WO2009110367A1 - 表示パネル、アレイ基板、カラーフィルタ基板、および表示パネルの製造方法 - Google Patents

表示パネル、アレイ基板、カラーフィルタ基板、および表示パネルの製造方法 Download PDF

Info

Publication number
WO2009110367A1
WO2009110367A1 PCT/JP2009/053515 JP2009053515W WO2009110367A1 WO 2009110367 A1 WO2009110367 A1 WO 2009110367A1 JP 2009053515 W JP2009053515 W JP 2009053515W WO 2009110367 A1 WO2009110367 A1 WO 2009110367A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
recess
substrate
spacer
array substrate
Prior art date
Application number
PCT/JP2009/053515
Other languages
English (en)
French (fr)
Inventor
健二 河添
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN200980107753XA priority Critical patent/CN101960369B/zh
Priority to US12/921,041 priority patent/US20110001915A1/en
Publication of WO2009110367A1 publication Critical patent/WO2009110367A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits

Definitions

  • the present invention relates to a display panel, an array substrate, a color filter substrate, and a method for manufacturing a display panel. More specifically, the present invention relates to a display panel provided with a spacer for defining a cell gap, and is suitably applied to this display panel. The present invention relates to an array substrate or a color filter substrate that can be formed, and a method of manufacturing a display panel having a spacer for defining a cell gap.
  • a general liquid crystal display panel has a configuration in which a pair of substrates are arranged to face each other with a minute interval, and liquid crystal is filled between the pair of substrates. And it is necessary to maintain the space
  • a configuration for maintaining the cell gap at a predetermined uniform dimension for example, a configuration in which a protruding structure is formed on at least one of a pair of substrates, or a pair of spherical spacer beads (hereinafter simply referred to as spacers).
  • the structure interposed between the substrates is used.
  • a method is used in which the spacer is arranged in an arbitrary pattern at an arbitrary position by discharging a spacer dispersion liquid in which the spacer is dispersed in the liquid onto the substrate by an inkjet method. (See JP 2005-321540 A, JP 2006-208728 A and JP 2006-227590 A).
  • the configuration in which the spacers are arranged on the substrate by the conventional inkjet method has the following problems.
  • the spacer dispersion liquid is discharged from a plurality of inkjet nozzles onto one substrate.
  • the amount of spacers discharged from each of the inkjet nozzles varies due to manufacturing errors of each inkjet nozzle.
  • the spacer is dropped from a predetermined location and does not contribute to the definition of the cell gap of the liquid crystal display panel. Will occur.
  • the distribution density of the spacers that can contribute to the definition of the cell gap of the liquid crystal display panel is biased on the same substrate.
  • Such a deviation causes a deviation in the size of the cell gap in a region where there are many spacers and a region where the spacers do not exist, so that the thickness of the liquid crystal layer of the liquid crystal display panel becomes non-uniform and so-called display unevenness occurs.
  • a problem to be solved by the present invention is a display panel that prevents the occurrence of a so-called display unevenness defect by reducing the unevenness of the dispersion density of spacers that contributes to the definition of the cell gap and making the cell gap uniform.
  • An object of the present invention is to provide an array substrate or a color filter substrate that can be suitably applied to a panel, and a method for manufacturing a display panel.
  • a display panel according to the present invention has a recess formed on one of a pair of substrates facing each other with a predetermined cell gap, and on the other substrate.
  • a gist is that a convex portion is formed at a position facing the concave portion, and a spacer is interposed between the bottom surface of the concave portion and the front end surface of the convex portion.
  • the interval between the periphery of the recess and the periphery of the protrusion may be configured to be larger than the interval between the bottom surface of the recess and the tip surface of the protrusion.
  • the recess is formed in at least one of a conductor film or an insulating film formed on the one substrate.
  • the conductor film may be a gate signal line
  • the insulating film may be a gate insulating film or a passivation film.
  • the convex portion is formed of the same material as at least one of the alignment control protrusion, the light shielding film, and the colored layer.
  • a protruding portion is formed so as to surround the concave portion.
  • the projecting portion may be formed of the same material as that of the source signal line or the semiconductor layer.
  • a plurality of the concave portions are formed at equal intervals, each having the same size, and a plurality of the convex portions are formed at equal intervals, each having the same size. Is preferred.
  • an auxiliary recess having a depth larger than the recess by a predetermined amount is further formed, and on the other substrate, the protrusion is further formed at a position facing the auxiliary recess, It is preferable that the spacer is interposed between the bottom surface of the auxiliary concave portion and the front end surface of the convex portion.
  • the gist of the array substrate according to the present invention is that a recess in which a spacer that defines a cell gap with the opposing substrate is disposed is formed.
  • the recess is formed in at least one of a conductor film and an insulating film.
  • the conductor film may be a gate signal line
  • the insulating film may be a gate insulating film or a passivation film.
  • a protruding portion is formed so as to surround the concave portion.
  • the projecting portion may be formed of the same material as that of the source signal line or the semiconductor layer.
  • a plurality of the concave portions are formed at equal intervals, and each of them is formed in the same size.
  • the gist of the color filter substrate according to the present invention is that a convex portion that abuts against a spacer that defines a cell gap with the opposing substrate is formed.
  • the convex portion may be formed of the same material as at least one of the alignment control protrusion, the light shielding film, and the coloring layer.
  • a plurality of the convex portions are formed at equal intervals, and each is formed in the same size.
  • the display panel manufacturing method is a method of manufacturing a display panel facing each other with a predetermined cell gap, and the spacer is in the liquid with respect to the recess formed on one substrate.
  • a spacer discharge step for discharging the dispersed spacer dispersion liquid, a drying step for drying the discharged spacer dispersion liquid, and the other substrate on which the convex portion is formed at a position facing the concave portion is bonded to the one substrate.
  • a substrate bonding step is a method of manufacturing a display panel facing each other with a predetermined cell gap, and the spacer is in the liquid with respect to the recess formed on one substrate.
  • the liquid in which the spacer is dispersed is suitable if it has a property that the spacer dispersed in the liquid aggregates when dried.
  • the number of the spacers included in the spacer dispersion liquid discharged to the recesses in the spacer discharging step is larger than the number of the spacers that can be arranged in the recesses.
  • a protrusion is provided on the one substrate so as to surround the recess, and the spacer dispersion liquid may be discharged within a range surrounded by the protrusion in the spacer discharging step.
  • the concave portion in which the spacer is arranged and the convex portion that contacts the spacer arranged in the concave portion are provided at the position facing the concave portion, the number of spacers that contribute to the definition of the cell gap of the display panel Variations, that is, uneven distribution density, can be reduced, and the cell gap can be made uniform. Thereby, problems such as display unevenness are prevented, and the image quality of the image displayed by the display panel is improved.
  • the spacer overflowing from the recess should not contribute to the regulation of the cell gap. It becomes.
  • the spacers arranged in the recesses contribute to the definition of the cell gap, it is possible to reduce the uneven distribution density of the spacers that contribute to the definition of the cell gap.
  • the said recessed part can be formed in the conductor film etc. which are formed on a board
  • a plurality of the concave portions and the convex portions are formed at equal intervals, and each has the same size, so that the other substrate is attached to one substrate constituting the display panel. In doing so, it is possible to prevent unevenness in stress between the substrates caused by pressing the other substrate.
  • an auxiliary recess having a predetermined depth larger than the recess is provided on one substrate, and the protrusion is further formed on the other substrate at a position facing the auxiliary recess.
  • the support interposed between the bottom surface of the auxiliary recess and the tip end surface of the auxiliary recess works only when a predetermined pressure is applied to the display panel from the outside. Since it works as a member, the mechanical strength of the display panel can be improved.
  • the spacer since the spacer is disposed using the spacer dispersion liquid that has the property that the spacer dispersed in the liquid aggregates when dried, it is only necessary to discharge the spacer dispersion liquid toward the concave portion. Even if there is a part of the spacer landed outside the recess, the spacer is collected in the recess. That is, the spacer can be reliably arranged in the recess formed in the substrate.
  • FIG. 2A and 2B are diagrams for explaining the configuration of the array substrate according to the first embodiment.
  • FIG. 2A is a schematic configuration diagram of the entire array substrate
  • FIG. 2B is an enlarged view of a picture element portion (FIG. 2).
  • FIG. 3A shows a cross section of the TFT (cross section BB in FIG. 2B), and
  • FIG. 3B shows a cross section taken along the center in the extending direction of the gate signal line (FIG. 2B
  • FIG. 6 is a diagram schematically showing a (C-C cross section) in FIG. 4A is a schematic configuration diagram of the entire color filter substrate
  • FIG. 4B is an enlarged view of a portion D in FIG. 4A.
  • FIG. 5A is a cross section cut along a plane passing through the colored layer (the EE cross section in FIG. 4B), and
  • FIG. 5B is a cross section cut along the light shielding film between the colored layers.
  • FIG. 5 is a diagram schematically showing (cross section FF in FIG. 4B). It is the figure which showed typically the cross section (cross section of a recessed part and a convex part) which cut
  • FIGS. 7A to 7F are cross-sectional views schematically showing a manufacturing process of an array substrate constituting a display panel, and FIGS. 7G to 7L are gates of the array substrate.
  • FIGS. 8A to 8E are cross-sectional views schematically showing a manufacturing process of a color filter substrate.
  • FIGS. 8A to 8E are cross sections cut along a plane passing through the colored layer, and FIGS. 8F to 8J are colored layers. It is the figure which showed typically the cross section cut
  • FIG. 9A is a diagram schematically showing a cross-section of the display panel according to the second embodiment of the present invention.
  • FIG. 9B is a pressure applied to the display panel from the outside. It is the figure which showed the case where it was done typically.
  • FIG. 10A is a diagram schematically showing a cross section of the display panel according to the first modification, and FIG. 10B is a schematic cross section of the display panel according to the second modification.
  • FIG. 1 is a perspective view schematically showing the appearance of the display panel 1 according to the first embodiment of the present invention.
  • the display panel 1 includes an array substrate 10 (hereinafter sometimes referred to as the array substrate 10 according to the first embodiment) and a color filter substrate 30 (hereinafter referred to as the first embodiment). A color filter substrate 30 according to the embodiment). Then, liquid crystal is filled between these substrates facing each other with a predetermined cell gap.
  • a source driver 95 that generates a source signal
  • a gate driver 96 that generates a gate signal
  • the configuration of the array substrate 10 and the color filter substrate 30 included in the display panel 1 will be described in detail.
  • FIG. 2A and 2B are diagrams for explaining the configuration of the array substrate 10 according to the first embodiment.
  • FIG. 2A is a schematic configuration diagram of the entire array substrate 10, and
  • FIG. 2B is a picture element portion.
  • 18 is an enlarged view (an enlarged view of a portion A in FIG. 2A).
  • the array substrate 10 has an active region 12 and a panel frame region 13 formed on a glass substrate 90.
  • a plurality of source signal lines 14 may be provided substantially in parallel with each other.
  • a plurality of gate signal lines 16 may be provided substantially parallel to each other so as to be substantially orthogonal to the source signal lines 14.
  • a region partitioned in a matrix by the source signal line 14 and the gate signal line 16 becomes a picture element portion 18.
  • the source signal line 14 and the gate signal line 16 intersect at the intersection so that the source signal line 14 is on the upper side and the gate signal line 16 is on the lower side.
  • a pixel electrode 181 transparent conductive film
  • the storage capacitor wiring for forming the storage capacitor is omitted for the sake of simplicity.
  • FIG. 3A is a view schematically showing a cross section of the TFT 20 (BB cross section in FIG. 2B).
  • a gate electrode 22, a gate insulating film 23, a semiconductor layer 24 (first semiconductor layer 241 and second semiconductor layer 242), a source electrode 25, a drain electrode 26, and a passivation film 27 are stacked on a glass substrate 90. Is formed. Further, a contact hole 28 reaching the drain electrode 26 from the surface of the passivation film 27 is formed, and the pixel electrode 181 is electrically connected to the drain electrode 26 through the contact hole 28.
  • the gate signal line 16 is formed with a recess 161a which becomes a recess 161 in which a spherical spacer 92 for defining a cell gap with the color filter substrate 30 is disposed.
  • FIG. 3B is a diagram schematically showing a cross section (a CC cross section in FIG. 2B) cut at the center in the extending direction of the gate signal line 16.
  • the depression 161 a formed in the gate signal line 16 is covered with the gate insulating film 23 and the passivation film 27 stacked on the gate signal line 16 to form the recess 161.
  • the recess 161 has a cross-sectional shape cut along a plane parallel to the array substrate 10 so that it is symmetrical with respect to the center line in the extending direction of the gate signal line 16, and is equally spaced and the same size. Is formed.
  • the size of the recess 161 is determined based on the size of a spherical spacer 92 (details will be described later) arranged in the recess 161.
  • the cross section (width) of the recess 161 cut along a plane parallel to the array substrate 10 is large enough to allow a predetermined number of spherical spacers 92 to be disposed without substantial gaps (with each spherical spacer 92 being substantially in contact). Is formed.
  • the depth of the concave portion 161 is smaller than the diameter of the spherical spacer 92, for example, and is formed such that the spherical spacer 92 once arranged does not easily roll out of the concave portion 161.
  • the depression 161 a constituting the recess 161 is not necessarily formed in the gate signal line 16.
  • a recess 161 a that becomes the recess 161 may be formed in the gate insulating film 23 or the passivation film 27 stacked on the gate signal line 16.
  • the array substrate 10 is formed with a protruding portion 291 formed so as to surround the periphery of each recess 161.
  • the height of the protruding portion 291 is not more than a height at which the tip of the protruding portion 291 is not in contact with the color filter substrate 30 when the array substrate 10 and the color filter substrate 30 are bonded to each other. It is formed at a height that is impossible (preferably, a diameter of the spherical spacer 92 or more).
  • the projecting portion 291 is formed of the same material as the source signal line 14 (source electrode 25, drain electrode 26), but is not limited to this, for example, the semiconductor layer 24 (first semiconductor).
  • the layer 241 and the second semiconductor layer 242) may be formed of the same material.
  • a lead-out wiring and other predetermined wiring are provided.
  • FIG. 4 and 5 are diagrams for explaining the configuration of the color filter substrate 30.
  • FIG. 4A is a schematic configuration diagram of the entire color filter substrate 30, and FIG. 4B is an enlarged view of a portion D in FIG. 4A.
  • FIG. 5 (a) is a diagram schematically showing a cross section cut along a plane passing through the colored layer 33 (the EE cross section in FIG. 4 (b)), and FIG. 5 (b) is a diagram illustrating the colored layer.
  • FIG. 5 is a diagram schematically showing a cross section cut along the light shielding film 32 between 33 (FF cross section in FIG. 4B).
  • the color filter substrate 30 has a light shielding film 32 formed on the surface of a transparent substrate 91 made of glass or the like, and red, green, and blue are placed inside each lattice of the light shielding film 32.
  • a colored layer 33 is formed.
  • lattice in which the colored layer 33 is formed is arranged in the predetermined order.
  • a protective film 34 is formed on the surface of the light shielding film 32 and the colored layer 33 of each color, and a transparent electrode (common electrode) 35 for applying a voltage to the liquid crystal layer is formed on the surface of the protective film 34.
  • An alignment control protrusion 36 is formed on the surface of the transparent electrode (common electrode) 35.
  • the light shielding film 32 is for optically separating the colored layers 33 and is called a so-called black matrix.
  • the light shielding film 32 is formed of, for example, a resin material containing a black colorant.
  • the colored layer 33 is for giving a predetermined color characteristic to the transmitted light of each picture element, and is formed of colored sensitizing materials of red, green, and blue.
  • the alignment control protrusion 36 controls the alignment of the liquid crystal molecules to be filled in order to improve the visual characteristics of the display panel 1 and increase the response speed of the liquid crystal molecules (so that the liquid crystal molecules have a so-called pretilt with respect to the substrate). belongs to.
  • the alignment control protrusion 36 is formed of, for example, a resin material, and the shape thereof is not particularly limited in the present embodiment.
  • a convex portion 361 is formed on the protective film 34 along the light shielding film 32.
  • the convex portion 361 is positioned so as to face the concave portion 161 when the color filter substrate 30 and the array substrate 10 are bonded together.
  • the size of the cross section of the convex portion 361 cut along a plane parallel to the substrate is substantially the same as the size of the concave portion 161 that is opposed to the convex portion 361, and the height thereof is a predetermined value corresponding to the cell gap of the display panel 1 or the like. It is formed at a height. This predetermined height will be described later.
  • the convex portion 361 is formed of the same material as that of the alignment control protrusion 36, but is not limited thereto, and is formed of, for example, the same material as the light shielding film 32 and the colored layer 33. It may be.
  • the display panel 1 includes the array substrate 10 and the color filter substrate 30 configured as described above.
  • FIG. 6 shows a schematic diagram of a cross section (a cross section of the concave portion 161 and the convex portion 361) obtained by cutting the display panel 1 at the center in the extending direction of the gate signal line 16.
  • a spherical spacer 92 is interposed between the array substrate 10 and the color filter substrate 30.
  • the spherical spacer 92 is disposed in the concave portion 161 without a substantial gap (with each spherical spacer 92 being substantially in contact), and is in contact with a convex portion 361 formed at a position facing the concave portion 161. That is, the spherical spacer 92 is interposed between the bottom surface of the concave portion 161 formed on the array substrate 10 and the tip surface of the convex portion 361 formed on the color filter substrate 30.
  • the cell gap of the display panel 1 is defined by the depth of the depression 161, the height of the projection 361, and the diameter of the spherical spacer 92. Therefore, by adjusting these values, a desired cell gap can be obtained. A display panel 1 is obtained.
  • the recess 161 is recessed so that the interval between the periphery of the recess 161 and the periphery of the protrusion 361 is larger than the interval between the bottom surface of the recess 161 and the tip surface of the protrusion 361, that is, the diameter of the spherical spacer 92.
  • the height of the convex portion 361, and the diameter of the spherical spacer 92 are set. Therefore, the spherical spacer 92 a that is not disposed in the recess 161 (overflowed from the recess 161) does not come into contact with both the array substrate 10 and the color filter substrate 30.
  • the array substrate 10 is provided with the concave portion 161 in which the spherical spacer 92 is disposed, and the convex portion 361 in contact with the spacer disposed in the concave portion 161 is provided on the color filter substrate. Therefore, the variation in the number of the spherical spacers 92 that contribute to the definition of the cell gap, which occurs when the spherical spacers 92 are simply spread on the array substrate 10 or the color filter substrate 30, is reduced, and the cell gap is made uniform. can do.
  • the gap between the periphery of the recess 161 and the periphery of the protrusion 361 is formed larger than the interval between the bottom surface of the recess 161 and the tip surface of the protrusion 361, the spherical spacer 92a overflowing from the recess 161 It will not contribute to the gap definition. That is, only the spherical spacers 92 arranged in the recesses 161 contribute to the definition of the cell gap, and the spherical spacers 92a scattered in other places do not contribute to the definition of the cell gap. The uneven distribution density of the spherical spacers 92 can be reduced.
  • the projecting portion 291 is formed so as to surround the periphery of the recess 161, diffusion of the spacer leaking from the recess can be prevented. Therefore, a decrease in contrast and color tone of the display panel 1 due to the spherical spacer 92 moving to, for example, a picture element region is prevented.
  • a plurality of the concave portions 161 and the convex portions 361 are formed at equal intervals on the array substrate 10 and the color filter substrate 30 constituting the display panel 1, and each of them is formed in the same size.
  • the present embodiment includes an array substrate 10 manufacturing process, a color filter substrate 30 manufacturing process, and a panel (cell) manufacturing process. Each of these steps will be described in order.
  • FIG. 7 is a cross-sectional view schematically showing the manufacturing process of the array substrate 10 constituting the display panel 1.
  • 7A to 7F are diagrams schematically showing a cross section of the TFT 20, and
  • FIGS. 7G to 7L are diagrams showing the array substrate 10 at the center in the extending direction of the gate signal line 16.
  • FIG. It is the figure which showed the cut
  • (a) and (g), (b) and (h), (c) and (i), (d) and (j), (e) and (k), (f) and ( l) shows the same process, respectively.
  • the array substrate 10 according to the first embodiment is formed such that a predetermined conductor film, a semiconductor film, an insulating film, and the like are laminated in a predetermined order on one surface of the glass substrate 90.
  • a gate signal line 16 As shown in FIGS. 7A and 7G, a gate signal line 16, an auxiliary capacitance line (not shown), and a gate electrode 22 are formed in the active region 12.
  • a data lead-out wiring (not shown) is also formed in the panel frame region 13 together. Further, in this step, preliminary wiring (not shown) is formed.
  • a single-layer or multilayer first conductor film made of chromium, tungsten, molybdenum, aluminum, or the like is formed on one surface of the glass substrate 90.
  • Various known sputtering methods can be applied to the formation of the first conductor film.
  • the thickness of the first conductor film is not particularly limited, for example, a film thickness of about 100 nm can be applied.
  • the formed first conductor film is patterned into patterns of the gate signal line 16, the auxiliary capacitance line, the gate electrode 22, and the data lead-out wiring by a photolithography method or the like.
  • Wet etching can be applied to the patterning of the first conductor film.
  • the first conductor film is made of chromium
  • wet etching using a (NH 4 ) 2 [Ce (NH 3 ) 6 ] + HNO 3 + H 2 O solution can be applied.
  • the gate signal line 16 is patterned in a state in which a predetermined number of dents 161a to be the recesses 161 are formed at equal intervals along the extending direction.
  • the shape of the recess 161a is as described above.
  • a gate insulating film 23 is formed on the surface of the glass substrate 90 that has undergone the above-described steps.
  • a material of the gate insulating film 23 for example, SiNx (silicon nitride) having a thickness of about 300 nm can be applied.
  • the material of the gate insulating film 23 is formed by a method of depositing a predetermined thickness using a plasma CVD method.
  • the gate insulating film 23 is formed, the gate signal line 16, the auxiliary capacitance line, and the gate electrode 22 are covered with the gate insulating film 23 as shown in FIGS.
  • the gate insulating film 23 also covers the recess 161 a formed as the recess 161 formed in the gate signal line 16.
  • the semiconductor composed of the first semiconductor layer 241 and the second semiconductor layer 242 is formed at a predetermined position on the surface of the gate insulating film 23 (specifically, a position overlapping with the gate electrode 22).
  • Layer 24 is formed.
  • amorphous silicon having a thickness of about 100 nm can be applied to the first semiconductor layer 241.
  • n + -type amorphous silicon having a thickness of about 20 nm can be applied.
  • the second semiconductor layer 242 is generally called an ohmic contact layer, and is used to improve the ohmic contact with the source electrode 25 and the drain electrode 26 formed in a later step.
  • the first semiconductor layer 241 and the second semiconductor layer 242 can be formed by a plasma CVD method and a photolithography method, respectively. That is, first, the materials of the first semiconductor layer 241 and the second semiconductor layer 242 are deposited using plasma CVD. Then, the formed material of the first semiconductor layer 241 and the material of the second semiconductor layer 242 are patterned into a predetermined shape using a photolithography method or the like. For this patterning, for example, wet etching using HF + HNO 3 solution can be applied.
  • the source signal line 14, the source electrode 25 and the drain electrode 26 constituting the TFT 20 are formed in the active region 12.
  • a projecting portion 291 made of the same material as that of the source signal line 14 (source electrode 25, drain electrode 26) is provided so as to surround each recess 161a (recessed portion 161).
  • the shape of the protruding portion 291 is as described above.
  • a second conductor film is formed on the surface of the glass substrate 90 that has undergone the above steps.
  • this second conductor film for example, a single-layer or multilayer conductor film made of titanium, aluminum, chromium, molybdenum, or the like can be applied.
  • a plasma CVD method or the like can be applied as a method for forming the second conductor film.
  • the second conductor film thus formed is patterned into a predetermined shape by a photolithography method or the like.
  • the source signal line 14 and the source electrode 25 and the drain electrode 26 constituting the TFT 20 each having a predetermined shape made of the second conductor film are formed.
  • the projecting portions 291 that surround the periphery of each recess 161 are simultaneously patterned to form a predetermined shape.
  • the first semiconductor layer 241 and the second semiconductor layer 242 formed so as to overlap with the gate electrode 22 of the TFT 20 are etched by a predetermined depth.
  • the TFT 20 that is an element including the gate electrode 22, the source electrode 25, and the drain electrode 26 is formed in the active region 12. Further, as shown in FIG. 7 (j), the gate signal line 16 is formed with a recess 161a that becomes the recess 161 in which the spherical spacer 92 is disposed, and the recess 161a (the recess 161) is formed on the gate signal line 16. ) Around the projection 291 is formed.
  • a passivation film 27 is formed. Specifically, a passivation film 27 is formed on the surface of the glass substrate 90 that has undergone the above-described steps, and the formed passivation film 27 is patterned. Thereby, the passivation film 27 having a predetermined shape is obtained. For example, silicon nitride (SiNx) having a thickness of about 400 nm can be applied to the passivation film 27. As a method for forming the passivation film 27, a plasma CVD method can be applied, and as a patterning method, for example, dry etching using SF 6 + O 2 can be applied. A recess 161 a formed in the gate signal line 16 is covered with the gate insulating film 23 and the passivation film 27 to form a recess 161. The shape of the recess 161 is as described above.
  • a contact hole 28 for electrically connecting the drain electrode 26 and the pixel electrode 181 is formed in the TFT 20 as shown in FIG.
  • a pixel electrode 181 controlled by the TFT 20 is formed.
  • ITO Indium Tin Oxide
  • a thickness of about 150 nm can be applied.
  • the pixel electrode 181 is formed by patterning the ITO film into a predetermined shape.
  • wet etching using an HCl + HNO 3 + H 2 O solution can be applied.
  • a pixel electrode 181 having a predetermined shape is formed in the active region 12 as shown in FIG.
  • Each pixel electrode 181 is electrically connected to the drain wiring through a contact hole 28 formed in the passivation film 27.
  • the array substrate 10 constituting the display panel 1 according to the embodiment of the present invention is obtained.
  • the depression 161 a that becomes the recess 161 in which the spherical spacer 92 is disposed is simultaneously formed in the formation process of the gate signal line 16. Therefore, a new process for forming the recess 161 is not required. Further, when the gate signal line 16 is patterned by, for example, photolithography, the photomask may be changed according to the shape of the recess 161 and the number of necessary photomasks is not increased.
  • the recess 161 a that becomes the recess 161 is not necessarily formed in the gate signal line 16, and may be formed in the gate insulating film 23 or the passivation film 27. Even in this case, since the depression 161a can be formed at the same time in the process of forming the gate insulating film 23 and the passivation film 27, a new process for forming the recess 161 is not required.
  • the protruding portion 291 provided so as to surround the concave portion 161 is formed of the same material as that of the source signal line 14 (the source electrode 25 and the drain electrode 26). Therefore, the protruding portion 291 can be formed in the same process as the source signal line 14 (the source electrode 25 and the drain electrode 26), and a process for forming the protruding portion 291 is newly required. Absent. For example, when patterning is performed by a photolithography method, the photomask may be changed according to the shape of the protruding portion 291 and the number of necessary photomasks is not increased.
  • the protruding portion 291 is not necessarily formed of the same material as the source signal line 14 (the source electrode 25 and the drain electrode 26).
  • the semiconductor layer 24 (the first semiconductor layer 241) is used.
  • the second semiconductor layer 242) may be formed of the same material. In this case, if the projecting portion 291 is formed in the same process as the process of forming the semiconductor layer 24, it is not necessary to newly increase the number of processes.
