WO2009107839A1 - 光周波数領域反射測定方式の物理量計測装置、および、これを用いた温度と歪みの同時計測方法 - Google Patents

光周波数領域反射測定方式の物理量計測装置、および、これを用いた温度と歪みの同時計測方法 Download PDF

Info

Publication number
WO2009107839A1
WO2009107839A1 PCT/JP2009/053899 JP2009053899W WO2009107839A1 WO 2009107839 A1 WO2009107839 A1 WO 2009107839A1 JP 2009053899 W JP2009053899 W JP 2009053899W WO 2009107839 A1 WO2009107839 A1 WO 2009107839A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
fiber
polarization maintaining
polarization
maintaining fiber
Prior art date
Application number
PCT/JP2009/053899
Other languages
English (en)
French (fr)
Inventor
浩児 大道
明 坂元
俊一郎 平船
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN2009800002856A priority Critical patent/CN101680781B/zh
Priority to JP2009529465A priority patent/JP4420982B2/ja
Priority to EP09715327.4A priority patent/EP2249127B1/en
Priority to CA2696238A priority patent/CA2696238C/en
Publication of WO2009107839A1 publication Critical patent/WO2009107839A1/ja
Priority to US12/705,361 priority patent/US7889332B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/3538Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/35393Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using frequency division multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings

Definitions

  • one or a plurality of fiber Bragg Grating (FBG) sensors are arranged in one Polarization Maintaining (PM) fiber, the position of the FBG sensor, the distortion of the FBG sensor,
  • the present invention relates to an optical frequency domain reflectometry (OFDR) type physical quantity measuring apparatus that measures a physical quantity such as temperature, and a temperature and strain simultaneous measurement method using the physical quantity measuring apparatus.
  • OFDR optical frequency domain reflectometry
  • a sensor that measures a physical quantity such as temperature and strain using an optical fiber has a long life, light weight, a small diameter, and flexibility, and thus can be used in a narrow space.
  • this optical fiber has insulation properties, this sensor has a characteristic that it is resistant to electromagnetic noise. For this reason, this sensor is expected to be used for soundness evaluation of huge buildings such as bridges and buildings, and aerospace equipment such as passenger planes and artificial satellites.
  • the performance required for sensors for evaluating the soundness of these structures includes high spatial resolution, having a multipoint sensor (wide detection range), and being able to measure in real time.
  • optical fiber sensor using an FBG sensor and an OFDR analysis method uses a periodic change in interference intensity between a Bragg reflected light from the FBG sensor and a reflected light from a reference reflection end. Specify the position of.
  • this optical fiber system measures the strain and temperature of the detection unit from the amount of change in the wavelength of the Bragg reflected light.
  • This optical fiber sensor system has a high spatial resolution of 1 mm or less (see, for example, Non-Patent Document 1), 800 FBG sensors are arranged on an 8 m optical fiber, and a total of 3 optical fibers are used. It is disclosed that distortion measurements of more than 1,000 points can be performed simultaneously (for example, see Non-Patent Document 2), and that the measurement has excellent real-time properties (for example, see Patent Document 1). Furthermore, according to Non-Patent Document 1, it is also possible to measure the strain distribution in the longitudinal direction of the FBG sensor (meaning that the strain amount along the longitudinal direction of the FBG sensor is not uniform). This measurement of strain distribution is also described in Patent Document 3.
  • This method uses a PANDA fiber, which is a type of PM fiber, and measures the amount of temperature and strain by measuring the amount of change in the wavelength of Bragg reflected light from two orthogonal polarization axes in an FBG sensor comprising this PANDA fiber. It is a method that can be measured simultaneously. That is, this method is a method capable of realizing a strain sensor that does not require a temperature compensation sensor.
  • an optical fiber sensor system using an FBG sensor made of PM fiber and an OFDR analysis method has not been proposed so far. This is because, in order to stably measure Bragg reflected light from two orthogonal polarization axes in an FBG sensor made of PM fiber by an OFDR analysis method, the measurement light is converted into two orthogonal polarization axes. Therefore, it is necessary to split the signal with good controllability and propagate it to the FBG sensor and the reference reflection end. However, the measurement light is usually emitted with a single polarization.
  • the position of the FBG sensor is specified from the period of the interference signal between the Bragg reflected light from the FBG sensor and the reflected light from the reference reflection end. That is, by substituting the effective refractive index of an appropriate optical fiber for the obtained interference signal and performing short-time Fourier transform (hereinafter referred to as STFT) analysis, the position of the FBG sensor (to be precise, The fiber length difference between the reference reflection end and the FBG sensor) can be obtained.
  • STFT short-time Fourier transform
  • the effective refractive indexes of the two orthogonal polarization axes are different, in order to substitute a certain effective refractive index, as a result, from the two polarization axes, The position of the Bragg reflected light is different.
  • the present invention has been made in view of the above circumstances.
  • One or a plurality of FBG sensors are arranged in one PM fiber, and the position of the FBG sensor and physical quantities such as strain and temperature of the FBG sensor are determined by OFDR.
  • an OFDR-type physical quantity measuring apparatus that can measure temperature and strain at the same time and that can measure with high spatial resolution, and this physical quantity measuring apparatus are used. The purpose is to provide a method for simultaneous measurement of temperature and strain.
  • An optical frequency domain reflection measurement type physical quantity measuring apparatus includes a tunable laser that emits measurement light; a first polarization maintaining fiber having one end connected to the tunable laser; A polarization maintaining coupler connected to the other end of the polarization maintaining fiber; a second polarization maintaining fiber having one end connected to the polarization maintaining coupler and the other end serving as a reference reflection end; A third polarization maintaining fiber having one end connected to the holding coupler; a sensor comprising a fiber Bragg grating formed in a core of the third polarization maintaining fiber; one end connected to the polarization maintaining coupler A fourth polarization-maintaining fiber; connected to the polarization-maintaining coupler through the fourth polarization-maintaining fiber, and detects Bragg reflected light from the sensor and reference light from the reference reflection end
  • a control unit that detects a modulation of interference intensity between the Bragg
  • the incident portion has a polarization axis offset angle of 45 ° with respect to the first polarization maintaining fiber when the incident portion is disposed on the first polarization maintaining fiber.
  • a fusion splicing portion formed; when the incident portion is arranged in both the second polarization maintaining fiber and the third polarization maintaining fiber, these second polarization maintaining fibers; And a fusion splicing part formed with a polarization axis offset angle of 45 ° in each of the third polarization maintaining fibers.
  • the optical path length adjustment unit is a fusion splicing unit formed with a polarization axis offset angle of 90 ° on the third polarization maintaining fiber in which the sensor is formed. .
  • the optical path length adjusting unit is provided in the middle of the fiber length from the position corresponding to the length of the second polarization maintaining fiber to the sensor.
  • a plurality of the sensors are arranged in the third polarization maintaining fiber.
  • the said optical path length adjustment part is each distribute
  • an effective refractive index difference between at least two orthogonal polarization axes in the third polarization maintaining fiber is 4.4. It is preferably ⁇ 10 ⁇ 4 or more.
  • the method for simultaneously measuring temperature and strain uses the optical frequency domain reflection measurement type physical quantity measuring device according to any one of (1) to (7) above, and the one or more sensors. Measuring the wavelength of Bragg reflected light from two orthogonal polarization axes in FIG .; and, based on the measured wavelength of the Bragg reflected light, the amount of change due to temperature and strain of the wavelength of the Bragg reflected light in the sensor And a step of simultaneously measuring the temperature and strain of the portion where the sensor is arranged based on the calculated amount of change. (9) It is preferable to calculate a temperature distribution and a strain distribution along the longitudinal direction of the portion where the sensor is arranged in the third polarization maintaining fiber.
  • a sensor formed in the core of the polarization maintaining fiber and two orthogonal polarization axes of the polarization maintaining fiber in which the sensor is arranged Since it has an incident part for allowing measurement light to enter, it is possible to simultaneously measure the temperature and strain of the sensor.
  • it has an optical path length adjustment unit to make the optical path length of Bragg reflected light from two orthogonal polarization axes of the sensor constant since it has an optical path length adjustment unit to make the optical path length of Bragg reflected light from two orthogonal polarization axes of the sensor constant, the position of the sensor can be specified accurately, and physical quantities can be measured with high spatial resolution. Yes.
  • one FBG Strain and temperature can be measured simultaneously from the sensor. Furthermore, the temperature distribution and strain distribution along the longitudinal direction of the sensor can be measured simultaneously.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a physical quantity measuring apparatus of the optical frequency domain reflection measurement method of the present invention.
  • FIG. 2 is a schematic configuration diagram showing a modification of the embodiment.
  • FIG. 3 is a schematic perspective view showing the polarization axis angle offset fusion splicing when a PANDA fiber is used.
  • FIG. 4 is a schematic configuration diagram showing a second embodiment of the physical quantity measuring apparatus of the optical frequency domain reflection measurement method of the present invention.
  • FIG. 5 is a schematic configuration diagram illustrating the physical quantity measuring apparatus of the optical frequency domain reflection measurement method according to the first embodiment of the present invention.
  • FIG. 6 is a spectrogram showing the result of measuring the state of the sensor using the same example.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a physical quantity measuring apparatus of the optical frequency domain reflection measurement method of the present invention.
  • FIG. 2 is a schematic configuration diagram showing a modification of the embodiment.
  • FIG. 3 is a schematic perspective view
  • FIG. 7 is a spectrogram showing the result of measuring the state of the sensor using the optical quantity domain reflection measurement type physical quantity measuring apparatus of Comparative Example 1.
  • FIG. 8 is a spectrogram showing the result of measuring the state of the sensor using the optical quantity domain reflection measurement type physical quantity measuring apparatus of Comparative Example 2.
  • FIG. 9 is a graph showing the result of calculating the positional deviation amount of the Bragg reflected light from the slow axis and the fast axis of the sensor in Comparative Example 2.
  • FIG. 10 is a schematic configuration diagram illustrating a physical quantity measuring apparatus of an optical frequency domain reflection measurement method according to the second embodiment of the present invention.
  • FIG. 11 is a spectrogram showing the result of measuring the state of the sensor (first sensor) using the second embodiment.
  • FIG. 12 is a spectrogram showing the result of measuring the state of the sensor (second sensor) using the second embodiment.
  • FIG. 13 is a spectrogram showing the result of measuring the state of the sensor using the optical quantity domain reflection measurement type physical quantity measuring apparatus of Example 3 of the present invention.
  • FIG. 14 is a graph showing the relationship between the birefringence of the PANDA fiber and the shift characteristic difference of the Bragg wavelength with respect to the temperature change of the sensor composed of the FBG composed of the PANDA fiber in Example 3.
  • FIG. 15 is a spectrogram showing the result of measuring the state of the sensor using the optical quantity domain reflection measurement type physical quantity measuring apparatus of Example 4 of the present invention.
  • FIG. 16 is a diagram schematically showing an experimental system for measuring the temperature distribution and strain generated in the sensor in Example 4.
  • FIG. 17 is a spectrogram showing the results of measuring the temperature change and strain at the position of the heater A and the position of the heater B in Example 4.
  • FIG. 18 is a graph showing the results of measuring the temperature change and strain at the position of the heater A and the position of the heater B in Example 4.
  • 10A, 10B, 10C, 10D, 10E, 10F (10) Physical quantity measuring device 11, 31, 32, polarization maintaining coupler 12 tunable laser 13, 35 Photodiode 14, 37, 38 for reference Reflection end 15, 15a, 15b Sensor 16, 17, 18, 19 Polarization maintaining fiber 20 Incident part 21, 21a, 21b Optical path length adjustment part 22 Control part 41, 42, 43, 44, 47, 48 PANDA fiber 53 System controller 54 A / D converter 60 (60A, 60B) PANDA fiber 61 (61A, 61B) Core 62 (62A, 62a, 62B, 62b) Stress applying portion
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a physical quantity measuring apparatus of an optical frequency domain reflection measurement (hereinafter abbreviated as “OFDR”) method of the present invention.
  • the OFDR physical quantity measuring apparatus 10A (10) of the present embodiment includes a tunable laser 12 that emits measurement light; a first polarization maintaining fiber 16 having one end connected to the tunable laser 12; A polarization maintaining coupler 11 connected to the other end of one polarization maintaining fiber 16; a second polarization maintaining fiber having one end connected to the polarization maintaining coupler 11 and the other end serving as a reference reflecting end 14; 18; a third polarization maintaining fiber 19 having one end connected to the polarization maintaining coupler 11; a sensor 15 comprising a fiber Bragg grating formed at the core of the third polarization maintaining fiber 19; A fourth polarization maintaining fiber 17 having one end connected to the holding coupler 11; a Bragg from the sensor 15 connected to the polarization maintaining coupler 11 via the fourth polarization maintaining
  • a control unit 22 that detects the modulation of the interference intensity between the reference beams; two orthogonal polarization axes of the second polarization maintaining fiber 18 and two orthogonal polarization axes of the third polarization maintaining fiber 19;
  • the adjustment part 21 is comprised roughly;
  • the polarization maintaining coupler 11 is composed of the same type of PM fiber as the first to fourth polarization maintaining (hereinafter abbreviated as “PM”) fibers.
  • a laser having a coherence length longer than the optical path length until the measurement light emitted from the tunable laser 12 is reflected by the sensor 15 and enters the photodiode 13 is preferably used.
  • the photodiode 13 when the wavelength of the measurement light emitted from the tunable laser 12 is changed, it is possible to detect intensity modulation of optical interference obtained from two reflection points, that is, the reference reflection end 14 and the sensor 15. Those having a cutoff frequency are preferably used.
  • the control unit 22 includes, for example, an A / D converter 54 that samples a signal from the photodiode 13 and a system controller 53 that analyzes the sampling data.
  • an A / D converter 54 having a sampling frequency capable of detecting the intensity modulation of optical interference detected by the photodiode 13 is preferably used.
  • the A / D converter 54 digitally samples the analog optical interference signal measured by the photodiode 13. This digital interference signal is transmitted to the system controller 53.
  • the system controller 53 performs STFT (Short Time Fourier Transform; STFT) analysis using the digital interference signal. The analysis method will be described later.
  • STFT Short Time Fourier Transform
  • the system controller 53 is not particularly limited as long as the digital interference signal obtained by the A / D converter 54 can be subjected to STFT analysis.
  • the system controller 53 is connected to the tunable laser 12 via a general-purpose interface bus (GPIB) and controls the tunable laser 12.
  • GPIB general-purpose interface bus
  • the incident part 20 is provided in the first PM fiber 16 and demultiplexes the measurement light emitted as a single polarization from the tunable laser 12 to two orthogonal polarization axes of the first PM fiber 16. To do. As the incident part 20, it is sufficient that the measurement light can be incident on both the two orthogonal polarization axes of the second PM fiber 18 and the two orthogonal polarization axes of the third PM fiber 19, as shown in FIG. 2. As described above, both the second PM fiber 18 and the third PM fiber 19 may be disposed.
  • the incident portion 20 is a branch portion between the third PM fiber 19 on which the sensor 15 is formed and the second PM fiber 18 having the reference reflection end 14 in that the incident portion 20 only needs to be provided at one place.
  • the incident portion 20 includes a method of inserting a ⁇ / 2 plate, a method of providing a polarization axis angle offset fusion splicing, or the polarization of the PM fiber with respect to the single-polarized measurement light from the tunable laser 12.
  • the PM fiber is arranged so that the wave axis has an angular offset, and the measurement light of a single polarization, such as a method of coupling the emitted light from the tunable laser 12 to the PM fiber, is obtained by using two orthogonal polarizations of the PM fiber. Any means can be used as long as it can demultiplex to the wave axis.
  • the incident portion 20 has a polarization axis offset angle of 45 ° in the first PM fiber 16 because it is simple and the measurement light can be equally split into two polarized waves. It is preferable that the fusion splice is formed (hereinafter referred to as “45 ° offset fusion”).
  • the fusion splicing having the polarization axis angle offset means that two PM fibers are fusion spliced so that one polarization axis of the PM fiber has an offset angle that is a fusion point.
  • the fact that one polarization axis of a PM fiber has an offset angle that is a fusion point means that the other PM axis perpendicular to the other has a similar offset angle and two PM fibers are fused. Means.
  • FIG. 3 is a diagram schematically showing a state of 45 ° offset fusion when a PANDA (Polarization-maintaining and Absorption reducing) fiber is used as the PM fiber.
  • the PANDA fiber 60 is a fiber in which a circular stress applying portion 62 is provided on the clad at both ends of the core 61 in order to give the fiber birefringence. Due to the stress applying portion 62, a propagation constant difference (effective refractive index difference) is generated between two orthogonal polarization modes. Therefore, the coupling from each polarization mode to the other polarization mode can be suppressed.
  • a propagation constant difference effective refractive index difference
  • the polarization axes through which the two orthogonal polarization modes propagate are called the slow axis and the fast axis, and the difference in effective refractive index between the slow axis and the fast axis is called birefringence.
  • Straight lines connecting the two stress applying portions 62 and the core 61 that is, the two stress applying portions 62A and 62a of the PANDA fiber 60A and the straight line 63A connecting the core 61A; two stresses of the PANDA fiber 60B
  • a fusion splice can be realized.
  • Any optical path length adjusting unit 21 may be used as long as the optical path length of Bragg reflected light from two orthogonal polarization axes in the sensor 15 can be adjusted to be constant.
  • a method of inserting a birefringent crystal into the PM fiber, a method of providing a fusion splice having a polarization axis angle offset in the PM fiber, and the like can be mentioned.
  • optical path length adjustment unit 21 90 ° offset fusion is preferable among the above because it is simple and easy to adjust the optical path length.
  • the optical path length adjustment unit 21 corresponds to the length of the PM fiber 18 having the reference reflection end 14 in order to make the optical path length of the Bragg reflected light from the two orthogonal polarization axes in the sensor 15 constant. It is provided in the middle of the fiber length (L 1 shown in FIG. 1 ) from the position to the sensor 15. By providing the optical path length adjusting unit 21 at this position, the optical path length of the Bragg reflected light from the two orthogonal polarization axes in the sensor 15 can be made constant, and the Bragg reflected light from the two orthogonal polarization axes is analyzed. The same measurement position.
  • the measurement light emitted as a single polarization from the tunable laser 12 is passed between the tunable laser 12 and the PM coupler 11, and the second PM fiber 18 and An incident portion 20 for branching to two orthogonal polarization axes of the third PM fiber 19 is provided.
  • Bragg reflected light from two orthogonal polarization axes in the sensor 15 can be obtained.
  • the temperature and strain of the part where the sensor 15 is disposed can be measured simultaneously. As a result, a strain sensor that does not require additional temperature compensation can be realized.
  • the optical path length adjustment unit 21 is provided in the middle of the fiber length from the position corresponding to the length of the second PM fiber 18 having the reference reflection end 14 to the sensor 15. It has been. Thereby, the optical path length of the Bragg reflected light from two orthogonal polarization axes in the sensor 15 can be made constant. That is, when the interference signal between the Bragg reflected light from the sensor 15 and the reflected light from the reference reflection end 14 is subjected to STFT analysis, the Bragg reflected light from two orthogonal polarization axes is at the same position.
  • the temperature and strain of the detection unit are measured by measuring the amount of change due to temperature and strain in the wavelength of Bragg reflected light from two orthogonal polarization axes in the sensor 15. Can be measured simultaneously.
  • R slow and R fast are the intensity of interference light from two orthogonal polarization axes of the PANDA fiber, that is, interference light from the slow axis (X axis) and the fast axis (Y axis).
  • k represents the wave number
  • n slow and n fast represent the effective refractive indexes of the slow axis (X axis) and the fast axis (Y axis).
  • L 1 is the length from the PM coupler 11 to the reference reflection end 14 in the second PANDA fiber (PM fiber) 18 and the length from the PM coupler 11 to the sensor 15 in the third PANDA fiber (PM fiber) 19.
  • the difference (fiber length difference) is shown. That is, L 1 indicates the fiber length from the position corresponding to the length of the PA second PANDA fiber 18 having the reference reflection end 14 to the sensor 15 in the third PANDA fiber 19 as shown in FIG. ing.
  • the above-mentioned D 1 is obtained using the OFDR physical quantity measuring apparatus 10 A of the present embodiment, and the obtained optical interference signal D 1 is subjected to STFT analysis by the system controller 53.
  • (n slow + n fast ) L 1 in the first term and the second term on the right side in Equation (1) indicates the optical path length along which the measurement light emitted from the tunable laser 12 reciprocates the fiber length difference L 1 . That is, the light path length corresponding to L 1 in the third PANDA fiber becomes (n slow + n fast) corresponds to half the L 1 ⁇ (n slow + n fast) / 2 ⁇ L 1.
  • an analog optical interference signal corresponding to the above equation (1) measured by the photodiode 13 is digitally sampled by the A / D converter 54 provided in the control unit 22, This digital interference signal is subjected to STFT analysis by the system controller 53 provided in the control unit 22.
  • the optical interference signal measured by the photodiode 13 is subjected to STFT analysis by the system controller 53 provided in the control unit 22.
  • it means that the same processing is performed.
  • the A / D converter 54 has a sampling frequency capable of detecting the intensity modulation of the optical interference detected by the photodiode 13
  • the analog optical interference signal and the sampled digital interference signal are the same in principle. Signal.
  • portions where the characteristics of the present invention can be more effectively described by using mathematical expressions indicating analog optical interference signals will be described using optical interference signals.
  • the known optical path length ⁇ (n slow + n fast ) / 2 ⁇ L 1 is substituted with known n slow and n fast to substitute L 1 .
  • the values of n slow and n fast include values obtained from the wavelength of the Bragg reflected light from the sensor 15 and the grating period calculated from the interval of the diffraction grating of the uniform phase mask used to fabricate the sensor 15. A value obtained from pattern measurement can be used.
  • the fact that the optical path length of the first term and the second term on the right side the right side of equation (1) is constant, the same optical path length Bragg reflected light with respect to fiber length difference L 1 in the slow axis and the fast axis It means to have.
  • Bragg reflected light is obtained from two orthogonal polarization axes in the sensor 15 in this way. Therefore, temperature and strain can be measured simultaneously. As a result, when strain measurement is performed using the OFDR physical quantity measuring apparatus 10A of the present embodiment, a temperature compensation sensor is not required. Further, the Bragg reflected light in the slow axis and the fast axis, to have the same optical path length with respect to the fiber length difference L 1, the position of the sensor 15 can accurately identify, it is possible to measure strain with high spatial resolution.
  • This measurement method is a method for obtaining temperature and strain by calculation from the shift amount of the wavelength of the Bragg reflected light from two orthogonal polarization axes of the sensor 15.
  • the wavelength of Bragg reflected light from two orthogonal polarization axes of the sensor 15 at a certain reference temperature (for example, 20 ° C.) and reference strain (for example, 0 ⁇ ) is measured in advance.
