WO2009112011A2 - Verfahren zum herstellen eines 3-dimensionalen, polymerhaltiges material aufweisenden formkörpers sowie verfahren zur herstellung einer adhäsiven haftverbindung zwischen einem polymerhaltigen material und einem 3-dimensionalen formkörper - Google Patents

Verfahren zum herstellen eines 3-dimensionalen, polymerhaltiges material aufweisenden formkörpers sowie verfahren zur herstellung einer adhäsiven haftverbindung zwischen einem polymerhaltigen material und einem 3-dimensionalen formkörper Download PDF

Info

Publication number
WO2009112011A2
WO2009112011A2 PCT/DE2009/000306 DE2009000306W WO2009112011A2 WO 2009112011 A2 WO2009112011 A2 WO 2009112011A2 DE 2009000306 W DE2009000306 W DE 2009000306W WO 2009112011 A2 WO2009112011 A2 WO 2009112011A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
containing material
inorganic
framework structure
porous
Prior art date
Application number
PCT/DE2009/000306
Other languages
English (en)
French (fr)
Other versions
WO2009112011A3 (de
Inventor
Ralf Boris Wehrspohn
Martin Steinhart
Original Assignee
Fraunhofer - Gesellschaft Zur Förderung Der Angewandten Forschung E.V.
Max-Planck Gesellschaft zur Förderung der Wissenschaften e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer - Gesellschaft Zur Förderung Der Angewandten Forschung E.V., Max-Planck Gesellschaft zur Förderung der Wissenschaften e.V. filed Critical Fraunhofer - Gesellschaft Zur Förderung Der Angewandten Forschung E.V.
Publication of WO2009112011A2 publication Critical patent/WO2009112011A2/de
Publication of WO2009112011A3 publication Critical patent/WO2009112011A3/de
Priority to US12/879,492 priority Critical patent/US8480941B2/en
Priority to US13/916,036 priority patent/US20130295369A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0095Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • B29C66/30326Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined in the form of porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/341Measures for intermixing the material of the joint interlayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7465Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7461Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91933Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined higher than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/045Condition, form or state of moulded material or of the material to be shaped cellular or porous with open cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • B29K2305/08Transition metals
    • B29K2305/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • B29K2305/08Transition metals
    • B29K2305/12Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • B29K2305/08Transition metals
    • B29K2305/14Noble metals, e.g. silver, gold or platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/02Ceramics
    • B29K2309/04Carbides; Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3406Components, e.g. resistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro

Definitions

  • the invention relates to a 3-dimensional molded body and a method for producing an adhesive bond between a polymer-containing material and a 3-dimensional molded body having an inorganic, porous surface structure.
  • Shaped bodies predominantly consisting of polymer-containing materials, are produced in a manner known per se in the context of flow processes, pressing and / or sintering processes.
  • Typical molding processes involve the thermoplastic processing of liquid polymer-containing materials.
  • these methods require that the materials to be processed have a sufficiently low melt viscosity.
  • the melt viscosity of some polymer-containing materials can be reduced by high process temperatures so that thermoplastic molding is possible, but the technical complexity for high process temperatures is considerably higher than for lower process temperatures.
  • the polymer-containing material can at least partially decompose at high process temperatures, and the greater temperature difference that must be overcome when cooling from high process temperatures to room temperature compared to lower process temperatures, leads to higher volume shrinkage.
  • Important materials having advantageous properties for example, polymers having high degrees of polymerization, as often exhibited by polytetrafluoroethylene or polyethylenes, or microphase-separated block copolymers, can not be thermoplastic because of their high melt viscosity at all temperatures at which these materials do not at least partially decompose to any significant extent are processed.
  • machining techniques Another strategy for making molded parts from non-thermoplastic materials involves the use of machining techniques. In this case, material is mechanically removed from a monolith until the desired molded part is obtained. Machining techniques are naturally associated with a significant amount of scraped broke material which, on the one hand, raises disposal problems and, on the other hand, is economically disadvantageous especially in the formation of expensive high performance polymers.
  • the uncontrolled occurrence of voids, voids and pores in the moldings consisting of polymeric materials may be mentioned.
  • the dissolution of polymer-containing materials in solvents often takes much longer than, for example, the dissolution of low molecular weight materials.
  • the solubilities of polymers in solvents are often very low.
  • polymer-containing materials with advantageous properties such as polymers with high molecular weights, such as PE
  • the dissolution rates in all solvents and the solubilities are so low that in these cases, a technical processing of polymer solutions is not feasible.
  • PTFE no suitable solvents are known.
  • DD 132 426 A discloses a process for the rapid impregnation of dry or moist finished parts consisting of porous building materials, preferably concrete or gypsum-based.
  • the concrete or gypsum compound which is to be provided as a starting material for the production of a corresponding finished part, an impregnating agent in solid form, for example in the form of a paraffin or a paraffin-bitumen granules admixed.
  • This mass is fed to a corresponding shaping and subsequent drying process, during which form pores within the solidifying material mass, which are ultimately clogged at elevated drying temperature by the merging into melt paraffin or paraffin-bitumen granules downright.
  • Prefabricated parts which have been produced according to the technical teaching according to DD 132 426 A, inevitably have air pockets within the filled with paraffin-wax or paraffin-bitumen granules areas.
  • the removable method does not permit processing of the polymer-containing material at temperatures below those temperatures required for thermoplastic processing.
  • CH 690 174 A5 describes a process in which a porous layer on an otherwise non-porous article is filled by solutions or suspensions with polymers under varying pressure conditions. Both the use of solutions and suspensions requires a solvent whose presence makes the impregnation process technically complicated, especially since solvents have to be removed from the impregnated layer again and ultimately be disposed of consuming. In addition, volatile components change the material properties of polymers in ways that are difficult or impossible to control. In addition, the fill factor of the polymer within the samples is less than 100%, making it impossible to completely fill pores with polymer. Presentation of the invention
  • the invention has for its object to avoid the disadvantages mentioned above and in particular to ensure that manufactured from polymer-containing materials molded body as inexpensively and accurately defined spatial forms, which are also long-term stability, can be produced. Moreover, it is necessary to specify a method with which the production of a long-term stable adhesive bond between a polymer-containing material and a shaped body, for example, should be made possible in the manner of a coating. Likewise, an improved adhesion between a molded article containing polymer-containing material and an inorganic molded article is to be achieved.
  • the solution according to the method for producing a three-dimensional, polymer-containing material having molding body provides for the use of a porous skeleton structure of inorganic material, are contained in the pore-like cavities.
  • the inorganic material constituting the skeleton structure may consist of metals, metal alloys, non-metals, combinations of non-metallic elements and metal-non-metal compounds.
  • it is selected from oxides, phosphates, nitrides, mixtures of various oxides and / or phosphates and / or nitrides, semiconductor materials, amorphous carbon materials or at least partially crystalline carbon materials.
  • the pore-like cavities of the framework material consisting of inorganic material are completely filled in accordance with the method according to the invention with a polymer-containing material heated above the solidification temperature at a process temperature at which the polymer-containing material can not be processed thermoplastically. It forms between the polymer-containing material and the inorganic porous framework structure of the three-dimensional Shaped body based on adhesive intermolecular interfacial joining compound.
  • the method according to the invention is based on the fact that the filling of the inorganic framework structure is triggered and driven by adhesive, intermolecular interactions between the framework material and the polymer-containing material filled in it.
  • the method of the invention stands out clearly from the previously known process practices of flow and Zerspanungsreaen and pressing and sintering processes for the production of polymer-containing material moldings and uses targeted acting between the polymer-containing material and the porous inorganic framework strong wetting forces, the allow complete filling of the cavities within the porous inorganic framework structure.
  • the moldings which can be produced by the method according to the invention thus comprise at least the inorganic material of which the framework structure is composed, and the polymer-containing material which completely and without air inclusions fills the framework structure or partial areas of the framework structure in its cavities and / or encloses the entire framework structure on its surface.
  • the shape of the three-dimensional shaped body is defined by the inorganic framework structure, which may consist of metals, preferably platinum, palladium, copper, iron or other, metal alloys, non-metals, combinations of non-metallic elements and metal-non-metal compounds, preferably oxides, phosphates , Nitrides, mixtures of various oxides and / or phosphates and / or nitrides, semiconductor materials, amorphous carbon materials or at least partially crystalline carbon materials, particularly preferably of silicon oxide, titanium oxide, aluminum oxide or boron nitride. In the case of amorphous or at least partially crystalline carbon materials, the pore surfaces may additionally be polar modified to improve wetting efficiency.
  • the inorganic framework structure not necessarily it is necessary that all pores within the inorganic framework structure are openly connected to each other and form so-called bicontinuous networks, it is also possible to form porous inorganic framework structures with pores that are not interconnected, for example pores in arrayed parallel arrangement.
  • the pore diameters should be in the range between 1 nm to 50 microns maximum up to 100 microns and the pore content in relation to the total volume of the three-dimensional shaped body at least 5%, preferably between 30% and 50%.
  • the porous framework structure is produced in a preferred embodiment by using amphiphilic structure-directing substances, preferably surfactants, particularly preferably block copolymers, as a template. It is also possible to produce the porous framework structure by means of a spinodal separation from a mixture of substances, bpsw. in the form of CPGs (controlled porous glasses), which will be discussed in detail in the following text at a later point.
  • amphiphilic structure-directing substances preferably surfactants, particularly preferably block copolymers
  • a three-dimensional molded body formed in accordance with the invention is characterized in that the molded body consists, at least in some areas, of a porous framework structure with pore sizes of 1 nm to 100 ⁇ m, in which the pores and the framework structure have a bicontinuous morphology or are not connected to one another Pores are present in the framework structure and in which the pores are filled at least in partial areas of the framework structure with a polymer-containing material in each case completely without air pockets.
  • the polymer-containing material may have a high melt viscosity, as is characteristic of high molecular weight polymers or microphase-separated block copolymers.
  • polymer-containing materials which are not thermoplastically processable can be processed into shaped parts.
  • the process temperature can be considerably reduced compared with conventional processing techniques, such as extrusion, injection molding, etc.
  • only selected areas of the skeleton structure can be completely filled with the polymer-containing material. Since the polymer-containing material fills the pores exclusively on the basis of capillary forces, the individual pore volumes are completely filled. This happens however with a very small one
  • the pores can be completely filled with the polymer-containing material only in partial regions of the porous three-dimensional molded body, while in other partial regions of the porous three-dimensional molded body no polymer-containing material is contained.
  • the thus obtained, partially completely filled with polymer-containing material molded body and the method for its preparation have a number of advantages: i) Less weight than in the case of a corresponding completely filled with polymer-containing material, porous, three-dimensional shaped body; ii) lower material costs due to less use of polymer-containing material; iii) shorter production times by partially full filling compared to complete filling.
  • the polymer components or the polymer-containing material can basically consist of one or more polymer materials, which preferably have a high melt viscosity, so that they are not processible thermoplastically or only at much higher temperatures than in the case of the solution according to the application in combination with a porous inorganic framework structure is the case.
  • the polymer-containing material completely fills the voids, gaps or pores of the inorganic framework structure.
  • Particularly suitable here are polymer components such as PTFE or high molecular weight polyethylenes and microphase-separated block polymers.
  • Examples of polymers which are suitable for the process according to the invention can be selected from: i) organic polymers such as poly (p-xylylene), polyacrylamide, polyimides, polyesters,
  • Polyolefins polystyrenes, polycarbonates, polyamides, polyethers, polyphenylene,
  • Polysilanes polysiloxanes, polybenzimidazoles, polybenzothiazoles, polyoxazoles,
  • Polyurethanes polysulfones, polyacrylates, wholly aromatic copolyesters, poly-N-vinylpyrrolidone, polyhydroxyethyl methacrylate, polymethyl methacrylate,
  • Polytretrafluoroethylene vi) polyethylenes, v) biological polymers such as polysaccharides, eg. Cellulose (modified or unmodified), alginates or polypeptides, e.g. Collagen, vi) polymers which are composed of at least two different repeat units, preferably in the form of random copolymers,
  • Block copolymers graft copolymers, dendrimers or copolymers which
  • Such polymeric materials which have a very high melt viscosity, such as linear homopolymers or random copolymers with very high molecular weights or microphase-separated block polymers or mixtures of at least one of the aforementioned components, have a number of specific advantages: For example, have polymers with very high molecular weights about an outstanding chemical as well as mechanical Stability. In the case of block polymers and polymer blends, new and unusual property combinations are also possible.
  • a coating consisting of polymer-containing material can also be applied to the inorganic porous surface structure of a shaped body, for example a silicon wafer.
  • a preparatory step for this purpose it is necessary to provide a molding having an inorganic, porous surface structure or to introduce a corresponding porous structure, for example by means of an electrochemical etching method, lithographic etching method or plasma etching, into an inorganic surface of a relevant molding.
  • the inorganic porous surface structure is preferably composed of metals, metal alloys, non-metals, combinations of non-metallic elements and metal-nonmetal compounds. particularly preferably from oxides, phosphates, nitrides, mixtures of different oxides and / or phosphates and / or nitrides, Semiconductor materials, amorphous carbon materials or at least partially crystalline carbon materials, most preferably of silicon oxide, titanium oxide, aluminum oxide or boron nitride.
  • the polymer-containing material is applied to the inorganic, porous surface structure of the shaped body, for example in the form of a polymer film.
  • Wetting-mediated filling of the porous surface structure is typically done by hot-pressing, i. the polymer-containing material is pressed by means of pressurized heating against the inorganic porous surface structure to form a joint compound based on adhesive intermolecular interfacial interactions.
  • PTFE is suitable as a polymer-containing material for forming a PTFE layer on the inorganic surface of the respective shaped body. Conceivable application examples for this are, for example, the coating of stents from medicine and other medical implants.
  • Another very advantageous application of the method according to the invention is the production of an adhesive bond between a three-dimensional formed body, which consists of a polymer-containing material, and a molded body having at least one inorganic porous surface structure, wherein the molded body having an inorganic porous surface structure is not necessarily completely porous must be formed but can be fully porous.
  • the inorganic porous surface structure consists of a material, which is preferably selected from metals, metal alloys, non-metals, combinations of non-metallic elements and metal-non-metal compounds, more preferably from oxides, phosphates, nitrides, mixtures of different oxides and / or phosphates and / or nitrides, semiconductor materials, amorphous carbon materials or at least partially crystalline carbon materials, most preferably Silica, titania, alumina or boron nitride.
  • the molding having the inorganic, porous surface structure is advantageous to heat the molding having the inorganic, porous surface structure above the solidification temperature of the polymer-containing material so that only the polymer-containing material directly in contact with the porous surface structure is heated above the solidification temperature.
  • the process temperature to which the inorganic shaped body is to be heated is selected such that the polymer-containing material is not thermoplastically processable without contact with the porous layer of the molding made of inorganic material.
  • the process control possible by the method according to the solution is economically advantageous at lower temperatures compared to processes which require higher process temperatures.
  • the inventive method allows the realization of a solid adhesive bond between a prefabricated, consisting of the polymer-containing material molded body and an existing inorganic material molding, without changing the shape of the existing polymer-containing material molding or its other properties.
  • An advantageous embodiment for the production of a three-dimensional molded body which consists at least partially of polymer-containing material, provides as starting material a porous porous body consisting of silicon oxide, which falls under the category Controlled Porous Glasses, CPG for short, and pores with average pore sizes typically of 2 nm to 120 nm.
  • CPG Controlled Porous Glasses
  • the shaping of such CPGs takes place with the aid of a macroscopic casting mold which is completely filled with a softened glass mixture.
  • the glass mixture typically consists of 50 to 70% silica, 1 to 10% sodium oxide and a proportion of boron oxide (B 2 O 3 ).
  • the amount of polymer-containing material preferably PTFE
  • PTFE is calculated and applied to the surface of the glassy framework structure at a process temperature of about 400 ° C.
  • the application of PTFE onto or into the porous framework structure can take place in different ways, for example by applying PTFE powder, PTFE granules, PTFE chips or PTFE films.
  • the PTFE can be pressed against the glassy framework structure to facilitate infiltration and to bring the respective PTFE molecules as close as possible to the surface of the glassy framework so that the intermolecular interactions responsible for wetting can be effective.
  • a three-dimensional molded body with a porous framework structure consisting of CPG which is completely filled with polymer-containing material, preferably PTFE, combines at least two advantages.
  • Significantly less waste material is produced by the molding process according to the solution, so that significant amounts of PTFE material can be saved by the presence of a CPG which also acts as a filler.
  • PTFE is fundamentally subject to the phenomenon of a "cold flow", ie even at room temperature a slow change of shape occurs due to the creep behavior inherent in the PTFE material three-dimensional solution formed according to the molded part are long-term stabilized, without affecting the mechanical properties of the molding compared to a completely existing PTFE existing molding.
  • the possibility of producing a strong cohesive coating of an inorganic surface with PTFE material has already been pointed out above.
  • polymers can be subjected to processing at lower temperatures than conventional thermoplastic processing methods.
  • PEEK is processed according to the prior art at 45O 0 C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

Beschrieben wird ein 3-dimensionaler Formkörper, ein Verfahren zum Herstellen eines 3-dimensionalen Formkörpers sowie ein Verfahren zum Herstellen einer adhäsiven Haftverbindung zwischen einem polymerhaltigen Material und einem zumindest in Teilbereichen eine anorganische poröse Gerüststruktur aufweisenden Formkörper. In allen Fällen wird die poröse Struktur des aus anorganischem Material bestehenden Formkörpers mit einem polymerhaltigen Material in Kontakt gebracht, das erwärmt wird bis das erwärmte Material mit dem Formkörper eine auf adhäsive, intermolekulare Grenzflächenwechselwirkung beruhende Fügeverbindung eingeht, bei der die porenartigen Hohlräume der porösen Struktur vollständig mit dem polymerhaltigen Material verfüllt werden, das nach Erkalten den Formkörper formstabil stabilisiert.

Description

Verfahren zum Herstellen eines 3-dimensionalen, polymerhaltiges Material aufweisenden Formkörpers sowie Verfahren zur Herstellung einer adhäsiven
Haftverbindung zwischen einem polymerhaltigen Material und einem 3- dimensionalen Formkörper
Technisches Gebiet
Die Erfindung bezieht sich auf einen 3-dimensionalen Formkörper sowie ein Verfahren zum Herstellen einer adhäsiven Haftverbindung zwischen einem polymerhaltigen Material und einem 3-dimensionalen Formkörper, der über eine anorganische, poröse Oberflächenstruktur verfügt.
Stand der Technik
Formkörper, vorwiegend bestehend aus polymerhaltigen Materialien, werden in an sich bekannter Weise im Rahmen von Fließprozessen, Press- und/oder Sintervorgängen hergestellt. Übliche Formgebungsverfahren beinhalten die thermoplastische Verarbeitung von flüssigen polymerhaltigen Materialien. Diese Verfahren erfordern jedoch, dass die zu verarbeitenden Materialien eine hinreichend geringe Schmelzeviskosität aufweisen. Zwar lässt sich die Schmelzeviskosität bei einigen polymerhaltigen Materialen durch hohe Prozeßtemperaturen so verringern, dass thermoplastische Formgebung möglich ist, allerdings ist der technische Aufwand für hohe Prozeßtemperaturen beträchtlich höher als für niedrigere Prozesstemperaturen. Hinzukommt, dass sich das polymerhaltige Material bei hohen Prozeßtemperaturen zumindest teilweise zersetzen kann, und die größere Temperaturdifferenz, die beim Abkühlen von hohen Prozeßtemperaturen auf Raumtemperatur im Vergleich zu niedrigeren Prozeßtemperaturen zu überwinden ist, führt zu höherem Volumenschrumpf. Wichtige Materialien mit vorteilhaften Eigenschaften, beispielsweise Polymere mit hohen Polymerisationsgraden, wie sie häufig von Polytetrafluorethylen oder Polyethylenen aufgewiesen werden, oder mikrophasenseparierte Blockcopolymere, können aufgrund ihrer hohen Schmelzeviskosität bei allen Temperaturen, bei denen sich diese Materialien nicht zumindest teilweise in erheblichem Umfang zersetzen, nicht thermoplastisch verarbeitet werden.
Einige Versuche, diese Probleme zu lösen, bedienen sich an sich bekannten Sinterverfahren, beispielsweise zur Herstellung von PTFE-Formkörpern. Diese beinhalten üblicherweise die Einbringung kleiner Partikel des zu formenden Materials in eine Form und durch anschließendes Erwärmen die teilweise Verbindung dieser Partikel. Sinterverfahren sind mit großen Volumenänderungen verbunden, ein Umstand der nicht zuletzt bei der Präzisionsteilfertigung, beispielsweise zur Herstellung von medizinischen Implantaten, fertigungsbedingte Probleme aufwirft. Zumeist sind die auf diese Weise gewonnenen Formteile porös und verfügen überdies über nur unbefriedigende mechanische Eigenschaften.
Eine weitere Strategie zur Herstellung von Formteilen aus thermoplastisch nicht verarbeitbaren Materialien beinhaltet die Anwendung von Zerspanungstechniken. Dabei wird von einem Monolithen Material mechanisch abgetragen, bis das erwünschte Formteil erhalten ist. Zerspanungstechniken sind naturgemäß mit einem erheblichen Anfall von abgespantem Ausschußmaterial verbunden, was einerseits Entsorgungsprobleme aufwirft und andererseits insbesondere bei der Formung von teuren Hochleistungspolymeren wirtschaftlich unvorteilhaft ist.
Die Verarbeitung von Polymerlösungen im Rahmen sogenannter Fließprozesse eröffnet auch nur bedingt Möglichkeiten zur Herstellung von mechanisch belastbaren Formteilen, da mit dieser Prozesstechnologie andere Probleme verbunden sind. So sind zur Überführung polymerer Komponenten in einen weichen oder gelösten Zustand, in dem eine weitere Verarbeitung möglich ist, große Mengen an organischen Lösungsmitteln erforderlich, die zumeist toxisch und höchst umweltunverträglich sind und letztlich ein nicht zu verachtendes Entsorgungsproblem aufwerfen. Zudem treten während der Verarbeitung der Polymerlösungen, bedingt durch Verdampfen des Lösungsmittels, technisch schwierig handzuhabende physikalische Phänomene auf, wie Phasenseparation, hydrodynamische Instabilitäten oder ähnliches, die die Eigenschaften der im Wege der Fließprozesstechnologie hergestellten Formteile und Beschichtungen in nahezu unkontrollierter Weise nachhaltig zu beeinflussen vermögen. Typischerweise ist in diesem Zusammenhang das unkontrollierte Auftreten von Hohlräumen, Lücken und Poren in den aus polymeren Materialien bestehenden Formteilen zu nennen. Das Auflösen von polymerhaltigen Materialien in Lösungsmitteln dauert häufig wesentlich länger als beispielsweise das Auflösen von Materialien mit niedrigem Molekulargewicht. Auch sind die Löslichkeiten von Polymeren in Lösungsmitteln häufig sehr gering. Für viele polymerhaltige Materialien mit vorteilhaften Eigenschaften, wie Polymeren mit hohen Molekulargewichten, etwa PE, sind die Auflösegeschwindigkeiten in allen Lösungsmitteln sowie die Löslichkeiten so gering, dass in diesen Fällen eine technische Verarbeitung von Polymerlösungen nicht durchführbar ist. Für viele weitere polymerhaltige Materialien mit vorteilhaften Eigenschaften, wie beispielsweise PTFE, sind keine geeigneten Lösungsmittel bekannt.
Mit den oben beschriebenen Verfahren können weiterhin keine Kompositmaterialien mit polymerhaltigen Materialien, die thermoplastisch nicht verarbeitbar sind, hergestellt werden. Dies wäre vorteilhaft, da einerseits durch den billigen Füllstoff der entsprechende Volumenanteil beispielsweise von teuren Hochleistungspolymeren eingespart werden kann und andererseits die Eigenschaften des polymerhaltigen Materials in einem Komposit vorteilhaft modifiziert werden können.
Neben den vorstehend genannten herstellungsbedingten Problemen unterliegen insbesondere fluorhaltige Polymere enthaltende Formteile, beispielsweise Formteile aus PTFE, einem so genannten kalten Fluß, d.h. auch bei Raumtemperatur findet durch Kriechverhalten eine langsame Änderung der Form des jeweiligen Formkörpers statt. Ferner sei auf zwei Druckschriften verwiesen, die Verfahren beschreiben, mit denen Poren oder Hohlräume innerhalb einer porösen Matrixstruktur mit einem weiteren Stoff verfüllt werden. So ist aus der DD 132 426 A ein Verfahren zur Schnellimprägnierung von aus porösen Baustoffen, vorzugsweise auf Beton- oder Gipsbasis bestehenden trockenen oder feuchten Fertigteilen, zu entnehmen. Hierzu wird der Beton- oder Gipsmasse, die als Ausgangsstoff für die Herstellung eines entsprechenden Fertigteils bereitzustellen ist, ein Imprägniermittel in fester Form, beispielsweise in Form eines Paraffingrießes oder eines Paraffin-Bitumen- Granulates, beigemischt. Diese Masse wird einem entsprechenden Formgebungsund anschließenden Trocknungsprozess zugeführt, während dem sich innerhalb der sich erstarrenden Baustoffmasse Poren ausbilden, die letztlich bei erhöhter Trocknungstemperatur durch das in Schmelze übergehende Paraffingrieß bzw. Paraffin-Bitumen-Granulat regelrecht verstopft werden. Fertigteile, die nach der technischen Lehre gemäß DD 132 426 A hergestellt worden sind, weisen unvermeidbar Lufteinschlüsse innerhalb der mit Paraffingrieß bzw. Paraffin-Bitumen- Granulat verfüllten Bereiche auf. Weiterhin erlaubt das DD 132 426 A entnehmbare Verfahren keine Verarbeitung des polymerhaltigen Materials bei Temperaturen unterhalb jener Temperaturen, die für eine thermoplastische Verarbeitung erforderlich sind.
Die CH 690 174 A5 beschreibt ein Verfahren, bei dem eine poröse Schicht auf einem ansonsten nicht porösen Gegenstand durch Lösungen oder Suspensionen mit Polymeren unter schwankenden Druckbedingungen verfüllt wird. Sowohl der Einsatz von Lösungen als auch von Suspensionen erfordert ein Lösemittel, dessen Gegenwart den Imprägnierungsprozess technisch kompliziert gestaltet, zumal Lösemittel aus der imprägnierten Schicht wieder entfernt werden müssen und letztlich aufwendig zu entsorgen sind. Überdies ändern flüchtige Komponenten die Materialeigenschaften von Polymeren in nicht oder nur schwer kontrollierbarer Weise. Hinzu kommt, dass der Füllfaktor des Polymers innerhalb der Proben kleiner 100% ist, so dass es unmöglich ist, Poren vollständig mit Polymer zu befüllen. Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, die vorstehend genannten Nachteile zu vermeiden und insbesondere dafür Sorge zu tragen, dass aus polymerhaltigen Materialien gefertigte Formkörper möglichst kostengünstig und mit exakt definierten Raumformen, die überdies langzeitstabil sind, hergestellt werden können. Überdies gilt es ein Verfahren anzugeben mit dem die Herstellung einer langzeitstabilen adhäsiven Haftverbindung zwischen einem polymerhaltigen Material und einem Formkörper bspw. in Art einer Beschichtung ermöglicht werden soll. Gleichfalls soll eine verbesserte Haftung zwischen einem aus polymerhaltigem Material bestehenden Formkörper und einem anorganischen Formkörper erzielt werden.
Zwei lösungsgemäße Verfahrensalternativen sind Gegenstand der Ansprüche 1 und 2. Ein lösungsgemäß ausgebildeter dreidimensionaler Formkörper ist Gegenstand des Anspruches 12. Den Erfindungsgedanken vorteilhaft weiterbildende Merkmale sind Gegenstand der Unteransprüche sowie der weiteren Beschreibung zu entnehmen.
Das lösungsgemäße Verfahren zum Herstellen eines dreidimensionalen, polymerhaltiges Material aufweisenden Formkörpers sieht den Einsatz einer porösen Gerüststruktur aus anorganischem Material vor, in der porenartige Hohlräume enthalten sind. Das anorganische Material, aus dem die Gerüststruktur besteht, kann aus Metallen, Metall-Legierungen, Nichtmetallen, Kombinationen nichtmetallischer Elemente sowie Metall-Nichtmetall-Verbindungen bestehen. Vorzugsweise ist es ausgewählt aus Oxiden, Phosphaten, Nitriden, Mischungen verschiedener Oxide und/oder Phosphate und/oder Nitride, Halbleitermaterialien, amorphen Kohlenstoffmaterialien oder zumindest teilweise kristallinen Kohlenstoffmaterialien. Die porenartigen Hohlräume der aus anorganischem Material bestehenden Gerüststruktur werden gemäß des lösungsgemäßen Verfahrens mit einem über die Verfestigungstemperatur erwärmten polymerhaltigen Material bei einer Prozesstemperatur, bei der sich das polymerhaltige Material thermoplastisch nicht verarbeiten lässt, vollständig verfüllt. Dabei bildet sich zwischen dem polymerhaltigen Material und der anorganischen porösen Gerüststruktur des dreidimensionalen Formkörpers eine auf adhäsiven intermolekularen Grenzflächenwechselwirkungen beruhende Fügeverbindung aus.
Das lösungsgemäße Verfahren beruht darauf, dass die Verfüllung der anorganischen Gerüststruktur durch adhäsive, intermolekulare Wechselwirkungen zwischen dem Gerüstmaterial und dem in diese eingefüllten polymerhaltigen Material ausgelöst und angetrieben wird. Somit hebt sich das lösungsgemäße Verfahren deutlich von den bisher bekannten Verfahrenspraktiken von Fließ- und Zerspanungsprozessen sowie Press- und Sintervorgängen zur Herstellung von aus polymerhaltigem Material bestehenden Formkörpern ab und nutzt gezielt die zwischen dem polymerhaltigen Material und der porösen anorganischen Gerüststruktur wirkenden starken Benetzungskräfte, die ein vollständiges Befüllen der Zwischen- bzw. Hohlräume innerhalb der porösen anorganischen Gerüststruktur erlauben. Der mit dem lösungsgemäßen Verfahren herstellbare Formkörper besteht somit zumindest aus dem anorganischen Material, aus dem die Gerüststruktur besteht, sowie dem die Gerüststruktur oder Teilbereiche der Gerüststruktur in ihren Hohlräumen vollständig und ohne Lufteinschlüsse ausfüllenden und/oder die gesamte Gerüststruktur an ihrer Oberfläche umhüllenden polymerhaltigen Material. Die Form des dreidimensionalen Formkörpers wird durch die anorganische Gerüststruktur definiert, die aus Metallen, vorzugsweise Platin, Palladium, Kupfer, Eisen oder anderen, Metall-Legierungen, Nichtmetallen, Kombinationen nichtmetallischer Elemente sowie Metall-Nichtmetall- Verbindungen bestehen kann, vorzugsweise aus Oxiden, Phosphaten, Nitriden, Mischungen verschiedener Oxide und/oder Phosphate und/oder Nitride, Halbleitermaterialien, amorphen Kohlenstoffmaterialien oder zumindest teilweise kristallinen Kohlenstoffmaterialien, besonders bevorzugt aus Siliziumoxid, Titanoxid, Aluminiumoxid oder Bornitrid. Im Falle amorpher oder zumindest teilweise kristalliner Kohlenstoffmaterialien können die Porenoberflächen zusätzlich polar modifiziert werden, um die Benetzungseffizienz zu verbessern. Nicht notwendigerweise ist es erforderlich, dass sämtliche Poren innerhalb der anorganischen Gerüststruktur offen miteinander verbunden sind und sogenannte bikontinuierliche Netzwerke bilden, gleichfalls ist es möglich, poröse anorganische Gerüststrukturen mit Poren auszubilden, die nicht miteinander verbunden sind, beispielsweise Poren in arrayförmig paralleler Anordnung. Typischerweise sollten die Porendurchmesser im Bereich zwischen 1 nm bis 50 μm maximal bis zu 100 μm liegen und der Porenanteil im Verhältnis zum Gesamtvolumen des dreidimensionalen Formkörpers wenigstens 5 % vorzugsweise zwischen 30% und 50 % liegen.
Die poröse Gerüststruktur wird in einer bevorzugten Ausführungsform durch Verwendung von amphiphilen strukturdirigirenden Substanzen, bevorzugt Tensiden, besonders bevorzugt Blockcopolymeren, als Templat erzeugt. Auch ist es möglich die poröse Gerüststruktur im Wege einer spinodalen Entmischung aus einer Stoffmischung zu erzeugen, bpsw. in Form von CPGs (controlled porous glasses), hierauf wird im folgenden Text an einer späteren Stelle ausführlich eingegangen.
Somit zeichnet sich ein lösungsgemäß ausgebildeter, dreidimensionaler Formkörper dadurch aus, dass der Formkörper zumindest in Teilbereichen aus einer porösen Gerüststruktur mit Porengrößen von 1 nm bis 100 μm besteht, bei dem die Poren und die Gerüststruktur eine bikontinuierliche Morphologie besitzen oder nebeneinander angeordnete, nicht miteinander verbundene Poren in der Gerüststruktur vorliegen und bei dem die Poren zumindest in Teilbereichen der Gerüststruktur mit einem polymerhaltigen Material jeweils vollständig ohne Lufteinschlüsse aufgefüllt sind. Das polymerhaltige Material kann eine hohe Schmelzeviskosität aufweisen, wie dies charakteristisch für Polymere mit hohen Molekulargewichten oder mikrophasenseparierte Blockcopolymere ist. Trotzdem bildet sich eine auf adhäsiven, intermolekularen Grenzflächenwechselwirkungen beruhende Fügeverbindung zwischen dem polymerhaltigen Material und der porösen Gerüststruktur aus. Somit können mittels des lösungsgemäßen Verfahrens polymerhaltige Materialien, die thermoplastisch nicht verarbeitbar ist, zu Formteilen verarbeitet werden. Bei polymerhaltigen Materialien, die nur bei unvorteilhaft hohen Temperaturen thermoplastisch verarbeitbar sind, lässt sich die Prozeßtemperatur verglichen mit herkömmlichen Verarbeitungstechniken, wie Extrusion, Spritzguss etc., erheblich senken. Neben der Möglichkeit, das gesamte Porenvolumen der Gerüststruktur des Formkörpers mit dem polymerhaltigen Material vollständig zu verfüllen, können auch nur ausgewählte Bereiche der Gerüststruktur mit dem polymerhaltigen Material vollständig verfüllt werden. Da das polymerhaltige Material die Poren ausschließlich auf Basis von Kapillarkräften befüllt, werden die einzelnen Porenvolumina komplett gefüllt. Dies geschieht jedoch mit einer sehr geringen
Durchdringungsgeschwindigkeit durch den ganzen porösen dreidimensionalen Formkörper hindurch, so dass der Befüllungsprozess jederzeit gestoppt werden kann, vorzugsweise durch Abkühlen der Prozesstemperatur unter die Verfestigungstemperatur des polymerhaltigen Materials. Somit können die Poren lediglich in Teilbereichen des porösen dreidimensionalen Formkörpers vollständig mit dem polymerhaltigen Material verfüllt werden, während in anderen Teilbereichen des porösen dreidimensionalen Formkörpers kein polymerhaltiges Material enthalten ist. Der auf diese Weise erhaltene, teilweise vollständig mit polymerhaltigem Material verfüllte Formkörper sowie das Verfahren zu seiner Herstellung weisen eine Reihe von Vorteilen auf: i) Geringeres Gewicht als im Falle eines entsprechenden vollständig mit polymerhaltigem Material verfüllten, porösen, dreidimensionalen Formkörpers; ii) niedrigere Materialkosten aufgrund des geringeren Einsatzes von polymerhaltigem Material; iii) kürzere Herstellungszeiten durch teilweise vollständige Befüllung verglichen mit vollständiger Befüllung.
Die Polymerkomponenten können bzw. das polymerhaltige Material kann grundsätzlich aus einem oder mehreren Polymermaterialien bestehen, die vorzugsweise über eine hohe Schmelzeviskosität verfügen, so dass sie thermoplastisch nicht verarbeitbar sind oder nur bei wesentlich höheren Temperaturen als dies im Falle der lösungsgemäßen Anwendung in Verbindung mit einer porösen anorganischen Gerüststruktur der Fall ist. Hierbei füllt das polymerhaltige Material die Hohlräume, Lücken oder Poren der anorganischen Gerüststruktur vollständig. Besonders geeignet sind hierbei Polymerkomponenten wie PTFE oder hochmolekulare Polyethylene sowie mikrophasenseparierte Blockpolymere. Beispiele für Polymere, die für das lösungsgemäße Verfahren geeignet sind, können ausgewählt sein aus: i) organischen Polymeren wie Poly(p-xylylen), Polyacrylamid, Polyimiden, Polyestern,
Polyolefinen, Polystyrolen, Polycarbonaten, Polyamiden, Polyethern, Polyphenylen,
Polysilanen, Polysiloxanen, Polybenzimidazolen, Polybenzthiazolen, Polyoxazolen,
Polysulfiden, Polyesteramiden, Polyarylenvinylenen, Polylactiden, Polyetherketonen,
Polyurethanen, Polysulfonen, Polyacrylaten, vollaromatischen Copolyestern, PoIy-N- vinylpyrrolidon, Polyhydroxyethylmethacrylat, Polymethylmethacrylat,
Polyethylenterephthalat, Polybutylentherephthalat, Polymethacrylnitril, Polyacrylnitril,
Polyvinylacetat, Neopren, Buna N, Polybutadien, deren Homo- oder Copolymerisaten und/oder Blends, ii) anorganischen Polymeren wie Polyphosphaten und Siliconen sowie deren
Copoymerisaten und Blends mit anderen anorganischen oder organischen
Polymeren sowie anorganisch/organischen Hybridpolymeren wie z. B. Ormocere, iii) Fluorhaitigen Polymeren wie Polyvinylidenfluorid, Polytrifluorethylen,
Polytretrafluorethylen, vi) Polyethylenen, v) biologischen Polymeren wie Polysacchariden, z. B. Cellulose (modifiziert oder nichtmodifiziert), Alginaten oder Polypeptiden, z.B. Collagen, vi) Polymeren, die aus mindestens zwei verschiedenen Wiederholungseinheiten aufgebaut sind, bevorzugt in Form von statistischen Copolymeren,
Blockcopolymeren, Propfcopolymeren, Dendrimeren oder Copolymeren, die
Fluorethylen, Difluorethylen, Trifluorethylen oder Tetrafluorethylen als Comonomere aufweisen, vii) Kombinationen aus mehreren organischen und/oder biologischen Polymeren.
Derartige polymere Werkstoffe, die über eine sehr hohe Schmelzviskosität verfügen, wie beispielsweise lineare Homopolymere oder statistische Copolymere mit sehr hohen Molekulargewichten oder mikrophasenseparierte Blockpolymere oder auch Mischungen mindestens einer der vorgenannten Komponenten, weisen eine Reihe spezifischer Vorteile auf: So verfügen insbesondere Polymere mit sehr hohen Molekulargewichten über eine herausragende chemische sowie auch mechanische Stabilität. Im Falle von Blockpolymeren und Polymermischungen sind darüber hinaus neue und ungewöhnliche Eigenschaftskombinationen möglich. So lassen sich diese Materialien zwar auf Temperaturen erhitzen, bei denen das Polymer oder sämtliche polymere Komponenten erweichen, jedoch ist die Schmelzviskosität dieser Materialien aufgrund ihres Molekulargewichtes oder des Vorliegens einer Mikrophasenseparation so hoch, dass Formgebungsverfahren, wie sie aus dem Stand der Technik bekannt sind, beispielsweise im Wege des Heißverpressens, nicht oder nur bei unvorteilhaft hohen Temperaturen durchführbar sind. Die dem lösungsgemäßen Verfahren zugrunde liegende Erkenntnis überwindet dieses offensichtliche Problem, indem ein Weg aufgezeigt wird, bei dem polymerhaltige Materialien durch gezielte Ausnutzung der zwischen dem polymerhaltigen Material und der Oberfläche der porösen anorganischen Gerüststruktur auftretenden adhäsiven, intermolekularen Grenzflächenwechselwirkungen zu Formteilen verarbeitet werden können.
Auf dem gleichen lösungsgemäßen Gedanken beruhend kann im Unterschied zur vorstehend beschriebenen Herstellung eines dreidimensionalen Formkörpers auch eine aus polymerhaltigem Material bestehende Beschichtung auf die anorganische poröse Oberflächenstruktur eines Formkörpers, beispielsweise eines Siliziumwafers, aufgebracht werden. Als vorbereitenden Schritt hierzu gilt es einen über eine anorganische, poröse Oberflächenstruktur verfügenden Formkörper bereitzustellen oder in eine anorganische Oberfläche eines diesbezüglichen Formkörpers eine entsprechende poröse Struktur, beispielsweise im Wege eines elektrochemischen Ätzverfahrens, lithographischen Ätzverfahrens oder Plasmaätzens einzubringen.
Entsprechend zum vorstehend geschilderten Herstellungsverfahren für einen dreidimensionalen Formkörper besteht auch im Falle der Beschichtung des über eine anorganische, poröse Oberflächenstruktur verfügenden Formkörpers zumindest die anorganische, poröse Oberflächenstruktur bevorzugt aus Metallen, Metall- Legierungen, Nichtmetallen, Kombinationen nichtmetallischer Elemente sowie Metall- Nichtmetall-Verbindungen, besonders bevorzugt aus Oxiden, Phosphaten, Nitriden, Mischungen verschiedener Oxide und/oder Phosphate und/oder Nitride, Halbleitermaterialien, amorphen Kohlenstoffmaterialien oder zumindest teilweise kristallinen Kohlenstoffmaterialien, am meisten bevorzugt aus Siliziumoxid, Titanoxid, Aluminiumoxid oder Bornitrid.
Im Weiteren wird das polymerhaltige Material auf die anorganische, poröse Oberflächenstruktur des Formkörpers aufgebracht, beispielsweise in Form einer Polymerfolie. Die benetzungsvermittelte Befüllung der porösen Oberflächenstruktur erfolgt typischerweise mittels Heißverpressens, d.h. das polymerhaltige Material wird im Wege einer druckbeaufschlagten Erwärmung gegen die anorganisch poröse Oberflächenstruktur unter Ausbildung einer auf adhäsiven intermolekularen Grenzflächenwechselwirkungen beruhenden Fügeverbindung verpresst. In besonders vorteilhafter Weise eignet sich hierzu PTFE als polymerhaltiges Material zur Ausbildung einer PTFE-Schicht auf der anorganischen Oberfläche des jeweiligen Formkörpers. Denkbare Anwendungsbeispiele hierfür sind beispielsweise die Beschichtung von Stents aus der Medizin sowie anderen medizinischen Implantaten. Somit wird das Problem unzureichender Adhäsion von polymerhaltigen Beschichtungen auf anorganischen Oberflächen, das nur mit großem Aufwand und unvorteilhaften Methoden gelöst werden kann, überwunden.
Eine weitere sehr vorteilhafte Anwendung des lösungsgemäßen Verfahrens stellt die Herstellung einer adhäsiven Haftverbindung zwischen einem dreidimensional ausgebildeten Formkörper, der aus einem polymerhaltigen Material besteht, und einem zumindest eine anorganische poröse Oberflächenstruktur aufweisenden Formkörper dar, wobei der eine anorganische poröse Oberflächenstruktur aufweisende Formkörper nicht notwendigerweise vollständig porös ausgebildet sein muss aber vollständig porös ausgebildet sein kann. Die anorganische poröse Oberflächenstruktur besteht aus einem Material, das vorzugsweise ausgewählt ist aus Metallen, Metall-Legierungen, Nichtmetallen, Kombinationen nichtmetallischer Elemente sowie Metall-Nichtmetall-Verbindungen, besonders bevorzugt aus Oxiden, Phosphaten, Nitriden, Mischungen verschiedener Oxide und/oder Phosphate und/oder Nitride, Halbleitermaterialien, amorphen Kohlenstoffmaterialien oder zumindest teilweise kristallinen Kohlenstoffmaterialien, am meisten bevorzugt aus Siliciumoxid, Titanoxid, Aluminiumoxid oder Bornitrid. Für den Fügevorgang bietet es sich in vorteilhafter weise an, den über die anorganische, poröse Oberflächenstruktur verfügenden Formkörper über die Verfestigungstemperatur des polymerhaltigen Materials zu erwärmen, so dass nur das direkt mit der porösen Oberflächenstruktur in Kontakt stehende polymerhaltige Material über die Verfestigungstemperatur erhitzt wird. Die Prozesstemperatur, auf die der anorganische Formkörper zu erhitzen ist, ist so gewählt, dass das polymerhaltige Material ohne den Kontakt zu der porösen Schicht des aus anorganischem Material bestehenden Formkörpers thermoplastisch nicht verarbeitbar ist. Einerseits ist die nach dem lösungsgemäßen Verfahren mögliche Prozessführung bei niedrigeren Temperaturen wirtschaftlich vorteilhaft verglichen mit Verfahren, die höhere Prozesstemperaturen erfordern. Auf der anderen Seite erlaubt das erfindungsgemäße Verfahren die Realisierung einer festen Haftverbindung zwischen einem vorgefertigten, aus dem polymerhaltigen Material bestehenden Formkörper und einem aus anorganischem Material bestehenden Formkörper, ohne die Form des aus polymerhaltigem Material bestehenden Formkörpers oder dessen sonstige Eigenschaften zu verändern.
Ein vorteilhaftes Ausführungsbeispiel für die Herstellung eines dreidimensionalen Formkörpers, der zumindest anteilig aus polymerhaltigen Material besteht, sieht als Ausgangsprodukt einen aus Siliziumoxid bestehenden porösen Formkörper vor, der unter die Kategorie Controlled Porous Glasses, kurz CPG, fällt und Poren mit mittleren Porenweiten typischerweise von 2 nm bis 120 nm aufweist. Die Formgebung derartiger CPGs erfolgt mit Hilfe einer makroskopischen Gussform, die vollständig mit einer erweichten Glasmischung ausgefüllt wird. Die Glasmischung besteht typischerweise aus 50 bis 70% Siliziumoxid, 1 bis 10% Natriumoxid sowie anteilig Boroxid (B2O3). Im Wege kontrollierter Temperierung findet eine Phasentrennung der beteiligten Elemente statt, wobei sich unter anderem Boroxid separiert, das im Wege einer Nachbehandlung mit sauren Lösungen aus dem Glasverbund extrahiert wird. Letztlich wird eine glasartige Gerüststruktur mit einer Porosität zwischen 50 und 75% erhalten. In Abhängigkeit von Form, Größe und der Beschaffenheit der frei zugänglichen Oberflächen innerhalb der CPG-Gerüststruktur wird die Menge an polymerhaltigem Material, vorzugsweise PTFE, berechnet und bei einer Prozesstemperatur von ca. 4000C auf die Oberfläche der glasartigen Gerüststruktur aufgebracht. Das Aufbringen von PTFE auf bzw. in die poröse Gerüststruktur kann in unterschiedlicher Weise erfolgen, beispielsweise durch Aufbringen von PTFE-Pulver, PTFE-Granulat, PTFE- Spänen oder PTFE-Folien. Optional kann das PTFE an die glasartige Gerüststruktur angepresst werden, um die Infiltration zu erleichtern und die jeweiligen PTFE- Moleküle so nah wie möglich an die Oberfläche der glasartigen Gerüststruktur heranzuführen, so dass die für die Benetzung verantwortlichen intermolekularen Wechselwirkungen wirksam werden können.
Die Herstellung eines dreidimensionalen Formkörpers mit einer aus CPG bestehenden porösen Gerüststruktur, die mit polymerhaltigem Material, vorzugsweise PTFE, vollständig verfüllt wird, vereint zumindest zwei Vorteile: Zum einen ist es möglich, die Menge des erforderlichen und durchaus teuren PTFE- Materials in Vergleich zu herkömmlichen Verfahren, bei denen beispielsweise Sintern oder Zerspanen von aus PTFE bestehenden Monolithen durchgeführt wird, deutlich zu reduzieren. Mit dem lösungsgemäßen Formprozess fällt deutlich weniger Ausschussmaterial an, so dass durch die Gegenwart eines auch als Füller wirkenden CPGs signifikante Mengen an PTFE-Material eingespart werden können. Zum anderen unterliegt PTFE grundsätzlich dem Phänomen eines „kalten Flusses", d.h. selbst bei Raumtemperatur tritt durch ein dem PTFE-Material immanentes Kriechverhalten eine langsame Formänderung auf. Durch die Fügeverbindung zwischen dem PTFE und dem rigiden, anorganische Gerüst bestehend aus CPG kann die Form des dreidimensionalen lösungsgemäß ausgebildeten Formteils langzeitstabilisiert werden, ohne dabei die mechanischen Eigenschaften des Formteils verglichen zu einem vollständig aus PTFE bestehendem Formteil zu beeinträchtigen. Auf die Möglichkeit der Herstellung einer starken kohäsiven Beschichtung einer anorganischen Oberfläche mit PTFE-Material ist vorstehend bereits hingewiesen worden.
In beiden Fällen, d.h. sowohl bei der Herstellung dreidimensionaler Formkörper als auch bei entsprechenden Beschichtungen aus polymerhaltigen Materialien können Polymere bei niedrigeren Temperaturen als bei klassischen thermoplastischen Verarbeitungsmethoden einer Verarbeitung zugeführt werden. Beispielsweise wird PEEK nach dem Stand der Technik bei 45O0C verarbeitet. Mit Hilfe des lösungsgemäßen Verfahrens ist es möglich, Formteile und Beschichtungen aus PEEK bei 36O0C, d.h. also knapp oberhalb von dessen Schmelztemperatur, zu verarbeiten.

Claims

Patentansprüche
1. Verfahren zum Herstellen eines 3-dimensionalen, polymerhaltiges Material aufweisenden Formkörpers, der zumindest in Teilbereichen aus einer anorganischen porösen Gerüststruktur besteht, die zumindest in einem Teilbereich bei einer Prozesstemperatur, bei der das polymerhaltige Material thermoplastisch nicht verarbeitbar ist, ausschließlich mit dem über seine Verfestigungstemperatur erwärmten polymerhaltigen Material vollständig verfüllt wird, welches mit der porösen Gerüststruktur eine auf adhäsiven, intermolekularen Grenzflächenwechselwirkungen beruhende Fügeverbindung eingeht.
2. Verfahren zum Herstellen einer adhäsiven Haftverbindung zwischen einem polymerhaltigen Material und einem zumindest in oberflächigen Teilbereichen eine anorganische, poröse Gerüststruktur aufweisenden Formkörper, umfassend folgende Verfahrensschritte:
Bereitstellen eines zumindest in oberflächigen Teilbereichen eine anorganische poröse Gerüststruktur aufweisenden Formkörpers oder
Einbringen einer porösen Struktur in eine anorganische Oberfläche eines Formkörpers,
Aufbringen ausschließlich eines polymerhaltigen Materials auf die anorganische poröse Gerüststruktur des Formkörpers,
Druckbeaufschlagen des polymerhaltigen Materials gegen die anorganische poröse Gerüststruktur des Formkörpers unter Ausbildung einer auf adhäsiven, intermolekularen Grenzflächenwechselwirkungen beruhenden Fügeverbindung zwischen dem polymerhaltigen Material und der anorganischen, porösen Gerüststruktur des Formkörpers bei einer Prozesstemperatur, bei der das polymerhaltige Material thermoplastisch nicht verarbeitbar ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die poröse Gerüststruktur-mit mittleren Porengrößen von 1 nm bis 100 μm ausgebildet wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die anorganischen poröse Gerüststruktur ganz oder teilweise aus Material besteht, das ausgewählt ist aus Metallen, Metall-Legierungen, Nichtmetallen, Kombinationen nichtmetallischer Elemente sowie Metall-Nichtmetall- Verbindungen, vorzugsweise aus Platin, Palladium, Kupfer, Eisen, Oxiden, Phosphaten, Nitriden, Mischungen verschiedener Oxide und/oder Phosphate und/oder Nitride, Halbleitermaterialien, amorphen Kohlenstoffmaterialien oder zumindest teilweise kristallinen Kohlenstoffmaterialien, besonders bevorzugt aus Siliciumoxid, Titanoxid, Aluminiumoxid oder Bornitrid.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die poröse Gerüststruktur durch Verwendung von amphiphilen strukturdirigirenden Substanzen, bevorzugt Tensiden, besonders bevorzugt Blockcopolymeren, als Templat erzeugt wurde.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die poröse Gerüststruktur durch eine spinodale Entmischung aus einer Stoffmischung erzeugt wurde, bevorzugt in Form von CPGs (controlled porous glasses) mit Porenweiten von 2 nm bis 120 nm.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als polymerhaltiges Material zumindest ein Polymer mit durchschnittlichen Molekulargewichten von mehr als 100000 D, bevorzugt mehr als 500000 D, besonders bevorzugt mehr als 1000000 D gewählt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das polymerhaltige Material wenigstens ein Polymer enthält, das ausgewählt wird aus i) organischen Polymeren wie Poly(p-xylylen), Polyacrylamid, Polyimiden, Polyestern,
Polyolefinen, Polystyrolen, Polycarbonaten, Polyamiden, Polyethem, Polyphenylen,
Polysilanen, Polysiloxanen, Polybenzimidazolen, Polybenzthiazolen, Polyoxazolen,
Polysulfiden, Polyesteramiden, Polyarylenvinylenen, Polylactiden, Polyetherketonen,
Polyurethanen, Polysulfonen, Polyacrylaten, vollaromatischen Copolyestern, PoIy-N- vinylpyrrolidon, Polyhydroxyethylmethacrylat, Polymethylmethacrylat,
Polyethylenterephthalat, Polybutylentherephthalat, Polymethacrylnitril, Polyacrylnitril,
Polyvinylacetat, Neopren, Buna N, Polybutadien, deren Homo- oder Copolymerisaten und/oder Blends, ii) anorganischen Polymeren wie Polyphosphaten und Siliconen sowie deren
Copoymerisaten und Blends mit anderen anorganischen oder organischen
Polymeren sowie anorganisch/organischen Hybridpolymeren wie z. B. Ormocere, iii) Fluorhaitigen Polymeren wie Polyvinylidenfluorid, Polytrifluorethylen,
Polytretrafluorethylen, vi) Polyethylenen, v) biologischen Polymeren wie Polysacchariden, z. B. Cellulose (modifiziert oder nichtmodifiziert), Alginaten oder Polypeptiden, z.B. Collagen, vi) Polymeren, die aus mindestens zwei verschiedenen Wiederholungseinheiten aufgebaut sind, bevorzugt in Form von statistischen Copolymeren,
Blockcopolymeren, Propfcopolymeren, Dendrimeren oder Copolymeren, die
Fluorethylen, Difluorethylen, Trifluorethylen oder Tetrafluorethylen als Comonomere aufweisen, vii) Kombinationen aus mehreren organischen und/oder biologischen Polymeren.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der zumindest in Teilbereichen eine anorganische poröse Gerüststruktur aufweisende Formkörper zumindest in Teilbereichen auf die Prozesstemperatur erwärmt und mit dem polymerhaltigen Material in Kontakt gebracht wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der zumindest in Teilbereichen eine anorganische poröse Gerüststruktur aufweisende Formkörper zumindest in Teilbereichen solange auf der Prozesstemperatur temperiert wird, bis die Poren zumindest eines Teilbereiches der Gerüststruktur vollständig mit dem polymerhaltigen Material verfüllt sind, und dass zumindest die Gerüststruktur des Formkörpers nach Erreichen eines geforderten Verfüllungszustandes abgekühlt wird.
11. Verfahren nach einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, dass das polymerhaltige Material derart auf die anorganische poröse Gerüststruktur des Formkörpers aufgebracht wird, dass sich auf der anorganischen, porösen Gerüststruktur eine polymerhaltige Materialschicht in Art einer Oberflächenbeschichtung ausbildet, oder dass sich eine adhäsive Haftverbindung zwischen einem aus polymerhaltigem Material bestehenden Körper und der anorganischen porösen Gerüststruktur des Formkörpers ausbildet.
12. Dreidimensionaler Formkörper, der zumindest in Teilbereichen aus einer porösen Gerüststruktur mit bikontinuierlicher Morphologie oder mit nebeneinander angeordneten, nicht miteinander verbundenen Poren besteht und bei dem zumindest in einem Teilbereich die Poren ausschließlich mit einem polymerhaltigen Material, das mit der anorganischen Gerüststruktur eine auf adhäsiven, intermolekularen Grenzflächenwechselwirkungen beruhende Fügeverbindung aufweist, vollständig aufgefüllt sind.
13. Dreidimensionaler Formkörper nach Anspruch 12, dadurch gekennzeichnet, dass die poröse Gerüststruktur mittlere Porengrößen von 1 nm bis 100 μm, bevorzugt mittlere Porengrößen von weniger als 500 nm, besonders bevorzugt von weniger als 100 nm und am meisten bevorzugt von weniger als 50 nm aufweist.
14. Dreidimensionaler Formkörper nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die anorganischen poröse Gerüststruktur ganz oder teilweise aus Material besteht, das ausgewählt ist aus Metallen, Metall-Legierungen, Nichtmetallen, Kombinationen nichtmetallischer Elemente sowie Metall-Nichtmetall- Verbindungen, vorzugsweise aus Platin, Palladium, Kupfer, Eisen, Oxiden, Phosphaten, Nitriden, Mischungen verschiedener Oxide und/oder Phosphate und/oder Nitride, Halbleitermaterialien, amorphen Kohlenstoffmaterialien oder zumindest teilweise kristallinen Kohlenstoffmaterialien, besonders bevorzugt aus Siliciumoxid, Titanoxid, Aluminiumoxid oder Bornitrid.
15. Dreidimensionaler Formkörper nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die poröse Gerüststruktur unter Verwendung von amphiphilen strukturdirigirenden Substanzen, bevorzugt Tensiden, besonders bevorzugt Blockcopolymeren, erzeugbar ist.
16. Dreidimensionaler Formkörper nach Anspruch 12, 13 oder 14, dadurch gekennzeichnet, dass die poröse Gerüststruktur durch eine spinodale Entmischung aus einer Stoffmischung erzeugbar ist, bevorzugt in Form von CPGs (controlled porous glasses) mit Porenweiten von 5 nm bis 120 nm.
17. Dreidimensionaler Formkörper nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass die poröse Gerüststruktur mindestens 5 %, bevorzugt 30%, besonders bevorzugt 50% des Gesamtvolumens des dreidimensionalen Formkörpers einnimmt.
18. Dreidimensionaler Formkörper nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass das polymerhaltige Material Polymere mit Molekulargewichten von mehr als 100000 D, bevorzugt mehr als 500000 D, besonders bevorzugt mehr als 1000000 D aufweist.
19. Dreidimensionaler Formkörper nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, dass das polymerhaltige Material ein mikrophasensepariertes Blockcopolymer ist.
20. Dreidimensionaler Formkörper nach einem der Ansprüche 12 bis 19, dadurch gekennzeichnet, dass das polymerhaltige Material wenigstens ein Polymer aus den nachstehenden Gruppen enthält: i) organische Polymere wie Poly(p-xylylen), Polyacrylamid, Polyimide, Polyester,
Polyolefine, Polystyrole, Polycarbonate, Polyamide, Polyether, Polyphenyle, PoIy- silane, Polysiloxane, Polybenzimidazole, Polybenzthiazole, Polyoxazole, Polysulfide,
Polyesteramide, Polyarylenvinylene, Polylactide, Polyetherketone, Polyurethane,
Polysulfone, Polyacrylate, vollaromatische Copolyester, Poly-N-vinylpyrrolidon,
Polyhydroxyethylmethacrylat, Polymethylmethacrylat, Polyethylenterephthalat,
Polybutylentherephthalat, Polymethacrylnitril, Polyacrylnitril, Polyvinylacetat,
Neopren, Buna N, Polybutadien, deren Homo- oder Copolymerisate und/oder
Blends, ii) anorganische Polymere wie Polyphosphate und Silicone sowie deren
Copoymerisate und Blends mit anderen anorganischen oder organischen Polymeren und anorganisch/organische Hybridpolymere wie z. B. Ormocere, iii) Fluorhaltige Polymere wie Polyvinylidenfluorid, Polytrifluorethylen,
Polytretrafluorethylen, vi) Polyethylene, v) biologische Polymere wie Polysaccharide, z. B. Cellulose (modifiziert oder nichtmodifiziert), Alginate oder Polypeptide, z.B. Collagen, vi) Polymere, die aus mindestens zwei verschiedenen Wiederholungseinheiten aufgebaut sind, bevorzugt in Form von statistischen Copolymeren,
Blockcopolymeren, Propfcopolymeren, Dendrimeren oder Copolymeren, die
Fluorethylen, Difluorethylen, Trifluorethylen oder Tetrafluorethylen als Comonomere aufweisen, vii) Kombinationen aus mehreren organischen und/oder biologischen Polymeren.
PCT/DE2009/000306 2008-03-13 2009-03-03 Verfahren zum herstellen eines 3-dimensionalen, polymerhaltiges material aufweisenden formkörpers sowie verfahren zur herstellung einer adhäsiven haftverbindung zwischen einem polymerhaltigen material und einem 3-dimensionalen formkörper WO2009112011A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/879,492 US8480941B2 (en) 2008-03-13 2010-09-10 Method for producing a 3-dimensional molded body comprising polymer-containing material and a method for producing an adhesive bond between a polymer-containing material and a three-dimensional molded body
US13/916,036 US20130295369A1 (en) 2008-03-13 2013-06-12 Method for producing a 3-dimensional molded body comprising polymer-containing material and a method for producing an adhesive bond between a polymer-containing material and a three-dimensional molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008014119.4 2008-03-13
DE200810014119 DE102008014119B4 (de) 2008-03-13 2008-03-13 Verfahren zum Herstellen eines 3-dimensionalen, polymeres Material aufweisenden Formkörpers, Verfahren zum Herstellen einer Beschichtung aus polymerem Material sowie ein 3-dimensionaler Formkörper

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/879,492 Continuation-In-Part US8480941B2 (en) 2008-03-13 2010-09-10 Method for producing a 3-dimensional molded body comprising polymer-containing material and a method for producing an adhesive bond between a polymer-containing material and a three-dimensional molded body

Publications (2)

Publication Number Publication Date
WO2009112011A2 true WO2009112011A2 (de) 2009-09-17
WO2009112011A3 WO2009112011A3 (de) 2009-11-12

Family

ID=40953051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/000306 WO2009112011A2 (de) 2008-03-13 2009-03-03 Verfahren zum herstellen eines 3-dimensionalen, polymerhaltiges material aufweisenden formkörpers sowie verfahren zur herstellung einer adhäsiven haftverbindung zwischen einem polymerhaltigen material und einem 3-dimensionalen formkörper

Country Status (3)

Country Link
US (2) US8480941B2 (de)
DE (1) DE102008014119B4 (de)
WO (1) WO2009112011A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5340202B2 (ja) * 2010-02-23 2013-11-13 三菱電機株式会社 熱硬化性樹脂組成物、bステージ熱伝導性シート及びパワーモジュール
WO2014152445A1 (en) * 2013-03-15 2014-09-25 Shimano American Corporation Heated liquid tapered line production device and method
US11613077B1 (en) 2019-08-13 2023-03-28 United States Of America As Represented By The Secretary Of The Air Force 3-D structures having high temperature stability and improved microporosity

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD132426A1 (de) * 1977-07-29 1978-09-27 Winne Karl Heinz Verfahren zur impraegnierung von poroesen baustoffen
US4865778A (en) * 1988-11-30 1989-09-12 Aeration Engineering Resources Composite diffuser assembly
EP0726461A1 (de) * 1995-02-10 1996-08-14 Kyoto Daiichi Kagaku Co., Ltd. Direkte Fixierung einer Reagenzschicht mittels Ultraschall und Verfahren zur Herstellung einer Testvorrichtung vom Abziehtyp
CH690174A5 (de) * 1991-11-27 2000-05-31 Electro Chem Eng Gmbh Gegenstand aus Aluminium, Magnesium oder Titanium oder deren Legierungen und Verfahren zu dessen Herstellung.
DE10146324A1 (de) * 2001-09-20 2003-04-24 Messer Griesheim Gmbh Haftvermittlung durch Flammsprizen von thermoplastischen Kunststoffen
EP1688175A1 (de) * 2005-01-31 2006-08-09 Wat-membratec GmbH & Co. KG Verfahren zum Verbinden poröser Membranen sowie hierdurch erzeugte Membranfiltervorrichtung
WO2007029440A1 (ja) * 2005-09-01 2007-03-15 Osaka University 金属樹脂接合方法及び金属樹脂複合体、ガラス樹脂接合方法及びガラス樹脂複合体、並びにセラミック樹脂接合方法及びセラミック樹脂複合体
US20080053959A1 (en) * 2000-02-16 2008-03-06 Ziptronix, Inc. Method for low temperature bonding and bonded structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3124364A1 (de) * 1981-06-20 1983-02-24 Fitzer, Erich, Prof. Dr., 7500 Karlsruhe Kohlenstoffaserverstaerkter, hochsteifer leichtverbundwerkstoff, bestehend aus einem kohlenstoffskelett und einer porenfuellenden harzmatrix
DE3203659A1 (de) * 1982-02-03 1983-08-11 Nippon Carbon Co., Ltd., Tokyo Verfahren zum herstellen eines sinterkoerpers
US4740340A (en) * 1984-04-30 1988-04-26 Federal-Mogul Corporation Method of making a PTFE based impregnated metal matrix
WO1989000879A1 (en) * 1987-07-30 1989-02-09 Toray Industries, Inc. Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
EP0852298B1 (de) * 1996-12-14 2003-03-19 Federal-Mogul Deva GmbH Gleitlagerwerkstoff und Verfahren zu seiner Herstellung
DE19738913B4 (de) * 1997-09-05 2004-03-18 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Blockcopolymerphasen als Template für strukturierte organisch-anorganische Hybridmaterialien
KR100624648B1 (ko) * 1997-12-09 2006-09-19 에스비에이 머티어리얼스 인코포레이티드 메소구조의 무기 산화물을 제조하기 위한 블록 중합체 공정
GB0020734D0 (en) * 2000-08-22 2000-10-11 Dytech Corp Ltd Bicontinuous composites
US20090130422A1 (en) * 2007-11-19 2009-05-21 Martin Brett D Mesoporous monoliths containing conducting polymers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD132426A1 (de) * 1977-07-29 1978-09-27 Winne Karl Heinz Verfahren zur impraegnierung von poroesen baustoffen
US4865778A (en) * 1988-11-30 1989-09-12 Aeration Engineering Resources Composite diffuser assembly
CH690174A5 (de) * 1991-11-27 2000-05-31 Electro Chem Eng Gmbh Gegenstand aus Aluminium, Magnesium oder Titanium oder deren Legierungen und Verfahren zu dessen Herstellung.
EP0726461A1 (de) * 1995-02-10 1996-08-14 Kyoto Daiichi Kagaku Co., Ltd. Direkte Fixierung einer Reagenzschicht mittels Ultraschall und Verfahren zur Herstellung einer Testvorrichtung vom Abziehtyp
US20080053959A1 (en) * 2000-02-16 2008-03-06 Ziptronix, Inc. Method for low temperature bonding and bonded structure
DE10146324A1 (de) * 2001-09-20 2003-04-24 Messer Griesheim Gmbh Haftvermittlung durch Flammsprizen von thermoplastischen Kunststoffen
EP1688175A1 (de) * 2005-01-31 2006-08-09 Wat-membratec GmbH & Co. KG Verfahren zum Verbinden poröser Membranen sowie hierdurch erzeugte Membranfiltervorrichtung
WO2007029440A1 (ja) * 2005-09-01 2007-03-15 Osaka University 金属樹脂接合方法及び金属樹脂複合体、ガラス樹脂接合方法及びガラス樹脂複合体、並びにセラミック樹脂接合方法及びセラミック樹脂複合体

Also Published As

Publication number Publication date
US20130295369A1 (en) 2013-11-07
DE102008014119B4 (de) 2013-11-14
DE102008014119A1 (de) 2009-09-17
US20110059310A1 (en) 2011-03-10
WO2009112011A3 (de) 2009-11-12
US8480941B2 (en) 2013-07-09

Similar Documents

Publication Publication Date Title
DE102007003192B4 (de) Keramischer und/oder pulvermetallurgischer Verbundformkörper und Verfahren zu seiner Herstellung
EP2714354B1 (de) Verfahren zum herstellen eines formkörpers sowie vorrichtung
EP3079871B1 (de) 3d-infiltrationsverfahren
DE102004008122B4 (de) Beschichtete Pulverpartikel für die Herstellung von dreidimensionalen Körpern mittels schichtaufbauender Verfahren
EP2670880B1 (de) Verfahren zum erzeugen einer dreidimensionalen struktur sowie dreidimensionale struktur
CH625966A5 (de)
WO2010043280A2 (de) Rahmen für eine vorrichtung zum herstellen eines dreidimensionalen objekts und vorrichtung zum herstellen eines dreidimensionalen objekts mit einem solchen rahmen
EP2977101A1 (de) Verfahren zur herstellung einer membran mit isoporöser trennaktiver schicht mit einstellbarer porengrösse, membran, filtrationsmodul und verwendung
DE102008014119B4 (de) Verfahren zum Herstellen eines 3-dimensionalen, polymeres Material aufweisenden Formkörpers, Verfahren zum Herstellen einer Beschichtung aus polymerem Material sowie ein 3-dimensionaler Formkörper
DE102011082484A1 (de) Verfahren zum Herstellen eines Pulverspritzguss-Verbundbauteils
EP3173202A2 (de) Spezial-keramikbauteile
EP2081744B1 (de) Verfahren zur herstellung eines keramischen formkörpers
EP4188680A1 (de) Verfahren zum herstellen eines 3d-formkörpers sowie vorrichtung unter verwendung einer siebplatte
EP3173392B1 (de) Verfahren zur herstellung von keramikteilen
EP3305495B1 (de) Verfahren zur erzeugung einer dreidimensionalen struktur in einer matrix
EP2357070A1 (de) Spritzgießverfahren für Kondensationsharze und Vorrichtung für das Verfahren
DE102012004442B3 (de) Verfahren zur Herstellung von Formkörpern aus pulverförmigen keramischem oder metallischem Werkstoff
DE1794241A1 (de) Poroese Kunststoff-Formkoerper und ein Verfahren zu ihrer Herstellung
EP1488840B1 (de) Verfahren zur Herstellung eines Verbundfiltermaterials
WO2018019586A1 (de) Verfahren zur herstellung eines stromsammlers für eine brennstoffzelle und brennstoffzelle
DE102021200812A1 (de) Verfahren zur Herstellung von Formelementen für Tauch- und Laminierverfahren, Kernen oder Modellen, die zum Abbilden von Hinterschneidungen in Metall-, Keramik-, Kunststoff- oder Compositebauteilen einsetzbar sind
DE1504888C (de) Polymerer, netzstrukturierter Körper und Verfahren zur Herstellung desselben
DE102013012593A1 (de) Verfahren zur Herstellung thermoplastischer Verbundbauteile
WO2020038838A1 (de) Verfahren zum herstellen eines bauteils durch aufbringen von partikelgefüllten diskreten volumenelementen
WO2020039005A1 (de) Verfahren zum herstellen eines bauteils durch positionieren von partikelgefüllten, strukturierten schichtelementen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719166

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase

Ref document number: 09719166

Country of ref document: EP

Kind code of ref document: A2