WO2009119561A1 - プラズマ溶接法およびこれに用いられるアウターガス - Google Patents

プラズマ溶接法およびこれに用いられるアウターガス Download PDF

Info

Publication number
WO2009119561A1
WO2009119561A1 PCT/JP2009/055786 JP2009055786W WO2009119561A1 WO 2009119561 A1 WO2009119561 A1 WO 2009119561A1 JP 2009055786 W JP2009055786 W JP 2009055786W WO 2009119561 A1 WO2009119561 A1 WO 2009119561A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
tip
welding
plasma
insert tip
Prior art date
Application number
PCT/JP2009/055786
Other languages
English (en)
French (fr)
Inventor
勝則 和田
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008080650A external-priority patent/JP5302558B2/ja
Priority claimed from JP2009026121A external-priority patent/JP5280237B2/ja
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to US12/933,954 priority Critical patent/US8324524B2/en
Priority to CN200980110242.3A priority patent/CN101977721B/zh
Publication of WO2009119561A1 publication Critical patent/WO2009119561A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas

Definitions

  • the present invention relates to a plasma welding method and an outer gas used in the plasma welding method, and more particularly to a plasma welding method and an outer gas capable of forming a stable back bead even with a thick workpiece.
  • the plasma welding method is classified as a non-consumable electrode type welding method together with the TIG welding method. Since the plasma welding method is superior to the TIG welding method in terms of heat concentration, the bead width is narrow, welding can be performed at high speed, and welding can be performed with less distortion. Moreover, the plasma welding method can perform keyhole welding which is a single-sided back wave welding method using a plasma arc with high energy density. Examples of the TIG welding method are described in Patent Documents 1 to 3.
  • the plate thickness that enables one-pass single-sided welding of I-shaped groove is about 0.6 to 6 mm for the carbon steel plate and about 0.1 to 8 mm for the stainless steel plate.
  • FIG. 1 schematically shows an example of a welding torch used in such a plasma welding method.
  • Reference numeral 1 in FIG. 1 denotes a tungsten electrode.
  • the tungsten electrode 1 is a rod-shaped electrode made of tungsten containing a small amount of rare earth element oxide such as tungsten or lanthanum oxide.
  • This tungsten electrode 1 is surrounded by an insert tip 2.
  • This insert tip 2 is a pipe-like one, and is provided coaxially with a gap with respect to the tungsten electrode 1. Moreover, although not shown in figure, a cooling water circulates through the inside and the insert chip
  • tip 2 is cooled.
  • the insert tip 2 is further surrounded by a shield cap 3.
  • the shield cap 3 has a pipe shape, is spaced from the insert tip 2 and is coaxial.
  • a center gas made of an inert gas such as argon or helium flows in the gap between the tungsten electrode 1 and the insert tip 2, and hydrogen is added to the inert gas such as argon or helium in the gap between the insert tip 2 and the shield cap 3.
  • An outer gas composed of a mixed gas added with 3 to 7% by volume flows.
  • the center gas functions as a plasma gas, and the outer gas functions as a shield gas.
  • the current from the pilot arc power source 4 is applied to the tungsten electrode 1 and the insert tip 2 to ignite the preliminary plasma, and then the current from the main arc power source 5 is applied to the tungsten electrode 1 and the workpiece 6.
  • the plasma arc is configured to flow from the tungsten electrode 1 to the workpiece 6.
  • the tip end portion of the tungsten electrode 1 is arranged at a position inside the tip end portion of the insert tip 2 and is in a state where it does not protrude outward from the tip end portion of the insert tip 2.
  • the tungsten electrode 1 is encased in a center gas made of an inert gas and is not exposed to an oxidizing gas, and is not oxidized or consumed during welding. Further, no spatter is generated, high-quality welding can be performed for a long time, and the running cost can be reduced. For this reason, the plasma welding method is widely used mainly in welding construction for manufacturing pressure vessels, piping and joints.
  • the problem in the present invention is to weld a stainless steel material having a plate thickness of 8 mm or more or a carbon steel material having a plate thickness of 6 mm or more by plasma welding so that a stable and good back bead is formed. .
  • an insert tip is arranged around the tungsten electrode, a shield cap is arranged around the insert tip, and the tip of the tungsten electrode is positioned on the inner side of the tip of the insert tip.
  • a plasma welding torch in which a center gas composed of an inert gas is allowed to flow in the gap between the tungsten electrode and the insert tip, and an outer gas is allowed to flow in the gap between the insert tip and the shield cap.
  • An outer gas for plasma welding used This outer gas is an outer gas for plasma welding which is a mixed gas of carbon dioxide gas 0.5 to 2 vol% and the balance inert gas.
  • an insert tip is arranged around the tungsten electrode, a shield cap is arranged around the insert tip, and the tip of the tungsten electrode is located on the inner side of the tip of the insert tip, Using a plasma welding torch in which a center gas is allowed to flow in the gap between the tungsten electrode and the insert tip, and an outer gas is allowed to flow in the gap between the insert tip and the shield cap;
  • a plasma welding method is used in which an inert gas is used as the center gas, a mixed gas of carbon dioxide gas of 0.5 to 2 vol% and the remaining inert gas is used as the outer gas.
  • an insert tip is arranged around the tungsten electrode, a shield cap is arranged around the insert tip, and the tip of the tungsten electrode is located inside the tip of the insert tip.
  • Plasma keyhole welding of carbon steel is performed using a plasma welding torch in which a center gas made of an inert gas flows in the gap between the tungsten electrode and the insert tip, and an outer gas flows in the gap between the insert tip and the shield cap.
  • an insert tip is arranged around the tungsten electrode, a shield cap is arranged around the insert tip, and the tip of the tungsten electrode is located inside the tip of the insert tip.
  • Plasma keyhole welding of carbon steel is performed using a plasma welding torch in which a center gas composed of an inert gas flows in the gap between the tungsten electrode and the insert tip, and an outer gas flows in the gap between the insert tip and the shield cap.
  • an insert tip is arranged around the tungsten electrode, a shield cap is arranged around the insert tip, and the tip of the tungsten electrode is located inside the tip of the insert tip.
  • a process of performing plasma keyhole welding of carbon steel using a plasma welding torch in which a center gas is allowed to flow in the gap between the tungsten electrode and the insert tip and an outer gas is allowed to flow in the gap between the insert tip and the shield cap.
  • the plasma welding method uses an inert gas as the center gas, a mixed gas of carbon dioxide gas of 0.5 to 2 vol% and the balance argon as the outer gas.
  • an insert tip is arranged around the tungsten electrode, a shield cap is arranged around the insert tip, and the tip of the tungsten electrode is located on the inner side of the tip of the insert tip.
  • a process of performing plasma keyhole welding of carbon steel using a plasma welding torch in which a center gas is allowed to flow in the gap between the tungsten electrode and the insert tip and an outer gas is allowed to flow in the gap between the insert tip and the shield cap.
  • a plasma welding method is used in which an inert gas is used as the center gas, and a mixed gas of 0.5 to 6 vol% oxygen and the balance argon is used as the outer gas.
  • a center gas composed of an inert gas is caused to flow through the welding torch, and a mixed gas obtained by mixing 0.5 to 2 vol% of carbon dioxide with the inert gas is allowed to flow as an outer gas.
  • a mixed gas obtained by mixing 0.5 to 2 vol% of carbon dioxide with the inert gas is allowed to flow as an outer gas.
  • a center gas made of an inert gas is allowed to flow through the welding torch, and a mixed gas obtained by mixing 0.5 to 2 vol% of carbon dioxide with argon, or 0.5% oxygen with argon.
  • a mixed gas of ⁇ 6 vol% as an outer gas and plasma welding of carbon steel, deep penetration can be obtained, keyhole welding can be performed, and the back bead can be stabilized. For this reason, it is possible to weld a carbon steel material having a plate thickness of 6 mm to 10 mm without applying a backing metal. As a result, no cost is required for the production and installation of backing metal (copper).
  • good welding can be easily performed even on an object to be welded such as a pipe or a container that cannot use a backing metal.
  • first and second embodiments of the present invention for example, when plasma welding is performed using the plasma welding torch shown in FIG. 1, an inert gas such as argon or helium or the like is inserted in the gap between the tungsten electrode 1 and the insert tip 2.
  • a center gas composed of these mixed gases is flown, and carbon dioxide gas 0.5 to 2 vol%, preferably 0.6 to 2 vol%, is mixed with argon, helium or argon and helium in the gap between the insert tip 2 and the shield cap 3.
  • An outer gas composed of a mixed gas of 98 to 99.5 vol%, preferably 98 to 99.4 vol%, of an inert gas such as a gas is flowed.
  • the first and second embodiments correspond to the first and second aspects described above.
  • the combination of the center gas and the outer gas provides an effect that a deep penetration can be obtained and the back bead can be stabilized.
  • the carbon dioxide gas concentration in the outer gas is less than 0.5 vol% and exceeds 2 vol%, the width of the back bead is not uniform, the bead meanders and irregularities occur, and the bead becomes unstable.
  • the mixed gas of inert gas and oxygen is used as the outer gas, or when the mixed gas of inert gas and hydrogen is used, the width of the back bead is uneven, and the meandering and unevenness of the bead And the bead becomes unstable.
  • a mixed gas in which carbon dioxide gas of 0.5 vol% or less is mixed with argon as a shielding gas may be used.
  • the function of carbon dioxide gas when the mixed gas is used as the outer gas has not been sufficiently elucidated, but the surface tension of the molten pool is lowered, thereby It is inferred that the viscosity of the entire molten metal is lowered, the keyhole is smoothly formed, and the back bead is favorably affected.
  • the flow rate of the center gas varies depending on the welding conditions, the type of the material to be welded, etc., but is preferably about 0.1 to 5 liters / minute.
  • the flow rate of the outer gas varies depending on the welding conditions, the type of the material to be welded, etc., but is usually preferably about 5 to 20 liters / minute.
  • a direct current is used as the welding current, but a pulse current is preferred.
  • the pulse current the current waveform is a rectangular wave, the pulse frequency is 20 to 100 Hz, the base current is 30 to 80 A, the peak current is 30 to 200 A, and the ratio of the peak period to the base period (pulse width) is 1:05 to 1: Although it is desirable to set it as 5, it is not limited to this range.
  • the peak current is increased, the spread of the generated plasma arc is narrowed, and a keyhole is easily generated, which is suitable for welding a stainless steel material having a large plate thickness.
  • the preferred range of the welding speed varies depending on the type and thickness of the material to be welded, but is usually about 3 to 10 cm / min.
  • the welding position may be any one of downward, upward, and vertical position. In the upward and standing postures, lowering the frequency of the pulse current is advantageous for preventing molten metal from dripping and for forming a back bead.
  • the inclination angle of the torch is preferably about 0 to 30 degrees.
  • the inner diameter of the tip of the insert tip 2 of the welding torch is important because it affects the spread of the plasma arc to be generated, and it is appropriate to set it to 5 mm or less, preferably about 2 mm.
  • a normal stainless steel material is used. Since the keyhole is satisfactorily formed, it can be applied to a stainless steel material having a large plate thickness, for example, a stainless steel material having a thickness of 8 to 12 mm.
  • the gap between the tungsten electrode 1 and the insert tip 2 is argon.
  • an inert gas such as helium or a center gas composed of a mixed gas thereof is flowed, and the following two mixed gases are used as the outer gas flowing in the gap between the insert tip 2 and the shield cap 3.
  • Carbon dioxide gas 0.5-2 vol%, preferably 0.5-1 vol%, the remaining argon mixed gas 2) A mixed gas of oxygen 0.5 to 6 vol%, preferably 0.5 to 3 vol%, and the balance argon.
  • the third to sixth embodiments correspond to the third to sixth aspects described above.
  • the combination of the center gas and the outer gas can provide deep penetration, keyhole welding, and the effect of stabilizing the back bead.
  • the carbon dioxide gas concentration in the outer gas is less than 0.5 vol% and exceeds 2 vol%, or when the oxygen concentration is less than 0.5 vol% and exceeds 6 vol%, the width of the back bead is uneven. As a result, the meandering and unevenness of the bead occur, and the bead becomes unstable. Further, even when a mixed gas of an inert gas and hydrogen is used as the outer gas, the width of the back bead is not uniform, the bead meanders and unevenness occurs, and the bead becomes unstable.
  • a mixed gas in which carbon dioxide gas of 0.5 vol% or less is mixed with argon as a shielding gas may be used.
  • the function of the carbon dioxide gas when the mixed gas is used as the outer gas has not been sufficiently elucidated, but the surface tension of the molten pool is reduced, thereby reducing the molten pool. It is inferred that the viscosity of the entire molten metal is lowered, the keyhole is smoothly formed, and the back bead is favorably affected.
  • the flow rate of the center gas varies depending on the welding conditions, the type of the material to be welded, etc., but is preferably about 0.1 to 5 liters / minute.
  • the flow rate of the outer gas varies depending on the welding conditions, the type of the material to be welded, etc., but is usually preferably about 5 to 20 liters / minute.
  • a pulse current may be used.
  • the current value depends on factors such as the thickness, type and welding speed of the material to be welded, but is usually in the range of 100 to 300A.
  • the preferred range of the welding speed varies depending on the type and thickness of the carbon steel material, but is usually about 3 to 10 cm / min.
  • the welding posture may be downward, upward, or standing. In the upward and standing postures, lowering the frequency of the pulse current is advantageous for preventing molten metal from dripping and for forming a back bead.
  • the inclination angle of the torch is preferably about 0 to 30 degrees.
  • the inner diameter of the tip portion of the insert tip 2 of the welding torch is important because it affects the spread of the plasma arc to be generated, and it is appropriate to set it to 5 mm or less, preferably about 3.2 mm.
  • a normal carbon steel material is used as the material to be welded and the keyhole is well formed, it can be applied to a carbon steel having a large plate thickness, for example, a thickness of 6 to 10 mm.
  • a V-shaped or U-shaped groove there is no limitation on the plate thickness when the root surface is 10 mm or less.
  • Test Example 1 Under the following welding conditions, plasma welding with a bead-on-plate was performed using a stainless steel plate thickness of 8 mm, and the stability of the back bead was examined.
  • center gas and outer gas used were as described in 1) to 4) below. All percentages are by volume. 1) Center gas: 100% Ar; outer gas: mixed gas of 97 to 99.5% Ar and 0.5 to 3% CO 2 2) Center gas: 100% Ar; outer gas: 100% Ar 3) Center gas: 100% Ar; Outer gas: Mixed gas of 99-99.5% Ar and 0.5-1% O 2 4) Center gas: Mixed gas of 93% Ar and 7% H 2 ; Outer gas: Mixed gas of 93% Ar and 7% H 2
  • the gas combination described in 1) corresponds to the first and second aspects of the present invention, and the gas described in 2) to 4). The combination of was for comparison. The flow rates were all 1.6 liters / minute for the center gas and 10 liters / minute for the outer gas.
  • FIG. 2 the photograph which image
  • X Fail (The back bead widths are uneven, meandering and uneven, and unstable.) From the results of FIG. 2, it was found that a stable back bead can be formed by using a mixed gas of argon 98 to 99.5% and carbon dioxide gas 0.5 to 2% as the outer gas.
  • Center gas 100% Ar Outer gas: Ar-1% CO 2 Center gas flow rate: 1.7 liters / minute Outer gas flow rate: 15 liters / minute
  • Welding method Plasma welding (non-consumable electrode welding) Welding base material: SS400 (plate thickness 9mm) Welding method: Plasma welding method (downward posture) Electrode: Tungsten with 2% lanthanum oxide ⁇ 4.8mm Center nozzle base metal distance: 5mm Torch tilt angle: Advance angle 4 degrees Welding current: 220A Welding speed: 15 cm / min Nozzle inner diameter: 3.2 mm Back money: None
  • FIGS. 3 and 4 show photographs taken of the appearance of the back bead, and pass / fail is determined from the appearance.
  • Pass (the width of the back bead is uniform and there is no meandering or unevenness and it is stable)
  • X Fail (The back bead widths are uneven, meandering and uneven, and unstable.)
  • a gas in which 0.5 to 6 vol% oxygen is added to argon or a gas in which 0.5 to 2 vol% carbon dioxide gas is added to argon forms a stable back bead. It was found that it can be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)

Abstract

 本発明のプラズマ溶接用アウターガスは、タングステン電極(1) の周囲にインサートチップ(2)を配し、このインサートチップの周囲にシールドキャップ(3)を配し、タングステン電極の先端部がインサートチップの先端部よりも内側に位置し、タングステン電極とインサートチップとの間隙に不活性ガスからなるセンターガスを流し、インサートチップとシールドキャップとの間隙にアウターガスを流すようにしたプラズマ溶接トーチを用い、ステンレス鋼を溶接する際には、炭酸ガス0.5~2vol%、残部不活性ガスの混合ガスを用い、炭素鋼のプラズマキーホール溶接を行う際には、酸素0.5~6vol%あるいは炭酸ガス0.5~2vol%、残部アルゴンの混合ガスを用いる。

Description

プラズマ溶接法およびこれに用いられるアウターガス
 この発明は、プラズマ溶接法およびこのプラズマ溶接法に用いられるアウターガスに関し、詳しくは厚肉の被溶接材であっても安定な裏ビードが形成できるプラズマ溶接法及びアウターガスに関する。
 本願は、2008年3月26日に日本に出願された特願2008-080650号及び2009年2月6日に日本に出願された特願2009-026121号に基づき優先権を主張し、その内容をここに援用する。
 プラズマ溶接法は、TIG溶接法とともに非消耗電極式溶接法に分類されるものである。プラズマ溶接法は、TIG溶接法に比べ、熱集中性が優れているため、ビード幅を狭く、高速に溶接することができ、しかも歪が少なく溶接することができる。
 また、プラズマ溶接法は、エネルギー密度の高いプラズマアークを利用して片面裏波溶接法であるキーホール溶接を行うことができる。
 TIG溶接法の例は、特許文献1~3に記載されている。
 キーホール溶接は、プラズマアークが溶融金属を押し退けて母材を貫通し、キーホールを形成する。このキーホールは溶接が進行するに連れ、溶融金属がその壁面を伝わり後方に移動して溶融池を形成し、溶接ビードとなるものである。
 このため、I型開先(square groove)の突合せのワンパス片面溶接が可能な板厚は、炭素鋼板で約0.6から6mm、ステンレス鋼板で約0.1から8mmとなっている。
 図1は、このようなプラズマ溶接法に用いられる溶接トーチの一例を模式的に示すものである。
 図1中符号1は、タングステン電極を示す。このタングステン電極1は、タングステンあるいは酸化ランタンなどの希土類元素酸化物を少量含むタングステンからなる棒状のものである。
 このタングステン電極1はインサートチップ2によって包囲されている。このインサートチップ2はパイプ状のもので、タングステン電極1に対して間隙を配し、かつ同軸に設けられている。また、図示しないが、冷却水がその内部を循環し、インサートチップ2が冷却されるようになっている。
 インサートチップ2はさらにシールドキャップ3によって包囲されている。このシールドキャップ3はパイプ状のもので、インサートチップ2に対して間隔を配し、かつ同軸に設けられている。
 タングステン電極1とインサートチップ2との間隙にはアルゴン、ヘリウムなどの不活性ガスからなるセンターガスが流れ、インサートチップ2とシールドキャップ3との間隙にはアルゴン、ヘリウムなどの不活性ガスに水素を3~7vol%添加した混合ガスからなるアウターガスが流れるように構成されている。
 センターガスはプラズマガスとして機能し、アウターガスはシールドガスとして機能する。
 また、パイロットアーク電源4からの電流がタングステン電極1とインサートチップ2とに印加されて予備プラズマが点火され、ついでメインアーク電源5からの電流がタングステン電極1と被溶接材6とに印加されて、プラズマアークがタングステン電極1から被溶接材6に流れるように構成されている。
 さらに、タングステン電極1の先端部は、インサートチップ2の先端部よりも内側の位置に配され、インサートチップ2の先端部分よりも外側に突出していない状態となっている。
 これにより、タングステン電極1は不活性ガスからなるセンターガスに包まれ、酸化性ガスに曝されることがない状態となって、溶接に際しても酸化、消耗することがない。また、スパッタが発生せず、長時間高品質の溶接が可能で、しかもランニングコストを安価にすることができる。
 このため、プラズマ溶接法は、主に圧力容器、配管や継手の製作の溶接施工において広く使われている。
 しかしながら、従来のプラズマ溶接法にあっては、板厚8mm以上のステンレス鋼および板厚6mm以上の炭素鋼の溶接において、安定的に裏ビードを形成することが難しく、重力の影響により溶融金属の自らの重さに耐えきれなくなることで裏ビードの形状が安定しない問題がある。そのため、溶接部の裏側に裏当金を当てて溶接する事が行われている。
 また、裏ビードが安定しないことで、表ビードの仕上がりに影響し、手直しが必要になるなどの不都合がある。
特開2003-311414号公報 特開2006-26644号公報 特開2004-298963号公報
 よって、この発明における課題は、プラズマ溶接法により、板厚8mm以上のステンレス鋼材又は板厚6mm以上の炭素鋼材を、安定に、かつ、良好な裏ビードが形成されるように溶接することにある。
 かかる課題を解決するため、
 本発明の第1の態様は、タングステン電極の周囲にインサートチップを配し、このインサートチップの周囲にシールドキャップを配し、タングステン電極の先端部がインサートチップの先端部よりも内側に位置し、タングステン電極とインサートチップとの間隙に不活性ガスからなるセンターガスを流し、インサートチップとシールドキャップとの間隙にアウターガスを流すようにしたプラズマ溶接トーチを用い、ステンレス鋼のプラズマ溶接を行う際に用いられるプラズマ溶接用アウターガスであって、
 このアウターガスが、炭酸ガス0.5~2vol%、残部不活性ガスの混合ガスであるプラズマ溶接用アウターガスである。
 本発明の第2の態様は、タングステン電極の周囲にインサートチップを配し、このインサートチップの周囲にシールドキャップを配し、タングステン電極の先端部がインサートチップの先端部よりも内側に位置し、タングステン電極とインサートチップとの間隙にセンターガスを流し、インサートチップとシールドキャップとの間隙にアウターガスを流すようにしたプラズマ溶接トーチを用いて、ステンレス鋼のプラズマ溶接を行う工程を有し、
 前記プラズマ溶接を行う際に、センターガスに不活性ガスを用い、アウターガスに炭酸ガス0.5~2vol%、残部不活性ガスの混合ガスを用いるプラズマ溶接法である。
 本発明においては、プラズマ溶接時に、被溶接材に裏当金(backing metal)を当てないことが好ましい。
 本発明の第3の態様は、タングステン電極の周囲にインサートチップを配し、このインサートチップの周囲にシールドキャップを配し、タングステン電極の先端部がインサートチップの先端部よりも内側に位置し、タングステン電極とインサートチップとの間隙に不活性ガスからなるセンターガスを流し、インサートチップとシールドキャップとの間隙にアウターガスを流すようにしたプラズマ溶接トーチを用い、炭素鋼のプラズマキーホール溶接を行う際に用いられるプラズマ溶接用アウターガスであって、
 このアウターガスが、炭酸ガス0.5~2vol%、残部アルゴンの混合ガスであるプラズマ溶接用アウターガスである。
 本発明の第4の態様は、タングステン電極の周囲にインサートチップを配し、このインサートチップの周囲にシールドキャップを配し、タングステン電極の先端部がインサートチップの先端部よりも内側に位置し、タングステン電極とインサートチップとの間隙に不活性ガスからなるセンターガスを流し、インサートチップとシールドキャップとの間隙にアウターガスを流すようにしたプラズマ溶接トーチを用い、炭素鋼のプラズマキーホール溶接を行う際に用いられるプラズマ溶接用アウターガスであって、
 このアウターガスが、酸素0.5~6vol%、残部アルゴンの混合ガスであるプラズマ溶接用アウターガスである。
 本発明の第5の態様は、タングステン電極の周囲にインサートチップを配し、このインサートチップの周囲にシールドキャップを配し、タングステン電極の先端部がインサートチップの先端部よりも内側に位置し、タングステン電極とインサートチップとの間隙にセンターガスを流し、インサートチップとシールドキャップとの間隙にアウターガスを流すようにしたプラズマ溶接トーチを用いて、炭素鋼のプラズマキーホール溶接を行う工程を有し、
 前記プラズマキーホール溶接を行う際に、センターガスに不活性ガスを用い、アウターガスに炭酸ガス0.5~2vol%、残部アルゴンの混合ガスを用いるプラズマ溶接法である。
 本発明の第6の態様は、タングステン電極の周囲にインサートチップを配し、このインサートチップの周囲にシールドキャップを配し、タングステン電極の先端部がインサートチップの先端部よりも内側に位置し、タングステン電極とインサートチップとの間隙にセンターガスを流し、インサートチップとシールドキャップとの間隙にアウターガスを流すようにしたプラズマ溶接トーチを用いて、炭素鋼のプラズマキーホール溶接を行う工程を有し、
 前記プラズマキーホール溶接を行う際に、センターガスに不活性ガスを用い、アウターガスに酸素0.5~6vol%、残部アルゴンの混合ガスを用いるプラズマ溶接法である。
 本発明においては、プラズマキーホール溶接時に、被溶接材に裏当金を当てないことが好ましい。
 本発明の第1及び第2の態様によれば、溶接トーチに不活性ガスからなるセンターガスを流し、かつ不活性ガスに炭酸ガスを0.5~2vol%混合した混合ガスをアウターガスとして流してステンレス鋼のプラズマ溶接することで、深い溶け込みが得られ、裏ビードを安定させることができる。このため、裏当金を当てる必要なく、板厚8mm~12mmのステンレス鋼材を溶接加工できる。結果、裏当金(銅製)の製作や設置にコストを要しない。また、配管や容器など、裏当金を用いることができない被溶接物においても容易に良好な溶接を行うことができる。
 本発明の第3~第6の態様によれば、溶接トーチに不活性ガスからなるセンターガスを流し、かつアルゴンに炭酸ガスを0.5~2vol%混合した混合ガスあるいはアルゴンに酸素0.5~6vol%混合した混合ガスをアウターガスとして流して炭素鋼のプラズマ溶接することで、深い溶け込みが得られ、キーホール溶接ができ、裏ビードを安定させることができる。このため、裏当金を当てる必要なく、板厚6mm~10mmの炭素鋼材を溶接加工できる。結果、裏当金(銅製)の製作や設置にコストを要しない。また、配管や容器など、裏当金を用いることができない被溶接物においても容易に良好な溶接を行うことができる。
本発明におけるプラズマ溶接用トーチを示す概略構成図である。 試験例1の結果を示す写真である。 試験例3の結果を示す写真である。 試験例3の結果を示す写真である。
符号の説明
 1・・・タングステン電極、2・・・インサートチップ、3・・・シールドキャップ
[本発明の第1及び第2の実施形態]
 本発明の第1及び第2の実施形態では、例えば図1に示したプラズマ溶接トーチを用いてプラズマ溶接する際、タングステン電極1とインサートチップ2との間隙にアルゴン、ヘリウムなどの不活性ガスまたはこれらの混合ガスからなるセンターガスを流し、インサートチップ2とシールドキャップ3との間隙に炭酸ガス0.5~2vol%、好ましくは0.6~2vol%と、アルゴン、ヘリウムまたはアルゴンとヘリウムの混合ガスなどの不活性ガス98~99.5vol%、好ましくは98~99.4vol%との混合ガスからなるアウターガスを流す。
 なお、第1及び第2の実施形態は、上述の第1及び第2の態様に対応している。
 本発明の第1及び第2の実施形態では、このようなセンターガスとアウターガスとの組み合わせにより、深い溶け込みが得られ、裏ビードを安定させることができる効果が得られる。
 アウターガス中の炭酸ガス濃度が0.5vol%未満の場合および2vol%を越える場合には、ともに裏ビードの幅が不揃いで、ビードの蛇行、凹凸が生じ、ビードが不安定になる。
 また、アウターガスとして、不活性ガスと酸素との混合ガスを用いた場合、あるいは不活性ガスと水素との混合ガスを用いた場合においても、裏ビードの幅が不揃いで、ビードの蛇行、凹凸が生じ、ビードが不安定になる。
 プラズマ溶接におけるセンターガスに不活性ガスを用いる点は公知であるが、アウターガスに炭酸ガス0.5~2vol%と不活性ガス98~99.5vol%との混合ガスを用いる点は知られていない。
 TIG溶接では、このような混合ガスをシールドガスに用いることが提案されているが、溶接原理が相違し、溶接トーチの構造も異なるので、作用効果も相違するものである。
 TIG溶接において、シールドガスとしてアルゴンに0.5vol%以下の炭酸ガスを混合した混合ガスを用いることがあるが、この場合の炭酸ガスの機能は、溶融池の対流を内向対流とし、溶け込みを深くするものである。
 一方、本発明の第1及び第2の実施形態において、アウターガスとして前記混合ガスを用いる場合の炭酸ガスの機能は十分解明されていないが、溶融池の表面張力を低下させ、これにより溶融池全体の溶融金属の粘性が低下し、キーホールがスムースに形成され、裏ビードに良好に影響するのではないかと推察される。
 前記センターガスの流量は、溶接条件、被溶接材の種類などによって異なるが、通常0.1~5リットル/分程度とするのが好ましい。また、アウターガスの流量も溶接条件、被溶接材の種類などによって異なるが、通常5~20リットル/分程度とするのが好ましい。
 溶接電流には、直流が用いられるが、パルス電流の方が好ましい。パルス電流としては、電流波形が矩形波であって、パルス周波数20~100Hz、ベース電流30~80A、ピーク電流30~200A、ピーク期間とベース期間との比率(パルス幅)1:05~1:5とすることが望ましいが、この範囲に限定されることはない。
 ピーク電流を高くすると、発生するプラズマアークの拡がりが絞り込まれ、キーホールが生成しやすくなって、板厚が厚いステンレス鋼材の溶接に好適になる。
 溶接速度の好適範囲は、被溶接材の種類、厚さなどによって異なるが、通常3~10cm/分程度とされる。
 溶接姿勢は、下向き、上向き、立向き(vertical position)のいずれでもよい。上向きおよび立向き姿勢ではパルス電流の周波数を低くすると、溶融金属の垂れ防止、裏ビード形成に有利である。
 トーチの傾斜角は、0~30度程度とすることが望ましい。
 溶接トーチのインサートチップ2の先端部の内径は、生成するプラズマアークの拡がりに影響を与えるので重要であり、5mm以下、好ましくは2mm程度とすることが適切である。
 また、被溶接材には、特に限定されないが、通常のステンレス鋼材が用いられる。キーホールが良好に形成されるので、板厚が厚いステンレス鋼材、例えば厚さ8~12mmのステンレス鋼材に適用することができる。
 また、本発明の第1及び第2の実施形態の溶接においては、溶接時に被溶接材の裏側に裏当金を必ずしも当てる必要はない。これは裏ビードが安定して形成されるためである。このため、配管や容器などの裏当金を当てることのできない被溶接材に対しても良好な溶接を行うことができることになる。
[本発明の第3~第6の実施形態]
 本発明の第3~第6の実施形態では、例えば図1に示したプラズマ溶接トーチを用いて、炭素鋼を被溶接材としてプラズマ溶接する際、タングステン電極1とインサートチップ2との間隙にアルゴン、ヘリウムなどの不活性ガスまたはこれらの混合ガスからなるセンターガスを流し、インサートチップ2とシールドキャップ3との間隙に流すアウターガスとして以下の2種の混合ガスを用いるものである。
 1)炭酸ガス0.5~2vol%、好ましくは0.5~1vol%、残部アルゴンの混合ガス、
 2)酸素0.5~6vol%、好ましくは0.5~3vol%、残部アルゴンの混合ガス。
 なお、第3~第6の実施形態は、上述の第3~第6の態様に対応している。
 本発明の第3~第6の実施形態では、このようなセンターガスとアウターガスとの組み合わせにより、深い溶け込みが得られ、キーホール溶接ができ、裏ビードを安定させることができる効果が得られる。
 アウターガス中の炭酸ガス濃度が0.5vol%未満の場合および2vol%を越える場合には、あるいは酸素濃度0.5vol%未満の場合および6vol%を越える場合には、ともに裏ビードの幅が不揃いで、ビードの蛇行、凹凸が生じ、ビードが不安定になる。
 また、アウターガスとして、不活性ガスと水素との混合ガスを用いた場合においても、裏ビードの幅が不揃いで、ビードの蛇行、凹凸が生じ、ビードが不安定になる。
 炭素鋼のプラズマ溶接におけるセンターガスに不活性ガスを用いる点は公知であるが、アウターガスに前記2種の混合ガスを用いる点は知られていない。
 TIG溶接では、このような混合ガスをシールドガスに用いることが提案されているが、溶接原理が相違し、溶接トーチの構造も異なるので、作用効果も相違するものである。
 上述の通り、TIG溶接において、シールドガスとしてアルゴンに0.5vol%以下の炭酸ガスを混合した混合ガスを用いることがあるが、この場合の炭酸ガスの機能は、溶融池の対流を内向対流とし、溶け込みを深くするものである。
 一方、本発明の第3~第6の実施形態において、アウターガスとして前記混合ガスを用いる場合の炭酸ガスの機能は十分解明されていないが、溶融池の表面張力を低下させ、これにより溶融池全体の溶融金属の粘性が低下し、キーホールがスムースに形成され、裏ビードに良好に影響するのではないかと推察される。
 前記センターガスの流量は、溶接条件、被溶接材の種類などによって異なるが、通常0.1~5リットル/分程度とするのが好ましい。また、アウターガスの流量も溶接条件、被溶接材の種類などによって異なるが、通常5~20リットル/分程度とするのが好ましい。
 溶接電流には、直流が用いられるが、パルス電流であってもよい。電流値は被溶接材の厚さ、種類、溶接速度などの要因によって左右されるが、通常100~300Aの範囲とされる。
 溶接速度は、炭素鋼材の種類、厚さなどによって好適範囲が異なるが、通常3~10cm/分程度とされる。
 溶接姿勢は、下向き、上向き、立向きのいずれでもよい。上向きおよび立向き姿勢ではパルス電流の周波数を低くすると、溶融金属の垂れ防止、裏ビード形成に有利である。
 トーチの傾斜角は、0~30度程度とすることが望ましい。
 溶接トーチのインサートチップ2の先端部の内径は、生成するプラズマアークの拡がりに影響を与えるので重要であり、5mm以下、好ましくは3.2mm程度とすることが適切である。
 また、被溶接材には、通常の炭素鋼材が用いられ、キーホールが良好に形成されるので、板厚が厚い、例えば厚さ6~10mmの炭素鋼に適用できる。V型、U型の開先を設ける場合は、ルート面を10mm以下とした時には板厚の制限はない。
 また、本発明の第3~第6の実施形態の溶接においては、溶接時に被溶接材の裏側に裏当金を必ずしも当てる必要はない。これは裏ビードが安定して形成されるためである。このため、配管や容器などの裏当金を当てることのできない被溶接材に対しても良好な溶接を行うことができることになる。
 以下、本発明における効果を確認するため、以下の試験例によって特性の確認試験を行った。
(試験例1)
 以下の溶接条件にて、ステンレス鋼板の板厚8mmを用いて、ビードオンプレート(bead-on-plate)によるプラズマ溶接を行い、裏ビードの安定性を調べた。
<溶接条件>
 溶接方式:プラズマ溶接(非消耗式電極溶接)
 溶接母材:SUS304(板厚8mm)
 溶接方法:プラズマ溶接法(下向姿勢)
 電極:2%酸化ランタン入りタングステン φ4.8mm
 センターノズル母材間距離:3.5mm
 トーチ傾斜角度:前進角20度
 溶接電流:ピーク電流=120A ベース電流=50A
 溶接速度:6cm/min
 パルス幅:50%
 パルス周波数:50Hz
 ノズル内径:2mm
 裏当金:なし
 使用したセンターガスとアウターガスとの組み合わせは、以下の1)~4)に記載の通りであった。%はすべて容積基準である。
 1)センターガス:100%Ar;アウターガス:97~99.5%Arと0.5~3%COとの混合ガス
 2)センターガス:100%Ar;アウターガス:100%Ar
 3)センターガス:100%Ar;アウターガス:99~99.5%Arと0.5~1%Oとの混合ガス
 4)センターガス:93%Arと7%Hとの混合ガス;アウターガス:93%Arと7%Hとの混合ガス
 1)に記載のガスの組み合わせは本発明の第1及び第2の態様に該当するものであり、2)~4)に記載のガスの組み合わせは比較用であった。また、流量は、すべてセンターガス1.6リットル/分、アウターガス10リットル/分とした。
 結果を図2に示す。図2には、表ビードと裏ビードとの外観を撮影した写真を示し、その外観から、合否を判断した。
 ○:合 格(裏ビードの幅が揃っており、蛇行や凹凸がなく安定している。)
 ×:不合格(裏ビードの幅が不揃いであり、蛇行や凹凸があり不安定である。)
 図2の結果から、アウターガスとして、アルゴン98~99.5%と炭酸ガス0.5~2%の混合ガスを用いたものが、安定した裏ビードを形成できることがわかった。
(試験例2)
 以下の溶接条件にて、ステンレス鋼板の板厚12mmを用いて、ビードオンプレートによるプラズマ溶接を行い、裏ビードの安定性を調べた。その結果、12mmの板厚のステンレス鋼板でも、安定した裏ビードが形成されることが確認された。
<溶接条件>
 溶接方式:プラズマ溶接(非消耗式電極溶接)
 溶接母材:SUS304(板厚12mm)
 溶接方法:プラズマ溶接法(下向姿勢)
 電極:2%酸化ランタン入りタングステン φ4.8mm
 センターノズル母材間距離:5mm
 トーチ傾斜角度:前進角10度
 溶接電流:ピーク電流=150A ベース電流=100A
 溶接速度:6cm/min
 パルス幅:20%
 パルス周波数:20Hz
 ノズル内径:2mm
 裏当金:なし
 センターガス:100%Ar
 アウターガス:Ar-1%CO
 センターガス流量:1.7リットル/分
 アウターガス流量:15リットル/分
(試験例3)
 以下の溶接条件にて、炭素鋼板の板厚9mmを用いて、ビードオンプレートによるプラズマ溶接を行い、裏ビードの安定性を調べた。
<溶接条件>
 溶接方式:プラズマ溶接(非消耗式電極溶接)
 溶接母材:SS400(板厚9mm)
 溶接方法:プラズマ溶接法(下向姿勢)
 電極:2%酸化ランタン入りタングステン φ4.8mm
 センターノズル母材間距離:5mm
 トーチ傾斜角度:前進角4度
 溶接電流:220A
 溶接速度:15cm/min
 ノズル内径:3.2mm
 裏当金:なし
 アウターガスとしては、以下の1)~10)に記載のものを用いた。%はすべて容積基準である。なお、センターガスは、すべて100%Arであった。
 1)Ar(従来品)
・酸素混合アウターガス
 2)Ar+0.5%O
 3)Ar+1.0%O
 4)Ar+2.0%O
 5)Ar+3.0%O
 6)Ar+4.0%O
 7)Ar+5.0%O
 8)Ar+6.0%O
 9)Ar+7.0%O
・炭酸ガス混合アウターガス
 10)Ar+0.5%CO
 11)Ar+1.0%CO
 12)Ar+2.0%CO
 13)Ar+3.0%CO
 流量は、すべてセンターガス2.22リットル/分、アウターガス15リットル/分とした。
 結果を図3、図4に示す。図3、図4には、裏ビードの外観を撮影した写真を示し、その外観から、合否を判断している。
 ○:合 格(裏ビードの幅が揃っており、蛇行や凹凸がなく安定している。)
 ×:不合格(裏ビードの幅が不揃いであり、蛇行や凹凸があり不安定である。)
 図3、図4の結果から、アウターガスとして、アルゴンに0.5~6vol%の酸素を添加したガスあるいはアルゴンに0.5~2vol%の炭酸ガスを添加したガスが、安定した裏ビードを形成できることがわかった。

Claims (8)

  1.  タングステン電極の周囲にインサートチップを配し、このインサートチップの周囲にシールドキャップを配し、タングステン電極の先端部がインサートチップの先端部よりも内側に位置し、タングステン電極とインサートチップとの間隙に不活性ガスからなるセンターガスを流し、インサートチップとシールドキャップとの間隙にアウターガスを流すようにしたプラズマ溶接トーチを用い、ステンレス鋼のプラズマ溶接を行う際に用いられるプラズマ溶接用アウターガスであって、
     このアウターガスが、炭酸ガス0.5~2vol%、残部不活性ガスの混合ガスであるプラズマ溶接用アウターガス。
  2.  タングステン電極の周囲にインサートチップを配し、このインサートチップの周囲にシールドキャップを配し、タングステン電極の先端部がインサートチップの先端部よりも内側に位置し、タングステン電極とインサートチップとの間隙にセンターガスを流し、インサートチップとシールドキャップとの間隙にアウターガスを流すようにしたプラズマ溶接トーチを用いて、ステンレス鋼のプラズマ溶接を行う工程を有し、
     前記プラズマ溶接を行う際に、センターガスに不活性ガスを用い、アウターガスに炭酸ガス0.5~2vol%、残部不活性ガスの混合ガスを用いるプラズマ溶接法。
  3.  プラズマ溶接時に、被溶接材に裏当金を当てない請求項2に記載のプラズマ溶接法。
  4.  タングステン電極の周囲にインサートチップを配し、このインサートチップの周囲にシールドキャップを配し、タングステン電極の先端部がインサートチップの先端部よりも内側に位置し、タングステン電極とインサートチップとの間隙に不活性ガスからなるセンターガスを流し、インサートチップとシールドキャップとの間隙にアウターガスを流すようにしたプラズマ溶接トーチを用い、炭素鋼のプラズマキーホール溶接を行う際に用いられるプラズマ溶接用アウターガスであって、
     このアウターガスが、炭酸ガス0.5~2vol%、残部アルゴンの混合ガスであるプラズマ溶接用アウターガス。
  5.  タングステン電極の周囲にインサートチップを配し、このインサートチップの周囲にシールドキャップを配し、タングステン電極の先端部がインサートチップの先端部よりも内側に位置し、タングステン電極とインサートチップとの間隙に不活性ガスからなるセンターガスを流し、インサートチップとシールドキャップとの間隙にアウターガスを流すようにしたプラズマ溶接トーチを用い、炭素鋼のプラズマキーホール溶接を行う際に用いられるプラズマ溶接用アウターガスであって、
     このアウターガスが、酸素0.5~6vol%、残部アルゴンの混合ガスであるプラズマ溶接用アウターガス。
  6.  タングステン電極の周囲にインサートチップを配し、このインサートチップの周囲にシールドキャップを配し、タングステン電極の先端部がインサートチップの先端部よりも内側に位置し、タングステン電極とインサートチップとの間隙にセンターガスを流し、インサートチップとシールドキャップとの間隙にアウターガスを流すようにしたプラズマ溶接トーチを用いて、炭素鋼のプラズマキーホール溶接を行う工程を有し、
     前記プラズマキーホール溶接を行う際に、センターガスに不活性ガスを用い、アウターガスに炭酸ガス0.5~2vol%、残部アルゴンの混合ガスを用いるプラズマ溶接法。
  7.  タングステン電極の周囲にインサートチップを配し、このインサートチップの周囲にシールドキャップを配し、タングステン電極の先端部がインサートチップの先端部よりも内側に位置し、タングステン電極とインサートチップとの間隙にセンターガスを流し、インサートチップとシールドキャップとの間隙にアウターガスを流すようにしたプラズマ溶接トーチを用いて、炭素鋼のプラズマキーホール溶接を行う工程を有し、
     前記プラズマキーホール溶接を行う際に、センターガスに不活性ガスを用い、アウターガスに酸素0.5~6vol%、残部アルゴンの混合ガスを用いるプラズマ溶接法。
  8.  プラズマキーホール溶接時に、被溶接材に裏当金を当てない請求項6又は7に記載のプラズマ溶接法。
PCT/JP2009/055786 2008-03-26 2009-03-24 プラズマ溶接法およびこれに用いられるアウターガス WO2009119561A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/933,954 US8324524B2 (en) 2008-03-26 2009-03-24 Plasma welding process and outer gas for use in the plasma welding process
CN200980110242.3A CN101977721B (zh) 2008-03-26 2009-03-24 等离子焊炬以及等离子焊接法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008080650A JP5302558B2 (ja) 2008-03-26 2008-03-26 プラズマ溶接法およびこれに用いられるアウターガス
JP2008-080650 2008-03-26
JP2009026121A JP5280237B2 (ja) 2009-02-06 2009-02-06 プラズマ溶接法およびこれに用いられるアウターガス
JP2009-026121 2009-02-06

Publications (1)

Publication Number Publication Date
WO2009119561A1 true WO2009119561A1 (ja) 2009-10-01

Family

ID=41113753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055786 WO2009119561A1 (ja) 2008-03-26 2009-03-24 プラズマ溶接法およびこれに用いられるアウターガス

Country Status (3)

Country Link
US (1) US8324524B2 (ja)
CN (1) CN101977721B (ja)
WO (1) WO2009119561A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130193116A1 (en) * 2010-10-07 2013-08-01 Taiyo Nippon Sanso Corporation Welding gas and plasma welding method

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201016046D0 (en) * 2010-09-24 2010-11-10 Renishaw Plc A method of forming an optical device
US20120261388A1 (en) * 2011-03-25 2012-10-18 Illinois Tool Works Inc. Systems and devices for power commutation in welding torches
JP5981735B2 (ja) * 2011-09-29 2016-08-31 株式会社ダイヘン プラズマキーホール溶接システム、および、プラズマキーホール溶接方法
JP2013107087A (ja) * 2011-11-17 2013-06-06 Hitachi Constr Mach Co Ltd プラズマアーク溶接のモニタリング方法及びプラズマアーク溶接装置
JP5820249B2 (ja) * 2011-11-17 2015-11-24 日立建機株式会社 プラズマアーク溶接方法及びプラズマアーク溶接装置
JP6009231B2 (ja) * 2012-06-07 2016-10-19 株式会社ダイヘン プラズマ溶接トーチおよびプラズマ溶接装置
US10543556B2 (en) * 2012-08-28 2020-01-28 Hobart Brothers Llc Systems and methods for welding zinc-coated workpieces
US9999944B2 (en) 2012-08-28 2018-06-19 Hobart Brothers Company Systems and methods for welding electrodes
US10016850B2 (en) 2012-08-28 2018-07-10 Hobart Brothers Company Systems and methods for welding electrodes
US20140263191A1 (en) * 2013-03-15 2014-09-18 Lincoln Global, Inc. System and method of welding stainless steel to copper
DE102013015171A1 (de) * 2013-09-12 2015-03-12 Linde Aktiengesellschaft Verfahren zum Metallschutzgasschweißen
US10112268B2 (en) 2013-10-09 2018-10-30 Hobart Brothers Company Systems and methods for corrosion-resistant welding electrodes
JP6487417B2 (ja) * 2014-03-19 2019-03-20 大陽日酸株式会社 非移行型のプラズマアークシステム、変換用アダプタキット、非移行型のプラズマアーク用トーチ
DE102014117073A1 (de) * 2014-07-25 2015-02-19 Westfalen Ag Schutzgas für ein Schweissverfahren
US10300565B2 (en) 2014-10-17 2019-05-28 Hobart Brothers Company Systems and methods for welding mill scaled workpieces
JP6539039B2 (ja) 2014-12-08 2019-07-03 大陽日酸株式会社 溶接装置及びプラズマ溶接方法
US20170330725A1 (en) 2016-05-13 2017-11-16 Axcelis Technologies, Inc. Lanthanated tungsten ion source and beamline components
CN112453418B (zh) * 2021-01-28 2021-05-14 西安赛隆金属材料有限责任公司 一种等离子弧发生装置、制粉设备及其使用方法
CN113414475B (zh) * 2021-07-09 2022-06-28 天津大学 一种氩气和二氧化碳双保护气钛合金焊接拖罩和焊接方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151737A (ja) * 1974-05-08 1975-12-05
JPS5040389B1 (ja) * 1969-01-03 1975-12-24
JPS51148646A (en) * 1975-06-16 1976-12-21 Mitsubishi Electric Corp Method of plasma welding
JPS54149043A (en) * 1978-05-12 1979-11-21 Mitsubishi Electric Corp Method of controlling heat source of reverse-polarity plasma arc

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040389A (ja) * 1973-08-16 1975-04-14
JPS5913307B2 (ja) * 1976-05-19 1984-03-28 三菱電機株式会社 溶接方法
JPH06315771A (ja) * 1993-05-07 1994-11-15 Kobe Steel Ltd プラズマアーク溶接方法
US5938948A (en) * 1997-07-21 1999-08-17 Ford Global Technologies, Inc. Plasma arc spot welding of car body steels containing vaporizable ingredients
ZA989702B (en) * 1998-10-23 1999-06-30 Air Liquide Pty Ltd Process and apparatus for welding a hollow structure such as a container or a tube with inerting of its internal structure
JP2000312972A (ja) * 1999-04-26 2000-11-14 Honda Motor Co Ltd 溶極式ガスシールドアーク溶接用トーチ
JP3962633B2 (ja) 2002-04-20 2007-08-22 誠夫 牛尾 非消耗電極用シールドガス
CN1233497C (zh) * 2002-10-14 2005-12-28 宁波君安药业科技有限公司 一种放射性密封种子源外壳焊封工艺
JP3936342B2 (ja) 2003-03-19 2007-06-27 大陽日酸株式会社 Tig溶接方法
JP2006026644A (ja) 2004-07-12 2006-02-02 Hitachi Via Mechanics Ltd 非消耗電極式ガスシールドアーク溶接方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040389B1 (ja) * 1969-01-03 1975-12-24
JPS50151737A (ja) * 1974-05-08 1975-12-05
JPS51148646A (en) * 1975-06-16 1976-12-21 Mitsubishi Electric Corp Method of plasma welding
JPS54149043A (en) * 1978-05-12 1979-11-21 Mitsubishi Electric Corp Method of controlling heat source of reverse-polarity plasma arc

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130193116A1 (en) * 2010-10-07 2013-08-01 Taiyo Nippon Sanso Corporation Welding gas and plasma welding method
US9586293B2 (en) * 2010-10-07 2017-03-07 Taiyo Nippon Sanso Corporation Welding gas and plasma welding method

Also Published As

Publication number Publication date
CN101977721A (zh) 2011-02-16
US8324524B2 (en) 2012-12-04
US20110017712A1 (en) 2011-01-27
CN101977721B (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2009119561A1 (ja) プラズマ溶接法およびこれに用いられるアウターガス
JP5302558B2 (ja) プラズマ溶接法およびこれに用いられるアウターガス
KR20130103495A (ko) 복합 용접 방법 및 복합 용접용 용접 토치
JPH039897Y2 (ja)
EP1459830B1 (en) Tig welding method and welded object
JP5901111B2 (ja) 溶接ガス及びプラズマ溶接方法
JP5582602B2 (ja) Tig溶接方法
EP1752249B1 (en) Welding method using a shielding gas comprising bewtween 0.2 % and 10 % of an oxidative gas, the rest being helium
JP2011255393A (ja) 溶接方法および溶接装置
CN103889633A (zh) 铁素体系不锈钢板的tig焊接方法
JP3936342B2 (ja) Tig溶接方法
JP5280237B2 (ja) プラズマ溶接法およびこれに用いられるアウターガス
CA2382461C (en) Apparatus and method for welding duplex stainless steel
JP2006075847A (ja) レーザとアークのハイブリッド溶接方法
KR101051667B1 (ko) 텅스텐-불활성-가스 용접장치 및 텅스텐-불활성-가스 용접방법
JP2007038303A (ja) Tig溶接方法
JP2010046677A (ja) Gma溶接方法
JPH06277847A (ja) ステンレス鋼系のtig溶接方法
JP2003320478A (ja) Mig溶接用チタン合金溶接ワイヤ、溶接方法および溶接金属
JP2009297738A (ja) アークブレージング用シールドガスおよびこれを用いたアークブレージング方法
JP2010023050A (ja) プラズマ溶接法
JP2003311414A (ja) 非消耗電極用シールドガス
JP2003320477A (ja) アーク安定性に優れたチタン又はチタン合金mig溶接用ワイヤと、該ワイヤを用いるチタン又はチタン合金のmig溶接方法
JPS5890382A (ja) 低入熱サブマ−ジア−ク溶接方法
JP2003320459A (ja) チタン又はチタン合金のmig溶接方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110242.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724440

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12933954

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724440

Country of ref document: EP

Kind code of ref document: A1