  • the sensor 15 is arranged at a place where the sensor 15 is desired to be detected (hereinafter referred to as “detection unit”), and the wavelength of the Bragg reflected light from the two orthogonal polarization axes of the sensor 15 is measured in this detection unit. Subsequently, the wavelength difference (change amount) of the Bragg reflected light at the reference temperature and the reference strain is calculated. Next, the obtained wavelength difference is substituted into the following equation (2) to obtain the difference between the temperature at the detection unit and the reference temperature, the difference between the strain at the detection unit and the reference strain, and finally the known reference temperature, the reference The actual temperature and actual strain in the detection unit are calculated from the strain.
  • ⁇ T represents the difference between the temperature in the detection unit and the reference temperature
  • represents the difference between the strain in the detection unit and the reference strain
  • T is the temperature at the detection unit
  • is the strain at the detection unit.
  • ⁇ slow and ⁇ fast indicate the wavelengths of Bragg reflected light from two orthogonal polarization axes of the sensor 15 in the detection unit.
  • ⁇ slow and ⁇ fast are the wavelengths of the Bragg reflected light from the two orthogonal polarization axes of the sensor 15 in the detector, and the Bragg reflected light from the two orthogonal polarization axes of the sensor 15 at the reference temperature and the reference strain. The difference from the wavelength is shown.
  • ⁇ slow / ⁇ and ⁇ fast / ⁇ shows Bragg wavelength shift amount of the slow axis and the fast axis per unit strain.
  • ⁇ slow / ⁇ T and ⁇ fast / ⁇ T shows Bragg wavelength shift amount of the slow axis and the fast axis per unit of temperature.
  • the above-described unit distortion or the amount of shift of the Bragg wavelength per unit temperature is determined by using the OFDR physical quantity measuring device 10A to give distortion to the sensor 15 at the reference temperature (20 ° C.). This is obtained by measuring the strain dependency of the change, giving a temperature change to the sensor 15 at the reference strain (0 ⁇ ), and measuring the temperature dependency of the Bragg wavelength change of the slow axis and the fast axis in the sensor 15.
  • these ⁇ slow / ⁇ , ⁇ fast / ⁇ , ⁇ slow / ⁇ T, from the value of ⁇ fast / ⁇ T determine the D value according to the equation (2).
  • ⁇ T and ⁇ are obtained by substituting the D value and ⁇ slow and ⁇ fast obtained from the measurement results into the above equation (2).
  • the temperature and strain in the detection unit can be obtained.
  • FIG. 4 is a schematic configuration diagram showing a second embodiment of the OFDR physical quantity measuring apparatus of the present invention.
  • the third PM fiber 19 includes a plurality of sensors 15 (in the illustrated example, two sensors 15a, 15b) It is a point arranged.
  • the second optical path length adjustment unit 21b (21) is provided in the middle of the fiber length between adjacent sensors (first sensor 15a, second sensor 15b). Is further arranged.
  • the optical path lengths of the Bragg reflected light from the two orthogonal polarization axes in the first sensor 15a and the second sensor 15b can be made constant. That is, when an interference signal between the Bragg reflected light from the first sensor 15a and the second sensor 15b and the reflected light from the reference reflection end is subjected to STFT analysis, Bragg reflection from these two orthogonal polarization axes is performed. Light is detected as the same position at a position unique to the first sensor 15a and the second sensor 15b. As a result, the position of each sensor 15a, 15b can be specified accurately.
  • the position of the sensor 15 can be specified and the temperature and strain can be measured in the same manner as in the first embodiment described above.
  • the case where two sensors 15 (the first sensor 15a and the second sensor 15b) are provided in the third PM fiber 19 is exemplified, but the OFDR physical quantity measuring apparatus of the present embodiment is It is not limited to this.
  • the third PM fiber 19 may be provided with three or more sensors 15. Even in this case, the Bragg reflected light from the two orthogonal polarization axes can be detected at the same position for each sensor 15 as in the present embodiment in which the two sensors 15 are provided. . That is, even if three or more sensors 15 are provided in the third PM fiber 19, the position of each sensor 15 can be accurately specified, and distortion measurement can be performed with high spatial resolution.
  • the third PM fiber 19 provided with the sensor 15 has an effective refractive index difference between two orthogonal polarization axes ( It is preferably composed of a PM fiber having a large birefringence. Thereby, the sensitivity difference with respect to the temperature and strain in two orthogonal polarization axes becomes large, and more accurate simultaneous measurement of temperature and strain can be realized. More specifically, the effective refractive index difference between two orthogonal polarization axes is preferably 4.4 ⁇ 10 ⁇ 4 or more.
  • the Bragg wavelength shift characteristic difference with respect to the temperature change of the sensor can be made larger than ⁇ 5.0 ⁇ 10 ⁇ 4 nm / ° C., as can be obtained from examples described later. As a result, extremely accurate temperature and strain measurement accuracy of 2 ° C. and strain accuracy of 30 ⁇ can be obtained.
  • FIG. 5 is a schematic configuration diagram illustrating an OFDR physical quantity measuring apparatus 10D according to the first embodiment. This example is configured based on the OFDR physical quantity measuring apparatus 10A of the first embodiment described above.
  • the OFDR physical quantity measuring device 10D according to the first exemplary embodiment has two PM couplers 31 and 32, a photodiode 35, and two reference reflection ends 37 and 38, in addition to the OFDR physical quantity measuring device 10A shown in FIG. And comprising. These are connected by PANDA fibers 41, 42, 43, 44, 47, and 48, which are one type of PM fiber.
  • the first to fourth PM fibers and the PM coupler 11 are also PANDA fibers.
  • the tunable laser 12 was connected to the system controller 53 via a general-purpose interface bus (GPIB) and controlled thereby. Signals from the two photodiodes 13 and 35 are sampled by the A / D converter 54, and the sampling data is subjected to STFT analysis by the system controller 53. This analysis method is as described in the first embodiment.
  • PTAP-0150-2-B (model) manufactured by Fujikura Corporation was used.
  • 8164A (model) manufactured by Agilent was used.
  • 2117FC (model) manufactured by New Focus was used.
  • the tunable laser 12 emits single-polarized measurement light that is swept (monotonically increased or monotonically decreased) at a certain constant speed and in a certain wavelength range.
  • measurement light having a wavelength range of 1545 to 1555 nm was emitted at a speed of 10 nm / s.
  • Single-polarized measurement light emitted from the tunable laser 12 propagates through the slow axis of the PANDA fiber 41 and enters the PM coupler 31. Then, the optical power is branched by the PM coupler 31 and enters the two optical interferometers.
  • One of the two optical interferometers is schematically constituted by a PM coupler 32, reference reflection ends 37 and 38, and a photodiode 35.
  • a trigger corresponding to the fiber length difference (optical path length difference) between the PANDA fiber 47 having the reference reflection end 37 and the PANDA fiber 48 having the reference reflection end 38 is generated.
  • the fiber length difference between the PANDA fiber 47 and the PANDA fiber 48 was 50 m.
  • This trigger is generated by the following method.
  • measurement light swept from the tunable laser 12 at a certain speed and in a certain wavelength range is incident on the optical interferometer, the measurement light is reflected by the reference reflection ends 37 and 38, and the interference light is reflected by the photodiode 35. It is measured by.
  • the signal acquired by the photodiode 35 is sampled by the A / D converter 54 and converted into a voltage signal. This voltage signal is taken into the system controller 53.
  • the measurement light emitted from the tunable laser 12 has a wavelength that changes at a constant speed. Therefore, the signal measured by the photodiode 35 is a sine function that fluctuates at a constant light wave number interval.
  • a certain voltage value is set as a threshold value, and the system controller 53 generates a trigger at a timing exceeding the threshold value (timing exceeding a threshold value or exceeding a threshold value, or timing exceeding a threshold value and falling below the threshold value).
  • the generated trigger has a certain light wave number interval.
  • This trigger generation method is very effective in that the interval of light wave numbers generated by the trigger is always constant even when the sweep speed of the tunable laser 12 is not constant.
  • the other of the two optical interferometers is schematically configured from the first embodiment shown in FIG.
  • the sensor 15 was produced by a general exposure method using a KrF excimer laser and a uniform phase mask.
  • the grating length (sensor length) was 5 mm.
  • the distance L 1 from the position corresponding to the PANDA fiber 14 having the reference reflection end 14 to the sensor 15 was about 20 m.
  • 45 ° offset fusion was provided on the PANDA fiber 16.
  • optical interference signal D 1 is subjected to STFT analysis by the system controller 53.
  • Optical interference signal D 1 of the this time can be expressed also by formula (1) and the first embodiment.
  • Example 1 (a rate of the tunable laser 12 10 nm / s, about 400pm distance in terms of wavelength) obtained optical interference signal D 1 approximately 40ms intervals and analyzed by the window width corresponding to.
  • the analysis may be performed with a window width corresponding to a certain light wave number interval (that is, a certain wavelength interval) instead of a certain time interval.
  • the state of the sensor 15 was measured using the OFDR physical quantity measuring device 10D of the present example.
  • the results are shown in FIG.
  • the Bragg reflected light from the sensor 15 is displayed as a spectrogram.
  • the horizontal axis indicates the wavelength
  • the vertical axis indicates the fiber position (fiber length from the position corresponding to the PANDA fiber 18 having the reference reflection end 14)
  • the color tone indicates the Bragg reflection intensity.
  • the Bragg reflected light of 1550.6 nm is from the slow axis of the sensor 15, and the Bragg reflected light of 1550.2 nm is from the fast axis of the sensor 15. Nearly consistent results were obtained at a position of about 19.672 m.
  • Example 1 since Bragg reflected light from two orthogonal polarization axes of the sensor 15 was obtained, it was confirmed that temperature and strain could be measured simultaneously. Accordingly, it was confirmed that a sensor for temperature compensation becomes unnecessary when strain measurement is performed using the OFDR physical quantity measuring device 10D of the present embodiment. In addition, since the position of the sensor 15 can be accurately identified, strain measurement can be performed with high spatial resolution.
  • the sensor 15 is distorted at the reference temperature (20 ° C.), and the strain dependency of the Bragg wavelength change of the slow axis and the fast axis in the sensor 15 is measured. did. Further, by using the present embodiment, a temperature change is given to the sensor 15 at the reference strain (0 ⁇ ), and the temperature change dependency of the Bragg wavelength change of the slow axis and the fast axis in the sensor 15 is measured.
  • the following formula (3) was obtained.
  • ⁇ T and ⁇ are obtained by substituting ⁇ slow and ⁇ fast obtained from the measurement result and the above D into the above equation (2) for calculation. Then, by subtracting the reference temperature and the reference strain from these values, the temperature and strain in the detection unit can be obtained.
  • Comparative Examples 1 and 2 performed for verifying the effect of the present invention will be described. Comparative Examples 1 and 2 are not conventional techniques, but are new techniques implemented to verify the effects of the present invention.
  • Comparative Example 1 An OFDR-type physical quantity measuring device was produced in the same manner as in Example 1 except that the polarization axis offset angle of the fusion splicing part of the incident part and the optical path length adjusting part was set to 0 °. Using the OFDR physical quantity measuring apparatus of Comparative Example 1, the state of the sensor was measured. The results are shown in FIG. From the result of FIG. 7, in this comparative example 1, only Bragg reflected light from the slow axis of the sensor 15 was obtained. It is impossible to simultaneously measure the temperature and strain of the sensor 15 with only Bragg reflected light from one polarization axis. Therefore, when strain measurement is performed using the OFDR-type physical quantity measurement device of Comparative Example 1, a temperature compensation sensor is required.
  • Comparative Example 2 An OFDR physical quantity measuring device was produced in the same manner as in Example 1 except that the polarization axis offset angle of the fusion splicing part of the optical path length adjustment unit was set to 0 °. The state of the sensor was measured using the OFDR type physical quantity measuring apparatus of Comparative Example 2. The results are shown in FIG. From the result of FIG. 8, in Comparative Example 2, Bragg reflected light from the slow axis and the fast axis of the sensor 15 was obtained. Therefore, when strain measurement is performed using the OFDR-type physical quantity measurement device of Comparative Example 2, a sensor for temperature compensation is not required as in Example 1. However, since the position of each Bragg reflected light is different, the position of the sensor 15 cannot be accurately specified, and as a result, distortion measurement cannot be performed with high spatial resolution.
  • the optical interference signal D 2 obtained by the photodiode 13 can be expressed by the following equation (4).
  • the difference from the optical interference signal D 1 obtained in the first embodiment and Example 1 is that the measurement light emitted from the tunable laser 12 in the first and second terms on the right side reciprocates the fiber length difference L 1 .
  • the optical path length to be used is different. This is because the relationship of n slow > n fast always holds between n slow and n fast . That the optical path length of the first term on the right side and the right side second term in equation (4) are different, means having an optical path length Bragg reflected light are different with respect to the fiber length difference L 1 in the slow axis and the fast axis ing. That is, as the result of FIG.
  • the position of the Bragg reflected light from the slow axis of the sensor 15 is about 19.629 m, and the position of the Bragg reflected light from the fast axis of the sensor 15 is about 19.624 m. Therefore, the difference is about 5 mm.
  • This difference can be detected because the optical fiber sensor system using the sensor and the OFDR analysis method has a spatial resolution of 1 mm or less. In other words, other types of optical fiber sensor systems do not have this level of spatial resolution (or there is no means for specifying the position), so this positional shift cannot be detected. That is, it is effective only for the optical fiber sensor system using the FBG sensor and the OFDR analysis method.
  • n slow and n fast were obtained from the wavelength of the Bragg reflected light of the sensor 15 and the grating period calculated from the interval of the diffraction grating of the uniform phase mask used for the production of the sensor 15. Value, value obtained from near field pattern measurement, etc. are used.
  • N slow 1.44756
  • n fast 1.444720.
  • ⁇ slow and ⁇ fast indicate the wavelengths of Bragg reflected light from two orthogonal polarization axes in the sensor 15.
  • indicates a grating period calculated from the diffraction grating spacing of the uniform phase mask.
  • FIG. 10 is a schematic configuration diagram illustrating an OFDR physical quantity measuring apparatus 10E according to the second embodiment.
  • the second embodiment is different from the first embodiment in that the second embodiment is manufactured based on the OFDR physical quantity measuring apparatus 10C of the second embodiment described above. That is, this embodiment is different from the first embodiment in that a first sensor 15a and a second sensor 15b are arranged in a third PM fiber (PANDA fiber) 19, and the first sensor 15a and the first sensor 15b
  • the second optical path length adjusting unit 21b (90 ° offset fusion) is disposed in the middle of the second sensor 15b.
  • the second sensor 15b was provided at a position 5 m from the first sensor 15a.
  • the second optical path length adjustment unit 21b was provided at a position of about 2.5 m from the first sensor 15a and the second sensor 15b.
  • FIG. 11 shows the result of measuring the state of the first sensor 15a
  • FIG. 12 shows the result of measuring the state of the second sensor 15b, using the OFDR physical quantity measuring device 10E of this example.
  • the position of the Bragg reflected light from the slow axis of the first sensor 15a and the position of the Bragg reflected light from the fast axis of the first sensor 15a are both approximately 19.672 m. It was confirmed.
  • the position of the Bragg reflected light from the slow axis of the second sensor 15b and the position of the Bragg reflected light from the fast axis of the second sensor 15b are both approximately 24.757 m and substantially coincide. It was confirmed.
  • Example 3 The third PM fiber 19 provided with the sensor 15 is manufactured in the same manner as in Example 1 except that the third PM fiber 19 is composed of a PANDA fiber having a large effective refractive index difference (birefringence) between the slow axis and the fast axis. This was designated as Example 3.
  • the PANDA fiber having a large birefringence can be realized by placing the stress applying portion 62 close to the core 61 as described with reference to FIG. That is, the birefringence of the PANDA fiber can be arbitrarily adjusted by the arrangement of the stress applying portion 62.
  • the state of the sensor 15 was measured using the OFDR-type physical quantity measuring apparatus of this example. The results are shown in FIG. In the spectrogram shown in FIG. 13, the Bragg reflected light of 1551.1 nm is from the slow axis of the sensor 15, and the Bragg reflected light of 1550.4 nm is from the fast axis of the sensor 15.
  • the Bragg wavelength difference between the slow axis and the fast axis was 0.670 nm.
  • the birefringence calculated from this Bragg wavelength difference was 6.22 ⁇ 10 ⁇ 4 .
  • the Bragg wavelength difference obtained by analyzing the spectrogram of the sensor 15 obtained in Example 1 in more detail is 0.391 nm, and the birefringence calculated from this Bragg wavelength difference is 3.65 ⁇ 10 ⁇ 4. It was. That is, the PANDA fiber constituting the sensor 15 of Example 3 had birefringence nearly twice as large as that of the PANDA fiber constituting the sensor 15 of Example 1.
  • Example 3 the above formula (3) obtained in Example 1 is ⁇ 3.7 ⁇ 10 ⁇ 4 nm / ° C., whereas the above formula (7) obtained in Example 3 is used. Then, it is ⁇ 7.2 ⁇ 10 ⁇ 4 nm / ° C. That is, the sensor 15 of Example 3 had a Bragg wavelength shift characteristic difference with respect to a temperature change nearly twice that of the sensor 15 of Example 1. This is considered to be due to the difference in birefringence of the PANDA fibers constituting each sensor. It is known that the PANDA fiber has a small birefringence generated in the core in proportion to an increase in temperature, and the birefringence becomes almost zero at about 800 to 900 ° C. which is the melting point of the stress applying portion.
  • the sensor 15 of the third embodiment has a shift characteristic difference of the Bragg wavelength with respect to a temperature change that is nearly twice that of the sensor 15 of the first embodiment.
  • the temperature change from the reference temperature (20 ° C.) is 20 ° C., 40 ° C., 100 ° C. (that is, the set temperature is 40 ° C., 60 ° C., 120 ° C.), and the strain change from the reference strain (0 ⁇ ) is 257 ⁇ , 535 ⁇ , 1056 ⁇ .
  • the temperature and strain were measured under a total of nine conditions. As a result, a highly accurate temperature and strain measurement result with a temperature accuracy of 2 ° C. or less and a strain accuracy of 30 ⁇ or less was obtained.
  • the sensor made of FBG used in the OFDR physical quantity measuring apparatus of the present invention is composed of a PANDA fiber having a large birefringence.
  • a detailed study was conducted on the accuracy of simultaneous measurement of temperature change and strain of a sensor made of FBG.
  • the shift characteristic difference of the Bragg wavelength with respect to the temperature change of this sensor is larger than ⁇ 5.0 ⁇ 10 ⁇ 4 nm / ° C. It has been found preferable to have FIG. 14 is a graph showing a result of evaluating the shift characteristic difference of the Bragg wavelength with respect to the temperature change of the birefringence of the PANDA fiber and the temperature sensor of the FBG composed of the fiber. From the results of FIG.
  • the birefringence of the PANDA fiber when the birefringence of the PANDA fiber is 4.4 ⁇ 10 ⁇ 4 or more, the shift characteristic difference of the Bragg wavelength with respect to the temperature change of this sensor is larger than ⁇ 5.0 ⁇ 10 ⁇ 4 nm / ° C. Has characteristics. That is, the birefringence of the PANDA fiber is preferably 4.4 ⁇ 10 ⁇ 4 or more. However, if the stress applying portion is too close to the core in order to increase the birefringence, there is a problem that the manufacturing yield of the PANDA fiber is deteriorated. Therefore, the birefringence of the PANDA fiber is preferably 2.0 ⁇ 10 ⁇ 3 or less which can be manufactured with a high yield.
  • the birefringence is caused by bringing the stress applying portion closer to the core.
  • a large PANDA fiber was used.
  • a PANDA fiber having a stress applying portion having a low melting point can be cited. More specifically, when the melting point of the stress-applying portion is 600 ° C. or less, the Bragg wavelength shift characteristic difference can be made larger than ⁇ 5.0 ⁇ 10 ⁇ 4 nm / ° C.
  • Example 4 A sensor was manufactured in the same manner as in Example 3 except that the sensor length was set to 100 mm. The state of the sensor 15 was measured using the OFDR-type physical quantity measuring device 10F of this example. The results are shown in FIG.
  • the 1549.4 nm Bragg reflected light is from the slow axis of the sensor, and the 1548.7 nm Bragg reflected light is from the sensor fast axis.
  • the wavelength difference of the Bragg reflected light obtained by analyzing this spectrogram in more detail was 0.670 nm. This wavelength difference is equivalent to the sensor of Example 3 having a sensor length of 5 mm. Therefore, the PANDA fiber used for the sensor 15 of the present example with a sensor length of 100 mm has the same birefringence as the PANDA fiber used for the sensor 15 of the third example.
  • FIG. 16 is a diagram schematically showing an experimental system for measuring the temperature distribution and strain generated in the sensor by the OFDR physical quantity measuring apparatus 10F of the present embodiment.
  • the weight W gives a uniform strain along the longitudinal direction of the sensor 15.
  • a non-uniform temperature change can be given along the longitudinal direction of the sensor 15 by the heater A and the heater B which can be controlled in temperature independently.
  • the state of the sensor 15 was measured by the experimental system shown in FIG. 16 using the OFDR physical quantity measuring device 10F of the present example. The results are shown in FIG. At this time, the strain applied to the sensor 15 by the weight W is 1000 ⁇ , the temperature change applied to the sensor 15 by the heater A is 100 ° C., and the temperature change applied to the sensor 15 by the heater B is 60 ° C.
  • the region of the sensor heated by the heater A had a strain of 1000 ⁇ and a Bragg wavelength shift corresponding to a temperature change of 100 ° C.
  • a Bragg wavelength shift corresponding to a strain of 1000 ⁇ and a temperature change of 60 ° C. occurred in the non-heated region between the heater A and the heater B.
  • a Bragg wavelength shift corresponding to only a strain of 1000 ⁇ occurred in the non-heated region between the heater A and the heater B. That is, in this embodiment, by measuring the change amount of the Bragg wavelength between the slow axis and the fast axis of the sensor 15 along the longitudinal direction of the sensor 15, the temperature distribution and strain along the longitudinal direction of the sensor 15 are measured. Was measured simultaneously.
  • the strain applied to the sensor 15 by the weight W is made constant at 1000 ⁇
  • the temperature change applied to the sensor 15 by the heater A is made constant at 100 ° C.
  • the temperature change and distortion in the position of the heater A and the position of the heater B were measured. The result is shown in FIG.
  • the measured strain was constant at 1000 ⁇ .
  • the temperature change was also constant at 100 ° C.
  • the measured strain was constant at 1000 ⁇ , and the measured temperature change was obtained in correlation with the set temperature of the heater B. That is, the temperature distribution and distortion generated at the position of the heater A and the position of the heater B can be simultaneously measured with high accuracy.
  • the present invention can simultaneously measure the temperature distribution and strain along the longitudinal direction of the sensor made of FBG with high accuracy. Further, by using the present invention, even when a temperature distribution and a strain distribution are generated along the longitudinal direction of the FBG sensor, these can be measured simultaneously and with high accuracy.
  • the sensor temperature and strain can be measured simultaneously.
  • the position of the sensor can be specified accurately, and physical quantities can be measured with high spatial resolution.
  • the temperature distribution and strain distribution along the longitudinal direction of the sensor can be measured simultaneously.

Abstract

 本発明の光周波数領域反射測定方式の物理量計測装置は、一端がチューナブルレーザに接続され、他端が偏波保持カプラに接続された第1の偏波保持ファイバと、一端が前記偏波保持カプラに接続され、他端が参照用反射端である第2の偏波保持ファイバと、コアにファイバブラッググレーティングからなるセンサが形成され、一端が前記偏波保持カプラに接続された第3の偏波保持ファイバと、一端が前記偏波保持カプラに接続された第4の偏波保持ファイバと、前記第2の偏波保持ファイバの直交する2つの偏波軸に及び前記第3の偏波保持ファイバの直交する2つの偏波軸の両方に測定光を入射する入射部と、前記第3の偏波保持ファイバに配され、前記センサにおける直交する2つの偏波軸からのブラッグ反射光の光路長を一定にする光路長調整部を備え、前記入射部が、前記第1の偏波保持ファイバ、または、前記第2の偏波保持ファイバと前記第3の偏波保持ファイバとの両方に配されている。

Description

光周波数領域反射測定方式の物理量計測装置、および、これを用いた温度と歪みの同時計測方法
 本発明は、ファイバブラッググレーティング(Fiber Bragg Grating、FBG)センサを、1本の偏波保持(Polarization Maintaining、PM)ファイバに1つまたは複数配置し、このFBGセンサの位置と、FBGセンサの歪みや温度などの物理量を計測する光周波数領域反射測定(Optical Frequency Domain Reflectometry、OFDR)方式の物理量計測装置と、この物理量計測装置を用いた温度と歪みの同時計測方法に関する。
 本願は、2008年2月29日に日本国に出願された特願2008-51343号と、2008年9月18日に日本国に出願された特願2008-239368号とに基づき優先権を主張し、これらの内容をここに援用する。
 光ファイバを用いて温度や歪みなどの物理量を計測するセンサは、長寿命、軽量、細径かつ柔軟性があるため、狭い空間で使用可能である。また、このセンサは、光ファイバが絶縁性を有するため、電磁ノイズに強いといった特性を有している。そのため、このセンサを、橋梁やビルなどの巨大建築物や、旅客機や人工衛星などの航空・宇宙機器などの健全性評価に用いることが期待されている。
 これら構造物の健全性評価を行うためのセンサに求められる性能としては、空間分解能が高いこと、多点のセンサを有すること(検知範囲が広いこと)、及びリアルタイムで計測できることなどが挙げられる。
 これまでにも様々な光ファイバセンサシステムが提案されているが、上記の要求性能を十分に満たす最も有望な光ファイバセンサとしては、FBGセンサとOFDR方式の解析方法とを用いた光ファイバセンサが挙げられる。
 FBGセンサとOFDR方式の解析方法とを用いた光ファイバセンサシステムは、FBGセンサからのブラッグ反射光と参照用の反射端からの反射光との干渉強度の周期的変化を利用して、FBGセンサの位置を特定する。また、この光ファイバシステムは、ブラッグ反射光の波長の変化量から、検知部の歪みや温度を計測する。
 この光ファイバセンサシステムとしては、1mm以下の高い空間分解能を有すること(例えば、非特許文献1参照)、8mの光ファイバに800個のFBGセンサを配置して、4本の光ファイバで計3,000点以上もの歪み計測を同時に行えること(例えば、非特許文献2参照)、計測のリアルタイム性に優れていること(例えば、特許文献1参照)などが開示されている。さらに、非特許文献1によれば、FBGセンサの長手方向の歪み分布(FBGセンサの長手方向に沿った歪み量が不均一であることを意味する)を計測することも可能である。この歪み分布の計測については、特許文献3にも記載されている。
 一方、光ファイバセンサシステムの一般的な問題点としては、温度や歪みなどの物理量が複数項目変化すると、それらの変化量を個別に識別して測定できないことが挙げられる。そのため、例えば、光ファイバセンサシステムを歪みセンサとして使用する場合、検知部の温度変化を歪みの変化として捉えないようにするために、別途、温度補償用のセンサを用いる必要がある。
 この問題を解決する手法としては、PMファイバからなるFBGセンサを用いる方法が挙げられる(例えば、特許文献1参照)。この手法は、PMファイバの一種であるPANDAファイバを用い、このPANDAファイバからなるFBGセンサにおける直交する2つの偏波軸からのブラッグ反射光の波長の変化量を測定することにより、温度と歪みを同時に計測できる方法である。
 すなわち、この手法は、温度補償用のセンサが不要の歪みセンサを実現し得る方法である。
 以上説明した技術を組み合わせて、PMファイバからなるFBGセンサとOFDR方式の解析方法とを用いた光ファイバセンサシステムを使用すれば、高分解能、多点計測、リアルタイム計測、温度と歪みの同時計測を同時に達成できると考えられる。
日本国特許第3740500号公報 日本国特許第3819119号公報 日本国特許第4102291号公報 H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai and I. Yamaguchi, "Distributed Strain Measurement with High Spatial Resolution Using Fiber Bragg Gratings and Optical Frequency Domain Reflectometry" Proceedings OFS-18, ThE40 (2006) B. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten and D. C. Jegley, "Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load test of a composite structure." Proceedings SPIE’s 8th International Symposium on Smart Structure and Materials, Vol. 4332, pp. 133-142 (2001)
 しかしながら、PMファイバからなるFBGセンサとOFDR方式の解析方法とを用いた光ファイバセンサシステムは、これまでに提案されていない。なぜならば、OFDR方式の解析方法により、PMファイバからなるFBGセンサにおける直交する2つの偏波軸からのブラッグ反射光を安定して測定するためには、測定光を、直交する2つの偏波軸に制御性良く分波して、FBGセンサおよび参照用の反射端に伝搬させる必要がある。しかしながら、通常、測定光は単一偏波で出射される。そのため、FBGセンサと参照用の反射端までの光路をPMファイバで構成すると、FBGセンサにおける直交する2つの偏波軸からのブラッグ反射のうち一方は測定できるものの、他方は測定できない。この結果、上述したように直交する2つの偏波軸からのブラッグ反射光を測定することができない。
 単一偏波の測定光を、直交する2つの偏波軸に分波する方法としては、FBGセンサと参照用の反射端までの光路の少なくとも一部をシングルモードファイバで構成する方法が挙げられる。しかしながら、この方法では単一偏波で出射された測定光を、直交する2つの偏波軸に制御性よく分波できないという問題がある。
 また、PMファイバからなるFBGセンサとOFDR方式の解析方法とを用いた光ファイバセンサシステムでは、直交する2つの偏波軸の実効屈折率が異なる。そのため、OFDR方式の解析において2つの偏波軸からのブラッグ反射光の位置が異なるという問題がある。そのため、高分解能でFBGセンサの位置を特定することが難しい。
 OFDR方式の解析では、FBGセンサからのブラッグ反射光と参照用の反射端からの反射光との干渉信号の周期から、FBGセンサの位置を特定する。すなわち、得られた干渉信号に対して適当な光ファイバの実効屈折率を代入して短時間フーリエ変換(Short-time Fourier transform:以下、STFT)解析することにより、FBGセンサの位置(正確には参照用の反射端とFBGセンサのファイバ長差)を求めることができる。ここで、PMファイバからなるFBGセンサでは、直交する2つの偏波軸の実効屈折率が異なるにも関わらず、ある一定の実効屈折率を代入するために、結果として2つの偏波軸からのブラッグ反射光の位置が異なってしまう。
 本発明は、上記事情に鑑みてなされたものであって、FBGセンサを1本のPMファイバに1つまたは複数配置し、このFBGセンサの位置と、FBGセンサの歪みや温度などの物理量をOFDR方式の解析方法で計測する光ファイバセンサシステムにおいて、特に温度と歪みの同時計測が可能で、かつ高い空間分解能で計測することが可能なOFDR方式の物理量計測装置と、この物理量計測装置を用いた温度と歪みの同時計測方法の提供を目的とする。
 本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用した。
 (1)本発明の光周波数領域反射測定方式の物理量計測装置は、測定光を出射するチューナブルレーザと;このチューナブルレーザに一端が接続された第1の偏波保持ファイバと;この第1の偏波保持ファイバの他端に接続された偏波保持カプラと;この偏波保持カプラに一端が接続され、他端が参照用反射端である第2の偏波保持ファイバと;前記偏波保持カプラに一端が接続された第3の偏波保持ファイバと;この第3の偏波保持ファイバのコアに形成されたファイバブラッググレーティングからなるセンサと;前記偏波保持カプラに一端が接続された第4の偏波保持ファイバと;この第4の偏波保持ファイバを介して前記偏波保持カプラと接続され、前記センサからのブラッグ反射光と前記参照用反射端からの参照光とを検出するフォトダイオードと;このフォトダイオードで検出された前記ブラッグ反射光と前記参照光との合波光強度変化に基づき、これらブラッグ反射光及び参照光間の干渉強度の変調を検知する制御部と;前記第2の偏波保持ファイバの直交する2つの偏波軸及び前記第3の偏波保持ファイバの直交する2つの偏波軸の両方に、前記測定光を入射する入射部と;前記第3の偏波保持ファイバに配され、前記センサにおける直交する2つの偏波軸からのブラッグ反射光の光路長を一定にする光路長調整部と;を備え、前記入射部は、前記第1の偏波保持ファイバ、または、前記第2の偏波保持ファイバと前記第3の偏波保持ファイバとの両方に配されている。
 (2)前記入射部は、この入射部が前記第1の偏波保持ファイバに配されている場合には、この第1の偏波保持ファイバに45°の偏波軸オフセット角度を有して形成された融着接続部であり;前記入射部が前記第2の偏波保持ファイバ及び前記第3の偏波保持ファイバの両方に配されている場合には、これら第2の偏波保持ファイバ及び前記第3の偏波保持ファイバのそれぞれに45°の偏波軸オフセット角度を有して形成された融着接続部である;のが好ましい。
 (3)前記光路長調整部は、前記センサが形成された前記第3の偏波保持ファイバに、90°の偏波軸オフセット角度を有して形成された融着接続部であるのが好ましい。
 (4)前記光路長調整部は、前記第2の偏波保持ファイバの長さに相当する位置から前記センサまでのファイバ長の中間に設けられたのが好ましい。
 (5)前記第3の偏波保持ファイバに、前記センサが複数配されているのが好ましい。
 (6)前記光路長調整部が、隣接する前記センサ間のファイバ長の中間にそれぞれ配されているのが好ましい。
 (7)前記第1の偏波保持ファイバから前記第4の偏波保持ファイバのうち、少なくとも前記第3の偏波保持ファイバにおける直交する2つの偏波軸の実効屈折率差が、4.4×10-4以上であるのが好ましい。
 (8)本発明の温度と歪みの同時計測方法は、上記(1)ないし(7)のいずれかに記載の光周波数領域反射測定方式の物理量計測装置を用いて、1つまたは複数の前記センサにおける直交する2つの偏波軸からのブラッグ反射光の波長を計測する工程と;計測した前記ブラッグ反射光の波長に基づいて、前記センサにおける前記ブラッグ反射光の波長の温度と歪みによる変化量を計算する工程と;計算した前記変化量に基づいて、前記センサが配された部位の温度および歪みを同時に計測する工程と;を備える。
 (9)前記第3の偏波保持ファイバの、前記センサが配された部位長手方向に沿った温度分布および歪み分布を算出するのが好ましい。
 上記(1)に記載の光周波数領域反射測定方式の物理量計測装置によれば、偏波保持ファイバのコアに形成したセンサと、このセンサを配置した偏波保持ファイバの直交する2つの偏波軸に測定光を入射するための入射部とを有するので、センサの温度と歪みの同時計測を行える。また、センサの直交する2つの偏波軸からのブラッグ反射光の光路長を一定にするための光路長調整部を有するので、センサの位置を正確に特定でき、高い空間分解能で物理量の計測を行える。
 上記(1)から(7)の何れか1項に記載の光周波数領域反射測定方式の物理量計測装置を用いた上記(8)に記載の温度と歪みの同時計測方法によれば、1つのFBGセンサから歪みと温度を同時に計測できる。さらに、センサの長手方向に沿った温度分布と歪み分布を同時に計測できる。
図1は、本発明の光周波数領域反射測定方式の物理量計測装置の第一の実施形態を示す概略構成図である。 図2は、同実施形態の変形例を示す概略構成図である。 図3は、PANDAファイバを用いた場合の偏波軸角度オフセット融着接続を示す概略斜視図である。 図4は、本発明の光周波数領域反射測定方式の物理量計測装置の第二の実施形態を示す概略構成図である。 図5は、本発明の実施例1の光周波数領域反射測定方式の物理量計測装置を示す概略構成図である。 図6は、同実施例を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図7は、比較例1の光周波数領域反射測定方式の物理量計測装置を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図8は、比較例2の光周波数領域反射測定方式の物理量計測装置を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図9は、同比較例2において、センサのスロー軸とファスト軸からのブラッグ反射光の位置ずれ量を計算した結果を示すグラフである。 図10は、本発明の実施例2の光周波数領域反射測定方式の物理量計測装置を示す概略構成図である。 図11は、同実施例2を用いて、センサ(第1のセンサ)の状態を計測した結果を示すスペクトログラムである。 図12は、同実施例2を用いて、センサ(第2のセンサ)の状態を計測した結果を示すスペクトログラムである。 図13は、本発明の実施例3の光周波数領域反射測定方式の物理量計測装置を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図14は、同実施例3において、PANDAファイバの複屈折とPANDAファイバにより構成されたFBGからなるセンサの温度変化に対するブラッグ波長のシフト特性差の関係を示すグラフである。 図15は、本発明の実施例4の光周波数領域反射測定方式の物理量計測装置を用いて、センサの状態を計測した結果を示すスペクトログラムである。 図16は、同実施例4において、センサに生じる温度分布と歪みを計測するための実験系を模式的に示した図である。 図17は、同実施例4において、ヒータAの位置およびヒータBの位置における温度変化と歪みを計測した結果を示すスペクトログラムである。 図18は、同実施例4において、ヒータAの位置およびヒータBの位置における温度変化と歪みを計測した結果を示すグラフである。
符号の説明
 10A,10B,10C,10D,10E,10F(10) 光周波数領域反射測定方式の物理量計測装置
 11,31,32, 偏波保持カプラ
 12 チューナブルレーザ
 13,35 フォトダイオード
 14,37,38 参照用反射端
 15,15a,15b センサ
 16,17,18,19 偏波保持ファイバ
 20 入射部
 21,21a,21b 光路長調整部
 22 制御部
 41,42,43,44,47,48 PANDAファイバ
 53 システムコントローラ
 54 A/Dコンバータ
 60 (60A,60B) PANDAファイバ
 61 (61A,61B) コア
 62 (62A,62a,62B,62b) 応力付与部
 以下、図面を参照して本発明の光ファイバセンサシステムの実施形態を説明する。
(第一の実施形態)
 図1は、本発明の光周波数領域反射測定(以下、「OFDR」と略す)方式の物理量計測装置の第一の実施形態を示す概略構成図である。
 本実施形態のOFDR方式の物理量計測装置10A(10)は、測定光を出射するチューナブルレーザ12と;このチューナブルレーザ12に一端が接続された第1の偏波保持ファイバ16と;この第1の偏波保持ファイバ16の他端に接続された偏波保持カプラ11と;この偏波保持カプラ11に一端が接続され、他端が参照用反射端14である第2の偏波保持ファイバ18と;偏波保持カプラ11に一端が接続された第3の偏波保持ファイバ19と;この第3の偏波保持ファイバ19のコアに形成されたファイバブラッググレーティングからなるセンサ15と;偏波保持カプラ11に一端が接続された第4の偏波保持ファイバ17と;この第4の偏波保持ファイバ17を介して偏波保持カプラ11と接続され、センサ15からのブラッグ反射光と参照用反射端14からの参照光とを検出するフォトダイオード13と;このフォトダイオード13で検出された前記ブラッグ反射光と前記参照光との合波光強度変化に基づき、これらブラッグ反射光及び参照光間の干渉強度の変調を検知する制御部22と;第2の偏波保持ファイバ18の直交する2つの偏波軸及び第3の偏波保持ファイバ19の直交する2つの偏波軸の両方に、前記測定光を入射する入射部20と;第3の偏波保持ファイバ19に配され、センサ15における直交する2つの偏波軸からのブラッグ反射光の光路長を一定にする光路長調整部21と;から概略構成されている。本実施形態において、偏波保持カプラ11は、第1~第4の偏波保持(以下、「PM」と略す)ファイバと同種のPMファイバで構成されている。
 チューナブルレーザ12としては、チューナブルレーザ12から出射した測定光がセンサ15で反射してフォトダイオード13に入射するまでの光路長よりも長いコヒーレンス長を有するものが好適に用いられる。
 フォトダイオード13としては、チューナブルレーザ12から出射する測定光の波長を変化させた時、2つの反射点、すなわち、参照用反射端14とセンサ15とから得られる光干渉の強度変調を検知できるカットオフ周波数を有するものが好適に用いられる。
 制御部22は、例えばフォトダイオード13からの信号をサンプリングするA/Dコンバータ54と、このサンプリングデータを解析するシステムコントローラ53とを備える。A/Dコンバータ54としては、フォトダイオード13で検知した光干渉の強度変調を検知できるサンプリング周波数を有するものが好適に用いられる。A/Dコンバータ54は、フォトダイオード13で計測したアナログの光干渉信号を、デジタル的にサンプリングする。このデジタル干渉信号は、システムコントローラ53へと伝送される。システムコントローラ53では、このデジタル干渉信号を用いて、STFT(Short Time Fourier Transform;STFT)解析が行なわれる。解析方法に関しては、後述する。このシステムコントローラ53としては、A/Dコンバータ54で得られたデジタル干渉信号をSTFT解析できるものであれば、特に限定されない。システムコントローラ53は、汎用インターフェイスバス(GPIB)を介してチューナブルレーザ12に接続され、チューナブルレーザ12の制御を行なっている。
 入射部20は、第1のPMファイバ16に設けられ、チューナブルレーザ12から単一偏波として出射された測定光を、この第1のPMファイバ16の直交する2つの偏波軸に分波する。入射部20としては、第2のPMファイバ18の直交する2つの偏波軸及び第3のPMファイバ19の直交する2つの偏波軸の両方に、測定光を入射できればよく、図2に示すように、第2のPMファイバ18と第3のPMファイバ19との両方に配されていてもよい。入射部20を1箇所に設けるだけでよい点で、入射部20は、センサ15が形成された第3のPMファイバ19と、参照用反射端14を有する第2のPMファイバ18との分岐部の前段(すなわち、第1のPMファイバ16)に設けられていることが好ましい。
 入射部20としては、λ/2板を挿入する方法、偏波軸角度オフセット融着接続を設ける方法、あるいは、チューナブルレーザ12からの単―偏波の測定光に対して、PMファイバの偏波軸が角度オフセットを有するように、PMファイバを配置し、チューナブルレーザ12からの出射光をPMファイバに結合させる方法など、単一偏波の測定光を、PMファイバの直交する2つの偏波軸に分波できる手段であれば、いかなるものでも用いられる。
 その中でも、簡便である点、測定光を均等に2偏波に分波できる点から、この入射部20としては、この第1のPMファイバ16に45°の偏波軸オフセット角度を有して形成された融着接続(以下、「45°オフセット融着」と言う)であるのが好ましい。
 ここで、偏波軸角度オフセットを有する融着接続とは、PMファイバの一方の偏波軸が、融着点であるオフセット角度を有するように、2つのPMファイバを融着接続することである。PMファイバの一方の偏波軸が、融着点であるオフセット角度を有するということは、直交する他方の偏波軸も同様のオフセット角度を有して2つのPMファイバが融着接続されることを意味する。
 図3は、PMファイバとしてPANDA(Polarization-maintaining and Absorption reducing)ファイバを用いた場合の、45°オフセット融着の様子を模式的に示した図である。
 ここで、PANDAファイバ60とは、ファイバに複屈折を持たせるために、コア61両端のクラッドに、円形の応力付与部62を設けたファイバである。この応力付与部62により、直交する2つの偏波モード間に伝搬定数差(実効屈折率差)が生じる。そのため、それぞれの偏波モードからもう一方への偏波モードへの結合を抑制できる。この直交する2つの偏波モードが伝搬する偏波軸は、スロー軸、ファスト軸と呼ばれ、スロー軸とファスト軸の実効屈折率の差は、複屈折と呼ばれる。
 この2つの応力付与部62とコア61を結んだ直線(すなわち、PANDAファイバ60Aの、2つの応力付与部62A,62aと、コア61Aとを結んだ直線63Aと;PANDAファイバ60Bの、2つの応力付与部62B,62bと、コア61Bとを結んだ直線63Bと;)を、2つのPANDAファイバ60A,60Bの間で所望の偏波軸オフセット角度θとなるように接続することで、所望のオフセット融着接続を実現できる。
 光路長調整部21としては、センサ15における直交する2つの偏波軸からのブラッグ反射光の光路長を一定に調整できれば、いかなるものでも用いられる。例えば、PMファイバに複屈折結晶を挿入する方法や、PMファイバに偏波軸角度オフセットを有する融着接続を設ける方法などが挙げられる。
 光路長調整部21としては、簡便である点、光路長を調整しやすい点から、上記の中でも、90°オフセット融着が好ましい。
 また、光路長調整部21は、センサ15における直交する2つの偏波軸からのブラッグ反射光の光路長を一定にするために、参照用反射端14を有するPMファイバ18の長さに相当する位置からセンサ15までのファイバ長(図1に示すL)の中間に設けられる。光路長調製部21をこの位置に設けることで、センサ15における直交する2つの偏波軸からのブラッグ反射光の光路長を一定にでき、直交する2つの偏波軸からのブラッグ反射光を解析した際に、同じ測定位置にできる。
 この実施形態のOFDR方式の物理量計測装置10Aでは、チューナブルレーザ12とPMカプラ11との間に、チューナブルレーザ12から単一偏波として出射された測定光を、第2のPMファイバ18および第3のPMファイバ19の直交する2つの偏波軸に分岐するための入射部20が設けられている。これにより、センサ15における直交する2つの偏波軸からのブラッグ反射光を得ることができる。この直交する2つの偏波軸からのブラッグ反射光の波長の変化により、センサ15が配された部位の温度および歪みを同時に計測できる。その結果として、温度補償用を別途必要としない歪みセンサを実現できる。
 また、このOFDR方式の物理量計測装置10Aでは、参照用反射端14を有する第2のPMファイバ18の長さに相当する位置からセンサ15までのファイバ長の中間に、光路長調整部21が設けられている。これにより、センサ15における直交する2つの偏波軸からのブラッグ反射光の光路長を一定にできる。すなわち、センサ15からのブラッグ反射光と参照用反射端14からの反射光との干渉信号をSTFT解析すると、直交する2つの偏波軸からのブラッグ反射光は同じ位置となる。
 さらに、このOFDR方式の物理量計測装置10Aを用いて、センサ15における直交する2つの偏波軸からのブラッグ反射光の波長における温度と歪みによる変化量を計測することにより、検知部の温度および歪みを同時に計測できる。
<センサの位置特定方法>
 次に、本実施形態のOFDR方式の物理量計測装置10Aを用いたセンサ15の位置特定方法について説明する。第1~第4のPMファイバとして、PANDAファイバを用いた場合を例示する。
 本実施形態のOFDR方式の物理量計測装置10Aでは、フォトダイオード13に、センサ15からのブラッグ反射光と参照用反射端14からの反射光との干渉光が入射する。フォトダイオード13に入射するこの光干渉信号Dは、直交する2つの偏波軸の信号の和となり、下記の式(1)で表される。
Figure JPOXMLDOC01-appb-I000001
 上記の式(1)において、RslowとRfastはPANDAファイバの直交する2つの偏波軸からの干渉光の強度、すなわち、スロー軸(X軸)とファスト軸(Y軸)からの干渉光強度を示す。kは波数、nslowとnfastはスロー軸(X軸)とファスト軸(Y軸)の実効屈折率を示す。Lは第2のPANDAファイバ(PMファイバ)18におけるPMカプラ11から参照用反射端14までの長さと、第3のPANDAファイバ(PMファイバ)19におけるPMカプラ11からセンサ15までの長さとの差(ファイバ長差)を示す。つまりLは、図1に示すように、第3のPANDAファイバ19において、参照用反射端14を有するPA第2のPANDAファイバ18の長さに相当する位置からセンサ15までのファイバ長を示している。
 本実施形態のOFDR方式の物理量計測装置10Aを用いて上記Dを求め、得られた光干渉信号Dを、システムコントローラ53にてSTFT解析する。ここで、式(1)における右辺第1項および第2項における(nslow+nfast)Lは、チューナブルレーザ12から出射した測定光がファイバ長差Lを往復する光路長を示す。つまり、第3のPANDAファイバにおけるLに相当する光路長は、(nslow+nfast)Lの半分に相当する{(nslow+nfast)/2}Lとなる。
 なお、本発明の物理量計測装置では、フォトダイオード13において計測した上記式(1)に相当するアナログの光干渉信号を、制御部22に備えたA/Dコンバータ54にてデジタル的にサンプリングし、このデジタル干渉信号を、制御部22に備えたシステムコントローラ53にてSTFT解析するが、本文においては、フォトダイオード13において計測した光干渉信号を制御部22に備えたシステムコントローラ53にてSTFT解析すると略記する場合も、同様の処理をおこなっていることを意味する。前記のとおり、A/Dコンバータ54は、フォトダイオード13で検知した光干渉の強度変調を検知できるサンプリング周波数を有するので、アナログの光干渉信号とサンプリングしたデジタル干渉信号とは、原理的には同じ信号である。また、アナログの光干渉信号を示す数式を用いることで、より効果的に本発明の特徴を説明できる箇所は、光干渉信号を用いて説明する。
 次いで、本実施形態のOFDR方式の物理量計測装置10Aでは、得られた光路長{(nslow+nfast)/2}Lに対して、既知のnslowとnfastを代入してLを求める。
 このnslowとnfastとしては、センサ15からのブラッグ反射光の波長と、センサ15の作製に使用したユニフォーム位相マスクの回折格子の間隔から計算されるグレーティング周期とから求めた値や、ニアフィールドパターン測定から求めた値などを用いることができる。ここで、式(1)における右辺第1項と右辺第2項の光路長が一定であるということは、スロー軸とファスト軸におけるブラッグ反射光がファイバ長差Lに対して同じ光路長を持つことを意味している。
 本実施形態では、このようにしてセンサ15における直交する2つの偏波軸からブラッグ反射光が得られる。そのため、温度と歪みを同時に計測が可能となる。これにより、本実施形態のOFDR方式の物理量計測装置10Aを用いて歪み計測を行なう場合、温度補償用のセンサが不要となる。また、スロー軸とファスト軸におけるブラッグ反射光が、ファイバ長差Lに対して同じ光路長を持つため、センサ15の位置を正確に特定でき、高い空間分解能で歪み計測が可能となる。
<温度と歪みの計測方法>
 次に、本実施形態のOFDR方式の物理量計測装置10Aを用いた温度と歪みの計測方法について説明する。この計測方法は、センサ15の直交する2つの偏波軸からのブラッグ反射光の波長のシフト量から、計算により温度と歪みを求める方法である。
 まず、予めある基準温度(例えば、20℃)、基準歪み(例えば、0με)におけるセンサ15の直交する2つの偏波軸からのブラッグ反射光の波長を計測しておく。
 次いで、センサ15を検知したい場所(以下、「検知部」と言う)に配置し、この検知部において、センサ15の直交する2つの偏波軸からのブラッグ反射光の波長を計測する。
 次いで、検知部におけるブラッグ反射光の波長と、基準温度、基準歪みでのブラッグ反射光の波長差(変化量)を計算する。
 次いで、得られた波長差を、下記の式(2)に代入して、検知部における温度と基準温度の差、検知部における歪みと基準歪みの差を求め、最後に既知の基準温度、基準歪みから検知部における実温度と実歪みを算出する。
Figure JPOXMLDOC01-appb-I000002
 上記の式(2)において、ΔTは検知部における温度と基準温度の差、Δεは検知部における歪みと基準歪みの差を示す。Tは検知部における温度、εは検知部における歪みを示す。λslowとλfastは検知部におけるセンサ15の直交する2つの偏波軸からのブラッグ反射光の波長を示す。ΔλslowとΔλfastは検知部におけるセンサ15の直交する2つの偏波軸からのブラッグ反射光の波長と、基準温度、基準歪みにおけるセンサ15の直交する2つの偏波軸からのブラッグ反射光の波長との差を示す。∂λslow/∂εと∂λfast/∂εは、単位歪み当たりのスロー軸およびファスト軸のブラッグ波長シフト量を示す。∂λslow/∂Tと∂λfast/∂Tは、単位温度当たりのスロー軸およびファスト軸のブラッグ波長シフト量を示す。
 上記単位歪みあるいは単位温度あたりのブラッグ波長のシフト量は、OFDR方式の物理量計測装置10Aを用い、基準温度(20℃)においてセンサ15に歪みを与え、センサ15におけるスロー軸とファスト軸のブラッグ波長変化の歪み依存性を測定し、基準歪み(0με)においてセンサ15に温度変化を与え、センサ15におけるスロー軸とファスト軸のブラッグ波長変化の温度依存性を測定することで求められる。
 次いで、これら∂λslow/∂ε、∂λfast/∂ε、∂λslow/∂T、∂λfast/∂Tの値から、上記式(2)に記載のD値を求める。そして、このD値と、計測結果から得られたΔλslow及びΔλfastとを、上記の式(2)に代入して演算を行うことにより、ΔTおよびΔεが求められる。そして、これらの値から基準温度、基準歪みを差し引けば検知部における温度および歪みを求められる。
 これらの演算は、OFDR方式の物理量計測装置10Aのシステムコントローラ53を用いて簡単に行える。
(第二の実施形態)
 図4は、本発明のOFDR方式の物理量計測装置の第二の実施形態を示す概略構成図である。本実施形態のOFDR方式の物理量計測装置10C(10)が、上述の第一の実施形態と異なる点は、第3のPMファイバ19に、センサ15が複数(図示例では、2つのセンサ15a,15b)配されている点である。
 また、この実施形態のOFDR方式の物理量計測装置10Cでは、隣接するセンサ(第1のセンサ15a,第2のセンサ15b)間のファイバ長の中間に、第2の光路長調整部21b(21)が更に配されている。そのため、第1のセンサ15aと第2のセンサ15bにおける、直交する2つの偏波軸からのブラッグ反射光の光路長を、それぞれ一定にできる。すなわち、第1のセンサ15aと第2のセンサ15bのからのブラッグ反射光と参照用反射端からの反射光との干渉信号をSTFT解析すると、これらの直交する2つの偏波軸からのブラッグ反射光は、第1のセンサ15a及び第2のセンサ15bに固有の位置において、それぞれ同じ位置として検出される。その結果、個々のセンサ15a,15bの位置を正確に特定できる。
 本実施形態のOFDR方式の物理量測定装置10Cを用いた場合も、上述した第一の実施形態の際と同様に、センサ15の位置の特定や温度と歪みの計測が行なえる。本実施形態では、第3のPMファイバ19に2つのセンサ15(第1のセンサ15aおよび第2のセンサ15b)が設けられた場合を例示したが、本実施形態のOFDR方式の物理量計測装置はこれに限定されない。本実施形態のOFDR方式の物理量計測装置にあっては、第3のPMファイバ19に3つ以上のセンサ15が設けられていてもよい。この場合であっても、2つのセンサ15が設けられている本実施形態と同様に、センサ15毎に、その直交する2つの偏波軸からのブラッグ反射光を同じ位置として検出することができる。すなわち、第3のPMファイバ19に3つ以上のセンサ15が設けられていても、それぞれのセンサ15の位置を正確に特定でき、高い空間分解能で歪み計測を行える。
(第三の実施形態)
 上述した第一の実施形態~第二の実施形態に関するOFDR方式の物理量測定装置10に関し、センサ15が配された第3のPMファイバ19が、直交する2つの偏波軸の実効屈折率差(複屈折)が大きいPMファイバで構成されているのが好ましい。
 これにより、直交する2つの偏波軸における温度と歪みに対する感度差が大きくなり、より高精度の温度と歪みの同時計測を実現できる。より具体的には、直交する2つの偏波軸の実効屈折率差が、4.4×10-4以上であるのが好ましい。この値を満たすことで、後述する実施例から得られるように、センサの温度変化に対するブラッグ波長のシフト特性差を-5.0×10-4nm/℃より大きくできる。その結果、温度精度2℃、歪み精度30μεという、極めて高精度の温度と歪みの計測精度が得られる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
「実施例1」
 図5は、実施例1のOFDR方式の物理量計測装置10Dを示す概略構成図である。本実施例は、上述した第一の実施形態のOFDR方式の物理量計測装置10Aを基に構成している。図5において、図1に示した第一の実施形態のOFDR方式の物理量計測装置10Aの構成要素と同じ構成要素には同一符号を付して、その説明を省略する。
 実施例1のOFDR方式の物理量計測装置10Dは、図1に示すOFDR方式の物理量計測装置10Aに、更に2つのPMカプラ31,32と、フォトダイオード35と、2つの参照用反射端37,38と、を備える。これらはPMファイバの1種であるPANDAファイバ41,42,43,44,47,48によって連設されている。また、第1~第4のPMファイバ及びPMカプラ11にも、PANDAファイバを用いた。
 チューナブルレーザ12は、汎用インターフェイスバス(GPIB)を介して、システムコントローラ53に接続し、これにより制御を行なった。
 2つのフォトダイオード13,35からの信号は、A/Dコンバータ54によりサンプリングされ、そのサンプリングデータはシステムコントローラ53にてSTFT解析される。この解析方法に関しては、上述した第一の実施形態で記載した通りである。
 PMカプラ11,31,32としては、フジクラ社製のPTAP-0150-2-B(型式)を用いた。
 チューナブルレーザ12としては、Agilent社製の8164A(型式)を用いた。
 フォトダイオード13,35としては、New Focus社製の2117FC(型式)を用いた。
 PANDAファイバ17,18,19,20,41,42,43,44,47,48としては、フジクラ社製のSM-15-PS-U25A(型式)を用いた。
 システムコントローラ53としては、National Instruments社製のPXI-8106(型式)を用いた。
 A/Dコンバータ54としては、National Instruments社製のPXI-6115(型式)を用いた。
 チューナブルレーザ12は、ある一定速度、ある一定波長範囲で掃引(単調増加もしくは単調減少)された単一偏波の測定光を出射する。
 この実施例1では、速度10nm/sで、波長範囲1545~1555nmを掃引した測定光を出射した。
 チューナブルレーザ12から出射された単―偏波の測定光は、PANDAファイバ41のスロー軸を伝搬してPMカプラ31に入射される。そして、このPMカプラ31にて光パワー分岐されて2つの光干渉計に入射する。
 上記2つの光干渉計のうちの一方は、PMカプラ32と、参照用反射端37,38と、フォトダイオード35とから概略構成されている。この一方の光干渉計では、参照用反射端37を有するPANDAファイバ47と、参照用反射端38を有するPANDAファイバ48とのファイバ長差(光路長差)に応じたトリガを生成している。この実施例1では、PANDAファイバ47とPANDAファイバ48のファイバ長差を50mとした。
 このトリガは、以下の方法で生成する。
 チューナブルレーザ12からある一定速度、ある一定波長範囲で掃引された測定光が、この光干渉計に入射すると、測定光は参照用反射端37,38によって反射され、その干渉光がフォトダイオード35で計測される。フォトダイオード35で取得した信号は、A/Dコンバータ54によりサンプリングされて電圧信号に変換される。この電圧信号は、システムコントローラ53に取り込まれる。チューナブルレーザ12から出射された測定光は、―定速度で波長が変化している。そのため、フォトダイオード35で計測される信号は、一定の光波数間隔で変動する正弦関数となる。したがって、ある一定の電圧値を閾値とし、システムコントローラ53にて、この閾値を超えるタイミング(閾値以下の値から閾値を上回るタイミング、もしくは、閾値以上の値から閾値を下回るタイミング)でトリガを生成することにより、生成されたトリガはある一定の光波数間隔となる。
 このトリガの生成方法は、チューナブルレーザ12の掃引速度が一定でない場合でも、トリガが発生する光波数間隔は常に一定となる点で非常に効果的である。
 上記2つの光干渉計のうちの他方は、図1に示す第一の実施形態から概略構成されている。
 センサ15は、KrFエキシマレーザとユニフォーム位相マスクを用いた一般的な露光方法により作製した。この実施例1では、グレーティング長(センサ長)を5mmとした。また、参照用反射端14を有するPANDAファイバ14に相当する位置からセンサ15までの距離Lは、約20mとした。さらに、Lの中間位置、すなわち、参照用反射端14を有するPANDAファイバ18の長さに相当する位置から約10mの位置に、光路長調整部21として、90°オフセット融着を設けた。入射部20としては、PANDAファイバ16に45°オフセット融着を設けた。
 次いで、得られた光干渉信号Dを、システムコントローラ53にてSTFT解析する。このときの光干渉信号Dは、第一の実施形態と同じく式(1)で表せる。この実施例1では、得られた光干渉信号Dを約40ms間隔(チューナブルレーザ12を10nm/sの速度で、波長に換算すると約400pm間隔)に相当するウィンドウ幅で解析した。チューナブルレーザ12の掃引速度が一定でない場合、ある一定の時間間隔ではなく、ある一定の光波数間隔(つまり、ある一定の波長間隔)に相当するウィンドウ幅で解析してもよい。
 本実施例のOFDR方式の物理量計測装置10Dを用いて、センサ15の状態を計測した。結果を図6に示す。
 OFDR方式の物理量計測装置10Dでは、センサ15からのブラッグ反射光をスペクトログラムで表示する。このスペクトログラムは、横軸が波長、縦軸がファイバ位置(参照用反射端14を有するPANDAファイバ18に相当する位置からのファイバ長)、色調がブラッグ反射強度を示す。
 図6に示すスペクトログラムにおいて、1550.6nmのブラッグ反射光がセンサ15のスロー軸からのものであり、1550.2nmのブラッグ反射光がセンサ15のファスト軸からのものであると考えられ、それぞれの位置が約19.672mでほぼ一致する結果が得られた。
 この実施例1では、センサ15の直交する2つの偏波軸からのブラッグ反射光が得られたので、温度と歪みを同時に計測できることが確認された。これにより、本実施例のOFDR方式の物理量計測装置10Dを用いて歪み計測を行う場合、温度補償用のセンサが不要となることが確認された。また、センサ15の位置を正確に特定できるので、高い空間分解能で歪み計測を行える。
 次に、本実施例のOFDR方式の物理量計測装置10Dを用いて、基準温度(20℃)においてセンサ15に歪みを与え、センサ15におけるスロー軸とファスト軸のブラッグ波長変化の歪み依存性を測定した。また、本実施例を用い、基準歪み(0με)においてセンサ15に温度変化を与え、センサ15におけるスロー軸とファスト軸のブラッグ波長変化の温度変化依存性を測定することで、センサ15における上記の式(2)の各項を求めたところ、下記の式(3)が得られた。この式(3)を用いて計算すると、上記の式(2)におけるD値は、D=-9.1515×10-7(nm/με・℃)となった。
Figure JPOXMLDOC01-appb-I000003
 計測結果から得られたΔλslowとΔλfast及び上記のDを上記の式(2)に代入して演算を行うことにより、ΔTおよびΔεが求められる。そして、これらの値から基準温度、基準歪みを差し引けば検知部における温度および歪みを求められる。
 次に、本発明の効果を検証するために行った比較例1、2について説明する。この比較例1、2は従来技術ではなく、本発明の効果を検証するために実施した新たな技術である。
「比較例1」
 入射部及び光路長調整部の融着接続部の偏波軸オフセット角度を0°としたこと以外は実施例1と同様としてOFDR方式の物理量計測装置を作製し、これを比較例1とした。この比較例1のOFDR方式の物理量計測装置を用いて、センサの状態を計測した。結果を図7に示す。
 図7の結果から、この比較例1では、センサ15のスロー軸からのブラッグ反射光しか得られなかった。一方の偏波軸からのブラッグ反射光だけでは、センサ15の温度と歪みを同時に計測することは不可能である。したがって、比較例1のOFDR方式の物理量計測装置を用いて歪み計測を行う場合、温度補償用のセンサが必要となる。
「比較例2」
 光路長調整部の融着接続部の偏波軸オフセット角度を0°としたこと以外は実施例1と同様としてOFDR方式の物理量計測装置を作製し、これを比較例2とした。この比較例2のOFDR方式の物理量計測装置を用いて、センサの状態を計測した。結果を図8に示す。
 図8の結果から、比較例2では、センサ15のスロー軸およびファスト軸からのブラッグ反射光が得られた。そのため、比較例2のOFDR方式の物理量計測装置を用いて歪み計測を行う場合、実施例1と同じく、温度補償用のセンサが不要となる。しかしながら、それぞれのブラッグ反射光の位置が異なるため、センサ15の位置を正確に特定できず、結果として高い空間分解能で歪み計測を行うことができなかった。
 この比較例2では、フォトダイオード13で得られる光干渉信号Dは、下記の式(4)で表せる。
Figure JPOXMLDOC01-appb-I000004

 第一の実施形態および実施例1で得られる光干渉信号Dと異なるのは、右辺第1項および第2項における、チューナブルレーザ12から出射した測定光が、ファイバ長差Lを往復する光路長が異なる点である。なぜなら、nslowとnfastには、nslow>nfastの関係が常に成り立つためである。式(4)における右辺第1項と右辺第2項の光路長が異なるということは、スロー軸とファスト軸におけるブラッグ反射光がファイバ長差Lに対して異なる光路長を持つことを意味している。すなわち、図8の結果が示すようにそれぞれのブラッグ反射光の位置が異なる。
 これは、STFT解析の際、直交する2つの偏波軸の信号に対して、それぞれ別々の実効屈折率(nslowとnfast)を用いなければいけないにもかかわらず、これらの信号は合波されてフォトダイオード13にて光干渉信号Dとして計測されるので、ある一定の実効屈折率(比較例2ではnslowを用いた)で計算せざるをえないためである。
 図8に示すスペクトログラムにおいて、センサ15のスロー軸からのブラッグ反射光の位置は約19.629m、センサ15のファスト軸からのブラッグ反射光の位置は約19.624mである。したがって、その差は約5mmである。
 この差は、センサとOFDR方式の解析方法とを用いた光ファイバセンサシステムが1mm以下の空間分解能を有するために検出できるものである。言い換えれば、他の方式の光ファイバセンサシステムではこの水準の空間分解能を持たない(あるいは、位置を特定する手段がない)ので、この位置ずれを検出できない。つまり、FBGセンサとOFDR方式の解析方法を用いた光ファイバセンサシステムのみに有効な手段である。
 次に、センサ15のスロー軸とファスト軸からのブラッグ反射光の位置ずれ量Δlを計算した。結果を図9に示す。この図9は、下記の式(5)より求めた。
 
