WO2009115722A1 - Nouvel additif pour le traitement des aciers resulfures - Google Patents

Nouvel additif pour le traitement des aciers resulfures Download PDF

Info

Publication number
WO2009115722A1
WO2009115722A1 PCT/FR2009/050341 FR2009050341W WO2009115722A1 WO 2009115722 A1 WO2009115722 A1 WO 2009115722A1 FR 2009050341 W FR2009050341 W FR 2009050341W WO 2009115722 A1 WO2009115722 A1 WO 2009115722A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
additive
cored wire
inclusions
liquid steel
Prior art date
Application number
PCT/FR2009/050341
Other languages
English (en)
Inventor
André Poulalion
Sébastien GERARDIN
Original Assignee
Affival
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Affival filed Critical Affival
Priority to BRPI0908043-0A priority Critical patent/BRPI0908043A2/pt
Priority to EP09721360.7A priority patent/EP2252712B1/fr
Priority to US12/920,521 priority patent/US9023126B2/en
Priority to ES09721360.7T priority patent/ES2654921T3/es
Publication of WO2009115722A1 publication Critical patent/WO2009115722A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent

Definitions

  • the present invention is in the technical field of cored wires for the introduction of additive into a bath of liquid steel, of the type comprising a metal sheath surrounding said additive, intended to treat special steels called resulfurized and especially killed aluminum.
  • the invention also relates to a process for manufacturing resulfided steels using the aforementioned cored wire.
  • resulfided steels steels whose manufacturing process involves an addition of sulfur in the bath of liquid metal.
  • So-called resulfided steels are shades whose development by the "continuous casting" is sometimes difficult to control and this, especially since the contents of S (sulfur) and Al (aluminum) are high. Indeed, the castability of these shades in continuous casting degrades when the contents of S and Al are high, which is the case typically for an S content greater than 0.25% by weight and an Al content greater than 0 , 03% by weight.
  • the flowability of the steel is closely related to the presence in the steel of suspended solid particles (inclusions) as it passes through the continuous tundish.
  • These solid particles may be oxides, such as alumina (Al 2 O 3 ), or sulphides (CaS), which easily cling to the refractory walls of the continuous casting elements (cattails, nozzles ...) forming deposits, which causes blockages.
  • oxides such as alumina (Al 2 O 3 ), or sulphides (CaS), which easily cling to the refractory walls of the continuous casting elements (cattails, nozzles ...) forming deposits, which causes blockages.
  • these solid particles degrade the quality of the semi-finished products and thus the end-use properties of the steels.
  • the inclusions of solid oxides of the alumina (Al 2 O 3 ) or spinel (Al 2 O 3 - MgO) type are essentially formed during the deoxidation operation of the steel (so-called calming operation) or even during oxidation of the bath of liquid metal during the production process. These inclusions must be absolutely transformed into liquid inclusions by addition of calcium (treatment inclusive), generally in the form of cored wire that may contain pure CaSi or Ca. The calcium thus introduced into the steel combines with the solid inclusions to form new compounds of the type AI 2 O 3 - CaO or Al 2 O 3 - CaO - SiO 2 which are liquid at the casting temperature of the worked steel.
  • WO 2005/078142 and especially WO-2006/000714 A2 disclose various solid inclusion processing methods of introducing a cored wire in a bath of liquid steel deep inside the pocket so as to prevent the additives contained in the cored wire are vaporized before reaching a sufficient depth and / or reacting on the surface with the slag.
  • the additives in question include calcium-supporting materials for treating endogenous inclusions.
  • FIG. 1 schematizes the conventional steelmaking process, which comprises the three major steps presented above:
  • step 1 desulphurization of the steel (period that may require several ten minutes);
  • step 2 inclusionary treatment
  • step 3 resulfuration of the steel.
  • the present invention proposes to simplify the metallurgical process for manufacturing so-called resulfurized steels (or high sulfur content), thus ensuring a productivity gain, while guaranteeing an equivalent level of quality and good flowability of the steels obtained.
  • the invention relates, according to a first aspect, to a flux-cored wire for the introduction of additive into a bath of liquid steel, said flux-cored wire being of the type comprising a metal sheath surrounding said additive, and characterized in that than said additive comprises predominantly (at least 85% by weight) calcium silicate.
  • Calcium silicate is derived from the reaction in given proportions of lime (CaO) with silica (SiO 2 ).
  • Calcium silicate is usually described in the state of the art in the form of the following binary mixture: (CaO, SiO 2 ) in which the proportion by weight of lime (CaO) relative to that of silica (SiO 2 ) is adjusted especially according to the target melting temperature for the calcium silicate obtained.
  • the flux-cored wire according to the invention comprises a mixture of oxides based on calcium silicate (CaO-SiO 2 ) advantageously making it possible to eliminate the above-mentioned step 1 of prior desulfurization (gain of several tens of minutes) and to avoid the addition of calcium (Ca) (in any form: CaSi or pure Ca), while ensuring an effective treatment of the solid steel bath's inclusionary solid population, compatible with continuous casting techniques.
  • This cored wire containing the mixture of oxides based on CaO-SiO 2 makes it possible, when it is introduced into the molten steel, to modify the nature and the morphology of the inclusions of solid oxides present in the bath. liquid steel without risking the formation of harmful solid sulphides.
  • calcium silicides (“calcium suicide") added in the inclusion treatments known from the state of the art, in particular from document WO-2005/078142, and the oxides of calcium and silicon which are the calcium silicates (CaO-SiO 2 ) according to the present invention.
  • the flux-cored wire according to the invention makes it possible, when it is introduced into a bath of liquid steel, to transform the solid inclusions present in the liquid steel (essentially oxides such as AI 2 O 3 ) which are at the origin capping of continuous flows, in liquid inclusions - at the casting temperature of the worked steel - which flow easily.
  • the inclusions of oxides formed can advantageously be charged with sulfur (S) during the solidification of the steel, but there is no formation of calcium sulphide (CaS), that is to say of solid inclusions at the casting temperature of the worked steel comprising sulfur (S).
  • said additive comprises a lime content (CaO) varying between 31% and 44% by weight and a silica (SiO 2 ) content varying between 56% and 69% by weight.
