CN104508445A - 具有偏振补偿功能的光学测量系统及相应的方法 - Google Patents

具有偏振补偿功能的光学测量系统及相应的方法 Download PDF

Info

Publication number
CN104508445A
CN104508445A CN201380029678.6A CN201380029678A CN104508445A CN 104508445 A CN104508445 A CN 104508445A CN 201380029678 A CN201380029678 A CN 201380029678A CN 104508445 A CN104508445 A CN 104508445A
Authority
CN
China
Prior art keywords
optical
beam splitter
photoelectric sensor
light
differential signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380029678.6A
Other languages
English (en)
Other versions
CN104508445B (zh
Inventor
托尔比约恩·布克
拉尔斯·霍夫曼
马蒂亚斯·穆勒
罗尔夫·沃伊泰沙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vc Eighth Technology Co ltd
Original Assignee
Technische Universitaet Muenchen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Muenchen filed Critical Technische Universitaet Muenchen
Publication of CN104508445A publication Critical patent/CN104508445A/zh
Application granted granted Critical
Publication of CN104508445B publication Critical patent/CN104508445B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

一种校准光学测量系统的方法,包括提供光学测量系统,所述光学测量系统的光学元件包括分束器、被施加来自所述分束器的第一分束的第一光电传感器、光学滤波器以及沿照射方向设于所述光学滤波器后面且被施加来自所述分束器的第二分束的第二光电传感器。其中,数个所述光学元件的角位和相互间的相对位置被构造成可校准。所述方法进一步包括提供用于从所述两个光电传感器的信号中形成差分信号的装置、提供时变偏振光源、将光射入所述分束器以分别将分束施加于所述两个光电传感器、形成所述光电传感器的输出信号的差分信号、改变至少一个所述光学元件的位置和/或角位并观测所述差分信号、测定所述元件使得所述差分信号达到最小值的角位/位置组合以及将所述光学元件的角位调节至测定值。此外还提出一种相应的系统。

Description

具有偏振补偿功能的光学测量系统及相应的方法
技术领域
本申请涉及一种校准光学装置以提高测量精度的方法,所述光学装置具体是用于检测力学量的光学测量装置,更具体是传感器集成在光波导中的测量装置。本申请还涉及一种用于校准此类光学装置的系统。
背景技术
在诸如力、转矩、加速度等力学量的检测方面,光学测量技术越来越重要。其所使用的光纤测量系统具有嵌入在光波导中的传感元件。此类传感元件可被设计成例如光纤Bragg光栅传感器。用适当波长范围的光辐射照射以这种方式集成的传感元件,其中根据传感元件的设计以及作用于传感元件的力学量,一部分入射光被传感器反射且可被传输给评估分析单元。
在传感元件上反射的光辐射或穿透传感元件的光辐射的强度和/或波长范围具有一些特征,这些特征受到所施加的力学量(例如一个待测量的力)影响。基于光波导的力传感器或光纤力传感器以及相应的光学测量方法用途广泛,例如机械设备监测,结构中的机械应力检测,部件负荷的远程诊断,力、转矩等等的测量。
集成在传感光纤中的光纤传感元件如光纤Bragg光栅传感器(FBG传感器)对传感光纤的伸长敏感,从而对在光纤中反射的波长谱或穿透光纤的波长谱产生影响。如此一来,光纤的伸长和/或光纤Bragg光栅结构的变化不再仅取决于待测量的力学量(例如力),而是会受到非期望扰动量如温度波动的影响。光学检测力相关量时,这类非期望的影响因素可能会导致测量精度下降。
另一个干扰因素在已知的基于边缘滤波器阵列的光纤测量系统中有重大影响。此类测量系统可以实施为基于All-In-Fiber的配置(All-In-Fiber-basierteAnordnung)、集成式光学设备或(微)光学设备。
图1示出一种已知的光纤测量装置的方块示意图,其设计用于检测至少一个待测量的量。所述光纤测量装置具有用于提供光辐射的一次光源101,可用所述光辐射来照射至少一个光纤Bragg传感元件303。传输光纤302先将所述辐射传输到光纤耦合器102上,所述光纤耦合器用于将光学传感元件303上反射后的反射光通过传感光纤304传输回光学评估单元109。
被传感元件303反射且由传感光纤304和光纤耦合器102传输的反射光被称作二次光202。之后可以在光学评估单元109中对二次光202进行分析。光学评估单元109可被设计成例如光学滤波器,用于为二次光202滤波,而后获得经过滤波的Bragg信号203。这些经过滤波的Bragg信号以外加方式包含了关于被传感元件反射的波长的信息,这样就能通过测定波长来测定光学传感元件(光纤Bragg光栅)的伸长,进而对施加于光学传感元件303的待测量的力进行测定。在与光学评估单元109相连的检测单元104中进行这一测定。
图2以比率式光纤Bragg光栅测量配置为例示出光学评估单元109和检测单元104的细节图。其中,来自于光学传感元件303的二次光202被导入评估单元109中的两个光学滤波器110、111内。这些滤波器具有互补的滤波曲线,因此当入射光202的波长偏移时,两个滤波器中的一个滤波器的穿透率升高,另一个滤波器的穿透率下降。如前所述,根据分别设于滤波器110、111下游的两个光传感器(此处未示出)的输出电平的变化,可以在放大后推断出图1所示传感元件303的Bragg波长的变化,进而推断出测得力学量的变化。检测单元104输出相应的电输出信号,这些电输出信号之后被传输给在正常操作条件下与检测单元104相连的测定单元112。测定单元112再测定测量结果信号301,所述测量结果信号例如是用来判断可根据光学传感元件303的伸长加以测定的力学量(例如作用于某一机器上与所述光纤相连的结构性元件的力)的依据。
与(包含光谱仪或激光器的)传统FBG测量系统相比,上述比率式光纤测量系统一般还存在其它问题。举例而言,温度因素可能会改变光学组件和/或光电组件的光学特性。这会导致测量系统出现非期望的温度漂移。此外,例如由被污染的插式连接器、PC插式连接器或有缺陷的光纤封闭件引发的背景光也会造成测量偏差。
所使用的光(例如来自光源101的光)的偏振态对测量的影响是比率式光纤Bragg光栅测量系统(FBG)迄今为止未受到重视的一个影响量。(纤维)光学元件一般具有与入射光的偏振态相关的穿透率、反射率和/或灵敏度。以前述比率式滤波原理为例,这会导致形成与偏振态相关的不同的有效光学滤波曲线。其结果是在计算波长时出现偏振相关测量偏差。
鉴于以上所述,最好存在一种能将所用光的偏振对测量精度的影响最小化或予以消除的光学测量系统。
发明内容
本发明提供一种具有独立权利要求1所述特征的校准光纤测量系统的方法,所述光纤测量系统设计用于检测力学量。本发明还提供一种如权利要求6所述的光纤测量系统。
根据一个实施方式,本发明提供一种校准光学测量系统的方法。所述方法包括提供光学测量系统,其光学元件包括分束器、被施加来自所述分束器的第一分束的第一光电传感器、光学滤波器以及沿照射方向设于所述光学滤波器后面且被施加来自所述分束器的第二分束的第二光电传感器。其中,数个所述光学元件的角位和相互间的相对位置被构造成可校准。所述方法进一步包括提供用于从所述两个光电传感器的信号中形成差分信号的装置、提供时变偏振光源、将光射入所述分束器以分别将分束施加于所述两个光电传感器、形成所述光电传感器的输出信号的差分信号、改变至少一个所述光学元件的位置和/或角位并观测所述差分信号、测定所述元件使得所述差分信号达到最小值的角位/位置组合以及将所述光学元件的角位调节至测定值。
根据另一实施方式,本发明提供一种用于对光学测量系统进行偏振补偿校准的系统。所述系统包括分束器、被构造成可被施加来自所述分束器的第一分束的第一光电传感器、被构造成可被施加来自所述分束器的第二分束的光学滤波器、沿照射方向设于所述滤波器后面的第二光电传感器以及用于提供时变偏振光的光源,其中借助有源元件使所述偏振随时间变化。
附图说明
下面参照附图详细说明实施例。其中:
图1为按照光纤Bragg原理运行的已知测量系统;
图2为已知的比率式光纤Bragg测量系统的局部示意图;
图3为实施例所提供的用于校准光纤测量装置的系统的部分示意图;
图4为实施方式所提供的方法的示意图。
具体实施方式
在附图中,相同或功能相同的元件或步骤用相同的符号标示。
下面将详细说明本发明的各种实施方式,其中附图示出一个或数个示例。
本发明的实施方式涉及一种用于校准光学测量系统的系统以及相应的方法。从光学测量系统开始进行说明,其包括分束器、至少一个光学滤波器和两个光电传感器。所述系统通常但非必须安装在例如板体150上,从而使得元件之间的光路分布于平行于底板的平面内。这种结构由图3示出。
图3为实施例所提供的比率式光纤Bragg光栅(FBG)测量系统的一个部分。在测量模式(非本案重点)下,被FBG传感器303(此处未示出,例如参见图1)反射的光202由玻璃纤维118导向(微)光学设备140。所述入射光的第一部分204在分束器装置120上被导向参考检测器122。未折射的部分206被光学滤波元件123(滤波器123)导向光电二极管124。利用算法从在参考二极管122和滤波光电二极管124(类似于图2所示的结构)上测得的强度信号中推断出传感器303的Bragg波长。
在实施例中,由光纤118导入光学设备的是以校准设备140为目的特别是以校准为目的而产生的光203,而非后续的常规测量过程所使用的来自光纤Bragg光栅的光。根据实施例,光203的特点在于时变偏振。举例而言,为此可以导引来自激光器的光穿过一个由数个λ/4板体组成的阵列,其中通过机械配置如压电致动器或小型的电动机/步进马达使这些板体发生周期性或随机运动。λ/4板体原则上能够使平行于部件特定轴线偏振的光延迟,即,相对于垂直于所述轴线偏振的光延迟四分之一波长或π/2。在适当入射的情况下,可以用线偏振光产生圆偏振光或椭圆偏振光,以及用圆偏振光再度产生线偏振光。根据实施例,只要偏振类型随时间变化,那么当以上述方式产生或改性的光203被导入光学设备时,其在哪个时间点上实际具有何种偏振,这是无关紧要的。本领域技术人员不难理解,时变偏振光的产生方式有许多种,此处不再加以赘述。
设备140所使用的光学元件120、122、123、124通常具有偏振相关传输损耗(PDL)或偏振相关灵敏度。在图3的示例中,就是指分束器120、光学滤波器123和两个光电传感器122、124。如前所述,这些偏振相关部件会对比率式光学测量系统所得到的测量结果产生影响。
为了最小化PDL元件的影响,实施例在考虑系统(滤波)功能的情况下,通过对单个PDL元件进行针对性布置来将不确定的偏振态或偏振度对测量结果的影响最小化。
为此,将时变偏振光203通过光纤118射入光学设备140。
下面以完全线偏振光为例进行说明。其中所涉及的最小化PDL元件对测量结果的影响的方法不受此限制,而是普遍适用于可以实施为基于All-In-Fiber的配置、集成式光学设备或(微)光学设备的光学FBG边缘滤波器测量阵列。两个光电二极管通道均存在预期的测量偏差Δλ(以线偏振光为例):
Δλ = Σ i ∂ ρ - 1 ∂ Φ i · ∂ Φ i ∂ φ i · Δ φ i ρ-1=反滤波函数,
Φi=第i检测器的输出信号,
φi=第i光路上的偏振角,
= ∂ ρ - 1 ∂ Φ 1 · ∂ Φ 1 ∂ φ 1 | φ 1.0 · Δ φ 1 + ∂ ρ - 1 ∂ Φ 2 · ∂ Φ 2 ∂ φ 2 | φ 2.0 · Δ φ 2
    其中λB是Bragg波长。项与特定光路的光谱总PDL Γi以及特定角度φi有关。
根据实施例,将中括号内的项最小化以实现基本或完全不受偏振影响的测量系统。一般通过相对于入射光束203、204、206调节光学元件120、122、123、124的角位来实现这一点。在实施例中,通常绕轴线e转动分束器120,其它元件固定;或者分束器120固定,由光电传感器122、124和滤波器123构成的(可能机械相连的)单元则整体绕分束器120的轴线e或另一轴线转动。两个光电传感器122、124也可以分别绕其轴线a、c转动。
以上是以完全线偏振光为例,光路上不存在影响偏振的元件(例如线偏振至椭圆偏振)。但这种最小化偏振度/偏振态/偏振角的影响的方法适用于光的任意状态,只不过从分析角度无法用上述的封闭形式加以表示。
使用具有非零PDL的光学/光电子元件时,通过上述方式可以最小化测量偏差。亦即,本发明的实施方式涉及的是采用最小化最大测量偏差的方法来实现元件具有非零PDL的测量系统。
在前述调节过程中,两个光电传感器122、124的输出信号形成差分信号,这一点与图2所述相似。在此过程中,时变偏振光203如前所述被射入设备140。在调节角位期间测量所述差分信号。可将所述差分信号以对应于已校准元件的相应角位的方式存储在电子存储装置中。可以在一个测量周期结束后(一般是指依序测量过可调元件的角度范围后)用算法测定,在(例如分束器120的)哪个角位上或者在各元件120、122、123、124的何种角位组合下所述差分信号达到了最小值。根据实施例,而后在校准方法实施完毕时设置所述角位并固定各元件,以排除进一步(例如意外)调节的可能性。
根据一个方案,在调节元件角位的同时也可以改变光源的波长。为此可以使用例如OPO激光器或其它的可调谐光源。在此情况下可以在校准过程期间,在元件处于相同角位时,在不同波长下产生不同的差分信号。这些差分信号可以在被逐个求平均值后予以存储,从而在持续校准一段时间后在特定角位上,从数个不同波长中求得所述差分信号的平均值并予以存储。
PDL在技术上被定义为正数。需要指出的是,在以某个参考方向观察PDL时,其完全可能是负值,也就是说在具体示例中,所述参考方向上的穿透率较低。
通过以上述方式改变光学元件的角位,可以通过测定差分信号来在不同的偏振类型和光频下将偏振相关测量偏差最小化,也就是当设备140的光学元件处于这些角位和位置时,达到最小(即最佳)的测量偏差。
设备140的光学元件原则上可以实现任意一种布置方式。此外,光学设备140不限于(微)光学设备,按照实施方式所提供的前述方法,通过对光纤和光学元件进行适当定向也能在预期的测量偏差方面对完全基于光纤或基于滤波器的测量设备进行优化。
在实施例中,校准过程是在存储各角度参数和对应的差分传感器输出信号的情况下自动进行。也就是说,角度调节由耦合控制单元(未示出)的执行机构如步进马达实施。
据此,实施例所提供的光纤测量系统可以具有被构造成用于实施前述方法的控制器和存储装置。此类光纤测量系统一般用于检测力学量。其中以某种方式将所述力学量施加于光纤Bragg光栅,使得光纤Bragg光栅的Bragg波长被所述力学量改变。

Claims (10)

1.一种校准光学测量系统的方法,包括:
-提供光学测量系统,其光学元件包括:
-分束器;
-被施加来自所述分束器的第一分束的第一光电传感器;
-光学滤波器;
-沿照射方向设于所述光学滤波器后面且被施加来自所述分束器的第二分束的第二光电传感器,
其中数个所述光学元件的角位和相互间的相对位置被构造成可校准;
-提供用于从所述两个光电传感器的信号中形成差分信号的装置;
-提供时变偏振光源,
-将光射入所述分束器以分别将分束施加于所述两个光电传感器;
-形成所述光电传感器的输出信号的差分信号;
-改变至少一个所述光学元件的位置和/或角位并观测所述差分信号;
-测定所述元件使得所述差分信号达到最小值的角位/位置组合,
2.如权利要求1所述的方法,进一步包括:
-除改变偏振外还改变所述入射光的频率。
3.如权利要求1或2所述的校准测量系统的方法,其中将所述光电传感器的输出信号所形成的各差分信号连同各个所述元件的对应的角度数据存储在电子存储装置中。
4.如权利要求1至3中任一项所述的校准测量系统的方法,其中在完成所述光学元件的校准范围后自动测定,在哪些角位下测量到了最小的差分输出信号,并将相关的光电传感器送入相应位置并予以固定。
5.如前述权利要求中任一项所述的校准测量系统的方法,其中借助运动的λ/4板体使所述入射光产生偏振。
6.一种用于对光学测量系统进行偏振补偿校准的系统,包括:
-分束器,
-被构造成可被施加来自所述分束器的第一分束的第一光电传感器
-被构造成可被施加来自所述分束器的第二分束的光学滤波器;
-沿照射方向设于所述滤波器后面的第二光电传感器,
-用于提供时变偏振光的光源,其中借助有源元件使所述偏振随时间变化。
7.如权利要求6所述的系统,进一步包括用于检测所述光电传感器的差分输出信号的电子控制器以及用于改变所述光电传感器的角位的执行机构。
8.如权利要求7所述的系统,其中所述控制器设计用于实施如权利要求1至5中任一项所述的校准方法。
9.一种如权利要求6至8中任一项所述的系统的应用,用于测量力学量,其中所述系统进一步包括光纤Bragg光栅。
10.如权利要求9所述的应用,包括:
以某种方式将所述力学量施加于所述光纤Bragg光栅,使得所述光纤Bragg光栅的Bragg波长被所述力学量改变;
借助所述分束器将来自所述光纤Bragg光栅的二次光分成第一分束和第二分束,
用所述光学滤波器对被所述光纤Bragg光栅的Bragg波长根据所述力学量加以改性的二次光进行滤波,
检测所述二次光经过滤波的第一分束和第二分束的强度;
对所述经过滤波的第一二次光和第二二次光的测得强度进行比较;以及
从所述强度比较中测定所述力学量。
CN201380029678.6A 2012-06-05 2013-06-04 具有偏振补偿功能的光学测量系统及相应的方法 Active CN104508445B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012104874.6 2012-06-05
DE102012104874.6A DE102012104874B4 (de) 2012-06-05 2012-06-05 Optisches Messsystem mit Polarisationskompensation, sowie entsprechendes Verfahren
PCT/EP2013/061499 WO2013182567A2 (de) 2012-06-05 2013-06-04 Optisches messsystem mit polarisationskompensation, sowie entsprechendes verfahren

Publications (2)

Publication Number Publication Date
CN104508445A true CN104508445A (zh) 2015-04-08
CN104508445B CN104508445B (zh) 2016-04-13

Family

ID=48570162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380029678.6A Active CN104508445B (zh) 2012-06-05 2013-06-04 具有偏振补偿功能的光学测量系统及相应的方法

Country Status (7)

Country Link
US (1) US9383272B2 (zh)
EP (1) EP2856096B1 (zh)
CN (1) CN104508445B (zh)
CA (1) CA2875740C (zh)
DE (1) DE102012104874B4 (zh)
ES (1) ES2602205T3 (zh)
WO (1) WO2013182567A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784332A (zh) * 2016-03-25 2016-07-20 中国科学院上海光学精密机械研究所 真空压缩室光栅失调的监控调节装置及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10364663B2 (en) 2016-04-01 2019-07-30 Baker Hughes, A Ge Company, Llc Downhole operational modal analysis
CN106989868B (zh) * 2017-03-02 2022-11-18 天津大学 一种减速器检测仪输出扭矩的校准方法
DE102017011730B4 (de) * 2017-12-18 2020-06-18 Hottinger Baldwin Messtechnik Gmbh Interrogator für zwei Faser-Bragg-Gitter Messstellen
US11683092B2 (en) * 2020-02-24 2023-06-20 Ciena Corporation Loss-based wavelength meter
CN113933268B (zh) * 2020-07-13 2024-03-19 中移物联网有限公司 一种光学检测装置及光学检测方法
WO2023213851A1 (de) 2022-05-04 2023-11-09 Gts Deutschland Gmbh Messverfahren zur erfassung von einer auf einen gegenstand einwirkenden mechanischen kraft, messvorrichtung mit faseroptischer sensoreinheit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253392A (zh) * 2005-07-02 2008-08-27 斯伦贝谢海外有限公司 光纤温度和压力传感器和包括它们的系统
WO2009107839A1 (ja) * 2008-02-29 2009-09-03 株式会社フジクラ 光周波数領域反射測定方式の物理量計測装置、および、これを用いた温度と歪みの同時計測方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397891A (en) * 1992-10-20 1995-03-14 Mcdonnell Douglas Corporation Sensor systems employing optical fiber gratings
US5380995A (en) * 1992-10-20 1995-01-10 Mcdonnell Douglas Corporation Fiber optic grating sensor systems for sensing environmental effects
US5748312A (en) * 1995-09-19 1998-05-05 United States Of American As Represented By The Secretary Of The Navy Sensing apparatus and method for detecting strain between fiber bragg grating sensors inscribed into an optical fiber
US5646401A (en) * 1995-12-22 1997-07-08 Udd; Eric Fiber optic grating and etalon sensor systems
DE19628200B4 (de) * 1996-07-12 2007-03-01 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vorrichtung zur Durchführung interferometrischer Messungen
US5828059A (en) * 1996-09-09 1998-10-27 Udd; Eric Transverse strain measurements using fiber optic grating based sensors
US6212310B1 (en) * 1996-10-22 2001-04-03 Sdl, Inc. High power fiber gain media system achieved through power scaling via multiplexing
US6204920B1 (en) * 1996-12-20 2001-03-20 Mcdonnell Douglas Corporation Optical fiber sensor system
US6335524B1 (en) * 1997-10-22 2002-01-01 Blue Road Research High speed demodulation systems for fiber optic grating sensors
US6566648B1 (en) * 1999-03-25 2003-05-20 The United States Of America As Represented By The United States National Aeronautics And Space Administration Edge triggered apparatus and method for measuring strain in bragg gratings
US6806951B2 (en) * 2000-09-20 2004-10-19 Kla-Tencor Technologies Corp. Methods and systems for determining at least one characteristic of defects on at least two sides of a specimen
KR100350458B1 (ko) * 2001-01-16 2002-08-29 삼성전자 주식회사 광섬유 잔여 응력 및 포토일래스틱 효과를 측정하기 위한장치 및 그 방법
US6795599B2 (en) * 2001-05-11 2004-09-21 Vasilii V. Spirin Differential fiber optical sensor with interference energy analyzer
US7038190B2 (en) * 2001-12-21 2006-05-02 Eric Udd Fiber grating environmental sensing system
US7088441B2 (en) * 2002-09-19 2006-08-08 Mitutoyo Corporation Method and apparatus for measuring wavelength changes in a high-resolution measurement system
US6876786B2 (en) * 2002-10-02 2005-04-05 Cicese-Centro De Investigation Fiber-optic sensing system for distributed detection and localization of alarm conditions
US7004911B1 (en) * 2003-02-24 2006-02-28 Hosheng Tu Optical thermal mapping for detecting vulnerable plaque
US6943881B2 (en) * 2003-06-04 2005-09-13 Tomophase Corporation Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
US7253902B2 (en) * 2004-03-31 2007-08-07 Mitutoyo Corporation Wavelength detector
WO2007041382A1 (en) * 2005-09-29 2007-04-12 General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
EP2626030A3 (en) * 2007-08-14 2017-03-08 Koninklijke Philips N.V. Robotic instrument systems and methods utilizing optical fiber sensors
US9417127B2 (en) * 2012-10-23 2016-08-16 Eric Udd Fiber grating sensor system for measuring key parameters during high speed

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253392A (zh) * 2005-07-02 2008-08-27 斯伦贝谢海外有限公司 光纤温度和压力传感器和包括它们的系统
WO2009107839A1 (ja) * 2008-02-29 2009-09-03 株式会社フジクラ 光周波数領域反射測定方式の物理量計測装置、および、これを用いた温度と歪みの同時計測方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784332A (zh) * 2016-03-25 2016-07-20 中国科学院上海光学精密机械研究所 真空压缩室光栅失调的监控调节装置及方法
CN105784332B (zh) * 2016-03-25 2018-10-02 中国科学院上海光学精密机械研究所 真空压缩室光栅失调的监控调节装置及方法

Also Published As

Publication number Publication date
EP2856096B1 (de) 2016-08-10
CA2875740A1 (en) 2013-12-12
EP2856096A2 (de) 2015-04-08
US9383272B2 (en) 2016-07-05
DE102012104874B4 (de) 2016-05-19
WO2013182567A3 (de) 2014-03-20
ES2602205T3 (es) 2017-02-20
CA2875740C (en) 2018-01-09
WO2013182567A2 (de) 2013-12-12
CN104508445B (zh) 2016-04-13
DE102012104874A1 (de) 2013-12-05
US20150146192A1 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
CN104508445B (zh) 具有偏振补偿功能的光学测量系统及相应的方法
CN104864911B (zh) 基于光纤法珀腔与光纤光栅双参量联合测量的高速解调装置及方法
US6888125B2 (en) Fiber optic sensing systems and method of use thereof
CA2509187C (en) Optical wavelength determination using multiple measurable features
US7411676B2 (en) Polarization mitigation technique
US9046389B2 (en) Time delay compensation for optical waveguides using a bidirectional wavelength scan
CN109342022B (zh) 一种可调谐激光器波长动态标定装置和方法
CN105953825A (zh) 用于温度与应变同时测量的光纤光栅式传感系统及方法
CN104508446B (zh) 用于补偿光纤光学测量装置的方法和光纤光学测量装置
US11391645B2 (en) Birefringent multi-peak optical reference element and birefringent sensor system
CN109073364A (zh) 用于ofdr解调仪监测和优化的方法和装置
CN100582658C (zh) 基于光纤激光器的弯曲半径测量仪
US10254156B2 (en) Active error correction in an optical sensor system
CA2639463C (en) Spectrally stabilized broadband optical source
CN205898164U (zh) 用于温度与应变同时测量的光纤光栅式传感系统
EP3755974A1 (en) Optical fibre sensing
Ecke et al. Low-cost optical temperature and strain sensing networks using in-line fiber gratings
KR101297286B1 (ko) 광학섬유를 이용한 온도측정장치
CN102959374A (zh) 光纤双折射温度计和用于制造其的方法
RU2495380C2 (ru) Способ измерения параметров физических полей
TW387055B (en) Distributed fiber grating sensing systems using birefringence fiber interferometers for detecting wavelength shifts
KR101106726B1 (ko) 광케이블을 이용한 온도보정 변형률 분해능 향상을 위한 계측 방법
EP3443325B1 (en) Method and apparatus for verification of tdlas system operation
Marrazzo Arrayed Waveguide Grating-Based Interrogation System for Safety Applications and High-Speed Measurements
Barot et al. Strain Sensitivity Enhancement by Polarization-Maintaining Fiber Bragg Gratings

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200206

Address after: Munich, Germany

Patentee after: FOS4X GmbH

Address before: Munich, Germany

Patentee before: TECHNISCHE UNIVERSITAT MUNCHEN

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231018

Address after: Denmark bramming

Patentee after: VC Eighth Technology Co.,Ltd.

Address before: Munich, Germany

Patentee before: FOS4X GmbH

TR01 Transfer of patent right