Figure JPOXMLDOC01-appb-I000005
 但し、このとき、センサ15の長さはLに対して十分に短く、無視できるものとする。
 上記の式(5)において、nslowとnfastは、センサ15のブラッグ反射光の波長と、センサ15の作製に使用したユニフォーム位相マスクの回折格子の間隔から計算されるグレーティング周期とから求めた値、ニアフィールドパターン測定から求めた値などを用いる。
 この比較例2では、下記の式(6)より、センサ15のブラッグ反射光の波長と、センサ15の作製に使用したユニフォーム位相マスクの回折格子の間隔から計算されるグレーティング周期とから求めた値、nslow=1.44756、nfast=1.44720を用いた。
Figure JPOXMLDOC01-appb-I000006
 上記の式(6)において、λslowとλfastはセンサ15における直交する2つの偏波軸からのブラッグ反射光の波長を示す。Λはユニフォーム位相マスクの回折格子の間隔から計算されるグレーティング周期を示す。
 図9の結果から、ファイバ長差L、すなわち、基準となる位置からセンサ15までの距離が20mの時、センサ15のスロー軸とファスト軸からのブラッグ反射光の位置ずれ量は約5mmと計算されている。したがって、比較例2の実験結果と良く一致していることが確認された。
 この計算結果によれば、FBGセンサとOFDR方式の解析方法を用いた光ファイバセンサシステムの空間分解能を1mmとした場合、基準となる位置からセンサ15までの距離が4m以上になると、センサ15におけるスロー軸とファスト軸からのブラッグ反射光の位置ずれが明瞭に確認されると考えられる。
 つまり、基準となる位置からFBGセンサまでの距離が4m以上であるとき、本発明は極めて有効となることが分かった。
「実施例2」
 図10は、実施例2のOFDR方式の物理量計測装置10Eを示す概略構成図である。本実施例2が実施例1と異なる点は、上述した第二の実施形態のOFDR方式の物理量計測装置10Cを基に作製した点である。すなわち、本実施例が実施例1と異なる点は、第3のPMファイバ(PANDAファイバ)19に、第1のセンサ15aと第2のセンサ15bとが配され、この第1のセンサ15aと第2のセンサ15bとの中間には、第2の光路長調整部21b(90°オフセット融着)が配されている点である。第2のセンサ15bは、第1のセンサ15aから5mの位置に設けた。第2の光路長調整部21bは、第1のセンサ15aと第2のセンサ15bとから約2.5mの位置に設けた。
 本実施例のOFDR方式の物理量計測装置10Eを用いて、第1のセンサ15aの状態を計測した結果を図11に、第2のセンサ15bの状態を計測した結果を図12に示す。
 図11の結果から、第1のセンサ15aのスロー軸からのブラッグ反射光の位置と、第1のセンサ15aのファスト軸からのブラッグ反射光の位置とは、ともに約19.672mでほぼ一致することが確認された。
 図12の結果から、第2のセンサ15bのスロー軸からのブラッグ反射光の位置と、第2のセンサ15bのファスト軸からのブラッグ反射光の位置とは、ともに約24.757mでほぼ一致することが確認された。
 以上の結果から、複数のセンサが配された場合であっても、隣接するこれらセンサの中間にそれぞれ光路長調製部(90°オフセット融着)を設けることにより、FBGセンサ毎に、その直交する2つの偏波軸からのブラッグ反射光を同じ位置にできることが確認された。
「実施例3」
 センサ15が配された第3のPMファイバ19が、スロー軸とファスト軸の実効屈折率差(複屈折)が大きいPANDAファイバで構成されていること以外は、実施例1と同様に作製し、これを実施例3とした。
 この複屈折が大きいPANDAファイバは、図3を用いて説明すると、応力付与部62の配置をコア61に近づけることで実現できる。すなわち、応力付与部62の配置により、PANDAファイバの複屈折を任意に調整できる。
 本実施例のOFDR方式の物理量測定装置を用いて、センサ15の状態を計測した。結果を図13に示す。
 図13に示すスペクトログラムにおいて、1551.1nmのブラッグ反射光がセンサ15のスロー軸からのものであり、1550.4nmのブラッグ反射光がセンサ15のファスト軸からのものである。
 実施例3において得られたセンサ15のスペクトログラムをより詳細に解析したところ、スロー軸とファスト軸のブラッグ波長差は0.670nmであった。また、このブラッグ波長差から計算した複屈折は6.22×10-4であった。実施例1において得られたセンサ15のスペクトログラムをより詳細に解析して得られたブラッグ波長差は0.391nmであり、このブラッグ波長差から計算した複屈折は3.65×10-4であった。すなわち、実施例3のセンサ15を構成するPANDAファイバは、実施例1のセンサ15を構成するPANDAファイバよりも2倍近く大きな複屈折を持っていた。
 次に、本実施例を用い、基準温度(20℃)においてセンサ15に歪みを与え、センサ15におけるスロー軸とファスト軸のブラッグ波長変化の歪み依存性を測定した。また、本実施例を用い、基準歪み(0με)においてセンサ15に温度変化を与え、センサ15におけるスロー軸とファスト軸のブラッグ波長変化の温度変化依存性を測定することで、センサ15における上記の式(2)の各項を求めたところ、下記の式(7)が得られた。この式を用いて計算すると、上記の式(2)におけるD値は、D=-10.908×10-7(nm/με・℃)となった。
Figure JPOXMLDOC01-appb-I000007
 上記の式(2)を用いて温度と歪みを算出する際、∂λslow/∂εと∂λfast/∂εの差(スロー軸とファスト軸の歪みに対するブラッグ波長のシフト特性差)、および、∂λslow/∂Tと∂λfast/∂Tの差(スロー軸とファスト軸の温度変化に対するブラッグ波長のシフト特性差)が大きいほど、温度と歪みの算出精度は向上する。実施例3で得られた上記の式(7)において注目すべき点は、実施例1で得られた上記の式(3)と比較して、スロー軸とファスト軸の温度変化に対するブラッグ波長のシフト特性差が大きい点である。
 具体的には、実施例1で得られた上記の式(3)では-3.7×10-4nm/℃であるのに対して、実施例3で得られた上記の式(7)では-7.2×10-4nm/℃である。すなわち、実施例3のセンサ15は、実施例1のセンサ15よりも2倍近い温度変化に対するブラッグ波長のシフト特性差を有していた。
 これは、それぞれのセンサを構成するPANDAファイバの複屈折の差に起因していると考えられる。PANDAファイバは、温度の上昇に比例してコアに生じる複屈折が小さくなり、応力付与部の融点である800~900℃程度で複屈折がほぼ0になることが知られている。つまり、基準温度における複屈折が大きいほど、単位温度上昇当たりの複屈折の減少量が大きくなる。したがって、実施例3のセンサ15は、実施例1のセンサ15よりも2倍近い温度変化に対するブラッグ波長のシフト特性差を有する。
 次に、実施例3のセンサ15に任意の温度変化と歪みを与え、実施例3のOFDR方式の物理量計測装置により温度変化と歪みを計測した。この結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000008
 基準温度(20℃)からの温度変化を20℃、40℃、100℃(すなわち、設定温度を40℃、60℃、120℃)、基準歪み(0με)からの歪み変化を257με、535με、1056μεとし、合計9通りの条件で温度と歪みを計測した。その結果、温度精度2℃以下、歪み精度30με以下という、極めて高精度の温度と歪みの同時計測結果が得られた。
 以上説明したように、実施例3によれば、本発明のOFDR方式の物理量計測装置に用いるFBGからなるセンサは、複屈折の大きなPANDAファイバから構成されることが好ましい。FBGからなるセンサの温度変化と歪みの同時計測精度について詳細な検討を行ったところ、このセンサの温度変化に対するブラッグ波長のシフト特性差が-5.0×10-4nm/℃より大きなシフト特性を有することが好ましいことが分かった。
 図14は、PANDAファイバの複屈折とこのファイバにより構成されたFBGからなるセンサの温度変化に対するブラッグ波長のシフト特性差を評価した結果を示すグラフである。
 図14の結果から、PANDAファイバの複屈折が4.4×10-4以上のとき、このセンサの温度変化に対するブラッグ波長のシフト特性差が-5.0×10-4nm/℃より大きなシフト特性を有する。すなわち、PANDAファイバの複屈折が4.4×10-4以上であることが好ましい。しかしながら、複屈折を大きくするために応力付与部をコアに近づけ過ぎると、PANDAファイバの製造歩留まりが悪くなるという問題がある。ゆえに、PANDAファイバの複屈折は、歩留まりよく製造できる2.0×10-3以下であることが好ましい。
 なお、本実施例では、FBGからなるセンサの温度変化に対するブラッグ波長のシフト特性差を-5.0×10-4nm/℃より大きくするために、応力付与部をコアに近付けて複屈折が大きいPANDAファイバを用いた。本発明を実現し得る他のPANDAファイバとして、融点の低い応力付与部を備えたPANDAファイバが挙げられる。より具体的には、応力付与部の融点が600℃以下である場合、ブラッグ波長のシフト特性差を-5.0×10-4nm/℃より大きくできる。
「実施例4」
 センサ長を100mmとしたこと以外は、実施例3と同様に作製し、これを実施例4とした。本実施例のOFDR方式の物理量計測装置10Fを用いて、センサ15の状態を計測した。結果を、図15に示す。
 図15に示すスペクトログラムにおいて、1549.4nmのブラッグ反射光がセンサのスロー軸からのものであり、1548.7nmのブラッグ反射光がセンサのファスト軸からのものである。
 このスペクトログラムをより詳細に解析して得られたブラッグ反射光の波長差は、0.670nmであった。この波長差は、センサ長が5mmの実施例3のセンサと同等である。したがって、センサ長を100mmとした本実施例のセンサ15に用いたPANDAファイバは、実施例3のセンサ15に用いたPANDAファイバと同等の複屈折である。
 図16は、本実施例のOFDR方式の物理量計測装置10Fにより、センサに生じる温度分布と歪みを計測するための実験系を模式的に示した図である。
 この実験系では、分銅Wにより、センサ15の長手方向に沿って均一な歪みを与えている。また、この実験系では、独立して温度制御可能なヒータA及びヒータBにより、センサ15の長手方向に沿って不均一な温度変化を与えることができる。
 本実施例のOFDR方式の物理量計測装置10Fを用いて、図16に示す実験系によりセンサ15の状態を計測した。結果を、図17に示す。このとき、分銅Wによりセンサ15に与えた歪みは1000με、ヒータAによりセンサ15に与えた温度変化は100℃、ヒータBによりセンサ15に与えた温度変化は60℃である。
 図17に示すように、ヒータAにより加熱されたセンサの領域は、1000μεの歪みと、100℃の温度変化に相当するブラッグ波長シフトが生じていた。一方、ヒータBにより加熱されたセンサの領域では、1000μεの歪みと60℃の温度変化に相当するブラッグ波長シフトが生じていた。また、ヒータAとヒータBとの間にある非加熱領域は、1000μεの歪みのみに相当するブラッグ波長シフトが生じていた。つまり、この本実施例では、センサ15のスロー軸とファスト軸のブラッグ波長の変化量を、センサ15の長手方向に沿って計測することで、このセンサ15の長手方向に沿った温度分布と歪みを同時に計測できた。
 次に、図16に示す実験系において、分銅Wによりセンサ15に与えた歪みを1000μεで一定とし、ヒータAによりセンサ15に与えた温度変化を100℃で一定とし、ヒータBによりセンサ15に与えた温度変化のみを0~100℃に変化させた。そして、ヒータAの位置およびヒータBの位置における温度変化と歪みを計測した。この結果を図18に示す。
 図18に示すように、ヒータAの位置では、計測した歪みは、1000μεで一定であった。また、温度変化に関しても100℃で一定であった。一方、ヒータBの位置では、計測した歪みは1000μεで一定であり、計測した温度変化は、ヒータBの設定温度と相関して変化する結果が得られた。つまり、ヒータAの位置とヒータBの位置とに生じている温度分布と歪みを高精度に同時計測できていた。
 以上説明したとおり、本実施例によると、本発明は、FBGからなるセンサの長手方向に沿った温度分布と歪みを同時にかつ高精度に計測できる。また、本発明を用いることで、FBGからなるセンサの長手方向に沿って、温度分布と歪み分布が生じる場合でも、これらを同時にかつ高精度に計測できる。
 本発明のOFDR方式の物理量計測装置によれば、センサの温度と歪みの同時計測を行える。また、センサの位置を正確に特定でき、高い空間分解能で物理量の計測を行える。さらに、センサの長手方向に沿った温度分布と歪み分布を同時に計測できる。

Claims (9)

  1.  測定光を出射するチューナブルレーザと;
     このチューナブルレーザに一端が接続された第1の偏波保持ファイバと;
     この第1の偏波保持ファイバの他端に接続された偏波保持カプラと;
     この偏波保持カプラに一端が接続され、他端が参照用反射端である第2の偏波保持ファイバと;
     前記偏波保持カプラに一端が接続された第3の偏波保持ファイバと;
     この第3の偏波保持ファイバのコアに形成されたファイバブラッググレーティングからなるセンサと;
     前記偏波保持カプラに一端が接続された第4の偏波保持ファイバと;
     この第4の偏波保持ファイバを介して前記偏波保持カプラと接続され、前記センサからのブラッグ反射光と前記参照用反射端からの参照光とを検出するフォトダイオードと;
     このフォトダイオードで検出された前記ブラッグ反射光と前記参照光との合波光強度変化に基づき、これらブラッグ反射光及び参照光間の干渉強度の変調を検知する制御部と;
     前記第2の偏波保持ファイバの直交する2つの偏波軸及び前記第3の偏波保持ファイバの直交する2つの偏波軸の両方に、前記測定光を入射する入射部と;
     前記第3の偏波保持ファイバに配され、前記センサにおける直交する2つの偏波軸からのブラッグ反射光の光路長を一定にする光路長調整部と;
    を備え、
     前記入射部は、前記第1の偏波保持ファイバ、または、前記第2の偏波保持ファイバと前記第3の偏波保持ファイバとの両方に配されている
    ことを特徴とする光周波数領域反射測定方式の物理量計測装置。
  2.  前記入射部は、
     この入射部が前記第1の偏波保持ファイバに配されている場合には、この第1の偏波保持ファイバに45°の偏波軸オフセット角度を有して形成された融着接続部であり;
     前記入射部が前記第2の偏波保持ファイバ及び前記第3の偏波保持ファイバの両方に配されている場合には、これら第2の偏波保持ファイバ及び前記第3の偏波保持ファイバのそれぞれに45°の偏波軸オフセット角度を有して形成された融着接続部である;
    ことを特徴とする請求項1に記載の光周波数領域反射測定方式の物理量計測装置。
  3.  前記光路長調整部は、前記センサが形成された前記第3の偏波保持ファイバに、90°の偏波軸オフセット角度を有して形成された融着接続部であることを特徴とする請求項1または2のいずれか1項に記載の光周波数領域反射測定方式の物理量計測装置。
  4.  前記光路長調整部は、前記第2の偏波保持ファイバの長さに相当する位置から前記センサまでのファイバ長の中間に設けられたことを特徴とする請求項1ないし3のいずれか1項に記載の光周波数領域反射測定方式の物理量計測装置。
  5.  前記第3の偏波保持ファイバに、前記センサが複数配されていることを特徴とする請求項1ないし4のいずれか1項に記載の光周波数領域反射測定方式の物理量計測装置。
  6.  前記光路長調整部が、隣接する前記センサ間のファイバ長の中間にそれぞれ配されていることを特徴とする請求項5に記載の光周波数領域反射測定方式の物理量計測装置。
  7.  前記第1の偏波保持ファイバから前記第4の偏波保持ファイバのうち、少なくとも前記第3の偏波保持ファイバにおける直交する2つの偏波軸の実効屈折率差が、4.4×10-4以上であることを特徴とする請求項1ないし6のいずれか1項に記載の光周波数領域反射測定方式の物理量計測装置。
  8.  請求項1ないし7のいずれか1項に記載の光周波数領域反射測定方式の物理量計測装置を用いて、1つまたは複数の前記センサにおける直交する2つの偏波軸からのブラッグ反射光の波長を計測する工程と;
     計測した前記ブラッグ反射光の波長に基づいて、前記センサにおける前記ブラッグ反射光の波長の温度と歪みによる変化量を計算する工程と;
     計算した前記変化量に基づいて、前記センサが配された部位の温度および歪みを同時に計測する工程と;
    を備えることを特徴とする光周波数領域反射測定方式の物理量計測装置を用いた温度と歪みの同時計測方法。
  9.  前記第3の偏波保持ファイバの、前記センサが配された部位長手方向に沿った温度分布および歪み分布を算出することを特徴とする請求項8に記載の光周波数領域反射測定方式の物理量計測装置を用いた温度と歪みの同時計測方法。
PCT/JP2009/053899 2008-02-29 2009-03-02 光周波数領域反射測定方式の物理量計測装置、および、これを用いた温度と歪みの同時計測方法 WO2009107839A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009800002856A CN101680781B (zh) 2008-02-29 2009-03-02 光频域反射测定方式的物理量测量装置、及使用了其的温度和应变的同时测量方法
JP2009529465A JP4420982B2 (ja) 2008-02-29 2009-03-02 光周波数領域反射測定方式の物理量計測装置、および、これを用いた温度と歪みの同時計測方法
EP09715327.4A EP2249127B1 (en) 2008-02-29 2009-03-02 Physical quantity measuring device of optical frequency range reflection measuring type, and temperature and strain simultaneous measuring method using the device
CA2696238A CA2696238C (en) 2008-02-29 2009-03-02 Physical quantity measuring apparatus utilizing optical frequency domain reflectometry, and method for simultaneous measurement of temperature and strain using the apparatus
US12/705,361 US7889332B2 (en) 2008-02-29 2010-02-12 Physical quantity measuring apparatus utilizing optical frequency domain reflectometry, and method for simultaneous measurement of temperature and strain using the apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-051343 2008-02-29
JP2008051343 2008-02-29
JP2008-239368 2008-09-18
JP2008239368 2008-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/705,361 Continuation US7889332B2 (en) 2008-02-29 2010-02-12 Physical quantity measuring apparatus utilizing optical frequency domain reflectometry, and method for simultaneous measurement of temperature and strain using the apparatus

Publications (1)

Publication Number Publication Date
WO2009107839A1 true WO2009107839A1 (ja) 2009-09-03

Family

ID=41016220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053899 WO2009107839A1 (ja) 2008-02-29 2009-03-02 光周波数領域反射測定方式の物理量計測装置、および、これを用いた温度と歪みの同時計測方法

Country Status (6)

Country Link
US (1) US7889332B2 (ja)
EP (1) EP2249127B1 (ja)
JP (1) JP4420982B2 (ja)
CN (1) CN101680781B (ja)
CA (1) CA2696238C (ja)
WO (1) WO2009107839A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706329B (zh) * 2009-12-01 2011-08-31 北京齐瑞得电力技术有限公司 一种光纤温度传感器
CN102288325B (zh) * 2009-12-01 2012-11-14 北京齐瑞德光电科技有限公司 一种光纤温度传感器
JP2014009962A (ja) * 2012-06-27 2014-01-20 Nippon Telegr & Teleph Corp <Ntt> 光線路監視装置
CN104508445A (zh) * 2012-06-05 2015-04-08 慕尼黑工业大学 具有偏振补偿功能的光学测量系统及相应的方法
JP2016133443A (ja) * 2015-01-21 2016-07-25 アンリツ株式会社 Ofdr装置
CN108088584A (zh) * 2017-12-29 2018-05-29 长园深瑞继保自动化有限公司 反射式光纤温度传感器及其制备方法
CN113447158A (zh) * 2021-06-28 2021-09-28 中国人民解放军国防科技大学 测量大功率光纤激光器全链路纤芯温度分布的方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8641274B2 (en) 2010-08-18 2014-02-04 Fujikura Ltd. Polarization-maintaining fiber and optical fiber sensor using same
WO2012023219A1 (ja) 2010-08-18 2012-02-23 株式会社フジクラ 偏波保持ファイバおよびこれを用いた光ファイバセンサ
CN102221343B (zh) * 2011-06-03 2013-04-10 大连理工大学 基于可调分光比光纤全谱反射镜的准分布白光干涉应变传感系统
US8797541B2 (en) * 2011-07-11 2014-08-05 Baker Hughes Incorporated Optical network configuration with intrinsic delay for swept-wavelength interferometry systems
CN102322880B (zh) * 2011-08-18 2013-06-05 天津大学 偏振敏感的分布式光频域反射扰动传感装置和解调方法
KR101321557B1 (ko) * 2012-03-05 2013-10-23 부경대학교 산학협력단 광섬유 수소 센서 및 이를 이용한 수소 농도 측정 방법
US9183739B2 (en) * 2012-06-28 2015-11-10 National Applied Research Laboratories Bridge safety monitoring integrated system with full optical fiber and the method for sensing thereof
JP6273701B2 (ja) * 2013-06-27 2018-02-07 住友電気工業株式会社 光半導体素子
WO2015067293A1 (en) * 2013-11-05 2015-05-14 Omnisens Sa Optical distributed sensing device and method for simultaneous measurements of temperature and strain
WO2015163963A2 (en) * 2014-02-10 2015-10-29 University Of Central Florida Research Foundation, Inc. Multicore optical fiber apparatus, methods, and applications
US9341532B2 (en) * 2014-03-24 2016-05-17 General Electric Company Systems and methods for distributed pressure sensing
US9359910B2 (en) * 2014-05-29 2016-06-07 Siemens Energy, Inc. Method and apparatus for measuring operational gas turbine engine housing displacement and temperature by a distributed fiber optic sensing system utilizing optical frequency domain reflectometry
CN104296965A (zh) * 2014-09-20 2015-01-21 江苏骏龙电力科技股份有限公司 一种ofdr实验系统
WO2016110467A1 (en) * 2015-01-08 2016-07-14 Koninklijke Philips N.V. Optical shape sensing system, medical apparatus and method for optical shape sensing
CN105588661B (zh) * 2015-11-12 2018-07-31 哈尔滨工程大学 一种利用保偏光纤光栅实现单点及区域温度同时测量的装置
US9784091B2 (en) 2016-02-19 2017-10-10 Baker Hughes Incorporated Systems and methods for measuring bending, weight on bit and torque on bit while drilling
US10364663B2 (en) 2016-04-01 2019-07-30 Baker Hughes, A Ge Company, Llc Downhole operational modal analysis
CN105910728B (zh) * 2016-06-16 2018-08-31 威海北洋光电信息技术股份公司 高空间分辨率拉曼测温传感器及测温方法
WO2018005161A1 (en) 2016-06-29 2018-01-04 Intuitive Surgical Operations, Inc. Methods and apparatus for ofdr interrogator monitoring and optimization
CN105973501B (zh) * 2016-07-26 2018-07-24 威海北洋光电信息技术股份公司 长距离高空间分辨率拉曼测温传感器及其实现方法
US10054516B2 (en) 2016-08-29 2018-08-21 The United States Of America As Represented By The Adiminstrator Of Nasa System and method for optical frequency domain reflectometer
CN106404018B (zh) * 2016-10-09 2018-12-07 哈尔滨工程大学 一种电极放电在保偏光纤内产生强度可控弱偏振耦合点的装置
CN106595531A (zh) * 2016-12-07 2017-04-26 盐城工学院 一种高精度自温补的光纤光栅转角传感器及其方法
CN107102173B (zh) * 2017-06-22 2020-01-24 北京航空航天大学 一种基于光频域反射原理的啁啾光栅的标定装置及方法
CN107340077B (zh) * 2017-07-11 2023-06-02 中国地质大学(武汉) 一种全分布式光纤温度及应力的传感方法与传感系统
CN107991241B (zh) * 2017-10-30 2020-07-07 合肥通用机械研究院有限公司 一种复合材料层间失效模式的检验装置及判断方法
DE102017011730B4 (de) * 2017-12-18 2020-06-18 Hottinger Baldwin Messtechnik Gmbh Interrogator für zwei Faser-Bragg-Gitter Messstellen
PL235969B1 (pl) * 2018-10-18 2020-11-16 El Cab Spolka Z Ograniczona Odpowiedzialnoscia Urządzenie do monitorowania temperatury, sposób monitorowania temperatury oraz system monitorowania temperatury
EP3891463A4 (en) * 2018-12-04 2022-12-07 Ofs Fitel Llc HIGH RESOLUTION DISTRIBUTED SENSOR USING SHIFT CORE OPTICAL FIBER
CN109916533B (zh) * 2019-03-15 2021-04-20 哈尔滨工程大学 一种pdh解调的保偏光栅fp腔温度应变同时测量装置
CN110375663B (zh) * 2019-08-08 2021-04-23 北京航空航天大学合肥创新研究院 一种量程可调的光纤光栅应变测量装置
CN110967048B (zh) * 2019-12-28 2021-11-05 桂林电子科技大学 正交倾斜三芯光纤光栅并行集成Mach-Zehnder干涉仪
CN111256809B (zh) * 2020-03-09 2021-12-24 宁夏大学 复合多功能光纤振动测试装置及测试方法
WO2021183846A1 (en) * 2020-03-13 2021-09-16 Ofs Fitel, Llc System for measuring microbends and arbitrary micro-deformations along a three-dimensional space
EP4115150B1 (en) 2020-04-17 2023-11-01 Inphotech Spolka z Ograniczona Odpowiedzialnoscia Optical fibre based measurement system, method of measuring parameters, and computer program product
CN113670349B (zh) * 2020-05-15 2022-09-27 大连理工大学 基于光频域反射技术的高速光纤分布式物理量测量方法、装置及系统
CN111678456B (zh) * 2020-08-14 2020-12-04 武汉昊衡科技有限公司 温度与应变同时测量的ofdr装置及其测量方法
CN112254769B (zh) * 2020-10-22 2021-10-01 北京卫星环境工程研究所 一种航天器结构多功能健康监测系统和方法
CN113804452B (zh) * 2021-07-30 2023-07-04 湖北三江航天万峰科技发展有限公司 一种分布式汽车故障监测系统及方法
CN113960328A (zh) * 2021-10-13 2022-01-21 江苏科技大学 感测装置及其感测二维流速、二维加速度的方法
CN114152591B (zh) * 2021-12-03 2024-02-13 中国电子科技集团公司第三十四研究所 级联光纤光栅传感阵列的位置及波长解调系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164119A (ja) * 1997-08-11 1999-03-05 Fujikura Ltd 光ファイバ温度歪みセンサおよび温度歪み測定装置
JP2004205368A (ja) * 2002-12-25 2004-07-22 National Aerospace Laboratory Of Japan Ofdr方式の多点歪計測装置
WO2005015149A1 (ja) * 2003-08-12 2005-02-17 Bussan Nanotech Research Institute, Inc. 検出装置、光路長測定装置、測定用器具、光学部材評価方法、温度変化検出方法
JP2005147900A (ja) * 2003-11-17 2005-06-09 Japan Aerospace Exploration Agency Ofdr方式の歪連続分布計測装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9828469D0 (en) * 1998-12-24 1999-02-17 British Aerospace A modulated fibre bragg grating strain gauge assembly for absolute gauging of strain
US6566648B1 (en) * 1999-03-25 2003-05-20 The United States Of America As Represented By The United States National Aeronautics And Space Administration Edge triggered apparatus and method for measuring strain in bragg gratings
GB0030289D0 (en) * 2000-12-12 2001-01-24 Optoplan As Fibre optic sensor systems
US6795599B2 (en) * 2001-05-11 2004-09-21 Vasilii V. Spirin Differential fiber optical sensor with interference energy analyzer
CN1414350A (zh) * 2002-11-27 2003-04-30 南开大学 扭转和温度同时感测的光纤光栅扭转传感装置
CN2837791Y (zh) * 2005-06-21 2006-11-15 电子科技大学 一种长距离分布式布拉格光纤光栅传感系统
WO2007149930A2 (en) * 2006-06-20 2007-12-27 Fiber Optic Systems Technology, Inc. Fiber optic sensing instrument and system with fiber of adjustable optical path length and method of using it
JP4474494B2 (ja) * 2008-02-29 2010-06-02 株式会社フジクラ 光周波数領域反射測定方式の物理量計測装置及びこれを用いた温度と歪みの計測方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164119A (ja) * 1997-08-11 1999-03-05 Fujikura Ltd 光ファイバ温度歪みセンサおよび温度歪み測定装置
JP3819119B2 (ja) 1997-08-11 2006-09-06 株式会社フジクラ 光ファイバ温度歪みセンサおよび温度歪み測定装置
JP2004205368A (ja) * 2002-12-25 2004-07-22 National Aerospace Laboratory Of Japan Ofdr方式の多点歪計測装置
JP3740500B2 (ja) 2002-12-25 2006-02-01 独立行政法人 宇宙航空研究開発機構 Ofdr方式の多点歪計測装置
WO2005015149A1 (ja) * 2003-08-12 2005-02-17 Bussan Nanotech Research Institute, Inc. 検出装置、光路長測定装置、測定用器具、光学部材評価方法、温度変化検出方法
JP2005147900A (ja) * 2003-11-17 2005-06-09 Japan Aerospace Exploration Agency Ofdr方式の歪連続分布計測装置
JP4102291B2 (ja) 2003-11-17 2008-06-18 独立行政法人 宇宙航空研究開発機構 Ofdr方式の歪連続分布計測装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B. CHILDERS; M. E. FROGGATT; S. G. ALLISON; T. C. MOORE; D. A. HARE; C. F. BATTEN; D. C. JEGLEY: "Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load test of a composite structure", PROCEEDINGS SPIE'S 8TH INTERNATIONAL SYMPOSIUM ON SMART STRUCTURE AND MATERIALS, vol. 4332, 2001, pages 133 - 142, XP055137874
H. MURAYAMA; H. IGAWA; K. KAGEYAMA; K. OHTA; I. OHSAWA; K. UZAWA; M. KANAI; T. KASAI; I. YAMAGUCHI: "Distributed Strain Measurement with High Spatial Resolution Using Fiber Bragg Gratings and Optical Frequency Domain Reflectometry", PROCEEDINGS OFS-18, THE40, 2006

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706329B (zh) * 2009-12-01 2011-08-31 北京齐瑞得电力技术有限公司 一种光纤温度传感器
CN102288325B (zh) * 2009-12-01 2012-11-14 北京齐瑞德光电科技有限公司 一种光纤温度传感器
CN104508445A (zh) * 2012-06-05 2015-04-08 慕尼黑工业大学 具有偏振补偿功能的光学测量系统及相应的方法
CN104508445B (zh) * 2012-06-05 2016-04-13 慕尼黑工业大学 具有偏振补偿功能的光学测量系统及相应的方法
US9383272B2 (en) 2012-06-05 2016-07-05 Technische Universität München Optical measurement system with polarization compensation, and corresponding method
JP2014009962A (ja) * 2012-06-27 2014-01-20 Nippon Telegr & Teleph Corp <Ntt> 光線路監視装置
JP2016133443A (ja) * 2015-01-21 2016-07-25 アンリツ株式会社 Ofdr装置
CN108088584A (zh) * 2017-12-29 2018-05-29 长园深瑞继保自动化有限公司 反射式光纤温度传感器及其制备方法
CN113447158A (zh) * 2021-06-28 2021-09-28 中国人民解放军国防科技大学 测量大功率光纤激光器全链路纤芯温度分布的方法
CN113447158B (zh) * 2021-06-28 2024-01-26 中国人民解放军国防科技大学 测量大功率光纤激光器全链路纤芯温度分布的方法

Also Published As

Publication number Publication date
EP2249127A1 (en) 2010-11-10
US7889332B2 (en) 2011-02-15
JP4420982B2 (ja) 2010-02-24
EP2249127A4 (en) 2017-05-17
CN101680781A (zh) 2010-03-24
EP2249127B1 (en) 2019-02-13
JPWO2009107839A1 (ja) 2011-07-07
CA2696238C (en) 2013-04-16
US20100141930A1 (en) 2010-06-10
CA2696238A1 (en) 2009-09-03
CN101680781B (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
JP4420982B2 (ja) 光周波数領域反射測定方式の物理量計測装置、および、これを用いた温度と歪みの同時計測方法
JP4474494B2 (ja) 光周波数領域反射測定方式の物理量計測装置及びこれを用いた温度と歪みの計測方法
CN105865752B (zh) 采用分布式偏振串扰分析仪全面评判保偏光纤特性的方法和装置
JP5413931B2 (ja) 光ファイバ位置特定のための光学マーキング部を備えた光ファイバセンサおよび光ファイバセンサの計測方法と光ファイバセンサ装置
JP5150445B2 (ja) 光ファイバセンサ装置および温度とひずみの計測方法と光ファイバセンサ
US20090097036A1 (en) System and Method to Determine Chromatic Dispersion in Short Lengths of Waveguides Using a Common Path Interferometer
US10724922B1 (en) Complete characterization of polarization-maintaining fibers using distributed polarization analysis
Wu et al. Fiber sensor based on interferometer and Bragg grating for multiparameter detection
US11391645B2 (en) Birefringent multi-peak optical reference element and birefringent sensor system
Wang et al. Micro-cavity array with high accuracy for fully distributed optical fiber sensing
KR101113778B1 (ko) 브래그 격자 및 패브리 패로 간섭을 이용한 광섬유 센서 탐촉자, 광섬유 센서 시스템 및 그 시스템의 센싱방법
Vallan et al. Static characterization of curvature sensors based on plastic optical fibers
Martínez-Manuel et al. Fiber cavities design for a multipoint fiber refractometer
Maul et al. Sensing of surface strain with flexible fiber Bragg strain gages
Huang Optical fiber based microwave-photonic interferometric sensors
Guan et al. Low-coherence interrogation scheme for multiplexed sensors based on long-period-grating Mach-Zehnder interferometers
Leduc et al. Experimental synthesis of fibre Bragg gratings index profiles: comparison of two inverse scattering algorithms
Zeng et al. Distributed Measurement Based on Tapered FBG with OFDR
Shinoda et al. Fundamental experiment in real-time strain measurement of multipoint fiber bragg grating using optical frequency sweeping
Hua Microwave assisted reconstruction of optical interferograms for distributed fiber optics sensing & characterization of PCB dielectric properties using two striplines on the same board
Schuster et al. Simultaneous measurement of curvature and strain using a suspended multicore fiber
Silva et al. A novel highly birefringent fiber loop mirror sensor based on a 3× 3 coupler
Stepanov et al. Monitoring of the fiber Bragg grating fabrication process
Dokulilová et al. Strain sensor with low-temperature sensitivity based on a weakly multimode optical fibre using coherence multiplexing
Santos et al. A novel highly birefringent fiber loop mirror sensor based on a 3× 3 coupler

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000285.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009529465

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715327

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009715327

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2696238

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE