magnesium sulfate aqueous solution storage tank 4 and the supply ratio of the magnesium sulfate aqueous solution storage tank 4 are 90% by mass of the total magnesium sulfate supplied to the raw material preparation tank 6.
  • the remaining 10% by mass from the recovered magnesium sulfate aqueous solution in the magnesium aqueous solution storage tank 13 was supplied from the magnesium sulfate aqueous solution in the magnesium sulfate aqueous solution storage tank 4.
  • the obtained fibrous basic magnesium sulfate particles are fibrous particles having an average thickness of 0.4 ⁇ m and an average length of 23.4 ⁇ m, almost the same as the fibrous basic magnesium sulfate particles obtained in Example 1.
  • the shape was equivalent.
  • Table 2 shows the charged amount and yield of the fibrous basic magnesium sulfate particles and magnesium hydroxide particles in Example 2 above.
  • the amount of fibrous basic magnesium sulfate particles produced was 124.6 g, and the amount of fibrous basic magnesium sulfate particles produced was almost the same as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

 繊維状塩基性硫酸マグネシウム粒子を連続的に製造することができる、下記の工程を含む製造方法。 (1)水性媒体中に繊維状塩基性硫酸マグネシウム種粒子が分散されている種粒子水性分散液を反応容器内に用意する工程; (2)上記種粒子水性分散液を撹拌下にて加熱しながら、反応容器に水酸化マグネシウムと硫酸マグネシウムとを連続的に供給することにより、水の存在下での硫酸マグネシウムと水酸化マグネシウムとの反応で生成する塩基性硫酸マグネシウムを前記繊維状塩基性硫酸マグネシウム種粒子の表面に析出させ、これにより増量された繊維状塩基性硫酸マグネシウム粒子の水性分散液を得る工程; (3)上記(2)の工程で得られた水性分散液を反応容器から連続的に取り出す工程;そして、 (4)反応容器から取り出した水性分散液から繊維状塩基性硫酸マグネシウム粒子を回収する工程。

Description

繊維状塩基性硫酸マグネシウム粒子の連続的製造方法
 本発明は、繊維状塩基性硫酸マグネシウム粒子を連続的に製造するための方法に関するものである。
 塩基性硫酸マグネシウム[MgSO4・5Mg(OH)2・3H2O]の繊維状粒子は、紙、樹脂及びゴムなどの強化材料、あるいはろ過材の原料として利用されている。繊維状塩基性硫酸マグネシウム粒子の製造方法としては、次に述べる方法が知られている。
 特許文献1には、水熱反応を利用した繊維状塩基性硫酸マグネシウム粒子の製造方法が記載されている。この特許文献1には、硫酸マグネシウム水溶液に水酸化マグネシウムまたは酸化マグネシウムをその濃度が25質量%以下になるように分散させた後、100~300℃、好ましくは120~300℃の温度で水熱反応させて繊維状塩基性硫酸マグネシウム粒子を製造する方法が開示されている。
 特許文献2には、水熱反応を特には必要としない繊維状塩基性硫酸マグネシウム粒子の製造方法として、可溶性硫酸塩含有水溶液に酸化マグネシウム粉末を分散させた水性分散液を、好ましくは常圧下60℃以上、沸点以下の温度で、加熱反応させて、繭状塩基性硫酸マグネシウムを生成させ、次いで該繭状生成物に強力剪断力を作用させて解砕する方法が開示されている。
特開昭56-149318号公報 特開平3-122012号公報
 前記特許文献1に開示されている水熱反応を利用した繊維状塩基性硫酸マグネシウム粒子の製造方法は、オートクレーブのような圧力容器を用いることが必要となる。このため、繊維状塩基性硫酸マグネシウム粒子を連続的に生産するのが難しい。また、前記特許文献2に開示されている方法は、水熱反応を利用しない点で有利であるが、繭状塩基性硫酸マグネシウムを解砕する工程が必要となるという問題がある。
 従って、本発明の目的は、水熱反応を利用しないで、かつ解砕工程を必要とすることなく繊維状塩基性硫酸マグネシウム粒子を連続的に製造することができる方法を提供することにある。
 本発明者は、繊維状塩基性硫酸マグネシウム種粒子が分散されている水性分散液を撹拌下にて加熱しながら、その種粒子水性分散液に硫酸マグネシウムと水酸化マグネシウムとを供給すると、大気圧下において、すなわち水熱反応を利用しなくとも、水性分散液中の繊維状塩基性硫酸マグネシウム種粒子が成長することを見出した。すなわち、繊維状塩基性硫酸マグネシウム種粒子が存在すると、水の存在下での硫酸マグネシウムと水酸化マグネシウムとの反応で生成する塩基性硫酸マグネシウムが種粒子の表面(特に端面)に析出して、種粒子が長手方向に成長することを見出した。そして、本発明者は、繊維状塩基性硫酸マグネシウム粒子が種粒子として分散されている種粒子水性分散液を反応容器に用意し、その水性分散液を撹拌下にて加熱しながら反応容器に水酸化マグネシウムと硫酸マグネシウムとを連続的に供給して、水の存在下での硫酸マグネシウムと水酸化マグネシウムとの反応で生成する塩基性硫酸マグネシウムを種粒子の表面に析出させることによって、水性分散液中の繊維状塩基性硫酸マグネシウム粒子を増量させ、この増量された繊維状塩基性硫酸マグネシウム粒子の水性分散液を反応容器から連続的に取り出して、反応混合物から繊維状塩基性硫酸マグネシウム粒子を回収することにより、繊維状塩基性硫酸マグネシウム粒子を連続的に製造することが可能となることを確認して、本発明を完成させた。
 すなわち、本発明は下記の工程を含む繊維状塩基性硫酸マグネシウム粒子の連続的製造方法にある。
(1)水性媒体中に繊維状塩基性硫酸マグネシウム種粒子が分散されている種粒子水性分散液を反応容器内に用意する工程。
(2)上記種粒子水性分散液を撹拌下にて加熱しながら、反応容器に水酸化マグネシウムと硫酸マグネシウムとを連続的に供給することにより、水の存在下での硫酸マグネシウムと水酸化マグネシウムとの反応で生成する塩基性硫酸マグネシウムを前記繊維状塩基性硫酸マグネシウム種粒子の表面に析出させ、これにより増量された繊維状塩基性硫酸マグネシウム粒子の水性分散液を得る工程。
(3)上記(2)の工程で得られた水性分散液を反応容器から連続的に取り出す工程。
(4)反応容器から取り出した水性分散液から繊維状塩基性硫酸マグネシウム粒子を回収する工程。
 本発明の製造方法の好ましい態様は以下の通りである。
(1)上記(1)の工程で用いる種粒子水性分散液の水性媒体が、濃度1~40質量%の硫酸マグネシウム水溶液である。
(2)上記(1)の工程で用いる繊維状塩基性硫酸マグネシウム種粒子が、平均太さが0.1~1.0μmの範囲にあって、平均長さが8~30μmの範囲にある。
(3)上記(2)の工程において、反応容器に供給する水酸化マグネシウムが、平均粒子径が0.01~100μmの範囲にある粒子である。
(4)上記(2)の工程において、水酸化マグネシウム粒子を、水性分散液中の水酸化マグネシウム粒子と繊維状塩基性硫酸マグネシウム粒子との合計量に対して、水性分散液中の水酸化マグネシウム粒子の量が0.05~20質量%の範囲となるように維持する条件で供給する。
(5)上記(2)の行程において、硫酸マグネシウムを、濃度1~40質量%の硫酸マグネシウム水溶液として反応容器に供給する。
(6)上記(2)の工程において、水酸化マグネシウムと硫酸マグネシウムとを、水酸化マグネシウム1モルに対して硫酸マグネシウムが0.2~100モルの範囲となる割合で反応容器に供給する。
(7)上記(2)の工程において、種粒子水性分散液を90℃以上の温度で加熱する。
(8)さらに、(4)の工程で水性分散液からの繊維状塩基性硫酸マグネシウム粒子の回収によって得られた液体分を、(1)の工程で用いる種粒子水性分散液の中に供給する工程を含む。
 本発明を利用することによって、繊維状の塩基性硫酸マグネシウム粒子を工業的に有利に製造することができる。
 本発明では、水性媒体中に繊維状塩基性硫酸マグネシウム粒子が種粒子として分散されている種粒子水性分散液を反応容器内に用意し、次いで反応容器内の種粒子水性分散液を撹拌下にて加熱しながら、反応容器に水酸化マグネシウムと硫酸マグネシウムとを連続的に供給して、水の存在下での硫酸マグネシウムと水酸化マグネシウムとの反応で生成する塩基性硫酸マグネシウムを前記繊維状塩基性硫酸マグネシウム種粒子の表面に析出させる。種粒子水性分散液の加熱温度は、好ましくは90℃以上、より好ましくは95℃以上で、種粒子水性分散液の沸点以下の温度である。
 種粒子として用いる繊維状塩基性硫酸マグネシウム粒子は、平均太さが0.1~1.0μmの範囲にあって、平均長さが8~30μmの範囲にあることが好ましい。この種粒子には、例えば、硫酸マグネシウムと水酸化マグネシウムまたは酸化マグネシウムとを、水熱合成法を利用して反応させる方法によって製造したものを用いることができる。
 種粒子水性分散液の水性媒体は、濃度1~40質量%の硫酸マグネシウム水溶液であることが好ましい。
 種粒子水性分散液の繊維状塩基性硫酸マグネシウム粒子濃度は0.5~10質量%の範囲にあることが好ましい。
 繊維状塩基性硫酸マグネシウム粒子の製造原料として反応容器に連続的に供給する水酸化マグネシウムと硫酸マグネシウムとの割合は、硫酸マグネシウム量が塩基性硫酸マグネシウムを生成するのに必要な理論量以上となる割合、すなわち硫酸マグネシウム量が水酸化マグネシウム1モルに対して0.2モル以上となる割合であることが好ましい。硫酸マグネシウム量は水酸化マグネシウム1モルに対して0.2~100モルの範囲にあることがより好ましく、0.2~10モルの範囲にあることが特に好ましい。
 硫酸マグネシウムは、水溶液もしくは粉末として反応容器に供給することが好ましく、特に水溶液として供給することが好ましい。硫酸マグネシウム水溶液の濃度は1~40質量%の範囲にあることが好ましい。
 反応容器に供給する水酸化マグネシウムは、平均粒子径が0.01~100μmの範囲特に0.1~10μmの範囲にある粒子であることが好ましい。水酸化マグネシウムは、粉末もしくは水性分散液として反応容器に供給することができ、特に水性分散液として供給することが好ましい。
 水酸化マグネシウムと硫酸マグネシウムとは、反応容器にそれぞれ別個に供給してもよいし、混合して供給してもよい。また、水酸化マグネシウム粒子を硫酸マグネシウム水溶液中に分散させて反応容器に供給してもよい。
 水酸化マグネシウムが粒子である場合には、水酸化マグネシウム粒子の反応容器への供給量は、水性分散液の固形分の全体量(繊維状塩基性硫酸マグネシウム粒子と水酸化マグネシウム粒子の合計量)に対して、水性分散液の水酸化マグネシウム粒子の量を好ましくは0.05~20質量%の範囲、より好ましくは1~10質量%の範囲、特に好ましくは1~5質量%の範囲に維持する量とすることが望ましい。すなわち、適宜、水性分散液の固形分中の水酸化マグネシウム粒子量を測定し、水酸化マグネシウム粒子量が上記の範囲となるように、水酸化マグネシウム粒子の供給量を調整することが好ましい。
 水性分散液の固形分中の水酸化マグネシウム粒子量(質量%)は、例えば、以下の方法によって求めることができる。
1)水性分散液をろ過し、固形分を洗浄、乾燥して得た乾燥物をサンプルとする。
2)乾燥後のサンプル0.4~0.5gをコニカルビーカーに精秤し、質量をs(g)とする。
3)メチルオレンジを指示薬として2~3滴加え、濃度1/10Nの塩酸をサンプルが完全に溶解するまで滴下し、その滴下量をa(mL)とする。
4)次に、濃度1/10Nの水酸化ナトリウム水溶液にて逆滴定を行ない終点まで(橙黄色を呈するまで)滴定を行ない、その滴定量をb(mL)とする。
5)サンプルの滴定量Z=(a-b)/sとする。
6)原料の水酸化マグネシウム粒子について上記2)~5)の操作を同様に行ない、その滴定量をXとする。
7)種粒子として用いた繊維状塩基性硫酸マグネシウム粒子について上記2)~5)の操作を同様に行ない、その滴定量をYとする。
8)次式より固形分中の水酸化マグネシウム粒子量を求める。
 水酸化マグネシウム粒子量(質量%)=(Z-Y)/(X-Y)×100
 以上のように、種粒子水性分散液に水酸化マグネシウムと硫酸マグネシウムとを連続的に供給すると、水の存在下での硫酸マグネシウムと水酸化マグネシウムとの反応で生成する塩基性硫酸マグネシウムが種粒子の表面に析出し、これにより増量された繊維状塩基性硫酸マグネシウム粒子が分散されている水性分散液が生成する。水の存在下での硫酸マグネシウムと水酸化マグネシウムとの反応で生成する塩基性硫酸マグネシウムは、主として種粒子の端面に析出して種粒子を長手方向に成長させるが、長手方向に成長した種粒子は、撹拌により折れ易くなるため、水性分散液中の繊維状塩基性硫酸マグネシウム粒子は、平均太さが0.1~1.0μmの範囲にあって、平均長さが8~30μmの範囲にある。
 本発明では、増量された繊維状塩基性硫酸マグネシウム粒子の水性分散液を、反応容器から連続的に取り出し、次いで反応容器から取り出した水性分散液から繊維状塩基性硫酸マグネシウム粒子を回収する。
 水性分散液から繊維状塩基性硫酸マグネシウム粒子を回収する方法としては、ろ過、デカンテーション及び遠心分離などの公知の固液分離法を利用することができる。繊維状塩基性硫酸マグネシウム粒子が回収除去された液体分は、通常は硫酸マグネシウムが溶解しており、硫酸マグネシウム水溶液として回収して利用することができる。
 次に、本発明の繊維状塩基性硫酸マグネシウム粒子の製造方法を、添付図面を参照しながら説明する。
 図1は、本発明に従う繊維状塩基性硫酸マグネシウム粒子の製造方法、そしてさらに、この繊維状塩基性硫酸マグネシウム粒子の製造方法の実施に伴って生成する硫酸マグネシウム水溶液の回収と利用を行なう繊維状塩基性硫酸マグネシウム粒子製造装置を説明する構成図である。
 図1において、種粒子水性分散液貯留タンク1に貯留されている種粒子水性分散液は、ポンプ2によって反応容器8に送られる。反応容器8は撹拌機9と加熱ジャケット10とを備えており、反応容器内に用意された種粒子水性分散液を撹拌しながら加熱する。
 一方、水酸化マグネシウム貯留タンク3に貯留されている水酸化マグネシウム粒子、硫酸マグネシウム水溶液貯留タンク4に貯留されている硫酸マグネシウム水溶液、及び水貯留タンク5に貯留されている水は、それぞれ所定量の割合で原料調製タンク6に送られ、原料調製タンク6内で均一に混ぜ合わされ、水酸化マグネシウム粒子が分散されている硫酸マグネシウム水溶液として定量ポンプ7によって反応容器8に連続的に送られる。
 反応容器8内において、水の存在下での硫酸マグネシウムと水酸化マグネシウムとの反応で生成した塩基性硫酸マグネシウムにより増量された繊維状塩基性硫酸マグネシウム粒子の水性分散液は、連続的に取り出されて、反応物貯留タンク11に一旦貯留された後、固液分離装置12に送られる。固液分離装置12において水性分散液は、固形分と液体分とに分離される。
 繊維状塩基性硫酸マグネシウム粒子を主成分とする固形分は、洗浄や乾燥などの工程によって精製された後、繊維状塩基性硫酸マグネシウム粒子として、紙、樹脂及びゴムなどの強化材料、あるいはろ過材の原料として利用されている。
 一方、固液分離装置12において回収された液体分(硫酸マグネシウム水溶液)は、回収硫酸マグネシウム水溶液貯留タンク13に送られ、一旦貯留された後、硫酸マグネシウム源として原料調製タンク6に送られる。そして、原料調製タンク6にて、硫酸マグネシウム水溶液や水酸化マグネシウム粒子と混ぜ合わされ、水酸化マグネシウム粒子が分散されている硫酸マグネシウム水溶液として反応容器8に供給される。なお、固液分離装置12において回収された液体分は溶媒である水の蒸発により、通常は、反応容器8内の水性分散液と比較して硫酸マグネシウム濃度が高くなる。
[実施例1]
 図1に示す繊維状塩基性硫酸マグネシウム粒子製造装置を用いて、下記の方法により繊維状塩基性硫酸マグネシウム粒子を製造した。
(1)種粒子水性分散液貯留タンク1に、次のようにして調製した種粒子水性分散液を投入した。
 内容積2Lのビーカーに、水1032.0gと、硫酸マグネシウム七水塩715.6gとを投入し、硫酸マグネシウム七水塩を水に溶解させて、濃度20.0質量%の硫酸マグネシウム水溶液を1747.6g調製した。この硫酸マグネシウム水溶液を撹拌しながら、該水溶液に繊維状塩基性硫酸マグネシウム粒子(平均太さ:0.5μm、平均長さ:15.8μm)52.4gを加えて、硫酸マグネシウム濃度が19.4質量%で、繊維状塩基性硫酸マグネシウム粒子濃度が2.9質量%の種粒子水性分散液を1800g(約1.5L)調製した。
(2)水酸化マグネシウム貯留タンク3に、濃度35.9質量%の水酸化マグネシウム粒子水性分散液(平均粒子径:3.0μm)を投入した
(3)硫酸マグネシウム水溶液貯留タンク4に、濃度21.3質量%の硫酸マグネシウム水溶液を投入した。
(4)水貯留タンク5に水を投入した。
(5)原料調製タンク6に、硫酸マグネシウム水溶液貯留タンク4の硫酸マグネシウム水溶液408.6gを供給した。次いで、この硫酸マグネシウム水溶液を撹拌しながら、該水溶液に、水酸化マグネシウム貯留タンク3の水酸化マグネシウム粒子水性分散液24gを供給して、硫酸マグネシウム濃度が20.1質量%で、水酸化マグネシウム粒子濃度が2.0質量%の水酸化マグネシウム粒子が分散された硫酸マグネシウム水溶液を432.6g調製した。なお、繊維状塩基性硫酸マグネシウム粒子の製造中は、原料調製タンク6に硫酸マグネシウム水溶液貯留タンク4の硫酸マグネシウム水溶液を408.6g/時間の供給量で、水酸化マグネシウム貯留タンク3の水酸化マグネシウム粒子水性分散液を24g/時間の供給量でそれぞれ連続的に供給した。
(6)ポンプ2により種粒子水性分散液貯留タンク1内の種粒子水性分散液全量を反応容器(内容積:1.5L)8に供給した。次いで、反応容器8内の種粒子水性分散液を、撹拌機9にて撹拌速度250ppmの条件で撹拌しながら、加熱ジャケット10を用いて加熱した。種粒子水性分散液の液温が100℃に到達した後、該温度を保持しながら、撹拌を続けつつ、反応容器8に定量ポンプ7を用いて、原料調製タンク6内の水酸化マグネシウム粒子が分散された硫酸マグネシウム水溶液を433g/時間(水酸化マグネシウム粒子量:8.6g/時間)の供給量で連続的に供給した。水酸化マグネシウム粒子が分散された硫酸マグネシウム水溶液の連続供給により、反応容器の取出口から連続的にオーバーフローした水性分散液を、一旦反応物貯留タンク11に貯留した後、固液分離装置12(吸引ろ過装置)に送り、固形分とろ液とに分離した。
 固液分離装置12にて分離した固形分は洗浄機にて水で洗浄した後、乾燥器にて乾燥した。一方のろ液(硫酸マグネシウム水溶液)は、回収硫酸マグネシウム水溶液貯留タンク13に貯留した。原料調製タンク6からの水酸化マグネシウム粒子が分散された硫酸マグネシウム水溶液の供給は、10時間連続的に行なった。その間、反応容器8内の水性分散液を1時間ごとにサンプリングして、水性分散液の固形分中の水酸化マグネシウム粒子量を測定したが、固形分中の水酸化マグネシウム粒子量は固形分全体量に対して4質量%を超えることはなかった。
 得られた固形分について、X線回折パターンの測定と電子顕微鏡による粒子形状の観察とを行なった。X線回折パターンの測定結果から、固形分は塩基性硫酸マグネシウムであることが確認された。また、電子顕微鏡による粒子形状の観察結果から、塩基性硫酸マグネシウムは、平均太さが0.4μm、平均長さが19.9μmの繊維状粒子であることが確認された。固形分中に混入している水酸化マグネシウム粒子の量は、1.5質量%であった。
 表1に、上記実施例1における繊維状塩基性硫酸マグネシウム粒子及び水酸化マグネシウム粒子の仕込み量と収量とを示す。表1において、繊維状塩基性硫酸マグネシウム粒子の仕込量は、反応容器に供給した種粒子の量である。水酸化マグネシウム粒子の仕込量は、反応容器に供給した水酸化マグネシウム粒子の量である。繊維状塩基性硫酸マグネシウム粒子及び水酸化マグネシウム粒子の収量は、回収した固形分中の含有量と、水酸化マグネシウム粒子含有硫酸マグネシウム水溶液の供給を終了した時点での反応容器内の水性分散液中の含有量との合計量である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、水酸化マグネシウム粒子と硫酸マグネシウムとの反応によって生成した繊維状塩基性硫酸マグネシウム粒子の量は115.5g(167.9g-52.4g)であった。
[実施例2]
 実施例1の(5)の工程において、原料調製タンク6に(6)の工程で回収硫酸マグネシウム水溶液貯留タンク13に貯留した回収硫酸マグネシウム水溶液と、水貯留タンク5の水と、硫酸マグネシウム水溶液貯留タンク4の硫酸マグネシウム水溶液と、水酸化マグネシウム貯留タンク3の水酸化マグネシウム粒子水性分散液とを供給して、硫酸マグネシウム濃度が20.1質量%で、水酸化マグネシウム粒子濃度が2.0質量%の水酸化マグネシウム粒子が分散された硫酸マグネシウム水溶液を調製したこと以外は実施例1と同様にして繊維状塩基性硫酸マグネシウム粒子を製造した。なお、回収硫酸マグネシウム水溶液貯留タンク13の回収硫酸マグネシウム水溶液と、硫酸マグネシウム水溶液貯留タンク4の硫酸マグネシウム水溶液と供給割合は、原料調製タンク6に供給する全硫酸マグネシウムのうちの90質量%が回収硫酸マグネシウム水溶液貯留タンク13の回収硫酸マグネシウム水溶液から、残りの10質量%が硫酸マグネシウム水溶液貯蔵タンク4の硫酸マグネシウム水溶液から供給される割合とした。
 得られた繊維状塩基性硫酸マグネシウム粒子は、平均太さが0.4μm、平均長さが23.4μmの繊維状粒子であり、実施例1で得られた繊維状塩基性硫酸マグネシウム粒子とほぼ同等の形状であった。
 表2に、上記実施例2における繊維状塩基性硫酸マグネシウム粒子及び水酸化マグネシウム粒子の仕込み量と収量とを示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、生成した繊維状塩基性硫酸マグネシウム粒子の量は124.6gであり、繊維状塩基性硫酸マグネシウム粒子の生成量は実施例1とほぼ同等であった。
本発明に従う繊維状塩基性硫酸マグネシウム粒子の製造方法の工業的な実施を想定した製造装置の一例の構成図である。
符号の説明
 1 種粒子水性分散液貯留タンク
 2 ポンプ
 3 水酸化マグネシウム貯留タンク
 4 硫酸マグネシウム水溶液貯留タンク
 5 水貯留タンク
 6 原料調製タンク
 7 定量ポンプ
 8 反応容器
 9 撹拌機
 10 加熱ジャケット
 11 反応物貯留タンク
 12 固液分離装置
 13 回収硫酸マグネシウム水溶液貯留タンク

Claims (9)

  1.  下記の工程を含む繊維状塩基性硫酸マグネシウム粒子の連続的製造方法:
    (1)水性媒体中に繊維状塩基性硫酸マグネシウム種粒子が分散されている種粒子水性分散液を反応容器内に用意する工程;
    (2)上記種粒子水性分散液を撹拌下にて加熱しながら、反応容器に水酸化マグネシウムと硫酸マグネシウムとを連続的に供給することにより、水の存在下での硫酸マグネシウムと水酸化マグネシウムとの反応で生成する塩基性硫酸マグネシウムを前記繊維状塩基性硫酸マグネシウム種粒子の表面に析出させ、これにより増量された繊維状塩基性硫酸マグネシウム粒子の水性分散液を得る工程;
    (3)上記(2)の工程で得られた水性分散液を反応容器から連続的に取り出す工程;そして、
    (4)反応容器から取り出した水性分散液から繊維状塩基性硫酸マグネシウム粒子を回収する工程。
  2.  (1)の工程で用いる種粒子水性分散液の水性媒体が、濃度1~40質量%の硫酸マグネシウム水溶液である請求項1に記載の製造方法。
  3.  (1)の工程で用いる繊維状塩基性硫酸マグネシウム種粒子が、平均太さが0.1~1.0μmの範囲にあって、平均長さが8~30μmの範囲にある請求項1に記載の製造方法。
  4.  (2)の工程において、反応容器に供給する水酸化マグネシウムが、平均粒子径が0.01~100μmの範囲にある粒子である請求項1に記載の製造方法。
  5.  (2)の工程において、水酸化マグネシウム粒子を、水性分散液中の水酸化マグネシウム粒子と繊維状塩基性硫酸マグネシウム粒子との合計量に対して、水性分散液中の水酸化マグネシウム粒子の量が0.05~20質量%の範囲となるように維持する条件で供給する請求項4に記載の製造方法。
  6.  (2)の工程において、硫酸マグネシウムを、濃度1~40質量%の硫酸マグネシウム水溶液として反応容器に供給する請求項1に記載の製造方法。
  7.  (2)の工程において、水酸化マグネシウムと硫酸マグネシウムとを、水酸化マグネシウム1モルに対して硫酸マグネシウムが0.2~100モルの範囲となる割合で反応容器に供給する請求項1に記載の製造方法。
  8.  (2)の工程において、種粒子水性分散液を90℃以上の温度で加熱する請求項1に記載の製造方法。
  9.  さらに、(4)の工程で水性分散液からの繊維状塩基性硫酸マグネシウム粒子の回収によって得られた液体分を、(1)の工程で用いる種粒子水性分散液の中に供給する工程を含む請求項1に記載の製造方法。
PCT/JP2009/056307 2008-03-28 2009-03-27 繊維状塩基性硫酸マグネシウム粒子の連続的製造方法 WO2009119814A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010505844A JP5394369B2 (ja) 2008-03-28 2009-03-27 繊維状塩基性硫酸マグネシウム粒子の連続的製造方法
CN2009801194849A CN102046534B (zh) 2008-03-28 2009-03-27 纤维状碱性硫酸镁粒子的连续制备方法
US12/934,714 US8114366B2 (en) 2008-03-28 2009-03-27 Process for continuous production of fibrous basic magnesium sulfate particle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008087441 2008-03-28
JP2008-087441 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119814A1 true WO2009119814A1 (ja) 2009-10-01

Family

ID=41113999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056307 WO2009119814A1 (ja) 2008-03-28 2009-03-27 繊維状塩基性硫酸マグネシウム粒子の連続的製造方法

Country Status (6)

Country Link
US (1) US8114366B2 (ja)
JP (1) JP5394369B2 (ja)
KR (1) KR101573098B1 (ja)
CN (1) CN102046534B (ja)
TW (1) TWI449670B (ja)
WO (1) WO2009119814A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110014470A1 (en) * 2008-03-31 2011-01-20 Shinichi Yamamoto Basic magnesium sulfate granule and process for production thereof
WO2012118183A1 (ja) * 2011-03-02 2012-09-07 宇部マテリアルズ株式会社 繊維状塩基性硫酸マグネシウム粉末及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104153002A (zh) * 2014-08-22 2014-11-19 瓮福(集团)有限责任公司 一种利用含镁废液制备氢氧化镁晶须的方法
CN111850672A (zh) * 2019-04-24 2020-10-30 广西大学 一种以烷基化废硫酸生产碱式硫酸镁晶须的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149318A (en) * 1980-04-22 1981-11-19 Ube Ind Ltd Fibrous magnesium oxysulfate and its manufacture
JPH03122012A (ja) * 1989-10-02 1991-05-24 Nippon Chem Ind Co Ltd 繊維状塩基性硫酸マグネシウムの製造法
JPH03122013A (ja) * 1989-10-02 1991-05-24 Nippon Chem Ind Co Ltd 繭状塩基性硫酸マグネシウム及びその製造法
JPH0474709A (ja) * 1990-07-09 1992-03-10 Nippon Chem Ind Co Ltd 繊維状塩基性硫酸マグネシウム及びその製造法
JPH04317406A (ja) * 1991-04-16 1992-11-09 Ube Ind Ltd 繊維状無水マグネシウムオキシサルフェートの製造法
JP2005231927A (ja) * 2004-02-18 2005-09-02 Ube Material Industries Ltd 繊維状塩基性硫酸マグネシウム塊状物
JP2007161954A (ja) * 2005-12-16 2007-06-28 Ube Material Industries Ltd ポリオレフィン樹脂改質剤

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686290B2 (ja) * 1988-04-05 1994-11-02 宇部興産株式会社 顆粒形態繊維状マグネシウムオキシサルフェートとその製造方法、および該マグネシウムオキシサルフェートを配合してなる複合ポリプロピレン樹脂組成物
CN1151967C (zh) * 1999-09-22 2004-06-02 中国科学院金属研究所 镁盐晶须制备方法
CN1183037C (zh) * 2002-05-17 2005-01-05 隗学礼 氢氧化镁晶须的制备方法
CN1536102A (zh) * 2003-04-10 2004-10-13 大连晶须材料有限公司 一种镁盐晶须的合成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149318A (en) * 1980-04-22 1981-11-19 Ube Ind Ltd Fibrous magnesium oxysulfate and its manufacture
JPH03122012A (ja) * 1989-10-02 1991-05-24 Nippon Chem Ind Co Ltd 繊維状塩基性硫酸マグネシウムの製造法
JPH03122013A (ja) * 1989-10-02 1991-05-24 Nippon Chem Ind Co Ltd 繭状塩基性硫酸マグネシウム及びその製造法
JPH0474709A (ja) * 1990-07-09 1992-03-10 Nippon Chem Ind Co Ltd 繊維状塩基性硫酸マグネシウム及びその製造法
JPH04317406A (ja) * 1991-04-16 1992-11-09 Ube Ind Ltd 繊維状無水マグネシウムオキシサルフェートの製造法
JP2005231927A (ja) * 2004-02-18 2005-09-02 Ube Material Industries Ltd 繊維状塩基性硫酸マグネシウム塊状物
JP2007161954A (ja) * 2005-12-16 2007-06-28 Ube Material Industries Ltd ポリオレフィン樹脂改質剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUE TAO ET AL.: "Crystal growth and crystal structure of magnesium xysulfate 2MgSO4 ·Mg(OH)2· 2H20", JOURNAL OF MOLECULAR STRUCTURE, vol. 616, 2002, pages 247 - 252 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110014470A1 (en) * 2008-03-31 2011-01-20 Shinichi Yamamoto Basic magnesium sulfate granule and process for production thereof
US8388915B2 (en) * 2008-03-31 2013-03-05 Ube Material Industries, Ltd. Basic magnesium sulfate granule having high crush strength and process for production thereof
WO2012118183A1 (ja) * 2011-03-02 2012-09-07 宇部マテリアルズ株式会社 繊維状塩基性硫酸マグネシウム粉末及びその製造方法
CN103502149A (zh) * 2011-03-02 2014-01-08 宇部材料工业株式会社 纤维状碱式硫酸镁粉末及其制造方法

Also Published As

Publication number Publication date
KR20100139070A (ko) 2010-12-31
US8114366B2 (en) 2012-02-14
KR101573098B1 (ko) 2015-11-30
JPWO2009119814A1 (ja) 2011-07-28
JP5394369B2 (ja) 2014-01-22
TWI449670B (zh) 2014-08-21
TW200948719A (en) 2009-12-01
US20110014116A1 (en) 2011-01-20
CN102046534B (zh) 2013-11-20
CN102046534A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
KR101399737B1 (ko) 약산을 이용한 표면 반응 탄산칼슘의 제조 방법, 수득 생성물 및 이의 용도
CN102282220B (zh) 使用具有疏水基团的丙烯酸系梳状共聚物作为偶合剂制备自粘结颜料颗粒的方法、自粘结颜料颗粒及其用途
CN106745161B (zh) 一种醇-水混合体系中制备纳米硫酸钙以及硫酸钙晶须的方法
JP5394369B2 (ja) 繊維状塩基性硫酸マグネシウム粒子の連続的製造方法
CN101754932A (zh) 用于制备硫酸钡的方法
CN102947347A (zh) 由提取液分离木质素和糖的方法
CN107206502B (zh) 镍粉的制造方法
CN113365941A (zh) 磷酸钛粉体、化妆品用白色颜料
CN114450249B (zh) 含碳材料的处理和纯化
CN101600654A (zh) 生产仲钨酸铵水合物和十水合仲钨酸铵的方法
JP2017524648A (ja) チタン含有鉱物からの生成物の抽出
DE112007003463T5 (de) Verfahren zum Herstellen von Bismutoxid und Vorrichtung hierfür
CN109665536A (zh) 凹土的提纯方法
CN108290751A (zh) 使用含硼酸聚合物回收采矿处理产物
JP5274892B2 (ja) 繊維状塩基性硫酸マグネシウム粒子の製造方法
KR101020835B1 (ko) 산성 수성 알루미나 졸의 제조방법
JPS59111922A (ja) 酸化ジルコニウム微粉末の製造法
RU2525548C2 (ru) Порошок вольфрамовой кислоты и его применение для получения порошка металлического вольфрама
JP2013220955A (ja) フッ化カルシウムの製造方法及び装置
JP2008110908A (ja) 消石灰スラリーの製造方法
JP4513277B2 (ja) 消石灰スラリーの製造方法
KR101975469B1 (ko) 염수 슬러리의 고액 분리 장치 및 고액 분리 방법
JP2020083694A (ja) ニオブ酸アルカリ金属塩粒子の製造方法
JP2013220956A (ja) フッ化カルシウムの製造方法及び装置
US9175367B2 (en) Process for neutralizing bauxite dissolution residual substance and process for producing aluminum hydroxide

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119484.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12934714

Country of ref document: US

Ref document number: 2010505844

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107023753

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09724932

Country of ref document: EP

Kind code of ref document: A1