WO2009109444A1 - Elektromagnetische stellvorrichtung - Google Patents

Elektromagnetische stellvorrichtung Download PDF

Info

Publication number
WO2009109444A1
WO2009109444A1 PCT/EP2009/051535 EP2009051535W WO2009109444A1 WO 2009109444 A1 WO2009109444 A1 WO 2009109444A1 EP 2009051535 W EP2009051535 W EP 2009051535W WO 2009109444 A1 WO2009109444 A1 WO 2009109444A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
adjusting device
coils
actuator
zei
Prior art date
Application number
PCT/EP2009/051535
Other languages
English (en)
French (fr)
Inventor
Reiner Keller
Thomas Puth
Michael Pantke
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Priority to US12/864,892 priority Critical patent/US8228149B2/en
Priority to JP2010549071A priority patent/JP2011513979A/ja
Priority to CN2009801051027A priority patent/CN101946292A/zh
Priority to AT09718492T priority patent/ATE519207T1/de
Priority to EP09718492A priority patent/EP2250651B1/de
Publication of WO2009109444A1 publication Critical patent/WO2009109444A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1615Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1661Electromagnets or actuators with anti-stick disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1692Electromagnets or actuators with two coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/163Details concerning air-gaps, e.g. anti-remanence, damping, anti-corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2209Polarised relays with rectilinearly movable armature

Definitions

  • the invention relates to an electromagnetic actuator according to the preamble of claim 1.
  • Electromagnetic actuators also called actuators or actuators, servo motors or solenoids, are known in control engineering. For example, they are used to drive or adjust valves or valves for flow control of gaseous or liquid media. Most electromagnetic actuators are bistable, i. H. they have only two stable positions, z. B. open or close.
  • a bistable actuator which has two coils and an armature formed as a permanent magnet, arranged on an anchor rod.
  • the permanent magnet has a polarity oriented in the displacement direction of the armature and is held by the coils either in one or in the other end position.
  • the coil assembly forms a two-terminal, whereby the permanent magnet is attracted by a coil and repelled simultaneously from the other coil and vice versa. This shortens the switching time.
  • a Elektrohubmagnet with three detent positions, two outer end positions and a center position was known.
  • the Elektrohubmagnet has a total of four coils, two stationary permanent magnets, two outer housing opposite poles, two inner housing opposite poles and two on one Push rod longitudinally movably arranged anchor. An end position is achieved in each case by energizing an outer coil by the armature is attracted by the energized coil. The middle position of the push rod is, however, achieved by the permanently magnetically held anchor by these rest on both sides of the inner housing opposite poles (partition).
  • a disadvantage of the known Elektrohubmagnet are the large number of parts, eg. B. four coils, two permanent magnets and two anchors and the associated additional weight.
  • the actuator comprises an actuating rod and a permanent magnet arranged thereon and that the actuator in its third detent position by the magnetic flux of the permanent magnet can be locked.
  • the two coils are each at the ends of a pole tube, d. H. a tube made of magnetic material and each have a yoke, preferably made of a ferromagnetic material.
  • the magnetic flux is passed through the yoke and pole tube, so that depending on the energization of the coil, a different polarity can be formed.
  • control rod is arranged coaxially to the pole tube and slidably mounted within openings of the yokes.
  • the permanent magnet is assigned a preferably ring-shaped holding pole, which preferably within the pole tube and approximately in the Middle is arranged between the two coils.
  • the holding pole is made of a magnetic material and is - flooded by the magnetic flux of the permanent magnet - in the third detent position, ie the center position of the armature.
  • the magnetic connection between the holding pole and the permanent magnet results in a magnetic locking of the actuator with currentless coils.
  • preferably conical plunger anchors are provided on the end faces of the permanent magnet, which plunge into corresponding openings in the coil yoke. This increases the magnetic attraction of the coils on the actuator.
  • the polarity of the permanent magnet is aligned in the direction of displacement of the actuator and the control rod.
  • a north pole is formed on one end face and a south pole is formed on the opposite end face of the permanent magnet.
  • a further coil in the region of the holding pole, a further coil, a so-called center coil, can be arranged which, with appropriate energization, cancels the arresting effect of the permanent magnet in its middle position and thus permits a faster adjustment of the actuator into one or the other end position. This improves the dynamics of the actuator.
  • Fig. 2 is a schematic representation of the magnetic flux when switching to the center position
  • Fig. 3 is a schematic representation of the magnetic flux when switching to the end positions.
  • Fig. 1 shows an electromagnetic actuator 1, also called electrodynamic actuator or actuator.
  • the actuator 1 has a cylindrical, magnetic pole tube 2, in which two coils 3, 4, each with a yoke 5, 6 are arranged at its ends.
  • the coils 3, 4 are connected to a power supply, not shown, and can be energized in different current directions, so that opposite polarities can be formed.
  • a disc-shaped permanent magnet 8 is arranged and fixedly connected to the control rod.
  • flow guide plates 9, 10 are arranged, which reinforce the permanent magnet flux.
  • each end face on the permanent magnet 8 and on the anchor rod 7 conically shaped plunger 13, 14 are arranged and fixed.
  • the adjusting or anchor rod 7, the permanent magnet 8 in conjunction with the Flussleitblechen 9, 10, the anti-adhesive discs 1 1, 12 and the plunger anchors 13, 14 form the actuator 15 of the actuator or the actuator 1.
  • an annular holding pole 16 is arranged within the pole tube 2, which surrounds the circumference of the permanent magnet 8.
  • the annular holding pole 16 has a smaller inner diameter than the pole tube 2, ie, the holding pole 16 forms a radial narrowing of the pole tube 2.
  • the permanent magnet 8 forms over the flux guide plates 9, 10 with the holding pole made of a magnetic material 16 a magnetic circuit, that is, the permanent magnet 8 and with it the adjusting rod 7 are held in the position shown by the magnetic forces of the permanent magnet 8.
  • the permanent magnet 8 has a polarity formed in the direction of the armature rod 7, ie at its one end face there is a north pole and at the other end side a south pole.
  • a further coil Radially outside the holding pole 16, a further coil, a so-called center coil 17, is arranged, the function of which is to generate a magnetic field during energization which compensates for the magnetic field of the permanent magnet 8.
  • the locking effect is canceled by magnetic closure or at least reduced, so that the actuator 15 can be adjusted from the center position easier and faster in one or the other end position.
  • the adjustment of the permanent magnet 8 and the actuator 15 from the illustrated center position is performed by energizing one or both coils 3, 4, so either an attraction force on the permanent magnet or an attraction of a coil and a repulsive force of the other coil on the permanent magnets act.
  • FIG. 2 shows a schematic representation of the magnetic flux of the two coils 3, 4 from FIG. 1 and the permanent magnet 8 arranged on the armature rod 7.
  • the magnetic flux and its direction are in the coils 3, 4 by oval lines 3a, 3b marked with arrows , 4a, 4b.
  • the current direction in the two coils 3, 4 is represented by the symbols point ( ⁇ ) and cross (X).
  • the magnetic flux of the permanent magnet 8, which has a north pole N and a south pole S, is indicated by the line trace 8a.
  • the representation of the current flow and the magnetic flux corresponds to the switching process in which the permanent magnet 8 is moved into its central position (see FIG. As the current symbols show, both coils 3, 4 are flowed through in the same direction, ie. H.
  • the coil 3 forms on the side facing the permanent magnet 8 a south pole and the coil 4 on the permanent magnet 8 side facing a north pole with the result that on the north pole N and the south pole S of the permanent magnet 8 each repulsive forces F act.
  • the permanent magnet 8 is thus moved in its central position between the two coils 3, 4. There it is magnetically locked by the holding pole 16 (see Fig. 1) - as described above. After the permanent magnet 8 has reached its stable center position, the coils 3, 4 are de-energized.
  • FIG. 3 shows a schematic representation of the coils 3, 4 in a switching operation, by means of which the permanent magnet 8 or the actuator 15 (see FIG. 1) is moved into an end position.
  • the coils 3, 4 are traversed in opposite directions from the current, wherein the lower coil 3 as the coil 3 in Fig. 2 is connected. Therefore, the magnetic flux is also denoted by 3a, 3b.
  • both coils 3, 4 act together in the same direction during the displacement of the actuator 15 (FIG. 1), resulting in shorter switching times and improved dynamics.
  • the permanent magnet 8 is held on the coil yoke 5 or 6 by its permanent magnet forces, so that the coils 3, 4 can be de-energized after reaching the stable end positions.

Abstract

Die Erfindung betrifft eine elektromagnetische Stellvorrichtung (1 ) mit einem längsbeweglichen, in drei Raststellungen arretierbaren Stellglied (15) sowie zwei Spulen (3, 4), durch welche das Stellglied (15) in eine erste oder eine zweite Raststellung, die Endlagen, schaltbar ist. Es wird vorgeschlagen, dass das Stellglied (15) eine Stellstange (7) und einen darauf angeordneten Permanentmagneten (8) umfasst und in der dritten Raststellung durch den Permanentmagneten (8) magnetisch arretierbar ist.

Description

Elektromagnetische Stellvorrichtung
Die Erfindung betrifft eine elektromagnetische Stellvorrichtung nach dem Oberbegriff des Patentanspruches 1.
Elektromagnetische Stellvorrichtungen, auch Aktoren oder Aktuatoren, Stellmotore oder Hubmagnete genannt, sind in der Regelungstechnik bekannt. Beispielsweise dienen sie dem Antrieb oder der Verstellung von Ventilen oder Klappen zur Durchflussregelung von gasförmigen oder flüssigen Medien. Die meisten elektromagnetischen Aktuatoren sind bistabil, d. h. sie weisen nur zwei stabile Stellungen auf, z. B. auf oder zu.
Durch die DE 103 10 448 A1 wurde ein bistabiler Aktuator bekannt, welcher zwei Spulen und einen als Permanentmagneten ausgebildeten, auf einer Ankerstange angeordneten Anker aufweist. Der Permanentmagnet weist eine in Verschieberichtung des Ankers ausgerichtete Polarität auf und wird von den Spulen entweder in der einen oder in der anderen Endlage gehalten. Die Spulenanordnung bildet dabei einen Zweipol, wodurch der Permanentmagnet von einer Spule angezogen und gleichzeitig von der anderen Spule abgestoßen wird und umgekehrt. Dadurch wird die Schaltzeit verkürzt.
Durch die DE 102 07 828 A1 wurde ein bistabiler elektromagnetischer Hubmagnet mit einem Permanentmagneten bekannt, dessen Polarität radial, d. h. quer zur Bewegungsrichtung des Ankers ausgerichtet ist.
Neben den bistabilen sind auch tristabile Aktuatoren bekannt: Durch die DE 1 892 313 U wurde ein Elektrohubmagnet mit drei Raststellungen, zwei äußeren Endlagen und einer Mittelstellung, bekannt. Der Elektrohubmagnet weist insgesamt vier Spulen, zwei stationäre Permanentmagnete, zwei äußere Gehäuse-Gegenpole, zwei innere Gehäuse-Gegenpole sowie zwei auf einer Stößelstange längs beweglich angeordnete Anker auf. Eine Endlage wird jeweils durch Bestromung einer äußeren Spule erreicht, indem der Anker von der bestromten Spule angezogen wird. Die Mittelstellung der Stößelstange wird dagegen durch die permanentmagnetisch gehaltenen Anker erreicht, indem diese beiderseits an den inneren Gehäuse-Gegenpolen (Trennwand) anliegen. Nachteilig bei dem bekannten Elektrohubmagnet sind die Vielzahl der Teile, z. B. vier Spulen, zwei Permanentmagnete und zwei Anker sowie das damit verbundene Mehrgewicht.
Es ist Aufgabe der vorliegenden Erfindung, eine elektromagnetische Stellvorrichtung der eingangs genannten Art mit geringem konstruktiven Aufwand und einer verminderten Zahl von Einzelteilen kostengünstig herzustellen.
Die Aufgabe der Erfindung wird durch die Merkmale des Patentanspruches 1 gelöst. Erfindungsgemäß ist vorgesehen, dass das Stellglied eine Stellstange und einen darauf angeordneten Permanentmagneten umfasst und dass das Stellglied in seiner dritten Raststellung durch den magnetischen Fluss des Permanentmagneten arretierbar ist. Damit wird der Vorteil einer stromlosen Mittelstellung bei geringem Teileaufwand erreicht.
In vorteilhafter Ausgestaltung sind die beiden Spulen jeweils an den Enden eines Polrohres, d. h. eines Rohres aus magnetischem Werkstoff angeordnet und weisen jeweils ein Joch, vorzugsweise aus einem ferromagneti- schen Werkstoff auf. Damit wird der Magnetfluss über Joch und Polrohr geleitet, sodass je nach Bestromung der Spule eine unterschiedliche Polarität ausgebildet werden kann.
In weiterer vorteilhafter Ausgestaltung ist die Stellstange koaxial zum Polrohr angeordnet und innerhalb von Öffnungen der Joche gleitend gelagert. Dem Permanentmagneten ist ein vorzugsweise ringförmig ausgebildeter Haltepol zugeordnet, welcher bevorzugt innerhalb des Polrohres und etwa in der Mitte zwischen den beiden Spulen angeordnet ist. Der Haltepol ist aus einem magnetischen Werkstoff hergestellt und wird - bei der dritten Raststellung, d. h. der Mittelstellung des Ankers - vom Magnetfluss des Permanentmagneten durchflutet. Durch den Magnetschluss zwischen Haltepol und Permanentmagnet ergibt sich eine magnetische Arretierung des Stellgliedes bei stromlosen Spulen.
Zur Verstärkung des Magnetflusses des Permanentmagneten können auf dessen Stirnseiten Flussbleche angeordnet sein. Vorteilhaft ist es auch, wenn auf den Flussblechen zusätzlich Antiklebscheiben angeordnet sind, welche ein Anhaften des Permanentmagneten am Spulenjoch verhindern.
In weiterer vorteilhafter Ausgestaltung sind auf den Stirnseiten des Permanentmagneten vorzugsweise konisch ausgebildete Tauchanker vorgesehen, welche in entsprechende Öffnungen im Spulenjoch eintauchen. Damit wird die magnetische Anziehungskraft der Spulen auf das Stellglied erhöht.
In weiterer vorteilhafter Ausgestaltung ist die Polarität des Permanentmagneten in Verschieberichtung des Stellgliedes und der Stellstange ausgerichtet. Dadurch wird auf einer Stirnseite ein Nordpol und auf der entgegengesetzten Stirnseite des Permanentmagneten ein Südpol gebildet. Je nach Bestromung der Spulen können somit eine Anziehungskraft und/oder eine abstoßende Kraft auf den Permanentmagneten ausgeübt werden, sodass dieser in die eine oder andere Endlage verschoben wird.
In weiterer vorteilhafter Ausgestaltung kann im Bereich des Haltepols eine weitere Spule, eine so genannte Mittelspule, angeordnet sein, welche bei entsprechender Bestromung die arretierende Wirkung des Permanentmagneten in seiner Mittelstellung aufhebt und damit eine schnellere Verstellung des Stellgliedes in die eine oder andere Endlage erlaubt. Damit wird die Dynamik des Aktuators verbessert. Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher beschrieben. Es zeigen
Fig. 1 eine erfindungsgemäße elektromagnetische Stellvorrichtung im Schnitt,
Fig. 2 eine schematische Darstellung des Magnetflusses beim Schalten in die Mittelstellung und
Fig. 3 eine schematische Darstellung des Magnetflusses beim Schalten in die Endlagen.
Fig. 1 zeigt eine elektromagnetische Stellvorrichtung 1 , auch elektrodynamischer Aktuator oder Aktor genannt. Der Aktuator 1 weist ein zylindrisches, magnetisches Polrohr 2 auf, in welchem an dessen Enden zwei Spulen 3, 4 mit jeweils einem Joch 5, 6 angeordnet sind. Die Spulen 3, 4 sind an eine nicht dargestellte Stromversorgung angeschlossen und können in unterschiedlichen Stromrichtungen bestromt werden, sodass entgegengesetzte Polaritäten ausgebildet werden können. Koaxial zum Polrohr ist eine Stellstange 7, auch Ankerstange genannt, angeordnet und in den beiden Jochs 5, 6 gleitend und längsverschiebbar gelagert. Etwa in der Mitte der Stellstange 7 ist ein scheibenförmig ausgebildeter Permanentmagnet 8 angeordnet und fest mit der Stellstange verbunden. Auf den Stirnseiten des Permanentmagneten 8 sind Fluss- leitbleche 9, 10 angeordnet, welche den Permanentmagnetfluss verstärken. Auf der Außenseite der Flussleitbleche 9, 10 sind jeweils Antiklebscheiben 1 1 , 12 oder eine die Haftung an den Jochen 5, 6 verhindernde Beschichtung angeordnet. Ferner sind jeweils stirnseitig am Permanentmagneten 8 und auf der Ankerstange 7 konisch ausgebildete Tauchanker 13, 14 angeordnet und befestigt. Die Stell- oder Ankerstange 7, der Permanentmagnet 8 in Verbindung mit den Flussleitblechen 9, 10, den Antiklebscheiben 1 1 , 12 und den Tauchankern 13, 14 bilden das Stellglied 15 der Stellvorrichtung bzw. des Aktuators 1. In der Zeichnung ist das Stellglied 15 in seiner Mittelstellung, d. h. in der Mitte zwi- sehen den beiden Spulen 3, 4 dargestellt. Koaxial zum Permanentmagneten 8 ist innerhalb des Polrohres 2 ein ringförmiger Haltepol 16 angeordnet, welcher den Umfang des Permanentmagneten 8 umschließt. Wie aus der Zeichnung ersichtlich, weist der ringförmige Haltepol 16 einen geringeren Innendurchmesser als das Polrohr 2 auf, d. h. der Haltepol 16 bildet eine radiale Verengung des Polrohres 2. Der Permanentmagnet 8 bildet über die Flussleitbleche 9, 10 mit dem aus einem magnetischen Werkstoff bestehenden Haltepol 16 einen Magnetschluss, d. h. der Permanentmagnet 8 und mit ihm die Stellstange 7 werden in der dargestellten Position durch die magnetischen Kräfte des Permanentmagneten 8 gehalten. Der Permanentmagnet 8 weist eine in Richtung der Ankerstange 7 ausgebildete Polarität auf, d. h. an seiner einen Stirnseite befindet sich ein Nordpol und an der anderen Stirnseite ein Südpol. Radial außerhalb des Haltepols 16 ist eine weitere Spule, eine so genannte Mittelspule 17, angeordnet, deren Funktion darin besteht, bei Bestromung ein Magnetfeld zu erzeugen, welches das magnetische Feld des Permanentmagneten 8 kompensiert. Dadurch wird die Arretierwirkung durch magnetischen Schluss aufgehoben oder zumindest vermindert, sodass das Stellglied 15 aus der Mittelstellung leichter und schneller in die eine oder andere Endlage verstellt werden kann. Dies erhöht die Dynamik der Stellvorrichtung 1. Die Verstellung des Permanentmagneten 8 bzw. des Stellgliedes 15 aus der dargestellten Mittelstellung erfolgt durch Bestromung einer oder beider Spulen 3, 4, sodass entweder eine Anziehungskraft auf den Permanentmagneten oder eine Anziehungskraft der einen Spule und eine Abstoßungskraft der anderen Spule auf den Permanentmagneten wirken. Beim Anschlag des Permanentmagneten 8 auf das Joch 5 oder 6 taucht der jeweilige Tauchanker 13 oder 14 in eine entsprechende, ebenfalls konisch ausgebildete Öffnung 5a oder 6a des Jochs 5 oder 6 ein. Dadurch wird die magnetische Anziehungs- oder Abstoßungskraft erhöht. Die Antiklebscheiben 1 1 , 12 verhindern ein Festkleben des Permanentmagneten 8 in einer der beiden Endlagen. In der dargestellten Mittelstellung sind die beiden Spulen 3, 4 stromlos. Der dargestellte Aktuator 1 weist somit drei Raststellungen auf, nämlich zwei Endlagen und eine Mittellage, und ist damit tristabil. In den beiden Endlagen hält der Permanentmagnet 8 das Stellglied 15 magnetisch am Joch 5 oder 6 fest und stellt damit zwei stabile Endlagen her, wobei die Spulen 3, 4 stromlos sind.
Fig. 2 zeigt eine schematische Darstellung des Magnetflusses der beiden Spulen 3, 4 aus Fig. 1 und des auf der Ankerstange 7 angeordneten Permanentmagneten 8. Der Magnetfluss und seine Richtung ist bei den Spulen 3, 4 durch mit Pfeilen gekennzeichnete ovale Linienzüge 3a, 3b, 4a, 4b gekennzeichnet. Die Stromrichtung in den beiden Spulen 3, 4 ist durch die Symbole Punkt (■) und Kreuz (X) dargestellt. Der Magnetfluss des Permanentmagneten 8, der einen Nordpol N und einen Südpol S aufweist, ist durch den Linienzug 8a gekennzeichnet. Die Darstellung der Bestromung und des Magnetflusses entspricht dem Schaltvorgang, bei welchem der Permanentmagnet 8 in seine Mittelstellung (vgl. Fig. 1 ) bewegt wird. Wie die Stromsymbole zeigen, sind beide Spulen 3, 4 in derselben Richtung vom Strom durchflössen, d. h. sie bilden gleiche Magnetfelder 3a, 3b, 4a, 4b aus. Dadurch bildet die Spule 3 auf der dem Permanentmagneten 8 zugewandten Seite einen Südpol und die Spule 4 auf der dem Permanentmagneten 8 zugewandten Seite einen Nordpol aus mit der Folge, dass auf den Nordpol N und den Südpol S des Permanentmagneten 8 jeweils abstoßende Kräfte F einwirken. Der Permanentmagnet 8 wird somit in seine Mittelstellung zwischen den beiden Spulen 3, 4 verschoben. Dort wird er durch den Haltepol 16 (vgl. Fig. 1 ) - wie oben beschrieben - magnetisch arretiert. Nachdem der Permanentmagnet 8 seine stabile Mittelstellung erreicht hat, werden die Spulen 3, 4 stromlos geschaltet.
Fig. 3 zeigt eine schematische Darstellung der Spulen 3, 4 bei einem Schaltvorgang, durch welchen der Permanentmagnet 8 bzw. das Stellglied 15 (vgl. Fig. 1 ) in eine Endlage bewegt wird. Bei diesem Schaltvorgang sind die Spulen 3, 4 in entgegengesetzten Richtungen vom Strom durchflössen, wobei die untere Spule 3 wie die Spule 3 in Fig. 2 geschaltet ist. Daher ist der Magnetfluss ebenfalls mit 3a, 3b bezeichnet. Die obere Spule 4 dagegen weist einen gegenüber der Darstellung in Fig. 2 entgegengesetzten Magnetfluss, dargestellt durch die ovalen Linienzüge 4c, 4d, auf. Demzufolge werden auf den dem Permanentmagneten 8 zugewandten Seiten der Spulen 3, 4 jeweils Südpole ausgebildet mit der Folge, dass auf den Südpol S des Permanentmagneten 8 eine Schubkraft F1 und auf den Nordpol N eine Zugkraft F2 wirkt. Damit wirken beide Spulen 3, 4 bei der Verschiebung des Stellgliedes 15 (Fig. 1 ) zusammen in die gleiche Richtung, sodass sich kürzere Schaltzeiten und eine verbesserte Dynamik ergeben. Wie oben zu Fig. 1 erwähnt, hält sich der Permanentmagnet 8 am Spulenjoch 5 oder 6 durch seine Permanentmagnetkräfte, sodass die Spulen 3, 4 nach Erreichen der stabilen Endlagen stromlos geschaltet werden können.
Bezuqszeichen
1 elektrodynamischer Aktuator
2 Polrohr
3 Spule
3a Magnetfluss
3b Magnetfluss
4 Spule
4a Magnetfluss
4b Magnetfluss
4c Magnetfluss
4d Magnetfluss
5 Joch
5a Öffnung
6 Joch
6a Öffnung
7 Stellstange
8 Permanentmagnet
8a Magnetfluss
9 Flussleitblech
10 Flussleitblech
1 1 Antiklebscheibe
12 Antiklebscheibe
13 Tauchanker
14 Tauchanker
15 Stellglied
16 Haltepol
17 Mittelspule N Nordpol
S Südpol
F Magnetkraft
F1 Schubkraft
F2 Zugkraft

Claims

P ate n ta n s p rü c h e
1. Elektromagnetische Stellvorrichtung (1) mit einem längsbeweglichen, in drei Raststellungen arretierbaren Stellglied (15) sowie zwei Spulen (3, 4), durch welche das Stellglied (15) in eine erste oder eine zweite Raststellung, die Endlagen, schaltbar ist, dadurch g e ke n n ze i c h n et , dass das Stellglied (15) eine Stellstange (7) und einen darauf angeordneten Permanentmagneten (8) umfasst und in der dritten Raststellung durch den Permanentmagneten (8) magnetisch arretierbar ist.
2. Stellvorrichtung nach Anspruch 1 , dadurch g e ke n n ze i c h n et , dass die Spulen (3, 4) endseitig in einem Polrohr (2) angeordnet sind.
3. Stellvorrichtung nach Anspruch 1 oder 2, dadurch g e ke n n z e i c h n e t , dass die Stellstange (7) koaxial zum Polrohr (2) angeordnet ist.
4. Stellvorrichtung nach Anspruch 1 , 2 oder 3, dadurch g e ke n n z e i c h n e t , dass der Permanentmagnet (8) - in axialer Richtung gesehen - zwischen den Spulen (3, 4) angeordnet ist.
5. Stellvorrichtung nach einem der vorhergehenden Ansprüche, dadurch g e ke n n ze i c h n et , dass zwischen den Spulen (3, 4) ein Haltepol (16) angeordnet ist.
6. Stellvorrichtung nach Anspruch 5, dadurch g e ke n n ze i c h n et , dass der Haltepol (16) ringförmig ausgebildet ist und mit dem Permanentmagneten (8) in der dritten Raststellung einen geschlossenen Magnetkreis bildet.
7. Stellvorrichtung nach einem der vorhergehenden Ansprüche, dadurch geken n zei ch n et, dass der Permanentmagnet (8) eine axial ausgerichtete Polarität (N, S) aufweist.
8. Stellvorrichtung nach einem der vorhergehenden Ansprüche, dadurch geken n zei ch n et, dass auf den Stirnseiten des Permanentmagneten
(8) Flussleitbleche (9, 10) angeordnet sind.
9. Stellvorrichtung nach Anspruch 8, dadurch geken n zei ch n et, dass auf den Flussleitblechen (9, 10) Antiklebmittel, insbesondere Antiklebscheiben (11, 12) angeordnet sind.
10. Stellvorrichtung nach einem der vorhergehenden Ansprüche, dadurch geken n zei ch n et, dass die Spulen (3, 4) jeweils ein Joch (5, 6) mit einer koaxialen Öffnung (5a, 6a) aufweisen.
11. Stellvorrichtung nach Anspruch 10, dadurch geken n zei chnet, dass auf der Stellstange (7) beiderseits des Permanentmagneten (8) Tauchanker (13, 14) angeordnet sind, welche in die Öffnungen (5a, 6a) eintauchbar sind.
12. Stellvorrichtung nach einem der Ansprüche 5 bis 11 , dadurch g e k en n zei ch n et, dass im Bereich des Haltepols (16) eine weitere Spule, eine Mittelspule (17), angeordnet ist.
PCT/EP2009/051535 2008-03-06 2009-02-11 Elektromagnetische stellvorrichtung WO2009109444A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/864,892 US8228149B2 (en) 2008-03-06 2009-02-11 Electromagnetic actuating mechanism
JP2010549071A JP2011513979A (ja) 2008-03-06 2009-02-11 電磁動作機構
CN2009801051027A CN101946292A (zh) 2008-03-06 2009-02-11 电磁调整装置
AT09718492T ATE519207T1 (de) 2008-03-06 2009-02-11 Elektromagnetische stellvorrichtung
EP09718492A EP2250651B1 (de) 2008-03-06 2009-02-11 Elektromagnetische stellvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008000534.7 2008-03-06
DE102008000534A DE102008000534A1 (de) 2008-03-06 2008-03-06 Elektromagnetische Stellvorrichtung

Publications (1)

Publication Number Publication Date
WO2009109444A1 true WO2009109444A1 (de) 2009-09-11

Family

ID=40474689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/051535 WO2009109444A1 (de) 2008-03-06 2009-02-11 Elektromagnetische stellvorrichtung

Country Status (8)

Country Link
US (1) US8228149B2 (de)
EP (1) EP2250651B1 (de)
JP (1) JP2011513979A (de)
KR (1) KR20100125287A (de)
CN (1) CN101946292A (de)
AT (1) ATE519207T1 (de)
DE (1) DE102008000534A1 (de)
WO (1) WO2009109444A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2466102A (en) * 2008-12-13 2010-06-16 Camcon Ltd Multi-stable electromagnetic actuator with a magnetic material casing
EP2395519A1 (de) * 2010-06-10 2011-12-14 LSIS Co., Ltd. Bistabiler Permanentmagnet-Aktuator
DE102010041086A1 (de) 2010-09-21 2012-03-22 Zf Friedrichshafen Ag Aktuatorvorrichtung und Verfahren zur Ansteuerung
US20130001030A1 (en) * 2009-11-23 2013-01-03 Beijingwest Industries Co., Ltd Bi-stable shock absorber assembly
DE102012018566A1 (de) * 2012-09-20 2014-03-20 Festo Ag & Co. Kg Ventileinrichtung
DE102014217738A1 (de) * 2014-09-04 2016-03-10 Zf Friedrichshafen Ag Verfahren und Vorrichtung zum Ansteuern eines elektromagenetischen Aktors

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009026543A1 (de) 2009-05-28 2010-12-02 Zf Friedrichshafen Ag Automatisiertes Motorradgetriebe
EP2339681B1 (de) * 2009-12-18 2013-09-18 Bayerische Motoren Werke Aktiengesellschaft Elektromagnetischer Aktuator
US8686814B2 (en) * 2010-04-15 2014-04-01 Schneider Electric Industries Sas Electric switching device with ultra-fast actuating mechanism and hybrid switch comprising one such device
DE102010050755B4 (de) * 2010-11-10 2012-10-04 Eto Magnetic Gmbh Multistabile elektromagnetische Stellvorrichtung
US8212640B1 (en) * 2011-07-26 2012-07-03 Lockheed Martin Corporation Tool having buffered electromagnet drive for depth control
DE102011053023A1 (de) * 2011-08-26 2013-02-28 Hilite Germany Gmbh Hydraulisches Getriebeventil
US20130236337A1 (en) * 2012-03-09 2013-09-12 Mark A. Gummin Solenoid actuators using embedded printed circuit coils
US9183976B2 (en) 2012-03-19 2015-11-10 Hanchett Entry Systems, Inc. Springless electromagnet actuator having a mode selectable magnetic armature
DE102012204322B4 (de) 2012-03-19 2022-07-14 Zf Friedrichshafen Ag Bidirektionale elektromagnetische Stellvorrichtung
JP6029854B2 (ja) * 2012-05-22 2016-11-24 ミネベア株式会社 振動子及び振動発生器
DE102012107281B4 (de) * 2012-08-08 2014-03-06 Eto Magnetic Gmbh Bistabile elektromagnetische Stellvorrichtung, Ankerbaugruppe sowie Nockenwellenverstellvorrichtung
DE102012214624A1 (de) * 2012-08-17 2014-02-20 Robert Bosch Gmbh Polrohr für eine Aktoreinrichtung
WO2014194140A2 (en) * 2013-05-29 2014-12-04 Active Signal Technologies, Inc. Electromagnetic opposing field actuators
US10528024B2 (en) 2013-06-17 2020-01-07 Ashley Stone Self-learning production systems with good and/or bad part variables inspection feedback
CA2847995C (en) 2013-06-17 2018-06-05 Ashley Stone Molding systems and methods
DE102013013585B4 (de) * 2013-06-20 2020-09-17 Rhefor Gbr Selbsthaltemagnet mit besonders kleiner elektrischer Auslöseleistung
EP3021333B1 (de) * 2013-07-11 2019-10-16 Siemens Aktiengesellschaft Magnetischer aktuator
FR3012251B1 (fr) 2013-10-21 2017-03-10 Schneider Electric Ind Sas Actionneur electromagnetique et procede de fabrication d'un tel actionneur
US10522313B2 (en) 2013-10-23 2019-12-31 Rhefor Gbr Reversing linear solenoid
DE202014010132U1 (de) 2013-10-23 2015-04-29 Rhefor Gbr (Vertretungsberechtigter Gesellschafter: Arno Mecklenburg, 10999 Berlin) Ziehbackensteuerung mit Umkehrhubmagnet
FI20145100L (fi) * 2014-01-30 2015-07-31 Ixtur Oy Magneetti
CN105090596B (zh) * 2014-05-14 2018-04-27 浙江三花制冷集团有限公司 电磁阀及双稳态电磁线圈
KR200488063Y1 (ko) * 2014-06-30 2018-12-10 엘에스산전 주식회사 릴레이
DE102015101734A1 (de) * 2015-02-06 2016-08-11 Kendrion (Donaueschingen/Engelswies) GmbH Elektromagnetische Hubvorrichtung
DE102015204104A1 (de) * 2015-03-06 2016-09-08 Zf Friedrichshafen Ag Elektromagnetische Schaltvorrichtung und Verfahren zum Betreiben einer elektromagnetischen Schaltvorrichtung
US9709006B2 (en) 2015-04-08 2017-07-18 Ford Global Technologies, Llc Systems and methods for depressurizing a fuel tank
JP6587472B2 (ja) * 2015-09-14 2019-10-09 日本電産トーソク株式会社 アクチュエータ
JP2017108612A (ja) 2015-11-09 2017-06-15 フスコ オートモーティブ ホールディングス エル・エル・シーHUSCO Automotive Holdings LLC 電磁アクチュエータ用のシステムおよび方法
EP3220398A1 (de) 2016-03-17 2017-09-20 HUSCO Automotive Holdings LLC Systeme und verfahren für elektromagnetischen aktuator
WO2017171757A1 (en) * 2016-03-30 2017-10-05 Intel Corporation Electromagnetic haptic actuator integral with a multilayer substrate
DE102016106805A1 (de) * 2016-04-13 2017-10-19 Eto Magnetic Gmbh Stromlos monostabile elektromagnetische Stellvorrichtung und Verwendung einer solchen
US10024453B2 (en) * 2016-07-15 2018-07-17 Glen A. Robertson Dual acting solenoid valve using bi-stable permanent magnet activation for energy efficiency and power versatility
CN106298155B (zh) * 2016-11-07 2017-09-12 温州大学 一种盘式电磁铁
CN106409467B (zh) * 2016-11-12 2017-10-17 温州大学 高速‑比例双向复合盘式电磁铁
CN106531547B (zh) * 2016-12-16 2019-12-13 黑龙江博瑞特高新技术开发有限公司 高压双电源自动互投用的双稳态永磁操作装置及控制方法
DE102017103027A1 (de) * 2017-02-15 2018-08-16 Rausch & Pausch Gmbh Linearaktuator
DE102017212084A1 (de) * 2017-07-14 2019-01-17 Robert Bosch Gmbh Bistabiles Magnetventil für ein hydraulisches Bremssystem und Verfahren zur Ansteuerung eines solchen Ventils
JP7393125B2 (ja) * 2018-03-13 2023-12-06 フスコ オートモーティブ ホールディングス エル・エル・シー 中間状態を有する双安定ソレノイド
US11448103B2 (en) * 2018-06-28 2022-09-20 Board Of Regents, The University Of Texas System Electromagnetic soft actuators
KR102324514B1 (ko) * 2018-08-31 2021-11-10 엘에스일렉트릭 (주) 직류 릴레이
US11640864B2 (en) * 2019-12-05 2023-05-02 Deltrol Corp. System and method for detecting position of a solenoid plunger
DE102019133333A1 (de) * 2019-12-06 2021-06-10 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung mit Zwischenposition
SG10202004135RA (en) * 2020-05-05 2021-12-30 Soon Seng Sin Levitation and propulsion unit - two (lpu-2)
KR102391658B1 (ko) * 2020-06-01 2022-04-27 충남대학교산학협력단 영강성을 활용한 중력보상 보이스코일모터
EP3982379A1 (de) * 2020-10-08 2022-04-13 The Swatch Group Research and Development Ltd Mikro-schalter mit solenoid mit magnetischem rückfluss

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB258725A (en) * 1925-09-05 1926-09-30 Peter Grant Improvements in or relating to electromagnetically actuated hammers, drills, vibrators, and other reciprocating or vibrating tools or devices
US4422060A (en) * 1981-08-21 1983-12-20 Hitachi Metals, Ltd. D.C. Electromagnetic actuator
US4829947A (en) * 1987-08-12 1989-05-16 General Motors Corporation Variable lift operation of bistable electromechanical poppet valve actuator
DE102004004708B3 (de) * 2004-01-30 2005-04-21 Karl Dungs Gmbh & Co. Kg Magnetventil

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3070730A (en) * 1960-08-22 1962-12-25 Bendix Corp Three-position latching solenoid actuator
US3202886A (en) * 1962-01-11 1965-08-24 Bulova Watch Co Inc Bistable solenoid
DE1892313U (de) 1964-03-09 1964-05-06 Harting Elektro W Elektrohubmagnet mit drei raststellungen.
CH485207A (fr) * 1967-11-30 1970-01-31 Ebauches Sa Transducteur courant-force à action linéaire
JPS4933109A (de) * 1972-08-02 1974-03-27
CA1132646A (en) * 1979-06-05 1982-09-28 Christian C. Petersen Linear motor
JPS591412Y2 (ja) * 1979-11-15 1984-01-14 松下電工株式会社 往復駆動型電磁石
US4870306A (en) * 1981-10-08 1989-09-26 Polaroid Corporation Method and apparatus for precisely moving a motor armature
JPS58192460A (ja) * 1982-05-01 1983-11-09 Takahashi Denki Kk 自己保持リニアモ−タ
JPS59126608A (ja) * 1983-01-07 1984-07-21 Aisin Seiki Co Ltd ソレノイド装置
DE3402768C2 (de) * 1984-01-27 1985-12-19 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf Bistabiles magnetisches Stellglied
US4533890A (en) * 1984-12-24 1985-08-06 General Motors Corporation Permanent magnet bistable solenoid actuator
US4928028A (en) * 1989-02-23 1990-05-22 Hydraulic Units, Inc. Proportional permanent magnet force actuator
EP0580117A3 (en) * 1992-07-20 1994-08-24 Tdk Corp Moving magnet-type actuator
DE4400433C2 (de) * 1994-01-10 1998-06-04 Kokemor Manfred Dipl Ing Fh Polarisierter Mehrstellungsmagnet
DE19601541A1 (de) * 1995-01-27 1996-08-01 Seiko Seiki Kk In einer Vakuumumgebung einsetzbares Vertikaltransfersystem sowie dazugehöriges Absperrventilsystem
JP3633166B2 (ja) * 1996-12-28 2005-03-30 アイシン・エィ・ダブリュ株式会社 リニアソレノイド
US5896076A (en) * 1997-12-29 1999-04-20 Motran Ind Inc Force actuator with dual magnetic operation
JP3492228B2 (ja) * 1999-02-09 2004-02-03 株式会社テクノ高槻 鉄心および該鉄心を用いる電磁駆動機構
JP3591429B2 (ja) * 2000-06-22 2004-11-17 オムロンヘルスケア株式会社 流量コントロール弁及び血圧計
DE10207828B4 (de) 2002-02-25 2004-10-07 Technische Universität Dresden Elektromagnetischer Hubmagnet
DE20203718U1 (de) 2002-03-07 2002-07-04 Eto Magnetic Kg Elektromagnetische Stellvorrichtung
US20050046531A1 (en) * 2002-10-09 2005-03-03 David Moyer Electromagnetic valve system
DE10309697B3 (de) * 2003-02-26 2004-09-02 Siemens Ag Magnetischer Linearantrieb
KR100598532B1 (ko) * 2004-12-20 2006-07-10 현대자동차주식회사 영구자석과 전자석이 혼용된 선형 이엠브이 구동기
DE202007007385U1 (de) * 2007-05-23 2007-11-29 Kuhnke Automation Gmbh & Co. Kg Betätigungsmagnet zum Bewegen einer Verschlussnadel einer Heißkanaldüse eines Spritzgusswerkzeuges

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB258725A (en) * 1925-09-05 1926-09-30 Peter Grant Improvements in or relating to electromagnetically actuated hammers, drills, vibrators, and other reciprocating or vibrating tools or devices
US4422060A (en) * 1981-08-21 1983-12-20 Hitachi Metals, Ltd. D.C. Electromagnetic actuator
US4829947A (en) * 1987-08-12 1989-05-16 General Motors Corporation Variable lift operation of bistable electromechanical poppet valve actuator
DE102004004708B3 (de) * 2004-01-30 2005-04-21 Karl Dungs Gmbh & Co. Kg Magnetventil

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8710945B2 (en) 2008-12-13 2014-04-29 Camcon Oil Limited Multistable electromagnetic actuators
EP2359376B1 (de) * 2008-12-13 2016-05-04 Camcon Oil Limited Multistabile elektromagnetische aktoren
GB2466102B (en) * 2008-12-13 2014-04-30 Camcon Ltd Multistable electromagnetic actuators with energy storage and recycling arrangements
GB2466102A (en) * 2008-12-13 2010-06-16 Camcon Ltd Multi-stable electromagnetic actuator with a magnetic material casing
US9163694B2 (en) * 2009-11-23 2015-10-20 Beijingwest Industries Co., Ltd. Bi-stable shock absorber assembly
US20130001030A1 (en) * 2009-11-23 2013-01-03 Beijingwest Industries Co., Ltd Bi-stable shock absorber assembly
US8237527B2 (en) 2010-06-10 2012-08-07 Lsis Co., Ltd. Bistable permanent magnetic actuator
EP2395519A1 (de) * 2010-06-10 2011-12-14 LSIS Co., Ltd. Bistabiler Permanentmagnet-Aktuator
CN103119666A (zh) * 2010-09-21 2013-05-22 Zf腓德烈斯哈芬股份公司 执行装置和用于驱控的方法
WO2012038135A1 (de) 2010-09-21 2012-03-29 Zf Friedrichshafen Ag Aktuatorvorrichtung und verfahren zur ansteuerung
US8964348B2 (en) 2010-09-21 2015-02-24 Zf Friedrichshafen Ag Actuator device and driving method
DE102010041086A1 (de) 2010-09-21 2012-03-22 Zf Friedrichshafen Ag Aktuatorvorrichtung und Verfahren zur Ansteuerung
EP2619772B1 (de) * 2010-09-21 2016-11-02 ZF Friedrichshafen AG Aktuatorvorrichtung und verfahren zur ansteuerung
DE102012018566A1 (de) * 2012-09-20 2014-03-20 Festo Ag & Co. Kg Ventileinrichtung
DE102014217738A1 (de) * 2014-09-04 2016-03-10 Zf Friedrichshafen Ag Verfahren und Vorrichtung zum Ansteuern eines elektromagenetischen Aktors
DE102014217738B4 (de) 2014-09-04 2023-03-30 Zf Friedrichshafen Ag Verfahren und Vorrichtung zum Ansteuern eines elektromagenetischen Aktors

Also Published As

Publication number Publication date
ATE519207T1 (de) 2011-08-15
EP2250651A1 (de) 2010-11-17
US20110001591A1 (en) 2011-01-06
EP2250651B1 (de) 2011-08-03
KR20100125287A (ko) 2010-11-30
DE102008000534A1 (de) 2009-09-10
JP2011513979A (ja) 2011-04-28
US8228149B2 (en) 2012-07-24
CN101946292A (zh) 2011-01-12

Similar Documents

Publication Publication Date Title
EP2250651B1 (de) Elektromagnetische stellvorrichtung
EP3652030B1 (de) Bistabiles magnetventil für ein hydraulisches bremssystem und verfahren zur ansteuerung eines solchen ventils
DE4012832C2 (de) Magnetventil
WO2014019738A1 (de) Aktuatorvorrichtung
DE2033378B2 (de) Elektromagnetischer antrieb zur datenaufzeichnung
EP1069357A2 (de) Stellvorrichtung für ein Magnetventil
DE10310448B4 (de) Elektromagnetische Stellvorrichtung
DE102016203602A1 (de) Elektromagnetischer Aktor und Ventil
DE102011014192A1 (de) Elektromagnetische Aktuatorvorrichtung
EP1634309B1 (de) Elektromagnetische antriebsvorrichtung
EP3185256B1 (de) Elektromagnet
DE3542097A1 (de) Regelbares ventil fuer einen schwingungsdaempfer und verfahren zur steuerung bzw. regelung desselben
DE102011081893B3 (de) Magnetischer Aktor und Verfahren zu dessen Betrieb
DE102005058376B4 (de) Geräuschoptimierter Hubaktor
DE10153002B4 (de) Drehsteller mit Hubmagnet, sowie Hubmagnet
EP0224815B1 (de) Regelbares Ventilsystem für einen Schwingungsdämpfer und Verfahren zur Steuerung bzw. Regelung desselben
DE102017211257B4 (de) Elektromagnetischer Antrieb und damit ausgestattetes Ventil
DE4403420A1 (de) Lineare elektromagnetische Antriebsvorrichtung für Steuerelemente
EP0030283B1 (de) Betätigungseinrichtung für ein Wegeventil
EP3086335B1 (de) Magnetventil-einrichtung für ein fluidsystem und verfahren zum schalten eines magnetventils
DE1925182A1 (de) Stellmagnet
DE10357001B4 (de) Magnetischer Linearantrieb
DE102008057738A1 (de) Elektromagnet mit einstellbarem Nebenschlussluftspalt
DE102005029044B4 (de) Stellglied mit Haltefunktion
DE102014224043A1 (de) Elektromagnetischer Aktuator und Verfahren zum Betreiben des Aktuators

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105102.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718492

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009718492

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12864892

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010549071

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107019647

Country of ref document: KR

Kind code of ref document: A