  • FIG. 8 is a cross-sectional view schematically showing the manufacturing process of the color filter substrate 30.
  • FIGS. 8A to 8E are diagrams schematically showing cross sections cut along a plane passing through the colored layer 33
  • FIGS. 8F to 8 J are diagrams between the colored layers 33. It is the figure which showed typically the cross section cut along the light-shielding film.
  • (a) and (f), (b) and (g), (c) and (h), (d) and (i), and (e) and (j) are the same steps. Show.
  • the color filter manufacturing process includes a light shielding film (black matrix) forming process, a colored layer forming process, a protective film forming process, a transparent electrode (common electrode) forming process, and an alignment control protrusion forming process.
  • the contents of the light shielding film forming step are as follows for the resin BM method, for example.
  • a BM resist (referred to as a photosensitive resin composition containing a black colorant) or the like is applied to the surface of the transparent substrate 91.
  • the applied BM resist is formed into a predetermined pattern using a photolithography method or the like. Thereby, the light shielding film 32 having a predetermined pattern is obtained.
  • the color sensitive material method is as follows. First, a colored photosensitive material (referred to as a solution in which a pigment of a predetermined color is dispersed in a photosensitive material) is applied to the surface of the transparent substrate 91 on which the light shielding film 32 is formed. Next, the applied colored light-sensitive material is formed into a predetermined pattern using a photolithography method or the like. Such a process is performed for each color of red, green, and blue. Thereby, the colored layer 33 of each color is obtained.
  • a colored photosensitive material referred to as a solution in which a pigment of a predetermined color is dispersed in a photosensitive material
  • the method used in the light shielding film forming step is not limited to the resin BM method, and various known methods such as a chromium BM method and an overlay method can be applied.
  • the method used in the colored layer forming step is not limited to the color sensitive material method, and various known methods such as a printing method, a dyeing method, an electrodeposition method, a transfer method, and an etching method can be applied. Further, a back exposure method in which the colored layer 33 is formed first and the light shielding film 32 is formed thereafter may be used.
  • a protective film 34 is formed on the surface of the light shielding film 32 and the colored layer 33 in the protective film forming step.
  • the protective film 34 having a predetermined pattern is formed using a method (overall coating method) in which a protective film material is applied to the surface of the transparent substrate 91 that has undergone the above-described steps using a spin coater, or a printing or photolithography method.
  • a method (patterning method) or the like can be applied.
  • the protective film material for example, an acrylic resin or an epoxy resin can be applied.
  • a transparent electrode (common electrode) 35 is formed on the surface of the protective film 34.
  • a transparent electrode (common electrode) 35 is formed by depositing ITO (IndiumInTin Oxide) or the like by sputtering or the like.
  • the alignment control protrusion 36 is formed.
  • the alignment control protrusion 36 is formed using, for example, a photolithography method. A photosensitive material is applied to the surface of the transparent substrate 91 that has undergone the above-described process, and the applied photosensitive material is exposed to a predetermined pattern through a photomask. Then, unnecessary portions are removed in the subsequent development process, so that a photosensitive material having a predetermined pattern remains. That is, the alignment control protrusion 36 having a predetermined pattern is formed.
  • the convex portion 361 is formed together with the orientation control projection 36. That is, the convex portion 361 is made of a photosensitive material constituting the alignment control protrusion 36, and is patterned simultaneously with the alignment control protrusion 36 by a photomask in which the pattern of the alignment control protrusion 36 and the convex portion 361 is formed.
  • the convex portion 361 is formed at a position facing the concave portion 161 formed in the array substrate 10 when the color filter substrate 30 is bonded to the array substrate 10 in a panel (cell) manufacturing process described later. Moreover, the shape of this convex part 361 is as above-mentioned.
  • the color filter substrate 30 is manufactured through these steps.
  • the convex portion 361 that contacts the spherical spacer 92 is simultaneously formed in the process of forming the alignment control protrusion 36. Therefore, a new process for forming the convex portion 361 is not required.
  • the photomask may be changed according to the shape of the convex portion 361 and the number of necessary photomasks does not increase.
  • the convex portion 361 is not necessarily formed of the same material as the alignment control protrusion 36, and may be formed of the same material as the light shielding film 32 and the colored layer 33, for example. . In this case, if the projection 361 is formed in the same process as the process of forming the light shielding film 32 and the colored layer 33, it is not necessary to newly increase the number of processes.
  • alignment films are formed on the surfaces of the array substrate 10 and the color filter substrate 30 obtained through the above-described steps as follows.
  • an alignment material is applied to the respective surfaces of the array substrate 10 and the color filter substrate 30 using an alignment material application device or the like.
  • the alignment material refers to a solution containing a material that is a raw material for the alignment film.
  • a conventional general method such as a pressure printing device or an ink jet printing device can be applied.
  • the applied alignment material is heated and baked using an alignment film baking apparatus or the like.
  • alignment treatment is performed on the baked alignment film.
  • this alignment treatment there is a method of scratching the surface of the alignment film using a rubbing roll or the like, or a photo-alignment treatment that adjusts the surface properties of the alignment film by irradiating the alignment film surface with light energy such as ultraviolet rays.
  • Various known processing methods can be applied.
  • a seal material is applied to one surface of the array substrate 10 and the color filter substrate 30 by using a seal patterning device or the like.
  • spherical spacers 92 for keeping the cell gap uniform at a predetermined value are dispersed on the surface of the array substrate 10. Specifically, it is as follows.
  • spacer spraying is performed using an ink jet type spacer spraying device. That is, a spacer dispersion liquid in which spherical spacers 92 are dispersed in a predetermined liquid is dispersed (discharged) on the array substrate 10 by an ink jet method.
  • the spacer-dispersed liquid is a liquid that has a property that the spherical spacers 92 dispersed in the liquid aggregate when the discharged droplets are dried.
  • Examples of the spacer dispersion having such properties include L265EX0034KRC (L265: model of liquid (solvent), EX0034KRC: model of spherical spacer) manufactured by Sekisui Chemical Co., Ltd.
  • the spacer dispersion liquid is discharged by an ink jet method toward each recess 161 formed in advance on the array substrate 10 (spacer discharge step). And the liquid is removed by drying the spacer dispersion liquid discharged by each recessed part 161 (drying process).
  • a liquid having a property that the dispersed spherical spacers 92 aggregate when dried is used as the liquid to be dispersed in the spacer.
  • the number of spherical spacers 92 included is equal to or greater than the number of spherical spacers 92 that can be disposed in each recess 161, even if there is a spherical spacer 92 whose landing point deviates from the recess 161, the recess The spherical spacer 92 can be reliably arranged in the 161 without any shortage.
  • the concave portions 161 are formed in the same size, the number of spherical spacers 92 disposed in the concave portions 161 can be made the same.
  • a protruding portion 291 is formed so as to surround them. Therefore, as long as the spacer dispersion liquid is discharged into the protruding portion 291, the spherical spacer 92 can be reliably disposed in the recess 161 due to the cohesiveness of the liquid. Further, the protruding portion 291 can prevent the spherical spacer 92 overflowing from the concave portion 161 from freely diffusing, and the contrast of the display panel 1 due to the movement of the spherical spacer 92 to, for example, a picture element region. And deterioration of color tone are prevented.
  • the array substrate 10 and the color filter substrate 30 are bonded together under a reduced pressure atmosphere (substrate bonding step), and liquid crystal is filled between them.
  • substrate bonding step a method may be used in which liquid crystal is injected between the array substrate 10 and the color filter substrate 30 after the sealing material is solidified.
  • the display panel 1 according to the embodiment of the present invention is obtained through the final lighting inspection.
  • Fig.9 (a) is the figure which showed typically the cross section of the display panel 2 which concerns on 2nd embodiment of this invention.
  • the same components as those of the display panel 1 according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the display panel 2 includes an array substrate 102 (hereinafter also referred to as the array substrate 102 according to the second embodiment) and a color filter substrate 302 (hereinafter also referred to as the color filter substrate 302 according to the second embodiment).
  • the liquid crystal is filled between these substrates facing each other with a predetermined cell gap.
  • the array substrate 102 As shown in FIG. 9A, the array substrate 102 according to the second embodiment has a recess 161a (hereinafter referred to as a first recess 161a) that becomes the recess 161 formed in the gate signal line 16. 2), a second recess 162a to be the auxiliary recess 162 is formed. That is, in the array substrate 10, the concave portions 161 and the auxiliary concave portions 162 are alternately formed along the gate signal lines 16.
  • the size of the cross-section of the auxiliary recess 162 cut along a plane parallel to the array substrate 10 is such that a predetermined number of spherical spacers 92 are arranged substantially without gaps (with each spherical spacer 92 being substantially in contact), like the recess 161. It is formed in a size that can be.
  • the depth of the recess of the auxiliary recess 162 is larger than that of the recess 161.
  • the depth of the first depression 161a and the second depression 162a formed in the gate signal line 16 is the same. That is, the first recess 161a is covered with the gate insulating film 23 and the passivation film 27 to form the recess 161, whereas the second recess 162a serving as the auxiliary recess 162 is formed by removing the passivation film 27. Only the gate insulating film 23 is covered. That is, the depth of the depression is configured to be larger in the auxiliary recess 162 than in the recess 161 by the thickness of the passivation film 27.
  • the second recess 162a formed in the gate signal line 16 may be configured to be covered only by the passivation film 27 so that the auxiliary recess 162 is deepened by the thickness of the gate insulating film 23. .
  • the gate insulating film 23 and the passivation film 27 are not partially removed, and the first recess 161a and the second recess 162a formed in the gate signal line 16 are provided with a difference in depth. It is good also as a difference of the depth of the auxiliary
  • a configuration may be employed in which the second depression 162 a serving as the auxiliary recess 162 is formed in the gate insulating film 23 and the passivation film 27 instead of the gate signal line 16.
  • the auxiliary recess 162 formed in any one of the gate signal line 16, the gate insulating film 23, and the passivation film 27 may be configured so that the depth of the recess is larger than that of the recess 161.
  • the method for forming the second recess 162a to be the auxiliary recess 162 in the present embodiment is the same as the method for forming the first recess 161a to be the recess 161 described in the first embodiment.
  • the removal of the passivation film 27 stacked on the bottom surface of the second depression 162a may be performed in the same process as the patterning process (contact hole 28 forming process) of the passivation film 27 so as not to increase the manufacturing process. .
  • the color filter substrate 30 according to the second embodiment has a convex portion 361 formed on the protective film 34.
  • the shape of the convex portion 361 is the same as that described in the first embodiment.
  • the convex portion 361 is formed at a position facing the concave portion 161 and also at a position facing the auxiliary concave portion 162 when the color filter substrate 30 and the array substrate 10 are bonded together.
  • the method of forming the convex portion 361 formed at a position facing the auxiliary concave portion 162 is the same as the method of forming the concave portion 161 described in the first embodiment.
  • the spherical spacer 92 for defining the cell gap is not only interposed between the concave portion 161 and the convex portion 361, but also interposed between the auxiliary concave portion 162 and the convex portion 361 formed to face the auxiliary concave portion 162.
  • the spherical spacer disposed in the auxiliary recess 162 is indicated by reference numeral 92b.
  • an ink jet method can be suitably applied as in the arrangement (dispersion) method in the recesses 161.
  • the spherical spacer 92b disposed in the auxiliary recess 162 is formed such that the recess of the auxiliary recess 162 is formed deeper than the recess 161, so that at least one of the tip surface of the protrusion 361 or the bottom surface of the auxiliary recess 162, A predetermined gap (in the present embodiment, the thickness of the passivation film 27) is spaced apart. That is, the spherical spacer 92b does not contribute to the definition of the cell gap of the display panel 2 in a normal state. However, as shown in FIG.
  • the spherical spacer 92b arranged in the auxiliary recess 162 functions as an auxiliary support member that works only when an external force is applied to the display panel 2, and thus the display panel The mechanical strength of 2 can be improved.
  • auxiliary recesses 162 are merely examples. Since the auxiliary recesses 162 are provided to supplementarily improve the mechanical strength of the display panel, the number and size thereof may be increased or decreased as necessary. Further, if the protruding portion 291 is formed so as to surround the auxiliary concave portion 162, diffusion of the spherical spacer 92 overflowing from the auxiliary concave portion 162 can be prevented.
  • the concave portion 161 is formed on the array substrate 10 and the convex portion 361 is formed on the color filter substrate 30, but the concave portion 161 is on the color filter substrate 30 and the convex portion 361 is on the array substrate 10.
  • a part of the light shielding film 32 of the color filter substrate 30 is peeled to form a recess 161, and the source signal line 14 (semiconductor layer 24) and passivation are formed.
  • the convex part 361 may be comprised by the film
  • the light shielding film 32 when a part of the light shielding film 32 is peeled to reduce the light shielding property and the contrast of the display panel is lowered, the light shielding film 32 is completely removed as shown in FIG. What is necessary is just to pattern in the state which did not peel but left in the thickness direction (it should just pattern using what is called halftone exposure). Thereby, the recessed part 161 can be formed in the light shielding film 32, maintaining the light shielding property by the light shielding film 32 (2nd modification).
  • the spacer for defining the cell gap is not necessarily limited to a spherical one.
  • each process which comprises the manufacturing process of the said display panel can be suitably changed within the range which does not deviate from the technical idea of this invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

 セルギャップの規定に寄与するスペーサの散布密度の偏りを低減してセルギャップを均一にした表示パネル、アレイ基板、カラーフィルタ基板、および表示パネルの製造方法を提供すること。  所定のセルギャップをおいて対向するアレイ基板10とカラーフィルタ基板30のうち、いずれか一方の基板上には、凹部161が形成され、他方の基板上には、前記凹部161に対向する位置に凸部361が形成され、前記凹部161の底面と前記凸部361の先端面との間に球状スペーサ92が介在されるように構成した。

Description

表示パネル、アレイ基板、カラーフィルタ基板、および表示パネルの製造方法
 本発明は、表示パネル、アレイ基板、カラーフィルタ基板、および表示パネルの製造方法に関するものであり、さらに詳しくは、セルギャップを規定するためのスペーサを備えた表示パネル、この表示パネルに好適に適用できるアレイ基板またはカラーフィルタ基板、およびセルギャップを規定するためのスペーサを備えた表示パネルの製造方法に関するものである。
 一般的な液晶表示パネルは、一対の基板が、微小な間隔をおいて相対向して配置され、この一対の基板の間に、液晶が充填されるという構成を有する。そして、この一対の基板の間隔、すなわちセルギャップは、所定の均一な寸法に維持する必要がある。
 セルギャップを所定の均一な寸法に維持するための構成としては、例えば一対の基板の少なくとも一方に突起状の構造物を形成する構成や、球状のスペーサビーズ(以下、単にスペーサという。)を一対の基板の間に介在させる構成が用いられている。一般的に、このスペーサを介在させる構成では、スペーサを液中に分散させたスペーサ分散液をインクジェット方式によって基板上に吐出することで、スペーサを任意の位置に任意のパターンで配置する方法が用いられている(特開2005-321540号公報、特開2006-208728号公報及び特開2006-227590号公報参照)。
 しかしながら、従前のインクジェット方式によって基板上にスペーサを配置する構成は、次のような問題を有する。まず、この構成では、スペーサの配置を短時間で行うため、一枚の基板に対して複数のインクジェットノズルによりスペーサ分散液が吐出される。しかし、各インクジェットノズルの製造誤差などにより、それぞれから吐出されるスペーサ量がばらついてしまう。また、基板上に形成された配線パターンなど、スペーサを基板上の突出した部分に配置する場合、スペーサが所定の配置場所から脱落し、液晶表示パネルのセルギャップの規定に全く寄与しなくなるものが発生してしまう。
 つまり、従前のインクジェット方式によってスペーサを配置する構成では、同一基板上において、液晶表示パネルのセルギャップの規定に寄与し得るスペーサの散布密度に偏りが発生してしまう。このような偏りは、スペーサが多く存在する領域とそうでない領域におけるセルギャップの大きさの偏りとなるため、液晶表示パネルの液晶層の厚みが不均一となり、いわゆる表示ムラが生じてしまうという問題がある。
 本発明が解決しようとする課題は、セルギャップの規定に寄与するスペーサの散布密度の偏りを低減してセルギャップを均一にすることで、いわゆる表示ムラ不良の発生を防止した表示パネル、この表示パネルに好適に適用できるアレイ基板またはカラーフィルタ基板、および表示パネルの製造方法を提供することにある。
 上記課題を解決するために本発明に係る表示パネルは、所定のセルギャップをおいて対向する一対の基板のうち、いずれか一方の基板上には、凹部が形成され、他方の基板上には、前記凹部に対向する位置に凸部が形成され、前記凹部の底面と前記凸部の先端面との間にスペーサが介在されていることを要旨とするものである。
 この場合、前記凹部の周辺と前記凸部の周辺との間隔は、前記凹部の底面と前記凸部の先端面の間隔より大きくなるよう構成されていればよい。
 また、前記凹部は、前記一方の基板上に形成された導体膜または絶縁膜の少なくともいずれかに形成されていれば好適である。
 この場合、前記導体膜は、ゲート信号線であれば、また、前記絶縁膜は、ゲート絶縁膜またはパッシベーション膜であればよい。
 また、前記凸部は、配向制御用突起、遮光膜、および着色層の少なくともいずれかと同一材料で形成されていれば好適である。
 また、前記凹部を取り囲むように突状部が形成されていれば好適である。
 この場合、前記突状部は、ソース信号線または半導体層を形成する材料と同一材料で形成されていればよい。
 また、前記凹部は、等間隔に複数形成され、それぞれが同一の大きさに形成されていると共に、前記凸部は、等間隔に複数形成され、それぞれが同一の大きさに形成されていれば好適である。
 また、前記一方の基板上には、前記凹部より深さが所定量大きい補助凹部がさらに形成され、前記他方の基板上には、該補助凹部と対向する位置にさらに前記凸部が形成され、前記補助凹部の底面と前記凸部の先端面との間に前記スペーサが介在されていれば好適である。
 また、本発明に係るアレイ基板は、対向する基板とのセルギャップを規定するスペーサが配置される凹部が形成されていることを要旨とするものである。
 ここで、前記凹部は、導体膜または絶縁膜の少なくともいずれかに形成されていれば好適である。
 この場合、前記導体膜は、ゲート信号線であれば、また、前記絶縁膜は、ゲート絶縁膜またはパッシベーション膜であればよい。
 また、前記凹部を取り囲むように突状部が形成されていれば好適である。
 この場合、前記突状部は、ソース信号線または半導体層を形成する材料と同一材料で形成されていればよい。
 また、前記凹部は、等間隔に複数形成され、それぞれが同一の大きさに形成されていれば好適である。
 また、本発明に係るカラーフィルタ基板は、対向する基板とのセルギャップを規定するスペーサと当接する凸部が形成されていることを要旨とするものである。
 この場合、前記凸部は、配向制御用突起、遮光膜、および着色層の少なくともいずれかと同一材料で形成されていればよい。
 また前記凸部は、等間隔に複数形成され、それぞれが同一の大きさに形成されていれば好適である。
 また、本発明に係る表示パネルの製造方法は、所定のセルギャップをおいて対向してなる表示パネルの製造方法であって、一方の基板上に形成された凹部に対してスペーサが液体中に分散されたスペーサ分散液を吐出するスペーサ吐出工程と、吐出したスペーサ分散液を乾燥する乾燥工程と、該凹部に対向する位置に凸部が形成された他方の基板を前記一方の基板に張り合わせる基板貼合工程と、を有することを要旨とするものである。
 この場合、前記スペーサを分散させた液体は、乾燥すると液体中に分散させた前記スペーサが凝集する性質を有するものであれば好適である。
 また、前記スペーサ吐出工程において前記凹部に対して吐出するスペーサ分散液に含まれる前記スペーサの数を、前記凹部に配置することができる前記スペーサの数より多くなるようにすることが好ましい。
 また、前記一方の基板上には前記凹部を取り囲むように突状部が設けられており、前記スペーサ吐出工程において該突状部に囲まれた範囲内に前記スペーサ分散液を吐出すればよい。
 本発明によれば、スペーサが配置される凹部、およびこの凹部に配置されたスペーサと当接する凸部を凹部に対向した位置に設けたため、表示パネルのセルギャップの規定に寄与するスペーサの数のばらつき、すなわち散布密度の偏りを低減し、セルギャップを均一にすることができる。これにより、表示ムラなどの不具合が防止され、表示パネルによって表示される画像の画質向上につながる。
 また、凹部の周辺と凸部の周辺との間隔は、凹部の底面と凸部の先端面の間隔より大きく形成されていることから、凹部から溢れたスペーサは、セルギャップの規定に寄与しないこととなる。つまり、凹部に配置したスペーサのみがセルギャップの規定に寄与することとなるため、セルギャップの規定に寄与するスペーサの散布密度の偏りを低減することができる。
 また、前記凹部は、基板上に形成される導体膜などに形成することができ、前記凸部は、遮光膜などに形成することができるため、表示装置やこれを構成する基板の製造工程数を増加させることがない。
 また、前記凹部の周りには突状部が形成されているため、凹部から漏れたスペーサの拡散を防止することができる。ゆえに、例えばスペーサが表示パネルの絵素領域に移動することによって透光性が阻害され、表示パネルのコントラストや色調が低下してしまうことを防止することができる。
 また、本発明によれば、前記凹部および前記凸部は、等間隔に複数形成され、それぞれが同一の大きさに形成されているため、表示パネルを構成する一方の基板に他方の基板を貼付する際、他方の基板を押圧することによる基板間に生ずる応力のムラを防止することができる。
 また、一方の基板上には、前記凹部に加え、さらに凹部より深さが所定量大きい補助凹部が設けられ、他方の基板上には、この補助凹部と対向する位置にさらに前記凸部が形成されており、この補助凹部の底面と凸部の先端面との間に介在されたスペーサが、外部から表示パネルに対して所定の大きさの圧力が付加された場合にのみ働く補助的な支持部材として働くため、表示パネルの機械的強度を向上させることができる。
 また、本発明によれば、乾燥させると液中に分散したスペーサが凝集する性質を有するスペーサ分散液を使用してスペーサを配置しているため、スペーサ分散液を凹部に向けて吐出さえすれば、凹部の外に着弾したスペーサが一部存在したとしても、スペーサは凹部内に集まることとなる。すなわち、基板に形成された凹部内にスペーサを確実に配置することができる。
本発明の第一実施形態に係る表示パネルの外観を模式的に示した斜視図である。 第一実施形態に係るアレイ基板の構成を説明するための図であり、図2(a)は、アレイ基板全体の概略構成図、図2(b)は、絵素部の拡大図(図2(a)におけるA部の拡大図)である。 図3(a)は、TFTの断面(図2(b)におけるB-B断面)を、図3(b)は、ゲート信号線の延在方向における中心で切断した断面((図2(b)におけるC-C断面)を模式的に示した図である。 図4(a)は、カラーフィルタ基板全体の概略構成図であり、図4(b)は、図4(a)におけるD部の拡大図である。 図5(a)は、着色層を通る平面で切断した断面(図4(b)におけるE-E断面)を、図5(b)は、着色層の間の遮光膜に沿って切断した断面(図4(b)におけるF-F断面)を模式的に示した図である。 表示パネルをゲート信号線の延在方向における中心で切断した断面(凹部および凸部の断面)の模式的に示した図である。 表示パネルを構成するアレイ基板の製造工程を模式的に示した断面図であり、図7(a)~(f)はTFTの断面を、図7(g)~(l)はアレイ基板をゲート信号線の延在方向における中心で切断した断面を模式的に示した図である。 カラーフィルタ基板の製造工程を模式的に示した断面図であり、図8(a)~(e)は着色層を通る平面で切断した断面を、図8(f)~(j)は着色層の間の遮光膜に沿って切断した断面を模式的に示した図である。 図9(a)は、本発明の第二実施形態に係る表示パネルの断面を模式的に示した図であり、図9(b)外部から表示パネルに対して所定の大きさの圧力が付加された場合を模式的に示した図である。 図10(a)は、第一の変形例に係る表示パネルの断面を模式的に示した図であり、図10(b)は、第二の変形例に係る表示パネルの断面を模式的に示した図である。
 以下、本発明の各実施形態について、図面を参照して詳細に説明する。まず、本発明の第一実施形態について説明する。図1は、本発明の第一実施形態に係る表示パネル1の外観を模式的に示した斜視図である。
 図1に示すように、本実施形態に係る表示パネル1は、アレイ基板10(以下、第一実施形態に係るアレイ基板10ということもある。)と、カラーフィルタ基板30(以下、第一実施形態に係るカラーフィルタ基板30ということもある。)を備える。そして、所定のセルギャップをおいて対向するこれらの基板間に液晶が充填される。なお、この表示パネル1の周縁には、ソース信号を生成するソースドライバ95、ゲート信号を生成するゲートドライバ96、ソースドライバ95に接続されるプリント配線基板97などが設けられる。以下、この表示パネル1が備えるアレイ基板10およびカラーフィルタ基板30の構成について詳細に説明する。
 図2は、第一実施形態に係るアレイ基板10の構成を説明するための図であり、図2(a)は、アレイ基板10全体の概略構成図、図2(b)は、絵素部18の拡大図(図2(a)におけるA部の拡大図)である。図2(a)に示すように、アレイ基板10は、ガラス基板90上に形成されたアクティブ領域12とパネル額縁領域13とを有する。
 アクティブ領域12には、複数のソース信号線14(他に「データ信号線」、「ソースバスライン」などと呼ばれることもある。)が互いに略平行に設けられる。また、このソース信号線14と略直交するように複数のゲート信号線16(他に「走査信号線」、「ゲートバスライン」などと呼ばれることもある。)が互いに略平行に設けられる。このソース信号線14およびゲート信号線16により、マトリクス状に区画された領域が絵素部18となる。
 図2(b)に示すように、ソース信号線14とゲート信号線16は、その交差部において、ソース信号線14が上側、ゲート信号線16が下側となるように交差しており、両者は電気的に絶縁されている。このソース信号線14およびゲート信号線16に囲まれる領域、すなわち絵素部18に絵素電極181(透明導電膜)が形成されている。なお、保持容量を形成する為の保持容量配線は説明を簡単にする為省略してある。
 ソース信号線14とゲート信号線16の交差部には、この絵素電極181のスイッチング素子であるTFT(薄膜トランジスタ)20が設けられている。図3(a)は、このTFT20の断面(図2(b)におけるB-B断面)を模式的に示した図である。TFT20は、ガラス基板90上にゲート電極22、ゲート絶縁膜23、半導体層24(第一の半導体層241および第二の半導体層242)、ソース電極25、ドレイン電極26、パッシベーション膜27とが積層されることにより形成されている。また、パッシベーション膜27の表面からドレイン電極26に達するコンタクトホール28が形成され、このコンタクトホール28により、絵素電極181は、ドレイン電極26と電気的に接続されている。
 ここで、前記ゲート信号線16には、カラーフィルタ基板30とのセルギャップを規定するための球状スペーサ92が配置される凹部161となる窪み161aが形成されている。図3(b)は、ゲート信号線16の延在方向における中心で切断した断面(図2(b)におけるC-C断面)を模式的に示した図である。本実施形態では、ゲート信号線16に形成される窪み161aが、ゲート信号線16の上に積層される前記ゲート絶縁膜23およびパッシベーション膜27に覆われることで凹部161が構成されている。また、凹部161は、アレイ基板10と平行な面で切断した断面形状が、ゲート信号線16の延在方向における中央線に対して左右対称となる形状で、それぞれが等間隔、かつ同じ大きさに形成されている。
 ここで、凹部161の大きさは、凹部161に配置される球状スペーサ92(詳細は後述する)の大きさを基準として決定される。凹部161のアレイ基板10と平行な面で切断した断面(広さ)は、所定数の球状スペーサ92を略隙間無く(各球状スペーサ92が略当接した状態で)配置することができる大きさに形成されている。また、凹部161の深さは、例えば球状スペーサ92の直径より小さく、かつ一度配置された球状スペーサ92が凹部161から簡単に転がり出ることがないような深さに形成されている。
 なお、凹部161を構成する窪み161aは、必ずしもゲート信号線16に形成される必要はない。例えば、ゲート信号線16の上に積層されるゲート絶縁膜23やパッシベーション膜27に凹部161となる窪み161aが形成されていてもよい。
 また、アレイ基板10には、それぞれの凹部161の周囲を取り囲むようにして、形成された突状部291が形成されている。この突状部291の高さは、アレイ基板10とカラーフィルタ基板30が貼り合わされた時に、その先端がカラーフィルタ基板30と当接しない高さ以下で、球状スペーサ92が転がっても乗り越えることができない高さ以上(好ましくは、球状スペーサ92の直径以上)に形成されている。また、本実施形態では、突状部291は、ソース信号線14(ソース電極25、ドレイン電極26)と同一材料で形成されているが、これに限られず、例えば半導体層24(第一の半導体層241および第二の半導体層242)と同一材料で形成されるものであってもよい。
 一方、アクティブ領域12の外側の領域、すなわちパネル額縁領域13には、前記各ソース信号線14に外部からデータ信号を伝送するための引き出し配線、前記各ゲート信号線16に外部からゲート信号を伝送するための引き出し配線、およびその他の所定の配線など(図略)が設けられている。
 次に、本実施形態に係る表示パネルを構成する第一実施形態に係るカラーフィルタ基板30について説明する。
 図4および図5は、カラーフィルタ基板30の構成を説明するための図である。ここで、図4(a)は、カラーフィルタ基板30全体の概略構成図、図4(b)は、図4(a)におけるD部の拡大図である。また、図5(a)は、着色層33を通る平面で切断した断面(図4(b)におけるE-E断面)を模式的に示した図であり、図5(b)は、着色層33の間の遮光膜32に沿って切断した断面(図4(b)におけるF-F断面)を模式的に示したで図ある。
 図4および図5に示すように、カラーフィルタ基板30は、ガラスなどからなる透明基板91の表面に遮光膜32が形成され、遮光膜32の各格子の内側には、赤色、緑色、青色の着色層33が形成されている。そして、着色層33が形成される格子が、所定の順序で配列されている。遮光膜32および各色の着色層33の表面には保護膜34が形成され、保護膜34の表面には、液晶層に電圧を印可するための透明電極(共通電極)35が形成されている。透明電極(共通電極)35の表面には、配向制御用突起36が形成されている。
 ここで、遮光膜32は、各着色層33を光学的に分離するためのものであり、いわゆるブラックマトリクスと称されるものである。遮光膜32は、例えば黒色の着色剤を含有する樹脂材料により形成される。着色層33は、各絵素の透過光に対し、所定の色特性を与えるためのものであり、赤色、緑色、青色のそれぞれの色の着色感材により形成される。配向制御用突起36は、表示パネル1の視覚特性の改善、液晶分子の応答速度向上のため、充填される液晶分子の配向を制御する(基板に対して液晶分子にいわゆるプレチルトを持たせる)ためのものである。配向制御用突起36は、例えば樹脂材料などから形成され、本実施形態ではその形状は特に限定されない。
 そして、図4(b)、図5(b)に示すように、保護膜34上には、遮光膜32に沿って凸部361が形成されている。凸部361は、カラーフィルタ基板30とアレイ基板10と貼り合わせた際に、前記凹部161と対向するように位置している。また、凸部361の基板と平行な面で切断した断面の大きさは、対向する前記凹部161の大きさと略同一であり、その高さは、表示パネル1のセルギャップなどに応じた所定の高さに形成されている。この所定の高さについては、後述する。また、本実施形態では、凸部361は、前記配向制御用突起36と同一の材料で形成されているが、これに限られず、例えば遮光膜32や着色層33と同一材料で形成されるものであってもよい。
 表示パネル1は、このような構成のアレイ基板10およびカラーフィルタ基板30を備える。この表示パネル1をゲート信号線16の延在方向における中心で切断した断面(凹部161および凸部361の断面)の模式図を図6に示す。
 図6に示すように、アレイ基板10とカラーフィルタ基板30の間には、球状スペーサ92が介在される。この球状スペーサ92は、凹部161内に略隙間無く(各球状スペーサ92が略当接した状態で)配置され、その凹部161に対向する位置に形成された凸部361と当接している。すなわち、球状スペーサ92は、アレイ基板10に形成された凹部161の底面と、カラーフィルタ基板30に形成された凸部361の先端面との間に介在されている。つまり、表示パネル1のセルギャップは、凹部161の窪みの深さ、凸部361の高さ、球状スペーサ92の直径によって規定されるため、これらの値を調節することによって、所望のセルギャップを有する表示パネル1が得られる。
 さらに本実施形態では、凹部161の周辺と凸部361の周辺との間隔は、凹部161の底面と凸部361先端面の間隔、すなわち、球状スペーサ92の直径より大きくなるよう、凹部161の窪みの深さ、凸部361の高さ、球状スペーサ92の直径が設定されている。したがって、凹部161内に配置されなかった(凹部161から溢れた)球状スペーサ92aは、アレイ基板10およびカラーフィルタ基板30の双方に当接した状態となることはない。
 このように、本実施形態に係る表示パネル1によれば、球状スペーサ92が配置される凹部161をアレイ基板10に設け、この凹部161に配置されたスペーサと当接する凸部361をカラーフィルタ基板30に設けたため、アレイ基板10もしくはカラーフィルタ基板30に球状スペーサ92を単純に散布した場合などに生じる、セルギャップの規定に寄与する球状スペーサ92の数のばらつきを低減し、セルギャップを均一にすることができる。
 また、凹部161の周辺と凸部361の周辺との間隔は、凹部161の底面と凸部361の先端面の間隔より大きく形成されていることから、凹部161から溢れた球状スペーサ92aは、セルギャップの規定に寄与しないこととなる。つまり、凹部161に配置された球状スペーサ92のみがセルギャップの規定に寄与し、その他の場所に散布された球状スペーサ92aはセルギャップの規定に寄与することがないから、セルギャップの規定に寄与する球状スペーサ92の散布密度の偏りを低減することができる。
 また、前記のように、凹部161の周囲を取り囲むように突状部291が形成されているため、凹部から漏れたスペーサの拡散を防止することができる。したがって、球状スペーサ92が例えば絵素領域に移動することによる表示パネル1のコントラストや色調の低下が防止される。
 また、前記凹部161および凸部361は、表示パネル1を構成するアレイ基板10およびカラーフィルタ基板30において等間隔に複数形成され、それぞれが同一の大きさに形成されているため、表示パネル1を構成する一方の基板に他方の基板を貼付する際、他方の基板を押圧することによる基板間に生ずる応力のムラを防止することができる。
 次に、本発明の実施形態に係る表示パネル1の製造方法について説明する。本実施形態は、アレイ基板10製造工程と、カラーフィルタ基板30製造工程と、パネル(セル)製造工程とを含む。これら各工程について、順を追って説明する。
 図7は、表示パネル1を構成するアレイ基板10の製造工程を模式的に示した断面図である。図7(a)~(f)は、TFT20の断面を模式的に示した図であり、図7(g)~(l)は、アレイ基板10をゲート信号線16の延在方向における中心で切断した断面を模式的に示した図である。また、図7において(a)と(g)、(b)と(h)、(c)と(i)、(d)と(j)、(e)と(k)、(f)と(l)は、それぞれ同じ工程を示す。
 第一実施形態に係るアレイ基板10は、ガラス基板90の片側表面に、所定の導体膜、半導体膜、絶縁膜などが、所定の順序で積層されるように形成される。
 まず、図7(a)、(g)に示すように、アクティブ領域12内に、ゲート信号線16、補助容量線(図示せず)およびゲート電極22が形成される。この工程において、パネル額縁領域13には、併せてデータ引き出し配線(図示せず)が形成される。さらにこの工程において、予備配線(図示せず)が形成される。
 具体的には、ガラス基板90の片側表面に、クロム、タングステン、モリブデン、アルミニウムなどからなる単層または多層の第一の導体膜が形成される。この第一の導体膜の形成には、公知の各種スパッタリング法などが適用できる。この第一の導体膜の厚さは特に限定されるものではないが、例えば100nm程度の膜厚が適用できる。
 そして形成された第一の導体膜は、フォトリソグラフィ法などにより、ゲート信号線16、補助容量線、ゲート電極22、データ引き出し配線のそれぞれのパターンにパターニングされる。この第一の導体膜のパターニングには、ウェットエッチングが適用できる。例えば第一の導体膜がクロムからなる場合には、(NH[Ce(NH]+HNO+HO液を用いたウェットエッチングが適用できる。このとき、図7(g)に示すように、ゲート信号線16は、その延在方向に沿って前記凹部161となる窪み161aが等間隔に所定数形成された状態でパターニングされる。この窪み161aの形状は、前記の通りである。
 次に、図7(b)、(h)に示すように、前記工程を経たガラス基板90の表面に、ゲート絶縁膜23が形成される。ゲート絶縁膜23の材質には、例えば厚さが300nm程度のSiNx(窒化シリコン)などが適用できる。そしてゲート絶縁膜23の材料を、プラズマCVD法を用いて所定の厚さに堆積させる方法により形成される。ゲート絶縁膜23が形成されると、図7(b)、(h)に示すように、ゲート信号線16、補助容量線、ゲート電極22がゲート絶縁膜23により覆われる。ゲート信号線16に形成された凹部161なる窪み161aもゲート絶縁膜23に覆われる。
 次いで図7(c)に示すように、ゲート絶縁膜23の表面の所定の箇所(具体的にはゲート電極22に重畳する箇所)に、第一半導体層241および第二半導体層242からなる半導体層24が形成される。この第一半導体層241には、例えば厚さ100nm程度のアモルファスシリコンなどが適用できる。また、第二半導体層242には、例えば厚さ20nm程度のn型のアモルファスシリコンなどが適用できる。この第二半導体層242は、一般にオーミックコンタクト層とも呼ばれ、後の工程で形成するソース電極25やドレイン電極26とのオーミックコンタクトを良好にするためのものである。
 これらの第一半導体層241および第二半導体層242は、それぞれプラズマCVD法とフォトリソグラフィ法により形成できる。すなわちまずプラズマCVD方を用いて第一半導体層241および第二半導体層242の材料が堆積させられる。そして形成した第一半導体層241の材料と第二半導体層242の材料とが、フォトリソグラフィ法などを用いて所定の形状にパターニングされる。このパターニングには、例えばHF+HNO溶液を用いたウェットエッチングが適用できる。
 次いで図7(d)、(j)に示すように、アクティブ領域12内に、ソース信号線14、TFT20を構成するソース電極25およびドレイン電極26が形成される。また、これと同時に、ソース信号線14(ソース電極25、ドレイン電極26)と同一の材料からなる突状部291が、各窪み161a(凹部161)の周囲を取り囲むように設けられる。この突状部291の形状は、前記の通りである。
 具体的にはまず、前記までの工程を経たガラス基板90の表面に、第二の導体膜が形成される。この第二の導体膜は、例えば、チタン、アルミニウム、クロム、モリブデンなどからなる単層または多層の導体膜が適用できる。また、第二の導体膜の形成方法としては、プラズマCVD法などが適用できる。
 そして、このように形成された第二の導体膜がフォトリソグラフィ法などにより所定の形状にパターニングされる。これにより、アクティブ領域12内には、それぞれ第二の導体膜からなる所定の形状のソース信号線14、TFT20を構成するソース電極25とドレイン電極26が形成される。そして、この第二の導体膜のパターニングと共に、各凹部161の周囲を取り囲む突状部291も同時にパターニングされて、所定の形状に形成される。なお、この第二の導体のパターニングにおいては、併せてTFT20のゲート電極22に重畳するように形成した第一半導体層241と第二半導体層242とが所定の深さだけエッチングされる。
 以上の工程を経ると、図7(d)に示すように、アクティブ領域12内には、ゲート電極22、ソース電極25およびドレイン電極26からなる素子であるTFT20が形成される。また、図7(j)に示すように、ゲート信号線16には、球状スペーサ92が配置される凹部161となる窪み161aが形成され、ゲート信号線16の上には、窪み161a(凹部161)を取り囲む突状部291が形成される。
 次に、図7(e)、(k)に示すように、パッシベーション膜27が形成される。具体的には、前記工程を経たガラス基板90の表面にパッシベーション膜27が形成され、この形成されたパッシベーション膜27がパターニングされる。これにより所定の形状のパッシベーション膜27が得られる。このパッシベーション膜27には、例えば400nm程度の厚さの窒化シリコン(SiNx)が適用できる。パッシベーション膜27の形成方法としては、プラズマCVD法が適用でき、パターニング方法としては、例えばSF+Oを用いたドライエッチングが適用できる。また、ゲート信号線16に形成された窪み161aが、前記ゲート絶縁膜23およびこのパッシベーション膜27に覆われて、凹部161が構成される。この凹部161の形状については、前記の通りである。
 この工程のパターニングによって、TFT20において、図7(e)に示すように、ドレイン電極26と絵素電極181とを電気的に接続するコンタクトホール28が形成される。
 次に、図7(f)に示すように、TFT20によって制御される絵素電極181が形成される。絵素電極181の構成および材料としては、例えば150nm程度の厚さのITO(Indium Tin Oxide:インジウム酸化スズ)が適用できる。
 ITO膜を形成する方法としては、例えばプラズマCVD法が適用できる。そして、このITO膜を所定の形状にパターニングすることによって絵素電極181が形成される。この絵素電極181のパターニングには、HCl+HNO+HO溶液を用いたウェットエッチングが適用できる。
 このパターニングによって、図7(f)に示すように、アクティブ領域12内には所定の形状の絵素電極181が形成される。各絵素電極181は、パッシベーション膜27に形成されたコンタクトホール28を通じて、ドレイン配線と電気的に接続される。
 以上のような工程を経て、本発明の実施形態に係る表示パネル1を構成するアレイ基板10が得られる。
 このように、アレイ基板10の製造工程では、球状スペーサ92が配置される凹部161となる窪み161aがゲート信号線16の形成工程で同時に形成される。したがって、凹部161を形成するための工程が新たに必要となることがない。また、例えばフォトリソグラフィ法によりゲート信号線16がパターニングされる場合、凹部161の形状などに応じてフォトマスクを変更すればよく、必要となるフォトマスクの枚数が増えることはない。
 なお、前述したように、凹部161となる窪み161aは、必ずしもゲート信号線16に形成される必要はなく、ゲート絶縁膜23やパッシベーション膜27に形成される構成であってもよい。この場合でも、ゲート絶縁膜23やパッシベーション膜27の形成工程において同時に窪み161aを形成することができるから、凹部161を形成するための工程が新たに必要となることがない。
 また、凹部161を取り囲むように設けられる突状部291は、ソース信号線14(ソース電極25、ドレイン電極26)と同一の材料で形成されている。そのため、突状部291は、ソース信号線14(ソース電極25、ドレイン電極26)と同一の工程で形成することができ、突状部291を形成するための工程が新たに必要となることがない。また、例えばフォトリソグラフィ法によりパターニングされるされる場合、突状部291の形状などに応じてフォトマスクを変更すればよく、必要となるフォトマスクの枚数が増えることはない。
 なお、前述したように、突状部291は、必ずしもソース信号線14(ソース電極25、ドレイン電極26)と同一の材料によって形成される必要はなく、例えば、半導体層24(第一半導体層241および第二半導体層242)と同一の材料によって形成されていてもよい。この場合には、半導体層24の形成工程と同一工程で突状部291が形成されるように構成すれば、工程数を新たに増加させる必要がない。
 次に、本発明の実施形態に係るカラーフィルタ基板30の製造工程について説明する。図8は、カラーフィルタ基板30の製造工程を模式的に示した断面図である。ここで、図8(a)~(e)は、着色層33を通る平面で切断した断面を模式的に示した図であり、図8(f)~(j)は、着色層33の間の遮光膜32に沿って切断した断面を模式的に示した図である。また、図8において(a)と(f)、(b)と(g)、(c)と(h)、(d)と(i)、(e)と(j)は、それぞれ同じ工程を示す。
 カラーフィルタ製造工程には、遮光膜(ブラックマトリクス)形成工程と、着色層形成工程と、保護膜形成工程と、透明電極(共通電極)形成工程と、配向制御用突起形成工程が含まれる。
 遮光膜形成工程の内容は、例えば樹脂BM法であれば次のとおりである。まず、図8(a)、(f)に示すように、透明基板91の表面にBMレジスト(黒色着色剤を含有する感光性樹脂組成物をいう)などが塗布される。次いで塗布されたBMレジストがフォトリソグラフィ法などを用いて所定のパターンに形成される。これにより、所定のパターンの遮光膜32が得られる。
 次いで、図8(b)に示すように、着色層形成工程においては、カラー表示用の赤色、緑色、青色の各色の着色層33が形成される。例えば着色感材法であれば次のとおりである。まず、遮光膜32が形成された透明基板91の表面に、着色感材(感光性材料に所定の色の顔料を分散した溶液をいう)が塗布される。次いで、塗布された着色感材が、フォトリソグラフィ法などを用いて所定のパターンに形成される。そしてこのような工程が、赤色、緑色、青色の各色について行われる。これにより各色の着色層33が得られる。
 遮光膜形成工程で用いる方法は、樹脂BM法に限定されるものではなく、例えばクロムBM法、重ね合わせ法などの公知の各種方法が適用できる。着色層形成工程で用いる方法も、着色感材法に限定されるものではなく、例えば印刷法、染色法、電着法、転写法、エッチング法など、公知の各種方法が適用できる。また、先に着色層33が形成され、その後に遮光膜32が形成される背面露光法を用いてもよい。
 次いで、図8(c)、(h)に示すように、保護膜形成工程では、遮光膜32および着色層33の表面に、保護膜34が形成される。例えば、スピンコータを用いて前記工程を経た透明基板91の表面に保護膜材料が塗布される方法(全面塗布法)や、印刷またはフォトリソグラフィ法などを用いて所定のパターンの保護膜34が形成される方法(パターニング法)などが適用できる。保護膜材料には、例えばアクリル樹脂やエポキシ樹脂などが適用できる。
 次いで、図8(d)に示すように、透明電極(共通電極)膜形成工程においては、保護膜34の表面に透明電極(共通電極)35が形成される。例えばマスキング法であれば、前記工程を経た透明基板91の表面にマスクが配置され、スパッタリングなどによってITO(Indium Tin Oxide)などを蒸着させることにより透明電極(共通電極)35が形成される。
 次いで、図8(e)、(j)に示すように、配向制御用突起成形工程においては、配向制御用突起36が形成される。この配向制御用突起36は、例えばフォトリソグラフィ法などを用いて形成される。前記工程を経た透明基板91の表面に感光性材料が塗布され、塗布された感光性材料は、フォトマスクを通じて所定のパターンに露光される。そしてその後の現像工程において不要な部分が除去されることにより、所定のパターンの感光性材料が残る。すなわち、所定のパターンの配向制御用突起36が形成される。
 そして、この配向制御用突起36と共に、前記凸部361が形成される。すなわち、凸部361は、配向制御用突起36を構成する感光性材料によって構成され、配向制御用突起36と凸部361のパターンが形成されたフォトマスクによって、配向制御用突起36と同時にパターニングされる。この凸部361は、後述するパネル(セル)製造工程において、カラーフィルタ基板30をアレイ基板10に貼り合わせたとき、アレイ基板10に形成された凹部161と対向する位置に形成される。また、この凸部361の形状は、前記の通りである。
 このような工程を経て、カラーフィルタ基板30が製造される。
 このように、カラーフィルタ基板30の製造工程では、前記球状スペーサ92と当接する凸部361が配向制御用突起36の形成工程で同時に形成される。したがって、凸部361を形成するための工程が新たに必要となることがない。また、例えばフォトリソグラフィ法により配向制御用突起36がパターニングされる場合、凸部361の形状などに応じてフォトマスクを変更すればよく、必要となるフォトマスクの枚数が増えることはない。
 なお、前述したように、凸部361は、必ずしも配向制御用突起36と同一の材料によって形成される必要はなく、例えば、遮光膜32や着色層33と同一の材料によって形成されていてもよい。この場合には、遮光膜32や着色層33の形成工程と同一工程で凸部361が形成されるように構成すれば、工程数を新たに増加させる必要がない。
 次いで、上記工程で製造されたアレイ基板10およびカラーフィルタ基板30を組み付けるパネル(セル)製造工程について説明する。
 まず、前記工程を経て得たアレイ基板10とカラーフィルタ基板30のそれぞれの表面に、次のように配向膜が形成される。
 まず、配向材塗布装置などを用いて、アレイ基板10とカラーフィルタ基板30のそれぞれの表面に配向材が塗布される。配向材とは、配向膜の原料となる物質を含む溶液をいう。配向材塗布装置には、例えば円圧式印刷装置やインクジェット印刷装置など、従来一般の方法が適用できる。そして塗布された配向材は配向膜焼成装置などを用いて加熱され、焼成される。
 その後、焼成された配向膜に配向処理が施される。この配向処理としては、ラビングロールなどを用いて配向膜の表面に微小な傷をつける方法や、配向膜の表面に紫外線などの光エネルギを照射して配向膜の表面性状を調整する光配向処理など、公知の各種処理方法が適用できる。
 その後、シールパターニング装置などを用いて、アレイ基板10とカラーフィルタ基板30の一方の表面に、シール材が塗布される。
 そして、セルギャップを所定の値に均一に保つための球状スペーサ92が、アレイ基板10の表面に散布される。具体的には以下の通りである。
 まず、スペーサ散布は、インクジェット方式のスペーサ散布装置を用いて行われる。すなわち、アレイ基板10に対し、球状スペーサ92を所定の液体中に分散させたスペーサ分散液がインクジェット方式により散布(吐出)される。ここで、スペーサ分散させる液体は、吐出した液滴を乾燥させると液体中に分散した球状スペーサ92が凝集する性質を有するものを使用する。このような性質を有するスペーサ分散液としては、積水化学工業株式会社製のL265EX0034KRC(L265:液体(溶剤)の型式、EX0034KRC:球状スペーサの型式)などが挙げられる。
 スペーサ分散液は、予めアレイ基板10に形成された各凹部161に向けてインクジェット方式により吐出される(スペーサ吐出工程)。そして、各凹部161に吐出されたスペーサ分散液を乾燥させることで、液体が除去される(乾燥工程)。
 このとき、本実施形態では、スペーサ分散させる液体として、乾燥させると分散した球状スペーサ92が凝集する性質を有するものを使用しているため、一つの凹部161に対して吐出される液滴中に含まれる球状スペーサ92の数を、各凹部161に配置することができる球状スペーサ92の数以上になるようにさえすれば、着弾地点が凹部161から外れた球状スペーサ92があったとしても、凹部161内に不足なく球状スペーサ92を確実に配置させることができる。前述したように、各凹部161は同一の大きさに形成されているため、これにより、各凹部161に配置される球状スペーサ92の数を同一とすることができる。
 また、各凹部161の近傍には、これらを取り囲むように突状部291が形成されている。したがって、この突状部291内にスペーサ分散液を吐出さえすれば、上記液体の凝集性により、凹部161内に球状スペーサ92を確実に配置することができる。また、突状部291により、凹部161から溢れた球状スペーサ92が、自由に拡散してしまうのを防止することができ、球状スペーサ92が例えば絵素領域に移動することによる表示パネル1のコントラストや色調の低下が防止される。
 その後、減圧雰囲気下で、アレイ基板10ととカラーフィルタ基板30とが貼り合わせられる(基板貼合工程)とともに、これらの間に液晶が充填される。なお、シール材を固化させた後に、アレイ基板10とカラーフィルタ基板30の間に液晶が注入される方法であってもよい。
 このような工程を経た後、最後に行われる点灯検査を経て本発明の実施形態に係る表示パネル1が得られる。
 次に、本発明の第二実施形態について説明する。図9(a)は、本発明の第二実施形態に係る表示パネル2の断面を模式的に示した図である。なお、以下の説明において、第一実施形態に係る表示パネル1と同一の構成については同一の符号を付し、説明を省略する。
 表示パネル2は、アレイ基板102(以下、第二実施形態に係るアレイ基板102ということもある。)とカラーフィルタ基板302(以下、第二実施形態に係るカラーフィルタ基板302ということもある。)とを備え、所定のセルギャップをおいて対向するこれらの基板間に液晶が充填されてなる。
 そして、図9(a)に示すように、第二実施形態に係るアレイ基板102には、ゲート信号線16に形成された前記凹部161となる窪み161a(以下、第一の窪み161aということもある。)の間に、補助凹部162となる第二の窪み162aが形成されている。すなわち、アレイ基板10には、ゲート信号線16に沿って凹部161と補助凹部162が交互に形成されている。アレイ基板10と平行な面で切断した補助凹部162の断面の大きさは、凹部161と同様に所定数の球状スペーサ92を略隙間無く(各球状スペーサ92が略当接した状態で)配置することができる大きさに形成されている。
 一方、補助凹部162の窪みの深さは、凹部161よりも大きい。しかし、ゲート信号線16に形成された第一の窪み161aと第二の窪み162aの深さは同一である。すなわち、第一の窪み161aがゲート絶縁膜23およびパッシベーション膜27に覆われて凹部161が構成されているのに対し、補助凹部162となる第二の窪み162aは、パッシベーション膜27が除去されて、ゲート絶縁膜23のみに覆われている。つまり、このパッシベーション膜27の厚み分、凹部161よりも補助凹部162の方が窪みの深さが大きくなるよう構成されている。
 なお、この構成はあくまでも例示である。例えばゲート信号線16に形成された第二の窪み162aがパッシベーション膜27のみに覆われるように構成することで、ゲート絶縁膜23の厚み分、補助凹部162が深くなるように構成してもよい。また、ゲート絶縁膜23およびパッシベーション膜27を一部除去する構成でなく、ゲート信号線16に形成される第一の窪み161aおよび第二の窪み162aの深さ自体に差を設け、凹部161と補助凹部162の深さの差としてもよい。また、ゲート信号線16ではなく、ゲート絶縁膜23やパッシベーション膜27に補助凹部162となる第二の窪み162aが形成される構成であってもよい。すなわち、ゲート信号線16、ゲート絶縁膜23、およびパッシベーション膜27のいずれかに形成される補助凹部162の窪みの深さが、凹部161よりも大きくなるよう構成されていればよい。
 ここで、本実施形態における補助凹部162となる第二の窪み162aの形成方法については、第一実施形態で説明した凹部161となる第一の窪み161aの形成方法と同一である。また、第二の窪み162aの底面に積層されたパッシベーション膜27の除去は、製造工程を増加させないようにするため、パッシベーション膜27のパターニング工程(コンタクトホール28形成工程)と同一工程で行えばよい。
 また、図9(a)に示すように、第二実施形態に係るカラーフィルタ基板30には、保護膜34上に凸部361が形成されている。この凸部361の形状は、第一実施形態で説明したものと同一である。この凸部361は、カラーフィルタ基板30とアレイ基板10と貼り合わせた際に、前記凹部161と対向する位置に形成されると共に、前記補助凹部162と対向する位置にも形成されている。
 なお、補助凹部162と対向する位置に形成される凸部361の形成方法については、第一実施形態で説明した凹部161の形成方法と同一である。
 そして、セルギャップを規定するための球状スペーサ92は、凹部161と凸部361の間に介在されるだけでなく、補助凹部162とそれに対向して形成された凸部361の間にも介在される(図9では、補助凹部162に配置された球状スペーサを符号92bで示す。)。なお、補助凹部162への球状スペーサ92bの配置(散布)方法は、凹部161への配置(散布)方法と同様に、インクジェット方式によるものが好適に適用できる。
 このような構成の表示パネル2によれば、上記第一実施形態で説明した作用効果に加え、以下のような作用効果が奏される。すなわち、補助凹部162内に配置された球状スペーサ92bは、補助凹部162の窪みが凹部161より深く形成されているため、凸部361の先端面または補助凹部162の底面の少なくともいずれか一方と、所定の隙間(本実施形態であればパッシベーション膜27の厚み分)を隔てて位置する。つまり、通常の状態において球状スペーサ92bは、表示パネル2のセルギャップの規定に寄与しない。しかし、図9(b)に示すように、外部から表示パネル1に対して所定の大きさの圧力が付加された場合には、補助凹部162に配置された球状スペーサ92bによって撓んだ基板(アレイ基板102もしくはカラーフィルタ基板302)が支持されるため、基板の損傷などが効果的に防止される。このように、本実施形態によれば、補助凹部162に配置された球状スペーサ92bが、表示パネル2に対して外力が付加された場合にのみ働く補助的な支持部材として機能するため、表示パネル2の機械的強度を向上させることができる。
 なお、前述した補助凹部162の数および形状はあくまで例示である。補助凹部162は、表示パネルの機械的強度を補助的に向上させるために設けられるものであるから、必要に応じてその数や大きさを増減すればよい。また、前記突状部291が補助凹部162を取り囲むようにして形成されていれば、補助凹部162から溢れた球状スペーサ92の拡散も防止することができる。
 以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
 例えば、上記実施形態では、凹部161がアレイ基板10に、凸部361がカラーフィルタ基板30に形成されていることを説明したが、凹部161がカラーフィルタ基板30に、凸部361がアレイ基板10に形成されるよう構成してもよい。具体的には、例えば図10(a)に示すように、カラーフィルタ基板30の遮光膜32の一部が剥離されることで凹部161が構成され、ソース信号線14(半導体層24)やパッシベーション膜27で凸部361が構成されるようにしてもよい(第一の変形例)。
 この場合、遮光膜32の一部が剥離されることで遮光性が低下し、表示パネルのコントラストが低下してしまう場合には、図10(b)に示すように、遮光膜32を完全に剥離せず、厚み方向に一部残した状態でパターニングすればよい(いわゆるハーフトーン露光を利用してパターニングすればよい。)。これにより、遮光膜32による遮光性を維持したまま、遮光膜32に凹部161を形成することができる(第二の変形例)。
 また、例えば上記セルギャップを規定するためのスペーサは、必ずしも球状のものに限られない。さらに、上記表示パネルの製造工程を構成する各工程は、本発明の技術的思想を逸脱しない範囲内で適宜変更可能である。

Claims (24)

  1.  所定のセルギャップをおいて対向する一対の基板のうち、いずれか一方の基板上には、凹部が形成され、他方の基板上には、前記凹部に対向する位置に凸部が形成され、前記凹部の底面と前記凸部の先端面との間にスペーサが介在されていることを特徴とする表示パネル。
  2.  前記凹部の周辺と前記凸部の周辺との間隔は、前記凹部の底面と前記凸部の先端面の間隔より大きいことを特徴とする請求項1に記載の表示パネル。
  3.  前記凹部は、前記一方の基板上に形成された導体膜または絶縁膜の少なくともいずれかに形成されていることを特徴とする請求項1または2に記載の表示パネル。
  4.  前記導体膜は、ゲート信号線であることを特徴とする請求項3に記載の表示パネル。
  5.  前記絶縁膜は、ゲート絶縁膜またはパッシベーション膜であることを特徴とする請求項3または4に記載の表示パネル。
  6.  前記凸部は、配向制御用突起、遮光膜、および着色層の少なくともいずれかと同一材料で形成されていることを特徴とする請求項1から5のいずれかに記載の表示パネル。
  7.  前記凹部を取り囲むように突状部が形成されていることを特徴とする請求項1から6のいずれかに記載の表示パネル。
  8.  前記突状部は、ソース信号線または半導体層を形成する材料と同一材料で形成されていることを特徴とする請求項7に記載の表示パネル。
  9.  前記凹部は、等間隔に複数形成され、それぞれが同一の大きさに形成されていると共に、前記凸部は、等間隔に複数形成され、それぞれが同一の大きさに形成されていることを特徴とする請求項1から8のいずれかに記載の表示パネル。
  10.  前記一方の基板上には、前記凹部より深さが所定量大きい補助凹部がさらに形成され、前記他方の基板上には、該補助凹部と対向する位置にさらに前記凸部が形成され、前記補助凹部の底面と前記凸部の先端面との間に前記スペーサが介在されていることを特徴とする請求項1から9のいずれかに記載の表示パネル。
  11.  対向する基板とのセルギャップを規定するスペーサが配置される凹部が形成されていることを特徴とするアレイ基板。
  12.  前記凹部は、導体膜または絶縁膜の少なくともいずれかに形成されていることを特徴とする請求項11に記載のアレイ基板。
  13.  前記導体膜は、ゲート信号線であることを特徴とする請求項12に記載のアレイ基板。
  14.  前記絶縁膜は、ゲート絶縁膜またはパッシベーション膜であることを特徴とする請求項12または13に記載のアレイ基板。
  15.  前記凹部を取り囲むように突状部が形成されていることを特徴とする請求項11から14のいずれかに記載のアレイ基板。
  16.  前記突状部は、ソース信号線または半導体層を形成する材料と同一材料で形成されていることを特徴とする請求項15に記載のアレイ基板。
  17.  前記凹部は、等間隔に複数形成され、それぞれが同一の大きさに形成されていることを特徴とする請求項11から16のいずれかに記載のアレイ基板。
  18.  対向する基板とのセルギャップを規定するスペーサと当接する凸部が形成されていることを特徴とするカラーフィルタ基板。
  19.  前記凸部は、配向制御用突起、遮光膜、および着色層の少なくともいずれかと同一材料で形成されていることを特徴とする請求項18に記載のカラーフィルタ基板。
  20.  前記凸部は、等間隔に複数形成され、それぞれが同一の大きさに形成されていることを特徴とする請求項18または19に記載のカラーフィルタ基板。
  21.  所定のセルギャップをおいて対向してなる表示パネルの製造方法であって、一方の基板上に形成された凹部に対してスペーサが液体中に分散されたスペーサ分散液を吐出するスペーサ吐出工程と、吐出したスペーサ分散液を乾燥する乾燥工程と、該凹部に対向する位置に凸部が形成された他方の基板を前記一方の基板に張り合わせる基板貼合工程と、を有することを特徴とする表示パネルの製造方法。
  22.  前記スペーサを分散させた液体は、乾燥すると液体中に分散させた前記スペーサが凝集する性質を有するものであることを特徴とする請求項21に記載の表示パネルの製造方法。
  23.  前記スペーサ吐出工程において前記凹部に対して吐出するスペーサ分散液に含まれる前記スペーサの数を、前記凹部に配置することができる前記スペーサの数より多くなるようにすることを特徴とする請求項21または22に記載の表示パネルの製造方法。
  24.  前記一方の基板上には、前記凹部を取り囲むように突状部が設けられており、前記スペーサ吐出工程において該突状部に囲まれた範囲内に前記スペーサ分散液を吐出することを特徴とする請求項23に記載の表示パネルの製造方法。
PCT/JP2009/053515 2008-03-04 2009-02-26 表示パネル、アレイ基板、カラーフィルタ基板、および表示パネルの製造方法 WO2009110367A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980107753XA CN101960369B (zh) 2008-03-04 2009-02-26 显示面板、阵列基板、滤色器基板以及显示面板的制造方法
US12/921,041 US20110001915A1 (en) 2008-03-04 2009-02-26 Display panel, array substrate, color filter substrate, and method for producing display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-052873 2008-03-04
JP2008052873 2008-03-04

Publications (1)

Publication Number Publication Date
WO2009110367A1 true WO2009110367A1 (ja) 2009-09-11

Family

ID=41055927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053515 WO2009110367A1 (ja) 2008-03-04 2009-02-26 表示パネル、アレイ基板、カラーフィルタ基板、および表示パネルの製造方法

Country Status (3)

Country Link
US (1) US20110001915A1 (ja)
CN (1) CN101960369B (ja)
WO (1) WO2009110367A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782493A (zh) * 2018-01-29 2019-05-21 友达光电(昆山)有限公司 一种显示面板

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757628B2 (ja) * 2005-12-27 2011-08-24 Nec液晶テクノロジー株式会社 液晶パネル及びその製造方法
JP2012252182A (ja) * 2011-06-03 2012-12-20 Nippon Steel & Sumikin Chemical Co Ltd カラーフィルターの製造方法、カラーフィルター、及び反射型表示装置
TWI471663B (zh) * 2012-10-15 2015-02-01 Au Optronics Corp 顯示面板
CN103728788A (zh) * 2013-12-27 2014-04-16 深圳市华星光电技术有限公司 显示面板及显示装置
GB2544727A (en) * 2015-11-16 2017-05-31 Optonor As Optical interferometry

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191332A (ja) * 1993-12-27 1995-07-28 Toshiba Corp アクティブマトリクス型液晶表示装置
JP2001109000A (ja) * 1999-10-05 2001-04-20 Matsushita Electric Ind Co Ltd 反射型液晶表示素子およびそれを用いた画像表示装置
JP2007140203A (ja) * 2005-11-18 2007-06-07 Sharp Corp 液晶表示装置
JP2007178652A (ja) * 2005-12-27 2007-07-12 Nec Lcd Technologies Ltd 液晶パネル及びその製造方法
JP2008015346A (ja) * 2006-07-07 2008-01-24 Sekisui Chem Co Ltd スペーサ粒子分散液、液晶表示装置の製造方法及び液晶表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3768367B2 (ja) * 1998-10-14 2006-04-19 シャープ株式会社 液晶表示装置
CN101103306A (zh) * 2004-12-27 2008-01-09 积水化学工业株式会社 液晶显示装置的制造方法、间隔粒子分散液及液晶显示装置
JP4761782B2 (ja) * 2005-01-27 2011-08-31 東芝モバイルディスプレイ株式会社 液晶表示装置及びその製造方法
TWI319099B (en) * 2005-06-10 2010-01-01 Au Optronics Corp Liquid crystal display device and method for fabricating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191332A (ja) * 1993-12-27 1995-07-28 Toshiba Corp アクティブマトリクス型液晶表示装置
JP2001109000A (ja) * 1999-10-05 2001-04-20 Matsushita Electric Ind Co Ltd 反射型液晶表示素子およびそれを用いた画像表示装置
JP2007140203A (ja) * 2005-11-18 2007-06-07 Sharp Corp 液晶表示装置
JP2007178652A (ja) * 2005-12-27 2007-07-12 Nec Lcd Technologies Ltd 液晶パネル及びその製造方法
JP2008015346A (ja) * 2006-07-07 2008-01-24 Sekisui Chem Co Ltd スペーサ粒子分散液、液晶表示装置の製造方法及び液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782493A (zh) * 2018-01-29 2019-05-21 友达光电(昆山)有限公司 一种显示面板

Also Published As

Publication number Publication date
US20110001915A1 (en) 2011-01-06
CN101960369B (zh) 2012-07-25
CN101960369A (zh) 2011-01-26

Similar Documents

Publication Publication Date Title
KR101146532B1 (ko) 액정표시패널 및 그 제조방법
JP3949759B2 (ja) カラーフィルタ基板および液晶表示素子
JP5464638B2 (ja) 表示素子
JP2000122071A (ja) 液晶表示素子及び液晶表示素子の製造方法
KR20060012399A (ko) 컬러필터 기판, 표시패널 및 이의 제조방법
WO2009110367A1 (ja) 表示パネル、アレイ基板、カラーフィルタ基板、および表示パネルの製造方法
JP2002277865A (ja) 液晶表示装置およびその製造方法
KR100677062B1 (ko) 편광기능이 구비된 컬러필터 기판 및 그 제조 방법
KR101097610B1 (ko) 액정표시패널 및 그 제조방법
JP2010039366A (ja) アレイ基板及び液晶表示パネル
JP4703570B2 (ja) 積層基板
KR101082906B1 (ko) 표시패널 및 이의 제조방법
KR101380493B1 (ko) 액정 표시 장치용 컬러 필터 기판 및 그의 제조 방법
KR20050114123A (ko) 액정 표시패널 및 그 제조방법
KR100603669B1 (ko) 액정표시장치 및 그 제조방법
WO2008044364A1 (fr) Affichage à cristaux liquides
JP3987522B2 (ja) 液晶表示装置の製造方法
KR20070005218A (ko) 박막트랜지스터 기판과 그 제조방법 및 박막트랜지스터기판을 포함하는 액정표시패널
JP2009092945A (ja) 液晶表示装置
WO2010086920A1 (ja) 表示装置の製造方法
WO2008032481A1 (fr) Appareil d'affichage à cristaux liquides
KR100920339B1 (ko) 색필터 기판 및 그의 형성 방법
KR101078696B1 (ko) 액정표시장치
KR101089097B1 (ko) 컬러필터 기판 및 이를 이용한 액정표시장치
US20210333619A1 (en) Substrate, lcd panel, and manufacturing method of substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107753.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718241

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12921041

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09718241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP