WO2009119556A1 - 白金担持カーボン、燃料電池用触媒、電極膜接合体、および燃料電池 - Google Patents
白金担持カーボン、燃料電池用触媒、電極膜接合体、および燃料電池 Download PDFInfo
- Publication number
- WO2009119556A1 WO2009119556A1 PCT/JP2009/055773 JP2009055773W WO2009119556A1 WO 2009119556 A1 WO2009119556 A1 WO 2009119556A1 JP 2009055773 W JP2009055773 W JP 2009055773W WO 2009119556 A1 WO2009119556 A1 WO 2009119556A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- platinum
- group
- carbon
- ring
- carbon material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
- B01J31/1805—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/226—Sulfur, e.g. thiocarbamates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/828—Platinum
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to platinum-supported carbon in which platinum-based particles are supported on a specific carbon material whose surface is modified with an organic group.
- the present invention also relates to a fuel cell catalyst, electrode membrane assembly and fuel cell using the platinum-supported carbon.
- the polymer electrolyte fuel cell is a fuel cell characterized in that the ion conductor, that is, the electrolyte is solid and polymer.
- An ion exchange resin is used as the solid polymer electrolyte, and both the negative electrode and the positive electrode are arranged across the electrolyte.
- hydrogen is supplied as fuel to the negative electrode side
- oxygen or air is supplied to the positive electrode side.
- oxygen is used as the oxidizing agent, the following reaction occurs at the positive electrode, and water is generated. 1 / 2O 2 + 2H + + 2e ⁇ ⁇ H 2 O
- an ion exchange resin as a proton conductor, a carbon carrier as an electron conductor, and a reaction gas are included in the electrode catalyst layer. It is necessary that a catalyst such as platinum be present at the three-phase interface that contacts at the same time. For this reason, attempts have been made to increase the amount of catalyst existing at the three-phase interface by increasing the functionality of the catalyst layer structure.
- Nafion 117 Nafion: registered trademark (manufactured by Du Pont), which is a kind of sulfonated fluororesin, is used as the solid polymer electrolyte, a noble metal catalyst supporting platinum or the like on the inner surface thereof, and a catalyst layer A method for improving the active area by three-dimensionalizing the reaction field is disclosed (Non-Patent Document 1). According to this technique, not only the contact surface between the electrolyte and the membrane but also the catalyst inside the catalyst layer can be used, and the utilization rate of platinum can be improved by this catalyst layer.
- Non-patent Document 1 A fluorine-based polymer such as Nafion cannot enter the primary pores having a diameter of 0.04 ⁇ m or less due to the size of the molecular weight, and the catalyst particles in such pores do not form a three-phase interface. It cannot be a reaction field (Non-patent Document 2).
- Patent Document 2 Japanese Patent No. 3275652 JP-A-9-167622 “Electrochemistry” Vol. 53, No. 10 (1985), pages 812-817 J. Electrochemical Society Vol.142, No.2, p.463
- a carbon material having a large primary pore and a large specific surface area has been favorably used as a catalyst support because it is easy to carry highly dispersed platinum particles, but the platinum particles in the pores can be used effectively. Therefore, there was a problem that the catalyst utilization rate was low.
- a carbon material having a large specific surface area is generally low in crystallinity and thus easily oxidatively corrodes, resulting in poor durability when used as a catalyst carrier.
- a carrier having high crystallinity and few primary pores has a small specific surface area, so that it is difficult to carry platinum particles in a highly dispersed state, and high activity as a catalyst cannot be obtained. However, high battery performance could not be exhibited.
- the present inventors have solved the problem of high dispersion support of platinum particles on a catalyst carrier having a high crystallinity and a small specific surface area, and a catalyst for fuel cell and electrode membrane assembly having high catalyst utilization efficiency and high oxidation corrosion resistance.
- investigations have been made for the purpose of the present invention.
- the present inventors have found that the problems of the prior art can be solved by supporting platinum-based particles on a specific carbon material whose surface is modified with an organic group. That is, the following present invention has been provided as means for solving the problems.
- a carbon material whose half width of the peak derived from the (002) plane is 6.0 ° or less at an angle 2 ⁇ formed by incident X-rays and reflected X-rays is surface-modified with an organic group A platinum-supported carbon comprising a surface-modified carbon material and platinum particles or platinum alloy particles supported on the surface-modified carbon.
- the full width at half maximum of the peak derived from the (002) plane is 5.5 or less at an angle 2 ⁇ formed by incident X-rays and reflected X-rays. The platinum-supporting carbon described.
- the organic group includes a nitrogen atom having an unshared electron pair or a sulfur atom having an unshared electron pair, an organic group having a reduction potential higher than ⁇ 2.5 V on the basis of SCE, or
- the platinum-supporting carbon according to (1) or (2) which is an organic group containing a heterocycle.
- General formula (1) Carbon represents a carbon material, A represents a linking group, X represents —CN, —NR 1 R 2 , —NR 2 (COR 3 ), —CONR 2 R 3 , —N ⁇ NR.
- R 2 represents a group selected from the group consisting of —SR 2 , —SO 2 NR 2 R 3 and —SO 2 SR 2 .
- R 1 , R 2 and R 3 may be the same or different, and R 1 is one selected from an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, or an aralkyl group.
- R 2 and R 3 are each selected from a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or an aralkyl group.
- a fuel cell catalyst comprising the platinum-supported carbon described in any one of (1) to (8). (10) It has a solid polymer electrolyte membrane and a catalyst layer provided in contact with the solid polymer charge membrane, and the catalyst layer contains the fuel cell catalyst according to (9).
- a featured electrode membrane assembly (11) A fuel cell comprising the electrode membrane assembly according to (10).
- the platinum-supported carbon of the present invention can support platinum particles in a highly dispersed manner by surface-modifying a carbon carrier having few primary pores and high crystallinity with an organic group. For this reason, the catalyst for fuel cells containing the platinum-supported carbon of the present invention can provide an electrode membrane assembly having a high catalyst utilization rate and excellent oxidation corrosion resistance. In addition, the fuel cell using the platinum-supported carbon of the present invention has excellent cell characteristics and durability.
- FIG. 10 is an electrode membrane assembly
- 11 is a polymer electrolyte membrane
- 12 is an anode electrode
- 12a is an anode porous conductive sheet
- 12b is an anode catalyst layer
- 13 is a cathode electrode
- 13a is a cathode porous conductivity.
- a sheet, 13b is a cathode electrode catalyst layer
- 14 is a packing
- 15 is an anode electrode side opening
- 16 is a cathode electrode side opening
- 17 is a current collector
- 21 and 22 are separators.
- platinum-supported carbon of the present invention and its use will be described in detail.
- “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
- various physical property values in the present invention are in a state at room temperature (25 ° C.) unless otherwise specified.
- Carbon material In the present invention, a carbon material having high crystallinity is used.
- the crystallinity of the carbon material is measured by a powder X-ray diffraction method.
- RINT2500V manufactured by Rigaku Corporation can be used as the measuring device.
- the powdered carbon support is irradiated with CuK ⁇ rays as incident X-rays and diffracted X-rays are measured in the range of 2 ⁇ of 10 ° to 60 °
- the half width of the peak derived from the (002) plane of the carbon material Evaluate the crystallinity of the carbon material. It shows that it has high crystallinity, so that this value is small.
- the carbon material used in the present invention has a half-value width of 6.0 ° or less, preferably 5.5 ° or less, and preferably 5.0 ° or less at an angle 2 ⁇ formed by incident X-rays and reflected X-rays. More preferably it is.
- Examples of the carbon material that can be used in the present invention include graphite, acetylene black, and multi-walled carbon nanotubes (MWNT). Acetylene black and multi-walled carbon nanotubes can be particularly preferably used. In addition, only one type of carbon material may be used, or two or more types may be mixed and used. In addition, a carbon material composition containing components other than the carbon material may be used as the carbon material as long as it does not contradict the spirit of the present invention.
- the carbon material is in the form of particles or fibers, and the smaller the particle diameter or fiber diameter, the larger the specific surface area, which is advantageous for supporting platinum-based particles, but if the particle diameter or fiber diameter is too small, the surface of the carbon material In some cases, it becomes difficult to support platinum-based particles.
- the average particle size is preferably 10 to 60 nm, more preferably 10 to 50 nm, and even more preferably 10 to 40 nm.
- a fibrous form it preferably includes those having a diameter (outer diameter) of 3 to 50 nm, more preferably includes those having a diameter (outer diameter) of 3 to 40 nm, It is more preferable that the material has a diameter of 3 to 30 nm.
- the carbon material is preferably made of high-purity carbon fine particles, more preferably the carbon fine particles are connected in a chain, and more preferably graphitization is advanced.
- the surface state of the carbon material is not limited as long as the crystallinity is satisfied, and it may or may not have a functional group such as a carboxyl group or a phenolic hydroxyl group on the surface. Further, the specific surface area may not be remarkably enlarged, for example, having pores for adsorbing platinum-based particles.
- Denka Black manufactured by Denki Kagaku Kogyo is preferable, but is not particularly limited thereto.
- Organic group to be introduced into the carbon material in the present invention is not particularly limited as long as it can be supported in a highly dispersed state by suppressing the aggregation of the platinum-based particles when supporting the platinum-based particles.
- Preferred organic groups include an organic group containing a nitrogen atom having an unshared electron pair or a sulfur atom having an unshared electron pair, an organic group having a reduction potential higher than ⁇ 2.5 V on the basis of SCE, and a heterocyclic ring.
- these organic groups will be described in detail.
- Organic group containing a nitrogen atom having an unshared electron pair or a sulfur atom having an unshared electron pair The organic group here is at least a nitrogen atom having an unshared electron pair or a sulfur atom having an unshared electron pair A group containing one and a carbon atom. Both a nitrogen atom having an unshared electron pair and a sulfur atom having an unshared electron pair may be included.
- Such a surface-modified carbon material having an organic group has a structure in which an organic group containing a nitrogen atom having an unshared electron pair or a sulfur atom having an unshared electron pair is introduced into the carbon material through a linking group. It is preferable that Specifically, it has a structure represented by the following general formula (1).
- Carbon in the general formula (1) represents a carbon material
- A represents a linking group
- X represents —CN
- —NR 1 R 2 —NR 2 (COR 3 )
- —CONR 2 R 3 —N ⁇ NR 2 represents a group selected from the group consisting of —SR 2 , —SO 2 NR 2 R 3 and —SO 2 SR 2 .
- R 1 , R 2 and R 3 may be the same or different, and R 1 is one selected from an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, or an aralkyl group.
- R 2 and R 3 are each selected from a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or an aralkyl group.
- R 1 is preferably an alkyl group or an aryl group, and more preferably an alkyl group.
- R 2 is preferably an alkyl group or an aryl group, and more preferably an alkyl group.
- R 3 is preferably an alkyl group or an aryl group, and more preferably an alkyl group.
- the alkyl group represented by R 1 , R 2 and R 3 is preferably a linear, branched, or cyclic alkyl group having 1 to 20 carbon atoms. You may have. This substituent is preferably a group selected from the same range as defined for X.
- the alkyl group represented by R 1 , R 2 and R 3 is particularly preferably a group having 10 or less carbon atoms, more preferably a group having 6 or less carbon atoms, and most preferably a methyl group.
- the alkenyl group represented by R 1 , R 2 and R 3 is preferably a linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms. You may have. This substituent is preferably a group selected from the same range as defined for X.
- the alkenyl group represented by R 1 , R 2 and R 3 is particularly preferably a group having 10 or less carbon atoms, and more preferably a group having 6 or less carbon atoms.
- the alkynyl group represented by R 1 , R 2 and R 3 is preferably a linear, branched or cyclic alkynyl group having 2 to 20 carbon atoms. You may have. This substituent is preferably a group selected from the same range as defined for X.
- the alkynyl group represented by R 1 , R 2 and R 3 is particularly preferably a group having 10 or less carbon atoms, and more preferably a group having 6 or less carbon atoms.
- the aryl group represented by R 1 , R 2 and R 3 is preferably an aryl group having 6 to 20 carbon atoms, and may have a substituent. This substituent is preferably a group selected from the same range as defined for X.
- the aryl group represented by R 1 , R 2 and R 3 is particularly preferably a group having 10 or less carbon atoms, and more preferably a phenyl group.
- the aralkyl group represented by R 1 , R 2 and R 3 is preferably a linear, branched or cyclic aralkyl group having 7 to 20 carbon atoms, and further a substituent You may have. This substituent is preferably a group selected from the same range as defined for X.
- the aralkyl group represented by R 1 , R 2 and R 3 is particularly preferably a group having 10 or less carbon atoms, and more preferably a group having 7 carbon atoms.
- the linking group A is, for example, a divalent aliphatic hydrocarbon group, a divalent aromatic hydrocarbon group, a divalent heterocyclic group, and And a group consisting of one or more combinations selected from the group consisting of:
- the aliphatic hydrocarbon group used for the linking group A may be a saturated hydrocarbon or an unsaturated hydrocarbon, and may be linear, branched, or cyclic. Further, the hydrogen atom may be substituted with a substituent (for example, a halogen atom, preferably a fluorine atom) within a range not departing from the gist of the present invention.
- the aliphatic hydrocarbon group preferably has 1 to 12 carbon atoms, and more preferably 1 to 6 carbon atoms.
- aliphatic hydrocarbon group examples include a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, an octylene group, a decylene group, an isobutylene group, — (CH 2 ) n CH ⁇ CH— (n is , And preferably an integer of 1 to 6.), —CH 2 CH 2 CH ⁇ CH—, C ((CH 2 ) n —) 4 (n is an integer, preferably 0 to 6), CH ((CH 2 ) n —) 3 (n is an integer, preferably an integer from 0 to 6), CH 3 C ((CH 2 ) n H) ((CH 2 ) n- ) 2 (n is an integer, preferably an integer of 0 to 6), -CH 2 CH 2 C ((CH 2 ) n H) 2 (CH 2 ) n- (n is is an integer, preferably an integer of 0 ⁇ 6), - C (CH 2
- the number of carbon atoms of the aromatic hydrocarbon group is preferably 6 to 25, more preferably 6 to 16, and still more preferably 6 to 12.
- the hydrogen atom bonded to the ring-constituting atom of the aromatic hydrocarbon group may be substituted with a substituent (for example, a halogen atom, preferably a fluorine atom, etc.) without departing from the spirit of the present invention. .
- the aromatic hydrocarbon group is preferably a group having a triphenylene ring, pyrene ring, anthracene ring, naphthalene ring, biphenylene ring or benzene ring, more preferably a group having a naphthalene ring, biphenylene ring or benzene ring, and a benzene ring.
- the group is most preferred.
- the heterocyclic group used for the linking group A preferably contains a nitrogen atom, an oxygen atom or a sulfur atom alone or in combination of two or more, and among them, a heterocyclic group containing a nitrogen atom is preferred.
- the heterocyclic group may be substituted with a substituent without departing from the spirit of the present invention.
- heterocyclic groups include pyrrole ring, pyrrolidine ring, indole ring, carbazole ring, pyridine ring, piperidine ring, quinoline ring, isoquinoline ring, acridine ring, pyrazole ring, imidazole ring, imidazoline ring, imidazolidine ring, benzoimidazoline Ring, diazine ring, piperazine ring, triazole ring, triazine ring, tetrazole ring, tetrazine ring, purine ring, pteridine ring, carboline ring, quinolidine ring, quinuclidine ring, oxazole ring isoxazole ring, oxazine ring, oxadiazole ring, thiazole A ring, a benzothiazole ring, an isothiazole ring, a thiazine ring, and a
- linking groups having other structures exemplified above used for the linking group A a phenyl group and a naphthyl group are preferable, and a phenyl group is more preferable.
- Organic group having a reduction potential higher than -2.5V on the SCE standard is an organic group that is reduced at a higher potential. is there.
- the reduction potential of the organic group is more preferably at a higher potential side than ⁇ 2.0 V, and further preferably at a higher potential side than ⁇ 1.5 V.
- the reduction potential of an organic group refers to the reduction potential of a compound having a hydrogen atom instead of the carbon material at the bonding position with the carbon material.
- the organic group is a nitrophenyl group, it indicates the reduction potential of nitrobenzene, and when the organic group is an anthraquinonyl group, it indicates the reduction potential of anthraquinone.
- the reduction potential of the organic group in the present invention the reference electrode saturated calomel electrode, 0.1N (n-Bu) 4 N + ClO 4 in the electrolyte - using an acetonitrile solution, the working electrode by a potentiostat
- This is a potential obtained by sweeping the potential applied to (platinum) and obtaining from the peak indicated by the obtained current-potential curve.
- the sample 0.1N (n-Bu) 4 N + ClO 4 - measured in the sample solution dissolved to a concentration of approximately 1 mmol% acetonitrile solution.
- the structure of the organic group introduced into the carbon material of the present invention that satisfies the reduction potential condition is not particularly limited.
- an organic group having a ⁇ -conjugated structure can be given.
- the ⁇ -conjugated structure is a ⁇ -conjugated structure composed of at least 4 atoms, preferably a ⁇ -conjugated structure composed of 4 to 20 atoms, and more preferably a ⁇ -conjugated structure composed of 6 to 20 atoms. And more preferably a ⁇ -conjugated structure consisting of 8 to 20 atoms.
- the atoms constituting the ⁇ -conjugated structure are not limited to carbon atoms, and may be heteroatoms such as nitrogen atoms and oxygen atoms.
- Examples of the group having the ⁇ -conjugated structure include an aryl group, an aromatic heterocyclic group, and a benzoquinone group. Among these, an aryl group, an aromatic heterocyclic group, and an aromatic heteroaryl group are preferable.
- these ⁇ -conjugated structures may have a substituent. The substituent may or may not have other ⁇ electrons that cause conjugation with these ⁇ -conjugated structures. Preferred is when the substituent has ⁇ electrons.
- the aryl group having a ⁇ -conjugated structure preferably has 6 to 20 carbon atoms, and more preferably 6 to 14 carbon atoms. Specific examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. A phenyl group, a naphthyl group, and a biphenyl group are preferable, and a phenyl group is more preferable.
- Examples of the aryl group having another skeleton in which ⁇ conjugation occurs as a substituent include 9H-fluorenyl group, 9-fluorenonyl group, naphthoquinonyl group, and anthraquinonyl group, and 9-fluorenonyl group and anthraquinonyl group are preferable.
- the number of ring members of the aromatic heterocyclic group having a ⁇ -conjugated structure is preferably 4 to 7, and more preferably 5 to 6.
- the aromatic heterocycle preferably contains any of a sulfur atom, a nitrogen atom and an oxygen atom, and more preferably contains a sulfur atom or a nitrogen atom. Each of them may contain two or more kinds of atoms.
- a group having a nitrogen atom, a carbon atom, a sulfur atom, a halogen atom, or a phosphorus atom is preferable.
- a nitro group and a carbonyl group are preferable.
- a plurality of these substituents may be contained in the same kind in the organic group introduced into the carbon material, or two or more kinds thereof may be contained.
- functional groups that cannot be strictly separated from the ⁇ covalent skeleton, such as quinonyl groups, are also included in the scope of the substituent of the present invention.
- the organic group introduced into the carbon material may have other substituents in addition to the substituents as long as they do not depart from the spirit of the present invention.
- substituents include an amino group, a hydroxyl group, and an alkoxy group.
- a linking group may be interposed between the carbon material and the ⁇ covalent structure.
- organic group introduced into the carbon material of the present invention examples include a nitrophenyl group, a benzoquinonyl group, a naphthoquinonyl group, an anthraquinolyl group, a 9-fluorenonyl group, a phthalimide group, and an N-methylphthalimide group.
- a nitrophenyl group, an anthraquinolyl group, a 9-fluorenonyl group, and an N-methylphthalimide group are preferable.
- Organic group containing a heterocycle is an organic group containing a ring structure in which a heteroatom is contained in atoms constituting the ring.
- the heterocycle contained in the organic group preferably contains any of a sulfur atom, a nitrogen atom and an oxygen atom, and more preferably contains a sulfur atom or a nitrogen atom.
- the number of ring members of the heterocycle is preferably 3 to 10, more preferably 4 to 8, and most preferably 5 to 6.
- the heterocycle may be either saturated or unsaturated, but it is particularly preferable to have aromaticity.
- heterocycle examples include, for example, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, a pyrazole ring, a thiazole ring, an isothiazole ring, an oxazole ring, an isoxazole ring, a triazole ring, a thiadiazole ring, and an oxadiazole ring.
- Pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, piperidine ring, piperazine ring, morpholine ring, imidazole ring, pyrazole ring, thiazole ring are preferable More preferred are a pyrazole ring and a thiazole ring.
- the hetero ring may independently form a ring, or may be in a fused state with another ring (for example, a benzo condensed ring). Further, the heterocycle may be bonded directly to the carbon material or may be bonded to the carbon material via a linking group.
- heterocycle may be substituted with a substituent without departing from the spirit of the present invention.
- substituents include a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, a nitro group, a cyano group, an amino group, and an ester group, and a nitro group, a cyano group, and an amino group are preferable.
- a surface-modified carbon material can be obtained by introducing the organic group into the carbon material.
- the method of surface-modifying the carbon material with the organic group of the present invention is not particularly limited, and a known method can be used. For example, an amine containing an organic group is reacted with an aqueous sodium nitrite solution in the presence of concentrated hydrochloric acid while cooling with ice to obtain a diazonium salt containing the organic group, and then the obtained diazonium salt containing the organic group is used as a carbon material.
- the method of thermally decomposing in the coexisting state is mentioned. The details of this method can be referred to the description in JP-A-2006-199968.
- the ratio of carbon in the surface-modified carbon material is preferably 70.0 to 99.5% by mass, more preferably 80.0 to 99.0% by mass, and 90.0 to 98.5% by mass. More preferably.
- the platinum-carrying carbon material can be produced by a method of carrying platinum-based particles after introducing the organic group into the carbon material via a linking group, and a method of carrying a linking group after carrying platinum-based particles on the carbon material. There is a method of introducing the organic group via Either method is preferably used.
- the platinum-based particles supported on the surface-modified carbon material are platinum, a platinum alloy, or a mixture thereof.
- the platinum alloy include an alloy of platinum and other noble metal, or an alloy of platinum and a transition metal, preferably platinum or an alloy of platinum and other noble metal.
- the particle size of the platinum-based particles supported on the surface-modified carbon material is preferably 1.0 to 3.0 nm, more preferably 1.5 to 3.0 nm, and 2.0 to 3.0 nm. Is particularly preferred. If the particle size is 3 nm or less, the surface area per unit mass is relatively large, which is preferable in terms of catalyst activity. In addition, if the particle size is 1 nm or more, the platinum-based particles are relatively stable, which is preferable because aggregation and elution can be easily suppressed.
- the platinum-supported carbon of the present invention includes a surface-modified carbon material in which an organic group containing a nitrogen atom having an unshared electron pair or a sulfur atom having an unshared electron pair is introduced into the carbon material via a linking group, and the surface modification It consists of platinum particles or platinum alloy particles carried on a carbon material.
- a method for producing the platinum-supporting carbon material a method of supporting the platinum-based particles after introducing the organic group into the carbon material via a linking group is preferably used.
- platinum-based particles can be supported by a known method.
- a thermal reduction method for example, a thermal reduction method, a sputtering method, a pulse laser deposition method, a vacuum deposition method, and the like can be given.
- the thermal reduction method is preferable because it can be performed in a solution and does not require special equipment.
- the thermal reduction method is classified into an impregnation method and a colloid method, but the colloidal method is particularly preferable among the thermal reduction methods because platinum particles and platinum alloy particles can be highly dispersed (for example, J. Phys. Chem. B). 2003, 107, 6292-6299).
- the platinum-based particle content in the platinum-supported carbon of the present invention is preferably 20 to 70% by weight, more preferably 20 to 60% by weight, and particularly preferably 20 to 50% by weight. If the content is 70% by mass or less, it is easy to suppress aggregation of the platinum-based particles, which is preferable in terms of catalytic activity. If the platinum-based particle content in the platinum-supporting carbon is 20% by mass or more, it is preferable because the diffusibility of the reactant is easily increased.
- the platinum-supported carbon of the present invention has a high platinum support ability.
- the platinum carrying capacity of the platinum carrying carbon can be evaluated by quantifying the amount of platinum particles dropped from the carrier when the platinum carrying carbon is irradiated with ultrasonic waves. As a specific method for evaluating platinum carrying capacity, 50 mg of platinum carrying carbon is added to an aqueous solution to which a stabilizer is added, and the amount of released platinum particles after irradiation with ultrasonic waves at an output of 38 kHz for 3 hours is measured.
- the platinum-supported carbon of the present invention preferably has a platinum particle drop-off rate of 20% or less, more preferably 15% or less, after ultrasonic irradiation in an aqueous solution at an output of 38 kHz for 3 hours. More preferably.
- a low platinum particle drop-off rate indicates that the platinum particles are sufficiently strongly supported on the carbon support, and means that the platinum-supported carbon has high durability.
- the platinum particles in the platinum-supported carbon of the present invention are preferably highly dispersed in the platinum-supported carbon.
- FIG. 1 shows an example of a schematic cross-sectional view of the electrode membrane assembly of the present invention.
- the electrode membrane assembly 10 includes a membrane-shaped polymer electrolyte membrane 11 and an anode electrode 12 and a cathode electrode 13 that are opposed to each other with the membrane electrolyte membrane 11 interposed therebetween.
- the anode electrode 12 and the cathode electrode 13 are composed of porous conductive sheets (for example, carbon paper) 12a and 13a and catalyst layers 12b and 13b.
- the catalyst layers 12b and 13b are composed of the platinum-supporting carbon of the present invention and a polymer electrolyte.
- a polymer electrolyte typified by Nafion is dissolved in a solvent, mixed with the platinum-supported carbon of the present invention, and dispersed.
- the dispersion method may be a method using stirring, but ultrasonic dispersion, ball mill, or the like can also be used.
- Solvents include heterocyclic compounds (3-methyl-2-oxazolidinone, N-methylpyrrolidone, etc.), cyclic ethers (dioxane, tetrahydrofuran, etc.), chain ethers (diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether) , Polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.), alcohols (methanol, ethanol, isopropanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, etc.), polyvalent Alcohols (ethylene glycol, propylene glycol, polyethylene glycol, polypropylene Lenglycol, glycerin, etc.), nitrile compounds (acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile
- the dispersion After applying the obtained dispersion on an electrolyte membrane or a support, drying is performed to form a catalyst layer.
- the dispersion may be used to form a film by extrusion molding, or these dispersions may be cast or applied to form a film.
- the coating method is not particularly limited, and spin coating, dip coating, bar coating, spray coating, and the like can be used.
- the support is not particularly limited, but preferred examples include a glass substrate, a metal substrate, a polymer film, a reflector and the like.
- polymer films include cellulose polymer films such as triacetylcellulose (TAC), ester polymer films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and fluorine such as polytrifluoroethylene (PTFE).
- TAC triacetylcellulose
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- fluorine such as polytrifluoroethylene
- PTFE polytrifluoroethylene
- the coating method the above coating method can be used.
- These operations can be performed with a film forming machine using a roll such as a calender roll or a cast roll or a T-die, or can be a press forming using a press machine. Further, a stretching process may be added to control film thickness and improve film characteristics.
- the drying temperature in the coating process is related to the drying speed and can be selected according to the properties of the material.
- the temperature is preferably -20 ° C to 150 ° C, more preferably 20 ° C to 120 ° C, and further preferably 50 ° C to 100 ° C.
- a shorter drying time is preferable from the viewpoint of productivity, and a certain amount of time is preferably used from the viewpoint of preventing defects such as bubbles and surface irregularities. For this reason, the drying time is preferably 1 minute to 48 hours, more preferably 5 minutes to 10 hours, and particularly preferably 10 minutes to 5 hours.
- the relative humidity is preferably 25 to 100%, more preferably 50% to 95%.
- those having a low content of metal ions are preferable, and those having a small amount of transition metal ions, particularly iron ions, nickel ions and cobalt ions are particularly preferable.
- the content is preferably 500 ppm or less, particularly preferably 100 ppm or less. Therefore, the solvent used in the above-mentioned process is preferably one having a low content of these ions.
- the surface treatment may be performed after a film forming process.
- rough surface treatment, surface cutting, removal, and coating treatment may be performed. By performing these, adhesion to the polymer electrolyte membrane or the porous conductor may be improved.
- a fluorine-based electrolyte membrane or a hydrocarbon-based electrolyte membrane can be used as the polymer electrolyte membrane.
- perfluorocarbon sulfonic acid polymer represented by Nafion (registered trademark) poly (meth) acrylate having a phosphate group in the side chain
- sulfonated polyether ether ketone poly (meth) acrylate having a phosphate group in the side chain
- sulfonated polyether ether ketone poly (meth) acrylate having a phosphate group in the side chain
- sulfonated polyether ether ketone sulfonated polyether ketone
- sulfonated poly examples include heat-resistant aromatic polymers such as ether sulfone, sulfonated polysulfone, and sulfonated polybenzimidazole, sulfonated polystyrene, sulfonated polyoxet
- the porous conductive sheets 12a and 13a coated with the catalyst layers 12b and 13b are applied to the polymer electrolyte membrane 11 by a hot press method (preferably 120).
- the porous conductive sheet is pressure-bonded at ⁇ 130 ° C, 2 to 100 kg / cm 2 ), or is applied with the catalyst layers 12b and 13b coated on a suitable support while being transferred to the polymer electrolyte membrane 11
- a method of sandwiching between 12a and 13a is preferably used.
- FIG. 2 shows an example of the fuel cell structure.
- the fuel cell includes an electrode membrane assembly 10, a pair of separators 21 and 22 that sandwich the electrode membrane assembly 10, and a current collector 17 and a packing 14 made of a stainless steel net attached to the separators 21 and 22.
- An anode pole side opening 15 is provided in the anode pole side separator 21, and a cathode pole side opening 16 is provided in the cathode pole side separator 22.
- Gas fuel such as hydrogen and alcohols (such as methanol) or liquid fuel such as an alcohol aqueous solution is supplied from the anode electrode side opening 15, and oxidant gas such as oxygen gas and air is supplied from the cathode electrode side opening 16. Is supplied.
- the active polarization in a hydrogen-oxygen fuel cell is larger at the cathode electrode (air electrode) than at the anode electrode (hydrogen electrode). This is because the cathode electrode reaction (oxygen reduction) is slower than the anode electrode.
- various platinum-based binary alloys such as Pt—Cr, Pt—Ni, Pt—Co, Pt—Cu, and Pt—Fe can be used.
- Pt—Cr platinum-based binary alloys
- platinum-based binary alloys such as Pt—Ru, Pt—Fe, Pt—Ni, Pt—Co, Pt—Mo, Pt—Ru—Mo, Pt—Ru—W, Pt—Ru.
- Platinum-based ternary alloys such as —Co, Pt—Ru—Fe, Pt—Ru—Ni, Pt—Ru—Cu, Pt—Ru—Sn, and Pt—Ru—Au can be used.
- the platinum-supporting carbon of the present invention supporting these platinum alloy particles can be used.
- the function of the catalyst layer was caused by (1) transporting the fuel to the active metal, (2) providing a field for the oxidation (anode electrode) and reduction (cathode electrode) reaction of the fuel, and (3) redox. (4) transporting protons generated by the reaction to the polymer electrolyte.
- the catalyst layer needs to be porous so that liquid and gaseous fuel can permeate deeply.
- (2) and (3) are preferably carried by the platinum-supported carbon of the present invention.
- a polymer electrolyte is mixed in the catalyst layer.
- the proton conducting material of the catalyst layer is not limited as long as it is a solid having a proton donating group, but a polymer compound having an acid residue used for a polymer electrolyte (for example, perfluorocarbon sulfonic acid represented by Nafion). ) Etc. are available.
- the amount of catalyst used is suitably in the range of 0.03 to 10 mg / cm 2 from the viewpoint of battery output and economy.
- the amount of the proton conductive material is suitably 0.1 to 1.0 times the mass of the platinum-supported carbon.
- the electrode base material plays a role of collecting current and preventing water accumulation and gas permeation from deteriorating.
- carbon paper or carbon cloth can be used, and polytetrafluoroethylene (PTFE) treated for water repellency can be used.
- PTFE polytetrafluoroethylene
- the fuel for the fuel cell of the present invention for example, as anode fuel, hydrogen, alcohols (methanol, ethanol, isopropanol, ethylene glycol, etc.), ethers (dimethyl ether, dimethoxymethane, trimethoxymethane, etc.) ), Formic acid, borohydride complexes, ascorbic acid and the like, and hydrogen and methanol are preferably used.
- the cathode fuel include oxygen (including oxygen in the atmosphere) and hydrogen peroxide.
- the method of supplying anode fuel and cathode fuel to each catalyst layer includes a method of forced circulation using an auxiliary device such as a pump (active type) and a method not using an auxiliary device (for example, in the case of liquid)
- auxiliary device such as a pump (active type)
- active type a method not using an auxiliary device
- gas due to capillary action or natural fall there are two types, that is, a passive type that exposes and supplies the catalyst layer to the atmosphere, and these can also be combined.
- the active type is preferable because high output can be obtained.
- the single cell voltage of the fuel cell is generally 1 V or less
- the single cells are used in series stacking according to the required voltage of the load.
- the stacking method “planar stacking” in which single cells are arranged on a plane and “bipolar stacking” in which single cells are stacked via separators having fuel flow paths formed on both sides thereof are used.
- the latter is suitable for a fuel cell because of its high thermal efficiency and a compact battery.
- a method of applying MEMS technology, performing fine processing on a silicon wafer, and stacking has been proposed.
- the fuel cell is considered for various uses such as transportation, home use, and portable equipment.
- preferable transportation applications include automobiles (passenger cars, freight cars, motorcycles, personal beagles), ships
- household devices include cogeneration systems, vacuum cleaners, robots
- portable devices include mobile phones, notebook computers, electronic still cameras, PDAs, video cameras, and portable game machines.
- it can be used for portable generators, outdoor lighting devices, and the like.
- it can be preferably used as a power source for industrial or household robots or other toys.
- it is also useful as a power source for charging secondary batteries and capacitors mounted on these devices.
- Example 1 Production of Surface-Modified Carbon (Example 1-1 Production of M-1) 3-Aminopyrazole (0.83 g) was added to concentrated hydrochloric acid (10 mL) and water (25 mL), and the mixture was placed in an ice bath and stirred. To this solution, an aqueous solution in which sodium nitrite (0.69 g) was dissolved in water (10 mL) was added dropwise over 20 minutes, and the mixture was stirred while attached to an ice bath.
- Acetylene black (100% pressed product, manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 36 nm) (2.40 g) was added to this solution, the temperature was raised to 40 ° C., stirred for 5 hours, and allowed to cool to room temperature.
- the product was collected by filtration, washed with water, N, N-dimethylacetamide, and acetone, and then dried under reduced pressure to obtain 2.30 g of a surface-modified carbon material (M-1).
- Organic elemental analysis indicated 0.9% nitrogen atoms. Therefore, it was found that 0.32 mmol of pyrazolyl group was introduced per 1 g of the surface-modified carbon material.
- Example 1-2 Production of M-2 2.37 g of surface-modified carbon material (M-2) was obtained in the same manner as in Example 1-1 except that 4-nitroaniline (1.38 g) was used instead of 3-aminopyrazole. Organic elemental analysis showed 0.6% nitrogen atoms. Therefore, it was found that 0.43 mmol of nitrophenyl group (reduction potential: ⁇ 1.15 V) was introduced per 1 g of the surface-modified carbon material.
- Example 1-3 Production of M-3
- 2-aminoanthraquinone (2.23 g) was used instead of 3-aminopyrazole.
- Organic elemental analysis suggested that it contains 1.6% oxygen atoms. Therefore, it was found that 0.50 mmol of anthraquinonyl group (reduction potential: ⁇ 0.86 V) was introduced per 1 g of the surface-modified carbon material.
- Example 1-5 Production of M-5)
- Example 1 except that multi-walled carbon nanotubes (diameter 20-30 nm, manufactured by Wako Pure Chemical Industries) (5.0 g) were used instead of multi-walled carbon nanotubes (diameter 3-20 nm, manufactured by Wako Pure Chemical Industries) (6.0 g).
- 5.0 g multi-walled carbon nanotubes (diameter 20-30 nm, manufactured by Wako Pure Chemical Industries) (6.0 g).
- a surface-modified carbon material (M-5) was obtained.
- Example 1-6 Production of M-6
- M-6 a surface-modified carbon material (M-6) was obtained in the same manner as in Example 1-1 except that 2-amino-9-fluorenone (1.95 g) was used instead of 3-aminopyrazole.
- Organic elemental analysis suggested that it contains 1.0% oxygen atoms. Therefore, it was found that 0.63 mmol of 9-fluorenonyl group (reduction potential: ⁇ 1.26 V) was introduced per 1 g of the surface-modified carbon material.
- Example 1-7 Production of M-7) 2.47 g of a surface-modified carbon material (M-7) was obtained in the same manner as in Example 1-1 except that 4-amino-N-methylphthalimide (1.76 g) was used instead of 3-aminopyrazole. It was. Organic elemental analysis suggested that it contains 0.6% sulfur atoms. Therefore, it was found that 0.43 mmol of N-methylphthalimide group (reduction potential: ⁇ 1.46 V) was introduced per 1 g of the surface-modified carbon material.
- Example 1-8 Production of M-8) 2.37 g of a surface-modified carbon material (M-8) was obtained in the same manner as in Example 1-1 except that 2-aminothiazole (1.00 g) was used instead of 3-aminopyrazole. Organic elemental analysis suggested that it contains 1.2% sulfur atoms. Therefore, it was found that 0.37 mmol of thiazolyl group was introduced per 1 g of the surface-modified carbon material.
- Example 1-9 Production of M-9
- M-9 surface modified carbon material (M-9) was obtained in the same manner as in Example 1-1 except that 5-aminobenzothiazole (1.50 g) was used instead of 3-aminopyrazole.
- Organic elemental analysis suggested that it contains 1.6% sulfur atoms. Therefore, it was found that 0.50 mmol of benzothiazolyl group was introduced per 1 g of the surface-modified carbon material.
- Example 2 Supporting platinum particles on surface-modified carbon (Example 2-1 Production of C-1) Chloroplatinic acid hexahydrate (1.00 g) and sodium hydroxide (1.00 g) were dissolved in ethylene glycol (100 g) and stirred at 120 ° C. in a nitrogen atmosphere. After 1 hour, heating was stopped and the mixture was allowed to cool to room temperature. Surface-modified carbon material M-1 (1.50 g) was added to this solution, and ultrasonic dispersion was performed for 10 minutes. Acetic acid (5 mL) and water (200 mL) were added to this dispersion, and the mixture was stirred at room temperature for 3 hours. The product was filtered off, washed with water, and dried under reduced pressure at 80 ° C. to obtain 1.77 g of platinum-carrying carbon C-1 having a platinum-carrying amount of 20% by mass.
- Example 2-5 Production of C-5) In the same manner as described above, except that surface-modified carbon M-4 (0.75 g) was added instead of surface-modified carbon M-1 (1.51 g), platinum-supported carbon C-5 having a platinum-supported amount of 33 mass% was 1. 10 g was obtained.
- Example 2-7 Production of C-7) 0.82 g of platinum-carrying carbon C-7 having a platinum loading of 20% by mass was obtained in the same manner except that M-6 was used in place of the surface-modified carbon M-1.
- Example 2-8 Production of C-8) 1.81 g of platinum-carrying carbon C-8 having a platinum loading of 20% by mass was obtained in the same manner except that M-7 was used instead of the surface-modified carbon M-1.
- Example 2-9 Production of C-9) 0.85 g of platinum-carrying carbon C-9 having a platinum loading of 20% by mass was obtained in the same manner except that M-8 was used in place of the surface-modified carbon M-1.
- Example 2-10 Production of C-10) 1.81 g of platinum-supported carbon C-10 having a platinum-supported amount of 20% by mass was obtained in the same manner except that M-9 was used in place of the surface-modified carbon M-1.
- Example 3 Production of Electrode Membrane Assembly and Fuel Cell (Example 3-1 Production of Electrode Membrane Assembly and Fuel Cell) Using the platinum-supported carbons C-1, C-2, and C-3 produced in Examples 2-1 to 2-2, electrode membrane assemblies were produced. To 0.35 g of each platinum-supporting carbon, 4.00 g of Nafion solution (5% alcohol aqueous solution) as a binder and 0.10 g of water as a solvent were added and dispersed for 3 hours with an ultrasonic disperser. The obtained dispersion was applied onto a PTFE sheet (manufactured by Saint-Gobain, 381-6), dried, and then cut into 5 cm square to prepare a catalyst membrane.
- a PTFE sheet manufactured by Saint-Gobain, 381-6
- a Nafion NRE-212 membrane (manufactured by DuPont) was used as the solid electrolyte membrane, and the catalyst membrane obtained above was bonded to both sides of the Nafion NRE-212 membrane so that the coated surface was in contact with the Nafion NRE-212 membrane, and hot pressing was performed.
- the obtained electrode membrane assembly was set in the fuel cell shown in FIG. 2 to produce a fuel cell.
- Example 3-2 Production of electrode membrane assembly and fuel cell
- platinum-supporting carbons C-4 and C-6 prepared in Examples 2-4 and 2-6
- electrode membrane assemblies were prepared.
- 1 g of water and 1-propanol were added to 0.35 g of platinum-supporting carbon
- 10 g of zirconia balls having a diameter of 1 mm manufactured by Nikkato, YTZ balls
- the dispersion was carried out at a rotational speed of 300 rpm for 8 hours.
- the obtained dispersion was coated on a PTFE sheet, dried, and then cut into 5 cm squares to produce a catalyst film.
- a Nafion NRE-212 membrane was used, and the catalyst membrane obtained above was bonded to both sides of the Nafion NRE-212 membrane so that the coated surface was in contact with the Nafion NRE-212 membrane, and thermocompression bonded by hot pressing, An electrode membrane assembly was prepared. The obtained electrode membrane assembly was set in the fuel cell shown in FIG. 2 to produce a fuel cell.
- Example 3-3 Production of electrode membrane assembly and fuel cell
- An electrode membrane assembly was prepared using the platinum-supported carbon C-5 prepared in Example 2-5.
- 4.00 g of Nafion solution 5% alcohol aqueous solution
- 1 g of water, and 1-propanol were added, and dispersed with a zirconia ball 10 g having a diameter of 1 mm at a rotation speed of 300 rpm for 8 hours.
- the obtained dispersion was coated on a PTFE sheet, dried, and then cut into 5 cm squares to produce a catalyst film.
- a Nafion NRE-212 membrane was used, and the catalyst membrane obtained above was bonded to both sides of the Nafion NRE-212 membrane so that the coated surface was in contact with the Nafion NRE-212 membrane, and thermocompression bonded by hot pressing, An electrode membrane assembly was prepared. The obtained electrode membrane assembly was set in the fuel cell shown in FIG. 2 to produce a fuel cell.
- Comparative Example 1 Fabrication of electrode membrane assembly and fuel cell using unmodified acetylene black (platinum supported on unmodified carbon material (support)) 1.81 g of platinum-supported carbon R-1 having a platinum loading of 20% by mass was performed in the same manner as in Example 2-1, except that acetylene black (100% pressed product, manufactured by Denki Kagaku Kogyo) (1.50 g) was used. Obtained.
- Comparative Example 2 Production of an electrode membrane assembly and a fuel cell using an unmodified carbon black carrier (platinum supported on an unmodified carbon material (carrier))
- an unmodified carbon black carrier platinum supported on an unmodified carbon material (carrier)
- platinum having a low crystallinity carbon black Vulcan XC-72, manufactured by Cabot Corporation
- a platinum-supporting carbon R-2 (TEC10V20E, manufactured by Tanaka Kikinzoku) with a loading amount of 20% by mass was prepared.
- a fuel cell was produced in the same manner as in Example 3-1, except that this platinum-supported carbon R-2 was used.
- Comparative Example 3 Fabrication of electrode membrane assembly and fuel cell using unmodified multi-walled carbon nanotubes (platinum supported on unmodified multi-walled carbon nanotubes) 1.73 g of platinum-supported carbon R-3 having a platinum loading of 20% by mass was obtained in the same manner as in Example 2 except that multi-walled nanotubes (diameter 3 to 20 nm, manufactured by Wako Pure Chemical Industries, Ltd.) (1.50 g) were used. . A fuel cell was produced in the same manner as in Example 3-2 except that this platinum-supported carbon R-3 was used.
- Test Example 1 Measurement of platinum particle drop-out rate by ultrasonic waves
- platinum-supported carbons C-1, C-7, C-8, C-9, C -10, R-1, and R-2 were irradiated with ultrasonic waves, and platinum dropped from the carrier was quantified.
- sodium D, L-2,3-mercapto-1-propanesulfonate monohydrate (10 mg) was dissolved in water (5.0 mL) as a stabilizer. It was.
- Platinum-supported carbon (50 mg) was added to this aqueous solution, and ultrasonic waves were applied for 3 hours. The obtained dispersion was filtered through a Millipore filter having a pore size of 0.1 ⁇ m, and platinum contained in the filtrate was quantified (Table 1).
- the platinum-carrying carbon of the present invention has a lower platinum dropout rate due to ultrasonic waves than the platinum-carrying carbon using an unmodified carbon material.
- the low platinum drop-off rate indicates that the platinum particles are strongly supported on the carbon support, and it was confirmed that the platinum-supported carbon of the present invention has high durability.
- Test Example 2 Power Generation Performance Evaluation of Fuel Cell Hydrogen gas was flowed into the anode side opening 15 of each fuel cell obtained in Example 3-1 and Comparative Examples 1 and 2. At this time, the cathode side opening 16 flowed air. A potentiostat was connected between the anode electrode 12 and the cathode electrode 13, and a current-voltage curve was recorded. The results when the platinum coating amount of the cathode electrode is 0.15 mg / cm 2 are shown in FIG. Table 2 also shows the results of measuring the powder X-ray diffraction (using RINT2500V manufactured by Rigaku Corporation) of the platinum-supported carbon used in each fuel cell and determining the particle size of the platinum particles from the Scherrer equation.
- C-1, C-2, and C-3 using carbon modified with an organic group as a carrier have smaller platinum particle sizes than R-1 and R-2 using unmodified carbon as a carrier. It was confirmed that the platinum particles were supported in a highly dispersed state.
- R-1 using unmodified acetylene black shows very low performance. This is because the platinum particles are agglomerated and the amount of the binder is large and the reaction gas hardly diffuses. It is because it has become.
- the platinum-supporting carbon of the present invention showed high power generation performance compared to R-2 using unmodified carbon black having low crystallinity as a carrier.
- FIG. 4 shows the voltage at 0.08 A / cm 2 with respect to the platinum coating amount.
- loss due to mass transfer such as reaction gas, proton, and electron is small, and the difference in catalyst activity is strongly reflected.
- the fuel cell using the platinum-supported carbon of the present invention showed a high voltage even at the same platinum coating amount as compared with R-1 and R-2 and had a high catalytic activity. This is thought to be a result of an increase in the surface area that can contribute to power generation due to platinum particles being supported in a highly dispersed manner on the surface of a carrier with few defects.
- Example 3 Power Generation Performance Evaluation of Fuel Cell Hydrogen gas was flowed into the anode side opening 15 of each fuel cell obtained in Example 3-2, Example 3-3, and Comparative Example 3. At this time, the cathode side opening 16 flowed air. A potentiostat was connected between the anode electrode 12 and the cathode electrode 13, and a current-voltage curve was recorded. Table 3 shows the results when the platinum coating amount of the cathode electrode is 0.15 mg / cm 2 .
- Test Example 4 Durability Evaluation of Fuel Cell Hydrogen gas was flown into the anode side opening 15 of each fuel cell obtained in Example 3-1 and Comparative Examples 1 and 2, and nitrogen gas was flowed through the cathode side opening 16.
- a degradation test was performed by connecting a potentiostat between the anode electrode 12 and the cathode electrode 13 and holding the voltage of 1.4 V for 30 minutes. Table 4 shows voltage changes before and after the deterioration test.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inert Electrodes (AREA)
- Catalysts (AREA)
Abstract
粉末X線回折において、(002)面に由来するピークの半値幅が入射X線と反射X線とがなす角度2θで6.0°以下であるカーボン材料を有機基で表面修飾した表面修飾カーボン材料と、該表面修飾カーボンに担持した白金粒子または白金合金粒子からなることを特徴とする白金担持カーボンは、触媒利用効率および酸化腐食耐性が高い燃料電池用触媒等として有用である。
Description
本発明は、有機基で表面修飾した特定のカーボン材料に白金系粒子を担持した白金担持カーボンに関する。また、本発明は、該白金担持カーボンを用いた燃料電池用触媒、電極膜接合体および燃料電池にも関する。
固体高分子型燃料電池は、イオン伝導体すなわち電解質が固体で、かつ高分子である点に特徴を有する燃料電池である。その固体高分子電解質としてイオン交換樹脂を使用し、この電解質をはさんで負極および正極の両電極を配置し、例えば、負極側に燃料として水素を、正極側に酸素または空気を供給することによって電気化学反応を起こさせ、電気を発生させる。すなわち、水素を燃料とした場合、負極では次式の反応が起こり、
H2 → 2H+ + 2e-
また、酸素を酸化剤とした場合、正極では次式の反応が起こり、水が生成される。
1/2O2 + 2H+ + 2e- → H2O
H2 → 2H+ + 2e-
また、酸素を酸化剤とした場合、正極では次式の反応が起こり、水が生成される。
1/2O2 + 2H+ + 2e- → H2O
上記の反応を円滑に進行させ、燃料電池の性能を最大限に発揮させるためには、電極触媒層中で、プロトン伝導体であるイオン交換樹脂と電子伝導体であるカーボン担体と反応ガスとが同時に接触する三相界面に、白金等の触媒が存在する必要がある。そのため、これまでにも触媒層構造を高機能化して、三相界面に存在する触媒量を増やそうとする試みが行われてきた。例えば、固体高分子電解質としてスルホン化フッ素樹脂の一種であるナフィオン117(ナフィオン:登録商標)(Du Pont社製)を用い、その内表面に白金等を担持した貴金属触媒を用い、さらに、触媒層の反応場を三次元化して作用面積を向上させる手法が開示されている(非特許文献1)。この手法によると、電解質と膜の接触面のみならず、触媒層内部の触媒も利用できるようになり、この触媒層により白金の利用率を向上させることができる。
また、電極構造の細孔分布について検討がなされ、触媒層の直径0.04~1.0μmの細孔部が反応場として機能することが明らかにされている(特許文献1)。ナフィオンのようなフッ素系高分子は、その分子量の大きさから直径0.04μm以下のような一次細孔に進入できず、そのような細孔中の触媒粒子は三相界面が形成されないため、反応場となり得ないのである(非特許文献2)。
そこで、白金の利用効率を上げるために細孔の少ない触媒担体を用いることが検討され、結晶化度の高いカーボンブラックであるアセチレンブラックを担体に用いれば燃料電池の出力が向上することが明らかにされたが、白金粒子を高分散担持することは難しかった(特許文献2)。
特許第3275652号公報
特開平9-167622号公報
「電気化学」第53巻第10号(1985)、812~817頁
J. Electrochemical Society 第142巻 第2号 463頁
従来、触媒担体としては、一次細孔が多く比表面積の大きいカーボン材料が、白金粒子の高分散担持が容易なことから好んで用いられてきたが、細孔中の白金粒子を有効に利用できず、触媒利用率が低いという問題があった。また、比表面積の大きなカーボン材料は、概して結晶性が低いため酸化腐食しやすく、触媒担体として用いた際に耐久性が悪いという問題もあった。
一方、結晶性が高く一次細孔の少ない担体は、比表面積が小さいために白金粒子を高分散に担持することは困難であり、触媒として高い活性が得られないことから、燃料電池に使用しても高い電池性能を発揮させることはできなかった。
そこで本発明者らは、結晶性が高く比表面積が小さい触媒担体への白金粒子の高分散担持の問題を解決して、触媒利用効率および酸化腐食耐性が高い燃料電池用触媒と電極膜接合体を提供し、燃料電池の電池特性と耐久性を改善することを本発明の目的として検討を進めた。
一方、結晶性が高く一次細孔の少ない担体は、比表面積が小さいために白金粒子を高分散に担持することは困難であり、触媒として高い活性が得られないことから、燃料電池に使用しても高い電池性能を発揮させることはできなかった。
そこで本発明者らは、結晶性が高く比表面積が小さい触媒担体への白金粒子の高分散担持の問題を解決して、触媒利用効率および酸化腐食耐性が高い燃料電池用触媒と電極膜接合体を提供し、燃料電池の電池特性と耐久性を改善することを本発明の目的として検討を進めた。
本発明者らは鋭意検討を重ねた結果、有機基で表面修飾した特定のカーボン材料に白金系粒子を担持することにより従来技術の課題を解決しうることを見出した。すなわち、課題を解決する手段として、以下の本発明を提供するに至った。
(1)粉末X線回折において、(002)面に由来するピークの半値幅が入射X線と反射X線とがなす角度2θで6.0°以下であるカーボン材料を有機基で表面修飾した表面修飾カーボン材料と、該表面修飾カーボンに担持した白金粒子または白金合金粒子からなることを特徴とする白金担持カーボン。
(2)前記カーボン材料が、粉末X線回折において、(002)面に由来するピークの半値幅が入射X線と反射X線とがなす角度2θで5.5以下である、(1)に記載の白金担持カーボン。
(3)前記有機基が、非共有電子対を有する窒素原子または非共有電子対を有する硫黄原子を含む有機基、SCE基準で-2.5Vより高電位側に還元電位を有する有機基、または、ヘテロ環を含む有機基である(1)または(2)に記載の白金担持カーボン。
(4)前記有機基が、一般式(1)で表される構造を有する(1)または(2)に記載の白金担持カーボン。
一般式(1)
一般式(1)中、Carbonはカーボン材料を表し、Aは連結基を表し、Xは-CN、-NR1R2、-NR2(COR3)、-CONR2R3、-N=NR2、-SR2、-SO2NR2R3および-SO2SR2からなる群より選択される基を表す。R1、R2およびR3は同一であっても異なっていてもよく、R1はアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、またはアラルキル基から選択される一つであり、R2およびR3はそれぞれ水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、またはアラルキル基から選択される一つである。
(5)前記カーボン材料が、平均粒子サイズが60nm以下のカーボン粒子または直径が50nm以下のカーボンナノチューブであることを特徴とする(1)~(4)のいずれか1項に記載の白金担持カーボン。
(6)前記カーボン材料がアセチレンブラックまたは多層カーボンナノチューブであることを特徴とする(1)~(5)のいずれか1項に記載の白金担持カーボン。
(7)前記白金粒子または白金合金粒子の粒子サイズが1nm~10nmであることを特徴とする(1)~(6)のいずれか1項に記載の白金担持カーボン。
(8)前記白金粒子または白金合金粒子の含有率が5~70重量%であることを特徴とする(1)~(7)のいずれか1項に記載の白金担持カーボン。
(9)(1)~(8)のいずれか1項に記載の白金担持カーボンを含むことを特徴とする燃料電池用触媒。
(10)固体高分子電解質膜と、該固体高分子電荷質膜に接して設けられた触媒層とを有し、かつ、前記触媒層が(9)に記載の燃料電池用触媒を含むことを特徴とする電極膜接合体。
(11)(10)に記載の電極膜接合体を有することを特徴とする燃料電池。
(2)前記カーボン材料が、粉末X線回折において、(002)面に由来するピークの半値幅が入射X線と反射X線とがなす角度2θで5.5以下である、(1)に記載の白金担持カーボン。
(3)前記有機基が、非共有電子対を有する窒素原子または非共有電子対を有する硫黄原子を含む有機基、SCE基準で-2.5Vより高電位側に還元電位を有する有機基、または、ヘテロ環を含む有機基である(1)または(2)に記載の白金担持カーボン。
(4)前記有機基が、一般式(1)で表される構造を有する(1)または(2)に記載の白金担持カーボン。
一般式(1)
(5)前記カーボン材料が、平均粒子サイズが60nm以下のカーボン粒子または直径が50nm以下のカーボンナノチューブであることを特徴とする(1)~(4)のいずれか1項に記載の白金担持カーボン。
(6)前記カーボン材料がアセチレンブラックまたは多層カーボンナノチューブであることを特徴とする(1)~(5)のいずれか1項に記載の白金担持カーボン。
(7)前記白金粒子または白金合金粒子の粒子サイズが1nm~10nmであることを特徴とする(1)~(6)のいずれか1項に記載の白金担持カーボン。
(8)前記白金粒子または白金合金粒子の含有率が5~70重量%であることを特徴とする(1)~(7)のいずれか1項に記載の白金担持カーボン。
(9)(1)~(8)のいずれか1項に記載の白金担持カーボンを含むことを特徴とする燃料電池用触媒。
(10)固体高分子電解質膜と、該固体高分子電荷質膜に接して設けられた触媒層とを有し、かつ、前記触媒層が(9)に記載の燃料電池用触媒を含むことを特徴とする電極膜接合体。
(11)(10)に記載の電極膜接合体を有することを特徴とする燃料電池。
本発明の白金担持カーボンは、一次細孔が少なく結晶性が高いカーボン担体を有機基で表面修飾することで、白金系粒子を高分散に担持できる。このため、本発明の白金担持カーボンを含む燃料電池用触媒は、触媒利用率が高く、酸化腐食耐性に優れた電極膜接合体を提供することができる。また、本発明の白金担持カーボンを用いた燃料電池は電池特性と耐久性が優れている。
以下において、本発明の白金担持カーボンとその用途について詳細に説明する。なお、本願明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。また、本発明における各種物性値は、特に述べない限り室温(25℃)における状態のものを示している。
(カーボン材料)
本発明では結晶性の高いカーボン材料を用いる。
本発明では結晶性の高いカーボン材料を用いる。
カーボン材料の結晶化度は、粉末X線回折法によって測定される。測定装置には、例えば、株式会社リガク社製のRINT2500Vを用いることができる。粉末状のカーボン担体にCuKα線を入射X線として照射し、2θが10°から60°の範囲において回折X線を測定した際の、カーボン材料の(002)面に由来するピークの半値幅でカーボン材料の結晶化度を評価する。この値が小さいほど、高い結晶性を有していることを示す。本発明に用いるカーボン材料は、この半値幅が入射X線と反射X線とがなす角度2θで6.0°以下であり、5.5°以下であることが好ましく、5.0°以下であることがさらに好ましい。
本発明で用いることができるカーボン材料としては、黒鉛、アセチレンブラック、多層カーボンナノチューブ(MWNT)が挙げられる。アセチレンブラックおよび多層カーボンナノチューブは特に好ましく用いることができる。なお、カーボン材料は1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。また、本発明の趣旨に反しない範囲であれば、カーボン材料以外の成分を含むカーボン材料組成物をカーボン材料として用いてもよい。
前記カーボン材料は、粒子または繊維状で、その粒子径または繊維径が小さいほど比表面積が大きくなり、白金系粒子の担持に有利であるが、粒子径または繊維径が小さ過ぎるとカーボン材料の表面の曲率が大きくなるために、白金系粒子の担持が困難となる場合がある。
本発明のカーボン材料は、粒状である場合には平均粒子サイズが10~60nmであることが好ましく、10~50nmであることがより好ましく、10~40nmであることがさらに好ましい。繊維状である場合には、直径(外径)が3~50nmのものを含んでいることが好ましく、直径(外径)が3~40nmのものを含んでいることがより好ましく、直径(外径)が3~30nmのものを含んでいることがさらに好ましい。
本発明のカーボン材料は、粒状である場合には平均粒子サイズが10~60nmであることが好ましく、10~50nmであることがより好ましく、10~40nmであることがさらに好ましい。繊維状である場合には、直径(外径)が3~50nmのものを含んでいることが好ましく、直径(外径)が3~40nmのものを含んでいることがより好ましく、直径(外径)が3~30nmのものを含んでいることがさらに好ましい。
前記カーボン材料は高純度の炭素微粒子からできていることが好ましく、炭素微粒子が鎖状に連なっていることがさらに好ましく、グラファイト化が進んでいることがより好ましい。
前記カーボン材料の表面状態は、前記結晶化度を満たす限りにおいて限定されることがなく、カルボキシル基やフェノール性ヒドロキシル基などの官能基を表面に有していてもいなくても構わない。また、特に白金系粒子を吸着するための細孔を有しているなど、比表面積が顕著に拡大したものでなくても構わない。
本発明に用いることのできるカーボン材料の具体例としては、電気化学工業社製デンカブラックが好ましいが、特にこれらに限定されるものではない。
(有機基)
本発明においてカーボン材料に導入する有機基は、白金系粒子を担持する際に白金系粒子の凝集を抑制して高分散に担持できるようにすることができるものであれば、その種類は特に限定されない。好ましい有機基は、非共有電子対を有する窒素原子または非共有電子対を有する硫黄原子を含む有機基、SCE基準で-2.5Vより高電位側に還元電位を有する有機基、ヘテロ環を含む有機基である。以下、これらの有機基について詳しく説明する。
本発明においてカーボン材料に導入する有機基は、白金系粒子を担持する際に白金系粒子の凝集を抑制して高分散に担持できるようにすることができるものであれば、その種類は特に限定されない。好ましい有機基は、非共有電子対を有する窒素原子または非共有電子対を有する硫黄原子を含む有機基、SCE基準で-2.5Vより高電位側に還元電位を有する有機基、ヘテロ環を含む有機基である。以下、これらの有機基について詳しく説明する。
(1)非共有電子対を有する窒素原子または非共有電子対を有する硫黄原子を含む有機基
ここでいう有機基は、非共有電子対を有する窒素原子か非共有電子対を有する硫黄原子の少なくとも一方を含み、且つ炭素原子を含む基である。非共有電子対を有する窒素原子と非共有電子対を有する硫黄原子を両方とも含んでいてもよい。
そのような有機基を有する表面修飾カーボン材料は、非共有電子対を有する窒素原子または非共有電子対を有する硫黄原子を含む有機基を、連結基を介してカーボン材料に導入した構造を有するものであることが好ましい。具体的には、下記一般式(1)で表される構造を有する。
一般式(1)
ここでいう有機基は、非共有電子対を有する窒素原子か非共有電子対を有する硫黄原子の少なくとも一方を含み、且つ炭素原子を含む基である。非共有電子対を有する窒素原子と非共有電子対を有する硫黄原子を両方とも含んでいてもよい。
そのような有機基を有する表面修飾カーボン材料は、非共有電子対を有する窒素原子または非共有電子対を有する硫黄原子を含む有機基を、連結基を介してカーボン材料に導入した構造を有するものであることが好ましい。具体的には、下記一般式(1)で表される構造を有する。
一般式(1)
一般式(1)中のCarbonはカーボン材料を表し、Aは連結基を表し、Xは-CN、-NR1R2、-NR2(COR3)、-CONR2R3、-N=NR2、-SR2、-SO2NR2R3および-SO2SR2からなる群より選択される基を表す。R1、R2およびR3は同一であっても異なっていてもよく、R1はアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、またはアラルキル基から選択される一つであり、R2およびR3はそれぞれ水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、またはアラルキル基から選択される一つである。
一般式(1)において、R1はアルキル基、アリール基であることが好ましく、アルキル基であることがさらに好ましい。
一般式(1)において、R2はアルキル基、アリール基であることが好ましく、アルキル基であることがさらに好ましい。
一般式(1)において、R3はアルキル基、アリール基であることが好ましく、アルキル基であることがさらに好ましい。
一般式(1)において、R1、R2およびR3で表わされるアルキル基は、炭素数1~20の直鎖状、分枝状、または環状のアルキル基であることが好ましく、置換基を有していても良い。この置換基としてはXの定義と同じ範囲から選択される基であることが好ましい。R1、R2およびR3で表わされるアルキル基として、特に好ましくは、炭素数10以下の基であり、さらに好ましくは炭素数6以下の基であり、最も好ましくは、メチル基である。
一般式(1)において、R1、R2およびR3で表わされるアルケニル基は、炭素数2~20の直鎖状、分枝状、または環状のアルケニル基であることが好ましく、置換基を有していても良い。この置換基としてはXの定義と同じ範囲から選択される基であることが好ましい。R1、R2およびR3で表わされるアルケニル基として、特に好ましくは、炭素数10以下の基であり、さらに好ましくは炭素数6以下の基である。
一般式(1)において、R1、R2およびR3で表わされるアルキニル基は、炭素数2~20の直鎖状、分枝状、または環状のアルキニル基であることが好ましく、置換基を有していても良い。この置換基としてはXの定義と同じ範囲から選択される基であることが好ましい。R1、R2およびR3で表わされるアルキニル基として、特に好ましくは、炭素数10以下の基であり、さらに好ましくは炭素数6以下の基である。
一般式(1)において、R1、R2およびR3で表わされるアリール基は、炭素数6~20のアリール基であることが好ましく、置換基を有していても良い。この置換基としてはXの定義と同じ範囲から選択される基であることが好ましい。R1、R2およびR3で表わされるアリール基として、特に好ましくは、炭素数10以下の基であり、さらに好ましくはフェニル基である。
一般式(1)において、R1、R2およびR3で表わされるアラルキル基は、炭素数7~20の直鎖状、分枝状、または環状のアラルキル基であることが好ましく、さらに置換基を有していても良い。この置換基としてはXの定義と同じ範囲から選択される基であることが好ましい。R1、R2およびR3で表わされるアラルキル基として、特に好ましくは、炭素数10以下の基であり、さらに好ましくは炭素数7の基である。
連結基Aに用いられる脂肪族炭化水素基は、飽和炭化水素でも不飽和炭化水素でもよく、また、直鎖、分岐、環状のいずれであってもよい。さらに、水素原子が本発明の趣旨を逸脱しない範囲内において、置換基(例えば、ハロゲン原子、好ましくはフッ素原子など)で置換されていてもよい。
前記脂肪族炭化水素基の炭素数は1~12が好ましく、1~6がより好ましい。
前記脂肪族炭化水素基の炭素数は1~12が好ましく、1~6がより好ましい。
脂肪族炭化水素基としては、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、オクチレン基、デシレン基、イソブチレン基、-(CH2)nCH=CH-(nは、整数であり、好ましくは、1~6の整数である。)、-CH2CH2CH=CH-、C((CH2)n-)4(nは、整数であり、好ましくは0~6の整数である)、CH((CH2)n-)3(nは、整数であり、好ましくは0~6の整数である)、CH3C((CH2)nH)((CH2)n-)2(nは、整数であり、好ましくは0~6の整数である)、-CH2CH2C((CH2)nH)2(CH2)n-(nは、整数であり、好ましくは0~6の整数である)、-C((CH2)nH)2(CH2)n-(nは、整数であり、好ましくは0~6の整数である)、-CH((CH2)nH)(CH2)n-(nは、整数であり、好ましくは0~6の整数である)が好ましい。
前記芳香族炭化水素基の炭素数は、6~25が好ましく、6~16がより好ましく、6~12がさらに好ましい。芳香族炭化水素基の環構成原子に結合している水素原子は、本発明の趣旨を逸脱しない範囲内において、置換基(例えば、ハロゲン原子、好ましくはフッ素原子など)で置換されていてもよい。芳香族炭化水素基としては、トリフェニレン環、ピレン環、アントラセン環、ナフタレン環、ビフェニレン環、ベンゼン環を有する基が好ましく、ナフタレン環、ビフェニレン環、ベンゼン環を有する基がより好ましく、ベンゼン環を有する基が最も好ましい。
連結基Aに用いられるヘテロ環基は、窒素原子、酸素原子、硫黄原子を単独もしくは2種以上含んでいるものが好ましく、この中でも窒素原子を含むヘテロ環基が好ましい。ヘテロ環基は本発明の趣旨を逸脱しない範囲において、置換基で置換されていてもよい。ヘテロ環基の例としては、ピロール環、ピロリジン環、インドール環、カルバトール環、ピリジン環、ピペリジン環、キノリン環、イソキノリン環、アクリジン環、ピラゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ベンゾイミダゾリン環、ジアジン環、ピペラジン環、トリアゾール環、トリアジン環、テトラゾール環、テトラジン環、プリン環、プテリジン環、カルボリン環、キノリジン環、キヌクリジン環、オキサゾール環イソオキサゾール環、オキサジン環、オキサジアゾール環、チアゾール環、ベンゾチアゾール環、イソチアゾール環、チアジン環、チアジアゾール環が挙げられる。この中でも、イミダゾール環、ピラゾール環、チアゾール環が好ましく、ピラゾール環がより好ましい。
連結基Aに用いられる上記例示したその他の構造を有する連結基の中では、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。
(2)SCE基準で-2.5Vより高電位側に還元電位を有する有機基
SCE基準で-2.5Vより高電位側に還元電位を有する有機基は、高電位において還元される有機基である。有機基の還元電位は、より好ましくは-2.0Vより高電位側であり、さらに好ましくは-1.5Vより高電位側である。
SCE基準で-2.5Vより高電位側に還元電位を有する有機基は、高電位において還元される有機基である。有機基の還元電位は、より好ましくは-2.0Vより高電位側であり、さらに好ましくは-1.5Vより高電位側である。
本発明において、有機基の還元電位とは、カーボン材料との結合位置に、カーボン材料の代わりに水素原子を有する化合物の還元電位を指す。例えば、有機基がニトロフェニル基である場合はニトロベンゼンの還元電位を指し、有機基がアントラキノニル基である場合はアントラキノンの還元電位を指す。具体的には、本発明における有機基の還元電位は、飽和カロメル電極を参照電極とし、電解液に0.1N(n-Bu)4N+ClO4
-アセトニトリル溶液を用い、ポテンショスタットによって作用電極(白金)に印加する電位をスイープし、得られた電流-電位曲線が示すピークから求めた電位である。詳しくは、サンプルを0.1N(n-Bu)4N+ClO4
-アセトニトリル溶液に1mmol%程度の濃度になるように溶解したサンプル溶液で測定する。このサンプル溶液に作用電極によって電圧を加え、電圧を0Vから-2.5Vに直線的に変化させ、さらに、-2.5から0Vに直線的に変化させたときの電流変化を測定し、電流-電位曲線を得る。電圧を0Vから-2.5Vに直線的に変化させたときの電流-電位曲線において電流値がピークを示したピークトップの位置の電位をE1とし、電圧を-2.5Vから0Vに直線的に変化させたときの電流-電位曲線において電流値がピークを示したピークトップの位置の電位をE2としたとき、(E1+E2)/2が還元電位となる。
前記還元電位の条件を満たすような本発明の前記カーボン材料に導入する有機基の構造については、特に制限されない。例えば好ましい構造として、π共役構造を有する有機基を挙げることができる。π共役構造は、少なくとも4以上の原子からなるπ共役構造であり、4~20の原子からなるπ共役構造であることが好ましく、6~20の原子からなるπ共役構造であることがより好ましく、8~20の原子からなるπ共役構造であることがさらに好ましい。また、π共役構造を構成する原子は、炭素原子に限られず、窒素原子、酸素原子などのヘテロ原子であってもよい。
前記π共役構造を有する基としては、アリール基、芳香族へテロ環基、ベンゾキノン基などを挙げることができる。その中でもアリール基、芳香族へテロ環基、芳香族ヘテロアリール基が好ましい。また、これらのπ共役構造は、置換基を有していてもよい。置換基は、これらのπ共役構造と共役が起こる他のπ電子を有していても、有していなくてもよい。好ましいのは、置換基がπ電子を有している場合である。
π共役構造を有するアリール基の炭素数は、6~20であることが好ましく、6~14であることがより好ましい。
具体的には、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基を挙げることができ、フェニル基、ナフチル基、ビフェニル基が好ましく、フェニル基がより好ましい。
π共役が起こる他の骨格を置換基として有する前記アリール基としては、例えば、9H-フルオレニル基、9-フルオレノニル基、ナフトキノニル基、アントラキノニル基が挙げられ、9-フルオレノニル基、アントラキノニル基が好ましい。
具体的には、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基を挙げることができ、フェニル基、ナフチル基、ビフェニル基が好ましく、フェニル基がより好ましい。
π共役が起こる他の骨格を置換基として有する前記アリール基としては、例えば、9H-フルオレニル基、9-フルオレノニル基、ナフトキノニル基、アントラキノニル基が挙げられ、9-フルオレノニル基、アントラキノニル基が好ましい。
π共役構造を有する芳香族へテロ環基の環員数は、4~7であることが好ましく、5~6がより好ましい。
また、芳香族ヘテロ環は、硫黄原子、窒素原子、酸素原子のいずれかを含むものが好ましく、硫黄原子または窒素原子を含むものがより好ましい。また、それぞれ複数でも2種以上の原子を含んでいてもよい。
具体的には、ピロール環、フラン環、チオフェン環、イミダゾール環、ピラゾール環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、トリアゾール環、チアジアゾール環、オキサジアゾール環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、ピペリジン環、ピペラジン環、モルホリン環を挙げることができ、イミダゾール環、ピラゾール環、チアゾール環が好ましく、ピラゾール環、チアゾール環がより好ましい。
また、芳香族ヘテロ環は、硫黄原子、窒素原子、酸素原子のいずれかを含むものが好ましく、硫黄原子または窒素原子を含むものがより好ましい。また、それぞれ複数でも2種以上の原子を含んでいてもよい。
具体的には、ピロール環、フラン環、チオフェン環、イミダゾール環、ピラゾール環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、トリアゾール環、チアジアゾール環、オキサジアゾール環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、ピペリジン環、ピペラジン環、モルホリン環を挙げることができ、イミダゾール環、ピラゾール環、チアゾール環が好ましく、ピラゾール環、チアゾール環がより好ましい。
これらのπ共役構造を有する基に対する置換基としては、窒素原子、炭素原子、硫黄原子、ハロゲン原子、リン原子を有する基が好ましい。
具体的には、ニトロ基、フルオロ基、ブロモ基、クロロ基、ヨード基、チオシアン酸基、硫酸基、スルホン酸基、スルホニウム基、リン酸基、ホスホン酸基、ホスホニウム基、ジアゾニオ基、アンモニウム基、ホルミル基、カルボニル基、カルボキシル基、エステル基、アミド基、シアノ基、酸無水物、酸ハロゲン化物、またはこれらの基の1つを含むポリ芳香族の基などを挙げることができる。その中でもニトロ基、カルボニル基が好ましい。
これらの置換基は、前記カーボン材料に導入する有機基中に同じ種類で複数含まれていても、2種以上が含まれていてもよい。また、キノニル基などのようにπ共有骨格と厳密に分離できない官能基も、本発明の置換基の範囲に含まれる。
具体的には、ニトロ基、フルオロ基、ブロモ基、クロロ基、ヨード基、チオシアン酸基、硫酸基、スルホン酸基、スルホニウム基、リン酸基、ホスホン酸基、ホスホニウム基、ジアゾニオ基、アンモニウム基、ホルミル基、カルボニル基、カルボキシル基、エステル基、アミド基、シアノ基、酸無水物、酸ハロゲン化物、またはこれらの基の1つを含むポリ芳香族の基などを挙げることができる。その中でもニトロ基、カルボニル基が好ましい。
これらの置換基は、前記カーボン材料に導入する有機基中に同じ種類で複数含まれていても、2種以上が含まれていてもよい。また、キノニル基などのようにπ共有骨格と厳密に分離できない官能基も、本発明の置換基の範囲に含まれる。
前記カーボン材料に導入する有機基は、前記置換基の他に、本発明の趣旨を逸脱しない範囲において、その他の置換基を有していてもよい。置換基の例としては、アミノ基、水酸基、アルコキシ基などを挙げることができる。
また、カーボン材料とπ共有構造の間に連結基を介していてもよい。
また、カーボン材料とπ共有構造の間に連結基を介していてもよい。
本発明の前記カーボン材料に導入する有機基の具体例としては、ニトロフェニル基、ベンゾキノニル基、ナフトキノニル基、アントラキノリル基、9-フルオレノニル基、フタルイミド基、N-メチルフタルイミド基が挙げられる。この中でも、ニトロフェニル基、アントラキノリル基、9-フルオレノニル基、N-メチルフタルイミド基が好ましい。
(3)ヘテロ環を含む有機基
ヘテロ環を含む有機基は、環を構成する原子の中にヘテロ原子が含まれている環構造を含む有機基である。有機基に含まれるヘテロ環は、硫黄原子、窒素原子、酸素原子のいずれかを含むものが好ましく、硫黄原子または窒素原子を含むものがより好ましい。
前記ヘテロ環の環員数は3~10が好ましく、4~8がより好ましく、5~6が最も好ましい。ヘテロ環は飽和、不飽和いずれでも良いが、芳香族性を有することが特に好ましい。
ヘテロ環を含む有機基は、環を構成する原子の中にヘテロ原子が含まれている環構造を含む有機基である。有機基に含まれるヘテロ環は、硫黄原子、窒素原子、酸素原子のいずれかを含むものが好ましく、硫黄原子または窒素原子を含むものがより好ましい。
前記ヘテロ環の環員数は3~10が好ましく、4~8がより好ましく、5~6が最も好ましい。ヘテロ環は飽和、不飽和いずれでも良いが、芳香族性を有することが特に好ましい。
前記ヘテロ環の具体例としては、例えば、ピロール環、フラン環、チオフェン環、イミダゾール環、ピラゾール環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、トリアゾール環、チアジアゾール環、オキサジアゾール環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、ピペリジン環、ピペラジン環、モルホリン環を挙げることができ、イミダゾール環、ピラゾール環、チアゾール環が好ましく、ピラゾール環、チアゾール環がさらに好ましい。
前記へテロ環は独立して環を形成していてもよいし、他の環と融合した状態(例えばベンゾ縮環など)でもよい。
また、前記へテロ環は、直接カーボン材料と結合していても、連結基を介してカーボン材料と結合していてもよい。
また、前記へテロ環は、直接カーボン材料と結合していても、連結基を介してカーボン材料と結合していてもよい。
さらに、前記へテロ環は、本発明の趣旨を逸脱しない範囲において、置換基で置換されていてもよい。置換基の例としては、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、ニトロ基、シアノ基、アミノ基、エステル基などを挙げることができ、ニトロ基、シアノ基、アミノ基が好ましい。
前記有機基をカーボン材料に導入することで、表面修飾カーボン材料が得られる。
カーボン材料を本発明の有機基で表面修飾する方法は特に限定されず、公知の方法を用いることができる。例えば、有機基を含むアミン類を濃塩酸存在下で亜硝酸ナトリウム水溶液と氷冷しつつ反応させ、有機基を含むジアゾニウム塩を得た後、得られた有機基を含むジアゾニウム塩をカーボン材料と共存させた状態で熱分解する方法が挙げられる。この方法の詳細については、特開2006-199968号公報の記載を参照することができる。
その他の公知の表面修飾方法において、カーボン材料と本発明の連結基が直接反応して、有機基で表面修飾させるような方法を用いることが好ましい。
カーボン材料を本発明の有機基で表面修飾する方法は特に限定されず、公知の方法を用いることができる。例えば、有機基を含むアミン類を濃塩酸存在下で亜硝酸ナトリウム水溶液と氷冷しつつ反応させ、有機基を含むジアゾニウム塩を得た後、得られた有機基を含むジアゾニウム塩をカーボン材料と共存させた状態で熱分解する方法が挙げられる。この方法の詳細については、特開2006-199968号公報の記載を参照することができる。
その他の公知の表面修飾方法において、カーボン材料と本発明の連結基が直接反応して、有機基で表面修飾させるような方法を用いることが好ましい。
表面修飾カーボン材料におけるカーボンの割合は、70.0~99.5質量%であることが好ましく、80.0~99.0質量%であることがより好ましく、90.0~98.5質量%であることがさらに好ましい。
本発明において、白金担持カーボン材料の作製方法としては、カーボン材料に連結基を介して上記有機基を導入した後に白金系粒子を担持する方法と、カーボン材料に白金系粒子を担持した後に連結基を介して上記有機基を導入する方法がある。いずれの方法も好ましく用いられる。
本発明において、白金担持カーボン材料の作製方法としては、カーボン材料に連結基を介して上記有機基を導入した後に白金系粒子を担持する方法と、カーボン材料に白金系粒子を担持した後に連結基を介して上記有機基を導入する方法がある。いずれの方法も好ましく用いられる。
(白金系粒子)
本発明において、表面修飾カーボン材料に担持する白金系粒子は、白金、白金合金、またはそれらの混合物である。白金合金としては、白金とその他の貴金属との合金、あるいは白金と遷移金属との合金を挙げることができ、好ましくは白金または白金とその他の貴金属との合金である。具体的には、Pt-Cr、Pt-Ni、Pt-Co、Pt-Cu、Pt-Fe、Pt-Ru、Pt-Mo、Pt-Ru-Mo、Pt-Ru-W、Pt-Ru-Co、Pt-Ru-Fe、Pt-Ru-Ni、Pt-Ru-Cu、Pt-Ru-Sn、Pt-Ru-Auなどを挙げることができる。
本発明において、表面修飾カーボン材料に担持する白金系粒子は、白金、白金合金、またはそれらの混合物である。白金合金としては、白金とその他の貴金属との合金、あるいは白金と遷移金属との合金を挙げることができ、好ましくは白金または白金とその他の貴金属との合金である。具体的には、Pt-Cr、Pt-Ni、Pt-Co、Pt-Cu、Pt-Fe、Pt-Ru、Pt-Mo、Pt-Ru-Mo、Pt-Ru-W、Pt-Ru-Co、Pt-Ru-Fe、Pt-Ru-Ni、Pt-Ru-Cu、Pt-Ru-Sn、Pt-Ru-Auなどを挙げることができる。
前記表面修飾カーボン材料に担持する白金系粒子の粒子サイズは、1.0~3.0nmが好ましく、1.5~3.0nmであることがさらに好ましく、2.0~3.0nmであることが特に好ましい。粒子サイズが3nm以下であれば単位質量当りの表面積が比較的大きいため、触媒活性の点で好ましい。また、粒子サイズが1nm以上であれば白金系粒子は比較的安定であるため、凝集や溶出の抑制がし易くて好ましい。
(白金担持カーボン)
本発明の白金担持カーボンは、非共有電子対を有する窒素原子または非共有電子対を有する硫黄原子を含む有機基を、連結基を介してカーボン材料に導入した表面修飾カーボン材料と、該表面修飾カーボン材料に担持する白金粒子または白金合金粒子とからなる。
本発明において、白金担持カーボン材料の作製方法としては、カーボン材料に連結基を介して上記有機基を導入した後に白金系粒子を担持する方法が好ましく用いられる。
本発明の白金担持カーボンは、非共有電子対を有する窒素原子または非共有電子対を有する硫黄原子を含む有機基を、連結基を介してカーボン材料に導入した表面修飾カーボン材料と、該表面修飾カーボン材料に担持する白金粒子または白金合金粒子とからなる。
本発明において、白金担持カーボン材料の作製方法としては、カーボン材料に連結基を介して上記有機基を導入した後に白金系粒子を担持する方法が好ましく用いられる。
上記方法により表面修飾カーボン材料を調製した後、公知の方法により白金系粒子を担持させることができる。例えば、熱還元法、スパッタ法、パルスレーザーデポジション法、真空蒸着法などが挙げられる。上記のうち、熱還元法は溶液中で行うことができ、専用の設備が不要であるため、好ましい。熱還元法は含浸法やコロイド法などに分類されるが、白金粒子や白金合金粒子を高分散させることができるため、熱還元法の中でもコロイド法が特に好ましい(例えばJ.Phys.Chem.B 2003,107,6292-6299)。
本発明の白金担持カーボン中の白金系粒子含有率は、20~70重量%が好ましく、20~60重量%であることがさらに好ましく、20~50重量%であることが特に好ましい。含有率が70質量%以下であれば、白金系粒子の凝集を抑制し易く、触媒活性の点で好ましい。白金担持カーボン中の白金系粒子含有率が20質量%以上であれば反応物質の拡散性を高くし易いため好ましい。
本発明の白金担持カーボンは、高い白金担持能を有する。白金担持カーボンの白金担持能は、白金担持カーボンに超音波を照射した際に担体から脱落した白金粒子量を定量することで評価することができる。
具体的な白金担持能の評価方法としては、安定剤を加えた水溶液中に白金担持カーボン50mgを添加し、出力38kHzで超音波を3時間照射した後の遊離した白金粒子量を測定する。本発明の白金担持カーボンは、水溶液中で出力38kHzで3時間超音波照射した後の白金粒子脱落率が、20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。白金粒子脱落率が低いということは、白金粒子がカーボン担体に十分に強く担持されていることを示しており、白金担持カーボンが高い耐久性を有していることを意味している。
具体的な白金担持能の評価方法としては、安定剤を加えた水溶液中に白金担持カーボン50mgを添加し、出力38kHzで超音波を3時間照射した後の遊離した白金粒子量を測定する。本発明の白金担持カーボンは、水溶液中で出力38kHzで3時間超音波照射した後の白金粒子脱落率が、20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。白金粒子脱落率が低いということは、白金粒子がカーボン担体に十分に強く担持されていることを示しており、白金担持カーボンが高い耐久性を有していることを意味している。
本発明の白金担持カーボン中の白金粒子は、白金担持カーボン中に高分散していることが好ましい。
(電極膜接合体)
本発明の白金担持カーボンを用いれば、優れた電極膜接合体(Membrane and Electrode Assembly)を製造することができる。
図1は本発明の電極膜接合体の断面概略図の一例を示したものである。電極膜接合体10は、膜状の高分子電解質膜11と、それを挟んで対向するアノード電極12及カソード電極13を備える。
アノード電極12とカソード電極13は、多孔質導電シート(例えばカーボンペーパー)12a、13aと触媒層12b、13bからなる。触媒層12b、13bは、本発明の白金担持カーボンと高分子電解質とからなる。
本発明の白金担持カーボンを用いれば、優れた電極膜接合体(Membrane and Electrode Assembly)を製造することができる。
図1は本発明の電極膜接合体の断面概略図の一例を示したものである。電極膜接合体10は、膜状の高分子電解質膜11と、それを挟んで対向するアノード電極12及カソード電極13を備える。
アノード電極12とカソード電極13は、多孔質導電シート(例えばカーボンペーパー)12a、13aと触媒層12b、13bからなる。触媒層12b、13bは、本発明の白金担持カーボンと高分子電解質とからなる。
電極の作製方法について説明する。ナフィオンに代表される高分子電解質を溶媒に溶解し、本発明の白金担持カーボンと混合し、分散させる。分散方法は、攪拌による方法でも良いが、超音波分散、ボールミル等を用いることもできる。溶媒としては、複素環化合物(3-メチル-2-オキサゾリジノン、N-メチルピロリドン等)、環状エーテル類(ジオキサン、テトラヒドロフラン等)、鎖状エーテル類(ジエチルエーテル、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等)、アルコール類(メタノール、エタノール、イソプロパノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等)、多価アルコール類(エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等)、ニトリル化合物(アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等)、非極性溶媒(トルエン、キシレン等)、塩素系溶媒(メチレンクロリド、エチレンクロリド等)、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、アセタミド等)、水等が好ましく用いられ、この中でも複素環化合物、アルコール類、多価アルコール類、アミド類がより好ましく用いられる。
得られた分散液を電解質膜、または支持体上に適用した後、乾燥させて触媒層を製膜する。ここでは、上記分散液を用いて、押出成型によって製膜してもよいし、これらの分散液をキャスト、または塗布して製膜してもよい。塗布方法は特に限定されないが、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法等を用いることができる。
支持体は特に限定されないが、好ましい例としてはガラス基板、金属基板、高分子フィルム、反射板等を挙げることができる。高分子フィルムとしては、トリアセチルセルロース(TAC)等のセルロース系高分子フィルム、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のエステル系高分子フィルム、ポリトリフルオロエチレン(PTFE)等のフッ素系高分子フィルム、ポリイミドフィルム等が挙げられる。塗布方式は上記の塗布法を用いることができる。特に、支持体として導電性多孔質体(カーボンペーパー、カーボンクロス)を用いると直接触媒電極が作製できるため、好ましい。
これらの操作は、カレンダーロール、キャストロール等のロールまたはTダイを用いたフィルム成形機で行なうこともでき、プレス機器を用いたプレス成形とすることもできる。さらに延伸工程を追加し、膜厚制御、膜特性改良を行ってもよい。
塗布工程の乾燥温度は乾燥速度に関連し、材料の性質に応じて選択することができる。好ましくは-20℃~150℃であり、より好ましくは20℃~120℃であり、さらに好ましくは50℃~100℃である。乾燥時間は、短時間であるほうが生産性の観点から好ましく、気泡、表面の凹凸等の欠陥防止の観点から、ある程度の時間を採用した方が好ましい。このため、乾燥時間は1分~48時間が好ましく、5分~10時間がさらに好ましく、10分~5時間が特に好ましい。また相対湿度は、25~100%が好ましく、50%~95%がさらに好ましい。
塗布工程における塗布液中には、金属イオンの含量が少ない物が好ましく、特に遷移金属イオン、中でも鉄イオン、ニッケルイオン、コバルトイオンは少ない物が好ましい。含量は500ppm以下が好ましく、100ppm以下が特に好ましい。従って、前述の工程で使用する溶媒も、これらのイオンの含量の低いものが好ましい。
さらに製膜工程を経た後に表面処理を行なってもよい。表面処理としては、粗面処理、表面切削、除去、コーティング処理を行なってもよく、これらを行うことによって高分子電解質膜あるいは多孔質導電体との密着を改良できることがある。
高分子電解質膜としては、フッ素系電解質膜や炭化水素系電解質膜を用いることができる。具体的には、ナフィオン(登録商標)に代表されるパーフルオロカーボンスルホン酸ポリマー、側鎖にリン酸基を有するポリ(メタ)アクリレート、スルホン化ポリエーテルエーテルケトン、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリベンズイミダゾール等の耐熱芳香族高分子、スルホン化ポリスチレン、スルホン化ポリオキセタン、スルホン化ポリイミド、スルホン化ポリフェニレンスルフィド、スルホン化ポリフェニレンオキシド、スルホン化ポリフェニレンの膜が挙げられる。高分子電解質膜の厚さは5~200μmが好ましく、10~100μmが特に好ましい。
触媒層12b、13bを高分子電解質膜11に密着させるために、多孔質導電シート12a、13aに触媒層12b、13bを塗設したものを、高分子電解質膜11にホットプレス法(好ましくは120~130℃、2~100kg/cm2)で圧着するか、適当な支持体に触媒層12b、13bを塗設したものを、高分子電解質膜11に転写しながら圧着した後、多孔質導電シート12a、13aで挟み込む方法を一般が好ましく用いられる。
(燃料電池)
本発明の電極膜接合体を用いれば、電池特性に優れた燃料電池を製造することができる。
図2に燃料電池構造の一例を示す。燃料電池は電極膜接合体10と、電極膜接合体10を挟持する一対のセパレータ21、22と、セパレータ21、22に取り付けられたステンレスネットからなる集電体17およびパッキン14とを有する。アノード極側のセパレータ21にはアノード極側開口部15が設けられ、カソード極側のセパレータ22にはカソード極側開口16設けられている。アノード極側開口部15からは、水素、アルコール類(メタノール等)等のガス燃料またはアルコール水溶液等の液体燃料が供給され、カソード極側開口部16からは、酸素ガス、空気等の酸化剤ガスが供給される。
本発明の電極膜接合体を用いれば、電池特性に優れた燃料電池を製造することができる。
図2に燃料電池構造の一例を示す。燃料電池は電極膜接合体10と、電極膜接合体10を挟持する一対のセパレータ21、22と、セパレータ21、22に取り付けられたステンレスネットからなる集電体17およびパッキン14とを有する。アノード極側のセパレータ21にはアノード極側開口部15が設けられ、カソード極側のセパレータ22にはカソード極側開口16設けられている。アノード極側開口部15からは、水素、アルコール類(メタノール等)等のガス燃料またはアルコール水溶液等の液体燃料が供給され、カソード極側開口部16からは、酸素ガス、空気等の酸化剤ガスが供給される。
水素-酸素系燃料電池における活性分極はアノード極(水素極)に比べ、カソード極(空気極)が大きい。これは、アノード極に比べ、カソード極の反応(酸素の還元)が遅いためである。酸素極の活性向上を目的として、Pt-Cr、Pt-Ni、Pt-Co、Pt-Cu、Pt-Feなどのさまざまな白金基二元合金を用いることができる。アノード燃料にメタノール水溶液を用いる直接メタノール燃料電池においては、メタノールの酸化過程で生じるCOによる触媒被毒を抑制することが重要である。この目的のために、例えば、Pt-Ru、Pt-Fe、Pt-Ni、Pt-Co、Pt-Moなどの白金基二元合金、Pt-Ru-Mo、Pt-Ru-W、Pt-Ru-Co、Pt-Ru-Fe、Pt-Ru-Ni、Pt-Ru-Cu、Pt-Ru-Sn、Pt-Ru-Auなどの白金基三元合金を用いることができる。ここでは、これらの白金合金粒子を担持した本発明の白金担持カーボンを使用することができる。
触媒層の機能は、(1)燃料を活性金属に輸送すること、(2)燃料の酸化(アノード極)、還元(カソード極)反応の場を提供すること、(3)酸化還元により生じた電子を集電体に伝達すること、(4)反応により生じたプロトンを高分子電解質に輸送すること、である。(1)のために触媒層は、液体および気体燃料が奥まで透過できる多孔質性であることが必要である。(2)と(3)は本発明の白金担持カーボンが担うことが好ましい。(4)の機能を果たすために、触媒層に高分子電解質を混在させる。
触媒層のプロトン伝導材料としては、プロトン供与基を持った固体であれば制限はないが、高分子電解質に用いられる酸残基を有する高分子化合物(例えば、ナフィオンに代表されるパーフルオロカーボンスルホン酸)などが利用できる。
触媒の使用量は、0.03~10mg/cm2の範囲が電池出力と経済性の観点から適している。プロトン伝導材料の量は、白金担持カーボンの質量に対して、0.1~1.0倍が適している。
電極基材は、集電機能および水がたまりガスの透過が悪化するのを防ぐ役割を担う。通常は、カーボンペーパーやカーボン布を使用し、撥水化のためにポリテトラフルオロエチレン(PTFE)処理を施したものを使用することもできる。
本発明の燃料電池の燃料として用いることのできるのは、例えば、アノード燃料としては、水素、アルコール類(メタノール、エタノール、イソプロパノール、エチレングリコールなど)、エーテル類(ジメチルエーテル、ジメトキシメタン、トリメトキシメタンなど)、ギ酸、水素化ホウ素錯体、アスコルビン酸などが挙げられ、水素、メタノールが好ましく用いられる。カソード燃料としては、酸素(大気中の酸素も含む)、過酸化水素などが挙げられる。
アノード燃料およびカソード燃料を、それぞれの触媒層に供給する方法には、ポンプ等の補機を用いて強制循環させる方法(アクティブ型)と、補機を用いない方法(例えば、液体の場合には毛管現象や自然落下により、気体の場合には大気に触媒層を晒し供給するパッシブ型)の2通りがあり、これらを組み合わせることも可能である。好ましいのは、高出力が得られるアクティブ型である。
燃料電池の単セル電圧は一般的に1V以下であるので、負荷の必要電圧に合わせて、単セルを直列スタッキングして用いる。スタッキングの方法としては、単セルを平面上に並べる「平面スタッキング」および、単セルを、両側に燃料流路の形成されたセパレータを介して積み重ねる「バイポーラースタッキング」が用いられる。後者は、熱効率が高く、電池がコンパクトになるため燃料電池に適している。この他にも、MEMS技術を応用し、シリコンウェハー上に微細加工を施し、スタッキングする方法も提案されている。
燃料電池は、運輸用、家庭用、携帯機器用など様々な利用が考えられているが、例えば、好ましく適用できる運輸用途としては、自動車(乗用車、貨物車、二輪車、個人用ビーグル)、船舶、家庭用としてはコジェネシステム、掃除機、ロボット、携帯機器としては携帯電話、ノートパソコン、電子スチルカメラ、PDA、ビデオカメラ、携帯ゲーム機などが挙げられる。さらに、ポータブル発電機、野外照明機器などにも用いることができる。また、産業用や家庭用などのロボットあるいはその他の玩具の電源としても好ましく用いることができる。さらには、これらの機器に搭載された2次電池、キャパシタの充電用電源としても有用である
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
実施例1 表面修飾カーボンの作製
(実施例1-1 M-1の作製)
濃塩酸(10mL)と水(25mL)に3-アミノピラゾール(0.83g)を加え氷浴につけて攪拌した。この溶液に、亜硝酸ナトリウム(0.69g)を水(10mL)に溶解させた水溶液を20分かけて滴下し、氷浴につけたまま攪拌した。この溶液にアセチレンブラック(100%プレス品、電気化学工業製、平均粒子サイズ36nm)(2.40g)を加え、40℃まで昇温し、5時間攪拌した後、室温まで放冷した。生成物をろ取し、水、N,N-ジメチルアセトアミド、アセトンで洗浄した後、減圧下で乾燥させることで表面修飾カーボン材料(M-1)を2.30g得た。有機元素分析より0.9%の窒素原子を含むことが示された。したがって、表面修飾カーボン材料1g当たり0.32mmolのピラゾリル基が導入されたことが分かった。
(実施例1-1 M-1の作製)
濃塩酸(10mL)と水(25mL)に3-アミノピラゾール(0.83g)を加え氷浴につけて攪拌した。この溶液に、亜硝酸ナトリウム(0.69g)を水(10mL)に溶解させた水溶液を20分かけて滴下し、氷浴につけたまま攪拌した。この溶液にアセチレンブラック(100%プレス品、電気化学工業製、平均粒子サイズ36nm)(2.40g)を加え、40℃まで昇温し、5時間攪拌した後、室温まで放冷した。生成物をろ取し、水、N,N-ジメチルアセトアミド、アセトンで洗浄した後、減圧下で乾燥させることで表面修飾カーボン材料(M-1)を2.30g得た。有機元素分析より0.9%の窒素原子を含むことが示された。したがって、表面修飾カーボン材料1g当たり0.32mmolのピラゾリル基が導入されたことが分かった。
(実施例1-2 M-2の作製)
3-アミノピラゾールの代わりに4-ニトロアニリン(1.38g)を用いた以外は、実施例1-1と同様にして、表面修飾カーボン材料(M-2)を2.37g得た。有機元素分析より0.6%の窒素原子を含むことが示された。したがって、表面修飾カーボン材料1g当たり0.43mmolのニトロフェニル基(還元電位:-1.15V)が導入されたことが分かった。
3-アミノピラゾールの代わりに4-ニトロアニリン(1.38g)を用いた以外は、実施例1-1と同様にして、表面修飾カーボン材料(M-2)を2.37g得た。有機元素分析より0.6%の窒素原子を含むことが示された。したがって、表面修飾カーボン材料1g当たり0.43mmolのニトロフェニル基(還元電位:-1.15V)が導入されたことが分かった。
(実施例1-3 M-3の作製)
3-アミノピラゾールの代わりに2-アミノアントラキノン(2.23g)を用いた以外は、実施例1-1と同様にして、表面修飾カーボン材料(M-3)を2.37g得た。有機元素分析より酸素原子1.6%を含むことが示唆された。したがって、表面修飾カーボン材料1g当たり0.50mmolのアントラキノニル基(還元電位:-0.86V)が導入されたことが分かった。
3-アミノピラゾールの代わりに2-アミノアントラキノン(2.23g)を用いた以外は、実施例1-1と同様にして、表面修飾カーボン材料(M-3)を2.37g得た。有機元素分析より酸素原子1.6%を含むことが示唆された。したがって、表面修飾カーボン材料1g当たり0.50mmolのアントラキノニル基(還元電位:-0.86V)が導入されたことが分かった。
(実施例1-4 M-4の作製)
濃塩酸(50mL)と水(125mL)に3-アミノピラゾール(4.16g)を加え氷浴につけて攪拌した。この溶液に多層カーボンナノチューブ(直径3~20nm、和光純薬製)(6.0g)を加え、さらに亜硝酸ナトリウム(3.45g)を水(25mL)に溶解させた水溶液を20分かけて滴下した。この溶液に50℃まで昇温し、3時間攪拌した後、室温まで放冷した。生成物をろ取し、N,N-ジメチルアセトアミド、アセトンで洗浄した後、減圧下で乾燥させることで表面修飾カーボン材料(M-4)を6.38g得た。
濃塩酸(50mL)と水(125mL)に3-アミノピラゾール(4.16g)を加え氷浴につけて攪拌した。この溶液に多層カーボンナノチューブ(直径3~20nm、和光純薬製)(6.0g)を加え、さらに亜硝酸ナトリウム(3.45g)を水(25mL)に溶解させた水溶液を20分かけて滴下した。この溶液に50℃まで昇温し、3時間攪拌した後、室温まで放冷した。生成物をろ取し、N,N-ジメチルアセトアミド、アセトンで洗浄した後、減圧下で乾燥させることで表面修飾カーボン材料(M-4)を6.38g得た。
(実施例1-5 M-5の作製)
多層カーボンナノチューブ(直径3~20nm、和光純薬製)(6.0g)の代わりに多層カーボンナノチューブ(直径20~30nm、和光純薬製)(5.0g)を用いた以外は、実施例1-4と同様にして、表面修飾カーボン材料(M-5)を5.19g得た。
多層カーボンナノチューブ(直径3~20nm、和光純薬製)(6.0g)の代わりに多層カーボンナノチューブ(直径20~30nm、和光純薬製)(5.0g)を用いた以外は、実施例1-4と同様にして、表面修飾カーボン材料(M-5)を5.19g得た。
(実施例1-6 M-6の作製)
3-アミノピラゾールの代わりに2-アミノ-9-フロオレノン(1.95g)を用いた以外は、実施例1-1と同様にして、表面修飾カーボン材料(M-6)を2.48g得た。有機元素分析より酸素原子1.0%を含むことが示唆された。したがって、表面修飾カーボン材料1g当たり0.63mmolの9-フロオレノニル基(還元電位:-1.26V)が導入されたことが分かった。
3-アミノピラゾールの代わりに2-アミノ-9-フロオレノン(1.95g)を用いた以外は、実施例1-1と同様にして、表面修飾カーボン材料(M-6)を2.48g得た。有機元素分析より酸素原子1.0%を含むことが示唆された。したがって、表面修飾カーボン材料1g当たり0.63mmolの9-フロオレノニル基(還元電位:-1.26V)が導入されたことが分かった。
(実施例1-7 M-7の作製)
3-アミノピラゾールの代わりに4-アミノ-N-メチルフタルイミド(1.76g)を用いた以外は、実施例1-1と同様にして、表面修飾カーボン材料(M-7)を2.47g得た。有機元素分析より硫黄原子0.6%を含むことが示唆された。したがって、表面修飾カーボン材料1g当たり0.43mmolのN-メチルフタルイミド基(還元電位:-1.46V)が導入されたことが分かった。
3-アミノピラゾールの代わりに4-アミノ-N-メチルフタルイミド(1.76g)を用いた以外は、実施例1-1と同様にして、表面修飾カーボン材料(M-7)を2.47g得た。有機元素分析より硫黄原子0.6%を含むことが示唆された。したがって、表面修飾カーボン材料1g当たり0.43mmolのN-メチルフタルイミド基(還元電位:-1.46V)が導入されたことが分かった。
(実施例1-8 M-8の作製)
3-アミノピラゾールの代わりに2-アミノチアゾール(1.00g)を用いた以外は、実施例1-1と同様にして、表面修飾カーボン材料(M-8)を2.37g得た。有機元素分析より硫黄原子1.2%を含むことが示唆された。したがって、表面修飾カーボン材料1g当たり0.37mmolのチアゾリル基が導入されたことが分かった。
3-アミノピラゾールの代わりに2-アミノチアゾール(1.00g)を用いた以外は、実施例1-1と同様にして、表面修飾カーボン材料(M-8)を2.37g得た。有機元素分析より硫黄原子1.2%を含むことが示唆された。したがって、表面修飾カーボン材料1g当たり0.37mmolのチアゾリル基が導入されたことが分かった。
(実施例1-9 M-9の作製)
3-アミノピラゾールの代わりに5-アミノベンゾチアゾール(1.50g)を用いた以外は、実施例1-1と同様にして、表面修飾カーボン材料(M-9)を2.62g得た。有機元素分析より硫黄原子1.6%を含むことが示唆された。したがって、表面修飾カーボン材料1g当たり0.50mmolのベンゾチアゾリル基が導入されたことが分かった。
3-アミノピラゾールの代わりに5-アミノベンゾチアゾール(1.50g)を用いた以外は、実施例1-1と同様にして、表面修飾カーボン材料(M-9)を2.62g得た。有機元素分析より硫黄原子1.6%を含むことが示唆された。したがって、表面修飾カーボン材料1g当たり0.50mmolのベンゾチアゾリル基が導入されたことが分かった。
実施例2 表面修飾カーボンへの白金粒子の担持
(実施例2-1 C-1の作製)
塩化白金酸・6水和物(1.00g)と水酸化ナトリウム(1.00g)をエチレングリコール(100g)に溶解させ、窒素雰囲気下、120℃で攪拌した。1時間後、加熱を止めて室温まで放冷した。この溶液に表面修飾カーボン材料M-1(1.50g)を加え、10分間超音波分散を行った。この分散液に酢酸(5mL)と水(200mL)を加え、室温で3時間攪拌した。生成物をろ別し、水で洗浄した後、80℃で減圧乾燥することで白金担持量20質量%の白金担持カーボンC-1を1.77g得た。
(実施例2-1 C-1の作製)
塩化白金酸・6水和物(1.00g)と水酸化ナトリウム(1.00g)をエチレングリコール(100g)に溶解させ、窒素雰囲気下、120℃で攪拌した。1時間後、加熱を止めて室温まで放冷した。この溶液に表面修飾カーボン材料M-1(1.50g)を加え、10分間超音波分散を行った。この分散液に酢酸(5mL)と水(200mL)を加え、室温で3時間攪拌した。生成物をろ別し、水で洗浄した後、80℃で減圧乾燥することで白金担持量20質量%の白金担持カーボンC-1を1.77g得た。
(実施例2-2 C-2の作製)
表面修飾カーボンM-1の代わりにM-2を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-2を1.70g得た。
表面修飾カーボンM-1の代わりにM-2を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-2を1.70g得た。
(実施例2-3 C-3の作製)
表面修飾カーボンM-1の代わりにM-3を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-3を0.82g得た。
表面修飾カーボンM-1の代わりにM-3を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-3を0.82g得た。
(実施例2-4 C-4の作製)
表面修飾カーボンM-1の代わりにM-4を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-4を1.81g得た。
表面修飾カーボンM-1の代わりにM-4を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-4を1.81g得た。
(実施例2-5 C-5の作製)
表面修飾カーボンM-1(1.51g)の代わりに表面修飾カーボンM-4(0.75g)を加えた以外は同様にして、白金担持量33質量%の白金担持カーボンC-5を1.10g得た。
表面修飾カーボンM-1(1.51g)の代わりに表面修飾カーボンM-4(0.75g)を加えた以外は同様にして、白金担持量33質量%の白金担持カーボンC-5を1.10g得た。
(実施例2-6 C-6の作製)
表面修飾カーボンM-1の代わりにM-5を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-6を1.79g得た。
表面修飾カーボンM-1の代わりにM-5を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-6を1.79g得た。
(実施例2-7 C-7の作製)
表面修飾カーボンM-1の代わりにM-6を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-7を0.82g得た。
表面修飾カーボンM-1の代わりにM-6を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-7を0.82g得た。
(実施例2-8 C-8の作製)
表面修飾カーボンM-1の代わりにM-7を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-8を1.81g得た。
表面修飾カーボンM-1の代わりにM-7を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-8を1.81g得た。
(実施例2-9 C-9の作製)
表面修飾カーボンM-1の代わりにM-8を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-9を0.85g得た。
表面修飾カーボンM-1の代わりにM-8を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-9を0.85g得た。
(実施例2-10 C-10の作製)
表面修飾カーボンM-1の代わりにM-9を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-10を1.81g得た。
表面修飾カーボンM-1の代わりにM-9を用いた以外は同様にして、白金担持量20質量%の白金担持カーボンC-10を1.81g得た。
実施例3 電極膜接合体と燃料電池の作製
(実施例3-1 電極膜接合体と燃料電池の作製)
前記実施例2-1、2-2、2-3で作製した白金担持カーボンC-1、C-2、C-3を用い、電極膜接合体を作製した。それぞれの白金担持カーボン0.35gに、バインダーとしてのナフィオン溶液(5%アルコール水溶液)4.00gと溶媒としての水0.10gを加え、超音波分散器で3時間分散させた。得られた分散物をPTFEシート(サンゴバン製、381‐6)上に塗布し、乾燥した後、5cm角に切り取り、触媒膜を作製した。
固体電解質膜としてはナフィオンNRE-212膜(デュポン社製)を用い、ナフィオンNRE-212膜の両面に上記で得られた触媒膜を塗布面がナフィオンNRE-212膜に接するように張り合わせ、ホットプレスにより熱圧着し、電極膜接合体を作製した。
得られた電極膜接合体を図2に示す燃料電池にセットし、燃料電池を作製した。
(実施例3-1 電極膜接合体と燃料電池の作製)
前記実施例2-1、2-2、2-3で作製した白金担持カーボンC-1、C-2、C-3を用い、電極膜接合体を作製した。それぞれの白金担持カーボン0.35gに、バインダーとしてのナフィオン溶液(5%アルコール水溶液)4.00gと溶媒としての水0.10gを加え、超音波分散器で3時間分散させた。得られた分散物をPTFEシート(サンゴバン製、381‐6)上に塗布し、乾燥した後、5cm角に切り取り、触媒膜を作製した。
固体電解質膜としてはナフィオンNRE-212膜(デュポン社製)を用い、ナフィオンNRE-212膜の両面に上記で得られた触媒膜を塗布面がナフィオンNRE-212膜に接するように張り合わせ、ホットプレスにより熱圧着し、電極膜接合体を作製した。
得られた電極膜接合体を図2に示す燃料電池にセットし、燃料電池を作製した。
(実施例3-2 電極膜接合体と燃料電池の作製)
前記実施例2-4、2-6で作製した白金担持カーボンC-4、C-6を用い、電極膜接合体を作製した。それぞれ、白金担持カーボン0.35gに、ナフィオン溶液(5%アルコール水溶液)4.00g、水1g、1-プロパノールを加え、直径1mmのジルコニアボール(ニッカトー製、YTZボール)10gとともに遊星型ボールミルにて回転数300rpmで8時間分散させた。得られた分散物をPTFEシート上に塗布し、乾燥した後、5cm角に切り取り、触媒膜を作製した。
固体電解質膜としてはナフィオンNRE-212膜を用い、ナフィオンNRE-212膜の両面に上記で得られた触媒膜を塗布面がナフィオンNRE-212膜に接するように張り合わせ、ホットプレスにより熱圧着し、電極膜接合体を作製した。
得られた電極膜接合体を図2に示す燃料電池にセットし、燃料電池を作製した。
前記実施例2-4、2-6で作製した白金担持カーボンC-4、C-6を用い、電極膜接合体を作製した。それぞれ、白金担持カーボン0.35gに、ナフィオン溶液(5%アルコール水溶液)4.00g、水1g、1-プロパノールを加え、直径1mmのジルコニアボール(ニッカトー製、YTZボール)10gとともに遊星型ボールミルにて回転数300rpmで8時間分散させた。得られた分散物をPTFEシート上に塗布し、乾燥した後、5cm角に切り取り、触媒膜を作製した。
固体電解質膜としてはナフィオンNRE-212膜を用い、ナフィオンNRE-212膜の両面に上記で得られた触媒膜を塗布面がナフィオンNRE-212膜に接するように張り合わせ、ホットプレスにより熱圧着し、電極膜接合体を作製した。
得られた電極膜接合体を図2に示す燃料電池にセットし、燃料電池を作製した。
(実施例3-3 電極膜接合体と燃料電池の作製)
前記実施例2-5で作製した白金担持カーボンC-5を用い、電極膜接合体を作製した。白金担持カーボン0.35gに、ナフィオン溶液(5%アルコール水溶液)4.00g、水1g、1-プロパノールを加え、直径1mmのジルコニアボール10gとともに遊星型ボールミルにて回転数300rpmで8時間分散させた。得られた分散物をPTFEシート上に塗布し、乾燥した後、5cm角に切り取り、触媒膜を作製した。
固体電解質膜としてはナフィオンNRE-212膜を用い、ナフィオンNRE-212膜の両面に上記で得られた触媒膜を塗布面がナフィオンNRE-212膜に接するように張り合わせ、ホットプレスにより熱圧着し、電極膜接合体を作製した。
得られた電極膜接合体を図2に示す燃料電池にセットし、燃料電池を作製した。
前記実施例2-5で作製した白金担持カーボンC-5を用い、電極膜接合体を作製した。白金担持カーボン0.35gに、ナフィオン溶液(5%アルコール水溶液)4.00g、水1g、1-プロパノールを加え、直径1mmのジルコニアボール10gとともに遊星型ボールミルにて回転数300rpmで8時間分散させた。得られた分散物をPTFEシート上に塗布し、乾燥した後、5cm角に切り取り、触媒膜を作製した。
固体電解質膜としてはナフィオンNRE-212膜を用い、ナフィオンNRE-212膜の両面に上記で得られた触媒膜を塗布面がナフィオンNRE-212膜に接するように張り合わせ、ホットプレスにより熱圧着し、電極膜接合体を作製した。
得られた電極膜接合体を図2に示す燃料電池にセットし、燃料電池を作製した。
比較例1 未修飾アセチレンブラックを用いた電極膜接合体と燃料電池の作製
(未修飾カーボン材料(担体)への白金担持)
アセチレンブラック(100%プレス品、電気化学工業製)(1.50g)を用いた以外は実施例2-1と同様にして、白金担持量20質量%の白金担持カーボンR-1を1.81g得た。
(未修飾カーボン材料(担体)への白金担持)
アセチレンブラック(100%プレス品、電気化学工業製)(1.50g)を用いた以外は実施例2-1と同様にして、白金担持量20質量%の白金担持カーボンR-1を1.81g得た。
(電極膜接合体と燃料電池の作製)
白金担持カーボンR-1(0.35g)に、バインダーとしてのナフィオン溶液(5%アルコール水溶液)6.00gと溶媒としての水0.10g、1-プロパノール1.00gを加え、超音波分散器で3時間分散させた。ここで、実施例3-1に比べてバインダー量は1.5倍用いている。これは、実施例3-1と同じバインダー量では熱圧着工程において、PTFEシートから固体電解質膜に上手く転写できなかったためである。それ以降の工程は、実施例3-1と同様に行った。
白金担持カーボンR-1(0.35g)に、バインダーとしてのナフィオン溶液(5%アルコール水溶液)6.00gと溶媒としての水0.10g、1-プロパノール1.00gを加え、超音波分散器で3時間分散させた。ここで、実施例3-1に比べてバインダー量は1.5倍用いている。これは、実施例3-1と同じバインダー量では熱圧着工程において、PTFEシートから固体電解質膜に上手く転写できなかったためである。それ以降の工程は、実施例3-1と同様に行った。
比較例2 未修飾カーボンブラック担体を用いた電極膜接合体と燃料電池の作製
(未修飾カーボン材料(担体)への白金担持)
粉末X線回折において、(002)面に由来するピークの半値幅の2θの値が7.3°である、結晶性の低いカーボンブラック(Cabot社製、Vulcan XC-72)を担体とする白金担持量20質量%の白金担持カーボンR-2(TEC10V20E、田中貴金属製)を準備した。
この白金担持カーボンR-2を用いた以外は実施例3-1と同様にして、燃料電池を作製した。
(未修飾カーボン材料(担体)への白金担持)
粉末X線回折において、(002)面に由来するピークの半値幅の2θの値が7.3°である、結晶性の低いカーボンブラック(Cabot社製、Vulcan XC-72)を担体とする白金担持量20質量%の白金担持カーボンR-2(TEC10V20E、田中貴金属製)を準備した。
この白金担持カーボンR-2を用いた以外は実施例3-1と同様にして、燃料電池を作製した。
比較例3 未修飾多層カーボンナノチューブを用いた電極膜接合体と燃料電池の作製
(未修飾多層カーボンナノチューブへの白金担持)
多層ナノチューブ(直径3~20nm、和光純薬製)(1.50g)を用いた以外は実施例2と同様にして、白金担持量20質量%の白金担持カーボンR-3を1.73g得た。
この白金担持カーボンR-3を用いた以外は実施例3-2と同様にして、燃料電池を作製した。
(未修飾多層カーボンナノチューブへの白金担持)
多層ナノチューブ(直径3~20nm、和光純薬製)(1.50g)を用いた以外は実施例2と同様にして、白金担持量20質量%の白金担持カーボンR-3を1.73g得た。
この白金担持カーボンR-3を用いた以外は実施例3-2と同様にして、燃料電池を作製した。
試験例1 超音波による白金粒子の脱落率の測定
白金粒子とカーボン担体との相互作用の強さを評価するため、白金担持カーボンC-1、C-7、C-8、C-9、C-10、R-1、R-2に超音波を照射し、担体から脱落した白金を定量した。カーボン担体から脱落した白金の凝集を防止するため、安定剤としてD,L-2,3-メルカプト-1-プロパンスルホン酸ナトリウム・1水和物(10mg)を水(5.0mL)に溶解させた。この水溶液に白金担持カーボン(50mg)を加え、超音波を3時間照射した。得られた分散液を孔径0.1μmのミリポアフィルターでろ過し、ろ液中に含まれる白金を定量した(表1)。
白金粒子とカーボン担体との相互作用の強さを評価するため、白金担持カーボンC-1、C-7、C-8、C-9、C-10、R-1、R-2に超音波を照射し、担体から脱落した白金を定量した。カーボン担体から脱落した白金の凝集を防止するため、安定剤としてD,L-2,3-メルカプト-1-プロパンスルホン酸ナトリウム・1水和物(10mg)を水(5.0mL)に溶解させた。この水溶液に白金担持カーボン(50mg)を加え、超音波を3時間照射した。得られた分散液を孔径0.1μmのミリポアフィルターでろ過し、ろ液中に含まれる白金を定量した(表1)。
表1において、本発明の白金担持カーボンは未修飾カーボン材料を用いた白金担持カーボンに比べて超音波による白金脱落率が低くなっている。白金脱落率が低いということは白金粒子がカーボン担体に強く担持されていることを示しており、本発明の白金担持カーボンは高い耐久性を有していることが確認された。
試験例2 燃料電池の発電性能評価
実施例3-1、比較例1、2で得られた各燃料電池のアノード側開口部15に水素ガスをフローした。この時カソード側開口部16は空気をフローした。アノード電極12とカソード電極13間に、ポテンシオスタットを接続し、電流-電圧曲線を記録した。カソード電極の白金塗布量が0.15mg/cm2の場合の結果を図3、表2に示す。
また、各燃料電池に用いた白金担持カーボンの粉末X線回折(株式会社リガク社製RINT2500V使用)を測定し、Scherrerの式から白金粒子の粒子サイズを求めた結果も表2に示す。
実施例3-1、比較例1、2で得られた各燃料電池のアノード側開口部15に水素ガスをフローした。この時カソード側開口部16は空気をフローした。アノード電極12とカソード電極13間に、ポテンシオスタットを接続し、電流-電圧曲線を記録した。カソード電極の白金塗布量が0.15mg/cm2の場合の結果を図3、表2に示す。
また、各燃料電池に用いた白金担持カーボンの粉末X線回折(株式会社リガク社製RINT2500V使用)を測定し、Scherrerの式から白金粒子の粒子サイズを求めた結果も表2に示す。
有機基で表面修飾したカーボンを担体として用いたC-1、C-2、C-3はいずれも未修飾カーボンを担体として用いたR-1、R-2と比較して白金粒子サイズが小さくなっており、白金粒子が高分散で担持されていることが確認された。
図3において、未修飾アセチレンブラックを用いたR-1は非常に低い性能を示しているが、これは白金粒子が凝集していること、およびバインダー量が多く、反応ガスが拡散しにくい構造になっているためである。また、結晶性の低い未修飾カーボンブラックを担体として用いたR-2に対し、本発明の白金担持カーボンはいずれも高い発電性能を示した。
図3において、未修飾アセチレンブラックを用いたR-1は非常に低い性能を示しているが、これは白金粒子が凝集していること、およびバインダー量が多く、反応ガスが拡散しにくい構造になっているためである。また、結晶性の低い未修飾カーボンブラックを担体として用いたR-2に対し、本発明の白金担持カーボンはいずれも高い発電性能を示した。
図4には0.08A/cm2における電圧を白金塗布量に対して示した。このような低電流密度域では反応ガスやプロトン、電子といった物質移動による損失が小さく、触媒活性の差が強く反映される。本発明の白金担持カーボンを用いた燃料電池はR-1、R-2に比べ同じ白金塗布量でも高い電圧を示し、高い触媒活性を有することが認められた。これは、欠陥の少ない担体表面に白金微粒子が高分散に担持されたことで発電に寄与できる表面積が増大した結果と考えられる。
試験例3 燃料電池の発電性能評価
実施例3-2、実施例3-3、比較例3で得られた各燃料電池のアノード側開口部15に水素ガスをフローした。この時カソード側開口部16は空気をフローした。アノード電極12とカソード電極13間に、ポテンシオスタットを接続し、電流-電圧曲線を記録した。カソード電極の白金塗布量が0.15mg/cm2の場合の結果を表3に示す。
実施例3-2、実施例3-3、比較例3で得られた各燃料電池のアノード側開口部15に水素ガスをフローした。この時カソード側開口部16は空気をフローした。アノード電極12とカソード電極13間に、ポテンシオスタットを接続し、電流-電圧曲線を記録した。カソード電極の白金塗布量が0.15mg/cm2の場合の結果を表3に示す。
試験例4 燃料電池の耐久性評価
実施例3-1、比較例1、2で得られた各燃料電池のアノード側開口部15に水素ガス、カソード側開口部16は窒素ガスをフローした。アノード電極12とカソード電極13間に、ポテンシオスタットを接続し、1.4Vの電圧をかけたまま30分間保持することで劣化試験を行った。劣化試験前後の電圧変化を表4に示す。
実施例3-1、比較例1、2で得られた各燃料電池のアノード側開口部15に水素ガス、カソード側開口部16は窒素ガスをフローした。アノード電極12とカソード電極13間に、ポテンシオスタットを接続し、1.4Vの電圧をかけたまま30分間保持することで劣化試験を行った。劣化試験前後の電圧変化を表4に示す。
結晶性の低いカーボン材料を担体としたR-2を用いた場合には低電流密度域、高電流密度域ともに劣化試験後に電圧は著しく低下した。カーボン材料の結晶性が低いため担体の腐食が進行したと考えられる。一方、本発明の白金担持カーボンを用いた燃料電池では、低電流密度域、高電流密度域ともに劣化試験前後で電圧はほとんど低下していなかった。このことから、本発明の白金担持カーボンは高い耐久性を有していることが認められた。
Claims (11)
- 粉末X線回折において、(002)面に由来するピークの半値幅が入射X線と反射X線とがなす角度2θで6.0°以下であるカーボン材料を有機基で表面修飾した表面修飾カーボン材料と、該表面修飾カーボンに担持した白金粒子または白金合金粒子からなることを特徴とする白金担持カーボン。
- 前記カーボン材料が、粉末X線回折において、(002)面に由来するピークの半値幅が入射X線と反射X線とがなす角度2θで5.5以下である、請求項1に記載の白金担持カーボン。
- 前記有機基が、非共有電子対を有する窒素原子または非共有電子対を有する硫黄原子を含む有機基、SCE基準で-2.5Vより高電位側に還元電位を有する有機基、または、ヘテロ環を含む有機基である請求項1または2に記載の白金担持カーボン。
- 前記表面修飾カーボン材料が、一般式(1)で表される構造を有する請求項1または2に記載の白金担持カーボン。
一般式(1)
- 前記カーボン材料が、平均粒子サイズが60nm以下のカーボン粒子または直径が50nm以下のカーボンナノチューブであることを特徴とする請求項1~4のいずれか1項に記載の白金担持カーボン。
- 前記カーボン材料がアセチレンブラックまたは多層カーボンナノチューブであることを特徴とする請求項1~5のいずれか1項に記載の白金担持カーボン。
- 前記白金粒子または白金合金粒子の粒子サイズが1nm~10nmであることを特徴とする請求項1~6のいずれか1項に記載の白金担持カーボン。
- 前記白金粒子または白金合金粒子の含有率が5~70重量%であることを特徴とする請求項1~7のいずれか1項に記載の白金担持カーボン。
- 請求項1~8のいずれか1項に記載の白金担持カーボンを含むことを特徴とする燃料電池用触媒。
- 固体高分子電解質膜と、該固体高分子電荷質膜に接して設けられた触媒層とを有し、かつ、前記触媒層が請求項9に記載の燃料電池用触媒を含むことを特徴とする電極膜接合体。
- 請求項10に記載の電極膜接合体を有することを特徴とする燃料電池。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008075093A JP5164627B2 (ja) | 2008-03-24 | 2008-03-24 | 白金担持カーボン、燃料電池用触媒、電極膜接合体、および燃料電池 |
JP2008075094 | 2008-03-24 | ||
JP2008-075092 | 2008-03-24 | ||
JP2008-075093 | 2008-03-24 | ||
JP2008075092A JP2009231049A (ja) | 2008-03-24 | 2008-03-24 | 白金担持カーボン、燃料電池用触媒、電極膜接合体、および燃料電池 |
JP2008-075094 | 2008-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009119556A1 true WO2009119556A1 (ja) | 2009-10-01 |
Family
ID=41113748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/055773 WO2009119556A1 (ja) | 2008-03-24 | 2009-03-24 | 白金担持カーボン、燃料電池用触媒、電極膜接合体、および燃料電池 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009119556A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012069304A (ja) * | 2010-09-22 | 2012-04-05 | Oita Univ | 固体高分子形燃料電池用電極触媒とその製造方法。 |
JP2014118494A (ja) * | 2012-12-17 | 2014-06-30 | Denki Kagaku Kogyo Kk | 窒素含有カーボンブラック、その製造方法及びそれを用いた燃料電池用触媒 |
CN114223076A (zh) * | 2019-08-02 | 2022-03-22 | 日清纺控股株式会社 | 金属负载的催化剂、电池电极和电池 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000228204A (ja) * | 1999-02-05 | 2000-08-15 | Matsushita Electric Ind Co Ltd | 燃料電池用電極及びその製造法 |
JP2001357857A (ja) * | 2000-06-12 | 2001-12-26 | Asahi Glass Co Ltd | 固体高分子型燃料電池及びその製造方法 |
JP2003292316A (ja) * | 2002-03-29 | 2003-10-15 | Osaka Gas Co Ltd | 金属担持炭素材料、該炭素材料からなるガス吸蔵材及び該ガス吸蔵材を用いるガス貯蔵方法並びに燃料電池用電極材料 |
JP2005087989A (ja) * | 2003-08-08 | 2005-04-07 | Hitachi Ltd | 触媒材料及びその作製方法とそれを用いた燃料電池 |
JP2005510828A (ja) * | 2001-04-11 | 2005-04-21 | キャボット コーポレイション | 修飾炭素生成物を含む燃料電池及び他の生成物 |
JP2006026605A (ja) * | 2004-07-21 | 2006-02-02 | Toyota Motor Corp | 水素酸化触媒及び燃料電池電極 |
JP2006172817A (ja) * | 2004-12-14 | 2006-06-29 | Nissan Motor Co Ltd | 固体高分子型燃料電池 |
JP2007217194A (ja) * | 2006-02-14 | 2007-08-30 | Japan Advanced Institute Of Science & Technology Hokuriku | 表面修飾カーボンナノ材料及びPt系触媒の製造方法 |
JP2007535787A (ja) * | 2004-03-15 | 2007-12-06 | キャボット コーポレイション | 修飾炭素生成物、燃料電池および類似の装置における修飾炭素生成物の使用、および修飾炭素生成物に関する方法 |
JP2008230947A (ja) * | 2007-02-20 | 2008-10-02 | Toray Ind Inc | 単層および2層カーボンナノチューブ混合組成物 |
JP2009084090A (ja) * | 2007-09-28 | 2009-04-23 | Fujifilm Corp | 表面修飾カーボン材料およびその製造方法 |
-
2009
- 2009-03-24 WO PCT/JP2009/055773 patent/WO2009119556A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000228204A (ja) * | 1999-02-05 | 2000-08-15 | Matsushita Electric Ind Co Ltd | 燃料電池用電極及びその製造法 |
JP2001357857A (ja) * | 2000-06-12 | 2001-12-26 | Asahi Glass Co Ltd | 固体高分子型燃料電池及びその製造方法 |
JP2005510828A (ja) * | 2001-04-11 | 2005-04-21 | キャボット コーポレイション | 修飾炭素生成物を含む燃料電池及び他の生成物 |
JP2003292316A (ja) * | 2002-03-29 | 2003-10-15 | Osaka Gas Co Ltd | 金属担持炭素材料、該炭素材料からなるガス吸蔵材及び該ガス吸蔵材を用いるガス貯蔵方法並びに燃料電池用電極材料 |
JP2005087989A (ja) * | 2003-08-08 | 2005-04-07 | Hitachi Ltd | 触媒材料及びその作製方法とそれを用いた燃料電池 |
JP2007535787A (ja) * | 2004-03-15 | 2007-12-06 | キャボット コーポレイション | 修飾炭素生成物、燃料電池および類似の装置における修飾炭素生成物の使用、および修飾炭素生成物に関する方法 |
JP2006026605A (ja) * | 2004-07-21 | 2006-02-02 | Toyota Motor Corp | 水素酸化触媒及び燃料電池電極 |
JP2006172817A (ja) * | 2004-12-14 | 2006-06-29 | Nissan Motor Co Ltd | 固体高分子型燃料電池 |
JP2007217194A (ja) * | 2006-02-14 | 2007-08-30 | Japan Advanced Institute Of Science & Technology Hokuriku | 表面修飾カーボンナノ材料及びPt系触媒の製造方法 |
JP2008230947A (ja) * | 2007-02-20 | 2008-10-02 | Toray Ind Inc | 単層および2層カーボンナノチューブ混合組成物 |
JP2009084090A (ja) * | 2007-09-28 | 2009-04-23 | Fujifilm Corp | 表面修飾カーボン材料およびその製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012069304A (ja) * | 2010-09-22 | 2012-04-05 | Oita Univ | 固体高分子形燃料電池用電極触媒とその製造方法。 |
JP2014118494A (ja) * | 2012-12-17 | 2014-06-30 | Denki Kagaku Kogyo Kk | 窒素含有カーボンブラック、その製造方法及びそれを用いた燃料電池用触媒 |
CN114223076A (zh) * | 2019-08-02 | 2022-03-22 | 日清纺控股株式会社 | 金属负载的催化剂、电池电极和电池 |
CN114223076B (zh) * | 2019-08-02 | 2023-11-28 | 日清纺控股株式会社 | 金属负载的催化剂、电池电极和电池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shui et al. | N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells | |
Zhang et al. | Carbon-based electrocatalysts for advanced energy conversion and storage | |
Kumar et al. | An overview of unsolved deficiencies of direct methanol fuel cell technology: factors and parameters affecting its widespread use | |
JP5535339B2 (ja) | 燃料電池、再生型燃料電池及び膜電極アセンブリ(mea) | |
KR101679809B1 (ko) | 질소(N)가 도핑된 탄소에 담지된 백금(Pt)촉매의 제조방법 및 이의 이용하여 제조된 질소(N)가 도핑된 탄소에 담지된 백금(Pt)촉매 | |
US20040109816A1 (en) | Proton conductive carbon material for fuel cell applications | |
KR101502256B1 (ko) | 고체 고분자형 연료 전지용 전극 촉매 | |
CN100547836C (zh) | 燃料电池用阴极催化剂和膜电极组件及其燃料电池系统 | |
JP5386979B2 (ja) | 熱処理した配位高分子金属錯体を用いた燃料電池用触媒、膜電極接合体、及び燃料電池、並びに酸化還元触媒。 | |
JP6244936B2 (ja) | 炭素触媒及びその製造方法、及び該炭素触媒を用いた触媒インキ並びに燃料電池 | |
JP2005527956A (ja) | 燃料電池適用のための導電性ポリマーグラフト炭素材料 | |
JP2005527687A (ja) | 燃料電池適用のためのスルホン化導電性ポリマーグラフト化炭素性材料 | |
CN105594033A (zh) | 催化剂用碳粉末以及使用该催化剂用碳粉末的催化剂、电极催化剂层、膜电极接合体和燃料电池 | |
JP6736929B2 (ja) | 燃料電池用ペースト組成物、及び燃料電池 | |
He et al. | Boosting the electrocatalytic performance of carbon nanotubes toward V (V)/V (IV) reaction by sulfonation treatment | |
KR20060052555A (ko) | 연료전지, 막 전극 접합체 및 그들에 이용되는 촉매와촉매의 제조방법 | |
Wu et al. | Manipulating the electronic configuration of Fe–N 4 sites by an electron-withdrawing/donating strategy with improved oxygen electroreduction performance | |
JP2009231049A (ja) | 白金担持カーボン、燃料電池用触媒、電極膜接合体、および燃料電池 | |
Zhang et al. | Conductive Porous Network of Metal–Organic Frameworks Derived Cobalt‐Nitrogen‐doped Carbon with the Assistance of Carbon Nanohorns as Electrocatalysts for Zinc–Air Batteries | |
Wang et al. | Nitrogen-doped hierarchical porous carbons derived from biomass for oxygen reduction reaction | |
JP5164627B2 (ja) | 白金担持カーボン、燃料電池用触媒、電極膜接合体、および燃料電池 | |
WO2009119556A1 (ja) | 白金担持カーボン、燃料電池用触媒、電極膜接合体、および燃料電池 | |
JP2013211201A (ja) | 触媒−電解質複合体及びその製造方法 | |
Kin et al. | Development of direct methanol fuel cell catalyst using marimo nano carbon | |
JP2009226318A (ja) | 白金担持カーボン、燃料電池用触媒、電極膜接合体、および燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09723730 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09723730 Country of ref document: EP Kind code of ref document: A1 |