  • the proportions of lime and silica are determined so as to correspond to the values contained in the circular zone delimited in dashed lines around the eutectic point referenced E in FIGS. 2 and 3, representing the ternary diagram AI 2 O 3 - CaO - SiO 2 . These proportions are optimal so as to obtain a calcium silicate (CaO-SiO 2 ) having a melting temperature less than or equal to the working temperature of the treated liquid steel.
  • Precise point E refers to the preferred lime and silica ratios in the binary mixture formed by calcium silicate.
  • the invention relates to a method for manufacturing special steels called "resulfurized", said method comprising a step of introducing, into the bath of liquid steel, the cored wire of the invention.
  • These steels have a sulfur content which ranges from 0.02% to more than 0.25% by weight.
  • the method of the invention is directed to the manufacture of aluminum resulfided steels.
  • the process according to the invention makes it possible to treat the solid inclusions, in particular aluminum oxide Al 2 O 3 , contained in baths of liquid steels intended for the production of steels with a high sulfur content, without it is necessary to proceed with the prior desulphurization of the steel, while guaranteeing a modification of the solid inclusions and the improvement of the flowability required by the modern continuous casting tools.
  • the process according to the invention comprises a first step intended to obtain a liquid steel base, for example by melting scrap, a second deoxidation step, a third shading step, a fourth degassing step. , a fifth step of treatment of solid inclusions using a cored wire according to the invention.
  • the second step is to deoxidize the liquid steel bath which contains a very high content of dissolved oxygen, incompatible with subsequent manufacturing processes.
  • the dissolved oxygen is fixed in particular by adding aluminum in the liquid steel bath.
  • This second step is commonly called “calmage”.
  • Dissolved oxygen and aluminum will then combine to form solid inclusions of alumina (Al 2 O 3 ) that should be transformed into liquid inclusions by changing their chemical composition for the continuous casting step.
  • the third step of shading is the final shading of the liquid steel, possibly the sulfur content.
  • said process does not include a desulfurization step before the step of treating solid inclusions, in particular before the fifth step of treatment of solid inclusions.
  • said method comprises a gentle bubbling step of homogenizing the liquid steel ladle after the fifth solid inclusions treatment step, preferably with the aid of a porous plug disposed at the bottom of the ladle. liquid steel.
  • This step serves to homogenize the distribution of inclusions.
  • the invention also relates to the use of the aforementioned flux-cored wire to improve the flowability of the resulfurized steel baths.
  • the object of the present invention is to replace the known steel treatment, intended to control the flowability of a bath of liquid steel, in particular resulfurized steel, by treatment with the aid of a calcium silicate additive.
  • a calcium silicate additive As preferred means of introducing said additive into the liquid metal bath is used the cored wire technique, known for its efficiency and simplicity.
  • the cored wire for the introduction of additive into a bath of liquid steel is of the type comprising a metal sheath surrounding said additive.
  • said additive essentially comprises calcium silicate capable of interacting with the solid inclusions present in the liquid steel (in particular aluminum oxides Al 2 O 3 ) and transforming them into inclusions. fluids that flow easily and thus prevent clogging of continuous flows.
  • the additive intended to be introduced into the bath of liquid steel, by means of the cored wire according to the invention may further comprise a flux (such as fluorides), whose role is to lower the melting temperature of the additive contained in the flux-cored wire, so as to bring it to the liquid state as soon as it is introduced into the bath of liquid steel and to keep it in this state, since only a liquid composition based on calcium silicate can absorb the solid particles present in the steel bath.
  • a flux such as fluorides
  • the additive intended to be introduced into the bath of liquid steel, by means of the cored wire according to the invention may further comprise another metal oxide such as FeO, MnO or MgO.
  • the proportion of these metal oxides in the additive is less than or equal to 2% by weight. This metal oxide has the function of lowering the melting temperature of said additive. Beyond 2% by weight of said additive, said additive tends to form solid inclusions at the casting temperature.
  • the invention relates to a method for manufacturing special steels called "resulfurized", said method comprising a step of introducing, into the bath of liquid steel, the cored wire of the invention.
  • the process of the invention comprises a metallurgical treatment intended to modify the nature and the morphology of the inclusions present in a bath of liquid steel (in particular solid inclusions), at a precise moment of the elaboration of resulfided steels.
  • This metallurgical treatment consists in introducing into the bath of liquid steel the flux-cored wire according to the invention, comprising a calcium silicate additive capable of acting on the solid inclusions, in particular of alumina, by transforming them into liquid inclusions. thus improving the flowability of the treated steel.
  • the oxide mixture contained in the cored wire according to the invention has the particularity of having a low melting point.
  • the strictly binary CaO - SiO 2 mixture has a eutectic point at 1436 ° C (for 63% SiO 2 ). This melting point may be decreased if the mixture is combined with other constituents such as metal oxides (FeO, MnO, MgO) or fluxes, for example of the CaF 2 type.
  • the working temperatures during the preparation of the liquid steel are much higher than the melting temperature of the oxide mixture contained in the cored wire. It follows that the flux-cored wire introduced into the liquid steel bath releases fine particles of liquid oxides.
  • the composition of the desired inclusions is shown in the attached figure 2, which represents the ternary diagram AI 2 O 3 - CaO - SiO 2 (from [I]).
  • E represents the eutectic point of the "binary alloy” CaO - SiO 2
  • VE represents the composition of the desired inclusions after inclusionary treatment.
  • the eutectic point E corresponds to the reversible transformation of a liquid phase into two distinct solid phases.
  • the preferred binary mixture within the scope of the present invention comprises by weight from 56% to 69% of silica (SiO 2 ) and from 31% to 44% of lime (CaO).
  • VE represents the lowest melting temperature (1172 ° C.) of a given ternary mixture Al 2 O 3 - CaO - SiO 2 , which is determined from the eutectic point E so that the inclusions having this composition have a melting temperature much lower than that of steel.
  • the inclusions are liquid at the casting temperature. In the rest of the process, these inclusions will be able to decant and be in turn captured by the pocket slag. Small inclusions, not eliminated, will have no impact on the flowability or the final properties of the steel. This process has several advantages.
  • the process according to the invention is particularly suitable for the treatment of solid inclusions present in steel baths comprising aluminum.
  • the process according to the invention makes it possible to significantly reduce the elaboration time of such steels since the desulfurization step can be purely and simply suppressed. This saving of time translates directly in term of gain of productivity but also in term of gain of energy, in particular electrical, and matter.
  • the desulfurization of the liquid steel indeed requires controlling the chemical composition of the slag (additions of lime, alumina, aluminum for example), to carry out an intense bubbling in the pocket (gas insufflation by the porous plug, in particular argon) to promote the chemical exchange between the liquid steel and the slag, and in parallel to heat the bath of liquid steel (significant consumption of electrical energy).
  • the invention makes it possible to eliminate the injection of cored wires containing CaSi or pure Ca.
  • FIGS. 4 and 5, hereinafter appended, illustrate the main steps of a process for treating an aluminum-killed resulfurized steel given by way of non-limiting example and as known from the state of the art. for Figure 4 and improved according to the present invention for Figure 5.
  • the grade of the treated steel is the same for the two processes shown in Figures 4 and 5. It is a steel 29MnCr5 with a sulfur content between 0.020% and 0.040% by weight and an aluminum content of between 0.015% and 0.040% by weight.
  • the process described in FIG. 4 comprises a first melting step E 1 of the steel to be treated, a second deoxidation (dehydration) step E 2 , a third desulfurization step E 3 , a fourth shading step of pocket furnace steel E 4 (with the exception of the sulfur content), a fifth degassing step E 5 , a sixth step of inclusion treatment E 6 using a cored wire containing a calcium-based additive (CaSi or pure Ca), a seventh step of sulfur shading E 7 , and finally an eighth continuous casting step E 8 of the treated steel.
  • the third step of desulfurization E 3 consists of desulphurizing the liquid steel, in particular by chemical exchanges between the steel and the supernatant slag.
  • This desulphurization step is complex to implement since it requires perfectly mastering the chemical composition of the slag to allow chemical exchanges with the liquid steel optimally for the sixth step E 6 relating to the inclusion treatment.
  • the second E 2 desulfurization step requires a minimum of time, at least 20 minutes in most known manufacturing processes, in order to reduce the sulfur content for the sixth step E 6 subsequent treatment of inclusions.
  • the sixth step E 6 of treatment inclusions is carried out using a cored wire of calcium silicate (CaSi), in this specific example based on an alloy comprising 30% calcium.
  • the seventh step E 7 of sulfur shading for final shading according to the specifications occurs only after a minimum waiting time, at least 5 minutes, following the sixth step E 6 .
  • This waiting period makes it possible to reduce the probability of the sulfur combining with the calcium injected via the cored wire and thus avoiding the formation of calcium sulphides (CaS) forming solid inclusions at the casting temperature of the treated steel. , therefore harmful for casting in continuous casting.
  • the process according to the invention, as illustrated in FIG. 5, advantageously makes it possible to eliminate the third desulphurization step E 3 and the seventh final shaping step E 7 of the treated steel.
  • the second step E 2 > of shading of the steel to be treated in the pocket furnace consists of the final shading of the steel to be treated according to the specifications, including the sulfur content.
  • the sixth step E & of inclusions treatment is carried out using a cored wire according to the present invention, comprising in this specific example a mixture of calcium silicate (CaO-SiO 2 ) and manganese oxide (MnO ) in the following proportions by weight: SiO 2 : 65.2%; CaO: 33.7%; MnO: 1.1%.
  • the outer diameter of said cored wire is of the order of 13.5 mm, the metal sheath has a thickness of about 0.35 mm and the cored wire has a linear density of the order of 227 g / m.
  • the temperature of the steel bag to which the cored wire is injected is of the order of 1592 ° C.
  • the quantity of cored wire injected is of the order of 250 g per ton of steel.
  • a soft homogenization bubbling using a porous plug located at the bottom of the bag is carried out for 7 minutes.
  • the steel ladle is then ready to be transferred to continuous casting.
  • the flowability recorded at the eighth step E 8 ' is in accordance with the average level of that recorded in the context of a standard method known from the state of the art, such as that illustrated in FIG. 4.
  • the The defect rate recorded in continuous casting is 4.5% for the process illustrated in FIG. 5 against an average level of 4.92% for the known process illustrated in FIG. 4.
  • the oxygen content just before the fifth step E 5 > degassing is 22 ppm.
  • the oxygen content measured in the tundish, when the pocket still contains 70 tonnes of steel, is 15 ppm.
  • the process illustrated in FIG. 5 makes it possible to significantly reduce the elaboration time of such steels since the desulfurization step E 3 can be purely and simply suppressed.
  • This saving of time translates directly in term of gain of productivity but also in term of gain of energy, in particular electrical, and matter.
  • the desulphurization of liquid steel indeed requires to control the chemical composition of the slag (additions of lime, alumina, aluminum for example), to carry out an intense bubbling in the pocket (insufflation of gas by the porous plug - consumption argon) to promote the chemical exchange between the liquid steel and the slag, and in parallel to heat the bath of liquid steel (significant consumption of electrical energy).
  • the process according to the invention makes it possible to reduce the consumption of sulfur to be added to the liquid steel in order to comply with the specifications and to suppress the addition of CaSi or pure Ca for the inclusion treatment.
  • the size of the pocket is 105 tons and the final shade of the treated steel 29MnCr5 is as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

La présente invention concerne un fil fourré comprenant un additif à base de silicate de calcium CaO.SiO2 , destiné à traiter les aciers spéciaux dits resulfurés. L'invention a également trait à un procédé de fabrication d'aciers resulfurés au moyen du fil fourré précité. Le procédé selon l'invention est particulièrement adapté au traitement des inclusions solides présentes dans les bains d'acier comportant de l'aluminium. Le procédé de l'invention permet d'éviter la désulfuration préalable au traitement des inclusions solides.

Description

NOUVEL ADDITIF POUR LE TRAITEMENT DES ACIERS RESULFURES
La présente invention est dans le domaine technique des fils fourrés pour l'introduction d'additif dans un bain d'acier liquide, du type comprenant une gaine métallique entourant ledit additif, destiné à traiter les aciers spéciaux dits resulfurés et notamment calmés à aluminium. L'invention a également trait à un procédé de fabrication d'aciers resulfurés au moyen du fil fourré précité.
Sont considérés comme aciers resulfurés, les aciers dont le procédé de fabrication fait intervenir une addition de soufre dans le bain de métal liquide. Les aciers dits resulfurés sont des nuances dont l'élaboration par la voie "coulée continue" est parfois difficile à maîtriser et ce, d'autant plus que les teneurs en S (soufre) et Al (aluminium) sont élevées. En effet, la coulabilité de ces nuances en coulée continue se dégrade quand les teneurs en S et Al sont élevées, ce qui est le cas typiquement pour une teneur en S supérieure à 0,25 % en poids et une teneur en Al supérieure à 0,03 % en poids. La coulabilité de l'acier dépend étroitement de la présence dans l'acier de particules solides en suspension (inclusions) au moment de son passage dans le répartiteur de coulée continue. Ces particules solides peuvent être des oxydes, comme l'alumine (AI2O3), ou des sulfures (CaS), qui s'accrochent aisément aux parois réfractaires des éléments de coulée continue (quenouilles, busettes...) en formant des dépôts, ce qui provoque des bouchages. Par ailleurs, ces particules solides dégradent la qualité des demi- produits et donc les propriétés d'emploi finales des aciers.
Il n'y a pas de bouchage et la coulabilité est bonne si les inclusions sont liquides au moment du passage de l'acier dans le répartiteur. Liquides, les inclusions ne peuvent former des dépôts sur les réfractaires de coulée. On cherche à remplir cette condition, dans le procédé sidérurgique classique, à travers plusieurs étapes effectuées en amont de la coulée continue.
Les inclusions d'oxydes solides du type alumine (AI2O3) ou spinelles (AI2O3- MgO) sont essentiellement formées lors de l'opération de désoxydation de l'acier (opération dite de calmage) voire lors des ré-oxydations du bain de métal liquide au cours du procédé d'élaboration. Ces inclusions doivent être absolument transformées en inclusions liquides par addition de calcium (traitement inclusionnaire), généralement sous forme de fil fourré pouvant contenir du CaSi ou Ca pur. Le calcium ainsi introduit dans l'acier se combine avec les inclusions solides pour former de nouveaux composés du type AI2O3 - CaO ou AI2O3 - CaO - SiO2 liquides à la température de coulée de l'acier travaillé. WO 2005/078142 et surtout WO-2006/000714 A2 divulguent ainsi différents procédés de traitement des inclusions solides consistant à introduite un fil fourré dans un bain d'acier liquide au plus profond de la poche en sorte d'éviter que les additifs contenus dans le fil fourré ne soient vaporisés avant d'atteindre une profondeur suffisante et/ou ne réagissant en surface avec le laitier. Les additifs en question sont notamment des matériaux supportant du calcium en vue de traiter les inclusions endogènes.
Cependant, si la teneur en soufre du bain d'acier liquide est trop élevée au moment de l'addition de calcium, le calcium introduit peut se combiner au soufre pour former des sulfures de calcium solides (CaS) nuisibles à la coulabilité. Dans ce cas de figure, il est impératif de procéder à une opération de désulfuration de l'acier avant l'addition de calcium (Ca), afin d'atteindre une teneur en soufre (S) suffisamment faible, compatible avec l'ajout d'une grande quantité de calcium (Ca). Ensuite, seulement après le traitement inclusionnaire, on peut procéder à la resulfuration pour atteindre le niveau de soufre stipulé par le cahier des charges. La figure 1 annexée schématise le procédé sidérurgique classique, qui comprend les trois grandes étapes présentées ci-dessus:
- étape 1: désulfuration de l'acier (période qui peut demander plusieurs dizaine de minutes) ;
- étape 2 : traitement inclusionnaire; - étape 3 : resulfuration de l'acier.
La présente invention se propose de simplifier le procédé métallurgique de fabrication des aciers dits resulfurés (ou à haute teneur en soufre), assurant ainsi un gain de productivité, tout en garantissant un niveau de qualité équivalent et une bonne coulabilité des aciers obtenus. A cet effet, l'invention concerne, selon un premier aspect, un fil fourré pour l'introduction d'additif dans un bain d'acier liquide, ledit fil fourré étant du type comprenant une gaine métallique entourant ledit additif, et caractérisé en ce que ledit additif comprend majoritairement (au moins 85% en poids) du silicate de calcium. Le silicate de calcium est issu de la réaction dans des proportions données de la chaux (CaO) avec la silice (SiO2). Le silicate de calcium est habituellement décrit dans l'état de la technique sous la forme du mélange binaire suivant : (CaO. SiO2) dans lequel la proportion en poids de chaux (CaO) par rapport à celle de silice (SiO2) est ajustée notamment en fonction de la température de fusion visée pour le silicate de calcium obtenu.
Le fil fourré selon l'invention comprend un mélange d'oxydes à base de silicate de calcium (CaO-SiO2) permettant avantageusement de supprimer l'étape 1 précitée de désulfuration préalable (gain de plusieurs dizaines de minutes) et d'éviter l'ajout de calcium (Ca) (sous toute forme : CaSi ou Ca pur), tout en garantissant un traitement efficace de la population inclusionnaire solide du bain d'acier liquide, compatible avec les techniques de coulée continue. Ce fil fourré contenant le mélange d'oxydes à base de CaO-SiO2 permet en effet, lorsqu'il est introduit dans l'acier liquide, de modifier la nature et la morphologie des inclusions d'oxydes solides présentes dans le bain d'acier liquide sans risquer la formation de sulfures solides néfastes. Il ne faut pas ainsi confondre les siliciures de calcium (« calcium suicide ») ajoutés dans les traitements inclusionnaires connus de l'état de la technique, notamment du document WO-2005/078142, et les oxydes de calcium et de silicium que sont les silicates de calcium (CaO-SiO2) selon la présente invention.
Le fil fourré selon l'invention permet, lorsqu'il est introduit dans un bain d'acier liquide, de transformer les inclusions solides présentes dans l'acier liquide (essentiellement des oxydes tels que AI2O3) qui sont à l'origine des bouchages des coulées continues, en inclusions liquides - à la température de coulée de l'acier travaillé - qui s'écoulent facilement. Les inclusions d'oxydes formées peuvent avantageusement se charger de soufre (S) lors de la solidification de l'acier mais il n'y a pas formation de sulfure de calcium (CaS), c'est-à-dire d'inclusions solides à la température de coulée de l'acier travaillé comprenant du soufre (S). Dans une variante, ledit additif comprend une teneur en chaux (CaO) variant entre 31% et 44% en poids et une teneur en silice (SiO2) variant entre 56% et 69% en poids. Les proportions en chaux et en silice sont déterminées en sorte de correspondre aux valeurs contenues dans la zone circulaire délimitée en pointillés aux environs du point eutectique référencé E aux figures 2 et 3, représentant le diagramme ternaire AI2O3 - CaO - SiO2. Ces proportions sont optimales en sorte d'obtenir un silicate de calcium (CaO-SiO2) ayant une température de fusion inférieure ou égale à la température de travail de l'acier liquide traité. Le point E précis désigne les proportions en chaux et en silice préférées dans le mélange binaire que forme le silicate de calcium.
Selon un deuxième aspect, l'invention se rapporte à un procédé de fabrication d'aciers spéciaux dits "resulfurés", ledit procédé comprenant une étape d'introduction, dans le bain d'acier liquide, du fil fourré de l'invention. Ces aciers présentent une teneur en soufre qui varie de 0,02% à plus de 0,25% en poids.
Dans une variante préférée de réalisation, le procédé de l'invention vise la fabrication d'aciers resulfurés calmés à l'aluminium. De manière caractéristique, le procédé selon l'invention permet de traiter les inclusions solides notamment d'oxyde d'aluminium AI2O3, contenues dans les bains d'aciers liquides destinés à la production d'aciers à haute teneur en soufre, sans qu'il soit nécessaire de procéder à la désulfuration préalable de l'acier, tout en garantissant une modification des inclusions solides et l'amélioration de la coulabilité exigée par les outils de coulées continues modernes.
Dans une variante, le procédé selon l'invention comprend une première étape destinée à obtenir une base d'acier liquide, par exemple par fusion de ferrailles, une deuxième étape de désoxydation, une troisième étape de mise à nuance, une quatrième étape de dégazage, une cinquième étape de traitement des inclusions solides à l'aide d'un fil fourré selon l'invention.
La deuxième étape consiste à désoxyder le bain d'acier liquide qui contient une teneur très importante en oxygène dissous, incompatible avec les procédés de fabrication ultérieurs. L'oxygène dissous est fixé notamment grâce à l'ajout d'aluminium dans le bain d'acier liquide. Cette deuxième étape est couramment appelée "calmage". L'oxygène dissous et l'aluminium vont alors se combiner pour former des inclusions solides d'alumine (AI2O3) qu'il conviendra de transformer en inclusions liquides par modification de leur composition chimique en vue de l'étape de coulée continue.
Dans une variante, la troisième étape de mise à nuance est la mise à nuance finale de l'acier liquide, éventuellement de la teneur en soufre. L'étape de désulfuration des aciers contenant du soufre - préalable indispensable au traitement inclusionnaire à l'aide de silico-calcium tel que connu dans l'état de la technique - étant supprimée dans le procédé selon l'invention, l'ajustement de la teneur en soufre conformément au cahier des charges peut être par exemple effectué lors de la première mise à nuance avant le traitement inclusionnaire.
Dans une variante, ledit procédé ne comprend pas d'étape de désulfuration avant l'étape de traitement des inclusions solides, notamment avant la cinquième étape de traitement des inclusions solides.
Dans une variante, ledit procédé comprend une étape de bullage doux d'homogénéisation de la poche d'acier liquide après la cinquième étape de traitement des inclusions solides, de préférence à l'aide d'un bouchon poreux disposé au fond de la poche d'acier liquide.
Cette étape a pour fonction d'homogénéiser la distribution des inclusions.
L'invention a également trait à l'utilisation du fil fourré précité pour améliorer la coulabilité des bains d'acier resulfurés.
L'invention va maintenant être décrite en détail.
La présente invention a pour but de remplacer le traitement sidérurgique connu, destiné à contrôler la coulabilité d'un bain d'acier liquide notamment resulfuré, par un traitement à l'aide d'un additif à base de silicate de calcium. Comme moyen préféré d'introduction dudit additif dans le bain de métal liquide est utilisée la technique du fil fourré, reconnue pour son efficacité et sa simplicité.
Le fil fourré pour l'introduction d'additif dans un bain d'acier liquide, selon l'invention, est du type comprenant une gaine métallique entourant ledit additif. Avantageusement, ledit additif comprend essentiellement du silicate de calcium apte à interagir avec les inclusions solides présentes dans l'acier liquide (notamment des oxydes d'aluminium AI2O3) et à les transformer en inclusions liquides qui s'écoulent facilement et permettent ainsi d'éviter des bouchages des coulées continues.
L'additif destiné à être introduit dans le bain d'acier liquide, au moyen du fil fourré selon l'invention, peut en outre comprendre un fondant (tel que des fluorures), dont le rôle est d'abaisser la température de fusion de l'additif contenu dans le fil fourré, de sorte à l'amener à l'état liquide dès l'introduction dans le bain d'acier liquide et à le garder en cet état, car seule une composition liquide à base de silicate de calcium peut absorber les particules solides présentes dans le bain d'acier. La proportion du fondant dans l'additif est inférieure ou égale à 10% en poids.
L'additif destiné à être introduit dans le bain d'acier liquide, au moyen du fil fourré selon l'invention, peut en outre comprendre un autre oxyde métallique tel que FeO, MnO ou MgO. La proportion de ces oxydes métalliques dans l'additif est inférieure ou égale à 2% en poids. Cet oxyde métallique a pour fonction d'abaisser la température de fusion dudit additif. Au-delà de 2% en poids dudit additif, ledit additif a tendance à former des inclusions solides à la température de coulée.
Selon un deuxième aspect, l'invention se rapporte à un procédé de fabrication d'aciers spéciaux dits "resulfurés", ledit procédé comprenant une étape d'introduction, dans le bain d'acier liquide, du fil fourré de l'invention.
Le procédé de l'invention comprend un traitement métallurgique destiné à modifier la nature et la morphologie des inclusions présentes dans un bain d'acier liquide (notamment des inclusions solides), à un moment précis de l'élaboration d'aciers resulfurés. Ce traitement métallurgique consiste en l'introduction dans le bain d'acier liquide du fil fourré selon l'invention, comprenant un additif à base de silicate de calcium apte à agir sur les inclusions solides notamment d'alumine en les transformant en inclusions liquides, améliorant ainsi la coulabilité de l'acier traité.
Le mécanisme exact d'interaction entre les inclusions à base de silicate de calcium introduites dans le bain d'acier liquide grâce au fil fourré contenant l'additif et les inclusions endogènes solides présentes dans un bain d'acier liquide (notamment AI2O3) n'est pas connu. Vraisemblablement, il s'agit d'un processus physique d'absorption de l'alumine par le silicate de calcium, ce qui conduit à la formation de composés complexes AI2O3 - CaO - SiO2.
Le mélange d'oxydes contenu dans le fil fourré selon l'invention possède la particularité d'avoir un bas point de fusion. Le mélange strictement binaire CaO - SiO2 présente un point eutectique à 1436°C (pour 63% de SiO2). Ce point de fusion peut être diminué si le mélange est associé à d'autres constituants tels que des oxydes métalliques (FeO, MnO, MgO) ou des fondants, par exemple du type CaF2.
Les températures de travail lors de l'élaboration de l'acier liquide sont bien supérieures à la température de fusion du mélange d'oxydes contenu dans le fil fourré. Il en découle que le fil fourré introduit dans le bain d'acier liquide libère de fines particules d'oxydes liquides.
Ces inclusions liquides, réparties rapidement dans toute la poche d'acier liquide, ont un grand pouvoir de captation des inclusions solides d'alumine ou spinelles. De ce fait, la nature et la morphologie de ces inclusions endogènes vont être modifiées. La composition des inclusions recherchées est indiquée dans la figure 2 annexée, qui représente le diagramme ternaire AI2O3 - CaO - SiO2 (d'après [I]). Dans les figures 2 et 3 annexées, E représente le point eutectique de "l'alliage binaire" CaO - SiO2, et VE représente la composition des inclusions recherchées après traitement inclusionnaire. Dans le diagramme ternaire annexé, le point eutectique E correspond à la transformation réversible d'une phase liquide en deux phases solides distinctes. Ainsi, le mélange binaire préféré dans le cadre de la présente invention comprend en poids de 56% à 69% de silice (SiO2) et de 31% à 44% de chaux (CaO). Sur la figure 2, VE représente la plus faible température de fusion (11720C) d'un mélange ternaire donné AI2O3 - CaO - SiO2, lequel est déterminé à partir du point eutectique E en sorte que les inclusions ayant cette composition aient de fait une température de fusion très inférieure à celle de l'acier. Ainsi, les inclusions sont liquides à la température de coulée. Dans la suite du procédé, ces inclusions vont pouvoir décanter et être à leur tour captées par le laitier de poche. Les petites inclusions, non éliminées, n'auront aucune incidence ni sur la coulabilité, ni sur les propriétés finales de l'acier. Ce procédé présente plusieurs avantages. Il constitue notamment un traitement doux de l'acier à l'état liquide, à la différence du traitement connu à base de silico-calcium (CaSi) et d'autant plus, vis-à-vis d'un traitement standard au calcium pur (Ca), caractérisé par une réaction très énergique du calcium qui subit une sublimation (passage de l'état solide à l'état vapeur) lors de son introduction dans le bain d'acier liquide. En outre, ce procédé ne conduit pas à la formation de sulfures de calcium néfastes pour la coulabilité.
Le procédé selon l'invention est particulièrement adapté au traitement des inclusions solides présentes dans les bains d'acier comportant de l'aluminium. Surtout, le procédé selon l'invention permet de réduire significativement le temps d'élaboration de tels aciers puisque l'étape de désulfuration peut être purement et simplement supprimée. Ce gain de temps se traduit directement en terme de gain de productivité mais également en terme de gain d'énergie, notamment électrique, et de matière. La désulfuration de l'acier liquide nécessite en effet de maîtriser la composition chimique du laitier (ajouts de chaux, d'alumine, d'aluminium par exemple), de réaliser un bullage intense en poche (insufflation de gaz par le bouchon poreux, notamment d'argon) pour favoriser les échanges chimiques entre l'acier liquide et le laitier, et en parallèle de chauffer le bain d'acier liquide (consommation importante d'énergie électrique). Enfin, l'invention permet de supprimer l'injection de fils fourrés contenant du CaSi ou Ca pur.
Les figures 4 et 5, ci-après annexées, illustrent les principales étapes d'un procédé de traitement d'un acier resulfuré calmé à l'aluminium donné à titre d'exemple non limitatif et tel que connu de l'état de la technique pour la figure 4 et amélioré selon la présente invention pour la figure 5. La nuance de l'acier traité est la même pour les deux procédés illustrés aux figures 4 et 5. Il s'agit d'un acier 29MnCr5 avec une teneur en soufre comprise entre 0,020% et 0,040% en poids et une teneur en aluminium comprise entre 0,015% et 0,040% en poids.
Le procédé décrit à la figure 4 comprend une première étape Ei de fusion de l'acier à traiter, une seconde étape E2 de désoxydation (calmage), une troisième étape de désulfuration E3, une quatrième étape de mise à nuance de l'acier à traiter au four poche E4 (à l'exception de la teneur en soufre), une cinquième étape de dégazage E5, une sixième étape de traitement inclusionnaire E6 à l'aide d'un fil fourré contenant un additif à base de calcium (CaSi ou Ca pur), une septième étape de mise à nuance en soufre E7, et enfin une huitième étape de coulée en continue E8 de l'acier traité. La troisième étape de désulfuration E3 consiste à désulfurer l'acier liquide notamment par des échanges chimiques entre l'acier et le laitier surnageant. Cette étape de désulfuration est complexe à mettre en œuvre puisqu'elle nécessite de parfaitement maîtriser la composition chimique du laitier pour permettre les échanges chimiques avec l'acier liquide de manière optimale en vue de la sixième étape E6 relative au traitement inclusionnaire. En fonction de la qualité du laitier et de la teneur en soufre (S) de l'acier traité, la seconde étape de désulfuration E2 nécessite un minimum de temps, au moins 20 minutes dans la plupart des procédés de fabrication connus, afin de diminuer la teneur en soufre en vue de la sixième étape E6 ultérieure de traitement des inclusions. La sixième étape E6 de traitement des inclusions est réalisée à l'aide d'un fil fourré de silico-calcium (CaSi), dans cet exemple précis à base d'un alliage comprenant 30% de calcium.
La septième étape E7 de mise à nuance en soufre pour la mise à nuance finale selon le cahier des charges n'intervient qu'après un temps d'attente minimum, au moins 5 minutes, suite à la sixième étape E6. Cette période d'attente permet de réduire la probabilité que le soufre ne se combine avec le calcium injecté via le fil fourré et évite ainsi la formation de sulfures de calcium (CaS) formant des inclusions solides à la température de coulée de l'acier traité, donc néfastes pour la coulabilité en coulée continue. Le procédé selon l'invention, tel qu'illustré à la figure 5, permet avantageusement de supprimer la troisième étape de désulfuration E3 et la septième étape de mise à nuance finale E7 de l'acier traité. La deuxième étape E2> de mise à nuance de l'acier à traiter au four poche consiste à la mise à nuance finale de l'acier à traiter selon le cahier des charges, y compris de la teneur en soufre. La sixième étape E& de traitement des inclusions est réalisée à l'aide d'un fil fourré selon la présente invention, comprenant dans cet exemple précis un mélange de silicate de calcium (CaO-SiO2) et d'oxyde de manganèse (MnO) dans les proportions suivantes en poids : SiO2 : 65,2%; CaO : 33,7%; MnO : 1,1%. Le diamètre extérieur dudit fil fourré est de l'ordre de 13,5 mm, la gaine métallique a une épaisseur de l'ordre de 0,35 mm et le fil fourré a une masse linéique de l'ordre de 227 g/m. La température de la poche d'acier à laquelle est injecté le fil fourré est de l'ordre de 1592°C et la quantité de fil fourré injecté est de l'ordre de 250g par tonne d'acier. Après la sixième étape E6' de traitement des inclusions, un bullage doux d'homogénéisation à l'aide d'un bouchon poreux situé en fond de poche est réalisé durant 7 minutes. La poche d'acier est ensuite prête à être transférée à la coulée continue. La coulabilité enregistrée à la huitième étape E8' est conforme au niveau moyen de celle enregistrée dans le cadre d'un procédé standard connu de l'état de la technique, tel que celui illustré à la figure 4. Dans cet exemple précis, le taux de défauts enregistrés en coulée continue est de 4,5% pour le procédé illustré à la figure 5 contre un niveau moyen de 4,92% pour le procédé connu illustré à la figure 4. En complément, la teneur en oxygène juste avant la cinquième étape E5> de dégazage est de 22 ppm. La teneur en oxygène mesurée dans le répartiteur, lorsque la poche contient encore 70 tonnes d'acier, est de 15 ppm.
Avantageusement, le procédé illustré à la figure 5 permet de réduire significativement le temps d'élaboration de tels aciers puisque l'étape de désulfuration E3 peut être purement et simplement supprimée. Ce gain de temps se traduit directement en terme de gain de productivité mais également en terme de gain d'énergie, notamment électrique, et de matière. La désulfuration de l'acier liquide nécessite en effet de maîtriser la composition chimique du laitier (ajouts de chaux, d'alumine, d'aluminium par exemple), de réaliser un bullage intense en poche (insufflation de gaz par le bouchon poreux - consommation d'argon) pour favoriser les échanges chimiques entre l'acier liquide et le laitier, et en parallèle de chauffer le bain d'acier liquide (consommation importante d'énergie électrique).
La productivité du procédé d'élaboration des aciers à haute teneur en soufre est ainsi considérablement améliorée. De même, le procédé selon l'invention permet de réduire la consommation de soufre devant être ajouté à l'acier liquide pour respecter le cahier des charges et de supprimer l'ajout de CaSi ou de Ca pur pour le traitement inclusionnaire. Dans cet exemple précis, la taille de la poche est de 105 tonnes et la nuance finale de l'acier traité 29MnCr5 est la suivante :
- C : 0,285% ;
- Mn : 1,298% ; - Cr : 1,174% ;
- Si : 0,322% ;
- S : 0,029% ;
- Al : 0,035%.
Référence bibliographique
[1] - Slag Atlas, 2nd édition, edited by Verein Deutscher Eisenhϋttenleute (VDEh), ISBN 3-514-00457-9

Claims

REVENDICATIONS
1. Fil fourré pour l'introduction d'additif dans un bain d'acier liquide, du type comprenant une gaine métallique entourant ledit additif, caractérisé en ce que ledit additif comprend majoritairement du silicate de calcium.
2. Fil fourré selon la revendication 1, dans lequel ledit additif comprend une teneur en chaux (CaO) variant entre 31% et 44% en poids et une teneur en silice (SiO2) variant entre 56% et 69% en poids.
3. Fil fourré selon la revendication 1, dans lequel ledit additif comprend au moins 85% de silicate de calcium.
4. Fil fourré selon l'une des revendications 1 à 3, dans lequel ledit additif comprend en outre au moins un autre oxyde métallique, tel que FeO, MnO ou MgO.
5. Fil fourré selon la revendication 4, dans lequel la concentration de FeO ou de MnO ou de MgO dans l'additif est inférieure ou égale à 2% en poids.
6. Fil fourré selon l'une des revendications 1 à 5, dans lequel ledit additif comprend en outre un fondant.
7. Fil fourré selon la revendication 6, dans lequel la concentration de fondant dans l'additif est inférieure ou égale à 10% en poids.
8. Fil fourré selon l'une ou l'autre des revendications 6 et 7 dans lequel ledit fondant est un fluorure tel que CaF2.
9. Procédé de fabrication d'un acier resulfuré caractérisé en ce qu'il comprend une étape d'introduction, dans le bain d'acier liquide, du fil fourré selon l'une des revendications 1 à 8.
10. Procédé selon la revendication 8 dans lequel l'acier resulfuré est calmé à l'aluminium.
11. Procédé selon l'une ou l'autre des revendications 9 et 10, caractérisé en ce qu'il comprend une première étape destinée à obtenir une base d'acier liquide, une deuxième étape de désoxydation, une troisième étape de mise à nuance, une quatrième étape de dégazage, une cinquième étape de traitement des inclusions solides à l'aide d'un fil fourré selon l'une des revendications 1 à 8.
12. Procédé selon la revendication 11, caractérisé en ce que la troisième étape de mise à nuance est la mise à nuance finale de l'acier liquide, éventuellement de la teneur en soufre.
13. Procédé selon l'une des revendications 9 à 12, caractérisé en ce qu'il ne comprend pas d'étape de désulfuration avant l'étape de traitement des inclusions solides, notamment avant la cinquième étape de traitement des inclusions solides.
14. Procédé selon l'une des revendications 11 à 13 caractérisé en ce qu'il comprend une étape de bullage doux d'homogénéisation, de préférence à l'aide d'un bouchon poreux disposé au fond de la poche d'acier liquide, après la cinquième étape de traitement des inclusions solides.
15. Utilisation du fil fourré selon l'une quelconque des revendications 1 à 8 pour améliorer la coulabilité des bains d'aciers resulfurés, notamment calmés à l'aluminium.
PCT/FR2009/050341 2008-03-03 2009-03-03 Nouvel additif pour le traitement des aciers resulfures WO2009115722A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI0908043-0A BRPI0908043A2 (pt) 2008-03-03 2009-03-03 Fio com enchimento para a introdução de aditivo em um banho de aço líquido, processo de fabricação de um aço ressulfurizado e utilização do fio com enchimento
EP09721360.7A EP2252712B1 (fr) 2008-03-03 2009-03-03 Nouvel additif pour le traitement des aciers resulfures
US12/920,521 US9023126B2 (en) 2008-03-03 2009-03-03 Additive for treating resulphurized steel
ES09721360.7T ES2654921T3 (es) 2008-03-03 2009-03-03 Nuevo aditivo para el tratamiento de los aceros resulfurados

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0851372 2008-03-03
FR0851372A FR2928153B1 (fr) 2008-03-03 2008-03-03 Nouvel additif pour le traitement des aciers resulfures

Publications (1)

Publication Number Publication Date
WO2009115722A1 true WO2009115722A1 (fr) 2009-09-24

Family

ID=39616586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050341 WO2009115722A1 (fr) 2008-03-03 2009-03-03 Nouvel additif pour le traitement des aciers resulfures

Country Status (6)

Country Link
US (1) US9023126B2 (fr)
EP (1) EP2252712B1 (fr)
BR (1) BRPI0908043A2 (fr)
ES (1) ES2654921T3 (fr)
FR (1) FR2928153B1 (fr)
WO (1) WO2009115722A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828117B2 (en) 2010-07-29 2014-09-09 Gregory L. Dressel Composition and process for improved efficiency in steel making
JP6848369B2 (ja) 2015-11-27 2021-03-24 日本製鉄株式会社 溶鋼への硫黄添加原料及び硫黄添加鋼の製造方法
EP3540082A4 (fr) * 2016-11-10 2020-06-03 Nippon Steel Corporation Additif à base de soufre pour acier liquide, et procédé de fabrication d'acier additionné de soufre
CN110819765A (zh) * 2019-11-18 2020-02-21 上海大学 一种降低钢液过热度的包芯线及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2792234A1 (fr) * 1999-04-15 2000-10-20 Lorraine Laminage Traitement pour ameliorer la coulabilite d'acier calme a l'aluminium coule en continu
WO2005078142A1 (fr) * 2004-02-11 2005-08-25 Tata Steel Limited Procede d'injection de fils fourres dans des aciers en fusion
WO2006000714A2 (fr) * 2004-06-10 2006-01-05 Affival Fil fourre
EP1715065A2 (fr) * 2005-04-20 2006-10-25 Corus Staal BV Fil fourré pour traiter l'acier en fusion et procédé pour le traitement en utilisant ce fil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037250A (ja) * 1983-08-10 1985-02-26 Kawasaki Steel Corp 鋼の連続鋳造用鋳型添加剤
US5268141A (en) * 1985-04-26 1993-12-07 Mitsui Engineering And Ship Building Co., Ltd. Iron based alloy having low contents of aluminum silicon, magnesium, calcium, oxygen, sulphur, and nitrogen
CA2319476A1 (fr) * 1998-12-08 2000-06-15 Shinagawa Refractories Co., Ltd. Poudre pour moulage d'acier par coulee continue et procede de moulage par coulee continue

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2792234A1 (fr) * 1999-04-15 2000-10-20 Lorraine Laminage Traitement pour ameliorer la coulabilite d'acier calme a l'aluminium coule en continu
WO2005078142A1 (fr) * 2004-02-11 2005-08-25 Tata Steel Limited Procede d'injection de fils fourres dans des aciers en fusion
WO2006000714A2 (fr) * 2004-06-10 2006-01-05 Affival Fil fourre
EP1715065A2 (fr) * 2005-04-20 2006-10-25 Corus Staal BV Fil fourré pour traiter l'acier en fusion et procédé pour le traitement en utilisant ce fil

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BERGMANN B ET AL: "CASTABILITY ASSURANCE OF AL-KILLED SI-FREE STEEL BY CALCIUM WIRE TREATMENT", 1ST EUROPEAN CONFERENCE ON CONTINUOUS CASTING, MILANO, IT, 23 September 1991 (1991-09-23), pages 1501 - 1508, XP000353907 *
MURRAY P: "USE OF CORED WIRE TO INTRODUCE METALLIC POWDERS INTO MOLTEN METAL", METALLURGIST, CONSULTANTS BUREAU. NEW YORK, US, vol. 41, no. 1/02, 1 January 1997 (1997-01-01), pages 53 - 55, XP000722334, ISSN: 0026-0894 *
OELSCHLAGEL ET AL: "Treating steel with Ferrokal wire", IRON AND STEEL, IPC SCIENCE AND TECHNOLOGY PRESS LTD. GUILDFORD, GB, vol. 54, no. 6, 1 December 1981 (1981-12-01), pages 323 - 330, XP001251404 *

Also Published As

Publication number Publication date
FR2928153A1 (fr) 2009-09-04
EP2252712B1 (fr) 2017-11-29
US9023126B2 (en) 2015-05-05
EP2252712A1 (fr) 2010-11-24
BRPI0908043A2 (pt) 2015-08-11
ES2654921T3 (es) 2018-02-15
US20110017018A1 (en) 2011-01-27
FR2928153B1 (fr) 2011-10-07

Similar Documents

Publication Publication Date Title
CA2889124C (fr) Alliage inoculant pour pieces epaisses en fonte
EP2252712B1 (fr) Nouvel additif pour le traitement des aciers resulfures
FR2809745A1 (fr) Acier haute proprete et son procede de production
CA1226737A (fr) Procede de fabrication d'aciers a haute usinabilite
JP3896709B2 (ja) 高清浄度鋼の溶製方法
CA1262636A (fr) Procede de traitement des metaux et alliages en vue de leur affinage
FR2587367A1 (fr) Procede pour la production d'un alliage a base de fer, de cobalt et de nickel, a faible teneur en soufre, en oxygene et en azote
EP0342132A1 (fr) Procédé de désulfuration des fontes
CA2243048C (fr) Acier au carbone ou faiblement allie a usinabilite amelioree et procede d'elaboration de cet acier
CA2551270A1 (fr) Agent de desulfuration des aciers et son utilisation pour la desulfuration de l'acier
EP1029089B1 (fr) Procede pour la fusion en continu de produits metalliques solides
EP2918688B1 (fr) Procédé de désulfuration d'une fonte liquide, et fil fourré pour sa mise en oeuvre
RU2139943C1 (ru) Способ получения высококачественной стали
BE1003182A4 (fr) Procede de fabrication de l'acier d'usage courant.
EP1507876B1 (fr) PROCÉDÉ DE TRAITEMENTS MÉTALLURGIQUES SUR BAIN MÉTALLIQUE
WO2023139230A1 (fr) Procédé de valorisation des métaux contenus dans les catalyseurs de la pétrochimie
BE436791A (fr)
BE432657A (fr)
BE559193A (fr)
BE483792A (fr)
CH164262A (fr) Procédé pour l'amélioration des aciers.
BE544356A (fr)
CH323985A (fr) Procédé pour la production de fonte de fer affinée et produit coulé en fonte de fer obtenu par ce procédé
CH285853A (fr) Procédé pour la fabrication de pièces en fonte grise à haute résistance mécanique et piéce obtenue par ce procédé.
CH226491A (fr) Procédé de fabrication de ferro-alliages à basse teneur en carbone, et en particulier de ferro-chrome.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721360

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009721360

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009721360

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12920521

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0908043

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100902