WO2009119350A1 - プロセス水の浄化処理方法 - Google Patents

プロセス水の浄化処理方法 Download PDF

Info

Publication number
WO2009119350A1
WO2009119350A1 PCT/JP2009/054943 JP2009054943W WO2009119350A1 WO 2009119350 A1 WO2009119350 A1 WO 2009119350A1 JP 2009054943 W JP2009054943 W JP 2009054943W WO 2009119350 A1 WO2009119350 A1 WO 2009119350A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
membrane
treatment
product water
separation
Prior art date
Application number
PCT/JP2009/054943
Other languages
English (en)
French (fr)
Inventor
雅世 篠原
和茂 川村
聡 小木
博美 腰塚
寛生 高畠
忠廣 植村
雅英 谷口
Original Assignee
千代田化工建設株式会社
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社, 東レ株式会社 filed Critical 千代田化工建設株式会社
Publication of WO2009119350A1 publication Critical patent/WO2009119350A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention is for obtaining water that can be used for various purposes by treating by-product water produced as a by-product when a liquid hydrocarbon mixture is produced from carbon monoxide gas and hydrogen gas by Fischer-Tropsch reaction or the like.
  • the present invention relates to a method for purifying by-product water.
  • a Fischer-Tropsch reaction (synthesis) is known in which a liquid hydrocarbon (liquid hydrocarbon compound) is synthesized from a synthesis gas composed of carbon monoxide and hydrogen using a catalytic reaction, and is abbreviated as FT method.
  • the FT method includes, for example, the above-mentioned synthesis gas (CO, H 2 ) by partial combustion of solid raw materials such as coal, woody fuel, biomass, carbon-containing waste, and gas raw materials such as natural gas, and gasification using steam. This is converted into a liquefied hydrocarbon using an iron catalyst or a cobalt catalyst by the FT method.
  • the FT method since a large amount of inexpensive oil has been supplied, the FT method has not been actively used.
  • liquid fuels obtained by using the FT method such as diesel fuel and jet fuel, have been reviewed because they have a low sulfur content and little environmental impact.
  • the natural gas in order to use natural gas having a large reserve as a substitute for petroleum, it is desired that the natural gas be liquefied hydrocarbons by the FT method. Then, it is possible to produce a product equivalent to a petroleum product using a liquefied hydrocarbon derived from natural gas as a raw material. In other words, the use of natural gas that is relatively abundant can be expanded by using liquefied hydrocarbons.
  • the chemical reaction in the FT method can be expressed by the following chemical formula. (2n + 1) H 2 + nCO ⁇ C n H 2n + 2 + nH 2 O That is, in the FT method, water (Fischer-Tropsch by-product water) is generated as a by-product together with hydrocarbons from hydrogen gas and carbon monoxide gas, but it is generated more quantitatively than liquefied hydrocarbons.
  • the mixture of this Fischer-Tropsch by-product water and hydrocarbon is separated into gas (gaseous hydrocarbon), oil (liquid hydrocarbon), and by-product water by a three-phase separator or coalescer, etc. Will be used as an alternative to oil, for example.
  • the remaining by-product water contains impurities such as floating hydrocarbons that could not be removed, hydrocarbons dissolved in water, and metal derived from the catalyst. [Definition of phrase]
  • Hydrocarbon-based organic matter refers to all organic matter contained in untreated by-product water.
  • Hydrocarbon '' refers to a mixture of organic substances that cannot be completely removed by the separator and contained in a floating (oil) state, that is, aliphatic / aromatic / alicyclic hydrocarbons and oxygen-containing hydrocarbons that are sparingly soluble in water. For example, hexane, benzene, phenol, benzaldehyde and the like.
  • non-acidic oxygen-containing hydrocarbon refers to a hydrocarbon containing oxygen that is water-soluble and does not exhibit acidity, such as methanol, ethanol, acetone, formaldehyde, and the like.
  • acid oxygen-containing hydrocarbon refers to carboxylic acids that are soluble in water and exhibit acidity, such as formic acid, acetic acid, propionic acid, and the like.
  • the Fischer-Tropsch reaction includes, for example, those that react at low temperatures and those that react at high temperatures, and those that use cobalt catalysts and those that use iron catalysts. For those that react at high temperatures, iron catalysts are used, and the components contained in the by-product water differ depending on the method of these Fischer-Tropsch reactions.
  • dimethyl ether is synthesized using the above-described synthesis gas composed of carbon monoxide and hydrogen, and this is used as, for example, diesel fuel. Also in the DME synthesis method using this synthesis gas, since by-product water is generated, it is necessary to treat in the same manner as the by-product water.
  • industrial distillation for separating “non-acidic oxygen-containing hydrocarbons” contained in a large amount of by-product water includes, for example, a large amount of steam (by-product water is generated by steam generated in a boiler). When heating). The amount of consumption is approximately 300 to 400 ton / h when, for example, 1000 m 3 / h of by-product water is distilled. If the steam unit price is ⁇ 40 / kg, the operating cost is about 15 million yen / h. That is, in the case of distillation, a large running cost is required for heating. In distillation, “hydrocarbon” and “non-acidic oxygen-containing hydrocarbon” are mainly separated from water.
  • the separated “hydrocarbons” and “non-acidic oxygen-containing hydrocarbons” are in a state of containing a large amount of water, but it is necessary to further process the separated organic substances containing a large amount of water. There is. For example, it is necessary to perform an incineration process in which the organic matter is incinerated using fuel. At this time, since the organic substance contains a large amount of water, it is difficult to burn only with the organic substance, and fuel is added to the separated organic substance and burned, which is extremely inefficient.
  • the present invention has been made in view of the above circumstances, and “hydrocarbon-based organic matter” contained in by-product water by a process using wet oxidation that can reduce the running cost from distillation without using distillation.
  • An object of the present invention is to provide a purification method of by-product water that removes most of the above.
  • the by-product water purification method according to claim 1 is a by-product water that purifies by-product water generated when hydrocarbons are synthesized using carbon monoxide gas and hydrogen gas.
  • a purification treatment method By performing wet oxidation treatment on the by-product water, primary treated water is obtained, Biological treatment is performed on the primary treated water to obtain secondary treated water, wherein the secondary treated water is separated into purified water and concentrated water using a semipermeable membrane.
  • the “hydrocarbon”, “non-acidic oxygen-containing hydrocarbon”, and “acidic-oxygen-containing hydrocarbon” contained in the by-product water by the wet oxidation treatment according to claim 1 are all oxygen contained in water. After undergoing oxidative decomposition such as chemical bond between atoms / carbon atoms and bond breakage (small molecule formation) between carbon atoms / carbon atoms, as time passes, it passes through lower acidic oxygen-containing hydrocarbons and finally with carbon dioxide Breaks down into water. Therefore, it is not necessary to incinerate (decompose it into carbon dioxide and water) after separating the “hydrocarbon” component or “non-acidic oxygen-containing hydrocarbon” that can be vaporized as in the distillation method. In this case, carbon dioxide is also generated by incineration. However, in the wet oxidation process, the fuel is not burned as in the above-described incineration process. The amount generated can be reduced. In addition, the cost for fuel can be reduced.
  • organic substances are generally oxidatively decomposed at a high temperature as seen in incineration.
  • a high COD concentration (10000 mg / L or more) is obtained.
  • By-product water can be efficiently purified, and cost reduction can be achieved by reducing heating energy.
  • “hydrocarbons” and “non-acidic oxygen-containing hydrocarbons” are not separated only by external energy as in distillation, but the heat of reaction due to oxidation can be used. Can be removed.
  • the “hydrocarbon organic matter” removal rate (COD removal rate) by the wet oxidation method is set to a value that can be used as water (industrial water, irrigation water, drinking water, etc.) with a value close to 100%, for example. In this case, it is necessary to increase the size of the wet oxidation reaction vessel, and it is impossible to reduce the equipment cost.
  • the removal rate of “hydrocarbon organic substances” is 50 to 95% as described later, or “carbonization”.
  • reducing the hydrogen to a level of 80% or higher and then using a biological treatment, etc. to obtain a COD removal rate that can be used as industrial water, etc.
  • a small-sized wet oxidation reaction vessel can be used, reducing equipment costs. Can be achieved. Since the removal rate of “hydrocarbon-based organic matter” can be approximated to the COD removal rate, “COD removal rate is used as the removal rate of hydrocarbon-based organic matter in this example.
  • the present invention can purify by-product water to a reusable water quality efficiently by combining wet oxidation and multiple stages of purification treatment such as biological treatment and semipermeable membrane treatment instead of wet oxidation alone.
  • purification treatment such as biological treatment and semipermeable membrane treatment instead of wet oxidation alone.
  • the method for purifying by-product water according to claim 2 is the invention according to claim 1, wherein 50 to 95% of the “hydrocarbon organic matter” contained in the by-product water is removed by the wet oxidation treatment, or It is characterized in that 80% or more of “hydrocarbon” is removed and used as primary treated water.
  • “hydrocarbon-based organic matter” means all organic matters contained in untreated by-product water
  • “hydrocarbon” means organic matter contained in a floating (oil) state.
  • the “hydrocarbon-based organic matter” contained in the by-product water is not removed to nearly 100% by wet oxidation, but is about 50% to 95% or “hydrocarbon”.
  • the by-product water is oxidized with the catalyst for a long time. It becomes necessary to contact an agent (for example, oxygen in the air), and the equipment becomes large.
  • an agent for example, oxygen in the air
  • the purification method for by-product water according to claim 3 is the invention according to claim 1 or 2, At least a part of the concentrated water is returned to the by-product water.
  • the method for purifying by-product water according to claim 4 is the invention according to any one of claims 1 to 3, wherein a low fouling reverse osmosis membrane is used as the semipermeable membrane. .
  • the semipermeable membrane is a low fouling reverse osmosis membrane, it is possible to prevent deterioration of performance due to fouling of the semipermeable membrane.
  • Chemical fouling chemical fouling
  • bio-fouling biological organisms
  • the method for purifying by-product water according to claim 5 is the invention according to any one of claims 1 to 4, In the biological treatment, solid-liquid separation is performed using a separation membrane.
  • the treatment water containing a large amount of solids such as bacterial cells by biological treatment is solid-liquid separated using a separation membrane, compared with solid-liquid separation by a conventional natural precipitation method, Processing time can be shortened, processing equipment can be downsized, and equipment costs can be reduced. Moreover, since solid content can be removed by the separation membrane, the filtration performance and separation performance of the latter semipermeable membrane are improved. In addition, it prevents non-floc-forming bacteria that may occur in solid-liquid separation by the conventional natural precipitation method, and can increase the sludge retention time, so that it is possible to decompose difficult-to-decompose substances. New microorganisms can be retained in the activated sludge tank, and the quality of the treated water is further improved.
  • the method for purifying by-product water according to claim 6 is the invention according to any one of claims 1 to 5, wherein the secondary treated water is subjected to activated carbon treatment and / or ultrafiltration membrane treatment. After performing, it is characterized by separating into purified water and concentrated water using the semipermeable membrane.
  • the load of the semipermeable membrane is reduced by removing residual impurities by activated carbon treatment or ultrafiltration membrane treatment having a coarser mesh than the semipermeable membrane before performing the treatment with the semipermeable membrane.
  • the cost can be reduced by extending the service life of the semipermeable membrane.
  • the water is purified and refined to one of the water quality level that does not greatly affect the environment, the water quality level that can be used as industrial water or irrigation water, and the water quality level that can be used as drinking water.
  • the purification method for by-product water in this example is based on the by-product water separated from the reactant obtained by the production of the liquid hydrocarbon mixture using synthesis gas.
  • a primary treated water is obtained by performing a wet oxidation treatment (1: 1 primary treatment). Subsequently, the primary treated water is subjected to aerobic treatment and / or anaerobic treatment as a biological treatment (2: secondary treatment), and solid-liquid separation of solids such as bacterial cells is performed to obtain secondary treated water. Get. Subsequently, tertiary treated water is obtained by performing activated carbon treatment and / or membrane separation treatment (3: tertiary treatment) with an ultrafiltration membrane to remove residual impurities from the secondary treated water.
  • the activated carbon treatment or the membrane separation treatment with the ultrafiltration membrane may not be performed.
  • semi-permeable membrane separation treatment (4: quaternary treatment) is performed on the tertiary treated water (or secondary treated water) by a cross flow method to obtain final treated water (purified water).
  • This purified water may be drained into rivers, seas, etc., but is preferably used as industrial water, irrigation water, drinking water or the like.
  • the above-described processing may be batch processing at each stage or may be continuous processing. Further, when each stage is a continuous process, the entire process of the purification process may be a continuous process.
  • the wet oxidation process (1) uses a well-known solid catalyst wet oxidation process using air (oxygen in the air) as an oxidizing agent and using a solid catalyst.
  • the amount of air supply is selected according to the concentration of organic and inorganic compounds with COD load contained in the by-product water. Specifically, the amount of air supplied is determined so that 0.5 to 5 times, preferably 1 to 3 times, the amount of oxygen necessary to completely oxidatively decompose the COD component into water and carbon dioxide is supplied.
  • any solid catalyst that is active and durable under liquid phase oxidation conditions can be used.
  • alumina titania, titania-zirconia, etc.
  • Use of a refractory inorganic oxide or a general catalyst obtained by further combining a catalytically active substance such as platinum, nickel, palladium, iridium, cobalt and the like with the oxide is preferable because decomposition of components can be performed more efficiently.
  • the treatment temperature is 140 ° C. or higher and lower than 370 ° C., preferably 180 ° C. or higher and lower than 300 ° C.
  • by-product water pressurized and pressurized air are fed into the catalyst reactor filled with the catalyst in the wet oxidation treatment apparatus to produce by-product water in the presence of the catalyst.
  • COD components such as “hydrocarbon-based organic matter” included, that is, here, mainly the above-mentioned floating “hydrocarbons”, dissolved “non-acidic oxygen-containing hydrocarbons” and “acidic oxygen-containing hydrocarbons” Is oxidized and decomposed into carbon dioxide gas and water.
  • the pressure of the by-product water and air is determined in view of the processing temperature, and the processing is performed at a pressure at which the liquid maintains the liquid phase at the processing temperature.
  • the by-product water contains a nitrogen component and a sulfur component derived from the raw material when the synthesis gas is generated. However, the by-product water is selectively oxidized without generating SOx, NOx, and sulfate, molecular nitrogen, etc. Become harmless. And the by-product water wet-oxidized while passing through the catalyst reactor is caused to flow out from the catalyst reactor as primary treated water.
  • the wet oxidation process (1) is performed as a continuous process, and pressurized by-product water and pressurized air are continuously flowed into the catalytic reactor to perform the wet oxidation process (1). The treated water will flow out continuously.
  • the wet oxidation process (1) it is necessary to heat the by-product water supplied to the catalytic reactor and perform the catalytic reaction at a certain high temperature.
  • the oxidation of the organic matter is an exothermic reaction, Thermal energy is generated in the catalytic reactor. Therefore, the high-temperature primary treated water flowing out from the catalyst reactor and the by-product water flowing into the catalyst reactor are passed through a heat exchanger, and the by-product water is heated by the heat of the primary treated water.
  • by-product water is heated using the reaction heat generated in the wet oxidation process (1), and the by-product water heated to a high temperature is sent to the catalyst reactor, thereby producing the by-product water. It is not necessary to supply heat energy for heating from the outside. In addition, you may be the structure which enables supply of the heat energy by steam etc. from the outside supplementarily for the heating of a by-product water at the time of starting of a wet oxidation processing apparatus. From the above, since it is almost unnecessary to supply heat energy for heating the by-product water from the outside, the running cost can be greatly reduced as compared with the conventional method using distillation.
  • the removed “hydrocarbon organic matter” is carbon dioxide and water (water is taken into by-product water without being removed) by wet oxidation, and is in the same state as already burned. Therefore, it is not necessary to perform an incineration process in which fuel is added to the "hydrocarbon” and “non-acidic oxygen-containing hydrocarbon” containing a large amount of water separated after distillation, and incinerated as in the prior art. This can also reduce the running cost of fuel and the like required for incineration. In addition, an incineration plant is not required, and the facility cost can be reduced and the space efficiency of the by-product water purification treatment plant can be improved.
  • biological treatment (2) is performed on the primary treated water flowing out from the wet oxidation treatment device in the biological treatment device.
  • an aerobic treatment and / or an anaerobic treatment (2) is performed as a previous step.
  • the wet oxidation treatment (1) is performed as the primary treatment.
  • “hydrocarbon” and “non-acidic oxygen-containing hydrocarbon” are mainly removed, and “acidic oxygen” is removed.
  • “Contained hydrocarbon” mainly remains. Therefore, because of separation by vapor-liquid equilibrium, the distillation temperature / pressure varies depending on the chemical species contained in the “hydrocarbon-based organic substance”, its concentration, and its mixing ratio, but the wet oxidation treatment conditions do not vary depending on the contained components.
  • an aerobic process may be selected, an anaerobic process may be selected, or an anaerobic process and an aerobic process may be used in combination.
  • Biological treatment is a method of treating organic substances contained in the water to be treated using living organisms (particularly microorganisms). That is, the organic matter becomes a substrate of a living organism (microorganism) and is processed by being ingested by the living organism (microorganism).
  • Biological treatment is broadly classified into anaerobic treatment and aerobic treatment.
  • As the aerobic treatment for example, a known method can be used.
  • a biofilm method in which microorganisms are retained on a carrier can be suitably used because it has already been subjected to primary treatment and the hydrocarbon concentration has been reduced, or since it is preferable that there is less excess sludge.
  • An activated sludge method as a typical method may be used.
  • anaerobic treatment such as methane fermentation can also be suitably used.
  • Biological treatment can be combined in various ways depending on the component concentration of water to be treated and the required water quality of the treated water after solid-liquid separation. For example, if the organic concentration (COD, BOD, TOC, etc.) of concentrated water is high (for example, 2,000 mg COD / L or more), anaerobic treatment is performed first, and then aerobic treatment is performed to save energy and reduce costs. From the viewpoint of Further, when the nitrogen component concentration of the water to be treated is high in the organic component ratio (for example, the COD / N ratio is 20 or less), it is preferable to introduce a nitrification denitrification method.
  • the phosphorus component concentration of the water to be treated is high in the organic component ratio (for example, the COD / P ratio is 100 or less), it is preferable to introduce a biological phosphorus removal method or a flocculant-added phosphorus removal method.
  • a solid-liquid separation treatment In the biological treatment (2), sludge composed of microbial cells or the like is generated, and thus a solid-liquid separation treatment is necessary.
  • Solid-liquid separation by a general gravity precipitation method, sand filtration method, or agglomeration precipitation method may be performed, but in this example, it is preferable to perform solid-liquid separation by a membrane separation method.
  • a membrane separation method for example, a separation membrane unit provided with a separation membrane is disposed inside or outside the treatment tank for the biological treatment (2) described above, and the secondary treated water treated in the biological treatment (2) is taken out. Is.
  • the membrane separation unit provided with the separation membrane by immersing and arrange
  • the separation membrane unit is arranged outside, the membrane filtration water supplied from the treatment tank to the separation membrane unit arranged outside the treatment tank is supplied in a cross-flow manner, and the membrane filtration that does not pass through the separation membrane unit. Return the water to the treatment tank again.
  • Examples of the structure of the separation membrane used in the membrane filtration method include, but are not limited to, a porous membrane and a composite membrane in which a functional layer is combined with a porous membrane.
  • the form of the separation membrane includes a flat membrane, a rotating flat membrane, a hollow fiber membrane, a tubular membrane, etc., but is not particularly limited.
  • the membrane pore size of the separation membrane is preferably a pore size capable of solid-liquid separation of activated sludge into a solid component and a dissolved component, and corresponds to a microfiltration membrane or an ultrafiltration membrane. If the membrane pore size is large, the membrane permeability is improved, but the possibility that a solid component is contained in the membrane filtrate tends to increase. On the other hand, if the membrane pore size is small, the possibility that a solid component is contained in the membrane filtrate is reduced, but the membrane permeability tends to be lowered. Specifically, it is preferably 0.01 to 0.5 ⁇ m, more preferably 0.05 to 0.2 ⁇ m.
  • the membrane separation method unlike the gravity sediment type activated sludge method, it is not necessary to separate the sludge by sedimentation, and only the treated water can be taken out by membrane separation while leaving the sludge in the treatment tank. it can. Therefore, for example, a sedimentation tank or the like for separating sludge is not required, and sludge is not taken out, so that high concentration of sludge and space saving can be achieved.
  • the membrane separation activated sludge method (MBR) can be suitably used. That is, an aerobic treatment can be used as the biological treatment (2), and a membrane separation activated sludge method using a microfiltration membrane or an ultrafiltration membrane as the solid-liquid separation can be used. It is preferable to increase the concentration of sludge (microorganisms) retained in the biological treatment tank and to perform the water treatment in a so-called starved state.
  • the amount of food per microorganism is extremely small, so that the microorganisms are difficult to grow, and the number of microorganisms that decompose dead microorganisms as food is large, so the generation of excess sludge is suppressed.
  • the cost required for the treatment of excess sludge can be reduced.
  • an immersion type membrane separation activated sludge method in which the separation membrane is immersed in a treatment tank, and a membrane separation apparatus containing the separation membrane are installed outside the treatment tank, and the treatment tank Circulating membrane separation activated sludge method that supplies sludge in the membrane to the membrane separation device, performs membrane filtration while cleaning the separation membrane surface using the liquid feed flow, and returns the sludge that could not be separated into the treatment tank Can be suitably used.
  • the submerged membrane separation type activated sludge method that can reduce energy consumption by simultaneously using aeration for biological treatment for membrane surface cleaning is preferable.
  • a method for obtaining membrane permeated water by membrane filtration there are a method of drawing with a suction pump from the secondary side of membrane filtration, a method of utilizing a water head difference, and the like.
  • the concentration of activated sludge in contact with the separation membrane is preferably 2,000 mg / L to 20,000 mg / L.
  • a diffuser is installed below the separation membrane, and oxygen-containing gas (air, etc.) is supplied from an aerator (blower, etc.) installed in communication with the diffuser and adheres to the membrane surface. It is preferable to perform membrane filtration while separating the activated sludge component from the membrane surface.
  • the residence time in the biological treatment tank of the water to be treated is usually 1 hour to 72 hours, but an optimum one should be selected according to the state of the water to be treated and the biological treatment conditions.
  • the apparatus which adds a flocculant may be installed and a flocculant may be added to the to-be-processed water containing the activated sludge stored in the biological treatment tank.
  • the membrane filtration flux (membrane filtration flow rate per unit membrane area) is preferably 0.1 to 1.5 m / d.
  • the activated carbon treatment is a treatment in which the secondary treated water is brought into contact with activated carbon, and impurities (such as biological metabolites) contained in the secondary treated water are adsorbed on the activated carbon and removed from the secondary treated water.
  • the shape of the activated carbon is not particularly limited, and may be granular activated carbon or powdered activated carbon.
  • the raw material of activated carbon may be any material as long as it is generally used, such as coconut shell, coal, and coke. These raw materials are carbonized and activated to obtain activated carbon, but the activation method is not particularly limited.
  • activated carbon industry heavy chemical industry communication company (1974), p. 23-p.
  • Activated charcoal produced by the method 37 such as activated charcoal using an active gas such as water vapor, oxygen, carbon dioxide, or chemical activated charcoal using phosphoric acid, zinc chloride or the like is used.
  • an active gas such as water vapor, oxygen, carbon dioxide, or chemical activated charcoal using phosphoric acid, zinc chloride or the like.
  • the ultrafiltration membrane treatment is a method of membrane filtration of biological treatment using an ultrafiltration membrane.
  • the form of the separation membrane includes a flat membrane, a rotating flat membrane, a hollow fiber membrane, a tubular membrane, and the like, and is not particularly limited, and can be appropriately selected depending on the raw water quality and treatment conditions.
  • a flat membrane has a relatively high strength and a simple structure, but the separation membrane has a lower packing rate than a hollow fiber membrane, and a rotating flat membrane is suitable for high concentration treatment, but has a high power cost. It has characteristics.
  • the ultrafiltration membrane device may be an external pressure type or an internal pressure type, but when the raw water has a high viscosity or contains a lot of turbid substances, it is preferable that the external pressure type is less likely to be clogged.
  • the membrane filtration method may be a whole-volume filtration type module or a cross flow filtration type module, and the cross flow is difficult to foul, but has a feature that energy consumption is large. In general, water treatment generally emphasizes low energy consumption, and there are more wholly filtered modules. Furthermore, there is no problem even if it is a pressure type module or an immersion type module, but the pressure type can operate at a high flux and can reduce the membrane area, while the immersion type does not require a pressure vessel. Therefore, it has a feature that it is easy to reduce the cost.
  • the hollow fiber membrane used in the membrane module is not particularly limited as long as it is a porous hollow fiber membrane, but inorganic materials such as ceramics and organic materials are polyfluorinated from the viewpoint of membrane strength and chemical resistance. Vinylidene (PVDF) is more preferable, and polyacrylonitrile is more preferable from the viewpoint of high hydrophilicity and strong stain resistance.
  • the pore diameter on the surface of the separation membrane can be conveniently selected within the range of 0.001 ⁇ m to 0.1 ⁇ m.
  • the outer diameter and inner diameter of the hollow fiber membrane are not particularly limited. However, if it is too thin, the flow resistance increases, and if it is too thick, the membrane filling rate decreases. It is. Further, from the viewpoint that the hollow fiber membrane has high vibration properties and excellent cleaning properties, it is preferably in the range of 250 ⁇ m to 2000 ⁇ m.
  • Ultrafiltration membrane separation treatment cannot remove salts with a small molecular weight, but can remove organic substances with a large molecular weight. These are performed as a pretreatment of the semipermeable membrane separation treatment (4) to be performed next, and by reducing the amount of organic matter remaining from the secondary treated water in which the semipermeable membrane separation treatment (4) is performed, The load applied to the semipermeable membrane can be reduced, the lifetime of the semipermeable membrane can be extended, and the cost can be reduced.
  • the concentrated water may be returned to the previous secondary treatment (biological treatment (2)) or primary treatment (wet oxidation treatment (1)). Good.
  • the semi-permeable membrane separation treatment (4) removes low-molecular organic substances and dissolved salts remaining in the tertiary treated water (or secondary treated water), thereby converting the final treated water into industrial water, irrigation water, drinking water, etc. Make it available. Note that not only bacteria but also viruses are filtered by the semipermeable membrane separation treatment (4), and it is possible to use as drinking water.
  • dissolved salts metal ions, etc.
  • the semipermeable membrane is a membrane that allows only ions or molecules having a certain size and molecular weight to permeate, and is exemplified by a nanofiltration membrane or a reverse osmosis membrane.
  • the semipermeable membrane is required to have a performance capable of reducing the solute in the filtered water to a concentration that can be used as reclaimed water.
  • a nanofiltration membrane is defined as a filtration membrane with an operating pressure of 1.5 MPa or less, a fractional molecular weight of 200 to 1000, and a sodium chloride rejection of 90% or less. What has performance is called a reverse osmosis membrane. When the concentration of the solute or suspended substance is low, it is preferable to use a nanofiltration membrane with a low operating pressure, and when the concentration of the solute or suspended substance is high, it is preferable to use a reverse osmosis membrane.
  • the permeated water amount reduction rate is obtained as follows. At 25 ° C., the permeated water amount when filtered through a membrane at pH 6.5, 1,500 mg / L sodium chloride aqueous solution at an operating pressure of 1.0 MPa for 1 hour is defined as the pre-permeated water amount (F1).
  • permeated water decrease rate 1 ⁇ (F2 / F1) Is 0.35 or less, preferably 0.20 or less.
  • a method for producing such a low fouling film for example, a method for suppressing a decrease in flux due to fouling by coating a polymer on the surface of a polyamide film (WO 97/34686 and JP 2000-176263 A). ), A method of performing surface treatment with an acid chloride remaining on the film surface or a compound that reacts with an amino group (see Japanese Patent Application Laid-Open Nos. 2002-224546 and 2004-243198), A method of irradiating with electron beam, ultraviolet ray, radiation or the like, and further modifying the surface by graft polymerization (see JP 2007-014833), a method of smoothing the surface and reducing the adhesion area (Eric M.
  • Examples of such low fouling reverse osmosis membranes include TML20 series manufactured by Toray Industries, Inc., LF10 series manufactured by Nitto Denko Corporation, LFC series manufactured by Hydranautic, and ESNA-LF series, BW30-FR series manufactured by Dow, and Osmonics. Examples include semi-permeable membranes such as Seasoft HL series.
  • the pressurizing pump for this purpose is not particularly limited as long as the filtered water can be pressurized.
  • Nanofiltration membranes and reverse osmosis membranes have hollow fiber membranes and flat membranes, and the present invention can be applied to both. Further, in order to facilitate handling, a fluid separation element (element) in which a hollow fiber membrane or a flat membrane is housed in a housing can be used. When this fluid separation element uses a flat membrane-like semipermeable membrane as a nanofiltration membrane or a reverse osmosis membrane, for example, as shown in FIG.
  • a membrane unit including a semipermeable membrane 10, a permeate channel material 12 such as a tricot, and a supply water channel material 11 such as a plastic net is wound, and these are housed in a cylindrical casing.
  • the material of the semipermeable membrane 10 can be a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer.
  • the membrane structure has a dense layer on at least one side of the membrane, and on the asymmetric membrane having fine pores gradually increasing from the dense layer to the inside of the membrane or the other side, or on the dense layer of the asymmetric membrane. Either a composite membrane having a very thin separation functional layer formed of another material may be used.
  • a composite membrane having a high pressure resistance, high water permeability, and high solute removal performance and having an excellent potential and using polyamide as a separation functional layer is preferable.
  • the raw water containing a high concentration of solute it is necessary to apply a pressure higher than the osmotic pressure in the first semipermeable membrane unit.
  • a structure in which polyamide is used as a separation functional layer and is held by a support made of a microporous membrane or a nonwoven fabric is suitable.
  • polyamide semipermeable membrane a composite semipermeable membrane having a separation functional layer of a crosslinked polyamide obtained by polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide on a support is suitable.
  • the separation functional layer is preferably made of a cross-linked polyamide having high chemical stability to acid or alkali, or made of a cross-linked polyamide as a main component.
  • the crosslinked polyamide is preferably formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide, and at least one of the polyfunctional amine or the polyfunctional acid halide component preferably contains a trifunctional or higher functional compound.
  • the polyfunctional amine refers to an amine having at least two primary and / or secondary amino groups in one molecule, and among them, aromatic polyvalent amine is considered in consideration of the selective separation property, permeability, and heat resistance of the membrane.
  • a functional amine is preferred, and m-phenylenediamine, p-phenylenediamine, and 1,3,5-triaminobenzene are preferably used as such a polyfunctional aromatic amine.
  • m-phenylenediamine hereinafter referred to as m-PDA
  • These polyfunctional amines may be used alone or in combination.
  • the polyfunctional acid halide means an acid halide having at least two carbonyl halide groups in one molecule, and is a polyfunctional aromatic acid chloride in consideration of selective separation of the membrane and heat resistance. Is preferred. Among them, it is more preferable to use trimesic acid chloride from the viewpoint of easy availability and easy handling. These polyfunctional acid halides may be used alone or in combination.
  • the support including the microporous support membrane is a layer that does not substantially have separation performance, and is provided to give mechanical strength to the separation functional layer of the crosslinked polyamide having substantial separation performance.
  • a material in which a microporous support film is formed on a substrate such as a fabric or a nonwoven fabric is used.
  • the microporous support membrane is a layer that does not have a separation performance as a semipermeable membrane by itself and is used to give mechanical strength to a separation functional layer having a separation performance.
  • the above-mentioned support can be selected from various commercially available filter materials such as “Millipore Filter VSWP” (trade name) manufactured by Millipore and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha, , “Office of Saleen Water Research and Development Progress Report”, “No. 359 (1968).
  • filter materials such as “Millipore Filter VSWP” (trade name) manufactured by Millipore and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha, , “Office of Saleen Water Research and Development Progress Report”, “No. 359 (1968).
  • polysulfone, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride and other homopolymers or blends are usually used, but chemically, mechanically and thermally stable polysulfone is used. It is preferred to use.
  • a dimethylformamide (DMF) solution of the above polysulfone is cast on a densely woven polyester fabric or nonwoven fabric to a certain thickness, and the resulting solution is dissolved in an aqueous solution containing 0.5% by weight of sodium dodecyl sulfate and 2% by weight of DMF.
  • a microporous support membrane having a fine pore having a diameter of several tens of nm or less on the surface is obtained.
  • polyamide and polyester are preferably used in addition to polysulfone.
  • the operating conditions (filtration flux, recovery rate, etc.) of the semipermeable membrane may be determined as appropriate according to the type of nanofiltration membrane or reverse osmosis membrane used and the requirements of the quality of the treated water and the quality of the permeated water.
  • the filtration flux is preferably determined with the intention of minimizing membrane fouling.
  • the recovery rate which is the ratio of the permeated water to the water to be treated, it is preferable that the recovery rate is high. Further, if the recovery rate is too high, the solute that cannot be completely dissolved is deposited on the film surface, and the membrane is damaged or the flow path is blocked. Therefore, it is necessary to set the recovery rate within a range where it does not precipitate.
  • the recovery rate can be set high.
  • the recovery rate can be maintained high by reducing the flow rate of the water to be treated.
  • the nanofiltration membrane and reverse osmosis membrane may be multi-staged to increase the recovery rate.
  • the concentrated water has a lower COD than the by-product water, and the by-product water is diluted by adding the concentrated water to the by-product water. Furthermore, the concentrated water contains a biological reaction-derived difficult biodegradation component, but by performing the wet oxidation treatment (1), it can be easily degraded and promote the biodegradation reaction. .
  • the wet oxidation treatment (1) is first performed.
  • the equipment for the wet oxidation treatment (1) can be downsized.
  • the reaction by wet oxidation is an exothermic reaction, and the generated heat is used, so that the energy used for heating can be reduced and the running cost can be reduced.
  • the temperature of the primary treated water is lowered to a temperature suitable for the biological treatment (2) by exchanging heat between the primary treated water that has been subjected to the wet oxidation treatment (1) and the by-product water before the treatment. Can be made.
  • this heat may be used to increase the temperature of the treatment tank in the biological treatment (2) in winter, etc. Effective use such as cooling and hot water supply may be achieved.
  • By-product water produced by the FT method was purified by the following method. That is, the by-product water was first subjected to wet oxidation treatment (1), then biological treatment (2), and then semipermeable membrane separation treatment (4).
  • wet oxidation treatment (1) a catalyst obtained by combining platinum with a refractory inorganic oxide was used as a solid catalyst.
  • the temperature of the treated water in the catalyst reactor was set to 200 degrees Celsius.
  • the pressure in the catalyst reactor was 3 MPa.
  • the SV value as the volume of drainage treated with the catalyst lm3 per hour was set to 1.0 h ⁇ 1 .
  • the biological treatment (2) the above-mentioned membrane separation activated sludge method (MBR) was used.
  • MBR membrane separation activated sludge method
  • a circulation type nitrification denitrification method was used, and as a separation membrane, a microfiltration membrane made of polyvinylidene fluoride (average pore diameter 0.08 ⁇ m, manufactured by Toray Industries, Inc.) was used.
  • primary treated water was introduced into an oxygen-free tank in which activated sludge was accommodated, and after denitrification treatment, the activated sludge mixed liquid was introduced into the next nitrification tank.
  • nitrification tank aerobic treatment (decomposition of organic substances and nitrification reaction) was performed by air aeration, and a part was returned and circulated to the anoxic tank. The circulation flow rate at this time was four times the primary treated water flow rate.
  • a part of the activated sludge mixed liquid in the nitrification tank was introduced into the membrane separation tank.
  • the flat membrane element provided with the above-mentioned separation membrane was immersed, and an aeration device was provided below the flat membrane element, and aeration was performed both for membrane surface cleaning and oxygen supply.
  • the activated sludge mixed solution in the membrane separation tank was returned to the nitrification tank at a flow rate three times that of the primary treated water.
  • the activated sludge in the membrane separation tank was subjected to solid-liquid separation by applying a negative pressure on the separation membrane permeation side with a suction pump to obtain a permeate as secondary treated water.
  • the water recovery rate was 80% (the remaining 20% was discharged as concentrated water (which can be returned to by-product water)).
  • a low fouling reverse osmosis membrane TML20-370 (a flat membrane made of polyamide) manufactured by Toray Industries, Inc. was used.
  • the feed raw water for the semipermeable membrane treatment was introduced into the semipermeable membrane by a centrifugal pump to obtain permeated water and concentrated water. The processing results are shown in Table 1.
  • the by-product water contains 15,000 mg / L of “non-acidic oxygen-containing hydrocarbons” and 1000 mg / L of “acidic oxygen-containing hydrocarbons”.
  • “Hydrocarbon” had a concentration of less than 10 mg / L.
  • the oxygen demand (CODCr) by potassium nichromate was 15,000 mg / L.
  • CODCr corresponds to the amount of “hydrocarbon organic matter”.
  • the “non-acidic oxygen-containing hydrocarbon” was 100 mg / L, and the “acidic oxygen-containing hydrocarbon” was 1100 mg / L.
  • “Hydrocarbon” had a concentration of less than 10 mg / L.
  • the CODCr is 1,300 mg / L, and the “hydrocarbon organic matter” removal rate (COD removal rate) is 91, 3% by the wet oxidation process (1).
  • the CODCr in MBR-treated water was about 50 mg / L.
  • the CODCr of the purified water (permeated water) after the semipermeable membrane separation treatment (4) was 10 mg / L.
  • the concentrated water in the semipermeable membrane separation treatment (4) had a CODCr of about 200 mg / L. Since this concentrated water has a slightly high CODCr, it is preferably returned to the primary treatment, for example.
  • the activated carbon treatment and / or the ultrafiltration membrane treatment were not performed before the semipermeable membrane separation treatment (4).
  • the by-product water can be made sufficiently usable as, for example, industrial water or irrigation water.
  • the equipment cost and running cost can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

 FT法において液化炭化水素の副産物として生じる副生成水を浄化して各種用途に利用可能な水とする際の設備コスト、ランニングコストの低減を図る。  合成ガスを用いた炭化水素の製造により得られた反応物から分離された副生成水に対して湿式酸化処理(1)を行うことにより1次処理水を得る。次いで、この1次処理水に対して固液分離処理を含む生物処理(2)を行うことにより2次処理水を得る。次いで、2次処理水に対して活性炭処理および/または限外ろ過膜による膜分離処理(3)を行うことにより3次処理水を得る。なお、この処理は省略してもよい。そして、3次処理水に対してクロスフロー方式で半透膜分離処理(4)を行い、最終処理水(浄化水)を得る。この浄化水は、河川や海等に排水するものとしてもよいが、好ましくは、工業用水、灌漑用水、飲用水等として使用される。

Description

プロセス水の浄化処理方法
 本発明は、一酸化炭素ガスおよび水素ガスからフィッシャ・トロプッシュ反応等により液体炭化水素混合物を生成した際に副生成される副生成水を処理して各種用途に利用可能な水を得るための副生成水の浄化方法に関する。
 一酸化炭素と水素からなる合成ガスから触媒反応を用いて液体炭化水素(液体状の炭化水素化合物)を合成するフィッシャ・トロプッシュ反応(合成)が知られており、FT法と略称されている。
 FT法は、例えば、石炭、木質燃料、バイオマス、含炭素廃棄物等の固体原料や、天然ガス等の気体原料の部分燃焼や水蒸気を用いたガス化により上述の合成ガス(CO,H2)を製造し、これをFT法により鉄触媒、もしくはコバルト触媒を用いて液化炭化水素とする。
 従来、安価な石油が大量に供給されていたので、FT法が積極的に用いられることがあまりなかった。しかし、FT法を用いて得られる液体燃料、例えば、ディーゼル燃料やジェット燃料は硫黄分が少なく、環境への影響が少ないことなどから見直されている。また、未だ多くの埋蔵量を有する天然ガスを石油の代替として利用するために、天然ガスをFT法により液化炭化水素とすることが望まれている。そして、天然ガス由来の液化炭化水素を原料として石油製品と同等の製品を製造することを可能とすることができる。すなわち、比較的豊富に存在する天然ガスの用途を液化炭化水素とすることで広げることができる。
 また、FT法で天然ガスを液化することにより、従来のように天然ガスを極低温に冷却して液状に保持することなく、室温レベルで液体として貯蓄や輸送が可能となる。
 近年注目されているメタンハイドレートに含まれるメタンガスもFT法により液化可能である。
 一方、世界の人口増加、新興国の工業化、バイオエタノールの生産拡大などにより水需要は拡大しているが、水資源は地球温暖化により地理的に偏在し、水不足が深刻化している。この課題解決に向けて、排水の処理水質の高度化及び水回収率向上等の技術開発が、現在、切に求められている。
 ここで、FT法における化学反応は、以下の化学式で表すことができる。
 (2n+1)H2+nCO→Cn2n+2+nH2
 すなわち、FT法では、水素ガスと一酸化炭素ガスから炭化水素とともに副生成物として水(フィッシャ・トロプッシュ副生成水)が生成するが、量的に液化炭化水素より多く生成する。
 このフィッシャ・トロプッシュ副生成水と炭化水素の混合物から3相セパレーターやコアレッサー等によりガス(ガス状炭化水素)、油(液状炭化水素)、副生成水に分離し、分離された液化炭化水素が例えば石油の代替として利用されることになる。
 残った副生成水には、取りきれなかった浮遊状態の炭化水素、水に溶解した状態の炭化水素、及び触媒由来の金属等の成分が不純物として含まれることになる。
[語句の定義]
 本発明の技術開示に当り、未処理の副生成水に含まれる前記炭化水素を4つのカテゴリーに分けて定義し、これを用いて以下詳細に説明する。
 「炭化水素系有機物」とは、未処理の副生成水に含まれる全ての有機物を示す。
 「炭化水素」とは、セパレーターで取りきれず、浮遊(油)状態で含まれる有機物、即ち脂肪族/芳香族/脂環族の炭化水素と水に難溶な酸素含有炭化水素との混合物を示し、例えば、ヘキサン、ベンゼン、フェノール、ベンズアルデヒド等である。
 「非酸性酸素含有炭化水素」とは、水溶性で酸性を呈しない酸素を含む炭化水素を示し、例えば、メタノール、エタノール、アセトン、ホルムアルデヒド等である。
 「酸性酸素含有炭化水素」とは、水に可溶で酸性を呈するカルボン酸類を示し、例えば蟻酸、酢酸、プロピオン酸等である。
 また、フィッシャ・トロプッシュ反応には、例えば、低温で反応を行なうものと、高温で反応を行なうものとがあり、低温で反応を行なうものには、コバルト触媒を用いるものと鉄触媒を用いるものとがあり、高温で反応を行なうものには、鉄触媒が用いられ、これらフィッシャ・トロプッシュ反応の方法の違いによって、副生成水に含まれる成分が異なる。
 このような副生成水は、そのままの状態で排水すると環境を汚染することになるとともに、副生成水の有効利用が望まれることから、水処理されて排水されるかもしくは工業用水等として利用される。
 このような副生成水の水処理(精製)では、例えば、蒸留と、生物学的処理とを含む多段階での処理を行なう方法が提案されている(例えば、特許文献1参照)。
 また、蒸留と、精密ろ過、限外ろ過、逆浸透膜等による膜分離処理とを含む多段階での処理を行なう方法が提案されている(例えば、特許文献2参照)。
 これらの方法では、多段階処理の1次処理として蒸留を行うことにより、「炭化水素」は勿論のこと「非酸性酸素含有炭化水素」の大部分を除去することができる。
 そして、残った「酸性酸素含有炭化水素」を生物学的処理や膜分離により除去することになる。
 また、上述の一酸化炭素と水素からなる合成ガスを用いてジメチルエーテル(DME)を合成し、これを例えばディーゼル燃料等として利用することが行われている。
 この合成ガスを用いたDME合成方法においても、副生成水が発生するため、前記副生成水と同様に処理する必要がある。
特表2005-534469号公報 特表2006-514579号公報
 ところで、上述のように副生成水に多く含まれる「非酸性酸素含有炭化水素」を分離するための工業的な蒸留には、例えば、大量のスチーム(ボイラで発生させたスチームにより副生成水を加熱する場合)が必要となる。その消費量は、概算で、例えば1000m3/hの副生成水を蒸留する場合に、300~400ton/hとなる。なお、スチーム単価を¥40/kgとした場合、その運転費は約1500万円/hとなる。
 すなわち、蒸留の場合には、加熱のために多くのランニングコストを必要とする。
 なお、蒸留では、「炭化水素」や「非酸性酸素含有炭化水素」が主に水から分離される。
 また、蒸留の場合は、分離された「炭化水素」や「非酸性酸素含有炭化水素」が水を多く含んだ状態となっているが、この水を多く含む分離された有機物をさらに処理する必要がある。例えば、燃料を用いて該有機物を焼却する焼却処理を行なう必要がある。この際に、該有機物が水を多く含むことから、該有機物だけで燃焼させることが困難であり、分離された該有機物にさらに燃料を加えて燃焼させることになり、極めて非効率的である。
 本発明は、前記事情に鑑みて為されたもので、蒸留を用いずに、かつ、蒸留よりランニングコストの低減可能な湿式酸化を用いたプロセスにより副生成水に含まれる「炭化水素系有機物」の多くを除去する副生成水の浄化処理方法を提供することを目的とする。
 前記目的を達成するために、請求項1に記載の副生成水の浄化処理方法は、一酸化炭素ガスおよび水素ガスを用いて炭化水素を合成する際に生じる副生成水を浄化する副生成水の浄化処理方法であって、
 前記副生成水に対して湿式酸化処理を行うことにより1次処理水とし、
 前記1次処理水に対して生物処理を行うことにより2次処理水とし
 前記2次処理水を半透膜を用いて浄化水と濃縮水とに分離することを特徴とする。
 請求項1に記載の湿式酸化処理により副生成水に含まれる「炭化水素」、「非酸性酸素含有炭化水素」、及び「酸性酸素含有炭化水素」は、いずれも、水に含まれたままで酸素原子/炭素原子間の化学結合や炭素原子/炭素原子間の結合切断(小分子化)等の酸化分解を受け、時間を経るに従い、低級酸性酸素含有炭化水素を経て、最終的に二酸化炭素と水に分解される。従って、蒸留法のように気化しうる「炭化水素」成分または「非酸性酸素含有炭化水素」を分離後、焼却(二酸化炭素と水に分解)する必要がない。
 この場合に、焼却によっても二酸化炭素が発生するが、湿式酸化処理では、上述の焼却処理のように燃料を用いて燃焼させるわけではないので、燃料を用いて燃焼させる焼却処理より、二酸化炭素の発生量を減少させることができる。また、燃料分のコストの削減を図ることができる。
 また、有機物は一般に焼却で見られるように高温度下で酸化分解されるが、湿式酸化法では、この際に生じる有機物分解熱を利用して行うため、高COD濃度(10000mg/L以上)の副生成水を効率的に浄化処理できるとともに、加熱用エネルギーの低減によるコストダウンを図ることができる。すなわち、蒸留のように外部からのエネルギーだけにより、「炭化水素」及び「非酸性酸素含有炭化水素」を分離するわけではなく、酸化による反応熱を利用できるので、効率的に「炭化水素系有機物」を除去することができる。
 また、湿式酸化法による「炭化水素系有機物」除去率(COD除去率)を例えば100%に近い値として、副生成水を水(工業用水、灌漑用水、飲用水等)として利用可能なレベルとする場合に、湿式酸化反応容器の大型化が必要となり、設備コストの低減等を図ることができないが、「炭化水素系有機物」の除去率を後述のように50~95%レベル、あるいは「炭化水素」を80%以上のレベルまでとし、その後、生物処理等により、工業用水等として利用可能なCOD除去率とすることで、湿式酸化反応容器として小型のものが使用可能となり、設備コストの低減を図ることができる。
 なお、「炭化水素系有機物」の除去率はCOD除去率と近似できるので、この例では「炭化水素系有機物の除去率としてCOD除去率を用いている。
 本発明は湿式酸化単独ではなく、湿式酸化と生物処理や半透膜処理などの複数段階の浄化処理とを組み合わせることで、効率的に副生成水を再利用可能な水質にまで浄化することができ、特に蒸留を用いた場合と比較して効率的に副生成水の浄化が可能であり、設備コストおよびランニングコストの低減を図ることができる。
 請求項2に記載の副生成水の浄化処理方法は、請求項1に記載の発明において、前記湿式酸化処理により副生成水に含まれる「炭化水素系有機物」の50~95%を除去、あるいは「炭化水素」の80%以上を除去して1次処理水とすることを特徴とする。
 但し、ここで、「炭化水素系有機物」とは、未処理の副生成水に含まれる全ての有機物を示し、「炭化水素」とは、浮遊(油)状態で含まれる有機物を示す。
 請求項2に記載の発明においては、湿式酸化処理により副生成水に含まれる「炭化水素系有機物」を100%近くまで除去するのではなく、50%~95%程度、あるいは「炭化水素」の80%以上程度に抑えることで、湿式酸化処理の設備の小型化を図ることができる。すなわち、この段階で水の利用が可能となるレベルまで高度処理しようとすると、例えば、連続処理では長い湿式酸化反応処理槽を形成するなどして、長い時間に渡って副生成水を触媒と酸化剤(例えば、空気中の酸素)に接触させるなどする必要が生じ、設備が大型化する。特に、副生成水の「炭化水素系有機物」の含有量が低下した状態で、さらに、該有機物を除去する場合には、設備により多くのコストがかかることになる。
 それに対して、副生成水に含まれる「炭化水素系有機物」を100%近くまで除去するのではなく、50%~95%程度、あるいは「炭化水素」を80%以上程度に抑えることにより、大幅に設備コストを低減することになる。したがって、湿式酸化処理に生物処理等のその他の処理を組み合わせることにより、その他の処理の設備コストやランニングコストがかかるものとしても、設備全体、処理全体としてはコストの低減を図ることができる。
 請求項3に記載の副生成水の浄化処理方法は、請求項1または2に記載の発明において、
 前記濃縮水の少なくとも一部を前記副生成水に返送することを特徴とする。
 請求項3に記載の発明においては、濃縮水を処理する必要がなく、濃縮水をこれから浄化処理される副生成水に戻すことにより、工程を簡素化することができる。
 また、生物処理水には、難生物分解性の有機物が含まれるため、半透膜処理後の濃縮水には、同様に難生物分解性の有機物が含まれる。この濃縮水を湿式酸化処理することにより、難生物分解性の有機物を易分解性に変換することが可能である。
 なお、戻された濃縮水に含まれる成分は、湿式酸化により酸化されたり、生物処理により消費されたり、生物処理に用いられる各種微生物の菌体等に取り込まれて分離されたりするので、濃縮水の返送を続けることにより、副生成水の除去すべき成分の濃度が上昇傾向のままとなることはない。
 請求項4に記載の副生成水の浄化処理方法は、請求項1~3のいずれか1項に記載の発明において、前前記半透膜として低ファウリング逆浸透膜を用いることを特徴とする。
 請求項4に記載の発明においては、半透膜が低ファウリング逆浸透膜であるので、半透膜のファウリングによる性能の劣化を防止することができる。
 副生成水に溶存する有機物(炭化水素)が膜面に付着するケミカルファウリング(化学的汚れ)や、溶存する有機物を栄養源にして微生物が増殖して膜面に付着するバイオファウリング(生物的汚れ)が起こると、半透膜の透水性能、膜分離性能が低下するという問題があるが、低ファウリング逆浸透膜を用いることで、ファウリングの性能劣化を抑止することができる。
 請求項5に記載の副生成水の浄化処理方法は、請求項1~4のいずれか1項に記載の発明において、
 前記生物処理では分離膜により固液分離することを特徴とする。
 請求項5に記載の発明においては、生物処理により菌体等の固形物を多く含む処理水を分離膜を用いて固液分離するので、従来の自然沈殿法による固液分離と比較して、処理時間の短縮、処理設備の小型化、設備コストの低減を図ることができる。また、分離膜によって固形分を除去することができるので、後段の半透膜のろ過性能および分離性能が向上する。さらに、従来の自然沈殿法による固液分離では発生してしまう可能性がある非フロック形成細菌の流出を抑制し、かつ、汚泥滞留時間を高めることが可能であるため、難分解物質を分解可能な微生物を活性汚泥槽内に保持可能であり、処理水の水質がさらに向上する。
 請求項6に記載の副生成水の浄化処理方法は、請求項1~5のいずれか1項に記載の発明において、前記2次処理水に対して活性炭処理および/または限外ろ過膜処理を行なった後に、前記半透膜を用いて浄化水と濃縮水とに分離することを特徴とする。
 請求項6に記載の発明においては、半透膜による処理を行なう前に活性炭処理や半透膜より目の粗い限外ろ過膜処理により残留不純物を除去することにより、半透膜の負荷を低減し、半透膜の耐用期間の延長等によりコストの低減を図ることができる。
 本発明によれば、従来のFT法等の合成ガスから液体炭化水素混合物を生成する際に生じる副生成水を低コストに浄化精製することができる。
本発明の実施の形態に係る副生成水の浄化処理方法の各工程を示す工程フロー図である。 本発明で利用する平膜状の半透膜を用いた流体分離素子(エレメント)の構成を示す図である。
符号の説明
1   湿式酸化処理
2   生物処理
3   活性炭処理および/または限外ろ過膜分離処理
4   半透膜分離処理
10  半透膜
11  供給水流路材
12  透過水流路材
13  供給水
14  濃縮水
15  透過水
16  端板
17  中心パイプ
 以下、図面を参照しながら、本発明の実施の形態について説明する。
 本発明は、例えば、フィッシャ・トロプシュ反応のように一酸化炭素ガスと水素ガスと(合成ガス)を反応させて、液体炭化水素混合物を得る際に生じる副生成水(H2O)から前記反応等により生じる水以外の成分を除去して水を精製する副生成水の浄化処理方法である。
 すなわち、本発明は、フィッシャ・トロプシュ反応等により合成ガスを触媒を用いて反応させることで生成された液体炭化水素混合物と副生成水とを分離した後に、分離された副生成水を排水しても環境に大きな影響を与えない水質レベルや、工業用水や灌漑用水として使用できる水質レベルや、飲用水として使用できる水質レベルのいずれかまで浄化・精製するものである。
 この例の副生成水の浄化処理方法は、図1の工程フロー図に示すように、合成ガスを用いた液体炭化水素混合物の製造により得られた反応物から分離された副生成水に対して湿式酸化処理(1:1次処理)を行うことにより1次処理水を得る。次いで、この1次処理水に対して生物処理(2:2次処理)として好気性処理および/または嫌気性処理を行うとともに菌体等の固形物の固液分離を行うことにより2次処理水を得る。次いで、2次処理水に対して残留不純物の除去のため活性炭処理および/または限外ろ過膜による膜分離処理(3:3次処理)を行うことにより3次処理水を得る。なお、この活性炭処理、限外ろ過膜による膜分離処理を行なわないものとしてもよい。そして、3次処理水(あるいは2次処理水)に対してクロスフロー方式で半透膜分離処理(4:4次処理)を行い、最終処理水(浄化水)を得る。この浄化水は、河川や海等に排水するものとしてもよいが、工業用水、灌漑用水、飲用水等として使用されることが好ましい。
 また、上述の処理は、各段階でバッチ処理としてもよいし、連続処理としてもよい。また、各段階を連続処理とした場合に、この浄化処理方法全体の工程を連続した処理としてもよい。
 そして、湿式酸化処理(1)は、この例において、酸化剤として空気(空気中の酸素)を用いるとともに固体触媒を用いる周知の固体触媒湿式酸化処理を用いたものである。
 空気の供給量は副生成水中に含まれるCOD負荷を持つ有機、無機化合物の濃度により選択する。詳細にはCOD成分を完全に水、二酸化炭素に酸化分解するに必要な酸素量の0.5~5倍、好ましくは1~3倍が供給されるように空気の供給量を定める。また、ここで使用する触媒としては、固体触媒で且つ液相酸化条件下活性と耐久性を有する酸化触媒であれば、いずれも使用することができるが、例えばアルミナ、チタニア、チタニアージルコニア等の耐火性無機質酸化物又は該酸化物に更に触媒活性物質、例えば白金、ニッケル、パラジウム、イリジウム、コバルト等を組み合わせてなる一般的な触媒を使用すると成分の分解がより効率よく行われ、好ましい。更に、処理温度は140℃以上370℃未満であり、好ましくは180℃以上300℃未満である。
 そして、湿式酸化処理(1)においては、湿式酸化処理装置において触媒が充填された状態の触媒反応器に加圧した副生成水と加圧した空気とを送り込み触媒の存在下で副生成水に含まれる「炭化水素系有機物」等のCOD成分、すなわち、ここでは主に上述の浮遊状態の「炭化水素」や、溶存した状態の「非酸性酸素含有炭化水素」及び「酸性酸素含有炭化水素」を酸化して、二酸化炭素ガスと水に酸化分解する。
 副生成水及び空気の圧力は処理温度に鑑みて決定し、処理温度において液が液相を保持する圧力により処理する。例えば9~95Kg/cm2、好ましくは30~90Kg/cm2である。
 また、副生成水には、合成ガスを生成した際の原料由来の窒素成分や硫黄成分が含まれるが、SOx、NOxが発生することなく、選択酸化されて、硫酸塩、分子状窒素等となって無害化される。そして、触媒反応器を通過するとともに湿式酸化された副生成水を1次処理水として触媒反応器から流出させる。この湿式酸化処理(1)は、連続処理として行なわれ、加圧された副生成水と加圧された空気とが触媒反応器に連続的に流入され、湿式酸化処理(1)された1次処理水が連続的に流出されることになる。
 また、湿式酸化処理(1)では、触媒反応器に供給される副生成水を加熱してある程度の高温で触媒反応を行なう必要があるが、上述の有機物の酸化が発熱反応であるために、触媒反応器内で熱エネルギーが発生する。そこで、触媒反応器から流出する高温の1次処理水と、触媒反応器に流入させられる副生成水とを熱交換器に通し、1次処理水の熱により、副生成水を加熱する。
 すなわち、湿式酸化処理(1)で発生する反応熱を利用して、副生成水を加熱し、加熱されて高温となった副生成水を触媒反応器に送り込むようにすることで、副生成水を加熱するための熱エネルギーを外部から供給する必要がなくなる。なお、湿式酸化処理装置の始動時における副生成水の加熱等のために補助的に外部からスチーム等による熱エネルギーの供給を可能とする構成となっていてもよい。
 以上のことから、副生成水を加熱するための熱エネルギーを外部から供給する必要がほとんどないので、従来の蒸留を用いた方法に比べてランニングコストを大幅に削減することが可能となる。
 また、除去された「炭化水素系有機物」は、湿式酸化により、二酸化炭素と水(水は除去されずに副生成水に取り込まれる)となっており、既に燃焼したのと同じ状態となっているので、従来のように、蒸留後に分離された水を多く含む「炭化水素」及び「非酸性酸素含有炭化水素」に燃料を加えて焼却する焼却処理を行なう必要がない。これによっても焼却に必要とされる燃料等のランニングコストを低減することができる。また、焼却用プラントを必要とせず、設備コストの低減と副生成水の浄化処理用プラントのスペース効率の向上を図ることができる。
 また、湿式酸化処理(1)のみを用いて含まれる全ての「炭化水素系有機物」を二酸化炭素と水に分解する高度処理によって、例えば、副生成水を工業用水等として利用可能なレベルまで精製することも可能である。しかし、この例では、例えば、「炭化水素系有機物」の除去率をCODベースで50%~95%程度、あるいは「炭化水素」をCODベースで80%以上の程度までに抑え、上述のように湿式酸化処理(1)後に生物処理(2)を行い、さらに、最後に溶存塩や微量の有機物の除去のための半透膜分離処理(4)を行なうことにより、多段階の処理で、水を飲用水として利用可能なレベルまで浄化することを可能としている。
 したがって、湿式酸化処理(1)のプラントとして、高度処理が可能な大型のプラントを設ける必要がなく、比較的に小規模のプラント、例えば、蒸留用のプラントより小さなプラントでも処理が可能であり、設備コストの低減と、プラントのスペース効率の向上を図ることができる。
 次に、湿式酸化処理装置から流出される1次処理水を生物処理装置において、生物処理(2)を行なう。
 生物処理(2)では、前段階として好気性処理および/または嫌気性処理(2)が行なわれる。
 また、本発明においては、1次処理として湿式酸化処理(1)を行うのであるが、従来の蒸留処理では「炭化水素」や「非酸性酸素含有炭化水素」が主に除去され、「酸性酸素含有炭化水素」が主に残留する。従って気液平衡による分離のため、蒸留温度/圧力が「炭化水素系有機物」に含まれる化学種、その濃度及びその混合割合によって変動するが、湿式酸化処理条件は含まれる成分によって変動しない。ただし、湿式酸化方法の条件、例えば、温度や触媒等によって、残留成分や濃度にある程度の違いが生じる可能性があり、また、COD除去率の設定によっても成分に違いがでる可能性があり、それによって、好気性処理を選択したり、嫌気性処理を選択したり、嫌気性処理と好気性処理とを組み合わせて使うものとしてもよい。
 生物処理は、被処理水中に含まれる有機物を、生物(特に微生物)を利用して処理する方法である。即ち、前記有機物は、生物(微生物)の基質としてなり、生物(微生物)に摂取されることにより処理される。生物処理は、大きく嫌気処理と好気処理に分類され、好気性処理としては、例えば、周知の方法を用いることができる。ここでは、既に、1次処理され、炭化水素濃度が低減されていることや、余剰汚泥が少ない方が好ましいことなどから担体に微生物を保持させる生物膜法を好適に用いることができるが、一般的な方法としての活性汚泥法を用いてもよい。またメタン発酵などの嫌気性処理も好適に用いることができる。
 生物処理は、被処理水の成分濃度、固液分離後の処理水の要求水質などによって様々な組合せが可能である。例えば、濃縮水の有機物濃度(COD、BOD、TOC等)が高い(例えば2,000mgCOD/L以上)場合には、まず嫌気処理を行ってから、好気処理を行うことが、省エネやコスト削減の観点から好ましい。また、被処理水の窒素成分濃度が有機物成分比で高い(例えば、COD/N比20以下)場合には、硝化脱窒法を導入することが好ましい。さらに、被処理水のリン成分濃度が有機物成分比で高い(例えば、COD/P比100以下)場合には、生物学的リン除去法や凝集剤添加リン除去法を導入することが好ましい。
 そして、生物処理(2)では、微生物の菌体等からなる汚泥が生じることになるので、固液分離処理が必要である。一般的な重力沈殿法や、砂ろ過法や、凝集沈殿法による固液分離でも何ら差し支えないが、この例では膜分離法で固液分離を行うことが好ましい。
 膜分離法は、例えば、分離膜を備えた分離膜ユニットを上述の生物処理(2)のための処理槽内部もしくは外部に配置し、生物処理(2)で処理された2次処理水を取り出すものである。
 なお、分離膜を備えた膜分離ユニットを処理槽内に浸漬して配置する場合には、その周囲の被膜ろ過水をエアやその他方法で流動させた状態とすることが好ましい。また、分離膜ユニットを外部に配置する場合には、処理槽の外部に配置された分離膜ユニットに処理槽の被膜ろ過水をクロスフロー方式で供給し、分離膜ユニットを通過しなかった被膜ろ過水を再び処理槽に返送する。
膜ろ過法に用いる分離膜の構造としては、多孔質膜や、多孔質膜に機能層を複合化した複合膜などが挙げられるが、特に限定されるものではない。
 また、分離膜の形態は、平膜、回転平膜、中空糸膜、チューブラー膜などあるが、特に限定されない。また、分離膜の膜孔径は、活性汚泥を固形成分と溶解成分とに固液分離できる孔径であることが好ましく、精密ろ過膜や限外ろ過膜が該当する。膜孔径が大きければ、膜透水性が向上するが、膜ろ過水に固形成分が含有する可能性が高くなる傾向がある。一方、膜孔径が小さければ、膜ろ過水に固形成分が含有する可能性が小さくなるが、膜透水性が低下する傾向がある。具体的には、0.01~0.5μmとすることが好ましく、0.05~0.2μmとすることがさらに好ましい。
 膜分離法を用いた場合には、重力沈殿式の活性汚泥法と異なり、汚泥を沈殿により分離させる必要がなく、汚泥を処理槽に残した状態で、処理水だけを膜分離により取り出すことができる。
 したがって、例えば、汚泥を分離する沈殿槽等を必要とせず、汚泥が取り出されないので汚泥の高濃度化や省スペース化を図ることができる。
 また、生物固定法においても、余剰汚泥が浮遊した状態となるが、これを容易に膜分離することができる。
 このように、固液分離に膜分離法を用いることで、スペース効率の向上やコストの低減を図ることができる。また、分離膜によって固形分を除去することができるので、後段の半透膜のろ過性能および分離性能が向上する。
 なお、この生物処理(2)では膜分離活性汚泥法(MBR)を好適に用いることができる。すなわち、生物処理(2)として好気性処理を用い、固液分離として精密ろ過膜又は限外ろ過膜を用いた膜分離活性汚泥法を用いることができる。生物処理槽内に保持する汚泥(微生物)の濃度を高め、微生物をいわば飢餓状態にして水処理を行うことが好ましい。汚泥が高濃度で且つ飢餓状態では、微生物あたりのエサの量が 極めて少ないため微生物が増殖しにくく、また、死んだ微生物をエサとして分解する微生物の数も多いため、余剰汚泥の発生が抑制され、余剰汚泥の処理に要するコストを低減することができる。
 このような膜分離式活性汚泥法には、上記分離膜を処理槽内に浸漬させた浸漬型膜分離活性汚泥法と、分離膜を収容した膜分離装置を処理槽外部に設置し、処理槽内の汚泥を膜分離装置に供給し、その送液流れを利用して分離膜表面を洗浄しながら膜ろ過し、膜分離できなかった汚泥を処理槽内に返送する循環式膜分離活性汚泥法が好適に利用できる。特に、生物処理のための曝気を膜表面洗浄のために同時に利用することによって、エネルギー消費量を低減できる浸漬型膜分離式活性汚泥法が好ましい。
 膜ろ過を行い膜透過水を得る方法として、膜ろ過の二次側から吸引ポンプで引き抜く方法や水頭差を利用する方法等がある。分離膜に接触する活性汚泥の濃度は、2,000mg/L~20,000mg/Lであることが好ましい。また、分離膜の下方部に散気装置を設置し、該散気装置に連通して設置された曝気装置(ブロア等)から、酸素を含むガス(エア等)を供給し、膜表面に付着した活性汚泥成分を膜表面から剥離させながら、膜ろ過を行うことが好ましい。被処理水の生物処理槽における滞留時間は通常1時間~72時間であるが、被処理水性状や生物処理条件に応じて最適なものを採択するのがよい。また、凝集剤を添加する装置を設置して、生物処理槽内に貯えられた活性汚泥を含む被処理水に凝集剤を添加しても構わない。膜ろ過流束(単位膜面積あたりの膜ろ過流量)は、0.1~1.5m/dであることが好ましい。
 そして、生物処理(2)された2次処理水に対しては、活性炭処理および/または限外ろ過膜分離処理(3)を行なう。
 活性炭処理は、2次処理水と活性炭を接触させ、2次処理水に含まれる不純物(生物代謝産物等)を活性炭に吸着させ、2次処理水から除去する処理である。本発明では、活性炭の形状は特に限定せず、粒状活性炭でも粉末活性炭でもよい。また、活性炭の原料は、ヤシ殻、石炭、コークス、など一般的に用いられるものであれば、いずれでも良い。これらの原料を、炭化、賦活して活性炭とするが、その賦活方法も特に限定されない。例えば「活性炭工業」、重化学工業通信社(1974)、p.23~p.37の方法で製造される、水蒸気、酸素、炭酸ガスなどの活性ガスでの賦活炭や、リン酸、塩化亜鉛などを用いた薬品賦活炭などの活性炭が用いられる。活性炭処理により、残存する有機物等の不純物を吸着により除去することができる。
 また、限外ろ過膜処理は、限外ろ過膜を用いて生物処理を膜ろ過する方法である。ここで、分離膜の形態は、平膜、回転平膜、中空糸膜、チューブラー膜などあり、特に限定されず、原水水質や処理条件などによって適宜選択することが出来る。たとえば、平膜は、強度が比較的高く、構造がシンプルであるが、分離膜の充填率が中空糸膜比べて低く、回転平膜は高濃度処理に適しているが、動力コストが高いという特徴を有している。限外ろ過膜装置としては、外圧式でも内圧式であっても差し支えはないが、原水の粘度が高い場合や件濁物質を多く含む場合には、目詰まりしにくい外圧式である方が好ましい。また膜ろ過方式としては全量ろ過型モジュールでもクロスフローろ過型モジュールであっても差し支えはなく、クロスフローはファウリングしにくい反面、エネルギー消費が大きいという特徴を有する。水処理一般には、エネルギー消費量が少ないことを重視し、全量ろ過型モジュールである方が多い。さらに加圧型モジュールであっても浸漬型モジュールであっても差し支えはないが、加圧型は高流束運転が可能であり、膜面積を低減させることが出来る反面、浸漬型は耐圧容器が不要のため、低コストにしやすいという特徴を有する。
 ここで、膜モジュールに使用する中空糸膜としては、多孔質の中空糸膜であれば特に限定しないが、セラミック等の無機素材、有機素材としては膜強度や耐薬品性の点からはポリフッ化ビニリデン(PVDF)がより好ましく、親水性が高く耐汚れ性が強いという点からはポリアクリロニトリルがより好ましい。分離膜表面の細孔径については、0.001μm~0.1μmの範囲内で便宜選択することができる。また、分離膜として中空糸膜を用いる場合、中空糸膜の外径,内径は特に限定されないが、細すぎると流動抵抗が大きくなり、太すぎると膜の充填率が低下するので、注意が必要である。また、中空糸膜の振動性が高く、洗浄性に優れるという観点からすると250μm~2000μmの範囲内であると好ましい。
 限外ろ過膜分離処理により、分子量の小さな塩類等を除去できないが、分子量の大きい有機物を除去することができる。これらは、次に行なわれる半透膜分離処理(4)の前処理として行なわれるもので、半透膜分離処理(4)が行なわれる2次処理水から残存する有機物等を減量させることで、半透膜にかかる負荷を低減し、半透膜の耐用期間の延長を図り、コストを低減することができる。
 なお、限外ろ過膜処理をクロスフロー方式で行う場合に、濃縮水を前の2次処理(生物処理(2))や、1次処理(湿式酸化処理(1))に返送するものとしてもよい。
 そして、活性炭処理および/または限外ろ過膜分離処理(3)された3次処理水に対して半透膜分離処理(4)を行なうことが好ましい。なお、3次処理を行なわずに、2次処理水に対して半透膜分離処理(4)を行うものとしても良い。
 半透膜分離処理(4)により、3次処理水(あるいは2次処理水)に残留する低分子有機物や溶存塩類を除去することにより、最終処理水を工業用水、灌漑用水、飲用水等に利用可能とする。なお、半透膜分離処理(4)により、細菌だけではなくウイルスまでろ過されることになり、飲用水としての利用も可能となる。
 また、半透膜分離処理(4)によれば、溶存塩(金属イオン等)も飲用水として使用可能なレベルまで除去可能であり、上水として使用可能なレベルとなる。
半透膜とは、一定の大きさ・分子量のイオンまたは分子のみを透過させる膜であり、ナノろ過膜や逆浸透膜によって例示される。
半透膜は、ろ過水中の溶質を、再生水として利用可能な濃度にまで低減することができる性能を有していることが要求される。ナノろ過膜とは、操作圧力が
1.5MPa 以下,分画分子量が 200 から1000 で,塩化ナトリウムの阻止率 90%以下のろ過膜と定義されており、それより分画分子量の小さく、高い阻止性能を有するものを逆浸透膜という。溶質や懸濁物質の濃度が低い場合には、操作圧力が小さいナノろ過膜を使用することが好ましく、溶質や懸濁物質の濃度が高い場合には、逆浸透膜を使用することが好ましい。
 また、溶存有機物が膜面に付着するケミカルファウリング(化学的汚れ)や、溶存有機物を栄養源にして微生物が増殖して膜面に付着するバイオファウリング(生物的汚れ)による透水性低下や除去性能低下が懸念される場合は、それらが起こりにくい低ファウリング膜であることが好ましい。例えば、透過水量低下率は以下のようにして求める。25℃にてpH6.5、1,500mg/L塩化ナトリウム水溶液を用い操作圧力1.0MPaにて膜に透過させて1時間ろ過した時の透過水量を前透過水量(F1)とし、続いて、この評価液にノニオン界面活性剤(ポリオキシエチレン(10)オクチルフェニルエーテル)を100mg/Lになるように添加してから1時間経過後の透過水量を後透過水量(F2)としたときに、定義される
 透過水量低下率=1-(F2/F1)
が、0.35以下であるもの、好ましくは0.20以下であるものを示す。このような膜を用いることにより、膜面への有機物の吸着が殆どなく、透水性の低下が僅かで、透過水を安定して得ることができる。
 このような低ファウリング膜を製造する方法としては、例えば、ポリアミド膜表面にポリマーをコーティングすることで、ファウリングによるフラックス低下を抑える方法(国際公開第97/34686号パンフレットおよび特開2000-176263号公報を参照)、膜面に残存する酸塩化物やアミノ基と反応する化合物で表面処理を行う方法(特開2002-224546号公報および特開2004-243198号公報を参照)、膜面に電子線、紫外線、放射線などを照射したり、さらにグラフト重合によって表面改質する方法(特開2007-014833号公報を参照)、表面を平滑にして付着面積を低減させる方法(Eric
M.Vrijenhoek, Seungkwan Hong, Menachem Elimelech, “Influence of membrane
surface properties on initial rate of colloidal fouling of reverse osmosis and
nanofiltration membranes,”Journal of Membrane Science 188(2001)115-128を参照)などが挙げられる。
 このような低ファウリング逆浸透膜の例としては、東レ株式会社製TML20シリーズ、日東電工株式会社製LF10シリーズ、Hydranautic社製LFCシリーズおよびESNA-LFシリーズ、ダウ社製BW30-FRシリーズ、オスモニクス社製Seasoft HLシリーズなどの半透膜が挙げられる。
 供給水を半透膜を用いてろ過する場合、少なくとも、供給水側と透過水側の浸透圧以上の操作圧力が必要となる。このための加圧ポンプは、ろ過水を加圧することができれば特に制限されるものではない。
 ナノろ過膜や逆浸透膜は、中空糸膜や平膜の形状があり、いずれも本発明を適用することが出来る。また、取扱いを容易にするため中空糸膜や平膜を筐体に納めて流体分離素子(エレメント)としたものを用いることができる。この流体分離素子は、ナノろ過膜や逆浸透膜として平膜状の半透膜を用いる場合、例えば図2に示すように、多数の孔を穿設した筒状の中心パイプ17の周りに、半透膜10と、トリコットなどの透過水流路材12と、プラスチックネットなどの供給水流路材11とを含む膜ユニットを巻回し、これらを円筒状の筐体に納めた構造とするのが好ましい。複数の流体分離素子を直列あるいは並列に接続して分離膜モジュールとすることも好ましい。この流体分離素子において、供給水13は、一方の端部からユニット内に供給され、他方の端部に到達するまでの間に半透膜10を透過した透過水15が、中心パイプ17へと流れ、他方の端部において中心パイプ17から取り出される。一方、半透膜10を透過しなかった供給水13は、他方の端部において濃縮水14として取り出される。
 半透膜10の素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材を使用することができる。またその膜構造は、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜や、非対称膜の緻密層の上に別の素材で形成された非常に薄い分離機能層を有する複合膜のどちらでもよい。
 しかしながら、中でも高耐圧性と高透水性、高溶質除去性能を兼ね備え、優れたポテンシャルを有する、ポリアミドを分離機能層とした複合膜が好ましい。特に、溶質を高濃度に含む原水とするような場合には、第一の半透膜ユニットでは浸透圧以上の圧力をかける必要がある。この圧力に対して、高い透水性と阻止性能を維持するためにはポリアミドを分離機能層とし、それを微多孔性膜や不織布からなる支持体で保持する構造のものが適している。また、ポリアミド半透膜としては、多官能アミンと多官能酸ハロゲン化物との重縮合反応により得られる架橋ポリアミドの分離機能層を支持体に有してなる複合半透膜が適している。
 分離機能層は、酸やアルカリに対して化学的安定性が高い架橋ポリアミドからなるもの、もしくは架橋ポリアミドを主成分とするものからなることが好ましい。架橋ポリアミドは、多官能アミンと多官能酸ハロゲン化物との界面重縮合により形成され、多官能アミンまたは多官能酸ハロゲン化物成分の少なくとも一方が3官能以上の化合物を含んでいることが好ましい。
 ここで、多官能アミンとは、一分子中に少なくとも2個の一級および/または二級アミノ基を有するアミンをいい、中でも、膜の選択分離性や透過性、耐熱性を考慮すると芳香族多官能アミンであることが好ましく、このような多官能芳香族アミンとしては、m-フェニレンジアミン、p-フェニレンジアミン、1,3,5-トリアミノベンゼンが好適に用いられる。さらには、入手の容易性や取り扱いのしやすさから、m-フェニレンジアミン(以下、m-PDAと記す)を用いることがより好ましい。これらの多官能アミンは、単独で用いたり、混合して用いたりしてもよい。
 多官能酸ハロゲン化物とは、一分子中に少なくとも2個のハロゲン化カルボニル基を有する酸ハロゲン化物をいい、膜の選択分離性、耐熱性を考慮すると、多官能芳香族酸塩化物であることが好ましい。中でも、入手の容易性や取り扱いのしやすさの観点から、トリメシン酸クロリドを用いるとより好ましい。これらの多官能酸ハロゲン化物は、単独で用いたり、混合して用いたりしてもよい。
 そして、微多孔性支持膜を含む支持体は、実質的には分離性能を有さない層であり、実質的に分離性能を有する架橋ポリアミドの分離機能層に機械的強度を与えるために設けられるもので、布帛や不織布などの基材上に微多孔性支持膜を形成したものなどが用いられる。
 微多孔性支持膜は、それ自体では実質的には半透膜としての分離性能を有さない層で、実質的に分離性能を有する分離機能層に機械的強度を与えるために用いられるものであり、均一で微細な孔あるいは片面からもう一方の面まで徐々に大きな微細な孔をもっていて、その微細孔の大きさはその片面の表面が100nm以下であるような構造の支持膜が好ましい。
 上記の支持体は、ミリポア社製”ミリポアフィルターVSWP”(商品名)や、東洋濾紙社製”ウルトラフィルターUK10”(商品名)のような各種市販フィルター材料から選択することもできるが、通常は、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って製造できる。その素材にはポリスルホン、ポリアミド、ポリエステル、酢酸セルロース、硝酸セルロースやポリ塩化ビニル等のホモポリマーあるいはブレンドしたものが通常使用されるが、化学的、機械的、熱的に安定性の高い、ポリスルホンを使用するのが好ましい。
 例えば、上記ポリスルホンのジメチルホルムアミド(DMF)溶液を密に織ったポリエステル布あるいは不織布の上に一定の厚さに注型し、それをドデシル硫酸ソーダ0.5重量%およびDMF2重量%を含む水溶液中で湿式凝固させることによって、表面の大部分が直径数10nm以下の微細な孔を有した微多孔性支持膜が得られる。微多孔性支持膜の素材としては、ポリスルホン以外にポリアミドやポリエステルも好ましく用いられる。
 また、半透膜の運転条件(ろ過流束、回収率など)は、使用するナノろ過膜や逆浸透膜の種類によって、また、被処理水水質や透過水水質の要求によって適宜決定することが出来るが、ろ過流束は、膜のファウリングを最小限にすることを念頭に決定することが好ましい。被処理水に対する透過水の割合である回収率に関しては、高い方が好ましいが、高くするほど、透過水質が悪化することに留意する必要がある。また、回収率が高すぎると溶けきれなくなった溶質が膜面で析出し、膜を傷つけたり、流路を閉塞したりするため、析出しない範囲に回収率を設定することが必要である。もちろん、析出防止のためにスケール防止剤を添加すれば、析出がある程度抑えられるため、回収率を高く設定することも可能である。また、回収率が高過ぎる場合は、被処理水流量を減少させれば、回収率を高く維持できるが、被処理水流量を著しく小さい量まで減少させると膜面での滞留が生じやすくなる(すなわち、濃度分極が大きくなって性能低下を生じる)ため、被処理水流量を推奨範囲に維持する必要がある。そのため、被処理水流量を適正範囲に維持する目的で、ナノろ過膜や逆浸透膜を多段にして、回収率を上げても良い。
 ここで、クロスフロー方式で行なわれる半透膜分離処理(4)では、濃縮水が発生するが、この濃縮水の全部あるいは一部は、上述の工程の1次処理される前の分離された副生成水に返送されて混合され、再び、上述の工程を経ることとしてもよい。濃縮水に残存した有機物は、湿式酸化処理(1)や生物処理(2)により、少なくとも一部が除去され、溶存塩も生物処理(2)により微生物に取り込まれて少なくとも一部が除去されることになるので、濃縮水の返送を続けても、副生成水における溶存塩濃度等が大きく増加してしまうようなことはない。また、濃縮水の方が、副生成水よりCODが低く、濃縮水を副生成水に加えることで、副生成水が希釈されることになる。さらに、濃縮水には、生物反応由来の難生物分解成分が含まれるが、湿式酸化処理(1)を行うことにより、易分解性に改質し、生物分解反応を促進させることが可能である。
 以上のように、FT法等により合成ガスからの炭化水素の合成で生じる副生成水を利用可能なレベルまで浄化する際に、最初に湿式酸化処理(1)を行うが、この際に「炭化水素系有機物」除去率を50%~95%程度、あるいは「炭化水素」を80%以上の程度とすることにより、湿式酸化処理(1)の設備の小型化を図ることができる。
 また、蒸留処理と比較した場合に、湿式酸化による反応が発熱反応であり、生じた熱を利用するので、加熱に使用されるエネルギーを低減することができ、ランニングコストの低減を図ることができる。
 さらに、湿式酸化処理(1)された1次処理水と、処理前の副生成水との間で熱交換することで、1次処理水の温度を生物処理(2)に適した温度に低下させることができる。なお、熱交換しても1次処理水の温度が高い場合に、この熱を、冬季などにおいて、生物処理(2)における処理槽の温度を上げるのに用いてもよいし、他の暖房、冷房、温水供給等の有効利用を図ってもよい。
 また、「炭化水素系有機物」除去率を50%~95%、あるいは「炭化水素」を80%以上とした場合に、残りの有機物を浄化する必要があり、この例では生物処理(2)により残った「炭化水素系有機物」を除去することになるが、生物処理条件の選択に制約はない。一方、蒸留の場合、主に「炭化水素」や「非酸性酸素含有炭化水素」が除去されることにより、「酸性酸素含有炭化水素」のみが残り、これが、生物処理(2)の方法を選択する際の制約となる。
 FT法により生成された副生成水を以下の方法により浄化した。
 すなわち、副生成水をまず湿式酸化処理(1)し、次いで、生物処理(2)し、次いで、半透膜分離処理(4)を行った。
 湿式酸化処理(1)では、固体触媒として耐火性無機質酸化物に白金を組み合わせた触媒を用いた。
 また、触媒反応器における処理水の温度を摂氏200度とした。
 また、触媒反応器内の圧力を3MPaとした。
 また、1時間あたり触媒lm3によって処理される排水体積としてのSV値を1.0h-1とした。
 また、生物処理(2)としては、上述の膜分離活性汚泥法(MBR)を用いた。MBRの生物処理としては、循環式硝化脱窒法を用い、分離膜としては、ポリフッ化ビニリデン製の精密ろ過膜(平均細孔径0.08μm、東レ株式会社製)を用いた。まず、1次処理水を、活性汚泥が収容されている無酸素槽に導入し、脱窒処理した後、活性汚泥混合液を次の硝化槽に導入した。硝化槽では、空気曝気によって、好気処理(有機物分解と硝化反応)され、一部は無酸素槽に返流循環させた。このときの循環流量は、1次処理水流量の4倍とした。また、硝化槽内の活性汚泥混合液の一部を膜分離槽に導入した。膜分離槽では、上記分離膜を備えた平膜エレメントを浸漬させ、該平膜エレメントの下方部には、散気装置が設けられ、膜面洗浄と酸素供給を兼ねて曝気を行った。膜分離槽の活性汚泥混合液は、1次処理水の3倍の流量で硝化槽に返送した。膜分離槽内の活性汚泥は、吸引ポンプにより分離膜透過側を負圧にすることによって固液分離され、2次処理水としての透過液を得た。
 また、半透膜分離処理(4)では、水の回収率を80%とした(残り20%を濃縮水として排出(なお、副生成水等に返送可能))した。半透膜としては、東レ株式会社製の低ファウリング逆浸透膜TML20-370(ポリアミド製の平膜)を用いた。ここでは、半透膜処理の供給原水を渦巻ポンプによって、前記半透膜に導入し、透過水と濃縮水を得た。
 処理結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、副生成水は、「非酸性酸素含有炭化水素」を15,000mg/L含み、「酸性酸素含有炭化水素」を1000mg/L含む。「炭化水素」は、10mg/Lより小さい濃度であった。
 そして、ニクロム酸カリウムによる酸素要求量(CODCr)は、15,000mg/Lであった。CODCrは、「炭化水素系有機物」量に相当する。
 そして、湿式酸化処理(1)後は「非酸性酸素含有炭化水素」が100mg/Lとなり、「酸性酸素含有炭化水素」が1100mg/Lとなった。「炭化水素」は、10mg/Lより小さい濃度であった。
 また、CODCrは、1,300mg/Lとなり、湿式酸化処理(1)により「炭化水素有機物」除去率(COD除去率)は、91、3%となる。
 MBR処理水におけるCODCrは、約50mg/Lであった。半透膜分離処理(4)後の浄化水(透過水)のCODCrは、10mg/Lとなった。
 また、半透膜分離処理(4)における濃縮水は、CODCrが約200mg/Lとなっていた。この濃縮水は、CODCrが少し高いので、例えば、1次処理に返送することが好ましい。
 なお、この実施例では、半透膜分離処理(4)の前に、活性炭処理および/または限外ろ過膜処理を行なわなかった。
 以上の処理により、副生成水を例えば工業用水や灌漑用水として十分に利用可能な水とすることができる。そして、上述のように設備コストやランニングコストの低減を図ることができる。

Claims (6)

  1.  一酸化炭素ガスおよび水素ガスを用いて液体炭化水素混合物を合成する際に生じる副生成水を浄化する副生成水の浄化処理方法であって、
     前記副生成水に対して湿式酸化処理を行うことにより1次処理水とし、
     前記1次処理水に対して生物処理を行うことにより2次処理水とし
     前記2次処理水を半透膜を用いて浄化水と濃縮水とに分離することを特徴とする副生成水の浄化処理方法。
  2. 前記湿式酸化処理により副生成水に含まれる「炭化水素系有機物」の50~95%を除去、あるいは「炭化水素」の80%以上を除去して1次処理水とすることを特徴とする請求項1に記載の副生成水の浄化処理方法。
     但し、ここで、「炭化水素系有機物」とは、未処理の副生成水に含まれる全ての有機物を示し、「炭化水素」とは、浮遊(油)状態で含まれる有機物を示す。
  3.  前記濃縮水の少なくとも一部を浄化前の前記副生成水に返送することを特徴とする請求項1または2に記載の副生成水の浄化処理方法。
  4.  前記半透膜として低ファウリング逆浸透膜を用いることを特徴とする請求項1~3のいずれか1項に記載の副生成水の浄化処理方法。
  5.  前記生物処理では膜分離による固液分離を行うことを特徴とする請求項1~4のいずれか1項に記載の副生成水の浄化処理方法。
  6.  前記2次処理水に対して活性炭処理および/または限外ろ過膜処理を行なった後に、前記半透膜を用いて浄化水と濃縮水とに分離することを特徴とする請求項1~5のいずれか1項に記載の副生成水の浄化処理方法。
PCT/JP2009/054943 2008-03-24 2009-03-13 プロセス水の浄化処理方法 WO2009119350A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008076504A JP2011115671A (ja) 2008-03-24 2008-03-24 プロセス水の浄化処理方法
JP2008-076504 2008-03-24

Publications (1)

Publication Number Publication Date
WO2009119350A1 true WO2009119350A1 (ja) 2009-10-01

Family

ID=41113548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054943 WO2009119350A1 (ja) 2008-03-24 2009-03-13 プロセス水の浄化処理方法

Country Status (2)

Country Link
JP (1) JP2011115671A (ja)
WO (1) WO2009119350A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102381804A (zh) * 2010-09-01 2012-03-21 东丽纤维研究所(中国)有限公司 一种印染废水回用工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025004B2 (ja) * 2015-01-05 2016-11-16 株式会社トレステック 弾性筒状包帯

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253696A (ja) * 1996-03-26 1997-09-30 Teijin Ltd 有機物含有廃水の処理方法
JPH11347587A (ja) * 1998-06-03 1999-12-21 Kurita Water Ind Ltd 汚水処理装置
JP2005536326A (ja) * 2002-06-18 2005-12-02 サソール テクノロジー(プロプライエタリー)リミテッド フィッシャー−トロプシュから得られる水を精製する方法
WO2006043726A1 (ja) * 2004-10-22 2006-04-27 Toyo Engineering Corporation 炭化水素もしくは含酸素化合物の製造プラント廃水の処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253696A (ja) * 1996-03-26 1997-09-30 Teijin Ltd 有機物含有廃水の処理方法
JPH11347587A (ja) * 1998-06-03 1999-12-21 Kurita Water Ind Ltd 汚水処理装置
JP2005536326A (ja) * 2002-06-18 2005-12-02 サソール テクノロジー(プロプライエタリー)リミテッド フィッシャー−トロプシュから得られる水を精製する方法
WO2006043726A1 (ja) * 2004-10-22 2006-04-27 Toyo Engineering Corporation 炭化水素もしくは含酸素化合物の製造プラント廃水の処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102381804A (zh) * 2010-09-01 2012-03-21 东丽纤维研究所(中国)有限公司 一种印染废水回用工艺

Also Published As

Publication number Publication date
JP2011115671A (ja) 2011-06-16

Similar Documents

Publication Publication Date Title
JP4319981B2 (ja) フィッシャー・トロプシュ生成水の浄化方法
Wenten et al. Extractive membrane bioreactor (EMBR): Recent advances and applications
Basile et al. Membranes for membrane reactors: preparation, optimization and selection
Fane et al. Membrane technology: past, present and future
Gallucci et al. Introduction-A review of membrane reactors
JP4420930B2 (ja) 炭化水素もしくは含酸素化合物の製造プラント廃水の処理方法
TW201121902A (en) Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
JP5636163B2 (ja) 排水処理方法及び排水処理設備
Velasco et al. A focused review on membrane contactors for the recovery of dissolved methane from anaerobic membrane bioreactor (AnMBR) effluents
US10118850B2 (en) Process for the treatment of a flow of waste water by low-pressure filtration
Dohare et al. A review on membrane bioreactors: an emerging technology for industrial wastewater treatment
JP2007244979A (ja) 水処理方法および水処理装置
JP5303751B2 (ja) プロセス水の浄化処理方法
JP2009226336A (ja) プロセス水の浄化処理方法
JP2009072766A (ja) 水処理方法
WO2009119350A1 (ja) プロセス水の浄化処理方法
McCarty et al. Anaerobic fluidized bed membrane bioreactors for the treatment of domestic wastewater
JP5055746B2 (ja) 膜利用による水循環使用システム
JP2009226337A (ja) プロセス水の浄化処理方法
AU2011253905B2 (en) Generation of fresh water
Soares et al. Factsheet: Anaerobic membrane bioreactor with degassing unit
KR20150043949A (ko) Mbr-fo 혼성 공정을 이용한 수처리 방법 및 비료용 영양염류의 제조 방법
CN111003896A (zh) Mto高浓度有机废水的多膜集成近零排放处理工艺
Muthu et al. Taking precautions and identifying risks
Nollet et al. MEMBRANE SEPARATIONS-100 YEARS OF ACHIEVEMENTS AND CHALLENGES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09725584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP